This application claims priority to and benefits of Korean Patent Application No. 10-2020-0089620, filed on Jul. 20, 2020, the entire contents of which are incorporated herein by reference.
The present disclosure relates to a semiconductor device, and specifically relates to a semiconductor device in which a trench gate device and a planar gate device are combined to improve current density.
In recent years, depending on a large-scale and large-capacity trend of application devices, a need for power semiconductor devices having a high breakdown voltage, a high current, and a high-speed switching characteristic has emerged.
Such a power semiconductor device particularly requires low on-resistance or a low saturation voltage in order to reduce a power loss in a conduction state while allowing a very large current to flow. In addition, a characteristic of being capable of withstanding a reverse high voltage of a PN junction applied to opposite ends of the power semiconductor device, that is, a high breakdown voltage characteristic, is basically required in an off state or when a switch is turned off.
In manufacturing a power semiconductor device, concentration and thickness of an epi region or a drift region of a raw material used are determined depending on a rated voltage of the semiconductor device. An increase in a surface electric field at an interface between a semiconductor and a dielectric must be minimized by appropriately dispersing an electric field induced by expansion of a depletion layer in a reverse bias mode of the pn junction by appropriately utilizing a pn junction structure, and devices must be designed to withstand an inherent critical electric field of the raw material in breakdown of the power semiconductor device, in order to obtain an appropriate breakdown voltage at a desired level with the concentration and thickness of the raw material required by breakdown voltage theory.
The above information disclosed in this Background section is only for enhancement of understanding of the background of the disclosure, and therefore it may contain information that does not form the prior art that is already known in this country to a person of ordinary skill in the art.
The present disclosure provides a semiconductor device with improved current density.
An exemplary embodiment of the present disclosure provides a semiconductor element including: a substrate; an N− epitaxial layer disposed on the substrate; P areas positioned on the N− epitaxial layer and spaced apart from each other with a channel therebetween; and N+ areas positioned inside the P areas, wherein the channel includes: a trench area in which the P areas are partially etched so that the N+ areas face each other; and a planar area in which the P areas are not etched to face each other.
The trench area and the planar area may alternately be disposed with each other.
The semiconductor device may further include the gate electrode disposed to overlap the channel area, and a gate insulating layer configured to insulate the gate electrode from the channel area.
A length of the N− areas in the trench area may be longer than that of the N− areas in the planar area.
The P areas may not be positioned between the N+ and N+ areas facing each other in the trench area.
As described above, the semiconductor device according to an exemplary embodiment of the present disclosure may improve current density by increasing density of channels.
The present disclosure will be described more fully hereinafter with reference to the accompanying drawings, in which exemplary embodiments of the disclosure are shown. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present disclosure.
In the drawings, the thicknesses of layers, films, panels, regions, etc., are exaggerated for clarity. Like reference numerals designate like elements throughout the specification. It will be understood that when an element such as a layer, film, region, or substrate is referred to as being “on” another element, it can be directly on the other element or intervening elements may also be present. In contrast, when an element is referred to as being “directly on” another element, there are no intervening elements present.
A semiconductor device in some forms of the present disclosure will now be described in detail with reference to drawings.
Referring to
P areas 140 spaced apart from each other are positioned on the N− epitaxial layer 130. N+ areas 150 are positioned within the P areas 140.
A gate electrode 200 may be disposed to be insulated with a gate insulating layer 210, and a source electrode 220 may be disposed on the gate insulating layer 210.
In
Referring to
That is, in the semiconductor device according to the present exemplary embodiment, a trench is formed by locally etching portions of the P areas 140 in the semiconductor device having a conventional planar gate structure, and a trench gate structure is combined therewith. Therefore, channel density may increase, and current density may be improved.
Therefore, in the semiconductor device in some forms of the present disclosure, the channels b and c are added compared to the conventional planar gate device, and the channel area is increased as the channels b and c are added compared to the conventional trench gate device.
In the case of the channel b, a width thereof varies according to a depth of the P area 140 that is adjacent to the trench. As a length of the channel c increases, the width of the channel b increases. That is, channel resistance of the channels c and b may have an inversely proportional relationship with each other.
Comparing
Similarly, comparing
In addition, as illustrated in
As described above, a trench device in some forms of the present disclosure increases the channel density by combining a structure of the planar gate device with the conventional trench gate device and improves a current density of a MOSFET.
Specifically, a channel serving as a trench gate in the planar gate device was used to increase the channel density by locally using a trench etching technique on the top of the device. As a result, an amount of current that is conducted increases, and thus the density of the current that is conducted per unit area is improved. The channel density increases by about 66% compared with the conventional device, and the channel density may increase further as a trench etch width decreases. In addition, reduction of a breakdown voltage due to an electric field concentration at the bottom of the existing trench gate may increase the breakdown voltage because an electric field is dispersed due to the local trench structure of this technology.
While this disclosure has been described in connection with what is presently considered to be practical exemplary embodiments, it is to be understood that the present disclosure is not limited to the disclosed embodiments, but, on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope greater than or equal to appended claims.
110: drain electrode
120: N+ substrate
130: N− epitaxial layer
140: P area
150; N+ area
200: gate electrode
210: gate insulating layer
220: source electrode
Number | Date | Country | Kind |
---|---|---|---|
10-2020-0089620 | Jul 2020 | KR | national |