1. Field of the Invention
The present invention is one relating to a semiconductor device and a method for manufacturing the same, and more particularly to a semiconductor device having a fin-shaped semiconductor portion and a method for manufacturing the same.
2. Description of the Background Art
In recent years, miniaturization of transistors is performed in order to advance high integration of LSI, a semiconductor device. However, conventional planar transistors face their physical limitation, and the development of new transistor structures other than planar transistors is necessary for miniaturization of transistors. One of newly developed transistor structures is a fin-type transistor of a vertical structure, which is disclosed in Japanese Patent Application Laid-Open Nos. 2005-294789 and 2007-35957.
Regarding the fin-type transistor, a technique of forming this transistor on a bulk silicon wafer or an SOI (Silicon on Insulator) wafer is generally known. In particular, it is known that a fin-type transistor formed on an SOI wafer is advantageous for high integration and, in addition, can suppress the short channel effects. In contrast, although a fin-type transistor formed on a bulk silicon wafer has an advantage of allowing the fin-type transistor to be formed at low cost, it requires optimization of impurity profiles in a silicon layer under a fin-shaped semiconductor portion and suppression of the short channel effects is difficult.
A fin-type transistor is advantageous for high integration of a semiconductor device, and a fin-type transistor formed on an SOI wafer has the effect of suppressing short channel effects. However, the fin-type transistor has difficulty in element formation from the viewpoint of processes, compared to a planar transistor. This causes various problems with the fin-type transistor. In particular, processing a fin-shaped semiconductor portion and a gate electrode is difficult, and thus forming the fin-shaped semiconductor portion and the gate electrode with high precision is an important factor for improvement of characteristics of the fin-type transistor. It is also desired that variations in characteristics among elements of the fin-type transistor are suppressed.
An object of the present invention is to provide a semiconductor device having a fin-type transistor that is excellent in characteristics by forming a fin-shaped semiconductor portion and a gate electrode with high precision or by making improvement regarding variations in characteristics among elements.
A semiconductor device according to one embodiment of the invention includes a fin-shaped semiconductor portion having a source region formed on one side thereof and a drain region formed on the other side thereof, and a gate electrode formed between the source region and the drain region to surround the fin-shaped semiconductor portion with a gate insulating film interposed therebetween. Further, the gate electrode uses a metal material or a silicide material that is wet etchable.
In a semiconductor device according to one embodiment of the invention, since the gate electrode uses a metal material or a silicide material that is wet etchable, channel impurities can be set at a low concentration, so that improvement can be made regarding variations in characteristics among elements.
A semiconductor device according to another embodiment of the invention includes a fin-shaped semiconductor portion having a source region formed on one side thereof and a drain region formed on the other side thereof, and a gate electrode formed between the source region and the drain region to surround the fin-shaped semiconductor portion with a gate insulating film interposed therebetween. This semiconductor device further includes a first dummy pattern provided upon forming of the fin-shaped semiconductor portion, and a second dummy pattern provided upon forming of the gate electrode.
The semiconductor device according to another embodiment of the invention further includes the first dummy pattern provided upon forming of the fin-shaped semiconductor portion and the second dummy pattern provided upon forming of the gate electrode, and thus the fin-shaped semiconductor portion and the gate electrode can be formed with high precision.
A method for manufacturing a semiconductor device according to one embodiment of the invention is a method for manufacturing a semiconductor device including a fin-shaped semiconductor portion having a source region formed on one side thereof and a drain region formed on the other side thereof, and a gate electrode formed between the source region and the drain region to surround the fin-shaped semiconductor portion with a gate insulating film interposed therebetween. The method for manufacturing a semiconductor device according to one embodiment of the invention includes the steps of forming an insulating film on a semiconductor layer and further forming a film of amorphous silicon, patterning the amorphous silicon in a predetermined shape and performing a short-time thermal treatment on the amorphous silicon to crystallize the amorphous silicon, forming a sidewall on a side face of the amorphous silicon crystallized, and sequentially etching the insulating film and the semiconductor layer, using as a mask the sidewall from which the amorphous silicon is removed, to form the fin-shaped semiconductor portion.
The method for manufacturing a semiconductor device according to one embodiment of the invention patterns the amorphous silicon in a predetermined shape and further performs a short-time thermal treatment on the amorphous silicon to crystallize the amorphous silicon, forming a sidewall on a side face of the crystallized amorphous silicon, and forming a fin-shaped semiconductor portion based on the sidewall, and thus the fin-shaped semiconductor portion can be formed with high precision.
A method for manufacturing a semiconductor device according to one embodiment of the invention includes a fin-shaped semiconductor portion having a source region formed on one side thereof and a drain region formed on the other side thereof, and a gate electrode formed between the source region and the drain region to surround the fin-shaped semiconductor portion with a gate insulating film interposed therebetween. The method for manufacturing a semiconductor device according to one embodiment of the invention includes the steps of sequentially laminating polysilicon, an insulating film and a carbon hard mask on the fin-shaped semiconductor portion with the gate insulating film interposed therebetween, implanting an inactive ion into the carbon hard mask under a condition that the inactive ion does not reach the insulating film below the carbon hard mask, patterning the carbon hard mask into which the inactive ion has been implanted in a predetermined shape with a resist, and sequentially etching the insulating film and the polysilicon by using the carbon hard mask patterned to form the gate electrode.
The method for manufacturing a semiconductor device according to one embodiment of the invention implants an inactive ion into the carbon hard mask under a condition that the inactive ion does not reach the insulating film below the carbon hard mask, and sequentially etching the insulating film and the polysilicon by using the carbon hard mask to form the gate electrode, and thus the gate electrode can be formed with high precision.
A method for manufacturing a semiconductor device according to one embodiment of the invention includes a fin-shaped semiconductor portion having a source region formed on one side thereof and a drain region formed on the other side thereof, and a gate electrode formed between the source region and the drain region to surround the fin-shaped semiconductor portion with a gate insulating film interposed therebetween. The method for manufacturing a semiconductor device according to one embodiment of the invention implants an impurity to form a diffusion layer with control of an implanting condition so that the range of the impurity is a vicinity of an interface of the fin-shaped semiconductor portion with an oxide film formed on the fin-shaped semiconductor portion.
The method for manufacturing a semiconductor device according to one embodiment of the invention implants an impurity to form a diffusion layer with control of an implanting condition so that the range of the impurity is the vicinity of an interface of the fin-shaped semiconductor portion with an oxide film formed on the fin-shaped semiconductor portion, and thus improvement can be made regarding variations in characteristics among elements.
These and other objects, features, aspects and advantages of the present invention will become more apparent from the following detailed description of the present invention when taken in conjunction with the accompanying drawings.
Manufacturing processes of a semiconductor device according to the present embodiment will be described below. First, as shown in
Next, as shown in
Thereafter, as shown in
Using as a mask the resist 9 patterned as shown in
Next, as shown in
Next, the polysilicon 11 is formed on the nitride film 4 including the fin-shaped semiconductor portion 10, and is processed such that the polysilicon 11 is flattened by CMP (Chemical Mechanical Polishing) until the nitride film 4 is exposed as shown in
Here, it is known that characteristics of the FIN-FET are greatly affected by a surface treatment of the fin-shaped semiconductor portion 10. Therefore, in the semiconductor device according to the embodiment, in order to suppress the mobility degradation of a transistor, improvement is made for the surface of the fin-shaped semiconductor portion 10 in which damage caused by etching remains. Specifically, a treatment in a combination of sacrificial oxidation (900 to 1250° C.) and low-temperature annealing (about 400° C.), removal of the surface by wet etching, low-damage dry etching and the like, hydrogen annealing (about 800° C.), and others is effective for the surface of the fin-shaped semiconductor portion 10 before a gate insulating film is formed.
Next, as shown in
Further, as shown in
Specifically, conditions for EXT implantation for NMOS are that implantation ions are arsenic, implantation energy is 5 to 40 KeV, implantation quantity is about 0.1 to 1×1015 cm−2, an implantation angle is 7 to 60 degrees, and an offset angle is 0 degree. Conditions for Halo implantation for NMOS are that the implantation ions are boron, the implantation energy is 5 to 8 KeV, the implantation quantity is about 0.1 to 4×1013 cm−2, the implantation angle is 7 to 60 degrees, and the offset angle is 45 degrees.
After the implantation for NMOS, spike annealing at 700 to 1000° C. is performed and then implantation for PMOS is performed. Conditions for EXT implantation for PMOS are that the implantation ions are boron, the implantation energy is 5 to 40 KeV, the implantation quantity is about 0.1 to 4×1015 cm−2, the implantation angle is 7 to 60 degrees, and the offset angle is 0 degree. Conditions for Halo implantation for PMOS are that the implantation ions are phosphorus, the implantation energy is 5 to 40 KeV, the implantation quantity is about 0.1 to 4×1013 cm−2, the implantation angle is 7 to 60 degrees, and the offset angle is 45 degrees.
In the embodiment, implantation for NMOS and implantation for PMOS are performed over the oxide film 18, allowing reduction of damage to the gate insulating film caused by implantation. This damage reduction improves reliability of the gate insulating film.
Next, sidewalls 19 (about 30 nm) of a nitride film as shown in
Specifically, conditions for source and drain implantation for PMOS are that the implantation ions are boron, the implantation energy is 5 to 40 KeV, the implantation quantity is about 1 to 5×1015 cm−2, the implantation angle is 7 to 60 degrees, and the offset angle is 0 degree. Alternatively, the implantation ions are boron, the implantation energy is 1 to 20 KeV, the implantation quantity is about 1 to 5×1015 cm−2, the implantation angle is 7 to 60 degrees, and the offset angle is 0 degree. On the other hand, conditions for source and drain implantation for NMOS are that the implantation ions are arsenic, the implantation energy is 5 to 40 KeV, the implantation quantity is about 1 to 5×1015 cm−2, the implantation angle is 7 to 60 degrees, and the offset angle is 0 degree. Alternatively, the implantation ions are boron, the implantation energy is 5 to 40 KeV, the implantation quantity is about 1 to 5×1015 cm−2, the implantation angle is 7 to 60 degrees, and the offset angle is 0 degree.
Next, for the purpose of decreasing the resistance in the source region and the drain region, a Ni film 20 (5 to 20 nm) is sputtered in the source region and the drain region to form a silicide film, as shown in
Further, in a semiconductor device according to the embodiment, it is conceivable to use a metal material of TiN, Ti, W or the like or a silicide material such as NiSi, instead of polysilicon 11 and 12, as a material of the gate electrode 17. Note that the material of the gate electrode 17 is not limited to the examples mentioned above, and may be a material having a work function of approximately 4.4 to 4.8 eV.
In consideration of the material of the gate electrode 17 regarding processing processes, dry etching is performed for the polysilicon 11 and 12 and wet etching is performed for a metal material or a silicide material, which is the material of the gate electrode 17. Therefore, a metal material or a silicide material used for the material of the gate electrode 17 is preferably one that is easy for wet etching. Note that since etching is performed by using polysilicon as a mask for processing of the gate electrode 17, acid such as sulfuric acid and hydrochloric acid and a mixed liquid thereof are preferable as an etchant. Further, in cleaning after wet etching, using an ammonia-hydrogen peroxide mixed liquid (APM) or a hydrochloric acid-hydrogen peroxide mixed liquid (HPM) is preferable in order to prevent metal such as Ti from adhering onto the surface of a silicon wafer.
In a semiconductor device according to the embodiment, a High-K insulating film may be used as the gate insulating film. As the specific material for the High-K insulating film, there are HfSiON (hafnium silicate nitride) and the like. The High-K insulating film is formed by ordinary deposition methods such as chemical vapor deposition (CVD), low pressure CVD, physical vapor deposition (PVD).
As described above, a semiconductor device according to the embodiment allows channel impurities to be set at a low concentration by using a metal material such as TiN or a silicide material such as NiSi having a low resistance as a material of the gate electrode 17 or using a High-K insulating film as the gate insulating film, so that a FIN-FET having a threshold voltage of 0.2 to 0.6 V can be formed. It should be noted that setting channel impurities at a low concentration has an advantage that improvement can be made regarding variations in characteristics among elements.
It should be noted that although in a semiconductor device according to the embodiment, description has been given on a FIN-FET formed on the SOI layer 2 as shown in
As shown in the first embodiment, in a semiconductor device according to the invention, the fin-shaped semiconductor portion 10 is patterned by etching with the sidewalls 7 of oxide films used as masks (
Even by the use of the manufacturing processes, however, the sidewalls 7 are formed using the polysilicon 5 as the base. Accordingly, roughness of lateral walls formed upon patterning of the polysilicon 5 becomes roughness of the fin-shaped semiconductor portion 10 in its original state. If the roughness of the fin-shaped semiconductor portion 10 is large, variations in transistor characteristics are large.
Manufacturing processes for improvement regarding roughness of the fin-shaped semiconductor portion 10 will be described in the present embodiment. As a first manufacturing process, amorphous silicon, instead of the polysilicon 5 on the nitride film 4 shown in
Next, as a second manufacturing process, polysilicon or amorphous silicon is deposited on the nitride film 4 shown in
Specific description will be given on a method of sacrificial oxidation. Amorphous silicon is deposited on the nitride film 4 shown in
Next, as a third manufacturing process, after polysilicon has been deposited on the nitride film 4 shown in
A semiconductor device according to the invention is a FIN-FET, which needs to be processed to become the gate electrode 17 with a high step to surround the fin-shaped semiconductor portion 10 as shown in
Specific description will be given. In the semiconductor device according to the embodiment, a process of patterning the resist 9 with a first mask pattern as shown in
It should be noted that in a conventional MOSFET of a planar structure, there has been no variation in occupancy of polysilicon on a wafer during etching of a gate. Therefore, considering only occupancy of a mask pattern for etching the gate, dummy patterns have been generated upon creating of a mask. In the case of a FIN-FET like the semiconductor device according to the embodiment, however, occupancy of both the first mask pattern and the second mask pattern needs to be considered.
For example, as shown in
The fin dummy patterns 30 and the gate dummy patterns 31 shown in
As described above, in the semiconductor device according to the embodiment, the fin dummy patterns 30 and the gate dummy patterns 31 are provided, allowing the pattern dimensions of the fin-shaped semiconductor portion 10 and the gate electrode 17 to be etched with good control. This allows improvement in characteristics of the semiconductor device.
In a semiconductor device according to the invention, a multilayered resist method using a hard mask as shown in
However, in order to process the gate electrode 17 with a high step with higher dimensional precision, the C-HM layer 14 is required to be a hard film.
In the semiconductor device according to the embodiment, the C-HM layer 14 becomes a hard film by implanting Ar ions into the C-HM layer 14. That is, in the embodiment, the C-HM layer 14 is formed on the nitride film 13 shown in
Specifically, if the C-HM layer 14 is about 150 nm, implantation energy of 40 KeV or less as shown in
As described above, in the semiconductor device according to the embodiment, implanting Ar ions into the C-HM layer 14 to such an extent that the Ar ions do not reach the nitride film 13. This improves process margin, allowing the gate electrode 17 with a high step to be processed with higher dimensional precision.
In a semiconductor device according to the invention, diffusion layer (EXT) implantation is performed as shown in
To address this, in the semiconductor device according to the embodiment, implantation conditions need to be optimized in the diffusion layer (EXT) implantation in order to maintain the crystallinity of a silicon layer in the fin-shaped semiconductor portion 10. Implantation conditions according to the embodiment are that impurity ions are implanted in a high concentration into the outermost surface and impurity ions are implanted in a low concentration into the inside of the fin-shaped semiconductor portion 10. The conditions enable the collapse of crystallinity of a silicon layer in a fin-shaped semiconductor portion to be prevented.
Specifically, as shown in
On the other hand, as shown in
To address this problem, in the semiconductor device according to the embodiment, implantation conditions are adjusted (e.g., at implantation energy of 15 KeV) so that the range of impurity ions is the vicinity of the interface of the fin-shaped semiconductor portion 10 with the oxide film 18 shown in
While the invention has been shown and described in detail, the foregoing description is in all aspects illustrative and not restrictive. It is therefore understood that numerous modifications and variations can be devised without departing from the scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
2007-273679 | Oct 2007 | JP | national |
This application is a divisional application of U.S. application Ser. No. 12/253,563, filed on Oct. 17, 2008, now U.S. Pat. No. 8,269,288, which claims the benefit of Japanese Application No. 2007-273679, filed on Oct. 22, 2007, the disclosures of which Applications are incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
7314787 | Yagishita | Jan 2008 | B2 |
7919364 | Sonsky et al. | Apr 2011 | B2 |
20060189058 | Lee et al. | Aug 2006 | A1 |
20060194378 | Yagishita | Aug 2006 | A1 |
20060220134 | Huo et al. | Oct 2006 | A1 |
20060275988 | Yagishita et al. | Dec 2006 | A1 |
20070045736 | Yagishita | Mar 2007 | A1 |
20070075351 | Schulz et al. | Apr 2007 | A1 |
20070231980 | Forbes | Oct 2007 | A1 |
20070231985 | Forbes | Oct 2007 | A1 |
20120199909 | Schulz et al. | Aug 2012 | A1 |
Number | Date | Country |
---|---|---|
2002-289871 | Oct 2002 | JP |
2005-294789 | Oct 2005 | JP |
2007-035957 | Feb 2007 | JP |
2007-123867 | May 2007 | JP |
Entry |
---|
Office Action issued in related Japanese Application No. 2007-273679, mailed Dec. 18, 2012. |
Number | Date | Country | |
---|---|---|---|
20120309157 A1 | Dec 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12253563 | Oct 2008 | US |
Child | 13587361 | US |