Semiconductor device with floating gate and electrically floating body

Abstract
Techniques for providing floating body memory devices are disclosed. In one particular exemplary embodiment, the techniques may be realized as a semiconductor device comprising a floating gate, a control gate disposed over the floating gate, a body region that is electrically floating, wherein the body region is configured so that material forming the body region is contained under at least one lateral boundary of the floating gate, and a source region and a drain region adjacent the body region.
Description
FIELD OF THE DISCLOSURE

The present disclosure relates to a semiconductor device, architecture, memory cell, array, and techniques for controlling and/or operating such device, cell, and array. More particularly, in one aspect, the present disclosure relates to a memory cell, array, architecture and device, wherein the memory cell includes a floating gate and an electrically floating body configured or operated to store an electrical charge.


BACKGROUND OF THE DISCLOSURE

There is a continuing trend to employ and/or fabricate advanced integrated circuits using techniques, materials and devices that improve performance, reduce leakage current and enhance overall scaling. Semiconductor-on-Insulator (SOI) is a material in which such devices may be fabricated or disposed on or in (hereinafter collectively “on”). Such devices are known as SOI devices and include, for example, partially depleted (PD) devices, fully depleted (FD) devices, multiple gate devices (for example, double or triple gate), and Fin-FET.


One type of dynamic random access memory cell is based on, among other things, the electrically floating body effect of SOI transistors; see, for example, U.S. Pat. No. 6,969,662 (the “'662 patent”). In this regard, the dynamic random access memory cell may consist of a PD or a FD SOI transistor (or transistor formed in bulk material/substrate) having a channel, which is disposed adjacent to the body and separated from the channel by a gate dielectric. The body region of the transistor is electrically floating in view of the insulation layer (or non-conductive region, for example, in a bulk-type material/substrate) disposed beneath the body region. The state of the memory cell is determined by the concentration of charge within the body region of the SOI transistor.


Data is written into or read from a selected memory cell by applying suitable control signals to a selected word line(s), a selected source line(s) and/or a selected bit line(s). In response, charge carriers are accumulated in or emitted and/or ejected from electrically floating body region wherein the data states are defined by the amount of carriers within electrically floating body region. Notably, the entire contents of the '662 patent, including, for example, the features, attributes, architectures, configurations, materials, techniques and advantages described and illustrated therein, are incorporated by reference herein.


Referring to the operations of an N-channel transistor, for example, the memory cell of a DRAM array operates by accumulating in or emitting/ejecting majority carriers (electrons or holes) from body region. In this regard, conventional write techniques may accumulate majority carriers (in this example, “holes”) in body region of memory cells by, for example, impact ionization near source region and/or drain region. In sum, conventional writing programming techniques for memory cells having an N-channel type transistor often provide an excess of majority carriers by impact ionization or by band-to-band tunneling (gate-induced drain leakage (“GIDL”)). The majority carriers may be emitted or ejected from body region by, for example, forward biasing the source/body junction and/or the drain/body junction, such that the majority carrier may be removed via drain side hole removal, source side hole removal, or drain and source hole removal, for example.


Notably, for at least the purposes of this discussion, a logic high data state, or logic “1”, corresponds to, for example, an increased concentration of majority carries in the body region relative to an unprogrammed device and/or a device that is programmed with logic low data state, or logic “0”. In contrast, a logic low data state, or logic “0”, corresponds to, for example, a reduced concentration of majority carriers in the body region relative to a device that is programmed with a logic high data state, or logic “1”. The terms “logic low data state” and “logic 0” may be used interchangeably herein; likewise, the terms “logic high data state” and “logic 1” may be used interchangeably herein.


In one conventional technique, the memory cell is read by applying a small bias to the drain of the transistor as well as a gate bias which is above the threshold voltage of the transistor. In this regard, in the context of memory cells employing N-type transistors, a positive voltage is applied to one or more word lines to enable the reading of the memory cells associated with such word lines. The amount of drain current is determined or affected by the charge stored in the electrically floating body region of the transistor. As such, conventional reading techniques sense the amount of channel current provided/generated in response to the application of a predetermined voltage on the gate of the transistor of the memory cell to determine the state of the memory cell; a floating body memory cell may have two or more different current states corresponding to two or more different logical states (for example, two different current conditions/states corresponding to the two different logical states: “1” and “0”).


Further to writing and reading data to memory cells, data stored in the memory cells is required, under certain circumstances, to be periodically refreshed as a result of leakage current. The refreshing of the memory generally involves periodically reading information or data from an area of the memory (e.g., memory cells), and subsequently rewriting the read information into the same area of memory (e.g., memory cells) from which it was read with no modifications. Conventional refreshing techniques thus use the read and write operations appropriate to the transistor, and perform the read and write during two or more separate clock cycles. The technique used for refreshing data in a dynamic memory can have a large impact on memory performance, including memory availability, die area, and power consumption. Memories are typically and more specifically refreshed by performing a read operation during which data is read from memory cells into sense amps, followed by a write operation during which data is written back into the memory cells.


Conventional solutions to improve memory availability have typically involved increasing the number of sense amps in the memory so more of the memory can be refreshed at the same time. Unfortunately, the addition of more sense amps increases memory die area. Additionally, conventional refresh techniques often lead to relatively large power consumption due to, for example, the separate read and write operations of the refresh.


In view of the foregoing, it may be understood that there may be significant problems and shortcomings associated with current floating body memory technologies.


SUMMARY OF THE DISCLOSURE

Techniques for providing floating body memory devices are disclosed. In one particular exemplary embodiment, the techniques may be realized as a semiconductor device comprising a floating gate, a control gate disposed over the floating gate, a body region that is electrically floating, wherein the body region is configured so that material forming the body region is contained under at least one lateral boundary of the floating gate, and a source region and a drain region adjacent the body region.


In another particular exemplary embodiment, the techniques may be realized as a semiconductor device comprising a floating gate, a control gate disposed over the floating gate, a body region that is electrically floating, wherein the body region is configured so that material forming the body region extends beyond at least one lateral boundary of the floating gate, and a source region and a drain region adjacent the body region.


In another particular exemplary embodiment, the techniques may be realized as a semiconductor device comprising a control gate, a floating gate partially disposed under the control gate, a body region partially disposed under the floating gate, wherein the body region is electrically floating, and a source region and a drain region adjacent the body region, wherein one or more of the source region and the drain region include a doped region shaped so that a farthermost boundary of the doped region is separated from a portion of the body region underlying the floating gate.


In another particular exemplary embodiment, the techniques may be realized as a semiconductor device comprising a body region configured to be electrically floating, a floating gate disposed over a first portion of the body region, a control gate disposed over the floating gate, a source region adjoining a second portion of the body region, wherein the second portion is adjacent the first portion and separating the source region from the first portion, and a drain region adjoining a third portion of the body region, wherein the third portion is adjacent the first portion and separating the drain region from the first portion.


In another particular exemplary embodiment, the techniques may be realized as a transistor comprising a floating body region on a insulating substrate, a floating gate disposed over a portion of the floating body region, and a source region and a drain region, wherein a doping profile of one or more of the source and the drain region is configured to prevent formation of a contiguous current channel extending between the source region and the drain region through the floating body region.


In another particular exemplary embodiment, the techniques may be realized as a method for forming a transistor, comprising forming a semiconductor on an insulator, forming a first gate over a first portion of the semiconductor and electrically isolating the first gate from the semiconductor, forming a second gate over a portion of the first gate and electrically isolating the second gate from the first gate, forming spacers over a second portion and a third portion of the semiconductor, wherein the spacers adjoin the insulating layer and the first portion, second portion, and third portion form a floating body region, forming a source region by implanting an impurity into a fourth portion of the semiconductor after forming the spacers, wherein the fourth portion is adjacent the second portion, and forming a drain region by implanting the impurity into a fifth portion of the semiconductor after forming the spacers, wherein the fifth portion is adjacent the third portion.


In another particular exemplary embodiment, the techniques may be realized as a semiconductor circuit device produced by a method comprising forming a semiconductor on an insulator, forming a first gate over a first portion of the semiconductor and electrically isolating the first gate from the semiconductor, forming a second gate over a portion of the first gate and electrically isolating the second gate from the first gate, forming spacers over a second portion and a third portion of the semiconductor, wherein the spacers adjoin the insulating layer and the first portion, second portion, and third portion form a floating body region, forming a source region by implanting an impurity into a fourth portion of the semiconductor after forming the spacers, wherein the fourth portion is adjacent the second portion, forming a drain region by implanting the impurity into a fifth portion of the semiconductor after forming the spacers, wherein the fifth portion is adjacent the third portion.


In another particular exemplary embodiment, the techniques may be realized as a semiconductor device comprising a body region, wherein the body region is electrically floating, a gate disposed over a first portion of the body region, wherein the gate is electrically floating, a source region adjoining a second portion of the body region, wherein the second portion is adjacent the first portion and separating the source region from the first portion, and a drain region adjoining a third portion of the body region, wherein the third portion is adjacent the first portion and separating the drain region from the first portion.


In another particular exemplary embodiment, the techniques may be realized as an integrated circuit device comprising a memory cell including a transistor, wherein the transistor comprises a body region configured to be electrically floating, a floating gate disposed over a first portion of the body region, a control gate disposed over the floating gate, a source region adjoining a second portion of the body region, wherein the second portion is adjacent the first portion and separating the source region from the first portion, and a drain region adjoining a third portion of the body region, wherein the third portion is adjacent the first portion and separating the drain region from the first portion, and control circuitry coupled to the memory cell, wherein the control circuitry to apply a first signal set to the memory cell to cause the memory cell to operate as a non-volatile memory cell, wherein the control circuitry to apply a second signal set to the memory cell to cause the memory cell to operate as a volatile memory cell.


The present disclosure will now be described in more detail with reference to exemplary embodiments thereof as shown in the accompanying drawings. While the present disclosure is described below with reference to exemplary embodiments, it should be understood that the present disclosure is not limited thereto. Those of ordinary skill in the art having access to the teachings herein will recognize additional implementations, modifications, and embodiments, as well as other fields of use, which are within the scope of the present disclosure as described herein, and with respect to which the present disclosure may be of significant utility.





BRIEF DESCRIPTION OF THE DRAWINGS

In the course of the detailed description to follow, reference will be made to the attached drawings. These drawings show different aspects of the present disclosure and, where appropriate, reference numerals illustrating like structures, components, materials and/or elements in different figures are labeled similarly. It is understood that various combinations of the structures, components, materials and/or elements, other than those specifically shown, are contemplated and are within the scope of the present disclosure.


Moreover, there are many aspects of the present disclosure described and illustrated herein. The present disclosure is not limited to any single aspect or embodiment thereof, nor to any combinations and/or permutations of such aspects and/or embodiments. Moreover, each of the aspects of the present disclosure, and/or embodiments thereof, may be employed alone or in combination with one or more of the other aspects of the present disclosure and/or embodiments thereof. For the sake of brevity, many of those permutations and combinations will not be discussed separately herein.



FIG. 1A shows a floating gate transistor in accordance with an embodiment of the present disclosure.



FIG. 1B shows a floating gate transistor in accordance with an embodiment of the present disclosure.



FIG. 2 shows a floating gate transistor in accordance with an embodiment of the present disclosure.



FIG. 3 shows operation of the transistor as a flash memory device when writing or programming logic “1” using hot hole injection in accordance with an embodiment of the present disclosure.



FIG. 4 shows operation of the transistor as a flash memory device when writing or programming logic “0” using hot electron injection in accordance with an embodiment of the present disclosure.



FIG. 5 shows operation of the transistor as a flash memory device when writing or programming logic “1” using electron tunneling in accordance with an embodiment of the present disclosure.



FIG. 6 shows operation of the transistor as a flash memory device when writing or programming logic “0” using electron tunneling in accordance with an embodiment of the present disclosure.



FIG. 7 shows operation of the transistor operating as a flash memory device when reading data of the transistor in accordance with an embodiment of the present disclosure.



FIG. 8 shows operation of the transistor operating as a flash memory device when reading data of the transistor in accordance with an alternative embodiment of the present disclosure.



FIG. 9 shows representative control signals along with the cell current ID during operation of transistors as a flash memory device when reading data of multi-bit flash cells in accordance with another alternative embodiment of the present disclosure.



FIG. 10 shows operation of the transistor as a DRAM device when writing or programming logic “1” in accordance with an embodiment of the present disclosure.



FIG. 11 shows operation of the transistor as a DRAM device when writing or programming logic “0” in accordance with an embodiment of the present disclosure.



FIG. 12 shows operation of the transistor operating as a DRAM device when reading data of the transistor in accordance with an embodiment of the present disclosure.





DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENTS

There are many aspects of the present disclosure described herein as well as many embodiments of those aspects. In one aspect, the present disclosure may be directed to a semiconductor device including a floating gate and an electrically floating body. In another aspect, the present disclosure may be directed to techniques to control and/or operate a semiconductor memory cell (and memory cell array having a plurality of such memory cells as well as an integrated circuit device including a memory cell array) having one or more transistors having a floating gate and an electrically floating body in which an electrical charge is stored in the floating gate or the electrically floating body (according to the mode of operation of the transistor).


The present disclosure may also be directed to semiconductor memory cells, arrays, circuitry and devices to implement such control and operation techniques. Notably, the memory cell and/or memory cell array may comprise a portion of an integrated circuit device, for example, logic device (such as, a microcontroller or microprocessor) or a portion of a memory device (such as, a discrete memory).



FIG. 1A shows a floating gate transistor 10 in accordance with an embodiment of the present disclosure. The transistor 10 includes a floating gate 12 and a body region 14 configured to be electrically floating. The body region 14 includes three portions or regions 14-1/14-2/14-3 that collectively define the electrically floating body 14. Each of the three regions 14-1/14-2/14-3 of the body comprises the same or similar material (e.g., p-type material, n-type material, etc.). The transistor 10 includes a floating gate 12 disposed over the body region 14.


The floating body region 14 of the floating gate transistor 10 includes a source region 11 adjoining a second portion 14-2 of the body region 14; the second portion 14-2 of the body region is adjacent the first portion 14-1 and separates the source region 11 from the first portion 14-1. A drain region 13 adjoins a third portion 14-3 of the body region 14; the third portion 14-3 of the body region is adjacent the first portion 14-1 and separates the drain region 13 from the first portion 14-1. The source region 11 and/or drain region 13 is created using conventional doping or implantation techniques but is not so limited. The second portion 14-2 and third portion 14-3 of the body region function to electrically “disconnect” (e.g., disconnect any charge that may accumulate, disconnect any inversion channel that may form) in the first portion 14-1 from one or more of the source 11 and the drain 13 as described in detail below.


The transistor 10 of an embodiment includes a floating gate 12 disposed over the body region 14, as described above. The floating gate 12 of an embodiment is disposed over the first portion 14-1 of the body region 14 and, additionally, some portion of the second 14-2 and third 14-3 portions of the body region. Generally, the floating gate 12 comprises a gate dielectric 12D and a dielectric 12X. The gate dielectric 12D is positioned between the floating gate 12 and the floating body region 14. The oxide 12X isolates the floating gate 12 from the control gate 15 so that the floating gate of this transistor is electrically isolated from other components of the device (i.e. no resistive connections are formed to the floating gate 12). Because dielectric surrounds the floating gate 12, any charge trapped on the floating gate 12 remains on the floating gate 12. The charge stored on the floating gate 12 can be modified by applying voltages to terminals of the source 11, drain 13, body 14 and control gate 15, such that the fields result in phenomena like hot carrier injection and Fowler-Nordheim tunneling (referred to herein as “tunneling”), as described in detail below.


Data is written into, read from, or refreshed in a selected transistor 10 by application of suitable control signals. Control signals are coupled to the transistor 10 through one of more of a source line SL, a bit line BL, and a word line WL. In an embodiment, the control gate of a transistor 10 of an embodiment is connected to a word line WL, the source region 11 is connected to a source line SL, and the drain region 13 is connected to a bit line BL, but the embodiment is not so limited. In response to the control signals, charge carriers are accumulated in or emitted and/or ejected from the floating gate 12 and/or the electrically floating body region 14 wherein the data states are defined by the amount of carriers within the floating gate 12 and/or the electrically floating body region 14.


The floating gate transistor 10 of an embodiment can function as a flash memory device. Furthermore, the floating gate transistor 10 can also function as a dynamic random access (DRAM) memory device. Operations of the floating gate transistor 10 as a flash memory device and a DRAM device are described in detail below.



FIG. 1B shows a floating gate transistor 10A in accordance with an embodiment of the present disclosure. The transistor 10A includes a floating gate 12A and a body region 14 configured to be electrically floating. The body region 14 includes three portions or regions 14-1/14-2/14-3 that collectively define the electrically floating body 14. Each of the three regions 14-1/14-2/14-3 of the body comprises the same or similar material (e.g., p-type material, n-type material, etc.). The transistor 10A includes a floating gate 12A disposed over the body region 14.


The floating gate 12A of this alternative embodiment is disposed over the first portion 14-1 of the body region 14. The floating gate 12A generally comprises a gate dielectric 12DA and a dielectric 12XA. The gate dielectric 12DA is positioned between the floating gate 12A and the first portion 14-1 of the floating body region 14. The oxide 12XA isolates the floating gate 12A from the control gate 15A so that the floating gate 12A of this transistor is electrically isolated from other components of the device. Because dielectric surrounds the floating gate 12A, any charge trapped on the floating gate 12A remains on the floating gate 12A. The charge stored on the floating gate 12A can be modified by applying voltages to terminals of the source 11, drain 13, body 14 and control gate 15A, as described in detail herein.


Data is written into, read from, or refreshed in a selected transistor 10A by application of suitable control signals. Control signals are coupled to the transistor 10A through one of more of a source line SL, a bit line BL, and a word line WL. In an embodiment, the control gate of a transistor 10A of an embodiment is coupled to a word line WL, the source region 11 is coupled to a source line SL, and the drain region 13 is coupled to a bit line BL, but the embodiment is not so limited. In response to the control signals, charge carriers are accumulated in or emitted and/or ejected from the floating gate 12A and/or the electrically floating body region 14 wherein the data states are defined by the amount of carriers within the floating gate 12A and/or the electrically floating body region 14.


The floating gate transistor 10A of an embodiment can function as a flash memory device. Furthermore, the floating gate transistor 10A can also function as a dynamic random access (DRAM) memory device. Operations of the floating gate transistor 10A as a flash memory device and a DRAM device are described in detail below.


The floating gate of an embodiment generally comprises a floating gate 12 at least partially surrounded by oxide 12X, as described above. The oxide 12X isolates the floating gate 12 from the control gate 15 so that the floating gate of the host transistor is electrically isolated from other components of the device (i.e. no resistive connections are formed to the floating gate 12. The gate oxide of an alternative transistor embodiment can comprise silicon nitride (Si3N4) inserted inside the gate oxide, thereby forming a Silicon-Oxide-Nitride-Oxide-Silicon (SONOS) memory device. The nitride is non-conductive but contains a large number of charge trapping sites able to hold an electrostatic charge. The nitride layer is electrically isolated from the surrounding transistor, although charges stored on the nitride directly affect the conductivity of the underlying transistor channel. The oxide/nitride sandwich can comprise, for example, a 2 nm thick oxide lower layer, a 5 nm thick silicon nitride middle layer, and a 5-10 nm oxide upper layer. With the exception of the gate oxide, all other aspects of the SONOS memory device are as described above with reference to FIGS. 1A and 1B.


The gate oxide of yet another alternative transistor embodiment can comprise high-k dielectric (Hi-k) Nitride inserted inside the gate oxide. This combination forms a Silicon Hi-k Nitride Oxide Silicon (SHINOS) memory device. With the exception of the gate oxide, all other aspects of the SHINOS memory device are as described above with reference to FIGS. 1A and 1B.


More specifically, FIG. 2 shows a floating gate transistor 100 in accordance with an embodiment of the present disclosure. The transistor 100 includes a floating gate 102 and a body region 104 configured to be electrically floating. The body region 104 includes three portions or regions 104-1/104-2/104-3 that collectively define the electrically floating body 104. Each of the three regions 104-1/104-2/104-3 of the body comprises the same or similar material (e.g., P-type in this example). In this embodiment the floating body region 104 comprises p-type material and the source and drain regions both comprise n-type material; alternative embodiments can include a floating body region 104 comprising n-type material and source and drain regions both comprising p-type material. The transistor 100 includes a floating gate 102 disposed over the three regions 104-1/104-2/104-3 that collectively define the electrically floating body 104 (e.g., FIG. 1A), but the embodiment is not so limited as described above, such that the floating gate can be disposed only over the first portion 104-1 of the body region 104 (e.g., FIG. 1B).


The floating body region 104 of the floating gate transistor 100 includes a source region 110 adjoining a second portion 104-2 of the body region 104; the second portion 104-2 of the body region is adjacent the first portion 104-1 and separates the source region 110 from the first portion 104-1. A drain region 130 adjoins a third portion 104-3 of the body region 104; the third portion 104-3 of the body region is adjacent the first portion 104-1 and separates the drain region 130 from the first portion 104-1. The source region 110 and/or drain region 130 is created using conventional doping or implantation techniques but is not so limited. The second portion 104-2 and third portion 104-3 of the body region function to electrically “disconnect” (e.g., disconnect any charge that may accumulate, disconnect any inversion channel that may form) in the first portion 104-1 from one or more of the source 110 and the drain 130 as described in detail below.


The floating gate 102 of an embodiment is disposed over the first portion 104-1 of the body region 104. The floating gate 102 comprises a gate dielectric 102D and a dielectric 102X. The gate dielectric 102D is positioned between the floating gate 102 and the floating body region 104. The oxide 102X isolates the floating gate 102 from the control gate 105 so that the floating gate of this transistor is electrically isolated from other components of the device (i.e. no resistive connections are formed to the floating gate 102). Because dielectric surrounds the floating gate, any charge trapped on the floating gate 102 remains on the floating gate 102. The charge stored on the floating gate 102 can be modified by applying voltages to terminals of the source 110, drain 130, body 104 and control gate 105, such that the fields result in phenomena like hot carrier injection and Fowler-Nordheim tunneling (referred to herein as “tunneling”), as described in detail below.


The floating gate transistor 100 of an embodiment can function as a flash memory device. Furthermore, the floating gate transistor 100 can also function as a dynamic random access (DRAM) memory device. Operation of the floating gate transistor 100 is as a flash memory device or a DRAM device is described in detail below. The operational examples that follow below make reference to an N-channel transistor 100 that includes a floating gate disposed over the three regions that collectively define the electrically floating body (e.g., FIG. 1A); it is understood, however, that the examples are not so limited as described above, and the floating gate can be disposed only over the first portion of the body region (e.g., FIG. 1B).



FIG. 3 shows operation of the transistor 100 as a flash memory device when writing or programming logic “1” using hot hole injection in accordance with an embodiment of the present disclosure. The transistor 100 of this embodiment is an N-channel or nMOS FET, as described above, but is not so limited (e.g., transistor 100 may be a P-channel or pMOS FET in an alternative embodiment). The N-channel device includes source 110 and drain 120 regions comprising N+-type material while the body region 104 comprises a P-type material.


A logic “1” programming operation of an embodiment of the transistor operating as a flash memory device is carried out using hot hole injection through the application of control signals. Control signals having predetermined voltages (for example, Vg=−5v, Vs=0.0v, and Vd=3.5v) are applied to the control gate, source region 110 and drain region 120 (respectively) of transistor 100. The control signals result in an accumulation of minority carriers in the electrically floating body 104. The minority carriers of the body region 104 accumulate in the first portion 104-1 of the body region 104. The minority carriers may accumulate in an area of the first portion 104-1 under the floating gate 102, but are not so limited.


The control signals also result in a source current in the electrically floating body region 104 of transistor 100. More specifically, the potential difference between the source voltage and the drain voltage (e.g., 3.5 volts) is greater than the threshold required to turn on the bipolar transistor 100. Therefore, source current of the transistor 100 causes or produces impact ionization and/or the avalanche multiplication phenomenon among particles (accumulated minority carriers) in the electrically floating body region 104. The impact ionization produces, provides, and/or generates an excess of majority carriers (not shown) in the electrically floating body region 104 of transistor 100. The source current responsible for impact ionization and/or avalanche multiplication in the electrically floating body region 104 is initiated or induced by the control signal applied to gate 102 of transistor 100 along with the potential difference between the source 110 and drain 120 regions. Such a control signal may induce channel impact ionization which raises or increases the potential of body region 104 and “turns on”, produces, causes and/or induces a source current in transistor 100.


The magnitude of the control signals applied to the control gate, source 110, and drain 120 result in a charge being stored on the floating gate 102 as a result of hot carrier injection from the body region 104 that is in the “on” state. Hot carrier injection is the phenomenon in solid-state devices or semiconductors where a majority carrier (e.g., “holes”) gains sufficient kinetic energy to overcome a potential barrier, becoming a “hot carrier”, and then migrates to a different area of the device. More particularly, in this embodiment, the hot carrier gains sufficient kinetic energy to overcome the potential barrier of the body region 104, and then migrates from the body region 104 through the gate oxide to the floating gate. In this device, “hot carrier” therefore refers to the effect where the majority carrier (e.g., “holes”) is injected from the floating body region 104 to the floating gate 102 (not shown on FIG. 3). As a result of the polarity (e.g., negative) of the control signal applied to the floating gate 102, majority carriers that gain sufficient kinetic energy to become “hot” enter the valence band of the dielectric from the first portion 104-1 of the body 104 and accumulate on the floating gate 102.


The majority carriers, once injected from the floating body region 104, reside at the floating gate 102 where in memory terms they represent a “1”, or logic high state, until such time as the memory is erased, and the majority carrier is removed from the floating gate 102. Thus, in this embodiment, the predetermined voltages of the applied control signals program or write logic “1” in the transistor 100 via impact ionization and avalanche multiplication in the electrically floating body region 104, and hot carrier injection from the floating body region 104 to the floating gate 102.



FIG. 4 shows operation of the transistor 100 as a flash memory device when writing or programming logic “0” using hot electron injection in accordance with an embodiment of the present disclosure. The transistor 100 of this embodiment is an N-channel or nMOS FET, as described above, but is not so limited (e.g., transistor 100 may be a P-channel or pMOS FET in an alternative embodiment). The N-channel device includes source 110 and drain 120 regions comprising N+-type material while the body region 104 comprises a P-type material.


A logic “0” programming operation of an embodiment of the transistor operating as a flash memory device is carried out using hot electron injection through the application of control signals. Control signals having predetermined voltages (for example, Vg=5v, Vs=0.0v, and Vd=3.5v) are applied to the control gate, source region 110 and drain region 120 (respectively) of transistor 100. The control signals result in an accumulation of minority carriers in the electrically floating body 104. The minority carriers of the body region 104 accumulate in the first portion 104-1 of the body region 104. The minority carriers may accumulate in an area of the first portion 104-1 under the floating gate 102, but are not so limited.


The control signals also result in a source current in the electrically floating body region 104 of transistor 100. More specifically, the potential difference between the source voltage and the drain voltage (e.g., 3.5 volts) is greater than the threshold required to turn on the bipolar transistor 100. Therefore, source current of the transistor 100 causes or produces impact ionization and/or the avalanche multiplication phenomenon among particles (accumulated minority carriers) in the electrically floating body region 104. The impact ionization produces, provides, and/or generates an excess of majority carriers in the electrically floating body region 104 of transistor 100. The source current responsible for impact ionization and/or avalanche multiplication in the electrically floating body region 104 is initiated or induced by the control signal applied to gate 102 of transistor 100 along with the potential difference between the source 110 and drain 120 regions. Such a control signal may induce channel impact ionization which raises or increases the potential of body region 104 and “turns on”, produces, causes and/or induces a source current in transistor 100.


The magnitude of the control signals applied to the control gate, source 110, and drain 120 result in a charge being stored on the floating gate 102 as a result of hot carrier injection from the body region 104 that is in the “on” state. In this embodiment, the hot carrier gains sufficient kinetic energy to overcome the potential barrier of the body region 104, and then migrates from the body region 104 through the oxide 102 to the gate dielectric 102D. In the device of this embodiment, “hot carrier” therefore refers to the effect where the minority carrier (e.g., “electrons”) is injected from the floating body region 104 to control gate. As a result of the polarity (e.g., positive) of the control signal applied to the control gate, majority carriers that gain sufficient kinetic energy to become “hot” and enter the conduction band of the dielectric from the first portion 104-1 of the body 104 accumulate in the gate dielectric 102D and, thus, on the floating gate 102. The minority carriers, or electrons, once injected from the floating body region 104 to the gate dielectric 102D, reside at the floating gate 102 where in memory terms they represent a “0”, or logic low state, until such time as the memory is erased, and the majority carrier is removed from the floating gate 102. Thus, in this embodiment, the predetermined voltages of the applied control signals program or write logic “0” in the transistor 100 via impact ionization and avalanche multiplication in the electrically floating body region 104, and hot carrier injection from the floating body region 104 to the floating gate 102.



FIG. 5 shows operation of the transistor 100 as a flash memory device when writing or programming logic “1” using electron tunneling in accordance with an embodiment of the present disclosure. The transistor 100 of this embodiment is an N-channel or nMOS FET, as described above, but is not so limited (e.g., transistor 100 may be a P-channel or pMOS FET in an alternative embodiment). The N-channel device includes source 110 and drain 120 regions comprising N+-type material while the body region 104 comprises a P-type material.


A logic “1” programming operation of an embodiment of the transistor operating as a flash memory device is carried out using electron tunneling through the application of control signals. Control signals having predetermined voltages (for example, Vg=−10v, Vs=0.0v, and Vd=0.0v) are applied to gate 102, source region 110 and drain region 120 (respectively) of transistor 100. The control signals prevent source current from flowing in the electrically floating body region 104 of transistor 100. More specifically, the potential difference between the source voltage and the drain voltage (e.g., 0 volts) is less than the threshold required to turn on the bipolar transistor 100. Therefore, the transistor remains in an “off” state such that no source current is produced and/or induced in transistor 100.


Tunneling, also referred to as Fowler-Nordheim tunneling, is a process in which electrons are transported through a barrier and results in alteration of the placement of electrons in the floating gate. In addition to the effect of the control signals applied to the source and drain of the transistor 100, as described above, the electrical charge applied to the floating gate causes the floating gate transistor 100 to act like an electron gun. As a result of the polarity (e.g., negative) of the control signal applied to the floating gate, the electrons of the floating gate are pushed through, thus removing negative charge from the floating gate. The floating gate is positively charged as a result of removal of the negative charge, and the resultant positive charge residing at the floating gate 102 represents, in memory terms, a “1”, or logic high state, until such time as the memory is erased. Thus, in this embodiment, the predetermined voltages of the applied control signals program or write logic “1” in the transistor 100 via electron tunneling from the floating gate 102 to the floating body region 104.



FIG. 6 shows operation of the transistor 100 as a flash memory device when writing or programming logic “0” using electron tunneling in accordance with an embodiment of the present disclosure. The transistor 100 of this embodiment is an N-channel or nMOS FET, as described above, but is not so limited (e.g., transistor 100 may be a P-channel or pMOS FET in an alternative embodiment). The N-channel device includes source 110 and drain 120 regions comprising N+-type material while the body region 104 comprises a P-type material.


A logic “0” programming operation of an embodiment of the transistor operating as a flash memory device is carried out using electron tunneling through the application of control signals. Control signals having predetermined voltages (for example, Vg=10v, Vs=0.0v, and Vd=0.0v) are applied to gate 102, source region 110 and drain region 120 (respectively) of transistor 100. The control signals prevent source current from flowing in the electrically floating body region 104 of transistor 100. More specifically, the potential difference between the source voltage and the drain voltage (e.g., 0 volts) is less than the threshold required to turn on the bipolar transistor 100. Therefore, the transistor remains in an “off” state such that no source current is produced and/or induced in transistor 100.


In addition to the effect of the control signals applied to the source and drain of the transistor 100, as described above, the electrical signal applied to the control gate causes the floating gate transistor to act like an electron gun. As a result of the polarity (e.g., positive) of the control signal applied to the floating gate, the excited electrons of the floating body 104 are pushed through thus placing negative charge on the floating gate. The floating gate is negatively charged as a result of this addition of negative charge, and the resultant negative charge residing at the floating gate 102 represents, in memory terms, a “0”, or logic low state, until such time as the memory is erased. Thus, in this embodiment, the predetermined voltages of the applied control signals program or write logic “0” in the transistor 100 via electron tunneling from the floating body 104 to the floating gate 102.



FIG. 7 shows operation of the transistor 100 operating as a flash memory device when reading data of the transistor in accordance with an embodiment of the present disclosure. In one embodiment, the data state of the transistor may be read and/or determined by applying control signals having predetermined voltages to the floating gate, source region and drain region of transistor (for example, Vg=0.0v, Vs=0.0v and Vd=2.5v, respectively). Such control signals, in combination, induce and/or cause a source current in transistors that have a positive charge on the floating gate (transistors programmed to logic “1”) as described above. As such, sensing circuitry (for example, a cross-coupled sense amplifier), which is coupled to the transistor, senses the data state using primarily and/or based substantially on the source current. For those transistors having negative charge on the floating gate (transistors programmed to logic “0”), such control signals induce, cause and/or produce little to no source current (for example, a considerable, substantial or sufficiently measurable source current).


Thus, in response to read control signals, the transistor 100 generates a source current which is representative of the data state of the transistor 100. Where the data state is logic high or logic “1”, the transistor 100 provides a substantially greater source current than where the data state is logic low or logic “0”. The transistor 100 may provide little to no source current when the data state is logic low or logic “0”. Data sensing circuitry determines the data state of the transistor based substantially on the source current induced, caused and/or produced in response to the read control signals.



FIG. 8 shows operation of the transistor 100 operating as a flash memory device when reading data of the transistor in accordance with an alternative embodiment of the present disclosure. In this alternative embodiment, the data state of the transistor 100 may be read and/or determined by applying control signals having predetermined voltages to the floating gate, source region and drain region of transistor (for example, Vg=3v, Vs=0.0v and Vd=0.5v, respectively). Such control signals, in combination, induce and/or cause a channel current in transistors that have a positive charge on the floating gate (transistors programmed to logic “1”) as described above. As such, sensing circuitry (for example, a cross-coupled sense amplifier) (not shown), which is coupled to the transistor 100, senses the data state using primarily and/or based substantially on the source current. For those transistors having a negative charge on the floating gate (transistors programmed to logic “0”), such control signals induce, cause and/or produce little to no channel current (for example, a considerable, substantial or sufficiently measurable source current).


Thus, in response to read control signals, the transistor 100 generates a channel current which is representative of the data state of the transistor 100. Where the data state is logic high or logic “1”, the transistor 100 provides a substantially greater channel current than where the data state is logic low or logic “0”. The transistor 100 may provide little to no channel current when the data state is logic low or logic “0”. Data sensing circuitry determines the data state of the transistor based substantially on the channel current induced, caused and/or produced in response to the read control signals.


The application of control signals can also be used to read transistors of an embodiment when used in multi-bit flash cells. Considering a single transistor, in an embodiment, the voltage of the control signal applied to the control gate is selected to put the transistor in the sub-threshold regime. In the sub-threshold regime, the bipolar triggering time is very sensitive to the transistor threshold voltage Vt. As the threshold voltage Vt is defined by the charge stored in the floating gate, the bipolar triggering delay Δt provides information about charge stored in the floating gate and can be used to read the multi-bit Flash. FIG. 9 shows representative control signals along with the cell current ID during operation of transistors 100 as a flash memory device when reading data of multi-bit flash cells in accordance with another alternative embodiment of the present disclosure.


The floating gate transistor 100 of an embodiment can function as a flash memory device, operations of which were described in detail above. Additionally, the floating gate transistor 100 can also function as a DRAM device, operations of which are described in detail below.



FIG. 10 shows operation of the transistor 100 as a DRAM device when writing or programming logic “1” in accordance with an embodiment of the present disclosure. The transistor 100 of this embodiment is an N-channel or nMOS FET, as described above, but is not so limited; transistor 100 may be a P-channel or pMOS FET in an alternative embodiment.


A logic “1” programming operation of an embodiment of the transistor operating as a DRAM device is carried out through the application of control signals. In operation, when writing or programming logic “1”, in one embodiment, control signals having predetermined voltages (for example, Vg=−3v, Vs=0.0v, and Vd=2.5v) are applied to gate, source region and drain region (respectively) of transistor 100. The control signals may result in an accumulation of minority carriers in the electrically floating body. As a result of the control signal applied to the gate, any minority carriers that happen to be present in the body region accumulate in the first portion of the body. The minority carriers may accumulate in an area of the first portion under the gate, but are not so limited.


The control signals also generate or provide a source current in electrically floating body region of transistor 100. More specifically, the potential difference between the source voltage and the drain voltage (e.g., 2.5 volts) is greater than the threshold required to turn on the bipolar transistor. Therefore, source current of the transistor causes or produces impact ionization and/or the avalanche multiplication phenomenon among particles in the electrically floating body region. The impact ionization produces, provides, and/or generates an excess of majority carriers in the electrically floating body region of transistor 100.


Notably, it is preferred that the source current responsible for impact ionization and/or avalanche multiplication in electrically floating body region is initiated or induced by the control signal applied to gate of transistor 100 along with the potential difference between the source and drain regions. Such a control signal may induce channel impact ionization which raises or increases the potential of body region and “turns on”, produces, causes and/or induces a source current in transistor 100. One advantage of the proposed writing/programming technique is that a large amount of the excess majority carriers may be generated and stored in electrically floating body region of transistor 100.


As a result of the polarity (e.g., negative) of the control signal applied to the gate, the majority carriers of the body region accumulate near the surface of the first portion of the body region. The polarity of the gate signal (e.g., negative) combined with the floating body causes the majority carriers to become trapped or “stored” near the surface of the first portion of the body region. In this manner the body region of the transistor “stores” charge (e.g., equivalently, functions like a capacitor). Thus, in this embodiment, the predetermined voltages of the control signals program or write logic “1” in transistor 100 via impact ionization and/or avalanche multiplication in electrically floating body region.



FIG. 11 shows operation of the transistor 100 as a DRAM device when writing or programming logic “0” in accordance with an embodiment of the present disclosure. A logic “0”programming operation of an embodiment of the transistor operating as a DRAM device is carried out through the application of control signals. In operation, when writing or programming logic “0”, in one embodiment, control signals having predetermined voltages (for example, Vg=5v, Vs=0.0v, and Vd=0.0v) are initially applied to gate, source region and drain region (respectively) of transistor 100. The control signals may result in an accumulation of minority carriers in the electrically floating body.


The potential difference between the source voltage and the drain voltage (e.g., 0 volts) of the control signals, however, is less than the threshold required to turn on transistor 100. Consequently, no impact ionization takes place among particles in the body region and no bipolar or source current is produced in the electrically floating body region. Thus, no excess of majority carriers are generated in the electrically floating body region of transistor 100.


The polarity (e.g., positive) of the gate signal may result in any minority carriers that accumulate being removed from electrically floating body region of transistor 100 via one or more of the source region and the drain region. The result is an absence of excess majority carriers in the body region so that, in this manner, the predetermined voltages of the control signals program or write logic “0” in the transistor 100.



FIG. 12 shows operation of the transistor 100 operating as a DRAM device when reading data of the transistor in accordance with an embodiment of the present disclosure. In one embodiment, the data state of the transistor may be read and/or determined by applying control signals having predetermined voltages to the floating gate, source region and drain region of transistor (for example, Vg=−1v, Vs=0.0v and Vd=2.5v, respectively). Such control signals, in combination, induce and/or cause a source current in transistors that are programmed to logic “1” as described above. As such, sensing circuitry (for example, a cross-coupled sense amplifier) (not shown), which is coupled to transistor 100 (for example, drain region 22), senses the data state using primarily and/or based substantially on the source current. For those transistors that are programmed to logic “0”, such control signals induce, cause and/or produce little to no source current (for example, a considerable, substantial or sufficiently measurable source current).


Thus, in response to read control signals, transistor 100 generates a source current which is representative of the data state of the transistor 100. Where the data state is logic high or logic “1”, transistor 100 provides a substantially greater source current than where the data state is logic low or logic “0”. Transistor 100 may provide little to no source current when the data state is logic low or logic “0”. Data sensing circuitry determines the data state of the transistor based substantially on the source current induced, caused and/or produced in response to the read control signals.


The voltage levels described herein as control signals to implement the write and/or read operations are provided merely as examples, and the embodiments described herein are not limited to these voltage levels. The indicated voltage levels may be relative or absolute. Alternatively, the voltages indicated may be relative in that each voltage level, for example, may be increased or decreased by a given voltage amount (for example, each voltage may be increased or decreased by 0.5, 1.0 and 2.0 volts) whether one or more of the voltages (for example, the source, drain or gate voltages) become or are positive and negative.


The aspects of the present disclosure may be implemented in an integrated circuit device (for example, a discrete memory device or a device having embedded memory) including a memory array having a plurality of memory cells arranged in a plurality of rows and columns wherein each memory cell includes an electrically floating body transistor. The memory arrays may comprise N-channel, P-channel and/or both types of transistors. Indeed, circuitry that is peripheral to the memory array (for example, data sense circuitry (for example, sense amplifiers or comparators), memory cell selection and control circuitry (for example, word line and/or source line drivers), as well as row and column address decoders) may include P-channel and/or N-channel type transistors.


The programming and reading techniques described herein may be used in conjunction with a plurality of memory cells arranged in an array of memory cells. A memory array implementing the structure and techniques of the present disclosure may be controlled and configured including a plurality of memory cells having a separate source line for each row of memory cells (a row of memory cells includes a common word line). The memory array may use any of the example programming, holding and/or reading techniques described herein. The memory arrays may comprise N-channel, P-channel and/or both types of transistors. Circuitry that is peripheral to the memory array (for example, sense amplifiers or comparators, row and column address decoders, as well as line drivers (not illustrated herein)) may include P-channel and/or N-channel type transistors. Where P-channel type transistors are employed as memory cells in the memory array(s), suitable write and read voltages (for example, negative voltages) are well known to those skilled in the art in light of the present disclosure.


The transistors, memory cells, and/or memory array(s) described herein may be fabricated using well known techniques and/or materials. Indeed, any fabrication technique and/or material, whether now known or later developed, may be employed to fabricate the transistors, memory cells, and/or memory array(s). For example, embodiments of the present disclosure may employ silicon, germanium, silicon/germanium, gallium arsenide or any other semiconductor material (whether bulk-type or SOI) in which transistors may be formed. As such, the transistors, memory cells, and/or memory array(s) may be disposed on or in (collectively “on”) SOI-type substrate or a bulk-type substrate.


Further, memory array(s) may be comprised of N-channel, P-channel and/or both types of transistors, as well as partially depleted and/or fully depleted type transistors. For example, circuitry that is peripheral to the memory array (for example, sense amplifiers or comparators, row and column address decoders, as well as line drivers (not illustrated herein)) may include FD-type transistors (whether P-channel and/or N-channel type). Alternatively, such circuitry may include PD-type transistors (whether P-channel and/or N-channel type). There are many techniques to integrate both PD and/or FD-type transistors on the same substrate. All such techniques, whether now known or later developed, are intended to fall within the scope of the present disclosure. Where P-channel type transistors are employed as memory cells in the memory array(s), suitable write and read voltages (for example, negative voltages) are well known to those skilled in the art in light of the present disclosure.


Notably, transistor 100 may be a symmetrical or non-symmetrical device. Where transistor 100 is symmetrical, the source and drain regions are essentially interchangeable. However, where transistor 100 is a non-symmetrical device, the source or drain regions of transistor 100 have different electrical, physical, doping concentration and/or doping profile characteristics. As such, the source or drain regions of a non-symmetrical device are typically not interchangeable. This notwithstanding, the drain region of the transistor 100 (whether the source and drain regions are interchangeable or not) is that region of the transistor that is connected to the bit line/sense amplifier.


There are many aspects of the present disclosure described and illustrated herein. While certain embodiments, features, attributes and advantages of the present disclosure have been described and illustrated, it should be understood that many others, as well as different and/or similar embodiments, features, attributes and advantages of the present disclosure, are apparent from the description and illustrations. As such, the embodiments, features, attributes and advantages of the present disclosure described and illustrated herein are not exhaustive and it should be understood that such other, similar, as well as different, embodiments, features, attributes and advantages of the present disclosure are within the scope of the present disclosure.


As mentioned above, the illustrated/example voltage levels to implement the read and write operations are merely examples. The indicated voltage levels may be relative or absolute. Alternatively, the voltages indicated may be relative in that each voltage level, for example, may be increased or decreased by a given voltage amount (for example, each voltage may be increased or decreased by 0.1, 0.15, 0.25, 0.5, 1 volt) whether one or more of the voltages (for example, the source, drain or gate voltages) become or are positive and negative.


As mentioned above, each of the aspects of the present disclosure, and/or embodiments thereof, may be employed alone or in combination with one or more of such aspects and/or embodiments. For the sake of brevity, those permutations and combinations will not be discussed separately herein. As such, the present disclosure is not limited to any single aspect (or embodiment thereof), nor to any combinations and/or permutations of such aspects and/or embodiments.


Moreover, the above embodiments of the present disclosure are merely example embodiments. They are not intended to be exhaustive or to limit the present disclosure to the precise forms, techniques, materials and/or configurations disclosed. Many modifications and variations are possible in light of the above teaching. It is to be understood that other embodiments may be utilized and operational changes may be made without departing from the scope of the present disclosure. As such, the foregoing description of the example embodiments of the present disclosure have been presented for the purposes of illustration and description. Many modifications and variations are possible in light of the above teaching. It is intended that the scope of the present disclosure not be limited solely to the description above.

Claims
  • 1. A semiconductor device comprising: a body region, wherein the body region is electrically floating;a gate disposed over a first portion of the body region, wherein the gate is electrically floating;a source region adjoining the first portion of the body region; anda drain region adjoining a second portion of the body region, the second portion adjacent the first portion and separating the drain region from the first portion.
  • 2. The device of claim 1, wherein the floating gate is separated from the body region by a dielectric.
  • 3. The device of claim 2, further comprising a control gate disposed over the floating gate.
  • 4. The device of claim 3, wherein the control gate is separated from the floating gate by a dielectric.
  • 5. The device of claim 4, further comprising circuitry to apply a first signal set including a first potential difference coupled between the source region and the drain region and a first gate signal coupled to the control gate, wherein the first signal set programs a first logic state in the floating gate.
  • 6. The device of claim 5, further comprising circuitry to apply a second signal set including a second potential difference coupled between the source region and the drain region and a second gate signal coupled to the control gate, wherein the second signal set programs a second logic state in the floating gate.
  • 7. The device of claim 6, further comprising circuitry to apply a third signal set including a third potential difference coupled between the source region and the drain region and a third gate signal coupled to the control gate, wherein the third signal set reads a logic state in the floating gate.
  • 8. The device of claim 7, further comprising circuitry to apply a fourth signal set including a fourth potential difference coupled between the source region and the drain region and a fourth gate signal coupled to the control gate, wherein the fourth signal set programs a logic state in the body region.
  • 9. The device of claim 8, further comprising circuitry to apply a fifth signal set including a fifth potential difference coupled between the source region and the drain region and a fifth gate signal coupled to the control gate, wherein the fifth signal set reads a logic state in the body region.
  • 10. The device of claim 1, wherein the body region includes a first type of semiconductor material.
  • 11. The device of claim 10, wherein the source region and drain region include a second type of semiconductor material.
  • 12. The device of claim 11, wherein the source region includes one or more of a lightly doped region and a highly doped region.
  • 13. The device of claim 11, wherein the drain region includes one or more of a lightly doped region and a highly doped region.
  • 14. A semiconductor device comprising: a body region, wherein the body region is electrically floating;a gate disposed over a first portion of the body region, wherein the gate is electrically floating;a drain region adjoining the first portion of the body region; anda source region adjoining a second portion of the body region, the second portion adjacent the first portion and separating the source region from the first portion.
  • 15. The device of claim 14, wherein the floating gate is separated from the body region by a dielectric.
  • 16. The device of claim 15, further comprising a control gate disposed over the floating gate.
  • 17. The device of claim 16, wherein the control gate is separated from the floating gate by a dielectric.
  • 18. The device of claim 17, further comprising circuitry to apply a first signal set including a first potential difference coupled between the source region and the drain region and a first gate signal coupled to the control gate, wherein the first signal set programs a first logic state in the floating gate.
  • 19. The device of claim 18, further comprising circuitry to apply a second signal set including a second potential difference coupled between the source region and the drain region and a second gate signal coupled to the control gate, wherein the second signal set programs a second logic state in the floating gate.
  • 20. The device of claim 19, further comprising circuitry to apply a third signal set including a third potential difference coupled between the source region and the drain region and a third gate signal coupled to the control gate, wherein the third signal set reads a logic state in the floating gate.
  • 21. The device of claim 20, further comprising circuitry to apply a fourth signal set including a fourth potential difference coupled between the source region and the drain region and a fourth gate signal coupled to the control gate, wherein the fourth signal set programs a logic state in the body region.
  • 22. The device of claim 21, further comprising circuitry to apply a fifth signal set including a fifth potential difference coupled between the source region and the drain region and a fifth gate signal coupled to the control gate, wherein the fifth signal set reads a logic state in the body region.
  • 23. The device of claim 14, wherein the body region includes a first type of semiconductor material.
  • 24. The device of claim 23, wherein the source region and drain region include a second type of semiconductor material.
  • 25. The device of claim 24, wherein the source region includes one or more of a lightly doped region and a highly doped region.
  • 26. The device of claim 24, wherein the drain region includes one or more of a lightly doped region and a highly doped region.
CROSS-REFERENCE TO RELATED APPLICATIONS

This patent application is a continuation of U.S. patent application Ser. No. 12/770,249, filed Apr. 29, 2010, now U.S. Pat. No. 8,508,994, which claims priority to U.S. Provisional Patent Application No. 61/174,075, filed Apr. 30, 2009, each of which is hereby incorporated by reference herein in its entirety.

US Referenced Citations (297)
Number Name Date Kind
3439214 Kabell Apr 1969 A
3997799 Baker Dec 1976 A
4032947 Kesel et al. Jun 1977 A
4250569 Sasaki et al. Feb 1981 A
4262340 Sasaki et al. Apr 1981 A
4298962 Hamano et al. Nov 1981 A
4371955 Sasaki Feb 1983 A
4630089 Sasaki et al. Dec 1986 A
4658377 McElroy Apr 1987 A
4791610 Takemae Dec 1988 A
4807195 Busch et al. Feb 1989 A
4954989 Auberton-Herve et al. Sep 1990 A
4979014 Hieda et al. Dec 1990 A
5010524 Fifield et al. Apr 1991 A
5144390 Matloubian Sep 1992 A
5164805 Lee Nov 1992 A
5258635 Nitayama et al. Nov 1993 A
5313432 Lin et al. May 1994 A
5315541 Harari et al. May 1994 A
5350938 Matsukawa et al. Sep 1994 A
5355330 Hisamoto et al. Oct 1994 A
5388068 Ghoshal et al. Feb 1995 A
5397726 Bergemont Mar 1995 A
5432730 Shubat et al. Jul 1995 A
5446299 Acovic et al. Aug 1995 A
5448513 Hu et al. Sep 1995 A
5466625 Hsieh et al. Nov 1995 A
5489792 Hu et al. Feb 1996 A
5506436 Hayashi et al. Apr 1996 A
5515383 Katoozi May 1996 A
5526307 Yiu et al. Jun 1996 A
5528062 Hsieh et al. Jun 1996 A
5568356 Schwartz Oct 1996 A
5583808 Brahmbhatt Dec 1996 A
5593912 Rajeevakumar Jan 1997 A
5606188 Bronner et al. Feb 1997 A
5608250 Kalnitsky Mar 1997 A
5627092 Alsmeier et al. May 1997 A
5631186 Park et al. May 1997 A
5677867 Hazani Oct 1997 A
5696718 Hartmann Dec 1997 A
5740099 Tanigawa Apr 1998 A
5754469 Hung et al. May 1998 A
5774411 Hsieh et al. Jun 1998 A
5778243 Aipperspach et al. Jul 1998 A
5780906 Wu et al. Jul 1998 A
5784311 Assaderaghi et al. Jul 1998 A
5798968 Lee et al. Aug 1998 A
5811283 Sun Sep 1998 A
5847411 Morii Dec 1998 A
5877978 Morishita et al. Mar 1999 A
5886376 Acovic et al. Mar 1999 A
5886385 Arisumi et al. Mar 1999 A
5897351 Forbes Apr 1999 A
5929479 Oyama Jul 1999 A
5930648 Yang Jul 1999 A
5936265 Koga Aug 1999 A
5939745 Park et al. Aug 1999 A
5943258 Houston et al. Aug 1999 A
5943581 Lu et al. Aug 1999 A
5960265 Acovic et al. Sep 1999 A
5962890 Sato Oct 1999 A
5963473 Norman Oct 1999 A
5968840 Park et al. Oct 1999 A
5977578 Tang Nov 1999 A
5982003 Hu et al. Nov 1999 A
5986914 McClure Nov 1999 A
6018172 Hidaka et al. Jan 2000 A
6048756 Lee et al. Apr 2000 A
6081443 Morishita et al. Jun 2000 A
6096598 Furukawa et al. Aug 2000 A
6097056 Hsu et al. Aug 2000 A
6097624 Chung et al. Aug 2000 A
6111778 MacDonald et al. Aug 2000 A
6121077 Hu et al. Sep 2000 A
6133597 Li et al. Oct 2000 A
6157216 Lattimore et al. Dec 2000 A
6171923 Chi et al. Jan 2001 B1
6177300 Houston et al. Jan 2001 B1
6177698 Gruening et al. Jan 2001 B1
6177708 Kuang et al. Jan 2001 B1
6214694 Leobandung et al. Apr 2001 B1
6222217 Kunikiyo Apr 2001 B1
6225158 Furukawa et al. May 2001 B1
6229161 Nemati et al. May 2001 B1
6245613 Hsu et al. Jun 2001 B1
6252281 Yamamoto et al. Jun 2001 B1
6262935 Parris et al. Jul 2001 B1
6292424 Ohsawa Sep 2001 B1
6297090 Kim Oct 2001 B1
6300649 Hu et al. Oct 2001 B1
6333532 Davari et al. Dec 2001 B1
6333866 Ogata Dec 2001 B1
6350653 Adkisson et al. Feb 2002 B1
6351426 Ohsawa Feb 2002 B1
6359802 Lu et al. Mar 2002 B1
6384445 Hidaka et al. May 2002 B1
6391658 Gates et al. May 2002 B1
6403435 Kang et al. Jun 2002 B1
6421269 Somasekhar et al. Jul 2002 B1
6424011 Assaderaghi et al. Jul 2002 B1
6424016 Houston Jul 2002 B1
6429477 Mandelman et al. Aug 2002 B1
6432769 Fukuda et al. Aug 2002 B1
6440872 Mandelman et al. Aug 2002 B1
6441435 Chan Aug 2002 B1
6441436 Wu et al. Aug 2002 B1
6466511 Fujita et al. Oct 2002 B2
6479862 King et al. Nov 2002 B1
6480407 Keeth Nov 2002 B1
6492211 Divakaruni et al. Dec 2002 B1
6518105 Yang et al. Feb 2003 B1
6531754 Nagano et al. Mar 2003 B1
6537871 Forbes et al. Mar 2003 B2
6538916 Ohsawa Mar 2003 B2
6544837 Divakauni et al. Apr 2003 B1
6548848 Horiguchi et al. Apr 2003 B2
6549450 Hsu et al. Apr 2003 B1
6552398 Hsu et al. Apr 2003 B2
6552932 Cernea Apr 2003 B1
6556477 Hsu et al. Apr 2003 B2
6560142 Ando May 2003 B1
6563733 Liu et al. May 2003 B2
6566177 Radens et al. May 2003 B1
6567330 Fujita et al. May 2003 B2
6573566 Ker et al. Jun 2003 B2
6574135 Komatsuzaki Jun 2003 B1
6590258 Divakauni et al. Jul 2003 B2
6590259 Adkisson et al. Jul 2003 B2
6617651 Ohsawa Sep 2003 B2
6621725 Ohsawa Sep 2003 B2
6632723 Watanabe et al. Oct 2003 B2
6650565 Ohsawa Nov 2003 B1
6653175 Nemati et al. Nov 2003 B1
6686624 Hsu Feb 2004 B2
6703673 Houston Mar 2004 B2
6707118 Muljono et al. Mar 2004 B2
6714436 Burnett et al. Mar 2004 B1
6721222 Somasekhar et al. Apr 2004 B2
6825524 Ikehashi et al. Nov 2004 B1
6861689 Burnett Mar 2005 B2
6870225 Bryant et al. Mar 2005 B2
6882566 Nejad et al. Apr 2005 B2
6888770 Ikehashi May 2005 B2
6891225 Horiguchi et al. May 2005 B2
6894913 Yamauchi May 2005 B2
6897098 Hareland et al. May 2005 B2
6903979 Mirgorodski et al. Jun 2005 B1
6903984 Tang et al. Jun 2005 B1
6909151 Hareland et al. Jun 2005 B2
6912150 Portman et al. Jun 2005 B2
6913964 Hsu Jul 2005 B2
6936508 Visokay et al. Aug 2005 B2
6969662 Fazan et al. Nov 2005 B2
6975536 Maayan et al. Dec 2005 B2
6982902 Gogl et al. Jan 2006 B2
6987041 Ohkawa Jan 2006 B2
7030436 Forbes Apr 2006 B2
7037790 Chang et al. May 2006 B2
7041538 Ieong et al. May 2006 B2
7042765 Sibigtroth et al. May 2006 B2
7061806 Tang et al. Jun 2006 B2
7085153 Ferrant et al. Aug 2006 B2
7085156 Ferrant et al. Aug 2006 B2
7170807 Fazan et al. Jan 2007 B2
7177175 Fazan et al. Feb 2007 B2
7187581 Ferrant et al. Mar 2007 B2
7230846 Keshavarzi et al. Jun 2007 B2
7233024 Scheuerlein et al. Jun 2007 B2
7256459 Shino Aug 2007 B2
7301803 Okhonin et al. Nov 2007 B2
7301838 Waller et al. Nov 2007 B2
7317641 Scheuerlein Jan 2008 B2
7324387 Bergemont et al. Jan 2008 B1
7335934 Fazan Feb 2008 B2
7341904 Willer Mar 2008 B2
7416943 Figura et al. Aug 2008 B2
7456439 Horch Nov 2008 B1
7460395 Cho et al. Dec 2008 B1
7477540 Okhonin et al. Jan 2009 B2
7492632 Carman Feb 2009 B2
7517744 Mathew et al. Apr 2009 B2
7539041 Kim et al. May 2009 B2
7542340 Fisch et al. Jun 2009 B2
7542345 Okhonin et al. Jun 2009 B2
7545694 Srinivasa Raghavan et al. Jun 2009 B2
7589995 Tang et al. Sep 2009 B2
7606066 Okhonin et al. Oct 2009 B2
7684249 Chen et al. Mar 2010 B2
7688629 Kim Mar 2010 B2
7696032 Kim et al. Apr 2010 B2
8102714 Chen et al. Jan 2012 B2
8315099 Van Buskirk et al. Nov 2012 B2
8508994 Okhonin Aug 2013 B2
20010050406 Akita et al. Dec 2001 A1
20010055859 Yamada et al. Dec 2001 A1
20020030214 Horiguchi Mar 2002 A1
20020034855 Horiguchi et al. Mar 2002 A1
20020036322 Divakauni et al. Mar 2002 A1
20020051378 Ohsawa May 2002 A1
20020064913 Adkisson et al. May 2002 A1
20020070411 Vermandel et al. Jun 2002 A1
20020072155 Liu et al. Jun 2002 A1
20020076880 Yamada et al. Jun 2002 A1
20020086463 Houston et al. Jul 2002 A1
20020089038 Ning Jul 2002 A1
20020098643 Kawanaka et al. Jul 2002 A1
20020110018 Ohsawa Aug 2002 A1
20020114191 Iwata et al. Aug 2002 A1
20020130341 Horiguchi et al. Sep 2002 A1
20020160581 Watanabe et al. Oct 2002 A1
20020180069 Houston Dec 2002 A1
20030003608 Arikado et al. Jan 2003 A1
20030015757 Ohsawa Jan 2003 A1
20030035324 Fujita et al. Feb 2003 A1
20030042516 Forbes et al. Mar 2003 A1
20030047784 Matsumoto et al. Mar 2003 A1
20030057487 Yamada et al. Mar 2003 A1
20030057490 Nagano et al. Mar 2003 A1
20030102497 Fried et al. Jun 2003 A1
20030112659 Ohsawa Jun 2003 A1
20030123279 Aipperspach et al. Jul 2003 A1
20030146474 Ker et al. Aug 2003 A1
20030146488 Nagano et al. Aug 2003 A1
20030151112 Yamada et al. Aug 2003 A1
20030231521 Ohsawa Dec 2003 A1
20040021137 Fazan et al. Feb 2004 A1
20040021179 Lee et al. Feb 2004 A1
20040029335 Lee et al. Feb 2004 A1
20040075143 Bae et al. Apr 2004 A1
20040108532 Forbes Jun 2004 A1
20040188714 Scheuerlein et al. Sep 2004 A1
20040217420 Yeo et al. Nov 2004 A1
20050001257 Schloesser et al. Jan 2005 A1
20050001269 Hayashi et al. Jan 2005 A1
20050017240 Fazan Jan 2005 A1
20050047240 Ikehashi et al. Mar 2005 A1
20050062088 Houston Mar 2005 A1
20050063224 Fazan et al. Mar 2005 A1
20050064659 Willer Mar 2005 A1
20050105342 Tang et al. May 2005 A1
20050111255 Tang et al. May 2005 A1
20050121710 Shino Jun 2005 A1
20050135169 Somasekhar et al. Jun 2005 A1
20050141262 Yamada et al. Jun 2005 A1
20050141290 Tang et al. Jun 2005 A1
20050145886 Keshavarzi et al. Jul 2005 A1
20050145935 Keshavarzi et al. Jul 2005 A1
20050167751 Nakajima et al. Aug 2005 A1
20050189576 Ohsawa Sep 2005 A1
20050208716 Takaura et al. Sep 2005 A1
20050226070 Ohsawa Oct 2005 A1
20050232043 Ohsawa Oct 2005 A1
20050242396 Park et al. Nov 2005 A1
20050265107 Tanaka Dec 2005 A1
20060043484 Cabral et al. Mar 2006 A1
20060084247 Liu Apr 2006 A1
20060091462 Okhonin et al. May 2006 A1
20060098481 Okhonin et al. May 2006 A1
20060126374 Waller et al. Jun 2006 A1
20060131650 Okhonin et al. Jun 2006 A1
20060223302 Chang et al. Oct 2006 A1
20060256606 Park Nov 2006 A1
20070008811 Keeth et al. Jan 2007 A1
20070023833 Okhonin et al. Feb 2007 A1
20070045709 Yang Mar 2007 A1
20070058427 Okhonin et al. Mar 2007 A1
20070064489 Bauser Mar 2007 A1
20070085140 Bassin Apr 2007 A1
20070097751 Popoff et al. May 2007 A1
20070114599 Hshieh May 2007 A1
20070133330 Ohsawa Jun 2007 A1
20070138524 Kim et al. Jun 2007 A1
20070138530 Okhonin Jun 2007 A1
20070187751 Hu et al. Aug 2007 A1
20070187775 Okhonin et al. Aug 2007 A1
20070200176 Kammler et al. Aug 2007 A1
20070252205 Hoentschel et al. Nov 2007 A1
20070263466 Morishita et al. Nov 2007 A1
20070278578 Yoshida et al. Dec 2007 A1
20080049486 Gruening-von Schwerin Feb 2008 A1
20080083949 Zhu et al. Apr 2008 A1
20080099808 Burnett et al. May 2008 A1
20080130379 Ohsawa Jun 2008 A1
20080133849 Deml et al. Jun 2008 A1
20080144378 Park et al. Jun 2008 A1
20080165577 Fazan et al. Jul 2008 A1
20080251830 Higashi et al. Oct 2008 A1
20080253179 Slesazeck Oct 2008 A1
20080258206 Hofmann Oct 2008 A1
20090086535 Ferrant et al. Apr 2009 A1
20090121269 Caillat et al. May 2009 A1
20090127592 El-Kareh et al. May 2009 A1
20090201723 Okhonin et al. Aug 2009 A1
20100085813 Shino Apr 2010 A1
20100091586 Carman Apr 2010 A1
20100110816 Nautiyal et al. May 2010 A1
Foreign Referenced Citations (102)
Number Date Country
272437 Jul 1927 CA
030856 Jun 1981 EP
175378 Mar 1986 EP
202515 Nov 1986 EP
207619 Jan 1987 EP
245515 Nov 1987 EP
253631 Jan 1988 EP
300157 Jan 1989 EP
333426 Sep 1989 EP
350057 Jan 1990 EP
354348 Feb 1990 EP
359551 Mar 1990 EP
362961 Apr 1990 EP
366882 May 1990 EP
465961 Jan 1992 EP
510607 Oct 1992 EP
513923 Nov 1992 EP
537677 Apr 1993 EP
564204 Oct 1993 EP
579566 Jan 1994 EP
599388 Jun 1994 EP
599506 Jun 1994 EP
601590 Jun 1994 EP
606758 Jul 1994 EP
642173 Mar 1995 EP
682370 Nov 1995 EP
689252 Dec 1995 EP
694977 Jan 1996 EP
725402 Aug 1996 EP
726601 Aug 1996 EP
727820 Aug 1996 EP
727822 Aug 1996 EP
731972 Sep 1996 EP
739097 Oct 1996 EP
744772 Nov 1996 EP
788165 Aug 1997 EP
801427 Oct 1997 EP
836194 Apr 1998 EP
844671 May 1998 EP
858109 Aug 1998 EP
860878 Aug 1998 EP
869511 Oct 1998 EP
878804 Nov 1998 EP
920059 Jun 1999 EP
924766 Jun 1999 EP
933820 Aug 1999 EP
951072 Oct 1999 EP
971360 Jan 2000 EP
980101 Feb 2000 EP
993037 Apr 2000 EP
1073121 Jan 2001 EP
1162663 Dec 2001 EP
1162744 Dec 2001 EP
1179850 Feb 2002 EP
1180799 Feb 2002 EP
1191596 Mar 2002 EP
1204146 May 2002 EP
1204147 May 2002 EP
1209747 May 2002 EP
1233454 Aug 2002 EP
1237193 Sep 2002 EP
1241708 Sep 2002 EP
1253634 Oct 2002 EP
1280205 Jan 2003 EP
1288955 Mar 2003 EP
2197494 Mar 1974 FR
1414228 Nov 1975 GB
S62-007149 Jan 1987 JP
62-272561 Nov 1987 JP
02-294076 Dec 1990 JP
03-171768 Jul 1991 JP
H04-176163 Jun 1992 JP
04-239177 Aug 1992 JP
05-347419 Dec 1993 JP
08-213624 Aug 1996 JP
08-274277 Oct 1996 JP
H08-316337 Nov 1996 JP
09-046688 Feb 1997 JP
09-082912 Mar 1997 JP
10-242470 Sep 1998 JP
11-087649 Mar 1999 JP
12-247735 Aug 2000 JP
12-389106 Dec 2000 JP
13-180633 Jun 2001 JP
2002-009081 Jan 2002 JP
2002-094027 Mar 2002 JP
2002-176154 Jun 2002 JP
2002-246571 Aug 2002 JP
2002-329795 Nov 2002 JP
2002-343886 Nov 2002 JP
2002-353080 Dec 2002 JP
2003-031693 Jan 2003 JP
2003-68877 Mar 2003 JP
2003-086712 Mar 2003 JP
2003-100641 Apr 2003 JP
2003-100900 Apr 2003 JP
2003-132682 May 2003 JP
2003-203967 Jul 2003 JP
2003-243528 Aug 2003 JP
2004-335553 Nov 2004 JP
WO-0124268 Apr 2001 WO
WO-2005008778 Jan 2005 WO
Non-Patent Literature Citations (172)
Entry
Arimoto et al., A Configurable Enhanced T2RAM Macro for System-Level Power Management Unified Memory, 2006, VLSI Symposium, 2 pages.
Arimoto, A High-Density Scalable Twin Transistor RAM (TTRAM) With Verify Control for SOI Platform Memory IPs, Nov. 2007, IEEE J. Solid-State Circuits, vol. 22, No. 11, p. 2611-2619.
Asian Technology Information Program (ATIP) Scoops™, “Novel Capacitorless 1T-DRAM From Single-Gate PD-SOI to Double-Gate FinDRAM”, May 9, 2005, 9 pages.
Assaderaghi et al., “A Dynamic Threshold Voltage MOSFET (DTMOS) for Ultra-Low Voltage Operation”, IEEE IEDM, 1994, p. 809-812.
Assaderaghi et al., “A Dynamic Threshold Voltage MOSFET (DTMOS) for Very Low Voltage Operation”, IEEE Electron Device Letters, vol. 15, No. 12, Dec. 1994, p. 510-512.
Assaderaghi et al., “A Novel Silicon-On-Insulator (SOI) MOSFET for Ultra Low Voltage Operation”, 1994 IEEE Symposium on Low Power Electronics, p. 58-59.
Assaderaghi et al., “Dynamic Threshold-Voltage MOSFET (DTMOS) for Ultra-Low Voltage VLSI”, IEEE Transactions on Electron Devices, vol. 44, No. 3, Mar. 1997, p. 414-422.
Assaderaghi et al., “High-Field Transport of Inversion-Layer Electrons and Holes Including Velocity Overshoot”, IEEE Transactions on Electron Devices, vol. 44, No. 4, Apr. 1997, p. 664-671.
Avci, Floating Body Cell (FBC) Memory for 16-nm Technology with Low Variation on Thin Silicon and 10-nm BOX, Oct. 2008, SOI Conference, 2 pages.
Bae, Evaluation of 1T RAM using Various Operation Methods with SOONO (Silicon-On-ONO) device, Dec. 2008, IEDM, p. 805-808.
Ban et al., Integration of Back-Gate Doping for 15-nm Node Floating Body Cell (FBC) Memory, Components Research, Process Technology Modeling, presented in the 2010 VLSI Symposium on Jun. 17, 2010, 2 pages.
Ban, A Scaled Floating Body Cell (FBC) Memory with High-k+Metal Gate on Thin-Silicon and Thin-BOX for 16-nm Technology Node and Beyond, Jun. 2008, VLSI Symposium, p. 92-93.
Ban, Ibrahim, et al., “Floating Body Cell with Independently-Controlled Double Gates for High Density Memory,” Electron Devices Meeting, 2006. IEDM '06. International, IEEE, p. 1-4, Dec. 2006.
Bawedin, Maryline, et al., A Capacitorless 1T Dram on SOI Based on Dynamic Coupling and Double-Gate Operation, IEEE Electron Device Letters, vol. 29, No. 7, Jul. 2008, p. 795-798.
Blagojevic et al., Capacitorless 1T DRAM Sensing Scheme Automatice Reference Generation, IEEE J.Solid State Circuits, vol. 41, No. 6, pp. 1463-1470, 2006.
Blalock, T., “A High-Speed Clamped Bit-Line Current-Mode Sense Amplifier”, IEEE Journal of Solid-State Circuits, vol. 26, No. 4, Apr. 1991, p. 542-548.
Butt, Scaling Limits of Double Gate and Surround Gate Z-RAM Cells, IEEE Trans. Elec. Dev., vol. 54, No. 9, p. 2255-2262, Sep. 2007.
Chan et al., “Effects of Floating Body on Double Polysilicon Partially Depleted SOI Nonvolatile Memory Cell”, IEEE Electron Device Letters, vol. 24, No. 2, Feb. 2003, p. 75-77.
Chan, et al., “SOI MOSFET Design for All-Dimensional Scaling with Short Channel, Narrow Width and Ultra-thin Films”, IEEE IEDM, 1995, pp. 631-634.
Chi et al., “Programming and Erase with Floating-Body for High Density Low Voltage Flash EEPROM Fabricated on SOI Wafers”, Proceedings 1995 IEEE International SOI Conference, Oct. 1995, pp. 129-130.
Cho et al., “Novel DRAM Cell with Amplified Capacitor for Embedded Application”, IEEE, Jun. 2009, p. 11.2.1-11.2.4.
Cho, A novel capacitor-less DRAM cell using Thin Capacitively-Coupled Thyristor (TCCT), 2005, IEDM, 4 pages.
Choi et al., Current Flow Mechanism in Schottky-Barrier MOSFET and Application to the 1T-DRAM, 2008, International Conference on SSDM, pp. 226-227.
Choi, High Speed Flash Memory and 1T-DRAM on Dopant Segregated Schottky Barrier (DSSB) FinFET SONOS Device for Multi-functional SoC Applications, Dec. 2008, IEDM, pp. 223-226.
Clarke, Junctionless Transistors Could Simply Chip Making, Say Researchers, EE Times, Feb. 2010, www.eetimes.com/showArticle.jhtml?articleID=223100050, 3 pages.
Colinge, J.P., “An SOI voltage-controlled bipolar-MOS device”, IEEE Transactions on Electron Devices, vol. ED-34, No. 4, Apr. 1987, pp. 845-849.
Colinge, Nanowire Transistors Without Junctions, Nature NanoTechnology, vol. 5, 2010, pp. 225-229.
Collaert et al., Optimizing the Readout Bias for the Capacitorless 1T Bulk FinFET RAM Cell, IEEE EDL, vol. 30, No. 12, pp. 1377-1379, Dec. 2009.
Collaert, Comparison of scaled floating body RAM architectures, Oct. 2008, SOI Conference, 2 pages.
Ershov, Optimization of Substrate Doping for Back-Gate Control in SOI T-RAM Memory Technology, 2005, SOI Conference, pp. 1-2.
Ertosun et al., A Highly Scalable Capacitorless Double Gate Quantum Well Single Transistor DRAM: 1T-QW DRAM, 2008, IEEE EDL, pp. 1-3.
Fazan et al., “A Simple 1-Transistor Capacitor-Less Memory Cell for High Performance Embedded DRAMs”, IEEE 2002 Custom Integrated Circuits Conference, Jun. 2002, pp. 99-102.
Fazan, A Highly Manufacturable Capacitor-less 1T-DRAM Concept, 2002, SPIE, 14 pages.
Fazan, et al., “Capacitor-Less 1-Transistor DRAM”, 2002 IEEE International SOI Conference, Oct. 2002, pp. 10-13.
Fazan, P., “MOSFET Design Simplifies DRAM”, EE Times, May 14, 2002 (3 pages).
Fisch, et al., Soft Error Performance of Z-RAM Floating Body Memory, 2006, SOI Conference, Lausanne, Switzerland, 2 pages.
Fisch, et al., Customizing SOI Floating Body Memory Architecture for System Performance and Lower Cost, 2006, SAME Forum, Lausanne, Switzerland, 3 pages.
Fisch, Z-RAM® Ultra-Dense Memory for 90nm and Below, 2006, Hot Chips, 35 pages.
Fossum et al., New Insights on Capacitorless Floating Body DRAM Cells, IEEE EDL, vol. 28, No. 6, pp. 513-516, Jun. 2007.
Fujita, Array Architecture of Floating Body Cell (FBC) with Quasi-Shielded Open Bit Line Scheme for sub-40nm Node, 2008, SOI Conference, 2 pages.
Furuhashi, et al., Scaling Scenario of Floating Body Cell (FBC) Suppressing Vth Variation Due to Random Dopant Fluctuation, Dec. 2008, SOI Conference, 2 pages.
Furuyama et al., “An Experimental 2-bit/Cell Storage DRAM for Macrocell or Memory-on-Logic Application”, IEEE Journal of Solid-State Circuits, vol. 24, No. 2, Apr. 1989, pp. 388-393.
Giffard et al., “Dynamic Effects in SOI MOSFET's”, IEEE, 1991, pp. 160-161.
Gupta et al., SPICE Modeling of Self Sustained Operation (SSO) to Program Sub-90nm Floating Body Cells, Oct. 2009, Conf on Simulation of Semiconductor Processes & Devices, 4 pages.
Han et al., Bulk FinFET Unified-RAM (URAM) Cell for Multifunctioning NVM and Capacitorless 1T-DRAM, IEEE EDL, vol. 29, No. 6, pp. 632-634, Jun. 2008.
Han et al., Partially Depleted SONOS FinFET for Unified RAM (URAM) Unified Function for High-Speed 1T DRAM and Nonvolatile Memory, IEEE EDL, vol. 29, No. 7, pp. 781-783, Jul. 2008.
Han, Energy Band Engineered Unified-RAM (URAM) for Multi-Functioning 1T-DRAM and NVM, Dec. 2008, IEDM, pp. 227-230.
Han, Parasitic BJT Read Method for High-Performance Capacitorless 1T-DRAM Mode in Unified RAM, IEEE EDL, vol. 30, No. 10, pp. 1108-1110, Oct. 2009.
Hara, Y., “Toshiba's DRAM Cell Piggybacks on SOI Wafer”, EE Times, Jun. 2003, 1 page.
Hu, C., “SOI (Silicon-on-Insulator) for High Speed Ultra Large Scale Integration”, Jpn. J. Appl. Phys. vol. 33 (1994) pp. 365-369, Part 1, No. 1B, Jan. 1994.
Idei et al., “Soft-Error Characteristics in Bipolar Memory Cells with Small Critical Charge”, IEEE Transactions on Electron Devices, vol. 38, No. 11, Nov. 1991, pp. 2465-2471.
Ikeda et al., “3-Dimensional Simulation of Turn-off Current in Partially Depleted SOI MOSFETs”, IEIC Technical Report, Institute of Electronics, Information and Communication Engineers, 1998, vol. 97, No. 557 (SDM97 186-198), pp. 27-34.
Inoh et al., “FBC (Floating Body Cell) for Embedded DRAM on SOI”, 2003 Symposium on VLSI Circuits Digest of Technical Papers, Jun. 2003 (2 pages).
Iyer et al., “SOI MOSFET on Low Cost SPIMOX Substrate”, IEEE IEDM, Sep. 1998, pp. 1001-1004.
Jang et al., Highly scalable Z-RAM with remarkably long data retention for DRAM application, Jun. 2009, VLSI, 21 pages.
Jeong et al., “A Capacitor-less 1T DRAM Cell Based on a Surrounding Gate MOSFET with a Vertical Channel”, Technology Development Team, Technology Development Team, Samsung Electronics Co., Ltd., pp. 92-93, May 2007.
Jeong et al., “A New Capacitorless 1T DRAM Cell: Surrounding Gate MOSFET with Vertical Channel (SGVC Cell)”, IEEE Transactions on Nanotechnology, vol. 6, No. 3, May 2007, pp. 352-357.
Jeong et al., “Capacitorless DRAM Cell with Highly Scalable Surrounding Gate Structure”, Extended Abstracts of the 2006 International Conference on Solid State Devices and Materials, pp. 574-575, Yokohama (2006).
Jeong et al., “Capacitorless Dynamic Random Access Memory Cell with Highly Scalable Surrounding Gate Structure”, Japanese Journal of Applied Physics, vol. 46, No. 4B, pp. 2143-2147 (2007).
Kedzierski, J.; “Design Analysis of Thin-Body Silicide Source/Drain Devices”, 2001 IEEE International SOI Conference, Oct. 2001, pp. 21-22.
Kim et al., “Chip Level Reliability on SOI Embedded Memory”, Proceedings 1998 IEEE International SOI Conference, Oct. 1998, pp. 135-136.
Kuo et al., “A Capacitorless Double-Gate DRAM Cell Design for High Density Applications”, IEEE IEDM, Feb. 2002, pp. 843-846.
Kuo et al., “A Capacitorless Double-Gate DRAM Cell”, IEEE Electron Device Letters, vol. 23, No. 6, Jun. 2002, pp. 345-347.
Kuo et al., A Capacitorless Double Gate DRAM Technology for Sub-100-nm Embedded and Stand-Alone Memory Applications, IEEE Trans. Elec.. Dev., vol. 50, No. 12, pp. 2408-2416, Dec. 2003.
Kwon et al., “A Highly Scalable 4F2 DRAM Cell Utilizing a Doubly Gated Vertical Channel”, Extended Abstracts of the 2009 International Conference on Solid State Devices and Materials, UC Berkley, p. 142-143, Sendai (2009).
Lee et al., “A Novel Pattern Transfer Process for Bonded SOI Giga-bit DRAMs”, Proceedings 1996 IEEE International SOI Conference, Oct. 1996, pp. 114-115.
Leiss et al., dRAM Design Using the Taper-Isolated Dynamic RAM Cell, IEEE Transactions on Electron Devices, vol. ED-29, No. 4, Apr. 1982, pp. 707-714.
Lin et al., “Opposite Side Floating Gate SOI FLASH Memory Cell”, IEEE, Mar. 2000, pp. 12-15.
Liu et al., Surface Generation-Recombination Processes of Gate and STI Oxide Interfaces Responsible for Junction Leakage on SOI, Sep. 2009, ECS Transactions, vol. 25, 10 pages.
Liu, Surface Recombination-Generation Processes of Gate, STI and Buried Oxide Interfaces, Responsible for Junction Leakage on SOI, ICSI, May 19, 2009, 2 pages.
Loncar et al., “One of Application of SOI Memory Cell—Memory Array”, IEEE Proc. 22nd International Conference on Microelectronics (MIEL 2000), vol. 2, NI{hacek over (S)}, Serbia, May 14-17, 2000, pp. 455-458.
Lu et al., A Novel Two-Transistor Floating Body/Gate Cell for Low Power Nanoscale Embedded DRAM, Jun. 2008, IEEE Trans. Elec. Dev., vol. 55, No. 6, pp. 1511-1518.
Ma, et al., “Hot-Carrier Effects in Thin-Film Fully Depleted SOI MOSFET's”, IEEE Electron Device Letters, vol. 15, No. 6, Jun. 1994, pp. 218-220.
Malhi et al., “Characteristics and Three-Dimensional Integration of MOSFET's in Small-Grain LPCVD Polycrystalline Silicon”, IEEE Transactions on Electron Devices, vol. ED-32, No. 2, Feb. 1985, pp. 258-281.
Malinge, An 8Mbit DRAM Design Using a 1TBulk Cell, 2005 Symposium on VLSI Circuits Digest of Technical Papers, pp. 358-361.
Mandelman et al, “Floating-Body Concerns for SOI Dynamic Random Access Memory (DRAM)”, Proceedings 1996 IEEE International SOI Conference, Oct. 1996, pp. 136-137.
Matsuoka et al., FBC Potential of 6F2 Single Cell Operation in Multi Gbit Memories Confirmed by a Newly Developed Method for Measuring Signal Sense Margin, 2007, IEEE, pp. 39-42.
Minami, A Floating Body Cell (FBC) fully Compatible with 90nm CMOS Technology(CMOS IV) for 128Mb SOI DRAM, 2005, IEDM Tech. Digest, pp. 317-320 (4 pages).
Mohapatra et al., Effect of Source/Drain Asymmetry on the Performance of Z-RAM® Devices, Oct. 2009, SOI conference, 2 pages.
Morishita, A Capacitorless Twin-Transistor Random Access Memory (TTRAM) on SOI, 2005, CICC, 4 pages.
Morishita, F. et al., “A Configurable Enhanced TTRAM Macro for System-Level Power Management Unified Memory”, IEEE Journal of Solid-State Circuits, vol. 42, No. 4, pp. 853-861, Apr. 2007.
Morishita, F., et al., “A 312-MHz 16-Mb Random-Cycle Embedded DRAM Macro With a Power-Down Data Retention Mode for Mobile Applications”, J. Solid-State Circuits, vol. 40, No. 1, pp. 204-212, 2005.
Morishita, F., et al., “Dynamic Floating Body Control SOI CMOS Circuits for Power Managed Multimedia ULSIs”, Proc. CICC, pp. 263-266, 1997.
Morishita, F., et al., “Leakage Mechanism due to Floating Body and Countermeasure on Dynamic Retention Mode of SOI-DRAM”, Symposium on VLSI Technology Digest of Technical Papers, pp. 141-142, 1995.
Nagoga, Studying of Hot Carrier Effect in Floating Body Soi Mosfets by the Transient Charge Pumping Technique, Switzerland 2003, 2 pages.
Nayfeh, A Leakage Current Model for SOI based Floating Body Memory that Includes the Poole-Frenkel Effect, 2008, SOI Conference, 2 pages.
Nemati, A Novel High Density, Low Voltage SRAM Cell with a Vertical NDR Device, 1998, VLSI Tech. Symp., 2 pages.
Nemati, A Novel Thyristor-based SRAM Cell (T-RAM) for High-Speed, Low-Voltage, Giga-scale Memories, 1999, IEDM Conference, 4 pages.
Nemati, Embedded Volatile Memories-Embedded Tutorial: The New Memory Revolution, New Drives Circuits and Systems, ICCAD 2008, Nov. 2008, San Jose, CA, 23 pages.
Nemati, Fully Planar 0.562 μm2 T-RAM Cell in a 130nm SOI CMOS Logic Technology for High-Density High-Performance SRAMs, 2004, IEDM, 4 pages.
Nemati, Thyristor RAM (T-RAM): A High-Speed High-Density Embedded Memory Technology for Nano-scale CMOS, 2007, Hot Chips Conference, Milpitas, CA, 24 pages.
Nemati, Thyristor-RAM: A Novel Embedded Memory Technology that Outperforms Embedded S RAM/DRAM, 2008, Linley Tech Tour, San Jose, CA, 11 pages.
Nishiguchi et al., Long Retention of Gain-Cell Dynamic Random Access Memory with Undoped Memory Node, IEEE EDL, vol. 28, No. 1, pp. 48-50, Jan. 2007.
Oh, Floating Body DRAM Characteristics of Silicon-On-ONO (SOONO) Devices for System-on-Chip (SoC) Applications, 2007, Symposium on VLSI Technology Digest of Technical Papers, pp. 168-169.
Ohno et al., “Suppression of Parasitic Bipolar Action in Ultra-Thin-Film Fully-Depleted CMOS/SIMOX Devices by Ar-Ion Implantation into Source/Drain Regions”, IEEE Transactions on Electron Devices, vol. 45, No. 5, May 1998, pp. 1071-1076.
Ohsawa et al., “A Memory Using One-Transistor Gain Cell on SOI (FBC) with Performance Suitable for Embedded DRAM's”, 2003 Symposium on VLSI Circuits Digest of Technical Papers, Jun. 2003 (4 pages).
Ohsawa et al., “Memory Design Using a One-Transistor Gain Cell on SOI”, IEEE Journal of Solid-State Circuits, vol. 37, No. 11, Nov. 2002, pp. 1510-1522.
Ohsawa, A 128Mb Floating Body RAM (FBRAM) on SOI with a Multi-Averaging Scheme of Dummy Cell, 2006 Symposium of VLSI Circuits Digest of Tech Papers, (2006), 2 pages.
Ohsawa, et al., An 18.5ns 128Mb SOI DRAM with a Floating Body Cell, 2005, ISSCC, pp. 458-459 & 609 (3 pages).
Ohsawa, Autonomous Refresh of Floating Body Cell (FBC), Dec. 2008, IEDM, pp. 801-804.
Ohsawa, Design of a 128-Mb SOI DRAM Using the Floating Body Cell (FBC), IEEE J. Solid-State Circuits, vol. 41, No. 1, Jan. 2006, pp. 135-145.
Okhonin, A Capacitor-Less 1T-DRAM Cell, IEEE Electron Device Letters, vol. 23, No. 2, Feb. 2002, pp. 85-87.
Okhonin, A SOI Capacitor-less 1T-DRAM Concept, pp. 153-154, 2001, SOI Conference.
Okhonin, et al., Charge Pumping Effects in Partially Depleted SOI MOSFETs, 2003, SOI Conference, 2 pages.
Okhonin, et al., New characterization techniques for SOI and related devices, 2003, ECCTD, 1 page.
Okhonin, et al., New Generation of Z-RAM, 2007, IEDM, Lausanne, Switzerland, 3 pages.
Okhonin, Principles of Transient Charge Pumping on Partially Depleted SOI MOSFETs, May 2002, IEEE Electron Device Letters, vol. 23, No. 5, pp. 279-281.
Okhonin, et al., Transient Charge Pumping for Partially and Fully Depleted SOI MOSFETs, 2002, SOI Conference, 2 pages.
Okhonin, Transient effects in PD SOI MOSFETs and potential DRAM applications, 2002, Solid-State Electronics, vol. 46, pp. 1709-1713.
Okhonin, et al., Ultra-scaled Z-RAM cell, 2008, SOI Conference, 2 pages.
Okhonin, Z-RAM® (Limits of DRAM), 2009, ESSDERC, Lausanne, Switzerland, 64 pages.
Padilla, Alvaro, et al., “Feedback FET: A Novel Transistor Exhibiting Steep Switching Behavior at Low Bias Voltages,” Electron Devices Meeting, 2008. IEDM 2008. IEEE International, Dec. 5-17, 2008, pp. 171-174.
Park, Fully Depleted Double-Gate 1T-DRAM Cell with NVM Function for High Performance and High Density Embedded DRAM, 2009, IMW, pp. 32-33.
Pelella et al., “Low-Voltage Transient Bipolar Effect Induced by Dynamic Floating-Body Charging in PD/SOI MOSFETs”, Final Camera Ready Art, SOI Conference, Oct. 1995, 2 pages.
Portmann et al., “A SOI Current Memory for Analog Signal Processing at High Temperature”, 1999 IEEE International SOI Conference, Oct. 1999, pp. 18-19.
Puget et al., 1T Bulk eDRAM using Gate-Induced Drain-Leakage (GIDL) Current for High Speed and Low Power applications, 2008, pp. 224-225, SSDM.
Puget et al., Quantum effects influence on thin silicon film capacitor-less DRAM performance, 2006, SOI Conference, 2 pages.
Puget, FDSOI Floating Body Cell eDRAM Using Gate-Induced Drain-Leakage (GIDL) Write Current for High Speed and Low Power Applications, 2009, IMW, pp. 28-29.
Ranica et al., 1T-Bulk DRAM cell with improved performances: the way to scaling, 2005, ICMTD, 4 pages.
Ranica, et al., A capacitor-less DRAM cell on 75nm gate length, 16nm thin Fully Depleted SOI device for high density embedded memories, 2004, IEDM, 4 pages.
Ranica, A One Transistor Cell on Bulk Substrate (1T-Bulk) for Low-Cost and High Density eDRAM, 2004, Symposium on VLSI Technology Digest of Technical Papers, pp. 128-129 (2 pages).
Rodder et al., “Silicon-On-Insulator Bipolar Transistors”, IEEE Electron Device Letters, vol. EDL-4, No. 6, Jun. 1983, pp. 193-195.
Rodriguez, Noel, et al., A-RAM: Novel Capacitor-less DRAM Memory, SOI Conference, 2009 IEEE International, Oct. 5-8, 2009 pp. 1-2.
Roy, et al., Thyristor-Based Volatile Memory in Nano-Scale CMOS, 2006, ISSCC, 10 pages.
Sailing et al., Reliability of Thyristor Based Memory Cells, 2009, IRPS, 7 pages.
Sasaki et al., Charge Pumping in SOS-MOS Transistors, IEEE Trans. Elec. Dev., vol. ED-28, No. 1, Jan. 1981, pp. 48-52.
Sasaki et al., Charge Pumping SOS-MOS Transistor Memory, 1978, IEDM, pp. 356-359 (4 pages and clear graph of Fig. 10).
Schloesser et al., “ A 6F2 Buried Wordline DRAM Cell for 40nm and Beyond”, IEEE, Qimonda Dresden GmbH & Co., pp. 809-812 (2008).
Shino et al., Floating Body RAM Technology and its Scalability to 32nm Node and Beyond, 2006, IEDM, 4 pages.
Shino et al., Operation Voltage Dependence of Memory Cell Characteristics in Fully Depleted Floating Body Cell, IEEE Trans. Elec. Dev., vol. 25, No. 10, Oct. 2005, pp. 2220-2226.
Shino, et al., Fully-Depleted FBC (Floating Body Cell) with Enlarged Signal Window and Excellent Logic Process Compatibility, 2004, IEDM, 4 pages.
Shino, et al. Highly Scalable FBC (Floating Body Cell) with 25nm BOX Structure for Embedded DRAM Applications, 2004, Symposium on VLSI Technology, pp. 132-133 (2 pages).
Sim et al., “Source-Bias Dependent Charge Accumulation in P+-Poly Gate SOI Dynamic Random Access Memory Cell Transistors”, Jpn. J. Appl. Phys. vol. 37 (1998) pp. 1260-1263, Part 1, No. 3B, Mar. 1998.
Singh, et al., A 2ns-Read-Latency 4Mb Embedded Floating-Body Memory Macro in 45nm SOI Technology, Feb. 2009, ISSCC, 3 pages.
Sinha et al., “In-Depth Analysis of Opposite Channel Based Charge Injection in SOI MOSFETs and Related Defect Creation and Annihilation”, Elsevier Science, Microelectronic Engineering 28, 1995, pp. 383-386.
Song, et al., 55 nm Capacitor-less 1T DRAM Cell Transistor with Non-Overlap Structure, Dec. 2008, IEDM, pp. 797-800.
Stanojevic et al., “Design of a SOI Memory Cell”, IEEE Proc. 21st International Conference on Microelectronics (MIEL '97), vol. 1, NIS, Yugoslavia, Sep. 14-17, 1997, pp. 297-300.
Su et al., “Studying the Impact of Gate Tunneling on Dynamic Behaviors of Partially-Depleted SOI CMOS Using BSIMPD”, IEEE Proceedings of the International Symposium on Quality Electronic Design (ISQED '02), Apr. 2002 (5 pages).
Suma et al., “An SOI-DRAM with Wide Operating Voltage Range by CMOS/SIMOX Technology”, 1994 IEEE International Solid-State Circuits Conference, pp. 138-139.
Tack et al., “The Multi-Stable Behaviour of SOI-NMOS Transistors at Low Temperatures”, Proc. 1988 SOS/SOI Technology Workshop (Sea Palms Resort, St. Simons Island, GA, Oct. 1988), p. 78.
Tack et al., “The Multistable Charge Controlled Memory Effect in SOI Transistors at Low Temperatures”, IEEE Workshop on Low Temperature Electronics, Aug. 7-8, 1989, University of Vermont, Burlington, pp. 137-141.
Tack et al., “The Multistable Charge-Controlled Memory Effect in SOI MOS Transistors at Low Temperatures”, IEEE Transactions on Electron Devices, vol. 37, No. 5, May 1990, pp. 1373-1382.
Tack, et al., “An Analytical Model for the Misis Structure in SOI MOS Devices”, Solid-State Electronics vol. 33, No. 3, 1990, pp. 357-364.
Tanabe et al., A 30-ns 64-MB DRAM with Built-in-Self-Test and Self-Repair Function, IEEE Journal of Solid State Circuits, vol. 27, No. 11, Nov. 1992, pp. 1525-1533.
Tanaka et al., “Scalability Study on a Capacitorless 1T-DRAM: From Single-gate PD-SOI to Double-gate FINDRAM”, 2004 IEEE, 4 pages.
Tang, et al., Highly Scalable Capacitorless DRAM Cell on Thin-Body with Band-gap Engineered Source and Drain, Extended Abstracts of the 2009 ICSSDM, Sendai, 2009, pp. 144-145.
Terauchi et al., “Analysis of Floating-Body-Induced Leakage Current in 0.15 μm SOI DRAM”, Proceedings 1996 IEEE International SOI Conference, Oct. 1996, pp. 138-139.
Thomas et al., “An SOI 4 Transistors Self-Refresh Ultra-Low-Voltage Memory Cell”, IEEE, Mar. 2003, pp. 401-404.
Tomishima, et al., “A Long Data Retention SOI DRAM with the Body Refresh Function”, IEICE Trans. Electron., vol. E80-C, No. 7, Jul. 1997, pp. 899-904.
Tsaur et al., “Fully Isolated Lateral Bipolar-MOS Transistors Fabricated in Zone-Melting-Recrystallized Si Films on SiO2”, IEEE Electron Device Letters, vol. EDL-4, No. 8, Aug. 1983, pp. 269-271.
Tu, et al., “Simulation of Floating Body Effect in SOI Circuits Using BSIM3SOI”, Proceedings of Technical Papers (IEEE Cat No. 97TH8303), Jun. 1997, pp. 339-342.
Villaret et al., “Mechanisms of Charge Modulation in the Floating Body of Triple-Well nMOSFET Capacitor-less DRAMs”, Proceedings of the INFOS 2003, Insulating Films on Semiconductors, 13th Bi-annual Conference, Jun. 18-20, 2003, Barcelona (Spain), (2 pages).
Villaret et al., “Triple-Well nMOSFET Evaluated as a Capacitor-Less DRAM Cell for Nanoscale Low-Cost & High Density Applications”, Handout at Proceedings of 2003 Silicon Nanoelectronics Workshop, Jun. 8-9, 2003, Kyoto, Japan (2 pages).
Villaret et al., Further Insight into the Physics and Modeling of Floating Body Capacitorless DRAMs, IEEE Trans. Elec. Dev., vol. 52, No. 11, Nov. 2005, pp. 2447-2454.
Wang et al., A Novel 4.5F2 Capacitorless Semiconductor Memory Device, 2008, IEEE EDL, pp. 1-2.
Wann et al., “A Capacitorless DRAM Cell on SOI Substrate”, IEEE IEDM, 1993, pp. 635-638.
Wann et al., “High-Endurance Ultra-Thin Tunnel Oxide in MONOS Device Structure for Dynamic Memory Application”, IEEE Electron Device Letters, vol. 16, No. 11, Nov. 1995, pp. 491-493.
Wei, A., “Measurement of Transient Effects in SOI DRAM/SRAM Access Transistors”, IEEE Electron Device Letters, vol. 17, No. 5, May 1996, pp. 193-195.
Wouters, et al., “Characterization of Front and Back Si-SiO2 Interfaces in Thick- and Thin-Film Silicon-on-Insulator MOS Structures by the Charge-Pumping Technique”, IEEE Transactions on Electron Devices, vol. 36, No. 9, Sep. 1989, pp. 1746-1750.
Wu, Dake, “Performance Improvement of the Capacitorless DRAM Cell with Quasi-SOI Structure Based on Bulk Substrate,” Extended Abstracts of the 2009 ICSSDM, Sendai, 2009, pp. 146-147.
Yamanaka et al., “Advanced TFT SRAM Cell Technology Using a Phase-Shift Lithography”, IEEE Transactions on Electron Devices, vol. 42, No. 7, Jul. 1995, pp. 1305-1313.
Yamauchi et al., “High-Performance Embedded SOI DRAM Architecture for the Low-Power Supply”, IEEE Journal of Solid-State Circuits, vol. 35, No. 8, Aug. 2000, pp. 1169-1178.
Yamawaki, M., “Embedded DRAM Process Technology”, Proceedings of the Symposium on Semiconductors and Integrated Circuits Technology, 1998, vol. 55, pp. 38-43.
Yang, et al., Optimization of Nanoscale Thyristors on SOI for High-Performance High-Density Memories, 2006, SOI Conference, 2 pages.
Yoshida et al., “A Design of a Capacitorless 1-T-DRAM Cell Using Gate-induced Drain Leakage (GIDL) Current for Low-Power and High-speed Embedded Memory”, 2003 IEEE, 4 pages.
Yoshida et al., “A Study of High Scalable DG-FinDRAM”, IEEE Electron Device Letters, vol. 26, No. 9, Sep. 2005, pp. 655-657.
Yoshida et al., A Capacitorless 1T-DRAM Technology Using Gate-Induced Drain-Leakage (GIDL) Current for Low Power and High Speed Embedded Memory, IEEE Trans. Elec. Dev., vol. 53, No. 4, Apr. 2006, pp. 692-697.
Yu et al., Hot-Carrier Effect in Ultra-Thin-Film (UTF) Fully-Depleted SOI MOSFET's, 54th Annual Device Research Conference Digest (Cat. No. 96TH8193), Jun. 1996, pp. 22-23.
Yu et al., “Hot-Carrier-Induced Degradation in Ultra-Thin-Film Fully-Depleted SOI MOSFETs”, Solid-State Electronics, vol. 39, No. 12, 1996, pp. 1791-1794.
Yu et al., “Interface Characterization of Fully-Depleted SOI MOSFET by a Subthreshold I-V Method”, Proceedings 1994 IEEE International SOI Conference, Oct. 1994, pp. 63-64.
Yun et al., Analysis of Sensing Margin in Silicon-On-ONO (SOONO) Device for the Capacitor-less RAM Applications, 2007, SOI Conference, 2 pages.
Zhou, Physical Insights on BJT-Based 1T DRAM Cells, IEEE Electron Device Letters, vol. 30, No. 5, May 2009, pp. 565-567.
Related Publications (1)
Number Date Country
20130329501 A1 Dec 2013 US
Provisional Applications (1)
Number Date Country
61174075 Apr 2009 US
Continuations (1)
Number Date Country
Parent 12770249 Apr 2010 US
Child 13964777 US