The present invention relates to an active-matrix type liquid crystal device or thin film integrated circuit devices using a semiconductor layer with crystallinity.
Active-matrix type liquid crystal devices have been well known which utilize thin film transistors (generally called as TFT). In a conventional active-matrix liquid crystal display device, a peripheral circuit member is constituted by IC and is externally connected to terminals of matrix wirings of the pixels. Further, it is also known to form TFTs for forming a peripheral circuit on the same substrate on which TFTs are arranged in a matrix as a switching element in a pixel region.
Since the TFTs formed on a peripheral circuit portion are to drive the TFTs formed in a matrix form on a pixel portion, they are required to have a capability of passing a large amount of electric current therethrough. Specifically, they are required to have a large ON current and a large mobility.
On the other hand, the TFTs formed on the pixel portion are not required to have a large mobility. Rather, they need to have a lower OFF current (leak current) in order to maintain electric charges on pixel electrodes. Accordingly, the required characteristics for the TFTs of a peripheral circuit are different from those for the TFTs of a pixel portion.
Further, an amorphous silicon film has been used to form a TFT but its characteristics are not satisfactory. Therefore, a TFT using a crystalline silicon film has been investigated. Generally, it is necessary to perform a thermal annealing at 600° C. or higher and for more than 24 hours for obtain a crystalline silicon film from an amorphous silicon film. However, a glass substrate which is usually used as a substrate of a liquid crystal device can not endure such a thermal annealing because for example, a Corning 7059 glass has a distortion point of 593° C. In particular, one problem is that the glass substrate tends to be distorted because of the high temperature so that it is difficult to increase the size of the substrate.
The inventors of the present application have confirmed through their experiments that by contacting a slight amount of catalyst metal such as nickel or platinum with an amorphous silicon film, it is possible to crystallize the silicon film at lower temperatures, for example, at 550° C. for about 4 hours. And the resultant crystallinity is comparable with that obtained the above conventional thermal treatment at 600° C. The inventors considered that these metal functions as a catalyst to promote the crystallization of an amorphous silicon film.
The inventors also confirmed that there are two types of crystallization in the case of using a catalyst as indicated below.
(1) A crystallization proceeds in a direction normal to a substrate in a region where a catalyst was introduced.
(2) A crystallization proceeds in a direction parallel with a substrate from a region to which a catalyst was introduced toward a region to which a catalyst was not introduced.
The crystal structure in the case of (2) was confirmed by using a TEM (transmission type electron microscope) that columnar crystals grow in a direction parallel with a substrate. Also, the amount of nickel necessary for causing the above first type of crystallization is different from the amount of nickel necessary for causing the above second type of crystallization. For example, when the (2) type of crystallization extends about 30 μm, the amount of the nickel necessary to be introduced thereto is 10 times as much as that required in the case of (1).
In the present specification, hereinbelow, the region where the above (1) type of crystallization occurs will be called as a vertical growth region and the region where the above (2) type of crystallization occurs will be called as a lateral growth region.
It is an object of the present invention to form thin film transistors on a pixel region (pixel TFTs) and thin film transistors on a peripheral circuit region on a same substrate through a simple process for an active-matrix type liquid crystal device.
Moreover, it is another object of the present invention that, in an active-matrix type liquid crystal device, pixel TFTs have a different crystallinity than TFTs formed on a peripheral circuit region.
In accordance with one aspect of the present invention, the method of the present invention includes a step of irradiating a laser light or a light having a sufficient strength on a selected portion of a semiconductor film to constitute a peripheral circuit region.
In accordance with another aspect of the invention, TFTs constituting a peripheral circuit are formed with a crystalline silicon film in which crystals grew in a direction approximately parallel with a direction along which carriers of the TFTs flow while pixel TFTs are formed with a crystalline silicon film in which crystals grew in a direction approximately perpendicularly with respect to a carrier direction of the pixel TFTs. The carrier direction means the direction along source and drain regions of the TFT. Namely, when a carrier direction is approximately aligned with a crystal growth direction, since carriers move along the direction of grain boundaries, the influence of the grain boundaries with respect to the carrier flow is suppressed and thus such a TFT can have a higher mobility. Accordingly, such a TFT is suitable for forming a peripheral circuit which requires a higher ON current. On the other hand, when a carrier direction is perpendicular to a crystal growth direction, since carriers have to cross grain boundaries, the OFF current can be decreased while the ON current is decreased. Accordingly, such a TFT is suitable as a pixel TFT for switching a pixel electrode in an electro-optical device.
It is still a further aspect of the present invention that TFTs having a channel region formed with a vertical growth silicon film (i.e. in which crystals grew perpendicularly to the substrate) and TFTs having a channel region formed with a lateral growth silicon (i.e. in which crystals grew horizontally with the substrate) are both formed on the same substrate. Specifically, the TFTs associated with the vertical growth region is suitable as pixel TFTs for switching pixel electrodes while the TFTs associated with the lateral growth region is suitable as a peripheral circuit for driving the pixel TFTs. This feature is based on the inventors' discovery that the amount of a catalyst required for forming a vertical growth film and that for forming a lateral growth film are different from each other. In order to accurately control the amount of a catalyst to be introduced into a semiconductor film, the inventors utilize a liquid for carrying a catalyst therein.
In accordance with the present invention the catalyst may be one or more elements selected from the group consisting of Ni, Pd, Pt, Cu, Ag, Au, In, Sn, P, As and Sb. Alternatively, the catalyst may be one or more elements selected from the group consisting of Group VIII elements, Group IIIb elements, Group IVb elements and Group Vb elements.
The foregoing and other objects and features of the present invention will be explained in detail with reference to the attached drawings in which:
In
In accordance with the preferred embodiments of the invention, a catalyst for promoting the crystallization of a semiconductor film is introduced by a method in which a liquid carrying the catalyst therein is used as explained below.
For preparing a liquid carrying the catalyst, it is possible to use a polar solvent selected from the group consisting of water, alcohol, acid and ammonium. Examples of nickel compounds which can be dissolved in a polar solvent are nickel bromide, nickel acetate, nickel oxalate, nickel carbonate, nickel chloride, nickel iodide, nickel nitrate, nickel sulfate, nickel formate, nickel acetylacetonate, 4-cyclohexyl butyric acid, nickel oxide and nickel hydroxide.
Also, it is possible to use a non-polar solvent for dissolving a nickel compound, for example, benzene, toluene, xylene, carbon tetrachloride, chloroform or ether. Examples of nickel compounds suitable for such a solvent are nickel acetyl acetonate and 2-ethyl hexanoic acid nickel.
Also, it is advantageous to add a surface activation agent to a catalyst containing solution in order to improve the adhesivity of the catalyst to the surface and control the adsorption property. The surface activation agent may be applied directly onto the surface before coating the solution.
In the above mentioned solutions, nickel which is a catalyst element is completely dissolved in the solution. However, it is to be understood that nickel may not be completely dissolved in a solution. For example, it is possible to use a material like an emulsion in which nickel metal or nickel compound powders are uniformly dispersed. It is also possible to use a solution which is for forming a silicon oxide film, for example, OCD (Ohka Diffusion Source) which is supplied by Tokyo Ohka Industry. In such a case it is possible to form a silicon oxide film which contains a catalyst therein by simply coating the solution and then baking at 200° C. Desired impurities can be also added to the solution.
The foregoing solutions are initially formed on an amorphous silicon film by a spin coating method and then dried so that a film containing a catalyst for promoting a crystallization of the silicon film is formed.
This example relates to a manufacture of a circuit substrate of an active matrix liquid crystal device as shown in
Initially, referring to
Then, an amorphous silicon film 203 of an intrinsic type is formed by plasma CVD to a thickness of 500-1500 Å, for example, 1000 Å. On the amorphous silicon film 203, a solution containing nickel as a catalyst, for example, a nickel acetate solution is formed by coating. The concentration of nickel in the solution is 10 ppm. Also, it is advantageous to form a very thin oxide film on the amorphous silicon film before the formation of the nickel containing solution in order to improve the wettability of the surface. The thickness of the oxide film should be several tens angstroms in order that nickel can penetrate through it.
It should be noted that a plasma treatment, evaporation, sputtering or CVD may be used to form a nickel film or nickel containing film instead of the above coating method.
After drying the coated solution 205, the silicon film 203 is crystallized by a thermal annealing at a temperature of 500-620° C., for example, 550° C., for a period of 4 hours in a nitrogen atmosphere. During the annealing, nickel diffuses into the silicon film from the surface and promotes the crystallization. The crystallization proceeds in a direction perpendicular to the substrate.
Referring to
Also, other known lasers may be used instead of the excimer laser. Moreover, it is also possible to use an intense light instead of laser. For example, an infrared light of a wavelength of 1.2 μm may be used. The effect of the IR light irradiation is comparable with the effect obtainable with a heat annealing at a high temperature for several minutes.
The concentration of nickel in the silicon film after the crystallization is about 1018 atoms/cm3. Then, the silicon film 203 is patterned by dry etching to form active regions 208 in an island form as shown in
Thereafter, the surface of the active regions 208 is exposed to a 100 volume % water vapor at a pressure of 10 atm and at a temperature of 500-600° C., typically, 550° C. for 1 hour in order to oxidize the surface and form a silicon oxide film 209. The thickness of the silicon oxide film 209 is 1000 Å. After the oxidation, the substrate is then exposed to an ammonium atmosphere (1 atm, 100%) at 400° C. At this condition, an infrared light having a peak at a wavelength of 0.6-4 μm, for example, 0.8-1.4 μm for 30-180 seconds is irradiated onto the silicon oxide film 209 to perform a nitridation. It is possible to add HCl at 0.1-10% to the atmosphere during this nitridation.
Subsequently, an aluminum film containing scandium at 0.01-0.2% is formed by sputtering to a thickness of 3000-8000 Å, e.g. 6000 Å and then patterned into a gate electrode 210.
Then, referring to
Referring then to
Thereafter, an annealing is performed with a laser irradiation. As a laser, a KrF excimer laser (wavelength: 248 nm, pulse width: 20 nsec.) or other lasers may be used. The conditions of the laser irradiation in the case of KrF excimer laser are: energy density is 200-400 mJ/cm2, for example, 250 mJ/cm2, a number of shots is 2-10 shots per one site, for example, 2 shots. Preferably, the substrate is heated to 200-450° C. to enhance the effect of the irradiation.
Referring to
Then, the interlayer insulating films 214 and 215 are provided with contact holes, through which electrode/wirings 217 and 218 are formed to contact the impurity regions of the TFT. The electrode/wirings 217 and 218 are formed of a metallic material, for example, a multi-layer of titanium nitride and aluminum. As shown in
Finally, an annealing in a hydrogen atmosphere of 1 atm is carried out at 350° C. for 30 minutes in order to complete a pixel circuit of an active matrix circuit having TFTs.
The present example relates to the second aspect of the present invention as mentioned before. Specifically, this example is directed to a manufacture of a circuit substrate for an electro-optical device of the same type shown in
Initially, referring to
Then, an amorphous silicon film 203 of an intrinsic type is formed by plasma CVD to a thickness of 500-1500 Å, for example, 1000 Å. Subsequently, a silicon oxide film 225 of 500-2000 Å thick, for example, 1000 Å is formed by plasma CVD. Then, the silicon oxide film 225 is partly etched to form an exposed region 204 of the amorphous silicon film, which is to be provided with nickel in the later step.
Then, a solution containing nickel as a catalyst, for example, a nickel acetate solution is formed by coating. The concentration of nickel in the solution is 100 ppm. Also, it is advantageous to form a very thin oxide film on the amorphous silicon film before the formation of the nickel containing solution in order to improve the wettability of the surface. The thickness of the oxide film should be several tens angstroms or less in order that nickel can penetrate through it.
It should be noted that a plasma treatment, evaporation, sputtering or CVD may be used to form a nickel film or nickel containing film instead of the above coating method.
After drying the coated solution 205, the silicon film 203 is crystallized by thermal annealing at a temperature of 500-620° C., for example, 550° C., for 4 hours in a nitrogen atmosphere. The crystallization starts at the region 204 of the silicon film to which nickel is directly introduced and it proceeds to adjacent regions in a direction parallel with the substrate surface as shown by an arrow in the figure. Accordingly, there is formed a crystalline silicon film in which crystals grow parallel with the substrate below the silicon oxide film 225. The length of the lateral growth region is about 25 μm. Also, the direction of the crystal growth in the lateral growth region is approximately aligned with the <111> axis of the crystal.
Referring to
Also, another kind of laser may be used instead of an excimer laser. Moreover, it is possible to use an intense light instead of laser. For example, an infrared light of a wavelength of 1.2 μm may be used.
Then, the silicon oxide film 205 is removed by etching. At the same time, the thin oxide film formed on the region 204 is also removed. Further, the silicon film 203 is patterned by dry etching in order to form active regions 208 in the form of islands. The region 204 was directly introduced with nickel so that the concentration of the nickel in this region is higher. Also, the end portion 227 of crystal growth contains nickel at a higher concentration. On the other hand, the region 204 contains nickel at a lower concentration than the regions 204 and 227. Accordingly, the patterning of the silicon film is performed in such a manner that the silicon island 208 (active region) does not overlap with the high concentration regions 204 or 227.
Thereafter, the surface of the active regions 208 is exposed to a 100 volume % water vapor at a pressure of 10 atm and at a temperature of 500-600° C., typically, 550° C. for 1 hour in order to oxidize the surface and form a silicon oxide film 209 as shown in
Subsequently, an aluminum film containing scandium at 0.01-0.2% is formed by sputtering to a thickness of 3000-8000 Å, for example, 6000 Å and then patterned into a gate electrode 210.
Then, referring to
Referring then to
Thereafter, an annealing is performed with a laser irradiation. As a laser, a KrF excimer laser (wavelength: 248 nm, pulse width: 20 nsec.) or other lasers may be used. The conditions of the laser irradiation in the case of KrF excimer laser are: energy density is 200-400 mJ/cm2, for example, 250 mJ/cm2, a number of shots is 2-10 shots per one site, for example, 2 shots. Preferably, the substrate is heated to 200-450° C. to enhance the effect of the irradiation.
Referring to
Then, the interlayer insulating films 214 and 215 are provided with contact holes, through which electrode/wirings 217 and 218 are formed to contact the impurity regions of the TFT. The electrode/wirings 217 and 218 are formed of a metallic material, for example, a multi-layer of titanium nitride and aluminum. As shown in
Finally, an annealing in a hydrogen atmosphere of 1 atm is carried out at 350° C. for 30 minutes in order to complete a pixel circuit of an active matrix circuit having TFTs.
As a modification of the second example, it is advantageous to arrange the TFTs of the pixel region shown in
The present example is directed to a manufacture of an active matrix liquid crystal device as shown in
The silicon film for forming the pixel TFTs will be directly added in its hole area with a catalyst material for promoting a crystallization thereof and then thermally crystallized.
Also, the silicon film for forming the driver TFTs will be crystallized by introducing a catalyst into a first region and then thermally annealed in order that the crystals grow from the first region toward a second region adjacent thereto horizontally with respect to the substrate.
In accordance with the present example, the amount of the catalyst element introduced into the foregoing regions is varied in each region. This is because the crystal structure of the obtained film depends upon the amount of the catalyst element. However, the concentration of the catalyst element in the active regions can be mad almost the same because the concentration of the catalyst element in the lateral growth region is smaller than that in the region to which the catalyst element is directly introduced.
Referring to
Then, an extremely thin oxide film (e.g. several tens Å thick) is formed on the exposed surface of the amorphous silicon film 203. This extremely thin oxide film improves the wetting property of the surface with respect to a solution which will be applied later. The oxide film may be formed by thermal oxidation, or a UV irradiation in an oxygen gas.
Thereafter, an acetic acid salt solution 205 which contain nickel is applied onto the entire surface by coating in order that the exposed surfaces of the amorphous silicon film are provided with nickel. The volume concentration of nickel in the acetate solution is 10 ppm.
After the coating, the substrate is heat treated at 200-500° C., for example, 300° C. so that nickel silicide is formed on the surface of the amorphous silicon film which is directly provided with the acetic acid salt solution. Accordingly, only the pixel region of the silicon film is provided with the nickel silicide while the peripheral circuit region of the silicon film is not provided with nickel silicide because of the existence of the mask made of the silicon oxide film 225.
Then, referring to
In the above condition, an acetic acid salt solution 205′ which contains nickel as a crystallization promoting catalyst is coated onto the entire surface. Therefore, only the exposed region of the silicon film is provided with the nickel. The volume concentration of the nickel in the solution is 100 ppm. Accordingly, the amount of nickel added to the silicon film is 10 times as high as the amount of nickel added to the silicon film in the former step as shown in
Thereafter, the substrate is heat treated at 200-500° C., for example, 300° C. in order to form nickel silicide on the exposed region 204 of the silicon film in
By the foregoing steps, the peripheral circuit region of the amorphous silicon film is provided with nickel at a concentration 10 times as high as the region of the amorphous silicon film in the pixel region.
The silicon film 203 provided with the catalyst for promoting the crystallization thereof is then crystallized by thermal annealing in a nitrogen gas at 500-620° C. for example at 550° C. for 4 hours. The crystallization proceeds in a different manner in the pixel region and the peripheral circuit region. That is, in the pixel region of the silicon film as shown in
The length of the lateral growth is about 30 μm. This can be increased by increasing the amount of the added nickel, by elevating the temperature of the thermal annealing and/or by increasing the time of the thermal annealing. Also, it was confirmed that the lateral crystal growth direction in the region 228 is aligned with the <111> axis of the crystal.
The concentration of nickel in the silicon film is 1×1018 atoms/cm3 at the pixel region of
It is desirable to irradiate the semiconductor film with intense light for improving the crystallinity after the above crystallization. An infrared light having a wavelength of 1.2 μm or laser light may be used as a light source. Also, it is appropriate to irradiate only the peripheral circuit region with light in the same manner as in the first example of the present invention.
After the crystallization step, the silicon oxide film 225′ is removed by etching and then the silicon film 203 is patterned by dry etching in order to form active regions 300 and 301 in the form of an island. In
The region 204 was directly introduced with nickel so that the concentration of the nickel in this region is higher. Also, the region 227 which is a top end of crystal growth also contains nickel at a higher concentration. Accordingly, the patterning of the silicon film is performed in such a manner that the active region does not overlap with the high concentration regions 204 and 227.
After the patterning, a silicon oxide film 209 of 1000 Å thick is formed by LPCVD as a gate insulating film. Subsequently, an aluminum film containing scandium 0.01 to 0.2% is deposited to 3000-8000 Å thick, for example, 6000 Å thick by sputtering, and then patterned into a gate electrode 210. (
Then, referring to
Referring then to
Also, when forming a CMOS structure for the peripheral circuit, it is necessary to introduce a P-type impurity as a dopant. In such a case, a mask may be used so that the ion doping can be selectively performed.
Thereafter, an annealing is performed with a laser irradiation. As a laser, a KrF excimer laser (wavelength: 248 nm, pulse width: 20 nsec.) or other lasers may be used. The conditions of the laser irradiation in the case of KrF excimer laser are: energy density is 200-400 mJ/cm2, for example, 250 mJ/cm2, a number of shots is 2-10 shots per one site, for example, 2 shots. Preferably, the substrate is heated to 200-450° C. to enhance the effect of the irradiation.
Referring to
Then, the interlayer insulating films 214 and 215 are provided with contact holes, through which electrode/wirings 217 and 218 are formed to contact the impurity regions of the TFT. The electrode/wirings 217 and 218 are formed of a metallic material, for example, a multi-layer of titanium nitride and aluminum. As shown in
Finally, an annealing in a hydrogen atmosphere of 1 atm is carried out at 350° C. for 30 minutes in order to complete the TFTs for the active matrix and the peripheral circuit of a liquid crystal device.
The TFT shown in
Also, the TFT shown in
In this example, an integrated circuit is to be formed on one glass substrate by mounting thereon a display, CPU, memory etc by employing the third aspect of the invention in which a desired crystalline structure or crystal structure (lateral growth or vertical growth) may be obtained in a desired region.
The CPU and the memory are equivalent to those used in a conventional computer. Especially, the memory uses a RAM in which an image memory corresponding to each pixel is stored. Also, it has a function of changing an intensity of back light on the rear side of the substrate in response to the image information.
The reference numeral 74 shows a region on which a decoder/driver circuit which is a peripheral circuit is formed. 71 shows an active matrix TFT, 72 shows a capacitor, and 73 shows a liquid crystal. In this example, the foregoing circuits are formed on one substrate. And, a crystalline silicon film is selectively formed depending upon the required crystallinity or crystal structure.
While various examples have been disclosed, it is to be understood that the scope of the present invention should not be limited to those particular examples. Many modifications may be made without departing the scope of the invention. For example, while thin film transistors are mainly discussed, it is possible to form other types of a semiconductor device in accordance with the present invention, for example, a diode, photoelectric conversion device, etc. Also, the present invention is effective for the use of other catalyst materials in place of nickel. Furthermore, the catalyst may be first formed over a substrate and then a semiconductor film may be formed thereon.
Number | Date | Country | Kind |
---|---|---|---|
05-346710 | Dec 1993 | JP | national |
05-346712 | Dec 1993 | JP | national |
05-346714 | Dec 1993 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
3108914 | Hoerni | Oct 1963 | A |
3389024 | Schimmer | Jun 1968 | A |
3783049 | Sandera | Jan 1974 | A |
3988762 | Cline et al. | Oct 1976 | A |
4068020 | Reuschel | Jan 1978 | A |
4379020 | Glaeser et al. | Apr 1983 | A |
4409724 | Tasch, Jr. et al. | Oct 1983 | A |
4472458 | Sirinyan et al. | Sep 1984 | A |
4746628 | Takafuji et al. | May 1988 | A |
4911781 | Fox et al. | Mar 1990 | A |
4959247 | Moser et al. | Sep 1990 | A |
5010033 | Tokunaga et al. | Apr 1991 | A |
5060197 | Park et al. | Oct 1991 | A |
5075259 | Moran | Dec 1991 | A |
5130103 | Yamagata et al. | Jul 1992 | A |
5147826 | Liu et al. | Sep 1992 | A |
5236850 | Zhang | Aug 1993 | A |
5244836 | Lim | Sep 1993 | A |
5254480 | Tran | Oct 1993 | A |
5262350 | Yamazaki et al. | Nov 1993 | A |
5275851 | Fonash et al. | Jan 1994 | A |
5278093 | Yonehara | Jan 1994 | A |
5308998 | Yamazaki et al. | May 1994 | A |
5354697 | Oostra et al. | Oct 1994 | A |
5358907 | Wong | Oct 1994 | A |
5387530 | Doyle et al. | Feb 1995 | A |
5397718 | Furuta et al. | Mar 1995 | A |
5403772 | Zhang et al. | Apr 1995 | A |
5426064 | Zhang et al. | Jun 1995 | A |
5453858 | Yamazaki | Sep 1995 | A |
5480811 | Chiang et al. | Jan 1996 | A |
5481121 | Zhang et al. | Jan 1996 | A |
5488000 | Zhang et al. | Jan 1996 | A |
5492843 | Adachi et al. | Feb 1996 | A |
5501989 | Takayama et al. | Mar 1996 | A |
5508532 | Teramoto | Apr 1996 | A |
5508533 | Takemura | Apr 1996 | A |
5529937 | Zhang et al. | Jun 1996 | A |
5531182 | Yonehara | Jul 1996 | A |
5534716 | Takemura | Jul 1996 | A |
5534884 | Mase et al. | Jul 1996 | A |
5543352 | Ohtani et al. | Aug 1996 | A |
5563426 | Zhang et al. | Oct 1996 | A |
5569610 | Zhang et al. | Oct 1996 | A |
5569936 | Zhang et al. | Oct 1996 | A |
5580792 | Zhang et al. | Dec 1996 | A |
5585291 | Ohtani et al. | Dec 1996 | A |
5589694 | Takayama et al. | Dec 1996 | A |
5595923 | Zhang et al. | Jan 1997 | A |
5595944 | Zhang et al. | Jan 1997 | A |
5604360 | Zhang et al. | Feb 1997 | A |
5605846 | Ohtani et al. | Feb 1997 | A |
5606179 | Yamazaki et al. | Feb 1997 | A |
5608232 | Yamazaki et al. | Mar 1997 | A |
5612250 | Ohtani et al. | Mar 1997 | A |
5614426 | Funada et al. | Mar 1997 | A |
5614733 | Zhang et al. | Mar 1997 | A |
5616506 | Takemura | Apr 1997 | A |
5620910 | Teramoto | Apr 1997 | A |
5621224 | Yamazaki et al. | Apr 1997 | A |
5624851 | Takayama et al. | Apr 1997 | A |
5637515 | Takemura | Jun 1997 | A |
5639698 | Yamazaki et al. | Jun 1997 | A |
5643826 | Ohtani et al. | Jul 1997 | A |
5646424 | Zhang et al. | Jul 1997 | A |
5650338 | Yamazaki et al. | Jul 1997 | A |
5654203 | Ohtani et al. | Aug 1997 | A |
5656825 | Kusumoto et al. | Aug 1997 | A |
5663077 | Adachi et al. | Sep 1997 | A |
5677549 | Takayama et al. | Oct 1997 | A |
5696003 | Makita et al. | Dec 1997 | A |
5696386 | Yamazaki | Dec 1997 | A |
5696388 | Funada et al. | Dec 1997 | A |
5700333 | Yamazaki et al. | Dec 1997 | A |
5705829 | Miyanaga et al. | Jan 1998 | A |
5712191 | Nakajima et al. | Jan 1998 | A |
5744824 | Kousai et al. | Apr 1998 | A |
5773327 | Yamazaki et al. | Jun 1998 | A |
5773846 | Zhang et al. | Jun 1998 | A |
5818076 | Zhang et al. | Oct 1998 | A |
5879977 | Zhang et al. | Mar 1999 | A |
5882960 | Zhang et al. | Mar 1999 | A |
5897347 | Yamazaki et al. | Apr 1999 | A |
5913112 | Yamazaki et al. | Jun 1999 | A |
5923962 | Ohtani et al. | Jul 1999 | A |
5942768 | Zhang | Aug 1999 | A |
5956579 | Yamazaki et al. | Sep 1999 | A |
5962870 | Yamazaki et al. | Oct 1999 | A |
5985704 | Adachi et al. | Nov 1999 | A |
6037610 | Zhang et al. | Mar 2000 | A |
6048780 | Hayakawa | Apr 2000 | A |
6060725 | Zhang et al. | May 2000 | A |
6110770 | Zhang et al. | Aug 2000 | A |
6140165 | Zhang et al. | Oct 2000 | A |
6171890 | Adachi et al. | Jan 2001 | B1 |
6211536 | Zhang | Apr 2001 | B1 |
6261875 | Zhang et al. | Jul 2001 | B1 |
6285042 | Ohtani et al. | Sep 2001 | B1 |
6331723 | Yamazaki et al. | Dec 2001 | B1 |
6335541 | Ohtani et al. | Jan 2002 | B1 |
6348367 | Ohtani et al. | Feb 2002 | B1 |
6413805 | Zhang et al. | Jul 2002 | B1 |
6451638 | Zhang et al. | Sep 2002 | B1 |
6541313 | Zhang et al. | Apr 2003 | B2 |
6599359 | Adachi et al. | Jul 2003 | B2 |
6608325 | Zhang et al. | Aug 2003 | B1 |
6624445 | Miyanaga et al. | Sep 2003 | B2 |
6627487 | Zhang | Sep 2003 | B2 |
6730549 | Zhang et al. | May 2004 | B1 |
6756657 | Zhang et al. | Jun 2004 | B1 |
6798023 | Ohtani et al. | Sep 2004 | B1 |
6939749 | Zhang et al. | Sep 2005 | B2 |
6955954 | Miyanaga et al. | Oct 2005 | B2 |
6987283 | Zhang et al. | Jan 2006 | B2 |
6998639 | Ohtani et al. | Feb 2006 | B2 |
7148094 | Zhang et al. | Dec 2006 | B2 |
20020024047 | Yamazaki et al. | Feb 2002 | A1 |
Number | Date | Country |
---|---|---|
61-063017 | Apr 1986 | JP |
64-045162 | Feb 1989 | JP |
01-206632 | Aug 1989 | JP |
02-119122 | May 1990 | JP |
02-140915 | May 1990 | JP |
03-280420 | Dec 1991 | JP |
05-009090 | Jan 1993 | JP |
05-114724 | May 1993 | JP |
05-203991 | Aug 1993 | JP |
05-210364 | Aug 1993 | JP |
07-176479 | Jul 1994 | JP |
06-267988 | Sep 1994 | JP |
06-268212 | Sep 1994 | JP |
06-318700 | Nov 1994 | JP |
06-333824 | Dec 1994 | JP |
06-333825 | Dec 1994 | JP |
06-349735 | Dec 1994 | JP |
07-058338 | Mar 1995 | JP |
07-161634 | Jun 1995 | JP |
07-235492 | Sep 1995 | JP |
07-335548 | Dec 1995 | JP |
08-017741 | Jan 1996 | JP |
Number | Date | Country | |
---|---|---|---|
20060068569 A1 | Mar 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10747165 | Dec 2003 | US |
Child | 11250635 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 08975918 | Nov 1997 | US |
Child | 10747165 | US | |
Parent | 08356584 | Dec 1994 | US |
Child | 08975918 | US |