This application claims priority under 35 U.S.C. §119 to Japanese Patent Application No. 2018-060318 filed on Mar. 27, 2018, the entire content of which is hereby incorporated by reference.
The present invention relates to a semiconductor device, and more particularly, to a semiconductor device including a thin film resistor, and a method of manufacturing a semiconductor device including a thin film resistor.
In an analog IC such as a voltage detector, a bleeder resistor which generally includes a plurality of polysilicon resistors is used.
For example, in a voltage detector, voltage detection is carried out in an error amplifier by comparing a reference voltage which is generated in a reference voltage circuit with a divided voltage which is divided in a bleeder resistor circuit. Accuracy of the divided voltage divided in the bleeder resistor circuit is therefore highly important. When the accuracy in voltage division by the bleeder resistor circuit is poor, an input voltage to the error amplifier varies so that a predetermined release voltage and a predetermined detection voltage cannot be obtained.
To enhance the accuracy in voltage division by the bleeder resistor circuit, various measures have hitherto been taken. For example, in Japanese Patent Application Laid-open No. H09-321229, in order to manufacture a highly accurate analog IC, potentials of conductors which are mounted on upper surfaces or lower surfaces of the polysilicon resistors are fixed for the purpose of obtaining a highly accurate resistance voltage division ratio, so that a desired resistance (voltage division ratio) is obtained.
As illustrated in
The present invention has an object to provide thin film resistors which are capable of reducing resistance variations among them to form a highly accurate bleeder resistor circuit in a semiconductor device and a method of manufacturing the semiconductor device including a thin fil resistor.
A semiconductor device according to one embodiment of the present invention employs the following measure.
There is provided a semiconductor device including a semiconductor substrate; an insulating film formed on the semiconductor substrate; first high-resistance regions constructed from a polysilicon film, and formed on the insulating film; a second high-resistance region constructed from the polysilicon film, formed on the insulating film, and having side surfaces in a first direction parallel to a direction of current flow, the side surfaces being sandwiched by the first high-resistance regions; and low-resistance regions constructed from the polysilicon film, formed on the insulating film, and arranged on the side surfaces of the first high-resistance regions and the second high-resistance region in a second direction orthogonal to the first direction, a sheet resistance of the first high-resistance regions being higher than a sheet resistance of the second high-resistance region.
Further, a method of manufacturing a semiconductor device according to another embodiment of the present invention uses the following measure.
There is provided a method of manufacturing a semiconductor device including forming a non-doped polysilicon film on an insulating film formed on a semiconductor substrate; forming a first impurity region of a first conductivity type by implanting impurities into the non-doped polysilicon film in a first ion implantation; forming a second impurity region of the first conductivity type having a higher concentration than a concentration of the first impurity region by performing a second ion implantation using a first resist pattern formed on the polysilicon film as a mask; forming a third impurity region of the first conductivity type having a higher concentration than a concentration of the second impurity region, on the polysilicon film by performing a third ion implantation using a third resist pattern formed on the poly silicon film as a mask; etching the polysilicon film using a second resist pattern on the polysilicon film so as to cover the first impurity region, the second impurity region, and the third impurity region as a mask after the third resist pattern is removed; and forming a thin film resistor including first high-resistance regions, a second high-resistance region, and low-resistance regions by heat-treating the polysilicon film including the first impurity region, the second impurity region, and the third impurity region.
With the use of the above-mentioned measures, in a bleeder resistor circuit having thin film resistors, variations in resistance of the thin film resistors can be reduced. A highly accurate bleeder resistor circuit capable of keeping an accurate voltage division ratio in the bleeder resistor circuit in a semiconductor device can be obtained.
A description is now given of embodiments of the present invention with reference to the accompanying drawings.
The first high-resistance regions 101, the second high-resistance region 102, and the low-resistance regions 103 are thin films made from the same layer of a polysilicon film by introducing P-type impurities such as boron. An interlayer insulating film is formed to cover surfaces of the thin film resistor 200 and contact holes 104 are formed in the interlayer insulating film through which the low-resistance regions 103 are partially exposed. The contact holes 104 are used for electrical connection to other resistors, internal circuits, or the like by metal lines.
The first high-resistance regions 101 are formed to have a sheet resistance higher than that of the second high-resistance region 102 by adjusting impurity concentration. To achieve the following advantageous effects more evidently, it is desired that the sheet resistance of the first high-resistance regions 101 is 10 times or more higher than the sheet resistance of the second high-resistance region 102. For example, when the sheet resistance of the second high-resistance region 102 is 5 kΩ/□, the sheet resistance of the first high-resistance regions 101 is set to be 50 kΩ/□ or more.
Further, the first high-resistance regions 101 and the second high-resistance region 102 may be introduced with N-type impurities such as phosphorus and arsenic instead of P-type impurities such as boron to form polysilicon thin film resistors having an N-type conductivity. In addition, to further increase the sheet resistance of the first high-resistance regions 101, the first high-resistance regions 101 may be constructed from a non-doped polysilicon thin film.
Still further, the first high-resistance regions 101 is set to have a width that is double or more the processing variation in semiconductor manufacturing. For example, when the processing variation is plus/minus 0.1 μm, the width of the first high-resistance regions 101 is set to be 0.2 μm or more.
Yet further, the width of the first high-resistance regions 101 is set to be equal to or greater than the width of the second high-resistance region 102. For example, when the width of the second high-resistance region 102 is 1 μm, the width of the first high-resistance regions 101 is set to be 1 μm or more.
A plurality of thin film resistors each of which has been described above are combined to form a bleeder resistor circuit.
According to the embodiment illustrated in
The resistance of the entire thin film resistor is defined by a combination of the first high-resistance regions 101 and the second high-resistance region 102. The sheet resistance of the first high-resistance regions 101 is higher than the sheet resistance of the second high-resistance region 102, and, for example, is set to be 10 times or more higher. Even if the width of the first high-resistance regions 101 varies to some extent due to the processing variation, the influence of the variation is reduced to one tenth or less as compared with the case in which the entire thin film resistor is constructed from the high-resistance region 102 as shown in
Now, the processing variation in the thin film resistors according to the semiconductor device of the present invention is described as compared with the conventional thin film resistors illustrated in
As described above, the processing variation occurs because the developing area and the etching area around each thin film resistor are not the same. To suppress the processing variation, the applicant of the present invention therefore proposes a configuration illustrated in
As described above, the impurities are introduced into the second high-resistance region 102 by the ion implantation, and the first high-resistance regions 101 having a higher resistance than that of the second high-resistance region 102 is formed around the second high-resistance region 102, thereby permitting reduction of the resistance variations among the thin film resistors 201 to 206.
In conventional thin film resistors, for example, when the entire thin film resistor is formed of the second high-resistance region 102 having a width of 1 μm, and the width is reduced by 0.1 μm, a difference in resistance is 10% between the thin film resistor reduced in width and the thin film resistor not reduced in width.
Meanwhile, according to the above-described embodiments, in the case where the thin film resistor is formed by the second high-resistance region 102 having a width of 1 μm and the first high-resistance regions 101 also having a width of 1 μm so as to cover the side surfaces of the second high-resistance region 102, even if the width of the thin film resistor is locally reduced by 0.1 μm due to the variation in manufacturing process, only the first high-resistance regions 101 are reduced in width. Since the sheet resistance of the first high-resistance regions 101 is 10 times or more higher than the sheet resistance of the second high-resistance region 102, the difference in resistance between the thin film resistor reduced in width and the thin film resistor not reduced in width can be greatly reduced to 1% or less.
As illustrated in
Next, as illustrated in
Although wave-shape surfaces due to the standing wave are formed in side surfaces of the resist pattern 40a, post exposure bake (PEB) is used in this process to alleviate an influence of the standing wave so that a stable width can be obtained.
After the resist pattern 40a is removed, as illustrated in
After the resist pattern 40b is removed, the polysilicon film having the first impurity region 30a, the second impurity region 30b, and the third impurity region is subjected to heat treatment at from 700° C. to 950° C., which completes the thin film resistor having the first high-resistance regions 101, the second high-resistance region 102, and the low-resistance regions 103. The order of sheet resistances of respective portions forming the thin film resistors 200 thus obtained is, from high to low, the first high-resistance regions 101, the second high-resistance region 102, and the low-resistance 103 regions.
In the above description, forming the P-type resistor has been described. However, when an N-type resistor is formed, phosphorus or arsenic may be selected as ion species.
The bleeder resistor circuit having a highly accurate voltage division ratio, which is formed of the plurality of thin film resistors illustrated in
In
An inverting input of the error amplifier 904 is a divided voltage Vr, which is divided by the bleeder resistor circuit 902, that is, RB/(RA+RB)×VDD. A reference voltage Vref of the reference voltage circuit 901 is set to be equal to the divided voltage Vr obtained when a power supply voltage VDD is a predetermined detection voltage Vdet. That is, Vref=RB/(RA+RB)×Vdet. When the power supply voltage VDD is equal to or higher than the predetermined voltage Vdet, an output of the error amplifier 904 is designed to be LOW. The P-type transistor 907 is thus turned on and the N-type transistor 908 is turned off, and the power supply voltage VDD is output to an output OUT. Then, when the power supply voltage VDD decreases to be equal to or lower than the detection voltage Vdet, VSS is output to the output OUT.
Thus, in the basic operation, the reference voltage Vref, which is generated in the reference voltage circuit 901, is compared with the divided voltage Vr, which is divided by the bleeder resistor circuit 902, in the error amplifier 904. The accuracy in the divided voltage Vr divided by the bleeder resistor circuit 902 thus becomes extremely important. When the bleeder resistor circuit 902 has poor accuracy in voltage division, the input voltage to the error amplifier 904 varies and a predetermined release voltage and a predetermined detection voltage cannot be obtained. High accuracy voltage division becomes possible by using the bleeder resistor circuit constructed from the thin film resistors according to the embodiments of the present invention, a product yield as an IC can be improved and a more accurate voltage detector can be manufactured.
In
The error amplifier 904 compares the divided voltage Vr divided by the bleeder resistor circuit 902 with the reference voltage Vref generated in the reference voltage circuit 901, and applies to the P-type transistor 907 a gate voltage required for obtaining a constant predetermined output voltage VOUT, which is independent of a change in the input voltage VIN. In the voltage regulator as well as the voltage detector described with reference to
As described above, with the use of the thin film resistor in the present invention, in a manufacturing process for a semiconductor, even if a processing variation in the thin film resistor occurs, the portion suffered from the processing variation is the first high-resistance regions, and hence the resistance variations of the thin film resistor can be suppressed to be small.
Number | Date | Country | Kind |
---|---|---|---|
2018-060318 | Mar 2018 | JP | national |