The test mode controlling unit 100 controls the signal transferring unit 200 to transfer one of the power signal PL and the test signal TL. The signal transferring unit 200 transfers the power signal PL from the multipurpose pad 500 to a core area (not shown) and the test signal TL between the multipurpose pad 500 and the core area while operating in test mode. That is, the signal transferring unit 200 receives and outputs the test signal TL having a testing result to the multipurpose pad 500, and receives a test signal from the multipurpose pad 500 to output the test signal TL.
The first electrostatics preventing unit 300 and the second electrostatics preventing unit 400 prevent electrostatics through the multipurpose pad 500 from transferring into the core area.
The semiconductor device according to the present invention has a noticeable feature that the multipurpose pad 500 is used for transferring either a test signal or a normal signal (power signal). While operating in a test mode, a test signal from the external is transferred to the signal transferring unit 200 through the multipurpose pad 500 or a test signal having a testing result is transferred externally through the signal transferring unit 200 to the multipurpose pad 500. Alternatively, while operating in normal mode, a external power signal supplied through the multipurpose pad 500 is transferred to the signal transferring unit 200. Also, a normal signal can be transferred between the multipurpose pad 500 and the signal transferring unit 200.
The semiconductor device according to the present invention has limited pads like a conventional semiconductor device. However, the semiconductor device according to the present invention includes multipurpose pads which can receive a power signal or transfer a test signal. In a test mode, a number of test signals corresponding to various test modes can be input to the semiconductor device using the multipurpose pads and semiconductor manufacturers can receive testing signals having a test result through the multipurpose pads. Therefore, various tests of the semiconductor device can be executed although the semiconductor device has a limited number of pads.
Especially, the multipurpose pads are used for receiving power signals in this embodiment. As demand for increased operating speed and decreased levels of power supply voltage of semiconductor devices grows, the proportion of pads used for power signals included in semiconductor devices rises relatively. For instance, recently, the rate of pads for power signals in semiconductor devices has reached about 20%. The lower the level of a power supply voltage, the more pads for power signals are needed because of the increasing susceptibility of a semiconductor device to external noises. Therefore, if many pads for power signals are used for testing, many various test signals can be input to a semiconductor device. Then, various tests can be executed, corresponding testing results can be checked, and as a result, it contributes to increased yield for fabricated semiconductor devices.
Typically, the various tests of semiconductor devices can be executed on a wafer level. In order that the various tests are executed on a wafer level, the fuse F of the test mode controlling unit 100 is not blown. The selecting signal OUT has a logic low level and the transmission gate T3 of the signal transferring unit 200 is turned on. A test signal is transferred between the core area and the multipurpose pad 500.
After the conclusion of wafer level tests, the fuse F of the test mode controlling unit 100 is blown. Then, the selecting signal OUT has a logic high level and the transmission gate T4 of the signal transferring unit 200 is turned on. Then, the multipurpose pad 500 is used for transferring a power signal into the core area through the signal transferring unit 200.
In case that the semiconductor device according to the present invention is a semiconductor memory device, the multipurpose pad 500 may be used for receiving a biasing voltage which is required for the operation of the core area, a core voltage, a low voltage, a high voltage, a precharge voltage, a plate voltage, a reference voltage, a power-up signal, etc. The biasing voltage is a voltage required on an operation of the core area. The core voltage is a voltage for operating a cell area of the memory device. The low voltage is lower than a ground voltage supplied to the memory device and is usually used as a bulk bias voltage of NMOS transistors in the memory device. The high voltage is higher than a power supply voltage supplied to the memory device and is usually used as a bulk bias voltage of PMOS transistors and a turn-on voltage of NMOS transistors in the memory device. The precharge voltage is a voltage for a precharge operation. The plate voltage is a voltage supplied to a plate node of a cell array in the memory device. The reference voltage is a voltage used for comparing a voltage of the memory device. The power-up signal is a check signal generated from a power detecting circuit in the memory device.
Finally, although the semiconductor device according to the present invention has a limited number of pads, various testing signals can be input to the semiconductor device and the test results corresponding the input testing signals can be checked through multipurpose pads. Therefore, it is easier to fabricate semiconductor devices with a higher reliability by the prevent invention.
While the present invention has been described with respect to the specific embodiments, it will be apparent to those skilled in the art that various changes and modifications may be made without departing from the spirit and scope of the invention as defined in the following claims.
Number | Date | Country | Kind |
---|---|---|---|
2006-0083743 | Aug 2006 | KR | national |