This application claims priority to Japanese Patent Application No. 2015-107287 filed on May 27, 2015, the entire contents of which are hereby incorporated by reference into the present application.
A technique disclosed herein relates to a semiconductor device comprising a trench gate.
Japanese Patent Application Publication No. 2013-12647 A discloses a semiconductor device including a trench gate. The trench gate extends from a front surface of a semiconductor substrate toward a deep portion of the semiconductor substrate. It is known that an electric field concentrates on a part of a side surface of the trench gate that is located near the front surface of the semiconductor substrate. For this reason, electrons that are implanted from an n-type source region provided in this part may leak to a gate electrode beyond a gate insulation film. Japanese Patent Application Publication No. 2013-12647 A discloses a technique of selectively thickening a part of the gate insulation film that is located near the front surface of the semiconductor substrate. When the part of the gate insulation film that is located near the front surface of the semiconductor substrate has been selectively made thicker, the leakage at this part is suppressed.
However, it is difficult to make a thick gate insulation film of high quality. It is an object of the present teachings to provide a technique of suppressing leakage in a part of a side surface of a trench gate that is located near a front surface of a semiconductor substrate.
In one aspect of the present teachings, a semiconductor device disclosed herein comprises a semiconductor substrate and a trench gate extending from a front surface of the semiconductor substrate toward a deep portion of the semiconductor substrate. The semiconductor substrate comprises a drift region of a first conductive type, a body region of a second conductive type, a source region of the first conductive type and a front surface region of the second conductive type. The drift region is in contact with the trench gate. The body region is disposed above the drift region and is in contact with the trench gate. The source region is disposed above the body region, exposed on the front surface of the semiconductor substrate and is in contact with the trench gate. The front surface region is disposed above the source region, exposed on the front surface of the semiconductor substrate and is in contact with the trench gate.
The front surface region of the semiconductor device according to the above aspect is disposed in a part of a side surface of the trench gate that is located near the front surface of the semiconductor substrate and is of the opposite conductivity type to the source region. As such, the front surface region can prevent carriers that are implanted from the source region from leaking to a gate electrode beyond a gate insulation film. In the semiconductor device according to the aspect, the leakage in the part of the side surface of the trench gate that is located near the front surface of the semiconductor substrate is suppressed.
As shown in
The semiconductor substrate 10 is a substrate made of silicon carbide (SiC). The semiconductor substrate 10 comprises an n+-type drain region 11, an n−-type drift region 12, a p−-type body region 13, a p+-type body contact region 14, an n+-type source region 15, and a p+-type front surface region 16. As shown in
The drain region 11 is disposed in a back layer portion of the semiconductor substrate 10 and exposed on a back surface 10b of the semiconductor substrate 10. The drain region 11 is also a foundation substrate on which the drift region 12, which will be described below, epitaxially grows. The drain region 11 is in ohmic contact with a drain electrode (not illustrated) covering the back surface 10b of the semiconductor substrate 10. In one example, it is desirable that the drain region 11 have an impurity concentration of more than approximately 1×1019 cm−3.
The drift region 12 is provided above the drain region 11. The drift region 12 is formed by crystal-growing from a front surface of the drain region 11 through an epitaxial growth technique. The drift region 12 has an impurity concentration that is constant along a thickness direction of the semiconductor substrate 10. In one example, it is desirable that the drift region 12 have an impurity concentration of approximately 1×1015 to 5×1016 cm−3.
The body region 13 is provided above the drift region 12 and disposed in a front layer portion of the semiconductor substrate 10. The body region 13 is formed by introducing aluminum into the front layer portion of the semiconductor substrate 10 through an ion implantation technique. In one example, it is desirable that the body region 13 have a dose amount of approximately 1×1011 to 1×1013 cm−2 and a peak concentration of approximately 1×1016 to 1×1018 cm−3. Alternatively, the body region 13 may be formed by crystal-growing from a front surface of the drift region 12 through the epitaxial growth technique.
The body contact region 14 is provided above the body region 13, disposed in the front layer portion of the semiconductor substrate 10, and exposed on a front surface 10a of the semiconductor substrate 10. The body contact region 14 is formed by introducing aluminum into the front layer portion of the semiconductor substrate 10 through the ion implantation technique. The body contact region 14 is in ohmic contact with a source electrode (not illustrated) covering the front surface 10a of the semiconductor substrate 10. In one example, it is desirable that the body contact region 14 have a dose amount of approximately 1×1014 to 1×1015 cm−2 and a peak concentration of approximately 1×1019 to 2×1020 cm−3. It should be noted that the body contact region 14 may be formed in the same step as the front surface region 16, which will be described below. This reduces a number of manufacturing steps, thus reducing manufacturing costs. Further, when formed in the same step as the front surface region 16, the body contact region 14 has the same depth as the front surface region 16.
The source region 15 is provided above the body region 13, disposed in the front layer portion of the semiconductor substrate 10, and exposed on the front surface 10a of the semiconductor substrate 10. The source region 15 is separated from the drift region 12 by the body region 13. The source region 15 is formed by introducing nitrogen or phosphorus into the front layer portion of the semiconductor substrate 10 through the ion implantation technique. The source region 15 is in ohmic contact with the source electrode (not illustrated) covering the front surface 10a of the semiconductor substrate 10. In one example, it is desirable that the source region 15 have a dose amount of approximately 1×1014 to 5×1015 cm−2 and a peak concentration of approximately 1×1019 to 5×1020 cm−3.
The front surface region 16 is provided above the source region 15, disposed in the front layer portion of the semiconductor substrate 10, and exposed on the front surface 10a of the semiconductor substrate 10. The front surface region 16 is formed by introducing aluminum into the front layer portion of the semiconductor substrate 10 through the ion implantation technique. The front surface region 16 is in ohmic contact with the source electrode (not illustrated) covering the front surface 10a of the semiconductor substrate 10. In one example, it is desirable that the front surface region 16 have a dose amount of approximately 1×1014 to 5×1015 cm−2 and a peak concentration of approximately 1×1019 to 5×1020 cm−3.
The trench gate 20 is provided in a trench 20a extending from the front surface 10a of the semiconductor substrate 10 toward a deep portion of the semiconductor substrate 10. The trench gate 20 includes a gate insulation film 22 and a gate electrode 24. The trench gate 20 penetrates the front surface region 16, the source region 15, and the body region 13 and reaches the drift region 12. The front surface region 16, the source region 15, and the body region 13 are in contact with a side surface of the trench gate 20, and the drift region 12 is in contact with the side surface and a bottom surface of the trench gate 20. The gate insulation film 22 is provided on an inner wall of the trench 20a and made of silicon oxide. The gate insulation film 22 is deposited on the inner wall of the trench 20a through a CVD technique. The gate electrode 24 is at least partially surrounded, e.g. on the sides and edges, with the gate insulation film 22 and made of polysilicon containing impurities. The gate electrode 24 is filled in the trench 20a through the CVD technique after the formation of the gate insulation film 22 on the inner wall of the trench 20a.
As shown in
As shown in
As shown in
As shown in
Next, operation of the semiconductor device 1 will be described with reference to
The application of a positive voltage to the gate electrode 24 of the trench gate 20 causes an electric field to concentrate on a part of the pair of the side surfaces 20A and 20B of the trench gate 20 that is located near the front surface 10a of the semiconductor substrate 10. In the semiconductor device 1, the front surface region 16 is provided in correspondence with this part. The front surface region 16 is configured as being of the opposite conductivity type to the source region 15. For this reason, in this place on which the electric field concentrates, the front surface region 16 can prevent electrons that are implanted from the source region 15 from flowing to the gate electrode 24 beyond the gate insulation film 22.
Furthermore, as shown in
Further, the semiconductor substrate 10 of the semiconductor device 1 is made of silicon carbide. In the semiconductor device 1 comprising the semiconductor substrate 10 made of silicon carbide, the gate insulation film 22 of the trench gate 20 is low in quality. Reasons of this are because a comparison of theoretical values shows that a barrier (φB) between silicon carbide and silicon oxide is lower than a barrier (φB) between silicon and silicon oxide, and further because of an effect brought forth by shapes (concentration of an electric field on a trench protrusion). However, in the semiconductor device 1, the leakage can be suppressed even with such a low-quality gate insulation film 22, as the front surface region 16 and the high concentration front surface region 17 are provided. Thus, the technique of providing the front surface region 16 and the high concentration front surface region 17 is useful particularly in a case where the semiconductor substrate 10 is made of silicon carbide.
Further, the semiconductor device 1 is configured such that the front surface region 16 makes contact with the body contact region 14 in the terminal region. The front surface region 16 is configured to have a narrower width than the source region 15 and may have difficulty in making direct contact with the source electrode (not illustrated) covering the front surface 10a of the semiconductor substrate 10. Even in such a case, the semiconductor device 1 is configured such that the front surface 16 and the source electrode (not illustrated) can be electrically connected to each other via the body contact region 14.
As for the thickness of the gate insulation film 22, a depression may be provided in an inner surface side of the gate insulation film 22 as in the semiconductor device 2 shown in
Some of the features characteristic to above-described embodiments will herein be listed. It should be noted that the respective technical elements are independent of one another, and are useful solely or in combinations. The combinations thereof are not limited to those described in the claims as originally filed.
In one aspect of the present teachings, a semiconductor device disclosed herein may be MOSFET (Metal Oxide Semiconductor Field Effect Transistor) or IGBT (Insulated Gate Bipolar Transistor). One embodiment of these semiconductor devices may comprise a semiconductor substrate and a trench gate extending from a front surface of the semiconductor substrate toward a deep portion of the semiconductor substrate. One embodiment of these semiconductor devices is typically a vertical type semiconductor device and may comprise a pair of main electrodes disposed on a front surface and a back surface of the semiconductor substrate respectively. A material of the semiconductor substrate is not limited to a specific one, however, the technique disclosed herein is particularly useful when the material of the semiconductor substrate is silicon carbide as discussed herein. The semiconductor substrate may comprise a drift region of a first conductive type, a body region of a second conductive type, a source region of the first conductive type and a front surface region of the second conductive type. The drift region is in contact with the trench gate. The body region is disposed above the drift region and is in contact with the trench gate. The source region is disposed above the body region, exposed on the front surface of the semiconductor substrate and is in contact with the trench gate. The front surface region is disposed above the source region, exposed on the front surface of the semiconductor substrate and is in contact with the trench gate.
In a view along a direction orthogonal to the front surface of the semiconductor substrate, the front surface region may be in contact with a side surface of the trench gate that is parallel to a longitudinal direction of the trench gate. It is desirable that the front surface region be in contact with the side surface of the trench gate in an entire area of the side surface of the trench gate in the longitudinal direction, i.e., along an entire length of the side surface of the trench gate in the longitudinal direction. In the semiconductor device according to this embodiment, leakage on the side surface of the trench gate that is parallel to the longitudinal direction of the trench gate is suppressed.
In the view along the direction orthogonal to the front surface of the semiconductor substrate, the front surface region may further surround an edge of the trench gate in the longitudinal direction. In the semiconductor device according to this embodiment, leakage at the edge of the trench gate in the longitudinal direction is suppressed.
The above embodiment of the semiconductor device may further comprise a high concentration front surface region of the second conductive type. The high concentration front surface region is exposed on the front surface of the semiconductor substrate and an impurity concentration of the high concentration front surface region is higher than an impurity concentration of the front surface region. In the view along the direction orthogonal to the front surface of the semiconductor substrate, the high concentration front surface region is in contact with an edge side surface of the trench gate that connects between a pair of side surfaces of the trench gate at the edge of the trench gate in the longitudinal direction, wherein the pair of side surfaces is parallel to the longitudinal direction of the trench gate. In the semiconductor device according to this embodiment, leakage on the edge side surface of the trench gate in the longitudinal direction is suppressed.
The trench gate may comprise a gate insulation film and a gate electrode at least partially surrounded with the gate insulation film. A part of the gate insulation film that is in contact with the front surface region and the source region is thicker than a part of the gate insulation film that is in contact with the body region. In the semiconductor device according to this embodiment, leakage in a part of the side surface of the trench gate that is located near the front surface of the semiconductor substrate is further suppressed.
A material of the semiconductor substrate may be silicon carbide. In a semiconductor device having a semiconductor substrate made of silicon carbide, the gate insulation film of the trench gate is often low in quality, thus posing a problem of leakage at the trench gate. For this reason, the technology disclosed herein is useful particularly in the case of a semiconductor substrate made of silicon carbide.
Specific examples of the present teachings has been described in detail, however, these are mere exemplary indications and thus do not limit the scope of the claims. The art described in the claims include modifications and variations of the specific examples presented above. Technical features described in the description and the drawings may technically be useful alone or in various combinations, and are not limited to the combinations as originally claimed. Further, the art described in the description and the drawings may concurrently achieve a plurality of aims, and technical significance thereof resides in achieving any one of such aims.
Number | Date | Country | Kind |
---|---|---|---|
2015-107287 | May 2015 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5554862 | Omura | Sep 1996 | A |
5689121 | Kitagawa | Nov 1997 | A |
5689128 | Hshieh | Nov 1997 | A |
6674124 | Hshieh | Jan 2004 | B2 |
6717200 | Schamberger | Apr 2004 | B1 |
6809375 | Takemori | Oct 2004 | B2 |
7084456 | Williams | Aug 2006 | B2 |
8836015 | Bhalla | Sep 2014 | B2 |
9099521 | Yamashita | Aug 2015 | B2 |
9209294 | Kiyosawa | Dec 2015 | B1 |
9306047 | Hashimoto | Apr 2016 | B2 |
20050167742 | Challa | Aug 2005 | A1 |
20050215012 | Williams | Sep 2005 | A1 |
20060081919 | Inoue | Apr 2006 | A1 |
20060113588 | Wu | Jun 2006 | A1 |
20080277695 | Li | Nov 2008 | A1 |
20090078995 | Nakagawa | Mar 2009 | A1 |
20110220991 | Takaya | Sep 2011 | A1 |
20120007241 | Mizuno | Jan 2012 | A1 |
20120074489 | Hsieh | Mar 2012 | A1 |
20130001679 | Omori | Jan 2013 | A1 |
20130200451 | Yilmaz | Aug 2013 | A1 |
20130341643 | Kudou | Dec 2013 | A1 |
20140077253 | Soeno | Mar 2014 | A1 |
20150129895 | Takeuchi | May 2015 | A1 |
20150295028 | Kagata | Oct 2015 | A1 |
20150333175 | Kiyosawa et al. | Nov 2015 | A1 |
Number | Date | Country |
---|---|---|
2013-012647 | Jan 2013 | JP |
2013118203 | Aug 2013 | WO |
2013118437 | Aug 2013 | WO |
Number | Date | Country | |
---|---|---|---|
20160351665 A1 | Dec 2016 | US |