Semiconductor device and method of fabricating the same

Information

  • Patent Grant
  • 6638806
  • Patent Number
    6,638,806
  • Date Filed
    Thursday, May 9, 2002
    22 years ago
  • Date Issued
    Tuesday, October 28, 2003
    21 years ago
Abstract
A collector region is formed on a semiconductor substrate. An emitter electrode, an external base electrode and a gate electrode are formed on the semiconductor substrate. The position of the interface between the gate electrode and the semiconductor substrate is rendered higher than the position of the interface between the external base electrode and the semiconductor substrate. Thus provided is a semiconductor device so improved that dispersion of the withstand voltage of a gate oxide film and dispersion of characteristics such as a threshold voltage and a drain-to-source current are reduced.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




The present invention generally relates to a method of fabricating a semiconductor device, and more specifically, it relates to a method of fabricating a BiCMOS (Bipolar-Complementary Metal Oxide Semiconductor) device having a bipolar transistor and a CMOS (Complementary Metal Oxide Semiconductor) transistor. The present invention also relates to a semiconductor device obtained by this method.




2. Description of the Prior Art




A BiCMOS device provided with both of a bipolar transistor having high-speed performance and excellent drivability and CMOS transistors allowing high integration and having low power consumption is generally employed as a semiconductor device.





FIG. 82

is a sectional view of a conventional BiCMOS device.




First, a bipolar transistor part is described.




An N


+


-type embedded layer


3


is formed on a P-type silicon substrate


1


, and an N-type epitaxial layer


4


is further formed on the upper surface thereof. A field oxide film


7


, a P-type well region


12


and a P-type isolation region


5


are formed for element isolation. A base region, consisting of a P-type intrinsic base region


16


and a P


+


-type external base region


18


, and an N


+


-type emitter region


19


are formed on a surface part of the N-type epitaxial layer


4


. The field oxide film


7


is held between an N


+


-type collector region


2


and the epitaxial layer


4


. The N


+


-type collector region


2


reaches the N


+


-type embedded layer


3


.




A P


+


-type external base draw-out electrode


13


is provided on the external base region


18


. The external base draw-out electrode


13


extends onto the field oxide film


7


. An N


+


-type emitter electrode


20


is formed in an emitter opening of the external base draw-out electrode


13


. The emitter electrode


20


and the external base draw-out electrode


13


are electrically isolated from each other by side wall oxide films


17


and an oxide film


14


. An interlayer isolation film


32


covers the external base draw-out electrode An interlayer isolation film


32


covers the external base draw-out electrode


13


, the emitter electrode


20


and the N


+


-type collector region


2


. Contact holes


6


are formed in the interlayer isolation film


32


. Metal wires


33


(aluminum wires, for example) are formed in the contact holes


6


.




CMOS transistor parts are now described.




First, a PMOS (P channel Metal Oxide Semiconductor) part is described. An N


+


-type embedded layer


3


is formed on the P-type silicon substrate


1


. An N-type well region


10


is formed on the upper surface of the N


+


-type embedded layer


3


. A field oxide film


7


is formed for element isolation. A gate electrode


22


(N


+


-type polysilicon film, for example) is formed on the surface of the N-type well region


10


. P


+


-type source/drain regions


31


are formed on the surface of the N-type well region


10


on both sides of the gate electrode


22


. The interlayer isolation film


32


covers the P


+


-type source/drain regions


31


and the gate electrode


22


. Contact holes


6


are formed in the interlayer isolation film


32


. Metal wires


33


(aluminum wires, for example) are formed in the contact holes


6


.




An NMOS (N channel Metal Oxide Semiconductor) part is now described. A P-type isolation region


5


is formed on the P-type silicon substrate


1


. A P-type well region


12


is formed on the upper surface of the P-type isolation region


5


. A field oxide film


7


is formed for element isolation. A gate electrode


22


(N


+


-type polysilicon film) is formed on the surface of the P-type well region


12


. N


+


-type source/drain regions


30


are formed on the surface of the P-type well region


12


on both sides of the gate electrode


22


. The interlayer isolation film


32


covers the N


+


-type source/drain regions


30


and the gate electrode


22


. Contact holes


6


are formed in the interlayer isolation film


32


. Metal wires


33


(aluminum wires, for example) are formed in the contact holes


6


.




A method of fabricating the BiCMOS device shown in

FIG. 82

is now described.




Referring to

FIG. 70

, the N


+


-type embedded layers


3


, the P-type isolation regions


5


, the N-type epitaxial layer


4


, the field oxide films


7


and the N


+


-type collector region


2


are formed on the P-type silicon substrate


1


. Then, an underlayer oxide film


8


is formed on the surface of the silicon substrate


1


. The thickness of the underlayer oxide film


8


is 30 nm, for example. A resist mask


9


is formed on the silicon substrate


1


by patterning. N-type impurities


111


are implanted into a region for forming a PMOS transistor through the resist mask


9


. The impurities are implanted in a divided manner (phosphorus is implanted at 400 KeV by 2×10


12


cm


−2


and at 180 KeV by 4×10


12


cm


−2


and boron is implanted at 20 KeV by 3×10


12


cm


−2


, for example) for forming the N-type well region


10


(see FIG.


71


). Thereafter the resist mask


9


is removed.




Referring to

FIG. 71

, a resist mask


11


is formed on the silicon substrate


1


by patterning. A P-type impurity


222


is implanted into a region for forming an NMOS transistor through the resist mask


11


, thereby forming the P-type well region


12


(see FIG.


72


). Also in this case, the impurity is implanted in a divided manner (boron is implanted at 300 KeV by 1×10


12


cm


−2


, at 160 KeV by 3×10


12


cm


−2


and at 50 KeV by 6×10


12


cm


−2


, for example). Thereafter the resist mask


11


is removed.




Referring to

FIGS. 71 and 72

, the underlayer oxide film


8


is removed and a polysilicon film


13


is deposited on the overall surface by 150 nm, for example, and a P-type impurity is implanted into the polysilicon film


13


(BF


2


is implanted at 40 KeV by 4×10


15


cm


−2


, for example). Then, a CVD (Chemical Vapor Deposition) oxide film


14


is deposited on the overall surface by 300 nm, for example.




Referring to

FIGS. 72 and 73

, the CVD oxide film


14


and the polysilicon film


13


are patterned by etching, for forming the external base electrode


13


. At this time, the surfaces of the collector region


2


, the emitter opening, the N-type well region


10


and the P-type well region


12


are etched. Referring to

FIG. 73

, symbols A-


1


, B-


1


, C-


1


and D-


1


denote the collector region


2


, the emitter opening, the N-type well region


10


and the P-type well region


12


respectively.




Referring to

FIG. 74

, a resist mask


15


is formed on the silicon substrate


1


by patterning. A P-type impurity


333


is implanted into the emitter opening (BF


2


is implanted at 25 KeV by 8×10


13


cm


−2


, for example) through the resist mask


15


, for forming the intrinsic base region


16


(see FIG.


75


).




Referring to

FIG. 75

, a CVD oxide film (not shown) is formed on the overall upper surface of the silicon substrate


1


and dry-etched, for forming the side wall oxide films


17


in the emitter opening.




Referring to

FIG. 76

, a polysilicon film for defining the emitter electrode


20


is deposited on the overall surface by 150 nm, for example, and an N-type impurity is implanted into this polysilicon film (arsenic is implanted at 50 KeV by 1×10


16


cm


−2


, for example). After this impurity implantation, annealing is performed for diffusing arsenic into the intrinsic base region


16


from the polysilicon film, thereby forming the emitter region


19


. At this time, boron diffuses from the external base electrode


13


, for forming the external base region


18


.




While diffusion of boron takes place also in heat treatment preceding this annealing step, such diffusion is not illustrated. Then, the polysilicon film is etched for forming the emitter electrode


20


. At this time, the surfaces of the collector region


2


, the N-type well region


10


and the P-type well region


12


are etched. Referring to

FIG. 76

, symbols A-


2


, C-


2


and D-


2


denote the collector region


2


, the N-type well region


10


and the P-type well region


12


respectively.




Referring to

FIG. 77

, gate oxide films


21


are formed in a thickness of 10 nm, for example. Thereafter an N-type polysilicon film for defining the gate electrodes


22


is formed on the overall surface by 300 nm, for example. Then, the N-type polysilicon film is patterned for forming the gate electrodes


22


. At this time, the thin oxide films


21


are formed on the surfaces of the N-type well region


10


, the P-type well region


12


and the emitter electrode


20


, so that the N-type well region


10


, the P-type well region


12


and the emitter electrode


20


are not etched due to the difference between the etching rates for silicon and an oxide film (the etching rate for an oxide film is smaller than that for silicon).




Referring to

FIG. 78

, a resist mask


23


is formed on the silicon substrate


1


by patterning, and an N-type impurity


444


is implanted into the region for forming the NMOS transistor. For example, phosphorus is implanted at 70 KeV by 1.8×10


13


cm


−2


through 45° rotational implantation, for example. Thus, N





-type source/drain regions


25


are formed (see FIG.


79


). Thereafter the resist mask


23


is removed.




Referring to

FIG. 79

, a resist mask


24


is formed by patterning for implanting a P-type impurity


555


into the region for forming the PMOS transistor (boron is implanted at 10 KeV by 1×10


13


cm


−2


through 7° rotational implantation, for example), for forming P





-type source/drain regions


26


(see FIG.


80


). Thereafter the resist mask


24


is removed.




Referring to

FIG. 80

, a CVD oxide film is deposited and dry-etched, for forming side wall oxide films


27


on the side walls of the gate electrodes


22


. Then, a resist mask


28


is formed by patterning and N-type impurities


666


are implanted into the region for forming the NMOS transistor (phosphorus is implanted at 100 KeV by 2×10


14


cm


−2


through 60° rotational implantation and arsenic is implanted at 50 KeV by 4×10


15


cm


−2


, for example), for forming the N


+


-type source/drain regions


30


(see FIG.


81


). Thereafter the resist mask


28


is removed.




Referring to

FIG. 81

, a resist mask


29


is formed by patterning, and a P-type impurity


777


is implanted into the region for forming the PMOS transistor (BF


2


is implanted at 40 KeV by 4×10


15


cm


−2


, for example) through the resist mask


29


, for forming the P


+


-type source/drain regions


31


(see FIG.


82


).




Thereafter the resist mask


29


is removed.




Referring to

FIG. 82

, the interlayer isolation film


32


is formed on the silicon substrate


1


. The contact holes


6


are formed in the interlayer isolation film


32


for defining openings on the emitter region


20


, the external base electrode


13


, the N


+


-type collector region


2


, the source/drain regions


30


and


31


and the gate electrodes


22


. The metal wires


33


are embedded in the contact holes


6


, thereby completing the BiCMOS device.




The depths of the diffusion layers such as the emitter region


19


formed by diffusion of arsenic from the emitter electrode


20


, the external base region


18


formed by diffusion of boron from the external base electrode


13


, the intrinsic base region


16


and the source/drain regions


30


and


31


are decided by heat treatment performed for completing the device.




In the conventional method of fabricating a BiCMOS device, however, the surface parts of the well regions


10


and


12


of the CMOS transistors are remarkably scraped off due to etching for forming the external base electrode


13


and the emitter electrode


20


, as shown in

FIGS. 73 and 76

. In other words, the N-type well region C-


1


, the P-type well region D-


1


as well as the N-type well region C-


2


and the P-type well region D-


2


are remarkably scraped off. The scraped surface parts of the well regions C-


1


, D-


1


, C-


2


and D-


2


include implantation regions for adjusting threshold voltages Vth and drain-to-source currents Ids of the CMOS transistors. Boron


111


for forming the N-type well region


10


and boron


222


for forming the P-type well region


12


are implanted into the implantation regions at 20 KeV by 3×10


12


cm


−2


and at 50 KeV by 6×10


12


cm


−2


respectively. However, the characteristic values cannot be adjusted as designed since the surface parts are scraped off.




Even if swelling caused by etching is previously estimated for implanting boron, homogeneity of etching rates is deteriorated and extremely hard to control since etching is performed twice.




Further, the surfaces of the well regions


10


and


12


of the CMOS transistor parts are so inferior in flatness that it is difficult to uniformalize the thickness of the gate oxide film


21


. Thus, the withstand voltage of the gate oxide film


21


as well as the characteristics such as the threshold voltages Vth and the drain-to-source currents Ids are dispersed, and the reliability of the gate oxide film


21


is deteriorated.




SUMMARY OF THE INVENTION




The present invention has been proposed in order to solve the aforementioned problems, and an object thereof is to provide a method of fabricating a semiconductor device so improved as to exhibit no dispersion of the withstand voltage of a gate oxide film.




Another object of the present invention is to provide a method of fabricating a semiconductor device so improved as to exhibit no dispersion of characteristics such as a threshold voltage and a source-to-drain current.




Still another object of the present invention is to provide a method of fabricating a semiconductor device improved to be capable of improving the reliability of a gate oxide film.




A further object of the present invention is to provide a semiconductor device fabricated by such a method.




A first aspect of the present invention relates to a method of fabricating a semiconductor device having a bipolar transistor and a field-effect transistor formed on a semiconductor substrate. First, a first oxide film for defining a gate oxide film and a first conductor film for defining a lower portion of a gate electrode are successively formed on the semiconductor substrate formed with a collector region. The aforementioned first conductor film and the aforementioned first oxide film are selectively etched for exposing a surface portion of the aforementioned semiconductor substrate located on a region for forming the aforementioned bipolar transistor. A second conductor film for defining an external base electrode and an upper portion of the gate electrode are formed on the aforementioned semiconductor substrate to come into contact with the aforementioned exposed surface portion and cover a region for forming the aforementioned field-effect transistor and the aforementioned collector region. A second oxide film is formed on the aforementioned semiconductor substrate to cover the aforementioned second conductor film. The aforementioned second conductor film and the aforementioned second oxide film are selectively etched for exposing a surface portion of the aforementioned semiconductor substrate thereby opening an emitter region. A third conductor film for defining an emitter electrode is formed on the aforementioned second oxide film to come into contact with the aforementioned emitter region. The aforementioned third conductor film is patterned for forming the emitter electrode on the aforementioned semiconductor substrate. The aforementioned second oxide film, the aforementioned second conductor film and the aforementioned first conductor film are patterned for simultaneously forming the external base electrode and the gate electrode.




According to a preferred embodiment of this aspect, the aforementioned step of patterning the aforementioned second oxide film, the aforementioned second conductor film and the aforementioned first conductor film for simultaneously forming the aforementioned external base electrode and the aforementioned gate electrode includes a step of first removing the aforementioned second oxide film located on the aforementioned external base electrode and the aforementioned gate electrode by etching and thereafter patterning the aforementioned second conductor film and the aforementioned first conductor film for simultaneously forming the external base electrode and the gate electrode.




According to another preferred embodiment of this aspect, the method of fabricating a semiconductor device further comprises a step of partially removing the aforementioned second conductor film by etching around a portion for defining the aforementioned external base electrode after forming the aforementioned second conductor film in advance of forming the aforementioned second oxide film.




A second aspect of the present invention relates to a method of fabricating a semiconductor device having a bipolar transistor and a field-effect transistor formed on a semiconductor substrate. First, a first oxide film for defining a gate oxide film and a first conductor film for defining a lower portion of a gate electrode are successively formed on the semiconductor substrate formed with a collector region. The aforementioned first conductor film and the aforementioned first oxide film are selectively etched for exposing a surface portion of the aforementioned semiconductor substrate located on a region for forming the aforementioned bipolar transistor. A second conductor film for defining an external base electrode and an upper portion of the gate electrode is formed on the aforementioned semiconductor substrate to come into contact with the aforementioned exposed surface portion and cover a region for forming the aforementioned field-effect transistor and the aforementioned collector region. A second oxide film is formed on the aforementioned semiconductor substrate to cover the aforementioned second conductor film. The aforementioned second conductor film and the aforementioned second oxide film are selectively etched for opening an emitter region while simultaneously partially removing the aforementioned second conductor film by etching around a portion for defining the external base electrode thereby forming the aforementioned external base electrode. A third conductor film for defining an emitter electrode is formed on the aforementioned second oxide film to come into contact with the aforementioned emitter region. The aforementioned third conductor film is patterned for forming the emitter electrode on the aforementioned semiconductor substrate. The aforementioned second oxide film, the aforementioned second conductor film and the aforementioned first conductor film are patterned for forming the gate electrode.




According to a preferred embodiment of this aspect, the aforementioned semiconductor substrate is annealed after simultaneously forming the aforementioned external base electrode and the aforementioned gate electrode.




According to another preferred embodiment of this aspect, the aforementioned second conductor film is patterned to simultaneously form a resistive element in the step of patterning the aforementioned second oxide film, the aforementioned second conductor film and the aforementioned first conductor film.




According to still another preferred embodiment of this aspect, the aforementioned third conductor film is patterned to simultaneously form a resistive element in the step of patterning the aforementioned third conductor film for forming the emitter electrode on the aforementioned semiconductor substrate.




According to a further preferred embodiment of this aspect, the method of fabricating a semiconductor device further comprises a step of forming a silicide film on a surface of the aforementioned emitter electrode, a surface of the aforementioned external base electrode, a surface of the aforementioned gate electrode and a surface of a source/drain region of the aforementioned field-effect transistor.




A third aspect of the present invention relates to a method of fabricating a semiconductor device having a bipolar transistor and a field-effect transistor formed on a semiconductor substrate. A first oxide film for defining a gate oxide film and a first conductor film for defining a lower portion of a gate electrode are successively formed on the semiconductor substrate formed with a collector region. The aforementioned first conductor film and the aforementioned first oxide film are selectively etched for exposing a surface portion of the aforementioned semiconductor substrate located on a region for forming the aforementioned bipolar transistor. A second conductor film for defining an external base electrode and a lower portion of the gate electrode is formed on the aforementioned semiconductor substrate to come into contact with the aforementioned exposed surface portion and cover a region for forming the aforementioned field-effect transistor and the aforementioned collector region. A second oxide film is formed on the aforementioned semiconductor substrate to cover the aforementioned second conductor film. The aforementioned second conductor film and the aforementioned second oxide film are selectively etched for opening an emitter region. A third conductor film for defining an emitter electrode is formed on the aforementioned second oxide film to come into contact with the aforementioned emitter region. The aforementioned third conductor film is patterned for forming the emitter electrode on the aforementioned semiconductor substrate. The aforementioned second oxide film located on the aforementioned external base electrode and the aforementioned gate electrode is removed by etching. The aforementioned second conductor film and the aforementioned first conductor film are patterned for simultaneously forming the external base electrode, the gate electrode and a resistive element. An insulator film is formed on a partial surface of the aforementioned resistive element. A silicide film is formed on a surface of the aforementioned collector region, a surface of the aforementioned emitter electrode, a surface of the aforementioned external base electrode, a surface of the aforementioned gate electrode and a surface of a source/drain region of the aforementioned field-effect transistor.




A fourth aspect of the present invention relates to a semiconductor device having a bipolar transistor and a field-effect transistor formed on a semiconductor substrate. The semiconductor device comprises the semiconductor substrate formed with a collector region. An emitter electrode, an external base electrode and a gate electrode are formed on the aforementioned semiconductor substrate. The position of the interface between the aforementioned gate electrode and the aforementioned semiconductor substrate is rendered higher than the position of the interface between the aforementioned external base electrode and the aforementioned semiconductor substrate.




The foregoing and other objects, features, aspects and advantages of the present invention will become more apparent from the following detailed description of the present invention when taken in conjunction with the accompanying drawings.











BRIEF DESCRIPTION OF THE DRAWINGS





FIGS. 1

to


8


are sectional views of a semiconductor device successively showing first to eighth steps in a method of fabricating a BiCMOS device according to a first embodiment of the present invention;





FIGS. 9 and 10

are sectional views of a semiconductor device successively showing first and second steps in a method of fabricating a BiCMOS device according to a second embodiment of the present invention;





FIGS. 11

to


15


are sectional views of a semiconductor device successively showing first to fifth steps in a method of fabricating a BiCMOS device according to a third embodiment of the present invention;





FIGS. 16

to


19


are sectional views of a semiconductor device successively showing first to fourth steps in a method of fabricating a BiCMOS device according to a fourth embodiment of the present invention;





FIGS. 20

to


23


are sectional views of a semiconductor device successively showing first to fourth steps in a method of fabricating a BiCMOS device according to a fifth embodiment of the present invention;





FIGS. 24

to


28


are sectional views of a semiconductor device successively showing first to fifth steps in a method of fabricating a BiCMOS device according to a sixth embodiment of the present invention;





FIGS. 29

to


32


are sectional views of a semiconductor device successively showing first to fourth steps in a method of fabricating a BiCMOS device according to a seventh embodiment of the present invention;





FIGS. 33

to


36


are sectional views of a semiconductor device successively showing first to fourth steps in a method of fabricating a BiCMOS device according to an eighth embodiment of the present invention;





FIGS. 37

to


39


are sectional views of a semiconductor device successively showing first to third steps in a method of fabricating a BiCMOS device according to a ninth embodiment of the present invention;





FIGS. 40

to


43


are sectional views of a semiconductor device successively showing first to fourth steps in a method of fabricating a BiCMOS device according to a tenth embodiment of the present invention;





FIGS. 44

to


47


are sectional views of a semiconductor device successively showing first to fourth steps in a method of fabricating a BiCMOS device according to an eleventh embodiment of the present invention;





FIGS. 48

to


51


are sectional views of a semiconductor device successively showing first to fourth steps in a method of fabricating a BiCMOS device according to a twelfth embodiment of the present invention;





FIGS. 52

to


56


are sectional views of a semiconductor device successively showing first to fifth steps in a method of fabricating a BiCMOS device according to a thirteenth embodiment of the present invention;





FIGS. 57

to


60


are sectional views of a semiconductor device successively showing first to fourth steps in a method of fabricating a BiCMOS device according to a fourteenth embodiment of the present invention;





FIGS. 61

to


64


are sectional views of a semiconductor device successively showing first to fourth steps in a method of fabricating a BiCMOS device according to a fifteenth embodiment of the present invention;





FIGS. 65

to


68


are sectional views of a semiconductor device successively showing first to fourth steps in a method of fabricating a BiCMOS device according to a sixteenth embodiment of the present invention;





FIG. 69

is a sectional view of a BiCMOS device obtained by the method according to any of the first to sixteenth embodiments of the present invention; and





FIGS. 70

to


82


are sectional views of a semiconductor device successively showing first to thirteenth steps in a conventional method of fabricating a BiCMOS device.











DESCRIPTION OF THE PREFERRED EMBODIMENTS




Embodiments of the present invention are now described with reference to the drawings.




First Embodiment





FIGS. 1

to


8


are sectional views of a semiconductor device successively showing steps in a method of fabricating a BiCMOS device according to a first embodiment of the present invention.




Referring to

FIG. 1

, N


+


-type embedded layers


3


, P-type isolation regions


5


, an N-type epitaxial layer


4


, field oxide films


7


, an N


+


-type collector region


2


, an N-type well region


10


and a P-type well region


12


are formed on a P-type silicon substrate


1


, similarly to the prior art. An underlayer oxide film (not shown) is removed followed by formation of gate oxide films


21


, and an N


+


-type polysilicon film


34


is deposited on the overall surface by 150 nm, for example.




A part of the polysilicon film


34


located on a bipolar transistor active region is removed by etching. At this time, the gate oxide film


21


formed on the bipolar transistor active region is not etched due to the difference between the etching rates for silicon and an oxide film (the etching rate for an oxide film is smaller than that for silicon). Therefore, the surface of the bipolar transistor active region is not etched. Thereafter the gate oxide film


21


formed on the bipolar transistor active region is removed.

FIG. 1

is a sectional view of the semiconductor device showing the final state of this step.




While only the part of the N


+


-type polysilicon film


34


located on the bipolar transistor active region is removed by etching in

FIG. 1

, the present invention is not restricted to this but the N


+


-type polysilicon film


34


may alternatively be etched to remain at least on the N


+


-type collector region


2


of a bipolar transistor and active regions of CMOS transistors.




Referring to

FIG. 2

, a polysilicon film


13


is deposited on the overall upper surface of the silicon substrate


1


by 150 nm, for example.




Referring to

FIG. 3

, a CVD oxide film


14


is formed on the overall surface of the silicon substrate


1


by 300 nm, for example.




Thereafter the CVD oxide film


14


and the polysilicon film


13


are etched for forming an emitter opening.




Referring to

FIG. 4

, a P-type impurity


333


is implanted into the emitter opening (BF


2


is implanted at 25 KeV by 8×10


13


cm


−2


, for example) for forming an intrinsic base region


16


(see

FIG. 5

) in the emitter opening.




Referring to

FIG. 5

, a CVD oxide film for defining side wall oxide films


17


is deposited on the overall upper surface of the silicon substrate


1


and dry-etched thereby forming the side wall oxide films


17


in the emitter opening.




Referring to

FIG. 6

, a polysilicon film for defining an emitter electrode


20


is deposited by 150 nm, for example, on the overall upper surface of the silicon substrate


1


, and an N-type impurity is implanted into the polysilicon film (arsenic is implanted at 50 KeV by 1×10


16


cm


−2


, for example). Thereafter annealing is performed for diffusing arsenic from the polysilicon film into the intrinsic base region


19


, thereby forming an emitter region


19


. At this time, boron diffuses from an external base electrode


13


, for forming an external base region


18


. While diffusion of boron takes place also in heat treatment preceding this annealing step, such diffusion is not illustrated. Then, the polysilicon film is etched for forming the emitter electrode


20


.




At this time, the uppermost layers of the N


+


-type collector region


2


, the N-type well region


10


and the P-type well region


12


are covered with the CVD oxide film


14


, not to be etched.




Referring to

FIG. 7

, gate electrodes (the N


+


-type polysilicon films


34


and the polysilicon films


13


) and the external base electrode


13


are simultaneously patterned. At this time, the gate oxide films


21


are formed on the surfaces of the N-type well region


10


, the P-type well region


12


and the emitter electrode


20


, so that the surfaces of the N-type well region


10


, the P-type well region


12


and the emitter electrode


20


are not etched due to the difference between the etching rates for silicon and an oxide film (the etching rate for an oxide film is smaller than that for silicon).




Thereafter the BiCMOS device according to the first embodiment is completed through steps similar to the conventional steps shown in

FIGS. 78

to


82


.




According to the first embodiment, as hereinabove described, the active regions of the CMOS transistors are covered with the gate oxide films


21


, the N


+


-type polysilicon films


34


, the polysilicon films


13


and the CVD oxide films


14


when the emitter opening and the emitter electrode


20


are formed by etching. The CVD oxide films


14


are located on the uppermost layers so that the active regions are not etched due to the difference between the etching rates for silicon and an oxide film (the etching rate for an oxide film is smaller than that for silicon) when the emitter opening and the emitter electrode


20


are formed by etching.




The external base electrode


13


is etched simultaneously with the gate electrodes (the N


+


-type polysilicon films


34


and the polysilicon films


13


). At this time, the gate oxide films


21


are formed on the surfaces of the N-type well region


10


, the P-type well region


12


and the N


+


-type collector region


2


, so that the surfaces of the N-type well region


10


, the P-type well region


12


and the N


+


-type collector region


2


are not etched. Thus, the surface parts of the well regions


10


and


12


of the CMOS transistors are not exposed to polysilicon etching, whereby excellent CMOS transistor characteristics can be effectively attained.




Second Embodiment




In a method of fabricating a semiconductor device according to a second embodiment of the present invention, annealing performed in the step shown in

FIG. 6

in the first embodiment is performed in a step similar to that shown in FIG.


7


.




Side wall oxide films


17


are formed in an emitter opening through a step similar to that shown in

FIG. 5

, similarly to the first embodiment.




Referring to

FIG. 9

, a polysilicon film for defining an emitter electrode


20


is deposited on the overall surface of a silicon substrate


1


by 150 nm, for example, and an N-type impurity is implanted into the polysilicon film (arsenic is implanted at 50 KeV by 1×10


16


cm


−2


, for example). Then, the polysilicon film is etched for forming the emitter electrode


20


. At this time, the uppermost layers of an N


+


-type collector region


2


, an N-type well region


10


and a P-type well region


12


are covered with a CVD oxide film


14


, not to be etched.





FIG. 10

, gate electrodes (N


+


-type polysilicon films


34


and polysilicon films


13


) and an external base electrode


13


are simultaneously patterned. At this time, gate oxide films


21


are formed on the surfaces of the N-type well region


10


, the P-type well region


12


and the emitter electrode


20


, so that the N-type well region


10


, the P-type well region


12


and the emitter electrode


20


are not etched due to the difference between the etching rates for an oxide film and silicon (the etching rate for an oxide film is smaller than that for silicon).




Then, annealing is performed for diffusing arsenic from the emitter electrode


20


into an intrinsic base region


16


, thereby forming an emitter region


19


. At this time, boron diffuses from the external base electrode


13


, for forming an external base region


18


. While diffusion of boron takes place also in heat treatment preceding this annealing step, this diffusion is not illustrated.




Thereafter a BiCMOS device according to the second embodiment is completed through steps similar to those of the prior art shown in

FIGS. 78

to


82


.




In the first embodiment, phosphorus diffuses from the N


+


-type polysilicon film


34


into the external base electrode


13


and boron diffuses from the external base electrode


13


into the N


+


-type polysilicon film


34


due to heat treatment following the step shown in FIG.


6


.




Such mutual diffusion may increase or disperse base resistance of the bipolar transistor and cause a defective base-to-collector withstand voltage while increasing the gate resistance or dispersing the threshold voltages Vth resulting from depletion of the gate electrodes in the CMOS transistors. In the first embodiment, therefore, a sufficient distance must be provided between the bipolar transistor active region and the N


+


-type polysilicon film


34


, in order to avoid this influence. Such problematic mutual diffusion is remarkably influenced by heat treatment (annealing at 900° C., for example) performed after implanting arsenic into the emitter electrode


20


in the step shown in FIG.


6


.




According to the second embodiment, annealing is performed after patterning the emitter electrode


20


, the external base electrode


13


and the gate electrodes (the N


+


-type polysilicon films


34


and the polysilicon films


13


), in order to avoid the aforementioned influence. Consequently, the influence by mutual diffusion can be avoided.




According to the second embodiment, as hereinabove described, mutual diffusion of impurities between the N


+


-type polysilicon film


34


and the external base electrode


13


can be effectively prevented so that stable bipolar and CMOS transistor characteristics can be attained in addition to an effect similar to that attained by the first embodiment.




Third Embodiment





FIGS. 11

to


15


are sectional views of a semiconductor device showing steps in a process of fabricating a BiCMOS device according to a third embodiment of the present invention.




The semiconductor device shown in

FIG. 11

is fabricated through a process similar to that up to

FIG. 2

, similarly to the first embodiment.




Referring to

FIGS. 11 and 12

, an external base electrode


13


is formed on a bipolar transistor active region by patterning. At this time, only a peripheral portion of the external base electrode


13


is removed by etching on a field oxide film


17


, thereby forming the external base electrode


13


.




Referring to

FIG. 13

, an emitter electrode


20


is formed by a method similar to that in the first embodiment shown in

FIGS. 3

to


6


.




Referring to

FIG. 14

, gate electrodes (N


+


-type polysilicon films


34


and polysilicon films


13


) are formed by patterning through a resist mask


35


. The external base electrode


13


is already patterned, and hence the resist pattern


35


is formed to cover the external base electrode


13


.




Thereafter steps similar to those of the prior art shown in

FIGS. 78

to


82


are carried out for completing the BiCMOS device according to the third embodiment.




In the method according to the first embodiment, phosphorus diffuses from the N


+


-type polysilicon film


34


into the external base electrode


13


and boron diffuses from the external base electrode


13


to the N


+


-type polysilicon film


34


due to heat treatment following the step shown in FIG.


6


. Such mutual diffusion may increase or disperse the base resistance of the bipolar transistor and cause a defective base-to-collector withstand voltage while increasing the gate resistance and dispersing the threshold voltages Vth due to depletion of the gate electrodes in the CMOS transistors. In order to avoid influence by the mutual diffusion causing such problems, a sufficient distance must be provided between the bipolar transistor active region and the N


+


-type polysilicon film


34


.




According to the third embodiment, only the peripheral portion of the external base electrode


13


is removed by etching as shown in

FIG. 12

, whereby mutual diffusion of impurities can be completely prevented between the N


+


-type polysilicon film


34


and the external base electrode


13


.




According to the third embodiment, as hereinabove described, mutual diffusion of impurities between the N


+


-type polysilicon film


34


and the external base electrode


13


can be effectively prevented so that stable bipolar and CMOS transistor characteristics can be attained with small dispersion in addition to an effect similar to that attained by the first embodiment.




Fourth Embodiment





FIGS. 16

to


19


are sectional views of a semiconductor device showing steps in a process of fabricating a BiCMOS device according to a fourth embodiment of the present invention.




First, steps similar to those shown in

FIGS. 1 and 2

are carried out similarly to the first embodiment.




Referring to

FIG. 16

, a CVD oxide film


14


is deposited, followed by formation of an emitter opening and an external base electrode


13


. Around a bipolar transistor active region, only a peripheral portion of the external base electrode


13


is etched on a field oxide film


17


.




Then, an emitter electrode


20


is formed by patterning through steps similar to those of the first embodiment shown in

FIGS. 3

to


6


.




Referring to

FIG. 18

, a resist mask


35


is so formed as to form gate electrodes (N


+


-type polysilicon films


34


and polysilicon films


13


) by patterning. The external base electrode


13


is already patterned, and hence the resist pattern


35


is formed to cover the external base electrode


13


.




Thereafter steps similar to those of the prior art shown in

FIGS. 78

to


82


are carried out, for completing the BiCMOS device according to the fourth embodiment as shown in FIG.


19


.




According to the fourth embodiment, an effect similar to that of the second embodiment is attained without adding a mask similar to that employed in the step of the second embodiment shown in FIG.


12


. According to this embodiment, etching is performed after depositing the polysilicon film


13


and forming the CVD oxide film


14


dissimilarly to the second embodiment, and hence the CVD oxide film


14


must be heat-treated. However, the CVD oxide film


14


is treatable at a low temperature (480° C., for example), and hence influence by diffusion is substantially ignorable. According to the fourth embodiment, as hereinabove described, an effect similar to that of the second embodiment can be attained without adding a mask.




Fifth Embodiment





FIGS. 20

to


23


are sectional views of a semiconductor device showing steps in a process of fabricating a BiCMOS device according to a fifth embodiment of the present invention.




First, gate oxide films


21


are formed and an N


+


-type polysilicon film


34


is deposited on the overall surface by 150 nm, for example, through a step similar to that of the first embodiment shown in FIG.


1


. At this time, parts of the N


+


-type polysilicon film


34


located on a bipolar transistor active region and a region for forming a polysilicon resistor are removed by etching, as shown in FIG.


20


.




While only the parts of the N


+


-type polysilicon film


34


located on the bipolar transistor active region and the region for forming a polysilicon resistor are removed in

FIG. 20

, the present invention is not restricted but the N


+


-type polysilicon film


34


may alternatively be removed to remain at least on an N


+


-type collector region


2


of a bipolar transistor and active regions of CMOS transistors.




Referring to

FIG. 21

, a polysilicon film


13


is deposited on the overall upper surface of a silicon substrate


1


by 150 nm, for example.




Then, steps similar to those of the first embodiment shown in

FIGS. 3

to


6


are carried out.




Referring to

FIG. 22

, gate electrodes (N


+


-type polysilicon films


34


and polysilicon films


13


), an external base electrode


13


and a polysilicon resistor


13




a


are simultaneously patterned.




Referring to

FIG. 23

, the BiCMOS device according to the fifth embodiment is completed through steps similar to those of the prior art shown in

FIGS. 78

to


82


.




When ions


444


,


555


,


666


or


777


(not shown) for forming source/drain regions are implanted, the polysilicon resistor


13




a


is protected with a resist mask (not shown) so that no impurity is implanted into the polysilicon resistor


13




a.






Thus, according to the fifth embodiment, the external base electrode


13


and the polysilicon resistor


13




a


are simultaneously formed in a method similar to that according to the first embodiment.




According to this embodiment, as hereinabove described, a resistive element can also be formed in the fabrication method in addition to an effect similar to that attained by the first embodiment, for obtaining a semiconductor device having improved functions.




Sixth Embodiment





FIGS. 24

to


28


are sectional views of a semiconductor device showing steps in a process of fabricating a BiCMOS device according to a sixth embodiment of the present invention.




Referring to

FIGS. 24 and 25

, steps similar to those of the fifth embodiment shown in

FIGS. 20 and 21

are carried out. A polysilicon film


13


is deposited by 150 nm, for example.




Referring to

FIG. 25

, a CVD oxide film


14


is deposited on the overall upper surface of a silicon substrate


1


by 300 nm, for example. The CVD oxide film


14


and the polysilicon film


13


are etched for forming an emitter opening.




Referring to

FIG. 26

, steps similar to those of the first embodiment shown in

FIGS. 4 and 5

are carried out and thereafter a polysilicon film


20


is patterned. At this time, the polysilicon film


20


is so etched that a polysilicon film


20




a


remains on a region for forming a polysilicon resistor.




Referring to

FIG. 27

, gate electrodes N


+


-type polysilicon films


34


and polysilicon films


13


) and an external base electrode


13


are patterned. At this time, a polysilicon film


13


located under the polysilicon resistor


20




a


is also patterned.




Referring to

FIG. 28

, steps similar to those of the prior art shown in

FIGS. 78

to


82


are carried out for completing the BiCMOS device according to the sixth embodiment.




When ions


444


,


555


,


666


or


777


(not shown) for forming source/drain regions are implanted, the formed polysilicon resistor


20




a


is protected with a resist mask (not shown) so that no impurity is implanted into the polysilicon resistor


20




a.






According to the sixth embodiment, as hereinabove described, the polysilicon resistor


20




a


is simultaneously formed along with an emitter electrode


20


in a method similar to that according to the first embodiment.




Thus, a resistive element can also be formed in the fabrication method in addition to an effect similar to that attained by the first embodiment, for obtaining a semiconductor device having improved functions.




Seventh Embodiment





FIGS. 29

to


32


are sectional views of a semiconductor device showing steps in a process of fabricating a BiCMOS device according to a seventh embodiment of the present invention.




Referring to

FIG. 29

, steps similar to those of the fifth embodiment shown in

FIGS. 20 and 21

are carried out. A polysilicon film


13


is deposited by 150 nm, for example.




Referring to

FIG. 30

, a CVD oxide film


14


is deposited on the overall upper surface of a silicon substrate


1


by 300 nm, for example. The CVD oxide film


14


and the polysilicon film


13


are etched for forming an emitter opening. At this time, a region


50


for forming a polysilicon resistor is also patterned.




Then, steps similar to those of the first embodiment shown in

FIGS. 4

and


5


are carried out and thereafter a polysilicon film


20


is patterned. At this time, the polysilicon film


20


is so etched that a polysilicon film


20




a


remains in an opening of the region


50


for forming a polysilicon resistor.




Referring to

FIG. 32

, steps similar to those of the first embodiment shown in

FIGS. 7 and 8

are carried out for completing the BiCMOS device according to the seventh embodiment.




When ions


444


,


555


,


666


or


777


(not shown) for forming source/drain regions are implanted, the formed polysilicon resistor


20




a


is protected with a resist mask (not shown) so that no impurity is implanted into the polysilicon resistor


20




a.






According to the seventh embodiment, as hereinabove described, an emitter electrode


20


is simultaneously formed along with the polysilicon resistor


20




a


in a method similar to that according to the first embodiment. Further, neither the CVD oxide film


14


nor the polysilicon film


13


located under the polysilicon resistor


20




a


of the sixth embodiment is present in this embodiment, whereby the polysilicon resistor


20




a


can be formed on a field oxide film


7


so that the depth of a contact hole is not extremely shallowed.




In the method according to the sixth embodiment, a contact hole


6


located on the polysilicon resistor


20




a


has a small depth. When contact etching is performed, therefore, the polysilicon resistor


20




a


is etched for a long time before completion of contact etching on source/drain regions


30


and


31


of CMOS parts having deep contact holes


7


. Consequently, the thickness of the polysilicon resistor


20




a


located under the contact hole


6


is so reduced that the contact hole


6


may punch through the polysilicon resistor


20




a


at the worst.




In the method according to the seventh embodiment, the contact hole


6


can be formed deeper than that in the sixth embodiment, whereby no punch-through is caused in etching but a margin for setting etching conditions is improved.




Thus, the method according to the seventh embodiment attains an effect of improving a set margin for contact etching conditions in addition to an effect similar to that attained by the sixth embodiment.




Eighth Embodiment





FIGS. 33

to


36


are sectional views of a semiconductor device showing steps in a process of fabricating a BiCMOS device according to an eighth embodiment of the present invention.




Referring to

FIG. 33

, steps similar to those shown in

FIGS. 1

to


6


are carried out similarly to the first embodiment. Referring to

FIG. 33

, a resist mask


36


employed for forming an emitter electrode


20


is left as such.




Referring to

FIGS. 33 and 34

, a CVD oxide film


14


is partially removed by etching through the unremoved resist mask


36


. Thereafter the resist mask


36


is removed.




Referring to

FIG. 35

, gate electrodes (N


+


-type polysilicon films


34


and polysilicon films


13


) and an external base electrode


13


are simultaneously patterned. At this time, gate oxide films


21


are formed on the surfaces of an N-type well region


10


, a P-type well region


12


and a collector electrode


2


, so that these regions are not etched due to the difference between the etching rates for silicon and an oxide film (the etching rate for an oxide film is smaller than that for silicon).




Referring to

FIG. 36

, steps similar to those of the prior art shown in

FIGS. 78

to


82


are thereafter carried out for completing the BiCMOS device according to the eighth embodiment.




The gate electrodes (the N


+


-type polysilicon films


34


and the polysilicon films


13


) and the external base electrode


13


are patterned by etching both of the CVD oxide film


14


and the polysilicon films (the N


+


-type polysilicon films


34


and the polysilicon films


13


) in each of the first to seventh embodiments. According to the eighth embodiment, only the polysilicon films (the N


+


-type polysilicon films


34


and the polysilicon films


13


) are etched. In each of the first to seventh embodiments, the polysilicon films (the N


+


-type polysilicon films


34


and the polysilicon films


13


) are etched through the CVD oxide film


14


serving as a mask, and hence the CVD oxide film


14


is dimensionally dispersed in addition to dimensional dispersion of the gate electrodes and the external gate electrode


13


. According to the eighth embodiment, no oxide film dimensionally is dispersed and hence precision against dimensional dispersion is effectively improved.




Ninth Embodiment





FIGS. 37

to


39


are sectional views of a semiconductor device showing steps in a process of fabricating a BiCMOS device according to a ninth embodiment of the present invention.




This embodiment relates to positional substitution in annealing.




Referring to

FIG. 37

, steps similar to those shown in

FIGS. 1

to


6


are carried out similarly to the first embodiment. While a polysilicon film


20


is deposited on the overall surface by 150 nm, for example, and an N


+


-type impurity is implanted into this polysilicon film


20


(arsenic is implanted at 50 KeV by 1×10


16


cm


−2


, for example), no subsequent annealing is performed. Then, the polysilicon film


20


is etched for forming an emitter electrode


20


.




Referring to

FIGS. 37 and 38

, a CVD oxide film


14


is partially removed by etching without removing a resist mask


36


.




Referring to

FIG. 39

, gate electrodes (N


+


-type polysilicon films


34


and polysilicon films


13


or the like) and an external base electrode


13


are simultaneously patterned. At this time, gate oxide films


21


are formed on the surfaces of an N-type well region


10


, a P-type well region


12


and a collector region


2


, so that these regions are not etched due to the difference between the etching rates for silicon and an oxide film (the etching rate for an oxide film is smaller than that for silicon).




Then, annealing is performed for diffusing arsenic from the emitter electrode


20


into an intrinsic base region


16


, thereby forming an emitter region


19


. At this time, boron diffuses from the external base electrode


13


, to form an external base region


18


. While diffusion of boron takes place also in heat treatment preceding this annealing step, this diffusion is not illustrated.




Thereafter steps similar to those of the prior art shown in

FIGS. 78

to


82


are carried out for completing the BiCMOS device according to the ninth embodiment.




According to the ninth embodiment, the position of annealing performed in the eighth embodiment is substituted in order to prevent mutual diffusion of impurities between the N


+


-type polysilicon film


34


and the external base electrode


13


. This is an idea similar to that of the second embodiment.




According to the ninth embodiment, as hereinabove described, mutual diffusion of impurities between the N


+


-type polysilicon film


34


and the external base electrode


13


can be prevented in addition to an effect similar to that attained by the eighth embodiment, for obtaining stable bipolar and CMOS transistor characteristics with small dispersion.




Tenth Embodiment





FIGS. 40

to


43


are sectional views of a semiconductor device showing steps in a process of fabricating a BiCMOS device according to a tenth embodiment of the present invention.




Referring to

FIG. 40

, steps similar to those shown in

FIGS. 11

to


13


are carried out similarly to the third embodiment.




Referring to

FIGS. 40 and 41

, a CVD oxide film


14


is partially removed by etching through an unremoved resist mask


36


. Thereafter the resist mask


36


is removed.




Referring to

FIGS. 41 and 42

, gate electrodes (N


+


-type polysilicon films


34


and polysilicon films


13


) are patterned through a resist pattern


35


. An external base electrode


13


is already patterned, and hence the resist pattern


35


is formed to cover this external base electrode


13


.




Referring to

FIG. 43

, steps similar to those of the prior art shown in

FIGS. 78

to


82


are thereafter carried out for completing the BiCMOS device according to the tenth embodiment.




In the tenth embodiment, the third embodiment is applied to the eighth embodiment. Mutual diffusion of impurities between the N


+


-type polysilicon film


34


and the external base electrode


13


can be completely prevented by etching.




According to this embodiment, as hereinabove described, mutual diffusion of impurities between the N


+


-type polysilicon film


34


and the external base electrode


13


can be prevented in addition to an effect similar to that attained by the eighth embodiment, for obtaining stable bipolar and CMOS transistor characteristics with small dispersion.




Eleventh Embodiment





FIGS. 44

to


47


are sectional views of a semiconductor device showing steps in a process of fabricating a BiCMOS device according to an eleventh embodiment of the present invention.




Referring to

FIG. 44

, steps similar to those shown in

FIGS. 16 and 17

are carried out similarly to the fourth embodiment.




Referring to

FIGS. 44 and 45

, a CVD oxide film


14


is partially removed by etching without etching a resist pattern


36


. Thereafter the resist pattern


36


is removed.




Referring to

FIG. 46

, gate electrodes (N


+


-type polysilicon films


34


and polysilicon films


13


) are patterned through a resist pattern


35


, similarly to the fourth embodiment. An external base electrode


13


is already patterned, and hence the resist pattern


35


is formed to cover this external base electrode


13


.




Referring to

FIG. 47

, steps similar to those of the prior art shown in

FIGS. 78

to


82


are thereafter carried out for completing the BiCMOS device according to the eleventh embodiment.




In the eleventh embodiment, the fourth embodiment is applied to the eighth embodiment.




While the fourth embodiment includes the step employing a mask shown in

FIG. 16

, the eleventh embodiment can attain an effect similar to that of the fourth embodiment through no step corresponding to that shown in FIG.


16


.




According to the eleventh embodiment, as hereinabove described, an effect similar to that of the tenth embodiment can be attained without adding a mask.




Twelfth Embodiment





FIGS. 48

to


51


are sectional views of a semiconductor device showing steps in a process of fabricating a BiCMOS device according to a twelfth embodiment of the present invention.




Referring to

FIG. 48

, steps similar to those shown in

FIGS. 20 and 21

are carried out similarly to the fifth embodiment.




Referring to

FIG. 49

, steps similar to those shown in

FIGS. 33 and 34

are carried out similarly to the eighth embodiment.




Referring to

FIG. 50

, gate electrodes (N


+


-type polysilicon films


34


and polysilicon films


13


) and an external base electrode


13


are simultaneously patterned. Further, a polysilicon resistor


13




a


is also simultaneously patterned.




Referring to

FIG. 51

, steps similar to those of the prior art shown in

FIGS. 78

to


82


are thereafter carried out for completing the BiCMOS device according to the twelfth embodiment.




When ions


444


,


555


,


666


or


777


(not shown) for forming source/drain regions are implanted, the polysilicon resistor


13




a


must be protected with a resist mask (not shown) so that no impurity is implanted into the polysilicon resistor


13




a.






Thus, according to the twelfth embodiment, the external base electrode


13


and the polysilicon resistor


13




a


are simultaneously formed in a process similar to that according to the eighth embodiment.




According to this embodiment, as hereinabove described, a resistive element can also be formed in the fabrication method in addition to an effect similar to that attained by the eighth embodiment, for obtaining a semiconductor device having improved functions.




Thirteenth Embodiment





FIGS. 52

to


56


are sectional views of a semiconductor device showing steps in a process of fabricating a BiCMOS device according to a thirteenth embodiment of the present invention.




Referring to

FIG. 52

, steps similar to those up to the step of the twelfth embodiment shown in

FIG. 48

are carried out for depositing a polysilicon film


13


on the overall surface of a silicon substrate


1


by 150 nm, for example.




Referring to

FIG. 53

, a CVD oxide film


14


is deposited on the overall upper surface of the silicon substrate


1


by 300 nm, for example. The CVD oxide film


14


and the polysilicon film


13


are etched for forming an emitter opening.




Referring to

FIG. 54

, a polysilicon film


20


is patterned and the CVID oxide film


14


is etched by a method similar to that in the eighth embodiment. At this time, the polysilicon film


20


is etched to remain on a region for forming a polysilicon resistor


20




a.






Referring to

FIG. 55

, gate electrodes (N


+


-type polysilicon films


34


and polysilicon films


13


) and an external base electrode


13


are patterned. At this time, the polysilicon film


13


located under the polysilicon resistor


20




a


is also simultaneously patterned.




Referring to

FIG. 56

, the BiCMOS device according to the thirteenth embodiment is completed through steps similar to those of the prior art shown in

FIGS. 78

to


82


.




When ions


444


,


555


,


666


or


777


(not shown) for forming source/drain regions are implanted, the polysilicon resistor


20




a


must be protected with a resist mask (not shown) so that no impurity is implanted into the polysilicon resistor


20




a.






Thus, according to the thirteenth embodiment, an emitter electrode


20


and the polysilicon resistor


20




a


are simultaneously formed in a method similar to that according to the eighth embodiment.




According to this embodiment, as hereinabove described, a resistive element can also be formed in the fabrication method in addition to an effect similar to that attained by the eighth embodiment, for obtaining a semiconductor device having improved functions.




Fourteenth Embodiment





FIGS. 57

to


60


are sectional views of a semiconductor device showing steps in a process of fabricating a BiCMOS device according to a fourteenth embodiment of the present invention.




Referring to

FIG. 57

, steps similar to those shown in

FIGS. 33

to


35


are carried out similarly to the eighth embodiment.




Referring to

FIG. 58

, steps similar to those of the prior art shown in

FIGS. 78

to


81


are carried out.




Referring to

FIG. 59

, a metal film of Co, Ti or Ni, for example, is deposited by about 10 nm by sputtering, and parts of this metal film located on silicon parts are silicified by lamp annealing. Then, only the remaining parts, not silicified, of the metal film located on oxide films are removed by wet etching. Then, lamp annealing is performed again for forming metal suicide films


37


of low resistance.




Referring to

FIG. 60

, steps similar to those of the prior art shown in

FIGS. 78

to


82


are thereafter carried out for completing the BiCMOS device according to the fourteenth embodiment.




Thus, according to this embodiment, the silicide films


37


are formed on an N


+


-type collector region


2


, an external base electrode


13


, an emitter electrode


20


, gate electrodes (N


+


-type polysilicon films


34


and polysilicon films


13


) and source/drain regions


30


and


31


, whereby a bipolar transistor and CMOS transistors are reduced in parasitic resistance and the respective elements are improved in high-speed performance.




According to the fourteenth embodiment, as hereinabove described, the bipolar transistor and the CMOS transistors are effectively improved in high-speed performance in addition to an effect similar to that attained by the eighth embodiment.




Fifteenth Embodiment





FIGS. 61

to


64


are sectional views of a semiconductor device showing steps in a process of fabricating a BiCMOS device according to a fifteenth embodiment of the present invention.




Referring to

FIG. 61

, steps similar to those shown in

FIGS. 48

to


50


are carried out similarly to the twelfth embodiment, and thereafter steps similar to those of the prior art shown in

FIGS. 78

to


81


are carried out. When ions


444


,


555


,


666


or


777


(not shown) for forming source/drain regions are implanted, a polysilicon resistor


13




a


must be protected with a resist mask (not shown) so that no impurity is implanted into the polysilicon resistor


13




a


. Then, a CVD oxide film


38


is deposited on the overall upper surface of a silicon substrate


1


.




Referring to

FIG. 62

, the CVD oxide film


38


is partially removed from regions other than a portion for forming a polysilicon resistor


13




a


and remaining contact regions, to cover the portion for forming the polysilicon resistor


13




a.






Referring to

FIG. 63

, metal silicide films


37


are formed through a step similar to that of the fourteenth embodiment shown in FIG.


59


. At this time, no metal silicide film


37


is formed on the portion for forming the polysilicon resistor


13




a


covered with the CVD oxide film


38


.




Referring to

FIG. 64

, a step similar to that of the fourteenth embodiment shown in

FIG. 60

is thereafter carried out for completing the BiCMOS device according to the fifteenth embodiment.




Thus, according to this embodiment, an external base electrode


13


and the polysilicon resistor


13




a


are simultaneously formed in a fabrication method similar to that according to the fourteenth embodiment.




According to the fifteenth embodiment, as hereinabove described, a resistive element can be formed in the fabrication method in addition to an effect similar to that attained by the fourteenth embodiment, for obtaining a semiconductor device having improved functions.




Sixteenth Embodiment





FIGS. 65

to


68


are sectional views of a semiconductor device showing steps in a process of fabricating a BiCMOS device according to a sixteenth embodiment of the present invention.




Referring to

FIG. 65

, steps similar to those shown in

FIGS. 52

to


54


are carried out similarly to the thirteenth embodiment, and thereafter steps similar to those of the prior art shown in

FIGS. 78

to


81


are carried out.




When ions


444


,


555


,


666


or


777


(not shown) for forming source/drain regions are implanted, a polysilicon resistor


20




a


must be protected with a resist mask (not shown) so that no impurity is implanted into the polysilicon resistor


20




a


. Then, a CVD oxide film


38


is deposited on the overall surface.




Referring to

FIG. 66

, the CVD oxide film


38


is partially removed from regions other than a portion for forming the polysilicon resistor


20




a


and remaining contact regions, to cover the portion for forming the polysilicon resistor


20




a.






Referring to

FIG. 67

, metal silicide films


37


are formed through a step similar to that of the fourteenth embodiment shown in FIG.


59


. At this time, no metal silicide film


37


is formed on the portion for forming the polysilicon resistor


20




a


covered with the CVD oxide film


38


.




Referring to

FIG. 68

, a step similar to that of the fourteenth embodiment shown in

FIG. 60

is thereafter carried out for completing the BiCMOS device according to the sixteenth embodiment.




Thus, according to this embodiment, an emitter electrode


20


and the polysilicon resistor


20




a


are simultaneously formed in a fabrication method similar to that according to the fourteenth embodiment. According to the sixteenth embodiment, as hereinabove described, a resistive element can be formed in the fabrication method in addition to an effect similar to that attained by the fourteenth embodiment, for attaining an effect improving functions.




Seventeenth Embodiment





FIG. 69

is a sectional view for illustrating the structure of a BiCMOS device obtained by the method according to the present invention.




Referring to

FIG. 69

, the position of the interface between each gate electrode (the N


+


-type polysilicon film


34


and the polysilicon film


13


) and the gate oxide film


21


is higher than the position of the interface between the external base electrode


13


of the bipolar transistor and the silicon substrate


1


in the structure of each of the BiCMOS devices according to the first to sixteenth embodiments. This is now described in detail.




As shown in

FIG. 1

illustrating the BiCMOS device according to the first embodiment, for example, the surfaces of the N-type epitaxial layer


4


of the bipolar transistor part, the N-type well region


10


of the PMOS transistor part and the P-type well region


12


of the NMOS transistor part are gate-oxidized. While there is such a possibility that the thicknesses of the gate oxide films


21


differ from each other due to influence by different substrate polarities and impurity concentrations in the respective regions, the surface of the epitaxial layer


4


of the bipolar transistor part is removed by etching. Therefore, the positions of the surface parts of the gate oxide films


21


are necessarily higher than the position of the surface of the N-type epitaxial layer


4


.




In the structure of the BiCMOS device fabricated by any of the methods according to the first to sixteenth embodiments, therefore, the position of the interface between each gate electrode (the N


+


-type polysilicon film


34


and the polysilicon film


13


) and the gate oxide film


21


is higher than the position of the interface between the external base electrode


13


of the bipolar transistor and the silicon substrate


1


.




Further, the source/drain regions


30


and


31


are slightly scraped off (up to about 20 nm) when the side wall oxide films


27


of the CMOS transistors are formed. When silicide films are formed as in the fifteenth or sixteenth embodiment, further, the source/drain regions


30


and


31


are further slightly scraped off (up to about 10 nm) due to etching of the CVD oxide film


38


.




However, the amount of this scraping is extremely small as compared with the amount (up to about 200 nm) of etching of the external base electrode


13


and the emitter electrode


20


observed in the prior art.




According to the inventive structure, therefore, the step between the bipolar transistor and each CMOS transistor can be reduced. Further, the difference between the depths of the contact holes


6


can be reduced due to such reduction of the step. Also when a long etching time is set in the deep contact holes


6


with a margin, therefore, the shallow contact hole


6


can be prevented from punch-through on the emitter electrode


20


or in the external base electrode


13


, for example.




The contact hole


6


located on the emitter electrode


20


has a conical shape and hence contact etching rapidly progresses on the surface of the emitter electrode


20


around the contact hole


6


to disadvantageously expose the surface of the emitter electrode


20


if the depths of the contact holes


6


are different from each other. This problem can be solved by the present invention.




According to the present invention, as hereinabove described, stable bipolar and CMOS transistor characteristics can be effectively attained.




Although the present invention has been described and illustrated in detail, it is clearly understood that the same is by way of illustration and example only and is not to be taken by way of limitation, the spirit and scope of the present invention being limited only by the terms of the appended claims.



Claims
  • 1. A method of fabricating a semiconductor device having a bipolar transistor and a field-effect transistor formed on a semiconductor substrate, comprising steps of:successively forming a first oxide film for defining a gate oxide film and a first conductor film for defining a lower portion of a gate electrode on said semiconductor substrate formed with a collector region; selectively etching said first conductor film and said first oxide film for exposing a surface portion of said semiconductor substrate located on a region for forming said bipolar transistor; forming a second conductor film for defining an external base electrode and an upper portion of said gate electrode on said semiconductor substrate to come into contact with said exposed surface portion and cover a region for forming said field-effect transistor and said collector region; forming a second oxide film on said semiconductor substrate to cover said second conductor film; selectively etching said second conductor film and said second oxide film for exposing a surface portion of said semiconductor substrate thereby opening an emitter region; forming a third conductor film for defining an emitter electrode on said second oxide film to come into contact with said emitter region; patterning said third conductor film for forming said emitter electrode on said semiconductor substrate; and patterning said second oxide film, said second conductor film and said first conductor film for simultaneously forming said external base electrode and said gate electrode.
  • 2. The method of fabricating a semiconductor device according to claim 1, further comprising a step of partially removing said second conductor film by etching around a portion for defining said external base electrode after forming said second conductor film in advance of forming said second oxide film.
  • 3. The method of fabricating a semiconductor device according to claim 1, further comprising a step of annealing said semiconductor substrate after simultaneously forming said external base electrode and said gate electrode.
  • 4. The method of fabricating a semiconductor device according to claim 1, patterning said second conductor film to simultaneously form a resistive element in said step of patterning said second oxide film, said second conductor film and said first conductor film.
  • 5. The method of fabricating a semiconductor device according to claim 1, patterning said third conductor film to simultaneously form a resistive element in said step of patterning said third conductor film for forming said emitter electrode on said semiconductor substrate.
  • 6. The method of fabricating a semiconductor device according to claim 1, whereinsaid step of patterning said second oxide film, said second conductor film and said first conductor film for simultaneously forming said external base electrode and said gate electrode includes a step of: first removing said second oxide film located on said external base electrode and said gate electrode by etching and thereafter patterning said second conductor film and said first conductor film for simultaneously forming said external base electrode and said gate electrode.
  • 7. The method of fabricating a semiconductor device according to claim 6, further comprising a step of forming a silicide film on a surface of said emitter electrode, a surface of said external base electrode, a surface of said gate electrode and a surface of a source/drain region of said field-effect transistor.
  • 8. A method of fabricating a semiconductor device having a bipolar transistor and a field-effect transistor formed on a semiconductor substrate, comprising steps of:successively forming a first oxide film for defining a gate oxide film and a first conductor film for defining a lower portion of a gate electrode on said semiconductor substrate formed with a collector region; selectively etching said first conductor film and said first oxide film for exposing a surface portion of said semiconductor substrate located on a region for forming said bipolar transistor; forming a second conductor film for defining an external base electrode and an upper portion of said gate electrode on said semiconductor substrate to come into contact with said exposed surface portion and cover a region for forming said field-effect transistor and said collector region; forming a second oxide film on said semiconductor substrate to cover said second conductor film; selectively etching said second conductor film and said second oxide film for opening an emitter region while simultaneously partially removing said second conductor film by etching around a portion for defining said external base electrode thereby forming said external base electrode; forming a third conductor film for defining an emitter electrode on said second oxide film to come into contact with said emitter region; patterning said third conductor film for forming said emitter electrode on said semiconductor substrate; and patterning said second oxide film, said second conductor film and said first conductor film for forming said gate electrode.
  • 9. The method of fabricating a semiconductor device according to claim 8, partially removing said second conductor film by etching around a resistive element thereby simultaneously forming said resistive element in said step of selectively etching said second conductor film and said second oxide film for opening said emitter region while simultaneously partially removing said second conductor film by etching around said portion for defining said external base electrode by etching thereby forming said external base electrode.
  • 10. A method of fabricating a semiconductor device having a bipolar transistor and a field-effect transistor formed on a semiconductor substrate, comprising steps of:successively forming a first oxide film for defining a gate oxide film and a first conductor film for defining a lower portion of a gate electrode on said semiconductor substrate formed with a collector region; selectively etching said first conductor film and said first oxide film for exposing a surface portion of said semiconductor substrate located on a region for forming said bipolar transistor; forming a second conductor film for defining an external base electrode and an upper portion of said gate electrode on said semiconductor substrate to come into contact with said exposed surface portion and cover a region for forming said field-effect transistor and said collector region; forming a second oxide film on said semiconductor substrate to cover said second conductor film; selectively etching said second conductor film and said second oxide film for opening an emitter region; forming a third conductor film for defining an emitter electrode on said second oxide film to come into contact with said emitter region; patterning said third conductor film for forming said emitter electrode on said semiconductor substrate; removing said second oxide film located on said external base electrode and said gate electrode by etching; patterning said second conductor film and said first conductor film for simultaneously forming said external base electrode, said gate electrode and a resistive element; forming an insulator film on a partial surface of said resistive element; and forming a silicide film on a surface of said collector region, a surface of said emitter electrode, a surface of said external base electrode, a surface of said gate electrode and a surface of a source/drain region of said field-effect transistor.
Priority Claims (1)
Number Date Country Kind
2001-178229 Jun 2001 JP
US Referenced Citations (5)
Number Name Date Kind
5354699 Ikeda et al. Oct 1994 A
6027962 Igarashi et al. Feb 2000 A
6066521 Yokoyama et al. May 2000 A
6281060 Igarashi et al. Aug 2001 B1
6426533 Igarashi et al. Jul 2002 B2
Foreign Referenced Citations (1)
Number Date Country
11-265953 Sep 1999 JP