Semiconductor device and manufacturing method thereof

Information

  • Patent Grant
  • 9812544
  • Patent Number
    9,812,544
  • Date Filed
    Monday, November 9, 2015
    9 years ago
  • Date Issued
    Tuesday, November 7, 2017
    7 years ago
Abstract
To manufacture a transistor whose threshold voltage is controlled without using a backgate electrode, a circuit for controlling the threshold voltage, and an impurity introduction method. To manufacture a semiconductor device having favorable electrical characteristics, high reliability, and low power consumption using the transistor. A gate electrode including a tungsten oxide film whose composition is controlled is used. The composition or the like is adjusted by a film formation method of the tungsten oxide film, whereby the work function can be controlled. By using the tungsten oxide film whose work function is controlled as part of the gate electrode, the threshold of the transistor can be controlled. Using the transistor whose threshold voltage is controlled, a semiconductor device having favorable electrical characteristics, high reliability, and low power consumption can be manufactured.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The present invention relates to a semiconductor device and a manufacturing method of the semiconductor device.


In this specification, a semiconductor device means any device that can function by utilizing semiconductor characteristics; a semiconductor display device, a semiconductor circuit, an electronic device are all included in the category of the semiconductor device.


2. Description of the Related Art


A technique by which transistors are formed using a semiconductor thin film formed over a substrate having an insulating surface has been attracting attention. Such transistors are applied to a wide range of electronic devices such as an integrated circuit (IC) or an image display device (display device). As materials of semiconductor thin films applicable to the transistors, there are silicon-based semiconductor materials and oxide semiconductor materials.


For example, amorphous silicon, microcrystalline silicon, polycrystalline silicon, an In—Ga—Zn—O-based oxide semiconductor, and the like are used as active layers of transistors.


Controlling the threshold voltage (Vth) of a transistor is important in terms of on/off characteristics of the transistor. For example, when the threshold voltage is close to 0 V in a transistor, the voltage at which the transistor is turned on can be low, leading to low power consumption.


Patent Document 1 discloses a semiconductor device including a plurality of transistors each including a backgate electrode, a semiconductor active layer provided in contact with the backgate electrode with a first gate insulating film interposed therebetween, and a gate electrode provided in contact with the semiconductor active layer with a second gate insulating film interposed therebetween; and a threshold voltage control circuit which controls the threshold voltage of the plurality of transistors; and a technique in which the threshold voltage is controlled by application of an arbitrary voltage to the back gate electrode by the threshold voltage control circuit.


For example, in the case of using a silicon-based semiconductor material for an active layer, the threshold voltage can be controlled by introducing a Group 13 element or a Group 15 element into the active layer; however, it is known that the introduction of a Group 13 element or a Group 15 element reduces the crystallinity and causes impurity scattering and the like, leading to degradation of transistor characteristics.


Non-Patent Document 1 discloses a technique in which molybdenum oxide is formed on a surface by plasma oxidation of a Mo gate electrode to increase the work function of the gate electrode, so that the threshold voltage shifts to the positive side. This technique shifts the threshold voltage to the positive side but has problems of low resistance of the molybdenum oxide to a later plasma process and recession of the molybdenum oxide layer.


REFERENCE
Patent Document



  • [Patent Document 1] Japanese Published Patent Application No. 2006-237624



Non-Patent Document



  • [Non-Patent Document 1] Eri Fukumoto et al., “High Mobility Oxide Semiconductor TFT for Circuit Integration of AM-OLED”, IDW'10, pp. 631-634



SUMMARY OF THE INVENTION

An object is to manufacture a transistor whose threshold voltage is controlled without using a backgate electrode, a circuit for controlling the threshold voltage, and an impurity introduction method. An object is to manufacture a semiconductor device having favorable electrical characteristics, high reliability, and low power consumption using the transistor. Further, an object is to form a gate electrode material applicable to the transistor.


An embodiment of the present invention is a semiconductor device which includes a gate electrode including a tungsten oxide film, a gate insulating film part of which in contact with the tungsten oxide film, a semiconductor film which overlaps with the gate electrode with the gate insulating film interposed therebetween, and a pair of conductive films part of which is in contact with the semiconductor film.


The work function of the tungsten oxide film can be controlled by adjustment of the composition of the tungsten oxide film. By using the tungsten oxide film whose work function is controlled as part of the gate electrode, the threshold voltage of the transistor can be controlled.


The composition of the tungsten oxide film can be adjusted at the time of film formation, for example.


In the case where the tungsten oxide film is formed using a sputtering method, a tungsten oxide target, a tungsten nitride target, or a tungsten target is used. By adjusting the composition of the target, the composition of the film can be controlled.


For example, the composition of the target can be adjusted by changing the mixing ratio of tungsten, tungsten dioxide, and tungsten trioxide in manufacturing the target, whereby the composition of the film obtained can be adjusted.


The composition of the film can also be adjusted by mixing tungsten nitride in the target.


In order to control the work function, a material containing one or more elements selected from Mg, Al, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Ga, Y, Zr, Nb, Mo, Ag, In, Sn, La, Ce, Nd, Hf, and Ta may be mixed in the target. For example, molybdenum oxide which is an oxide of Mo is known to have a high work function. However, molybdenum oxide is highly reactive with plasma and a chemical solution and soluble in water; thus it is hard to use molybdenum oxide as a single film. In contrast, a mixture of tungsten oxide and molybdenum oxide has lower reactivity with plasma and a chemical solution, is relatively stable, and is suitable for the control of the work function. Therefore, the mixture of tungsten oxide and molybdenum oxide is preferable due to less limitations on the process.


The composition of the film can also be adjusted by setting a solid body including any of the materials listed in the above paragraph over the target.


Alternatively, the composition of the film can be adjusted by film formation in which one or more gases selected from a rare gas (He, Ne, Ar, Kr, or Xe), oxygen, or nitrogen is used as a film formation gas. An increase in the concentration of oxygen or nitrogen in the tungsten oxide film can change the work function. Thus, the work function can be controlled with a flow rate ratio of the film formation gas.


In the case of introducing nitrogen into the tungsten oxide film, the concentration of nitrogen is preferably higher than or equal to 0.1 at % and lower than or equal to 20 at %. This is because the amount of variation in the work function of the tungsten oxide film owing to the introduction of nitrogen is small in the case where the concentration of nitrogen is lower than 0.1 at % or higher than 20 at %. It is obvious that the concentration of nitrogen in the tungsten oxide film is not limited to the above-described range and a tungsten oxide film including nitrogen at a concentration lower than 0.1 at % or higher than 20 at % can be used.


Further, the tungsten oxide film can be replaced by a tungsten nitride film in an embodiment of the present invention. That is, the work function may be controlled by the control of the concentration of nitrogen, the concentration of oxygen, or the like in the tungsten nitride film.


Alternatively, the tungsten oxide film can also be obtained by plasma treatment or thermal oxidation treatment on a metal film including tungsten. In this case, the work function can be controlled depending on conditions of the plasma treatment, conditions of the thermal oxidation treatment, heat treatment after the treatment, or the like.


In the above-described manner, with an embodiment of the present invention, a transistor whose threshold voltage is controlled without using a backgate electrode, a circuit for controlling the threshold voltage, and an impurity introduction method can be manufactured. The control of the threshold voltage of the transistor enables a reduction in the power consumption of a semiconductor device that uses an embodiment of the present invention.


An embodiment of the present invention is made by devising the gate electrode and does not increase the number of steps for manufacturing a transistor. In addition, degradation of the quality of a semiconductor film due to the impurity introduction is not caused. Therefore, a semiconductor device having favorable electrical characteristics and high reliability can be manufactured with high productivity.


A semiconductor device having favorable electrical characteristics, high reliability, and low power consumption can be manufactured with high productivity.





BRIEF DESCRIPTION OF THE DRAWINGS

In the accompanying drawings:



FIG. 1A is a top view of an example of a transistor according to an embodiment of the present invention and FIGS. 1B and 1C are cross-sectional views thereof;



FIG. 2A is a top view of an example of a transistor according to an embodiment of the present invention and FIGS. 2B and 2C are cross-sectional views thereof;



FIG. 3A is a top view of an example of a transistor according to an embodiment of the present invention and FIGS. 3B and 3C are cross-sectional views thereof;



FIG. 4A is a top view of an example of a transistor according to an embodiment of the present invention and FIGS. 4B and 4C are cross-sectional views thereof;



FIG. 5A is a top view of an example of a transistor according to an embodiment of the present invention and FIGS. 5B and 5C are cross-sectional views thereof;



FIG. 6A is a top view of an example of a transistor according to an embodiment of the present invention and FIGS. 6B and 6C are cross-sectional views thereof;



FIG. 7 is a circuit diagram showing an example of a liquid crystal display device including a transistor according to an embodiment of the present invention;



FIG. 8A is a circuit diagram showing an example of a semiconductor memory device including a transistor according to an embodiment of the present invention, and FIG. 8B shows electrical characteristics thereof;



FIG. 9A is a circuit diagram showing an example of a semiconductor memory device including a transistor according to an embodiment of the present invention, and FIG. 9B shows electrical characteristics thereof;



FIGS. 10A to 10C each show an example of an electronic device according to an embodiment of the present invention;



FIGS. 11A to 11D show XRD spectra of tungsten oxide films;



FIGS. 12A to 12D show XRD spectra of tungsten oxide films;



FIGS. 13A and 13B show work functions of tungsten oxide films;



FIG. 14 shows work functions of tungsten oxide films;



FIG. 15 shows a C-V curve of a MOS structure that uses a tungsten oxide film as part of its gate electrode;



FIGS. 16A and 16B each show a Vg-Id curve of a transistor;



FIG. 17 shows work functions of tungsten oxide films; and



FIG. 18 shows work functions of tungsten oxide films.





DETAILED DESCRIPTION OF THE INVENTION

Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, the present invention is not limited to the following description, and it is easily understood by those skilled in the art that modes and details can be modified in various ways. Therefore, the present invention is not construed as being limited to description of the embodiments below. In describing structures of the present invention with reference to the drawings, the same reference numerals are used in common for the same portions in different drawings. Note that the same hatch pattern is applied to similar parts, and the similar parts are not especially denoted by reference numerals in some cases.


Before the present invention is described, terms used in this specification will be briefly explained. First, when one of a source and a drain of a transistor is called a drain, the other is called a source in this specification. That is, they are not distinguished depending on the potential level. Therefore, a portion called a source in this specification can be alternatively referred to as a drain.


Note that voltage refers to a potential difference between a certain potential and a reference potential (e.g., a ground potential) in many cases. Accordingly, voltage, potential and a potential difference can be referred to as potential, voltage, and a voltage difference, respectively.


Even when it is written in this specification that “to be connected”, there is a case in which no physical connection is made in an actual circuit and a wiring is only extended. For example, in the case of a circuit including an insulated-gate field-effect transistor (MISFET), one wiring functions as gates of a plurality of MISFETs in some cases. In that case, one wiring which branches into gates may be illustrated in a circuit diagram. Even in such a case, the expression “a wiring is connected to a gate” may be used in this specification.


Note that the ordinal numbers such as “first” and “second” are used for convenience and do not denote the order of steps or the stacking order of layers. In addition, the ordinal numbers in this specification do not denote particular names which specify the present invention.


Embodiment 1

A method of forming a tungsten oxide film whose composition is adjusted, which is an embodiment of the present invention, will be described.


In the case of forming a tungsten oxide film by a sputtering method, a tungsten oxide target, a tungsten nitride target, or a tungsten target is used. By adjusting the composition of the target, the composition of the film can be controlled.


For example, the composition of the target can be adjusted by changing the mixing ratio of tungsten, tungsten dioxide, or tungsten trioxide (or tungsten oxide with another valence) in manufacturing the target, whereby the composition of the film to be obtained can be adjusted. Variation in the mixing ratio of materials can produce a variety of work functions; in this manner, the work function can be controlled.


The composition of the film can also be adjusted by mixing tungsten nitride in a tungsten oxide target.


In order to control the work function, a material containing one or more elements selected from Mg, Al, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Ga, Y, Zr, Nb, Mo, Ag, In, Sn, La, Ce, Nd, Hf, and Ta may be mixed in the target. For example, molybdenum oxide which is an oxide of Mo is known to have a high work function. However, molybdenum oxide is soluble in water and thus is hard to use as a single film. A mixture of tungsten oxide and molybdenum oxide is relatively stable and suitable for the control of the work function. The work function of a molybdenum oxide film can be controlled in a manner similar to that of the tungsten oxide film. Therefore, the work function can also be controlled by mixing molybdenum oxide and tungsten oxide having controlled work functions.


The composition of the film can also be adjusted by film formation with a chip which includes any of the materials listed in the previous paragraph and is set over the target.


The composition of the film can also be adjusted by co-sputtering with the use of a plurality of cathodes.


The composition of the film can also be adjusted by film formation in which one or more gases selected from a rare gas, oxygen, or nitrogen for the tungsten oxide target is used as a film formation gas.


The composition of the film can also be adjusted by film formation in which one or more gases selected from oxygen, a rare gas, or nitrogen for the tungsten nitride target or the tungsten target is used as a film formation gas.


Alternatively, oxidation treatment, oxynitridation treatment, or nitridation treatment may be performed on a metal film including at least tungsten to form metal oxide, metal oxynitride, or metal nitride in a part. The metal film including at least tungsten may be used by mixing one or more elements selected from Mg, Al, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Ga, Y, Zr, Nb, Mo, Ag, In, Sn, La, Ce, Nd, Hf, and Ta into the tungsten.


The oxidation treatment can be plasma oxidation treatment or thermal oxidation treatment. For example, plasma may be generated by supply of electric power with an RF power source or the like using a reaction gas such as oxygen or nitrogen oxide (such as N2O, NO, or NO2). The plasma treatment may be carried out with a CVD apparatus, an etching apparatus, a doping apparatus, or the like. The thermal oxidation treatment may be performed in an oxidizing atmosphere at a temperature higher than or equal to 150° C. and lower than a strain point, preferably higher than or equal to 250° C. and lower than or equal to 550° C.


The oxidizing atmosphere is an atmosphere containing an oxidizing gas. The oxidizing gas is oxygen, ozone, nitrous oxide, or the like, and it is preferable that the oxidizing gas do not contain water, hydrogen, and the like. For example, the purity of oxygen, ozone, or nitrous oxide introduced into a heat treatment apparatus is 8N (99.999999%) or higher, preferably 9N (99.9999999%) or higher (i.e., the impurity concentration is 1 ppm or lower, preferably lower than 0.1 ppm). As the oxidizing atmosphere, an oxidizing gas mixed with an inert gas may be used. In that case, the mixture contains an oxidizing gas at a concentration at least greater than or equal to 10 ppm.


Here, the inert gas refers to nitrogen, a rare gas, or the like.


In the case of forming a tungsten oxide film by performing plasma treatment on a metal film including tungsten, heat treatment is preferably performed after the plasma treatment. The heat treatment can change the composition or crystallinity of the tungsten oxide film and also increase the work function.


In the plasma treatment, an electric power more than or equal to 25 W and less than or equal to 1500 W is supplied. Preferably, an electric power more than or equal to 300 W and less than or equal to 800 W is supplied. Alternatively, the direct-current voltage (VDC) between an electrode and a substrate over which a treatment film is formed may be set to higher than or equal to 10 V and lower than or equal to 800 V, preferably higher than or equal to 50 V and lower than or equal to 500 V, and further preferably higher than or equal to 100 V and lower than or equal to 300 V.


The time for which the treatment film is exposed to the plasma treatment is more than or equal to 10 sec and less than or equal to 600 sec, preferably more than or equal to 30 sec and less than or equal to 300 sec. The work function of the treatment film can be controlled by adjusting the time for which the treatment film is exposed to the plasma treatment.


In the film formation by a sputtering method, a bias sputtering method in which a bias electric power is also applied to the substrate side may be used. By using a bias sputtering method for formation of a tungsten oxide film, the crystallinity, composition, or the like is changed; accordingly, the work function can be controlled.


With this embodiment, the work function of a tungsten oxide film can be controlled.


This embodiment can be implemented in appropriate combination with any of the other embodiments.


Embodiment 2

A transistor which is an embodiment of the present invention will be described with reference to FIGS. 1A to 1C.



FIGS. 1A to 1C are a top view and cross-sectional views of a transistor which is an embodiment of the present invention. A cross section A-B in FIG. 1B and a cross section C-D in FIG. 1C correspond to alternate long and short dash lines A-B and C-D in FIG. 1A, respectively.


Here, the cross section A-B in FIG. 1B will be described in detail.


The cross-section A-B is a cross section of a transistor including a substrate 100, a gate electrode 104 over the substrate 100, a gate insulating film 112 that covers the substrate 100 and the gate electrode 104, a semiconductor film 106 positioned over the gate electrode 104 with the gate insulating film 112 interposed therebetween, a pair of electrodes 116 having a part in contact with the semiconductor film 106 and being over the semiconductor film 106, and an interlayer insulating film 118 that covers the gate insulating film 112, the semiconductor film 106, and the pair of electrodes 116.


Here, the gate electrode 104 includes the tungsten oxide film whose composition is adjusted and which is described in Embodiment 1. The work function of the tungsten oxide film can be controlled by the composition.


The gate electrode 104 may have a stacked-layer structure. For example, one or more materials selected from a metal of Al, Ti, Cr, Co, Ni, Cu, Y, Zr, Mo, Ag, Ta, or W, a nitride of the metal; an oxide of the metal; or an alloy of the metal is stacked together with the tungsten oxide film. In the case where the resistance of the tungsten oxide film is high, the tungsten oxide film is preferably stacked together with a low-resistance film with a sheet resistance of 10 Ω/sq or lower in order to reduce the resistance of the gate electrode 104. Note that the tungsten oxide film is arranged to be located on the gate insulating film 112 side.


Note that in FIGS. 1A to 1C, the gate electrode 104 is larger than the semiconductor film 106 in length and width when viewed from above in order to prevent light from causing deterioration of the semiconductor film 106 or electric charge generation in the semiconductor film 106; however, the present invention is not limited to this structure. An edge of the semiconductor film 106 may extend beyond an edge of the gate electrode 104.


There is no particular limitation on the substrate 100 as long as it has heat resistance enough to withstand at least heat treatment performed later. For example, a glass substrate, a ceramic substrate, a quartz substrate, or a sapphire substrate may be used as the substrate 100. Further alternatively, a single crystal semiconductor substrate or a polycrystalline semiconductor substrate made of silicon, silicon carbide, or the like, a compound semiconductor substrate made of silicon germanium or the like, an SOI (silicon on insulator) substrate, or the like may be used. Still further alternatively, any of these substrates provided with a semiconductor element may be used as the substrate 100.


A flexible substrate may alternatively be used as the substrate 100. In the case where a transistor is provided over the flexible substrate, the transistor may be formed directly on the flexible substrate, or the transistor may be formed over a different substrate and then separated from the substrate and transferred to the flexible substrate. In order to separate the transistor from the substrate and transfer it to the flexible substrate, a separation layer is preferably provided between the different substrate and the transistor.


The semiconductor film 106 may be formed using a silicon film, a germanium film, a silicon germanium film, a silicon carbide film, a gallium nitride film, or an oxide semiconductor film. The oxide semiconductor film can be formed easily and has high field-effect mobility even without laser beam irradiation treatment and the like; thus the oxide semiconductor film is preferable as the semiconductor film 106.


For example, for the oxide semiconductor film of the semiconductor film 106, a four-component metal oxide such as an In—Sn—Ga—Zn—O-based material; a three-component metal oxide such as an In—Ga—Zn—O-based material, an In—Sn—Zn—O-based material, an In—Al—Zn—O-based material, a Sn—Ga—Zn—O-based material, an Al—Ga—Zn—O-based material, or a Sn—Al—Zn—O-based material; a two-component metal oxide such as an In—Zn—O-based material, a Sn—Zn—O-based material, an Al—Zn—O-based material, a Zn—Mg—O-based material, a Sn—Mg—O-based material, an In—Mg—O-based material, or an In—Ga—O-based material; an In—O-based material; a Sn—O-based material; a Zn—O-based material; or the like may be used. In addition, any of the above materials may contain silicon oxide. Here, for example, an In—Ga—Zn—O-based material means an oxide containing indium (In), gallium (Ga), and zinc (Zn), and there is no particular limitation on the composition ratio. Further, the In—Ga—Zn—O-based oxide semiconductor may contain an element other than In, Ga, and Zn.


Further, a material represented by InMO3(ZnO)m (m>0) may be used for the oxide semiconductor film. Here, M represents one or more metal elements selected from Ga, Al, Mn, and Co. For example, M may be Ga, Ga and Al, Ga and Mn, Ga and Co, or the like.


The gate insulating film 112 and the interlayer insulating film 118 may be formed to have a stacked-layer structure or a single-layer structure using, for example, silicon oxide, silicon oxynitride, silicon nitride oxide, silicon nitride, aluminum oxide, hafnium oxide, yttrium oxide, or zirconium oxide. For example, the gate insulating film 112 and the interlayer insulating film 118 may be formed using a thermal oxidation method, a CVD method, a sputtering method, or the like. As the gate insulating film 112 and the interlayer insulating film 118, a film from which oxygen is released by heating may be used. With use of such an insulating film from which oxygen is released by heating for the gate insulating film 112 and the interlayer insulating film 118, defects generated in the semiconductor film 106 can be repaired and electrical characteristics of the transistor can be inhibited from being degraded.


In this specification, silicon oxynitride refers to a substance that contains more oxygen than nitrogen and for example, silicon oxynitride includes oxygen, nitrogen, silicon, and hydrogen at concentrations ranging from greater than or equal to 50 at % and less than or equal to 70 at %, greater than or equal to 0.5 at % and less than or equal to 15 at %, greater than or equal to 25 at % and less than or equal to 35 at %, and greater than or equal to 0 at % and less than or equal to 10 at %, respectively. Further, silicon nitride oxide refers to a substance that contains more nitrogen than oxygen and for example, silicon nitride oxide includes oxygen, nitrogen, silicon, and hydrogen at concentrations ranging from greater than or equal to 5 at % and less than or equal to 30 at %, greater than or equal to 20 at % and less than or equal to 55 at %, greater than or equal to 25 at % and less than or equal to 35 at %, and greater than or equal to 10 at % and less than or equal to 25 at %, respectively. Note that rates of oxygen, nitrogen, silicon, and hydrogen fall within the above ranges in the cases where measurement is performed using Rutherford backscattering spectrometry (RBS) or hydrogen forward scattering spectrometry (HFS). In addition, the total of the percentages of the constituent elements does not exceed 100 at %.


In the case where a material of the pair of electrodes 116 diffuses into the semiconductor film 106 to adversely affect transistor characteristics, an insulating film in which the diffusion coefficient of the material of the pair of electrodes 116 is low may be used as the gate insulating film 112 and the interlayer insulating film 118. The interlayer insulating film 118 functions as a protective film for the semiconductor film 106.


“To release oxygen by heating” means that the amount of released oxygen is greater than or equal to 1.0×1018 atoms/cm3, preferably greater than or equal to 3.0×1020 atoms/cm3 in thermal desorption spectroscopy (TDS) on an oxygen atom basis.


Here, a method for measuring the amount of released oxygen on an oxygen atom basis using TDS analysis will be described.


The amount of released gas in TDS analysis is proportional to the integral value of a spectrum. Therefore, the amount of released gas can be calculated from the ratio between the integral value of a measured spectrum and the reference value of a standard sample. The reference value of a standard sample refers to the ratio of the density of a predetermined atom contained in a sample to the integral value of a spectrum.


For example, the number of the released oxygen molecules (NO2) from an insulating film can be calculated according to Equation 1 using the TDS analysis results of a silicon wafer containing hydrogen at a predetermined density, which is the standard sample, and the TDS analysis results of the insulating film. Here, all spectra having a mass number of 32 which are obtained by the TDS analysis are assumed to originate from an oxygen molecule. CH3OH can be given as another gas having a mass number of 32, but is not taken into consideration on the assumption that it is unlikely to be present. Further, an oxygen molecule including an oxygen atom having a mass number of 17 or 18, which is an isotope of an oxygen atom, is also not taken into consideration because the proportion of such a molecule in the natural world is minimal.

NO2=NH2/SH2×SO2×a  (Equation 1)


NH2 is the value obtained by conversion of the number of hydrogen molecules released from the standard sample into density. SH2 is an integral value of a spectrum of the standard sample which is analyzed by TDS. Here, the reference value of the standard sample is set to NH2/SH2. SO2 is an integral value of a spectrum when the insulating film is analyzed by TDS. a is a coefficient affecting the intensity of the spectrum in the TDS analysis. For details of Equation 1, Japanese Published Patent Application No. H6-275697 can be referred to. Note that the amount of released oxygen from the above insulating film is measured with a thermal desorption spectroscopy apparatus produced by ESCO Ltd., EMD-WA1000S/W using a silicon wafer containing hydrogen atoms at 1×1016 atoms/cm3 as the standard sample.


Further, in the TDS analysis, part of oxygen is detected as an oxygen atom. The ratio between oxygen molecules and oxygen atoms can be calculated from the ionization rate of oxygen molecules. Note that, since the above a includes the ionization rate of oxygen molecules, the number of the released oxygen atoms can also be estimated through the evaluation of the number of the released oxygen molecules.


Note that NO2 is the number of the released oxygen molecules. The amount of released oxygen on an oxygen atom basis is twice the number of the released oxygen molecules.


In the above structure, the film from which oxygen is released by heating may be oxygen-excess silicon oxide (SiOX (X>2)). In the oxygen-excess silicon oxide (SiOX (X>2)), the number of oxygen atoms per unit volume is more than twice the number of silicon atoms per unit volume. The number of silicon atoms and the number of oxygen atoms per unit volume are measured by Rutherford backscattering spectrometry.


When oxygen is supplied to the semiconductor film 106, which is an oxide semiconductor film, from the gate insulating film 112 or the interlayer insulating film 118, the interface state density between the semiconductor film 106 and the gate insulating film 112 or the interface state density between the semiconductor film 106 and the interlayer insulating film 118 can be reduced. As a result, capture of electric charge at the interface between the semiconductor film 106 and the gate insulating film 112 and the interface between the semiconductor film 106 and the interlayer insulating film 118 due to operation of a transistor or the like can be suppressed. Thus, a transistor with less electrical characteristic deterioration can be provided.


Further, electric charge may be generated owing to oxygen vacancies in the oxide semiconductor film in some cases. In general, part of oxygen vacancies in the oxide semiconductor film serves as a donor to generate an electron that is a carrier. As a result, the threshold voltage of the transistor shifts in the negative direction. Sufficient release of oxygen from the gate insulating film 112 or the interlayer insulating film 118 to the semiconductor film 106 that is the oxide semiconductor film can compensate oxygen vacancies in the oxide semiconductor film which is a cause of the negative shift of the threshold voltage.


In other words, by providing the film from which oxygen is released by heating as the gate insulating film 112 or the interlayer insulating film 118, the interface state density between the semiconductor film 106 and the gate insulating film 112, the interface state density between the semiconductor film 106 and the interlayer insulating film 118, and oxygen vacancies in the semiconductor film 106 which is an oxide semiconductor film can be reduced, whereby the influence of the capture of electric charge in the semiconductor film 106 which is an oxide semiconductor film, at the interface of the gate insulating film 112, or at the interface of the interlayer insulating film 118 can be reduced.


For the pair of electrodes 116, any of the metals, metal nitrides, metal oxides, or metal alloys, which can be used for the gate electrode 104, can be used as appropriate. The pair of electrodes 116 functions as source and drain electrodes of the transistor.


When a film including Cu is used for the pair of electrodes 116, the wiring resistance can be reduced, and wiring delay or the like can be prevented even in a large-sized display device or the like. In the case of using Cu for the pair of electrodes 116, the adhesion depends on the material of the substrate 100; in such a case, it is preferable to employ a stacked-layer structure using a film having favorable adhesion property to the substrate 100. As the film having favorable adhesion property to the substrate 100, a film including Ti, Mo, Mn, Cu, or Al may be used. For example, a Cu—Mn—Al alloy may be used.


In the above-described manner, a transistor whose threshold voltage is controlled can be provided. Therefore, a semiconductor device having favorable electrical characteristics, high reliability, and low power consumption can be manufactured at high productivity.


This embodiment can be implemented in appropriate combination with any of the other embodiments.


Embodiment 3

In this embodiment, a transistor having a structure different from that of the transistor described in Embodiments 2 will be described.



FIGS. 2A to 2C are a top view and cross-sectional views of a transistor which is an embodiment of the present invention. A cross section A-B in FIG. 2B and a cross section C-D in FIG. 2C correspond to alternate long and short dash lines A-B and C-D in FIG. 2A, respectively.


The cross section A-B in FIG. 2B will be described in detail below.


The cross-section A-B is a cross section of a transistor including a substrate 100, a gate electrode 104 over the substrate 100, a gate insulating film 112 that covers the substrate 100 and the gate electrode 104, a pair of electrodes 116 over the gate insulating film 112, a semiconductor film 106 having a part in contact with the pair of electrodes 116 and being over the pair of electrodes 116, and an interlayer insulating film 118 that covers the gate insulating film 112, the pair of electrodes 116, and the semiconductor film 106.


The gate electrode 104 in this embodiment has a structure similar to that of the gate electrode 104 in Embodiment 2. By using the gate electrode including the tungsten oxide film described in Embodiment 1, the work function can be controlled; accordingly, the threshold voltage of the transistor can be controlled. In the case that the gate electrode 104 has a stacked-layer structure, the tungsten oxide film is arranged to be located on the gate insulating film 112 side.



FIGS. 3A to 3C are a top view and cross-sectional views of a transistor which is an embodiment of the present invention. A cross section A-B in FIG. 3B and a cross section C-D in FIG. 3C correspond to alternate long and short dash lines A-B and C-D in FIG. 3A, respectively.


The cross section A-B in FIG. 3B will be described in detail below.


The cross-section A-B is a cross section of a transistor including a substrate 100, a base insulating film 102 over the substrate 100, a semiconductor film 106 over the base insulating film 102, a pair of electrodes 116 having a part in contact with the semiconductor film 106 and being over the semiconductor film 106, a gate insulating film 112 that covers the semiconductor film 106 and the pair of electrodes 116, and a gate electrode 104 positioned over the semiconductor film 106 with the gate insulating film 112 interposed therebetween.


The base insulating film 102 can have a structure similar to those of the gate insulating film 112 and the interlayer insulating film 118.



FIGS. 4A to 4C are a top view and cross-sectional views of a transistor which is an embodiment of the present invention. A cross section A-B in FIG. 4B and a cross section C-D in FIG. 4C correspond to alternate long and short dash lines A-B and C-D in FIG. 4A, respectively.


The cross section A-B in FIG. 4B will be described in detail below.


The cross-section A-B is a cross section of a transistor including a substrate 100, a base insulating film 102 over the substrate 100, a pair of electrodes 116 over the base insulating film 102, a semiconductor film 106 having a part in contact with the pair of electrodes 116 and being over the pair of electrodes 116, a gate insulating film 112 that covers the semiconductor film 106 and the pair of electrodes 116, and a gate electrode 104 positioned over the semiconductor film 106 with the gate insulating film 112 interposed therebetween.


Note that in FIGS. 2A to 2C, FIGS. 3A to 3C, and FIGS. 4A to 4C, the gate electrode 104 is larger than the semiconductor film 106 in length and width when viewed from above in order to prevent light from causing deterioration of the semiconductor film 106 or electric charge generation in the semiconductor film 106; however, the present invention is not limited to this structure. An edge of the semiconductor film 106 may extend beyond an edge of the gate electrode 104.



FIGS. 5A to 5C are a top view and cross-sectional views of a transistor which is an embodiment of the present invention. A cross section A-B in FIG. 5B and a cross section C-D in FIG. 5C correspond to alternate long and short dash lines A-B and C-D in FIG. 5A, respectively.


The cross section A-B in FIG. 5B will be described in detail below.


The cross-section A-B is a cross section of a transistor including a substrate 100, a base insulating film 102 over the substrate 100, a semiconductor film including a region 126 and a region 121 over the base insulating film 102, a gate insulating film 112 over the region 121, a gate electrode 104 over the gate insulating film 112, an interlayer insulating film 118 that covers the base insulating film 102, the region 126, the gate insulating film 112, and the gate electrode 104, and a pair of electrodes 116 which is in contact with the region 126 at an opening that is provided in the interlayer insulating film 118 and exposes the region 126.


Here, the gate insulating film 112 and the gate electrode 104 may be formed using the same mask to have substantially the same shape when viewed from above. Note that after formation of the gate electrode 104 and the gate insulating film 112, the width of the gate electrode 104 may be reduced by plasma treatment or chemical treatment.


Although the gate insulating film 112 and the gate electrode 104 have substantially the same shape when viewed from above in FIGS. 5A to 5C, the present invention is not limited to this structure. For example, a structure in which the gate insulating film 112 covers the semiconductor film including the region 121 and the region 126 may also be employed.


The region 121 may be formed using the gate insulating film 112 or the gate electrode 104 as a mask in forming the region 126 to have substantially the same shape when viewed from above as the gate insulating film 112 or the gate electrode 104. For example, an impurity (such as boron, phosphorus, hydrogen, a rare gas, or nitrogen) is introduced into the semiconductor film using the gate insulating film 112 or the gate electrode 104 as a mask, a region whose resistance has been reduced can be referred to as the region 126. Note that the region 121 is a region except for the region 126 in the semiconductor film.


The region 121 functions as a channel region of the transistor. Further, the region 126 has a function as a source region or a drain region of the transistor.



FIGS. 6A to 6C are a top view and cross-sectional views of a transistor which is an embodiment of the present invention. A cross section A-B in FIG. 6B and a cross section C-D in FIG. 6C correspond to alternate long and short dash lines A-B and C-D in FIG. 6A, respectively.


The cross section A-B in FIG. 6B will be described in detail below.


The cross-section A-B is a cross section of a transistor including a substrate 100, a gate electrode 104 over the substrate 100, a gate insulating film 112 over the gate electrode 104, a semiconductor film including a region 126 and a region 121 over the gate electrode 104 with the gate insulating film 112 interposed therebetween, an interlayer insulating film 118 that covers the semiconductor film and the gate insulating film 112, and a pair of electrodes 116 which is in contact with the region 126 at an opening that is provided in the interlayer insulating film 118 and exposes the region 126.


In the above-described manner, a transistor whose threshold voltage is controlled can be provided. Therefore, a semiconductor device having favorable electrical characteristics, high reliability, and low power consumption can be manufactured at high productivity.


This embodiment can be implemented in appropriate combination with any of the other embodiments.


Embodiment 4

In this embodiment, a liquid crystal display device manufactured using the transistor described in Embodiment 2 or 3 will be described. Note that an example in which an embodiment of the present invention is applied to a liquid crystal display device will be described in this embodiment; however, the present invention is not limited to this embodiment. For example, those skilled in the art can easily conceive an idea of applying an embodiment of the present invention to an electroluminescent (EL) display device.



FIG. 7 is a circuit diagram of an active matrix liquid crystal display device. The liquid crystal display device includes source lines SL_1 to SL_a, gate lines GL_1 to GL_b, and a plurality of pixels 200. The pixels 200 each include a transistor 230, a capacitor 220, and a liquid crystal element 210. The plurality of pixels 200 with such a structure forms a pixel portion of the liquid crystal display device. Note that a “source line SL” and a “gate line GL” simply refer to a source line and a gate line, respectively.


The transistor described in Embodiment 2 or 3 is used as the transistor 230.


The gate line GL is connected to a gate of the transistor 230, the source line SL is connected to a source of the transistor 230, and a drain of the transistor 230 is connected to one capacitor electrode of the capacitor 220 and one pixel electrode of the liquid crystal element 210. The other capacitor electrode of the capacitor 220 and the other pixel electrode of the liquid crystal element 210 are connected to a common electrode. Note that the common electrode may be formed in the same layer as the gate line GL using the same material as the gate line GL.


Further, the gate line GL is connected to a gate driver circuit. The gate driver circuit may include the transistor described in Embodiment 2 or 3. Since the threshold voltage of the transistor is controlled, the off-state current of the transistor can be made to be small and the voltage for turning on the transistor can be made to be low. Thus, power consumption can be reduced.


The source line SL is connected to a source driver circuit. The source driver circuit may include the transistor described in Embodiment 2 or 3. Since the threshold voltage of the transistor is controlled, the off-state current of the transistor can be made to be small and the voltage for turning on the transistor can be made to be low. Thus, power consumption can be reduced.


Note that either or both of the gate driver circuit and the source driver circuit may be formed over a separately prepared substrate and connected using a method such as chip on glass (COG), wire bonding, or tape automated bonding (TAB).


Since a transistor is easily broken by static electricity or the like, a protection circuit is preferably provided. The protection circuit is preferably formed using a nonlinear element.


On application of a potential that is higher than the threshold voltage of the transistor 230 to the gate line GL, electric charge supplied from the source line SL flows as a drain current of the transistor 230 and is accumulated in the capacitor 220. After charging for one row, the transistors 230 in the row are turned off and voltage application from the source line SL stops; however, a necessary voltage can be kept by the electric charge accumulated in the capacitors 220. Then, charging of the capacitors 220 in the next row starts. In this manner, charging for the first row to the b-th row is carried out.


Since the transistor 230 is a transistor whose threshold voltage is controlled, electric charge held in the capacitor 220 is unlikely to be lost, and therefore the capacity of the capacitor 220 can be reduced; accordingly, power consumed for charging can be reduced.


In the case of using a transistor having a small off-state current (such as a transistor including an oxide semiconductor film) as the transistor 230, the period for which the voltage can be kept can be lengthened. By this effect, the display rewriting frequency can be reduced in the case of displaying an image with little motion (including a still image); accordingly, further reduction of the power consumption is possible. Further, the capacity of the capacitor 220 can be further reduced; accordingly, power consumed for charging can be reduced.


In the above-described manner, according to an embodiment of the present invention, a liquid crystal display device which consumes low power can be provided.


This embodiment can be implemented in appropriate combination with any of the other embodiments.


Embodiment 5

In this embodiment, an example of manufacturing a semiconductor memory device using the transistor described in Embodiment 2 or 3 will be described.


As typical examples of a volatile semiconductor memory device, there are a dynamic random access memory (DRAM) which stores data in such a manner that a transistor included in a memory element is selected and electric charge is accumulated in a capacitor, and a static random access memory (SRAM) which holds stored data using a circuit such as a flip-flop.


As a typical example of a nonvolatile semiconductor memory device, there is a flash memory which includes a floating gate between a gate electrode and a channel formation region in a transistor and stores data by holding electric charge in the floating gate.


The transistor described in Embodiment 2 or 3 can be applied to part of transistors included in the above-described semiconductor memory device.


First, a volatile memory to which the transistor described in Embodiment 2 or 3 is applied will be described with reference to FIGS. 8A and 8B.


A memory cell includes a bit line BL, a word line WL, a sense amplifier SAmp, a transistor Tr, and a capacitor C (see FIG. 8A).


It is known that the potential held in the capacitor is gradually decreased with time as shown in FIG. 8B owing to the off-state current of the transistor Tr. The potential charged from V0 to V1 is decreased with time, to VA that is a limit for reading out data 1. This period is called a holding period T_1. In the case of a two-level DRAM, refresh needs to be performed within the holding period T_1.


Since the threshold voltage of the transistor described in Embodiment 2 or 3 is controlled, if the transistor described in Embodiment 2 or 3 is used as the transistor Tr here, the holding period T_1 can be lengthened. That is, the frequency of refresh operation can be reduced. Accordingly, power consumption can be reduced.


In the case of using a transistor having a small off-state current as the transistor Tr, the period for which the voltage is kept can be further lengthened, so that power consumption can be further reduced. For example, in the case where a memory cell is formed using a transistor including an oxide semiconductor film with an off-state current of 1×10−21 A or less, preferably 1×10−24 A or less, data can be kept for several days to several tens of years without supply of electric power.


As described above, using an embodiment of the present invention, a DRAM having high reliability and low power consumption can be provided.


Next, a nonvolatile memory to which the transistor described in Embodiment 2 or 3 is applied will be described with reference to FIGS. 9A and 9B.



FIG. 9A is a circuit diagram of a nonvolatile memory. A memory cell includes a transistor Tr_1, a word line WL_1 connected to a gate of the transistor Tr_1, a source wiring SL_1 connected to a source of the transistor Tr_1, a transistor Tr_2, a source wiring SL_2 connected to a source of the transistor Tr_2, a drain wiring DL_2 connected to a drain of the transistor Tr_2, a capacitor C, a capacitor wiring CL connected to one terminal of the capacitor C, and a floating gate FG connected to the other terminal of the capacitor C, a drain of the transistor Tr_1, and a gate of the transistor Tr_2.


The nonvolatile memory described in this embodiment utilizes variation in the threshold of the transistor Tr_2 in accordance with the potential of the floating gate FG For example, FIG. 9B shows a relation between a potential VCL of the capacitor wiring CL and a drain current ID_2 flowing through the transistor Tr_2.


Here, the potential of the floating gate FG can be adjusted through the transistor Tr_1. For example, an initial state of the potential of the floating gate FG is set to LOW, and the potential of the source line SL_1 is set to VDD. At this time, by setting the potential of the word line WL_1 to a potential that is higher than or equal to the sum of the threshold voltage of the transistor Tr_1 and VDD, the potential of the floating gate FG can be set to HIGH. On the other hand, in the case that the potential of the word line WL_1 is set to a potential equal to or lower than the threshold voltage of the transistor Tr_1, the potential of the floating gate FG remains in LOW.


Thus, as shown in FIG. 9B, either a VCL-ID_2 curve for FG=LOW or a VCL-ID_2 curve for FG=HIGH can be obtained. That is, when FG=LOW, the ID_2 is small at a VCL of 0V; accordingly, data 0 is stored. Further, when FG=HIGH, the ID_2 is large at a VCL of 0V; accordingly, data 1 is stored. In this manner, data can be stored.


Since the off-state current of the transistor described in Embodiment 2 or 3 can be made to be extremely small, if the transistor described in Embodiment 2 or 3 is used as the transistor Tr_1 here, unintentional leak of electric charge accumulated in the floating gate FG through the transistor Tr_1 can be suppressed. Therefore, data can be held for a long period. By using an embodiment of the present invention, the threshold voltage of the transistor Tr_1 is controlled, which enables reduction in the voltage necessary for writing. Thus, power consumption can be made small as compared to a flash memory or the like.


Note that the transistor described in Embodiment 2 or 3 may also be applied to the transistor Tr_2.


This embodiment can be implemented in appropriate combination with any of the other embodiments.


Embodiment 6

In this embodiment, examples of electronic equipment to which any of Embodiments 2 to 5 is applied will be described.



FIG. 10A illustrates a portable information terminal. The portable information terminal includes a housing 300, a button 301, a microphone 302, a display portion 303, a speaker 304, and a camera 305, and has a function as a mobile phone. An embodiment of the present invention can be applied to the display portion 303 and the camera 305. Although not illustrated, an embodiment of the present invention can also be applied to an arithmetic unit, a wireless circuit, or a memory circuit inside the main body.



FIG. 10B illustrates a display. The display includes a housing 310 and a display portion 311. An embodiment of the present invention can be applied to the display portion 311. When an embodiment of the present invention is employed, a display having low power consumption can be provided.



FIG. 10C illustrates a digital still camera. The digital still camera includes a housing 320, a button 321, a microphone 322, and a display portion 323. An embodiment of the present invention can be applied to the display portion 323. Although not illustrated, an embodiment of the present invention can also be applied to a memory circuit or an image sensor.


When an embodiment of the present invention is employed, power consumption of an electronic equipment can be reduced.


This embodiment can be implemented in appropriate combination with any of the other embodiments.


Example 1

In this example, a relation among the crystallinity, composition, and work function of a tungsten oxide film formed using an embodiment of the present invention will be described.


First, the crystallinity of a tungsten oxide film was evaluated with an X-ray diffractometer (manufactured by Bruker AXS, D8 ADVANCE).


Samples were made by a DC sputtering method using a WO3 target. Other conditions were such that the film formation electric power was 1 kW, the film formation pressure was 0.4 Pa, the substrate temperature was room temperature, and the thickness was 100 nm.


Here, flow rates of film formation gas of the samples are shown in Table 1.











TABLE 1









Flow rate of gas [sccm]












Name of sample
Ar
O2
N2
















Sample 1
30
0
0



Sample 2
25
5
0



Sample 3
20
10
0



Sample 4
15
15
0



Sample 5
25
0
5



Sample 6
20
0
10



Sample 7
20
5
5



Sample 8
10
10
10











FIGS. 11A to 11D respectively show XRD spectra of Samples 1 to 4 obtained by an out-of-plane method. Note that FIGS. 11A to 11D each show XRD spectra of the as-deposited sample, the sample after heat treatment at 250° C., the sample after heat treatment at 350° C., and the sample after heat treatment at 450° C. The heat treatment was performed in an N2 atmosphere for one hour. Here, the as-deposited sample is a sample that is not particularly subjected to heat treatment and the like after the tungsten oxide film is deposited.


From FIGS. 11A to 11D, it was found that the tungsten oxide films deposited using a film formation gas of Ar or a film formation gas of Ar and O2 were amorphous at 350° C. or lower and crystallized at 450° C. or higher. Note that the crystallization temperature is not construed as being limited to this range and is expected to vary even with a slight change of the film formation conditions.


Next, FIGS. 12A to 12D respectively show XRD spectra of Samples 5 to 8 obtained by an out-of-plane method. Note that FIGS. 12A to 12D each show XRD spectra of the as-deposited sample, the sample after heat treatment at 250° C., and the sample after heat treatment at 450° C. The heat treatment was performed in an N2 atmosphere for one hour.


From FIGS. 12A to 12D, it was found that the samples formed using a film formation gas of Ar and N2 or a film formation gas of Ar, O2, and N2 were amorphous at 250° C. or lower and crystallized at 450° C. or higher. Note that the crystallization temperature is not construed as being limited to this range and varies even with a slight change of the film formation conditions.


Next, the work functions of Samples 1 to 8 were evaluated with a photoelectron spectrometer AC-2 for use in air which was manufactured by Riken Keiki Co., Ltd. The results are shown in FIGS. 13A and 13B. FIG. 13A shows the work functions of Samples 1 to 4. FIG. 13B shows the work functions of Samples 5 to 8.


From the comparison of Samples 1 to 4, it can be seen that the work function increased in accordance with an increase in the proportion of O2 to Ar in the film formation gas. Further, from the comparison of Samples 5 to 8, it can be seen that the work functions of the samples formed using a film formation gas of Ar, O2, and N2 were higher than those of the samples formed using a film formation gas of Ar and N2 and in addition the work function slightly increased by an increase in the proportion of N2. From the comparison of Samples 1 to 8, it can be seen that the work functions of the samples formed using a film formation gas of Ar and O2 into which N2 was mixed were higher than those of the samples formed using a film formation gas of Ar and O2.


Thus, it was found that the tungsten oxide films whose work function can be controlled within a range of 4.9 eV to 5.6 eV can be obtained under the conditions of Samples 1 to 8.


Next, the compositions of Samples 1 to 8 were evaluated with 3S-R10 manufactured by NEC Corporation and RBS-400 manufactured by CEA. The results are shown in Table 2.












TABLE 2









Composition [atomic %]













Name of Sample
W
O
N
Ar
O/W ratio















Sample 1
23.0
75.2
0
1.8
3.27


Sample 2
21.7
76.9
0
1.4
3.54


Sample 3
20.4
78.4
0
1.2
3.84


Sample 4
21.0
77.8
0
1.2
3.70


Sample 5
22.4
66.1
10
1.5
2.95


Sample 6
22.0
61.8
15
1.2
2.81


Sample 7
20.9
72.8
5
1.3
3.48


Sample 8
20.6
73.6
5
0.8
3.57









For reference, the ratio of O to W in the film (referred to as O/W ratio) is listed. From the comparison of Samples 1 to 4, it can be seen that the O/W ratio increased in accordance with an increase in the proportion of O2 to Ar in the film formation gas. This tendency is similar to that of the work function, and the work function increased when the O/W ratio in the film increased. Note that there is no correlation between the proportion of O2 to Ar in the film formation gas and the O/W ratio in Sample 3 and Sample 4. This suggests the possibility that O taken into the film is saturated at a proportion of O2 to Ar in the film formation gas which is between that of Sample 3 and that of Sample 4. Note that saturation of O taken into the film does not necessarily occur in the above-described range and occurs depending on the influence of other film formation conditions or the influence of an element other than W and O.


From the comparison of Samples 1 to 8, it can be seen that the O/W ratios of the samples formed using a film formation gas of Ar and N2 were lower than those of the samples formed using a film formation gas of Ar and O2. This suggests the possibility that N is substituted for O. Further, from the comparison of Samples 5 to 8, it can be seen that the O/W ratios of the samples formed using a film formation gas of Ar, O2, and N2 were higher than those of the samples formed using a film formation gas of Ar and N2, although the percentages of N in the composition in the samples formed using a film formation gas of Ar, O2, and N2 are lower than those in the samples formed using a film formation gas of Ar and N2. Also in the Samples 5 to 8, the work function increased when the O/W ratio in the film increased.


This example shows that the work function can be controlled by adjusting the composition of the tungsten oxide film.


Example 2

In this example, a tungsten oxide film formed using a bias sputtering method will be described. The bias sputtering method is a method in which ions collide with the substrate side in addition to collision of ions with the target side as in normal sputtering.


Samples were formed using a WO3 target. Other conditions were such that the film formation electric power was 1 kW (DC), the film formation pressure was 0.4 Pa, the substrate temperature was room temperature, and the thickness was 100 nm.


Here, bias electric powers and flow rates of film formation gas of the samples are shown in Table 3.













TABLE 3









Bias electric
Flow rate of gas [sccm]












Name of Sample
power [W]
Ar
O2
N2














Sample 9
0
30
0
0


Sample 10
100
30
0
0


Sample 11
0
15
15
0


Sample 12
50
15
15
0


Sample 13
100
15
15
0


Sample 14
200
15
15
0









Note that Sample 9 and Sample 11 are the same as Sample 1 and Sample 4 presented in Example 1, respectively.


When Sample 9 is compared with Sample 10 in FIG. 14, the work function of Sample 10 formed using a bias sputtering method is higher than that of Sample 9.


The work functions of Samples 12 to 14 were not able to be measured. Since there is a tendency of the work function to increase by use of a bias sputtering method, it is highly possible that the work functions of Samples 12 to 14 are higher than or equal to 6.2 eV that is a measurement limit of an apparatus.


According to this example, it can be found that the work function of the tungsten oxide film formed using a bias sputtering method is highly possibly 6.2 eV or higher and thus the work function can be controlled in a wider range than the range described in Example 1.


Example 3

In this example, a tungsten oxide film formed using plasma oxidation treatment will be described.



FIG. 17 shows evaluation results of the work functions of a tungsten film which is not subjected to plasma treatment, a tungsten oxide film formed by subjecting a tungsten film to N2O plasma treatment, and a tungsten oxide film formed by subjecting a tungsten film to O2 plasma treatment, in the as-deposited state, after heat treatment at 250° C., and after heat treatment at 450° C. The heat treatment was performed in an N2 atmosphere for one hour.


Here, the tungsten film was formed by a sputtering method using a W target. Other conditions were such that the film formation electric power was 6 kW, the film formation pressure was 1.5 Pa, and Ar (110 sccm) was used as a film formation gas.


The N2O plasma treatment was performed with a CVD apparatus by exposure for 120 seconds to plasma that was generated using N2O (500 sccm) as a reaction gas at an electric power of 500 W, a pressure of 133.3 Pa, and a substrate temperature of 400° C.


The O2 plasma treatment was performed with a CVD apparatus by exposure for 120 seconds to plasma that was generated using O2 (500 sccm) as a reaction gas at an electric power of 500 W, a pressure of 133.3 Pa, and a substrate temperature of 400° C.


The heat treatment at 250° C. and the heat treatment at 450° C. were performed in an N2 atmosphere for one hour.


From FIG. 17, it can be seen that the work functions of the tungsten oxide films formed by subjecting a tungsten film to the N2O plasma treatment or the O2 plasma treatment were higher than that of the tungsten film without plasma treatment. It can also be seen that as compared to the work functions of the as-deposited tungsten oxide films formed by subjecting a tungsten film to the N2O plasma treatment or the O2 plasma treatment, the work functions of the tungsten oxide films after the heat treatment at 250° C. or the heat treatment at 450° C. were higher. Further, the work function of the tungsten oxide film formed by subjecting a tungsten film to the O2 plasma treatment was higher than that of the tungsten oxide film formed by subjecting a tungsten film to the N2O plasma treatment although the difference was small.


Next, FIG. 18 shows work functions of tungsten oxide films obtained by setting the electric power in performing the O2 plasma treatment or the N2O plasma treatment on a tungsten oxide film at 300 W, 500 W, and 800 W.



FIG. 18 shows that the work functions of the tungsten oxide films after the heat treatment at 250° C. or the heat treatment at 450° C. were higher than the work function of the as-deposited tungsten oxide film in any of the conditions. In addition, the work function decreases at higher electric power in any of the conditions.


According to this example, it can be found that the work function of a tungsten oxide film formed by oxidation with plasma treatment can be controlled with a combination of the kind of a reaction gas of plasma, the electric power, and conditions of heat treatment.


Example 4

In this example, as an example, a metal oxide semiconductor (MOS) structure was formed using a tungsten oxide film as part of a gate electrode, and capacitance-voltage (C-V) measurement was conducted. The results are shown in FIG. 15.


Note that a method of forming the MOS structure is as follows.


First, a thermal oxidation film is provided with a thickness of 50 nm for an n-type silicon wafer, and a gate electrode is formed over the thermal oxidation film. Then, the thermal oxidation film on the rear surface of the n-type silicon wafer is removed with hydrofluoric acid, and an Al—Ti alloy is deposited on the rear surface of the n-type silicon wafer as a rear surface electrode. Further, heat treatment is performed at 250° C. in an N2 atmosphere for 1 hour. In this manner, samples were formed.


Note that the gate electrode was formed using a metal mask so as to have a circular shape with a diameter of 1 mm.


In FIG. 15, a solid line 1001 is a C-V curve of a sample having a gate electrode with a stacked structure of a 10-nm-thick tungsten oxide film and 140-nm-thick tungsten film. Here, the tungsten oxide film was formed by a DC sputtering method using a WO3 target. Other conditions were such that the film formation electric power was 0.25 kW, the film formation pressure was 0.4 Pa, Ar (30 sccm) was used as a film formation gas, and the substrate temperature was room temperature.


For comparison, a C-V curve of a sample having a gate electrode with a stacked structure of a 15-nm-thick tantalum nitride film and 135-nm-thick tungsten film, which is indicated by a broken line 1002, is also shown.


Table 4 shows work functions and flat-band voltages (Vfb) of the tungsten oxide film (Sample 16) and the tantalum nitride film (Sample 15), which were used in this example.













TABLE 4







Name of Sample
Work function [eV]
Vfb [V]









Sample 15
4.70
0.37



Sample 16
5.01
0.90










It can be understood from Table 4 that Vfb and the work function of the gate electrode, which were obtained by the C-V measurement of the MOS structure, correspond to each other.


Example 5

In this example, an example of manufacturing a transistor using a tungsten oxide film as part of a gate electrode will be described with reference to FIGS. 3A to 3C and FIGS. 16A and 16B.


The transistor has a structure illustrated in FIGS. 3A to 3C and includes a silicon oxide film with a thickness of 300 nm formed by a sputtering method as a base insulating film 102, an In—Ga—Zn—O film with a thickness of 20 nm formed by a sputtering method using an In—Ga—Zn—O target (with a molar ratio of In2O3:Ga2O3:ZnO=1:1:2) as a semiconductor film 106, a tungsten film with a thickness of 50 nm formed by a sputtering method as a pair of electrodes 116, and a silicon oxynitride film with a thickness of 15 nm formed by a CVD method as a gate insulating film 112. Although not shown, the transistor is covered with a silicon oxynitride film with a thickness of 300 nm which is formed by a CVD method.


Here, gate voltage-drain current (Vg-Id) measurement of a transistor (Sample 18) having a gate electrode with a stacked structure of the tungsten oxide film with a thickness of 10 nm described in Example 3 and a tungsten film with a thickness of 140 nm and a transistor (Sample 17) having a gate electrode with a stacked structure of a tantalum nitride film with a thickness of 15 nm and a tungsten film with a thickness of 135 nm was performed. Note that the channel width of the transistors was 10 μm and the channel length was 3 μm. The results are shown in FIGS. 16A and 16B.



FIG. 16A shows a Vg-Id curve of Sample 18, and FIG. 16B shows a Vg-Id curve of Sample 17.


Table 5 shows work functions of the film on the gate insulating film 112 side of the films that are used as the gate electrode and threshold voltages obtained from Vg-Id measurement of Samples 17 and 18.













TABLE 5







Name of Sample
Work function [eV]
Vth [V]









Sample 17
4.70
0.66



Sample 18
5.01
0.89










Table 5 shows that the work function and the threshold voltage which was obtained by Vg-Id measurement of the transistors correspond to each other.


Thus, it is found that the threshold voltage of a transistor can be controlled by controlling the work function of a tungsten oxide film.


This application is based on Japanese Patent Application serial no. 2010-282166 filed with Japan Patent Office on Dec. 17, 2010, the entire contents of which are hereby incorporated by reference.

Claims
  • 1. A method for manufacturing a semiconductor device comprising: forming an oxide semiconductor film over a substrate;forming a gate insulating film over the oxide semiconductor film; andforming a gate electrode including a tungsten oxide film by a sputtering method over the gate insulating film,wherein a work function of the gate electrode is higher than or equal to 4.9 eV and lower than or equal to 5.6 eV,wherein a thickness of the gate electrode is greater than or equal to 10 nm.
  • 2. The method according to claim 1 further comprising: forming a pair of electrodes between the gate electrode and the oxide semiconductor film before forming the oxide semiconductor film.
  • 3. The method according to claim 1 further comprising: forming a pair of electrodes over the oxide semiconductor film.
  • 4. The method according to claim 1, wherein one or more gases selected from a rare gas, oxygen, and nitrogen is used as a film formation gas in the sputtering method.
  • 5. The method according to claim 1 further comprising: performing heat treatment after forming the gate electrode.
  • 6. The method according to claim 1, wherein the oxide semiconductor film includes two or more elements selected from In, Ga, Zn, Sn, and Al.
  • 7. The method according to claim 1, wherein the sputtering method is a bias sputtering method.
  • 8. The method according to claim 1, wherein the sputtering method uses two or more targets selected from tungsten target, tungsten dioxide target, tungsten trioxide target, and target of tungsten oxide with another valence.
  • 9. The method according to claim 1, wherein the gate electrode includes nitrogen at greater than or equal to 0.1 at % and lower than or equal to 20 at%.
  • 10. A method for manufacturing a semiconductor device comprising: forming an oxide semiconductor film over a substrate;forming a gate insulating film over the oxide semiconductor film; andforming a gate electrode including a film including tungsten and oxygen by a sputtering method over the gate insulating film,wherein a work function of the gate electrode is higher than or equal to 4.9 eV and lower than or equal to 5.6 eV,wherein a thickness of the gate electrode is greater than or equal to 10 nm.
  • 11. The method according to claim 10 further comprising: forming a pair of electrodes between the gate electrode and the oxide semiconductor film before forming the oxide semiconductor film.
  • 12. The method according to claim 10 further comprising: forming a pair of electrodes over the oxide semiconductor film.
  • 13. The method according to claim 10, wherein one or more gases selected from a rare gas, oxygen, and nitrogen is used as a film formation gas in the sputtering method.
  • 14. The method according to claim 10 further comprising: performing heat treatment after forming the gate electrode.
  • 15. The method according to claim 10, wherein the oxide semiconductor film includes two or more elements selected from In, Ga, Zn, Sn, and Al.
  • 16. The method according to claim 10, wherein the sputtering method is a bias sputtering method.
  • 17. The method according to claim 10, wherein the sputtering method uses two or more targets selected from tungsten target, tungsten dioxide target, tungsten trioxide target, and target of tungsten oxide with another valence.
  • 18. The method according to claim 10, wherein the gate electrode includes nitrogen at greater than or equal to 0.1 at % and lower than or equal to 20 at%.
Priority Claims (1)
Number Date Country Kind
2010-282166 Dec 2010 JP national
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a divisional of U.S. application Ser. No. 13/316,604, filed Dec. 12, 2011, now allowed, which claims the benefit of foreign a priority application filed in Japan as Serial No. 2010-282166 on Dec. 17, 2010, both of which are incorporated by reference.

US Referenced Citations (182)
Number Name Date Kind
5528032 Uchiyama Jun 1996 A
5619051 Endo Apr 1997 A
5654242 Komatsu Aug 1997 A
5731856 Kim et al. Mar 1998 A
5744864 Cillessen et al. Apr 1998 A
5903053 Iijima et al. May 1999 A
6294274 Kawazoe et al. Sep 2001 B1
6462723 Yamazaki et al. Oct 2002 B1
6515336 Suzawa et al. Feb 2003 B1
6563174 Kawasaki et al. May 2003 B2
6727522 Kawasaki et al. Apr 2004 B1
6894355 Yu May 2005 B1
7045406 Huotari et al. May 2006 B2
7049190 Takeda et al. May 2006 B2
7061014 Hosono et al. Jun 2006 B2
7064346 Kawasaki et al. Jun 2006 B2
7105868 Nause et al. Sep 2006 B2
7135732 Iwasaki et al. Nov 2006 B2
7211825 Shih et al May 2007 B2
7282782 Hoffman et al. Oct 2007 B2
7297977 Hoffman et al. Nov 2007 B2
7323356 Hosono et al. Jan 2008 B2
7385224 Ishii et al. Jun 2008 B2
7402506 Levy et al. Jul 2008 B2
7411209 Endo et al. Aug 2008 B2
7453065 Saito et al. Nov 2008 B2
7453087 Iwasaki Nov 2008 B2
7462862 Hoffman et al. Dec 2008 B2
7468304 Kaji et al. Dec 2008 B2
7501293 Ito et al. Mar 2009 B2
7674650 Akimoto et al. Mar 2010 B2
7732819 Akimoto et al. Jun 2010 B2
7910490 Akimoto et al. Mar 2011 B2
7932521 Akimoto et al. Apr 2011 B2
7973313 Arai et al. Jul 2011 B2
8143115 Omura et al. Mar 2012 B2
8148721 Hayashi et al. Apr 2012 B2
8193532 Arai et al. Jun 2012 B2
8274077 Akimoto et al. Sep 2012 B2
8293595 Yamazaki et al. Oct 2012 B2
8298839 Kasahara Oct 2012 B2
8318554 Arai Nov 2012 B2
8466463 Akimoto et al. Jun 2013 B2
8629069 Akimoto et al. Jan 2014 B2
8669550 Akimoto et al. Mar 2014 B2
8790959 Akimoto et al. Jul 2014 B2
8796069 Akimoto et al. Aug 2014 B2
8841710 Yamazaki et al. Sep 2014 B2
9012918 Yamazaki et al. Apr 2015 B2
9099562 Akimoto et al. Aug 2015 B2
9412798 Yamazaki et al. Aug 2016 B2
20010046027 Tai et al. Nov 2001 A1
20020042167 Chae Apr 2002 A1
20020056838 Ogawa May 2002 A1
20020093046 Moriya et al. Jul 2002 A1
20020109161 Chou Aug 2002 A1
20020132454 Ohtsu et al. Sep 2002 A1
20030189401 Kido et al. Oct 2003 A1
20030218222 Wager, III et al. Nov 2003 A1
20040038446 Takeda et al. Feb 2004 A1
20040127038 Carcia et al. Jul 2004 A1
20050017302 Hoffman Jan 2005 A1
20050026410 Yamazaki et al. Feb 2005 A1
20050045889 Fryer et al. Mar 2005 A1
20050199959 Chiang et al. Sep 2005 A1
20060035452 Carcia et al. Feb 2006 A1
20060043377 Hoffman et al. Mar 2006 A1
20060091793 Baude et al. May 2006 A1
20060108529 Saito et al. May 2006 A1
20060108636 Sano et al. May 2006 A1
20060110867 Yabuta et al. May 2006 A1
20060110900 Youn et al. May 2006 A1
20060113536 Kumomi et al. Jun 2006 A1
20060113539 Sano et al. Jun 2006 A1
20060113549 Den et al. Jun 2006 A1
20060113565 Abe et al. Jun 2006 A1
20060169973 Isa et al. Aug 2006 A1
20060170111 Isa et al. Aug 2006 A1
20060197092 Hoffman et al. Sep 2006 A1
20060208977 Kimura Sep 2006 A1
20060214008 Asami Sep 2006 A1
20060228974 Thelss et al. Oct 2006 A1
20060231882 Kim et al. Oct 2006 A1
20060238135 Kimura Oct 2006 A1
20060244063 Isobe Nov 2006 A1
20060244107 Sugihara et al. Nov 2006 A1
20060246633 Arai Nov 2006 A1
20060284171 Levy et al. Dec 2006 A1
20060284172 Ishii Dec 2006 A1
20060292777 Dunbar Dec 2006 A1
20070024187 Shin et al. Feb 2007 A1
20070046191 Saito Mar 2007 A1
20070052025 Yabuta Mar 2007 A1
20070054507 Kaji et al. Mar 2007 A1
20070085476 Hirakata et al. Apr 2007 A1
20070090365 Hayashi et al. Apr 2007 A1
20070096189 Iwasaki et al. May 2007 A1
20070108446 Akimoto May 2007 A1
20070152217 Lai et al. Jul 2007 A1
20070163617 Ozaki et al. Jul 2007 A1
20070172591 Seo et al. Jul 2007 A1
20070187678 Hirao et al. Aug 2007 A1
20070187760 Furuta et al. Aug 2007 A1
20070194379 Hosono et al. Aug 2007 A1
20070252234 Kawamata et al. Nov 2007 A1
20070252928 Ito et al. Nov 2007 A1
20070272922 Kim et al. Nov 2007 A1
20070287296 Chang Dec 2007 A1
20080006877 Mardilovich et al. Jan 2008 A1
20080011426 Chua Jan 2008 A1
20080038882 Takechi et al. Feb 2008 A1
20080038929 Chang Feb 2008 A1
20080042128 Furukawa et al. Feb 2008 A1
20080050595 Nakagawara et al. Feb 2008 A1
20080073653 Iwasaki Mar 2008 A1
20080076216 Pae et al. Mar 2008 A1
20080083950 Pan et al. Apr 2008 A1
20080106191 Kawase May 2008 A1
20080128689 Lee et al. Jun 2008 A1
20080129195 Ishizaki et al. Jun 2008 A1
20080166834 Kim et al. Jul 2008 A1
20080182358 Cowdery-Corvan et al. Jul 2008 A1
20080203477 Yamazaki et al. Aug 2008 A1
20080224133 Park et al. Sep 2008 A1
20080230178 Ishitani et al. Sep 2008 A1
20080254569 Hoffman et al. Oct 2008 A1
20080258139 Ito et al. Oct 2008 A1
20080258140 Lee et al. Oct 2008 A1
20080258141 Park et al. Oct 2008 A1
20080258143 Kim et al. Oct 2008 A1
20080266509 Nishi et al. Oct 2008 A1
20080296568 Ryu et al. Dec 2008 A1
20080308805 Akimoto et al. Dec 2008 A1
20080315286 Ieda Dec 2008 A1
20090008639 Akimoto et al. Jan 2009 A1
20090068773 Lai et al. Mar 2009 A1
20090073325 Kuwabara et al. Mar 2009 A1
20090114910 Chang May 2009 A1
20090134399 Sakakura et al. May 2009 A1
20090148971 Fujii et al. Jun 2009 A1
20090152506 Umeda et al. Jun 2009 A1
20090152541 Maekawa et al. Jun 2009 A1
20090236581 Yoshida et al. Sep 2009 A1
20090236624 Shin Sep 2009 A1
20090278122 Hosono et al. Nov 2009 A1
20090280600 Hosono et al. Nov 2009 A1
20100062592 Clark Mar 2010 A1
20100065844 Tokunaga Mar 2010 A1
20100092800 Itagaki et al. Apr 2010 A1
20100102311 Ito et al. Apr 2010 A1
20100102312 Yamazaki et al. Apr 2010 A1
20100109002 Itagaki et al. May 2010 A1
20100139365 Fix et al. Jun 2010 A1
20100149851 Asami et al. Jun 2010 A1
20100207113 Kasahara Aug 2010 A1
20110012117 Yamazaki Jan 2011 A1
20110017990 Son Jan 2011 A1
20110031469 Yamazaki et al. Feb 2011 A1
20110031499 Kimura et al. Feb 2011 A1
20110089417 Yamazaki et al. Apr 2011 A1
20110104851 Akimoto et al. May 2011 A1
20110121284 Yamazaki et al. May 2011 A1
20110121290 Akimoto et al. May 2011 A1
20110140089 Terao Jun 2011 A1
20110140205 Sakata et al. Jun 2011 A1
20110147754 Isa et al. Jun 2011 A1
20110147755 Miyairi et al. Jun 2011 A1
20110186853 Terai et al. Aug 2011 A1
20110204427 Choi et al. Aug 2011 A1
20110215288 Matsui et al. Sep 2011 A1
20110297930 Choi Dec 2011 A1
20120012835 Herman Jan 2012 A1
20120161123 Yamazaki Jun 2012 A1
20120168750 Hayashi et al. Jul 2012 A1
20120171864 Akiyama et al. Jul 2012 A1
20120231580 Yamazaki et al. Sep 2012 A1
20130009147 Koyama et al. Jan 2013 A1
20130037799 Sakata et al. Feb 2013 A1
20130157422 Yamazaki Jun 2013 A1
20150084048 Hayashi et al. Mar 2015 A1
20150214379 Yamazaki et al. Jul 2015 A1
20170033228 Yamazaki et al. Feb 2017 A1
Foreign Referenced Citations (45)
Number Date Country
1453088 Sep 2004 EP
1737044 Dec 2006 EP
1770788 Apr 2007 EP
1995787 Nov 2008 EP
1998373 Dec 2008 EP
1998374 Dec 2008 EP
1998375 Dec 2008 EP
2226847 Sep 2010 EP
59-214262 Dec 1984 JP
60-198861 Oct 1985 JP
63-210022 Aug 1988 JP
63-210023 Aug 1988 JP
63-210024 Aug 1988 JP
63-215519 Sep 1988 JP
63-239117 Oct 1988 JP
63-265818 Nov 1988 JP
04-304677 Oct 1992 JP
05-251705 Sep 1993 JP
06-096744 Apr 1994 JP
06-275697 Sep 1994 JP
08-264794 Oct 1996 JP
11-505377 May 1999 JP
2000-044236 Feb 2000 JP
2000-150900 May 2000 JP
2002-076356 Mar 2002 JP
2002-289859 Oct 2002 JP
2003-086000 Mar 2003 JP
2003-086808 Mar 2003 JP
2004-103957 Apr 2004 JP
2004-273614 Sep 2004 JP
2004-273732 Sep 2004 JP
2004-282050 Oct 2004 JP
2006-237624 Sep 2006 JP
2006-332606 Dec 2006 JP
2007-096055 Apr 2007 JP
2009-135380 Jun 2009 JP
2009-174056 Aug 2009 JP
2010-056546 Mar 2010 JP
2010-251735 Nov 2010 JP
2010-267975 Nov 2010 JP
2011-159908 Aug 2011 JP
201001715 Jan 2010 TW
WO-2004114391 Dec 2004 WO
WO-2008069056 Jun 2008 WO
WO-2008069255 Jun 2008 WO
Non-Patent Literature Citations (71)
Entry
Taiwanese Office Action (Application No. 100146237) Dated Feb. 24, 2016.
Fukumoto.E et al., “High Mobility Oxide Semiconductor TFT for Circuit Integration of AM-OLED”, IDW'10 : Proceedings of the 16th International Display Workshops, Dec. 1, 2010, pp. 631-634.
Asakuma.N. et al., “Crystallization and Reduction of Sol-Gel-Derived Zinc Oxide Films by Irradiation with Ultraviolet Lamp”, Journal of Sol-Gel Science and Technology, 2003, vol. 26, pp. 181-184.
Asaoka.Y et al., “29.1: Polarizer-Free Reflective LCD Combined With Ultra Low-Power Driving Technology”, SID Digest '09 : SID International Symposium Digest of Technical Papers, May 31, 2009, pp. 395-398.
Chern.H et al., “An Analytical Model for the Above-Threshold Characteristics of Polysilicon Thin-Film Transistors”, IEEE Transactions on Electron Devices, Jul. 1, 1995, vol. 42, No. 7, pp. 1240-1246.
Cho.D et al., “21.2:Al and Sn-Doped Zinc Indium Oxide Thin Film Transistors for AMOLED Backplane”, SID Digest '09 : SID International Symposium Digest of Technical Papers, May 31, 2009, pp. 280-283.
Clark.S et al., “First Principles Methods Using CASTEP”, Zeitschrift fur Kristallographie, 2005, vol. 220, pp. 567-570.
Coates.D et al., “Optical Studies of the Amorphous Liquid-Cholesteric Liquid Crystal Transition:The “Blue Phase””, Physics Letters, Sep. 10, 1973, vol. 45A, No. 2, pp. 115-116.
Costello.M et al., “Electron Microscopy of a Cholesteric Liquid Crystal and Its Blue Phase”, Phys. Rev. A (Physical Review. A), May 1, 1984, vol. 29, No. 5, pp. 2957-2959.
Dembo.H et al., “RFCPUS on Glass and Plastic Substrates Fabricated by TFT Transfer Technology”, IEDM 05: Technical Digest of International Electron Devices Meeting, Dec. 5, 2005, pp. 1067-1069.
Fortunato.E et al., “Wide-Bandgap High-Mobility ZnO Thin-Film Transistors Produced at Room Temperature”, Appl. Phys. Lett. (Applied Physics Letters) , Sep. 27, 2004, vol. 85, No. 13, pp. 2541-2543.
Fung.T et al., “2-D Numerical Simulation of High Performance Amorphous In—Ga—Zn—O TFTs for Flat Panel Displays”, AM-FPD '08 Digest of Technical Papers, Jul. 2, 2008, pp. 251-252, The Japan Society of Applied Physics.
Godo.H et al., “P-9:Numerical Analysis on Temperature Dependence of Characteristics of Amorphous In—Ga—Zn—Oxide TFT”, SID Digest '09 : SID International Symposium Digest of Technical Papers, May 31, 2009, pp. 1110-1112.
Godo.H et al., “Temperature Dependence of Characteristics and Electronic Structure for Amorphous In—Ga—Zn—Oxide TFT”, AM-FPD '09 Digest of Technical Papers, Jul. 1, 2009, pp. 41-44.
Hayashi.R et al., “42.1: Invited Paper: Improved Amorphous In—Ga—Zn—O TFTs”, SID Digest '08 : SID International Symposium Digest of Technical Papers, May 20, 2008, vol. 39, pp. 621-624.
Hirao.T et al., “Novel Top-Gate Zinc Oxide Thin-Film Transistors (ZnO TFTs) for AMLCDs”, J. Soc. Inf. Display (Journal of the Society for Information Display), 2007, vol. 15, No. 1, pp. 17-22.
Hosono.H et al., “Working hypothesis to explore novel wide band gap electrically conducting amorphous oxides and examples”, J. Non-Cryst. Solids (Journal of Non-Crystalline Solids), 1996, vol. 198-200, pp. 165-169.
Hosono.H, “68.3:Invited Paper:Transparent Amorphous Oxide Semiconductors for High Performance TFT”, SID Digest '07 : SID International Symposium Digest of Technical Papers, 2007, vol. 38, pp. 1830-1833.
Hsieh.H et al., “P-29:Modeling of Amorphous Oxide Semiconductor Thin Film Transistors and Subgap Density of States”, SID Digest '08 : SID International Symposium Digest of Technical Papers, May 20, 2008, vol. 39, pp. 1277-1280.
Ikeda.T et al., “Full-Functional System Liquid Crystal Display Using CG-Silicon Technology”, SID Digest '04 : SID International Symposium Digest of Technical Papers, 2004, vol. 35, pp. 860-863.
Janotti.A et al., “Native Point Defects in ZnO”, Phys. Rev. B (Physical Review. B), Oct. 4, 2007, vol. 76, No. 16, pp. 165202-1-165202-22.
Janotti.A et al., “Oxygen Vacancies in ZnO”, Appl. Phys. Lett. (Applied Physics Letters) , 2005, vol. 87, pp. 122102-1-122102-3.
Jeong.J et al., “3.1: Distinguished Paper: 12.1-Inch WXGA AMOLED Display Driven by Indium-Gallium-Zinc Oxide TFTs Array”, SID Digest '08 : SID International Symposium Digest of Technical Papers, May 20, 2008, vol. 39, No. 1, pp. 1-4.
Jin.D et al., “65.2:Distinguished Paper:World-Largest (6.5″) Flexible Full Color Top Emission AMOLED Display on Plastic Film and Its Bending Properties”, SID Digest '09 : SID International Symposium Digest of Technical Papers, May 31, 2009, pp. 983-985.
Kanno.H et al., “White Stacked Electrophosphorecent Organic Light-Emitting Devices Employing MoO3 as a Charge-Generation Layer”, Adv. Mater. (Advanced Materials), 2006, vol. 18, No. 3, pp. 339-342.
Kikuchi.H et al., “39.1:Invited Paper:Optically Isotropic Nano-Structured Liquid Crystal Composites for Display Applications”, SID Digest '09 : SID International Symposium Digest of Technical Papers, May 31, 2009, pp. 578-581.
Kikuchi.H et al., “62.2:Invited Paper:Fast Electro-Optical Switching in Polymer-Stabilized Liquid Crystalline Blue Phases for Display Application”, SID Digest '07 : SID International Symposium Digest of Technical Papers, 2007, vol. 38, pp. 1737-1740.
Kikuchi.H et al., “Polymer-Stabilized Liquid Crystal Blue Phases”, Nature Materials, Sep. 2, 2002, vol. 1, pp. 64-68.
Kim.S et al., “High-Performance oxide thin film transistors passivated by various gas plasmas”, 214th ECS Meeting, 2008, No. 2317, ECS.
Kimizuka.N. et al., “Spinel,YbFe2O4, and Yb2Fe3O7 Types of Structures for Compounds in the In2O3 and Sc2O3—A2O3—BO Systems [A; Fe, Ga, or Al; B: Mg, Mn, Fe, Ni, Cu,or Zn] at Temperatures Over 1000° C.”, Journal of Solid State Chemistry, 1985, vol. 60, pp. 382-384.
Kimizuka.N. et al., “Syntheses and Single-Crystal Data of Homologous Compounds, In2O3(ZnO)m (m=3, 4, and 5), InGaO3(ZnO)3, and Ga2O3(ZnO)m (m=7, 8, 9, and 16) in the In2O3—ZnGa2O4—ZnO System”, Journal of Solid State Chemistry, Apr. 1, 1995, vol. 116, No. 1, pp. 170-178.
Kitzerow.H et al., “Observation of Blue Phases in Chiral Networks”, Liquid Crystals, 1993, vol. 14, No. 3, pp. 911-916.
Kurokawa.Y et al., “UHF RFCPUS on Flexible and Glass Substrates for Secure RFID Systems”, Journal of Solid-State Circuits , 2008, vol. 43, No. 1, pp. 292-299.
Lany.S et al., “Dopability, Intrinsic Conductivity, and Nonstoichiometry of Transparent Conducting Oxides”, Phys. Rev. Lett. (Physical Review Letters), Jan. 26, 2007, vol. 98, pp. 045501-1-045501-4.
Lee.H et al., “Current Status of, Challenges to, and Perspective View of AM-OLED”, IDW '06 : Proceedings of the 13th International Display Workshops, Dec. 7, 2006, pp. 663-666.
Lee.J et al., “World's Largest (15-Inch) XGA AMLCD Panel Using IGZO Oxide TFT”, SID Digest '08 : SID International Symposium Digest of Technical Papers, May 20, 2008, vol. 39, pp. 625-628.
Lee.M et al., “15.4:Excellent Performance of Indium-Oxide-Based Thin-Film Transistors by DC Sputtering”, SID Digest '09 : SID International Symposium Digest of Technical Papers, May 31, 2009, pp. 191-193.
Li.C et al., “Modulated Structures of Homologous Compounds InMO3(ZnO)m (M=In,Ga; m=Integer) Described by Four-Dimensional Superspace Group”, Journal of Solid State Chemistry, 1998, vol. 139, pp. 347-355.
Masuda.S et al., “Transparent thin film transistors using ZnO as an active channel layer and their electrical properties”, J. Appl. Phys. (Journal of Applied Physics) , Feb. 1, 2003, vol. 93, No. 3, pp. 1624-1630.
Meiboom.S et al., “Theory of the Blue Phase of Cholesteric Liquid Crystals”, Phys. Rev. Lett. (Physical Review Letters), May 4, 1981, vol. 46, No. 18, pp. 1216-1219.
Miyasaka.M, “SUFTLA Flexible Microelectronics on Their Way to Business”, SID Digest '07 : SID International Symposium Digest of Technical Papers, 2007, vol. 38, pp. 1673-1676.
Mo.Y et al., “Amorphous Oxide TFT Backplanes for Large Size AMOLED Displays”, IDW '08 : Proceedings of the 6th International Display Workshops, Dec. 3, 2008, pp. 581-584.
Nakamura.M et al., “The phase relations in the In2O3—Ga2ZnO4—ZnO system at 1350° C.”, Journal of Solid State Chemistry, Aug. 1, 1991, vol. 93, No. 2, pp. 298-315.
Nakamura.M, “Synthesis of Homologous Compound with New Long-Period Structure”, NIRIM Newsletter, Mar. 1, 1995, vol. 150, pp. 1-4.
Nomura.K et al., “Amorphous Oxide Semiconductors for High-Performance Flexible Thin-Film Transistors”, Jpn. J. Appl. Phys. (Japanese Journal of Applied Physics) , 2006, vol. 45, No. 5B, pp. 4303-4308.
Nomura.K et al., “Carrier transport in transparent oxide semiconductor with intrinsic structural randomness probed using single-crystalline InGaO3(ZnO)5 films”, Appl. Phys. Lett. (Applied Physics Letters) , Sep. 13, 2004, vol. 85, No. 11, pp. 1993-1995.
Nomura.K et al., “Room-Temperature Fabrication of Transparent Flexible Thin-Film Transistors Using Amorphous Oxide Semiconductors”, Nature, Nov. 25, 2004, vol. 432, pp. 488-492.
Nomura.K et al., “Thin-Film Transistor Fabricated in Single-Crystalline Transparent Oxide Semiconductor”, Science, May 23, 2003, vol. 300, No. 5623, pp. 1269-1272.
Nowatari.H et al., “60.2: Intermediate Connector With Suppressed Voltage Loss for White Tandem OLEDs”, SID Digest '09 : SID International Symposium Digest of Technical Papers, May 31, 2009, vol. 40, pp. 899-902.
Oba.F et al., “Defect energetics in ZnO: A hybrid Hartree-Fock density functional study”, Phys. Rev. B (Physical Review. B), 2008, vol. 77, pp. 245202-1-245202-6.
Oh.M et al., “Improving the Gate Stability of ZnO Thin-Film Transistors With Aluminum Oxide Dielectric Layers”, J. Electrochem. Soc. (Journal of the Electrochemical Society), 2008, vol. 155, No. 12, pp. H1009-H1014.
Ohara.H et al., “21.3:4.0 In. QVGA AMOLED Display Using In—Ga—Zn—Oxide TFTs With a Novel Passivation Layer”, SID Digest '09 : SID International Symposium Digest of Technical Papers, May 31, 2009, pp. 284-287.
Ohara.H et al., “Amorphous In—Ga—Zn—Oxide TFTs with Suppressed Variation for 4.0 inch QVGA AMOLED Display”, AM-FPD '09 Digest of Technical Papers, Jul. 1, 2009, pp. 227-230, The Japan Society of Applied Physics.
Orita.M et al., “Amorphous transparent conductive oxide InGaO3(ZnO)m (m<4):a Zn4s conductor”, Philosophical Magazine, 2001, vol. 81, No. 5, pp. 501-515.
Orita.M et al., “Mechanism of Electrical Conductivity of Transparent InGaZnO4”, Phys. Rev. B (Physical Review. B), Jan. 15, 2000, vol. 61, No. 3, pp. 1811-1816.
Osada.T et al., “15.2: Development of Driver-Integrated Panel using Amorphous In—Ga—Zn—Oxide TFT”, SID Digest '09 : SID International Symposium Digest of Technical Papers, May 31, 2009, pp. 184-187.
Osada.T et al., “Development of Driver-Integrated Panel Using Amorphous In—Ga—Zn—Oxide TFT”, AM-FPD '09 Digest of Technical Papers, Jul. 1, 2009, pp. 33-36.
Park.J et al., “Amorphous Indium-Gallium-Zinc Oxide TFTs and Their Application for Large Size AMOLED”, AM-FPD '08 Digest of Technical Papers, Jul. 2, 2008, pp. 275-278.
Park.J et al., “Dry etching of ZnO films and plasma-induced damage to optical properties”, J. Vac. Sci. Technol. B (Journal of Vacuum Science & Technology B), Mar. 1, 2003, vol. 21, No. 2, pp. 800-803.
Park.J et al., “Electronic Transport Properties of Amorphous Indium-Gallium-Zinc Oxide Semiconductor Upon Exposure to Water”, Appl. Phys. Lett. (Applied Physics Letters) , 2008, vol. 92, pp. 072104-1-072104-3.
Park.J et al., “High performance amorphous oxide thin film transistors with self-aligned top-gate structure”, IEDM 09: Technical Digest of International Electron Devices Meeting, Dec. 7, 2009, pp. 191-194.
Park.J et al., “Improvements in the Device Characteristics of Amorphous Indium Gallium Zinc Oxide Thin-Film Transistors by Ar Plasma Treatment”, Appl. Phys. Lett. (Applied Physics Letters), Jun. 26, 2007, vol. 90, No. 26, pp. 262106-1-262106-3.
Park.S et al., “Challenge to Future Displays: Transparent AM-OLED Driven by Peald Grown ZnO TFT”, IMID '07 Digest, 2007, pp. 1249-1252.
Park.Sang-Hee et al., “42.3: Transparent ZnO Thin Film Transistor for the Application of High Aperture Ratio Bottom Emission AM-OLED Display”, SID Digest '08 : SID International Symposium Digest of Technical Papers, May 20, 2008, vol. 39, pp. 629-632.
Prins.M et al., “A Ferroelectric Transparent Thin-Film Transistor”, Appl. Phys. Lett. (Applied Physics Letters) , Jun. 17, 1996, vol. 68, No. 25, pp. 3650-3652.
Sakata.J et al., “Development of 4.0-In. AMOLED Display With Driver Circuit Using Amorphous In—Ga—Zn—Oxide TFTs”, IDW '09 : Proceedings of the 16th International Display Workshops, 2009, pp. 689-692.
Son.K et al., “42.4L: Late-News Paper: 4 Inch QVGA AMOLED Driven by the Threshold Voltage Controlled Amorphous GIZO (Ga2O3—In2O3—ZnO) TFT”, SID Digest '08 : SID International Symposium Digest of Technical Papers, May 20, 2008, vol. 39, pp. 633-636.
Takahashi.M et al., “Theoretical Analysis of IGZO Transparent Amorphous Oxide Semiconductor”, IDW '08 : Proceedings of the 15th International Display Workshops, Dec. 3, 2008, pp. 1637-1640.
Tsuda.K et al., “Ultra Low Power Consumption Technologies for Mobile TFT-LCDs ”, IDW '02 : Proceedings of the 9th International Display Workshops, Dec. 4, 2002, pp. 295-298.
Ueno.K et al., “Field-Effect Transistor on SrTiO3 With Sputtered Al2O3 Gate Insulator”, Appl. Phys. Lett. (Applied Physics Letters), Sep. 1, 2003, vol. 83, No. 9, pp. 1755-1757.
Van de Walle.C, “Hydrogen as a Cause of Doping in Zinc Oxide”, Phys. Rev. Lett. (Physical Review Letters), Jul. 31, 2000, vol. 85, No. 5, pp. 1012-1015.
Related Publications (1)
Number Date Country
20160064505 A1 Mar 2016 US
Divisions (1)
Number Date Country
Parent 13316604 Dec 2011 US
Child 14935553 US