Semiconductor device with multipurpose pad

Information

  • Patent Application
  • 20080088334
  • Publication Number
    20080088334
  • Date Filed
    December 29, 2006
    17 years ago
  • Date Published
    April 17, 2008
    16 years ago
Abstract
It is provided a semiconductor device with an ability to receive various test signals and check test results in spite of a limited number of pads. The semiconductor device includes a signal transferring unit for transferring a power signal input through a multipurpose pad into a core area or delivering a test signal between the multipurpose pad and the core area while operating in a test mode and a test mode controlling unit for controlling the signal transferring unit to transfer one of the power voltage and the test signal.
Description

BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows a block diagram of an exemplary embodiment of a semiconductor device in accordance to the present invention.



FIG. 2 shows an exemplary schematic diagram of the test mode controlling unit in FIG. 1.



FIG. 3 shows an exemplary schematic diagram of the signal transferring unit in FIG. 1.





DESCRIPTION OF SPECIFIC EMBODIMENTS


FIG. 1 shows a block diagram of an exemplary embodiment of a semiconductor device in accordance to the present invention. The semiconductor device includes a test mode controlling unit 100, a signal transferring unit 200, a first electrostatics preventing unit 300, a second electrostatics preventing unit 400 and a multipurpose pad 500. The multipurpose pad 500 is used for transferring a test signal TL on test mode and for transferring a power signal PL on normal mode. The power signal may be a power supply voltage or a ground voltage VSS.


The test mode controlling unit 100 controls the signal transferring unit 200 to transfer one of the power signal PL and the test signal TL. The signal transferring unit 200 transfers the power signal PL from the multipurpose pad 500 to a core area (not shown) and the test signal TL between the multipurpose pad 500 and the core area while operating in test mode. That is, the signal transferring unit 200 receives and outputs the test signal TL having a testing result to the multipurpose pad 500, and receives a test signal from the multipurpose pad 500 to output the test signal TL.


The first electrostatics preventing unit 300 and the second electrostatics preventing unit 400 prevent electrostatics through the multipurpose pad 500 from transferring into the core area.



FIG. 2 shows an exemplary schematic diagram of the test mode controlling unit in FIG. 1. The test mode controlling unit 100 generates a selection signal OUT for the signal transferring unit 200 for selecting one of the power signal PL and the test signal TL depending on whether a fuse F is blown or not. The test mode controlling unit 100 includes the fuse F coupled to an external power voltage VEXT, a first MOS transistor T1 having a gate connected to the ground voltage VSS and a first terminal connected to the fuse F, a second MOS transistor T2 having a gate connected to a control signal PP, a first terminal connected to the second terminal of the first MOS transistor T1 and the second terminal connected to the ground voltage VSS, and an inverter I1 for inverting a logic level of the first terminal of the second MOS transistor T2 to output the selection signal OUT.



FIG. 3 shows an exemplary schematic diagram of the signal transferring unit in FIG. 1. The signal transferring unit 200 includes a first transmission gate T3 for transferring the test signal TL in response to a first logic level of the selection signal OUT and a second transmission gate T4 for transferring the power signal in response to a second logic level of the selection signal OUT.


The semiconductor device according to the present invention has a noticeable feature that the multipurpose pad 500 is used for transferring either a test signal or a normal signal (power signal). While operating in a test mode, a test signal from the external is transferred to the signal transferring unit 200 through the multipurpose pad 500 or a test signal having a testing result is transferred externally through the signal transferring unit 200 to the multipurpose pad 500. Alternatively, while operating in normal mode, a external power signal supplied through the multipurpose pad 500 is transferred to the signal transferring unit 200. Also, a normal signal can be transferred between the multipurpose pad 500 and the signal transferring unit 200.


The semiconductor device according to the present invention has limited pads like a conventional semiconductor device. However, the semiconductor device according to the present invention includes multipurpose pads which can receive a power signal or transfer a test signal. In a test mode, a number of test signals corresponding to various test modes can be input to the semiconductor device using the multipurpose pads and semiconductor manufacturers can receive testing signals having a test result through the multipurpose pads. Therefore, various tests of the semiconductor device can be executed although the semiconductor device has a limited number of pads.


Especially, the multipurpose pads are used for receiving power signals in this embodiment. As demand for increased operating speed and decreased levels of power supply voltage of semiconductor devices grows, the proportion of pads used for power signals included in semiconductor devices rises relatively. For instance, recently, the rate of pads for power signals in semiconductor devices has reached about 20%. The lower the level of a power supply voltage, the more pads for power signals are needed because of the increasing susceptibility of a semiconductor device to external noises. Therefore, if many pads for power signals are used for testing, many various test signals can be input to a semiconductor device. Then, various tests can be executed, corresponding testing results can be checked, and as a result, it contributes to increased yield for fabricated semiconductor devices.


Typically, the various tests of semiconductor devices can be executed on a wafer level. In order that the various tests are executed on a wafer level, the fuse F of the test mode controlling unit 100 is not blown. The selecting signal OUT has a logic low level and the transmission gate T3 of the signal transferring unit 200 is turned on. A test signal is transferred between the core area and the multipurpose pad 500.


After the conclusion of wafer level tests, the fuse F of the test mode controlling unit 100 is blown. Then, the selecting signal OUT has a logic high level and the transmission gate T4 of the signal transferring unit 200 is turned on. Then, the multipurpose pad 500 is used for transferring a power signal into the core area through the signal transferring unit 200.


In case that the semiconductor device according to the present invention is a semiconductor memory device, the multipurpose pad 500 may be used for receiving a biasing voltage which is required for the operation of the core area, a core voltage, a low voltage, a high voltage, a precharge voltage, a plate voltage, a reference voltage, a power-up signal, etc. The biasing voltage is a voltage required on an operation of the core area. The core voltage is a voltage for operating a cell area of the memory device. The low voltage is lower than a ground voltage supplied to the memory device and is usually used as a bulk bias voltage of NMOS transistors in the memory device. The high voltage is higher than a power supply voltage supplied to the memory device and is usually used as a bulk bias voltage of PMOS transistors and a turn-on voltage of NMOS transistors in the memory device. The precharge voltage is a voltage for a precharge operation. The plate voltage is a voltage supplied to a plate node of a cell array in the memory device. The reference voltage is a voltage used for comparing a voltage of the memory device. The power-up signal is a check signal generated from a power detecting circuit in the memory device.


Finally, although the semiconductor device according to the present invention has a limited number of pads, various testing signals can be input to the semiconductor device and the test results corresponding the input testing signals can be checked through multipurpose pads. Therefore, it is easier to fabricate semiconductor devices with a higher reliability by the prevent invention.


While the present invention has been described with respect to the specific embodiments, it will be apparent to those skilled in the art that various changes and modifications may be made without departing from the spirit and scope of the invention as defined in the following claims.

Claims
  • 1. A semiconductor device, comprising: a signal transferring unit for transferring a power signal input through a multipurpose pad into a core area or delivering a test signal between the multipurpose pad and the core area while operating in a test mode; anda test mode controlling unit for controlling the signal transferring unit to transfer one of the power signal and the test signal.
  • 2. The semiconductor device of claim 1, wherein the test mode controlling unit generates a selection signal into the signal transferring unit for selecting one of the power signal and the test signal depending on whether a fuse included in the test mode controlling unit is blown or not.
  • 3. The semiconductor device of claim 2, wherein the test mode controlling unit includes: the fuse coupled to an external power voltage;a first MOS transistor having a gate connected to a ground voltage and a first terminal coupled to the fuse;a second MOS transistor having a gate connected to a control signal, a first terminal connected to the second terminal of the second MOS transistor and the second terminal connected to the ground voltage; anda inverter for inverting a logic level of the first terminal of the first MOS transistor to output the selection signal.
  • 4. The semiconductor device of claim 3, wherein the signal transferring unit includes: a first transmission gate for transferring the test signal in response to a first logic level of the selection signal; anda second transmission gate for transferring the power signal in response to a second logic level of the selection signal.
  • 5. The semiconductor device of claim 1, wherein the power signal is one of a power supply voltage and a ground voltage.
  • 6. The semiconductor device of claim 1 further comprises an electrostatics prevention circuit between the multipurpose pad and the signal transferring unit.
  • 7. The semiconductor device of claim 1, wherein the test signal is transferred to the signal transferring unit through the multipurpose pad or the test signal is transferred externally through the signal transferring unit to the multipurpose pad.
  • 8. A semiconductor device, comprising: a multipurpose pad;a signal transferring unit for transferring a normal signal between the multipurpose pad and a core area while operating in a normal mode and a test signal between the multipurpose pad and the core area while operating in a test mode; anda test mode controlling unit for controlling the signal transferring unit to transfer one of the power signal and the test signal.
  • 9. The semiconductor device of claim 8, wherein the test mode controlling unit generates a selection signal into the signal transferring unit for selecting one of the power signal and the test signal depending on whether a fuse in the test mode controlling unit is blown or not.
  • 10. The semiconductor device of claim 9, wherein the test mode controlling unit includes: the fuse coupled to the external power voltage;a first MOS transistor having a gate connected to a ground voltage and a first terminal coupled to the fuse;a second MOS transistor having a gate connected to a control signal, a first terminal connected to the second terminal of the second MOS transistor and the second terminal connected to the ground voltage; anda inverter for inverting a logic level of the first terminal of the first MOS transistor to output the selection signal.
  • 11. The semiconductor device of claim 3, wherein the signal transferring unit includes: a first transmission gate for transferring the test signal in response to a first logic level of the selection signal; anda second transmission gate for transferring the normal signal in response to a second logic level of the selection signal.
Priority Claims (1)
Number Date Country Kind
2006-0083743 Aug 2006 KR national