This application is based on Japanese Patent Application No. 2002-251265 filed on Aug. 29, 2002, the entire contents of which are incorporated herein by reference.
A) Field of the Invention
The present invention relates to a semiconductor device for reading an electric signal of each of a plurality of pixels disposed on a semiconductor substrate to a signal read line via transistors, the electric signal being photoelectrically converted by a photodiode of the pixel.
B) Description of the Related Art
A solid state imaging device (image sensor) manufactured based upon complimentary MOS (CMOS) processes generally uses an active pixel sensor (APS) in whose pixel is constituted of: a photodiode for conducting photoelectric conversion; a reset transistor for initializing a voltage to be applied to the photodiode; a source follower transistor for converting signal charges of the photodiode into a voltage signal and outputting it; and a select transistor for selecting the pixel to read the voltage signal.
A photodiode PD is disposed in the rectangular area 500A. The gate electrode of a transfer transistor TTR crosses the vertical area 500C. In the area lower than this cross area, the gate electrode of a reset transistor TRS crosses the vertical area 500C. The gate electrode of a source follower transistor TSF crosses the horizontal area 500D. On the left side of this cross area, the gate electrode of a select transistor TSL crosses the horizontal area 500D.
A via hole HFD interconnecting an impurity diffusion region and the gate electrode of the source follower transistor TSF is disposed between the gate electrodes of the transfer transistor TTR and reset transistor TRS. A via hole HRS interconnecting an impurity diffusion region and a reset voltage supply line formed in the upper layer is disposed between the gate electrodes of the reset transistor TRS and source follower transistor TSF. A via hole HSIG interconnecting the source region of the select transistor and a signal read line formed in the upper layer is disposed on the left side of the gate electrode of the select transistor TSL.
In manufacturing a CMOS solid state imaging device, processes similar to those of manufacturing general logic circuit elements are basically used. Processes (logic processes) of manufacturing logic circuit elements in the generation of 0.35 μm rules or later fill tungsten in such via holes. The gate electrode of each transistor and the via holes are disposed by taking a position misalignment into consideration.
One pixel of a conventional general CMOS solid state imaging device has a square shape with four equal sides of, e.g., 5.6 μm. Since a photodiode PD and three or four transistors are disposed in one pixel, the area occupied by other than the photodiode PD becomes large and the ratio occupied by the photodiode PD in one pixel becomes small.
If the area of one pixel is made small in order to improve a pixel density, light convergence of a micro lens becomes difficult. Since the area occupied by the photodiode becomes small, incident light is reduced and the sensitivity is lowered.
Signal lines for supplying electric signals to the gates of the four transistors of a four transistor solid state imaging device are disposed in upper layers. Since the upper level wiring lines cannot run in the region where the photodiode PD is disposed, the wiring layout is not easy.
If the aspect ratio of a pixel can be freely selected, the ratio of an area occupied by a photodiode can be raised relatively easily. Generally, the vertical and horizontal pitches of pixels of a solid state are equal and each pixel has a square shape. The aspect ratio of a pixel cannot be therefore freely selected.
A significant issue of a CMOS solid state imaging device is concerned about reduction in junction leak current. A pixel having a large junction leak current becomes a white dot which degrades the image quality. As shown in
An object of this invention is to provide a semiconductor device capable of raising a ratio of an area occupied by a photodiode of a pixel.
Another object of the invention is to provide a semiconductor device capable of reducing junction leak current and improving an image quality.
According to one aspect of the present invention, there is provided a semiconductor device comprising: a plurality of pixels disposed over a semiconductor substrate in a matrix shape; wherein: each of the pixels comprises a photodiode, a reset transistor, a source follower transistor and a select transistor; the photodiode comprises an impurity diffusion region of a first conductivity type and an impurity diffusion region of a second conductivity type stacked in a thickness direction; each of the reset transistor, the source follower transistor and the select transistor comprises a pair of impurity diffusion regions of the first conductivity type formed in a surface layer of the semiconductor substrate and having a channel region between the impurity diffusion regions and a gate electrode formed over the channel region; the photodiode, the reset transistor, the source follower transistor and the select transistor are disposed in one active region; the active region comprises a first area in which the photodiode is disposed and a second area having a first end continuous with the first area and including an area elongated along a first direction; and each of gate electrodes of the reset transistor, the source follower transistor and the select transistor crosses the area, elongated along the first direction, of the second area, and a cross area between the gate electrode of the reset transistor and the second region, a cross area between the gate electrode of the source follower transistor and the second region and a cross area between the gate electrode of the select transistor and the second region, are disposed in this order in a direction of departing from the first end, an intra-pixel wiring line for interconnecting the impurity diffusion region of the reset transistor on the first end side and the gate electrode of the source follower transistor of the pixel; a reset voltage supply line connected to the impurity diffusion region between the gate electrodes of the reset transistor and the source follower transistor and being applied with a reset voltage for applying an initial reverse bias to the photodiode; a reset signal line for applying a reset signal to the gate electrode of the reset transistor; a select signal line disposed for each row of the pixels, the select signal line applying a select signal to the gate electrodes of the select transistors of the pixels in a corresponding row; and a signal read line disposed for each column of the pixels and connected to the impurity diffusion regions, on a side opposite to the first end, of the select transistors of the pixels in a corresponding column.
A plurality of transistors are disposed in the active region in the area elongated in the first direction. As compared to the layout which disposes transistors on both sides of a bent area of the active region, the area occupied by transistors can be made small.
A row select circuit 3 sends electric signals to the reset signal line RST, transfer signal line TFR and select signal line SEL at timings to be described later. An image signal is input from each pixel 2 to a read circuit 4 via the signal read line SIG.
The drain terminal of the reset transistor TRS and the drain terminal of the source follower transistor TSF are connected to the reset voltage supply line VR. The drain terminal of the transfer transistor TTR is connected to the source terminal of the reset transistor TRS and the gate electrode of the source follower transistor TSF, and the source terminal of the transfer transistor TTR is connected to the cathode of the photodiode PD. An interconnection point between the reset transistor TRS and transfer transistor TTR is called a floating diffusion region FD. The drain terminal of the select transistor TSL is connected to the source terminal of the source follower transistor TSF, and the source terminal of the select transistor TSL is connected to the signal read line SIG.
The gate electrodes of the reset transistor TRS, transfer transistor TTR and select transistor TSL are connected to the reset signal line RST, transfer signal line TFR and select signal line SEL, respectively. The anode of the photodiode PD is grounded.
After the transfer signal TFR and reset signal RST fall and the reset transistor TRS and transfer transistor TTR become non-conductive, the cathode voltage PDC gradually lowers in accordance with the intensity of incidence light upon the photodiode PD. At time t12 the reset voltage RST rises. The voltage of the floating diffusion region FD is therefore initialized again to the reset voltage VR.
After the reset signal RST falls, at time t13 the select signal SEL rises so that the select transistor TSL becomes conductive. At this time, since the reset voltage is being applied to the gate electrode of the source follower transistor TSF, a voltage lower than the reset voltage by a threshold voltage of the source follower transistor TSF is output to the signal read line SIG.
At time t14, the transfer signal TFR rises so that the transfer transistor TTR becomes conductive. Signal charges accumulated in the photodiode PD are therefore transferred to the floating diffusion region FD. The voltage of the floating diffusion region FD lowers in accordance with the amount of signal charges, and the voltage PDC at the cathode of the photodiode PD is initialized.
At time t15 the select signal SEL rises so that the select transistor TSL becomes conductive. At this time, a voltage corresponding to the amount of signal charges in the floating diffusion region FD is applied to the gate electrode of the source follower transistor TSF. As a result, a signal corresponding to the signal charge amount is output to the signal read line SIG.
The read circuit 4 obtains a difference between the voltage output to the signal read line SIG at time t13 and the voltage output to the signal read line SIG at time t15. By obtaining the voltage difference, the threshold voltage of the source follower transistor TSF is cancelled out and the voltage corresponding to the received light amount can be obtained.
In the timing chart shown in
The photodiode PD is disposed in the rectangular area 10A. The gate electrodes of the transfer transistor TTR, reset transistor TRS, source follower transistor TSF and select transistor TSL cross the straight area 10C. Cross areas between the gate electrode of the transfer transistor TTR and the straight area 10C, between the gate electrode of the reset transistor TRS and the straight area 10C, between the gate electrode of the source follower transistor TSF and the straight area 10C and between the gate electrode of the select transistor TSL and the straight area 10C, are sequentially disposed in this order along the direction of departing from the edge (upper side) of the straight area 10C on the rectangular area 10A side.
The impurity diffusion region between the gate electrodes of the transfer transistor TTR and reset transistor TRS corresponds to the floating diffusion region FD shown in FIG. 1B.
A via hole HTFR for the connection to an upper layer transfer signal line is disposed near at the right side edge of the gate electrode of the transfer transistor TTR. A via hole HRST for the connection to an upper layer reset signal line is disposed near at the left side edge of the gate electrode of the reset transistor TRS. A via hole HSF for the connection to the floating diffusion region FD is disposed near at the right side edge of the gate electrode of the source follower transistor TSF.
A via hole HFD1 is disposed in an area inside of the floating diffusion region FD. A silicon film 12 on an interlayer insulating film is connected to the floating diffusion region FD via the via hole HFD1. A via hole HFD2 is disposed through the interlayer insulating film covering the silicon film 12 in an area inside the silicon film 12 and at the position displaced from the via hole HFD1.
A via hole HSIG for the connection to an upper layer signal read line is disposed in an area inside the drain region lower than the gate electrode of the source follower transistor TSF.
The select signal line SEL extending along the row direction is disposed in the area lower than the active region 10 as viewed in FIG. 2A. The select signal SEL is disposed in the wiring layer same as that of the gate electrode of the select transistor TSL, and the gate electrode of the select transistor TSL branches from the select signal line SEL.
The reset signal line RST extending along the row direction is disposed along the upper side of the photodiode PD as viewed in FIG. 2B. The reset signal line RST is connected to the gate electrode of the reset transistor TRS in the lower level layer via the conductive plug in the via hole HRST.
An inner wiring line 15 interconnects the silicon film 12 and the gate electrode of the source follower transistor TSF shown in
An isolated conductive film 17 is disposed on the via hole HVR. A via hole HVR2 is formed in an interlayer insulating film covering the isolated conductive film 17 at the position same as that of the via hole HVR. An isolated conductive film 18 is disposed at the position of the via hole HTFR. A via hole HTFR2 is formed in the interlayer insulating film covering the isolated conductive film 18 at the position same as that of the via hole HTFR.
A wiring line 19 interconnects the conductive plug in the via hole HVR2 and the conductive plug in a via hole HVR3 formed through an upper level interlayer insulating film. The via hole HVR3 is positioned displaced from the via holes HVR2 and HSIG2 along the row direction.
An isolated conductive film 20 is disposed on the via hole HSIG2. A via hole HSIG3 is formed in the interlayer insulating film covering the isolated conductive film 20 at the position same as that of the via hole HSIG2.
A signal read line SIG extending in the column direction is disposed along the right side of the reset voltage supply line VR. The signal read line SIG is connected to the source region of the select transistor TSL, via the conductive plug in the via hole HSIG3, the isolated conductive film 20 shown in
Next, by referring to
As shown in
On the surface of the active region 10, a gate oxide film 37 having a thickness of 3 to 8 nm is formed by thermal oxidation. A silicon film having a thickness of 50 to 100 nm (a general condition of 50 nm) and doped with phosphorous (P) and a tungsten silicide (WSi) film having a thickness of 100 to 200 nm (a general condition of 150 nm) are sequentially formed on the substrate surface by chemical vapor deposition (CVD). In the drawings, these two films are drawn as one gate electrode layer 33. On this gate electrode layer 33, a silicon oxide film 34 having a thickness of 100 to 200 nm (a general condition of 150 nm) is formed by CVD.
The silicon oxide film 34 and gate electrode layer 33 are patterned to leave the gate electrodes G of a transfer transistor TTR, a reset transistor TRS, a source follower transistor TSF and a select transistor TSL. At the same time, a select signal line SEL is left on the element separation insulating film 31. The silicon oxide films 34 remain on the gate electrodes G and select signal line SEL.
By using the gate electrodes G as a mask, phosphorous (P) ions are implanted into the surface layer of the semiconductor substrate 30 under the conditions of an acceleration energy of 10 to 30 keV (a general condition of 20 keV) and a dose of 2×1013 to 1×1014 cm−2 (a general condition of 4×1013 cm−2). Lightly doped regions LDD of the sources and drains of n-channel MOS transistors are therefore formed.
Phosphorous ions are implanted into the region where the photodiode PD is to be disposed, under the conditions of an acceleration energy of 20 to 300 keV (a general condition of 200 keV) and a dose of 1×1012 to 5×1013 cm−2 (a general condition of 1×1013 cm−2). An n-type buried layer 35 as the cathode of the photodiode PD is therefore formed. The outer periphery of the n-type buried layer 35 is spaced apart from the border of the element separation insulating film 31 by about 0.2 μm so that the n-type buried layer 35 does not contact the element separation insulating film 31. The border of the n-type buried layer 35 on the transfer transistor TTR side is defined in a self alignment manner by the gate electrode of the transfer transistor TTR.
Boron (B) ions are implanted into the region where the photodiode PD is to be disposed, under the conditions of an acceleration energy of 5 to 10 keV and a dose of 1×1013 to 1×1014 cm−2. BF2 ions may be implanted at an acceleration energy of 30 keV. A p+-type layer 36 as the anode of the photodiode PD is therefore formed. The p+-type layer 36 is maintained at the same potential as that of the p-type well 32 which is grounded. With this ion implantation, the low impurity concentration regions of the sources and drains of p-channel MOS transistors not drawn in
Processes up to the state shown in
By using the gate electrodes G, sidewall spacers SW and mask film 40 as a mask, phosphorous ions are implanted under the conditions of an acceleration energy of 10 to 30 keV (a general condition of 20 keV) and a dose of 1×1015 to 5×1015 cm−2 (a general condition of 2×1015 cm−2). High impurity concentration regions of the sources and drains of the n-channel MOS transistors are therefore formed.
An impurity diffusion region 41 between the gate electrodes G of the reset transistor TRS and source follower transistor TSF functions as the drain region of the two transistors. An impurity diffusion region 42 between the gate electrodes G of the source follower transistor TSF and select transistor TSL functions as the source region of the source follower transistor TSF and the drain region of the select transistor TSL. An impurity diffusion region 43 between the gate electrode G of the select transistor TSL and the element separation insulating film 31 functions as the source region of the select transistor TSL.
The impurity diffusion region LDD (floating diffusion region FD shown in
Ion implantation is performed to form the high impurity concentration regions of the sources and drains of p-channel MOS transistors in a peripheral logic circuit area not shown in FIG. 3B. In this case, boron ions are implanted under the conditions of an acceleration energy of 5 to 10 keV (a general condition of 7 keV) and a dose of 1×1015 to 5×1015 cm−2 (a general condition of 2×1015 cm−2).
After a metal film of titanium (Ti) or cobalt (Co) is deposited by sputtering, heat treatment is performed to form metal silicide films 45 on the impurity diffusion regions 41, 42 and 43. Unreacted metal films are removed. Since the photodiode PD and floating diffusion region FD are covered with the mask film 40, a metal silicide film is not formed on these regions.
As shown in
A via hole HFD1 is formed through the interlayer insulating film 50, mask film 40 and gate insulating film 33 to expose the partial surface of the floating diffusion region FD. After the via hole HFD1 is formed, phosphorous ions may be implanted into the substrate surface layer exposed on the bottom of the via hole HHF1, under the conditions of an acceleration energy of 10 to 50 keV and a dose of 1×1013 to 1×1015 cm−2.
An amorphous silicon film having a thickness of 50 to 100 nm and doped with phosphorous is formed on the substrate surface by CVD. This. amorphous silicon film is patterned to leave a silicon film 12 in an area including the via hole HFD1. The silicon film 12 is connected to the floating diffusion region FD. Instead of the silicon film 12, a film having a two-layer structure may be used which has an amorphous silicon film having a thickness of 50 nm and a tungsten silicide film having a thickness of 100 nm.
As shown in
Via holes HHF2, HVR and HSIG are formed through the interlayer insulating films 55 and 50. Conductive plugs 56 are buried in these via holes. The conductive plugs 56 are formed by depositing a titanium film having a thickness of 10 to 50 nm, a titanium nitride (TiN) film having a thickness of 10 to 100 nm and a tungsten (W) film having a thickness of 100 to 800 nm in this order and thereafter removing unnecessary regions by CMP.
As shown in
In the first embodiment described above, as shown in
In the conventional four-transistor solid state imaging device shown in
Also in the first embodiment, as shown in
By forming the select signal line SEL or transfer signal line TFR by using the same wiring layer as that of the gate electrodes of MOS transistors, the layout of an upper layer can be made easy.
Also in the first embodiment, as shown in
At the same time when ions are implanted to form the n-type buried layer 35 shown in
Next, by referring to
The intra-pixel wiring line 15A and reset signal line RST have a two-layer structure of an amorphous silicon layer having a thickness of 50 nm and doped with phosphorous and a tungsten silicide layer having a thickness of 100 nm.
Also in the second embodiment, the intra-pixel wiring line 15A of silicon shown in
The first embodiment requires three metal wiring layers. In the second embodiment, the wiring layer having the two-layer structure of the silicon layer and tungsten layer shown in
Next, by referring to
In the first embodiment, the gate electrodes of the transistors and the via holes above the impurity diffusion region are disposed with some position alignment margin. In the third embodiment, as will be later described, via holes are formed in self alignment with gate electrodes. Therefore, the distance between the gates of a transfer transistor TTR, a reset transistor TRS, a source follower transistor TSF and a select transistor TSL is shorter than the distance between the gates of the first embodiment shown in FIG. 2A. Further, via holes HTFR, HRST and HSF for interconnecting gate electrodes and upper wiring layers are disposed with no position alignment margin relative to the width direction of the gate electrodes (channel length direction, carrier transport direction).
The via holes HTRF, HRST and HSF for interconnecting the transfer transistor TTR, reset transistor TRS and source follower transistor TSF and the upper wiring layers are disposed at the same position in the row direction.
An isolated conductive film 60 is disposed in an area corresponding to the via hole HRST, and a via hole HRST2 is formed in the next upper interlayer insulating film. An isolated conductive film 61 is disposed in an area corresponding to a via hole HVR, and a via hole HVR2 is formed in the next upper interlayer insulating film. An isolated conductive film 62 is disposed in an area corresponding to a via hole HSIG, and a via hole HSIG2 is formed in the next upper interlayer insulating film.
A via hole HVR3 is disposed in the next upper interlayer insulating film at the position displaced from the via hole HVR2. A wiring line 65 interconnects the conductive plugs in the two via holes HVR2 and HVR3. An isolated conductive film 66 is disposed at the position corresponding to the via hole HS1G2, and a via hole HSIG3 is formed in the next upper interlayer insulating film.
A signal read line SIG extending in the column direction is disposed along the right side of the reset voltage supply line VR. The signal read line SIG is connected to the source region of the select transistor TSL, via the conductive plug in the via hole HSIG3, the isolated conductive film 66 shown in
Next, by referring to
As shown in
Different points from the manufacture processes of the first embodiment will be described hereinunder. After the silicon oxide film 34 is formed, the silicon oxide film 34 is removed from the areas where via holes for interconnecting the gate electrodes G to upper wiring layers are to be formed. Thereafter, the silicon oxide film 34 and gate electrode layer 33 are patterned to leave the gate electrodes G and a select signal line SEL. The silicon oxide films 34 remain on the gate electrodes G traversing the active region 10 as shown in FIG. 6A. As shown in
Processes up to the state shown in
A resist film is formed covering the region from the upper surface of the photodiode PD to the upper surface of the gate electrode of the reset transistor TRS via the upper surface of the transfer transistor TTR. By using this resist film, gate electrodes G and sidewall spacers SW as a mask, phosphorous ions are implanted under the conditions of an acceleration energy of 10 to 30 keV (a general condition of 20 keV) and a dose of 1×1015 to 5×1015 cm−2. High impurity concentration regions 41, 42 and 43 of the sources and drains of the n-channel MOS transistors are therefore formed.
In this embodiment, only the ion implantation for the low impurity concentration regions LDD is performed relative to the floating diffusion region FD between the gate electrodes G of the transfer transistor TTR and reset transistor TRS. The ion implantation for the high impurity concentration regions may be performed in some cases relative to the floating diffusion region FD.
Covering the whole substrate surface, a silicon oxide film 68 having a thickness of 20 nm is formed by CVD. By covering the pixel area with a resist film, the silicon oxide film 68 is anisotropically etched. With this etching, the silicon oxide film 68 remains on the sidewalls of the gate electrodes of MOS transistors in a peripheral logic circuit area not shown in FIG. 6B. Namely, in the peripheral logic circuit area, the sidewall spacers SW and silicon oxide films 68 are left.
Ion implantation is performed to form high impurity concentration regions of the sources and drains of p-channel MOS transistors. In this case, boron ions are implanted under the conditions of an acceleration energy of 5 to 10 keV (a general condition of 7 keV) and a dose of 1×1015 to 5×1015 cm−2.
After a metal film of titanium or cobalt is deposited, heat treatment is performed to form metal silicide films on the surfaces of the sources and drains in the peripheral logic circuit area not covered with the silicon oxide film 68. The metal silicide film is not formed on the surfaces of the sources and drains of MOS transistors of each pixel and on the surface of the photodiode PD. After the heat treatment, unreacted metal films are removed.
As shown in
Via holes HFD, HVR, HSIG, HTFR, HRST and HSF are formed through the interlayer insulating film 71. In this case, the interlayer insulating film 71 is selectively etched relative to the etching stopper film 70 in such as manner that the etching stops when the etching stopper film 70 is exposed. The etching stopper films 70 exposed on the bottoms of the via holes HFD, HVR, HSIG, HTFR, HRST and HSF are removed to expose the underlying silicon oxide films 68. The exposed silicon oxide films 68 are etched to expose the surfaces of the floating diffusion region FD and impurity diffusion regions 41, 42 and 43.
The silicon oxide film 68 is very thin as compared to the silicon oxide film 34 on the gate electrode G formed by the process shown in FIG. 6A and the sidewall spacer SW. It is therefore possible to leave the silicon oxide film 34 and sidewall spacer SW with a good reproductivity.
Even if there is position misalignment of the via holes HFD, HVR and HSIG, the gate electrodes G will not be exposed in the via holes HFD, HVR and HSIG because the gate electrode G is covered with the silicon oxide film 34 and sidewall spacers SW. Namely, the via holes HFD, HVR and HSIG are formed in self alignment with the gate electrodes G. Such structure is referred to as self-aligned contact structure. As shown in
As shown in
A doped amorphous silicon film having a thickness of about 300 nm is formed and CMP is performed to leave conductive plugs in the via holes HFD, HVR, HSIG HTFR, HRST and HSF.
An interlayer insulating film 75 of silicon oxide having a thickness of 200 to 500 nm (a general condition of 500 nm) is formed on the interlayer insulating film 71 by plasma CVD. By etching the interlayer insulating films 75 and 71, via holes are formed in such a manner that the etching stops at the etching stopper film 70. The etching stopper film 70 exposed on the bottoms of the via holes is removed.
The etching stops at the upper surface of the conductive plugs 73, if as shown in
However, as shown in
At the same time when these via holes are formed, via holes at the positions corresponding to the source and drain regions of MOS transistors in the peripheral logic circuit area are formed. The silicon oxide film 68 was already removed in the peripheral logic circuit area. Therefore, the surfaces of the source and drain regions of MOS transistors are exposed on the bottoms of the via holes formed through the interlayer insulating films 75 and 71 and etching stopper film 70.
Next, via holes are formed for interconnecting the gate electrodes of MOS transistors in the peripheral logic circuit area to upper wiring layers. The silicon oxide film 34 of the gate electrode shown in
Covering the whole substrate surface, an adhesion layer of titanium having a thickness of 10 to 50 nm, a barrier metal layer of titanium nitride having a thickness of 10 to 100 nm and a conductive layer of tungsten having a thickness of 100 to 800 nm are formed. These three layers are subjected to CMP to leave conductive plugs 76 in the via holes.
As shown in
On the first-level metal wiring layer, a second-level metal wiring layer shown in
In the third embodiment, the distance between gate electrodes of the four transistors of the pixel can be shortened. The pixel area can therefore be reduced. Since the area of the floating diffusion region among others can be reduced, a sensitivity of converting signal charges into a voltage signal can be raised.
Next, by referring to
As shown in
The silicon nitride film 80 in the peripheral logic circuit area (not shown) is anisotropically etched without etching the silicon nitride film 80 in the pixel, to form sidewall spacers on the sidewalls of gate electrodes. Ion implantation is performed to form the high impurity concentration regions of the source and drain regions of MOS transistors in the peripheral logic circuit area.
As shown in
Via holes HFD, HVR and HSIG are formed through the interlayer insulating film 82 in such a manner that etching stops at the silicon nitride film 81. The silicon nitride films 81 exposed on the bottoms of the via holes HFD, HVR and HSIG and the silicon nitride films 80 are anisotropically etched. The gate oxide films 37 are therefore exposed on the bottoms of the via holes HFD, HVR and HSIG, and the silicon nitride films 80 are left on the sidewalls of the gate electrodes G. The exposed gate oxide films 37 are removed.
Since the upper surfaces of the gate electrodes G are covered with the silicon oxide films 34, even if there is position misalignment, the gate electrodes will not be exposed in the via holes HFD, HVR and HSIG. The via holes HFD, HVR and HSIG can therefore be formed in self alignment with the gate electrodes.
Conductive plugs 73 made of doped amorphous silicon are buried in the via holes HFD, HVR and HSIG. The processes to follow are similar to the manufacture processes for the solid state imaging device of the third embodiment.
When via holes HTFR, HRST and HSF shown in
When via holes are formed through the interlayer insulating film 75 on the interlayer insulating film 82, the silicon nitride film 80 is etched lastly. Therefore, even if the position of the via hole is displaced from the gate electrode G, the element separation insulating film 31 of silicon oxide is hardly etched.
Next, by referring to
As shown in
In the third embodiment, this silicon oxide film is anisotropically etched to form the sidewall spacers SW shown in FIG. 6B. In the fifth embodiment, by covering the pixel area with a resist film, the silicon oxide film 90 is anisotropically etched. Therefore, in the peripheral logic circuit area, sidewall spacers are formed on the sidewalls of gate electrodes, and the silicon oxide film 90 in the pixel is left. At this time, as shown in
In the peripheral logic circuit area, the sources and drains of MOS transistors and metal silicide films are formed.
As shown in
Via holes HFD, HVR and HSIG extending through the interlayer insulating film 92 and reaching the surface of the semiconductor substrate 30 are formed under the condition of a small etching selection ratio between silicon oxide and silicon nitride. A silicon oxide film or a silicon nitride film having a thickness of30 to 150 nm (a general condition of 100 nm) is deposited on the whole substrate surface, and etched back to form sidewall spacers 94 on the inner walls of the via holes HFD, HVR and HSIG.
The sidewall spacers 94 electrically insulates conductive plugs to be buried in the via holes HFD, HVR and HSIG from the gate electrodes G. Therefore, even if the gate electrodes G are exposed in the via holes HFD, HVR and HSIG because of position misalignment immediately after the via holes are formed, the electrical insulation between the gate electrodes G and conductive plugs can be retained ultimately.
As shown in
Although a position alignment margin between the via holes HFD, HVR and HSIG and the gate electrodes is not provided as shown in
Next, by referring to
At time t22 a select signal SEL rises so that an electric signal corresponding to the cathode voltage PDC of the photodiode PD is output to a signal read line SIG. At time t23 the reset signal RST rises so that the cathode voltage PDC of the photodiode PD is initialized. At time t24 the select signal SEL rises so that an electric signal corresponding to the initialized cathode voltage PDC is output to the signal read line SIG. At time T25 the reset signal RST falls so that the cathode voltage PDC of the photodiode PD starts lowering in accordance with the light reception amount.
A difference between the electric signal read at time t22 and the electric signal read at time t24 is obtained so that an image signal independent from the threshold voltage of a source follower transistor TSF can be obtained.
In the timing chart shown in
A via hole HPD is formed in a region corresponding to the region where the n-type buried layer 35 is formed and a p+-type layer 36 is not formed. A silicon film 12A is formed on a partial surface area of the interlayer insulating film 50 and on the inner wall of the via hole HPD. The silicon film 12A is connected to the n-type buried layer 35 via the via hole HPD. Although not shown in
In
In the sixth embodiment, the via hole HPD for the connection of the cathode of the photodiode PD to the gate electrode of the source follower TSF is disposed not in the projected area 10B or straight area 10C of the active region 10 but in the rectangular area 10A. If the via hole HPD is disposed in the projected area 10B shown in
The region where the via hole HPD shown in
The via holes of the three-transistor solid state imaging device of the sixth embodiment may be formed in self alignment with the gate electrodes, similar to the third to fifth embodiments.
Next, by referring to
In the solid state imaging device of the seventh embodiment, the length in the column direction of the rectangular area 10A of the active region 10 is short and the straight area 10C is bent at 90° toward the photodiode side. The gate electrode of the select transistor TSL is bent and crosses an area 10D extending in the row direction.
The gate electrodes of the other transfer transistor TTR, reset transistor TRS and source follower transistor TSF cross the straight area 10C extending in the column direction, similar to the first embodiment shown in FIG. 2A.
The distance between the gate electrodes of the transfer transistor TTR and reset transistor TRS is shorter than that of the first embodiment shown in FIG. 2A. Therefore, the via hole HFD to be disposed in the region corresponding to the floating diffusion region FD is formed in self alignment with the gate electrode, similar to the third embodiment shown in FIG. 5A. It is therefore possible to reduce the area of the floating diffusion region FD. As the area of the floating diffusion region FD becomes small, a sensitivity of converting signal charges into a voltage signal can be raised.
One end of an intra-pixel wiring line 15C is connected to the floating diffusion region FD via the via hole HFD, and the other end is connected to the gate electrode of the source follower transistor TSF. The intra-pixel wiring line 15C is made of a two-layer structure of a silicon layer and a metal silicide layer, similar to the intra-pixel wiring line 15A shown in FIG. 4B.
As viewed along a line parallel to the normal to the substrate surface, the intra-pixel wiring line 15C is disposed inclusive of the floating diffusion region FD. Since the floating diffusion region FD is covered with the intra-pixel wiring line 15C, the light shielding function for the floating diffusion region FD can be enhanced. Since it is not necessary to form the intra-pixel wiring line 15C by using an upper metal wiring layer, the wiring layout in the metal wiring layer can be designed with ease.
The present invention has been described in connection with the preferred embodiments. The invention is not limited only to the above embodiments. It is apparent that various modifications, improvements, combinations, and the like can be made by those skilled in the art.
Number | Date | Country | Kind |
---|---|---|---|
2002-251265 | Aug 2002 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
6352869 | Guidash | Mar 2002 | B1 |
6587146 | Guidash | Jul 2003 | B1 |
Number | Date | Country |
---|---|---|
2001-298176 | Oct 2001 | JP |
2002-83949 | Mar 2002 | JP |
Number | Date | Country | |
---|---|---|---|
20040169127 A1 | Sep 2004 | US |