This application is based on and claims priority under 35 USC 119(a) of Korean Patent Application No. 10-2021-0113699 filed on Aug. 27, 2021 in the Korean Intellectual Property Office, the entire inventive concept of which is incorporated herein by reference for all purposes.
The disclosure relates to a semiconductor device.
In accordance with increasing demand for a semiconductor device having high performance, high speed and/or multifunctionality, the semiconductor device may have increased integration. As such, in order to provide semiconductor devices, which are highly integrated, research is being actively conducted for a layout design thereof to have increased freedom and integration.
Example embodiments provide a semiconductor device having improved integration.
According to an aspect of the disclosure, there is provided a semiconductor device including: a standard cell including: a plurality of active patterns extending in a first direction, the plurality of active patterns being spaced apart from each other in a second direction intersecting the first direction, a gate structure intersecting the plurality of active patterns and extending in the second direction, and source/drain regions respectively provided on the plurality of active patterns on both sides of the gate structure; a plurality of signal lines extending on the standard cell in the first direction, and electrically connected to the standard cell; and a first power strap and a second power strap extending on the standard cell in the first direction, each of the first power strap and the second power strap electrically connected to one or more of the source/drain regions, the first power strap and the second power strap configured to supply power to the standard cell, wherein each of the first power strap and the second power strap is provided on a same row as one of the plurality of signal lines.
According to an aspect of the disclosure, there is provided a semiconductor device including: a standard cell including: a plurality of active patterns extending in a first direction, the plurality of active patterns being spaced apart from each other in a second direction, intersecting the first direction, a gate structure intersecting the plurality of active patterns and extending in the second direction, source/drain regions respectively provided on the plurality of active patterns on both sides of the gate structure, and a plurality of contact structures, each formed on one the source/drain regions in a third direction, perpendicular to the first and second directions; a plurality of first signal lines extending on a first level on the standard cell in the first direction, the plurality of first signal lines being arranged in the second direction, and the plurality of first signal lines being electrically connected to the standard cell; first and second power lines extending on the first level on the standard cell in the first direction, the first and second power lines being connected to the one or more of plurality of contact structures, and the first and second power lines being arranged parallel to the plurality of first signal lines; a plurality of second signal lines extending on a second level, higher than the first level, on the standard cell in the second direction, and the plurality of second signal lines being arranged in the first direction, one or more of the plurality of second signal lines including first and second power supply lines respectively connected to the first and second power lines; a plurality of third signal lines extending on a third level, higher than the second level, on the standard cell in the first direction, and the plurality of third signal lines being arranged in the second direction; and a first power strap and a second power strap extending on the third level on the standard cell in the first direction, respectively connected to the first and second power supply lines, and each arranged on a same row as one of the plurality of third signal lines, while spaced from each other in the first direction.
According to an aspect of the disclosure, there is provided a semiconductor device including: a standard cell including: a plurality of active patterns extending in a first direction, the plurality of active patterns being spaced apart from each other in a second direction, intersecting the first direction, a gate structure intersecting the plurality of active patterns and extending in the second direction, and source/drain regions respectively provided on the plurality of active patterns on both sides of the gate structure; a plurality of signal lines extending on the standard cell in the first direction, and arranged at a first pitch in the second direction; a first power strap extending on a first boundary of the standard cell in the first direction, supplying power to the standard cell, and provided on a same row as a first signal line among the plurality of signal lines; and a second power strap offset from a second boundary opposite to the first boundary, extending in the standard cell in the first direction, supplying the power to the standard cell, and provided on a same row as a second signal line among the plurality of signal lines in the first direction.
According to an aspect of the disclosure, there is provided a semiconductor device including: a plurality of active patterns extending in a first direction, the plurality of active patterns being spaced apart from each other in a second direction different from the first direction; a gate structure intersecting the plurality of active patterns and extending in the second direction, and a source region provided a first side of the gate structure and a drain region provided on a second side of the gate structure; a plurality of signal lines extending in the first direction; a first power strap extending in the first direction on a same row as a first signal line, among the plurality of signal lines, the first power strap electrically connected to one of the source region or the drain region.
Various advantages and effects of the disclosure are not limited to the description above, and may be more easily understood in the description of the example embodiments.
The above and other aspects, features, and advantages of the disclosure will be more clearly understood from the following detailed description, taken in conjunction with the accompanying drawings, in which:
Hereinafter, example embodiments will be described with reference to the accompanying drawings.
Referring to
The designing (DSG) of the semiconductor device may include designing a floorplan (S11), designing a powerplan (S12), designing a placement (S13), and designing a clock tree synthesis (CTS, S14), designing a routing (S15), and designing a what-if-analysis (S16).
The designing of the floorplan (S11) may be a process of physically designing a logically-designed schematic circuit by cutting and moving the circuit. In the designing of the floorplan (S11), a memory or a circuit functional block may be provided. In this process, for example, the circuit functional blocks to be provided adjacent to each other may be identified from each other, and a space for the circuit functional block may be allocated in consideration of an available space, a required performance, etc. For example, the designing of the floorplan (S11) may include generating a site-row and forming a routing track in the generated site-row. The site-row may be a frame for arranging standard cells stored in a cell library 2 based on a prescribed design rule. The routing track may provide a virtual line on which a wiring is formed. In particular, in example embodiments, the standard cells provided from the plurality of cell libraries may be arranged in each circuit functional block.
Accordingly, the routing track may include a plurality of routing tracks each having a different default width value for each cell library. Lower wirings in the standard cells, having different pitches, may be provided in the routing track in the subsequent designing of the placement (S13). The lower wirings in the different standard cells may have widths the same as or different from each other. In addition, upper wirings having different pitches may be provided in the routing track in the subsequent designing of the routing (S15).
The designing of the powerplan (S12) may be a process of providing a pattern (e.g., power rail) of the wiring that supply local power to the provided circuit functional block. According to an example embodiment, the pattern of the wiring that supply local power may be a driving voltage or a reference voltage (or ground). For example, the pattern of the wiring that connects the power or the ground to the circuit functional block may be generated for the power to be uniformly supplied to the entire semiconductor device in a net shape. In this process, the above pattern may be generated by the net shape by using various rules. In particular, an example embodiment may use a power strap provided on the same layer as a signal line while being parallel thereto, instead of the power rail having a relatively large width, i.e. pattern supplying the power. Accordingly, the signal lines may have improved integration and design freedom even under a limited condition of the same pitch between the signal lines. According to an example embodiment, the signal lines may be provided on a plurality of rows, each row including one of the signal lines.
The designing of the placement (S13) may be a process of providing the pattern of an element included in the circuit functional block, and may include a process of arranging the standard cells. In particular, in example embodiments, each standard cell may include the semiconductor element and lower wiring lines of at least one layer, connected thereto. Hereinafter, the “layer” may indicate patterns provided on the same height level as each other while having the same thickness as each other. The lower wiring lines may include a “power line” connecting a power source or ground to the circuit functional block and the “signal line” transmitting a control signal, an input signal or an output signal. In this process, an empty region may occur between the arranged standard cells, and the empty region may be filled by a filler cell (see
The designing of the clock tree synthesis CTS (S14) may be a process of generating patterns of signal lines of a central clock related to a response time that determines a performance of the semiconductor device. Subsequently, the designing of the routing (S15) may be a process of generating an upper wiring structure including the upper wirings of an upper layer, connecting the arranged standard cells to each other. The upper wirings may be electrically connected to the lower wirings in the standard cells, and the standard cells may thus be electrically connected to each other. The upper wirings may be physically formed on top of the lower wirings.
The designing of the what-if-analysis (S16) may be a process of verifying and correcting the generated layout. Items to be verified may include a design rule check (DRC) verifying whether the layout is properly aligned based on the design rule, an electronical rule check (ERC) verifying whether the layout is properly done without electrical breakage occurring in the semiconductor device, a layout versus schematic (LVS) verifying whether the layout matches a gate-level netlist, etc.
The manufacturing (FAB) of the semiconductor device may include manufacturing a mask (S17) and manufacturing a semiconductor device (S18).
The manufacturing of the mask (S17) may include a process of manufacturing mask data for forming various patterns on the plurality of layers by performing optical proximity correction (OPC) or the like on layout data generated in the designing (DSG) of the semiconductor device and a process of manufacturing the mask using the mask data. The optical proximity correction (OPC) may be performed to correct distortion that may occur in a photolithography process. The mask may be manufactured in a manner in which the layout patterns are depicted using a thin film of chrome, applied on a glass or quartz substrate.
In the manufacturing of the semiconductor device (S18), various types of exposure and etching processes may be repeatedly performed. Shapes of the patterns generated when designing the layout design may be sequentially formed on the silicon substrate in these processes. In detail, various semiconductor processes may be performed on a semiconductor substrate such as a wafer by using the plurality of masks to form the semiconductor device in which an integrated circuit is implemented. The manufacturing of the semiconductor device may include a deposition process, an etching process, an ion (implantation?) process, a cleaning process, etc. The manufacturing of the semiconductor device may also include a packaging process of mounting the semiconductor device on a PCB and sealing the same by using a sealing material, and may also include a test process of testing the semiconductor device or its package.
Referring to
The processor 10 may be used by the designer 30 and/or the analyzer 40 to perform a calculation. For example, the processor 10 may include a micro-processor, an application processor (AP), a digital signal processor (DSP), a graphic processing unit (GPU), etc. Although
The storage device 20 may store a first standard cell library 22, a second standard cell library 24, and a third standard cell library 26, and may further store a design rule 29. The first standard cell library 22, the second standard cell library 24, and the third standard cell library 26 and the design rule 29 may be provided from the storage device 20 to the designer 30 and/or the analyzer 40. The first standard cell library 22, the second standard cell library 24, and the third standard cell library 26 may include the standard cells having cell heights, cell sizes, circuit specifications, circuit configurations, and routing track widths, different from each other. According to example embodiments, the number of standard cell libraries included in the storage device 20 may be variously changed.
The designer 30 may include a placer 32 and a router 34. According to an example embodiment, the designer 30 may be referred to as a design module and the analyzer 40 may be referred to as an analyzer module. The term “module” may refer to software, hardware such as a field programmable gate array (FPGA) or application specific integrated circuit (ASIC), or a combination of the software and the hardware. For example, the “module” may be the software stored in an addressable storage medium, and may be executed by one or more processors. The placer 32 and router 34 may each perform the designing of the placement (S13) and the designing of the routing (S15), shown in
The analyzer 40 may perform the designing of the what-if-analysis process (S16) shown in
According to an example embodiment, the designer 30 and/or the analyzer 40 may be implemented as hardware components, which may include electronic components such as a processor or circuit elements. According to another example embodiment, the designer 30 and/or the analyzer 40 may be implemented in the software, and may not be limited thereto. For example, when implemented in the software, the designer 30 and the analyzer 40 may be stored in the form of a code in the storage device 20, or in another storage device separated from the storage device 20.
As described above, as a pattern for a power tap applied to a standard cell, it is possible to use the power strap provided on a same row as the signal line while being parallel to the signal line, instead of the power rails each having the relatively large width in the designing (DSG) of the semiconductor device in which the design system 1 shown in
The layout of the semiconductor device shown in
Referring to
In this example embodiment, the semiconductor device 100 may include four rows R1, R2, R3 and R4, in each of which the standard cells having the same height are arranged in a first direction D1, and the four rows R1, R2, R3 and R4 may be arranged in a second direction D2 perpendicular to the first direction D1. The first standard cells SC1 arranged in the second and third rows R2 and R3, respectively, have the same first cell height CH1, and the second standard cells SC2 arranged in the first and fourth rows R1 and R4, respectively, may have the same second cell height CH2 smaller than the first cell height CH1. Meanwhile, the standard cells SC1 and SC2 provided in the same row may have different widths (in the first direction D1).
In this example embodiment, respective boundaries of the second and third rows R2 and R3, having the first cell height CH1, may be provided adjacent to each other in a column direction, that is, the second direction D2, and the first and fourth rows R1 and R4, having the second cell height CH2, may respectively be provided to be adjacent to outer boundaries of the second and third rows R2 and R3. In this example embodiment, the standard cells are described to have two cell heights. However, the standard cells may have three or more different cell heights, and the arrangement thereof may also be variously modified. For example, the second and third rows R2 and R3, having the first cell height CH1, and the first and fourth rows R1 and R4, having the second cell height CH2, may be arranged alternately with each other in the second direction D2.
The plurality of standard cells SC1 and SC2 may each have a first conductivity-type (e.g., p-type) active region and a second conductivity-type (e.g., n-type) active region, provided in the column direction, i.e. the second direction D2. The standard cells SC1 and SC2 provided in two adjacent rows among the first to fourth rows R1, R2, R3 and R4 may be provided in such a manner in which the active regions of the same conductivity type are adjacent to each other. For example, the standard cells SC1 of the second and third rows R2 and R3 may be provided in such a manner in which the p-type active regions are adjacent to each other, and the standard cells SC2 and SC1 of the first and second rows R1 and R2 and standard cells SC1′ and SC2′ of the third and fourth rows R3 and R4 may be arranged in such a manner in which the n-type active regions are adjacent to each other.
In general, a plurality of first power rails PR1 and a plurality of second power rails and PR2, supplying the power to the plurality of standard cells SC1 and SC2, may supply the voltage to the standard cells SC1 and SC2 provided between the plurality of first power rails PR1 and the plurality of second power rails and PR2. For example, a driving voltage VDD may be applied to the first power rail PR1, and a reference voltage VSS may be applied to the second power rail PR2. The plurality of first and second power rails PR1 and PR2 may each include a power line shared with the standard cells of two adjacent rows.
In this manner, the first and second power rails PR1 and PR2 shown in
According to an aspect of the inventive concept, power straps are provided on the same row as the signal lines while being parallel thereto, instead of using the power rails. The power strap used in an example embodiment of the disclosure has the width equal to that of the signal line on the same row. Therefore, it is possible to not only improve the density of the signal lines even under the limited pitch condition, but also improve the freedom in designing the circuit in the limited area of the standard cell (see
Referring to
In this example embodiment, the plurality of signal lines M, Ma and Mb may include two signal lines Ma and Mb respectively positioned on first and second cell boundaries CB1 and CB2 defining a cell height CH, and first and second power straps PS1 and PS2 may respectively be arranged on a same row as the two signal lines Ma and Mb in the standard cell SC, while spaced apart from each other in the first direction D1. As shown in
In this example embodiment, the first and second power straps PS1 and PS2 may respectively have the width equal to each width Wb of the two signal lines Ma and Mb, respectively. The plurality of signal lines M, Ma and Mb may be arranged by the same pitch P1 in the second direction D2, and the first and second power straps PS1 and PS2 may also be provided by the same pitch P1 as the signal line M. As described above, the first and second power straps PS1 and PS2 may be provided together with the signal line M to have a relatively thin width, thereby improving the integration of the signal lines. According to an example embodiment, signal lines M may have a width Wa, which may be same as width Wb of the two signal lines Ma and Mb and the first and second power straps PS1 and PS2. However, the disclosure is not limited thereto, and as such, width Wb may be different from width Wa in another example embodiment.
According to an example embodiment, the signal lines Ma and Mb on the same row as the first and second power straps PS1 and PS2 may be made in various patterns. As shown in
In the previous example embodiment, the first and second power straps PS1 and PS2 are exemplified to be positioned on the cell boundary. However, in another example embodiment, at least one of the first and second power straps may be offset from the cell boundary and provided in the standard cell.
Referring to
The semiconductor device 50A may include first to third power straps PS1, PS2 and PS3, respectively positioned on the same row as signal lines Ma, Mb and Mc in the first direction D1. In this example embodiment, the first power strap PS1 may be provided on the first cell boundary CB1 of the first standard cell SCa on a same row as the signal line Ma, and similarly, the third power strap PS3 may be provided on a third cell boundary CB3 of the second standard cell SCb on a same row as the signal line Mc. The second power strap PS2 may be offset from the second cell boundary CB2 and positioned in the first standard cell SCa on a same row as the signal line Mb. The second power strap PS2 may be a power tap shared by the first and second standard cells SCa and SCb. For example, the driving voltage VDD may be applied to the first and third power straps PS1 and PS3, and the reference voltage VSS may be applied to the second power strap PS2 to drive the first and second standard cells SCa and SCb. According to an example embodiment, the first power strap PS1 may be provided adjacent to the signal line Ma in the first direction D1, the second power strap PS2 may be provided adjacent to the signal line Mb in the first direction, and the third power strap PS3 may be provided adjacent to the signal line Mc in the first direction.
In this manner, the power strap used in this example embodiment may be not only provided on the boundary of the standard cell, but also arranged on the same row as any signal line of the standard cell.
A semiconductor device 100A shown in
Referring to
Referring to
The first contact structure CT_A may be connected to the active pattern AF (in particular, source/drain region), and the second contact structure CT_B may be connected to the gate structure GL. The first and second contact structures CT_A and CT_B may respectively be connected to the first signal lines M1 and the first and second power straps PS1 and PS2 through contact vias V0.
In this example embodiment, the first and second power straps PS1 and PS2 may respectively be arranged on the same row as signal lines M1a and M1b, positioned on the first and second cell boundaries. Each of the first and second power straps PS1 and PS2 may have the width equal to that of each of the signal lines M1a and M1b on the same row. In this manner, the first and second power straps PS1 and PS2 may be provided together with the first signal line M1 to have a relatively thin width, thereby improving the integration of the signal lines.
In order to implement the inverter circuit shown in
The active patterns AF and the gate structure GL intersecting these patterns may form the pull-up element TR1 and the pull-down element TR2 of the inverter circuit. In the inverter circuit shown in
The first signal lines M1 may be wirings provided on top of the active patterns AF and the gate structure GL, and may be extending in the first direction D1. In this example embodiment, the first signal line M1 may be a signal transmission line that supplies a signal to the semiconductor device 100A, and may be electrically connected to the gate structure GL. In addition, the first and second power straps PS1 and PS2 may be provided parallel to some signal lines M1a and M1b at the same level as the first signal line M1, and the first and second power straps PS1 and PS2 and first signal line M1 may be formed in the same process. As described above, the first and second power lines PS1 and PS2 may be power transmission lines that respectively supply different power voltages VDD and VSS to the semiconductor device 100A. The first and second power straps PS1 and PS2 may be provided along the first and second boundaries CB1 and CB2 of the standard cell, and are not limited thereto (see
Referring to
The substrate 101 may have a top surface extending in the first direction D1 and the second direction D2. The substrate 101 may include a semiconductor material, for example, a group IV compound semiconductor, a group III-V compound semiconductor or a group II-VI compound semiconductor. For example, the group IV compound semiconductor may include silicon, germanium or silicon-germanium. The substrate 101 may have the first active region ACT1, and may have the second active region ACT2 including a doped region such as the N-well.
The device isolation layer 110 may define the active region 102 in the substrate 101. The device isolation layer 110 may be formed by, for example, a shallow trench isolation (STI) process. As shown in
The plurality of active patterns AF may be defined in the substrate 101 by the device isolation layer 110, and may be extending in the first direction D1. The active pattern AF used in this example embodiment may include a fin structure (or also referred to as “active fin 105”) protruding from the substrate 101 in a third direction D3. The active fin 105 may have an upper end protruding to a predetermined height from a top surface of the device isolation layer 110. The active fin 105 may be made as a portion of the substrate 101, and may include an epitaxial layer grown from the substrate 101. The active fin 105 positioned on each of the two sides of the gate structure GL may be partially recessed, and the source/drain region 120 may be provided on the recessed active fin 105. In some example embodiment, the active region ACT may have the doped region including impurities. For example, the active fin 105 may include the impurities diffused from the source/drain region 120 in its region in contact with the source/drain region 120.
As shown in
The source/drain regions 120 may each have a shape of merged regions connected to each other between the adjacent active fins 105 in the second direction D2, as shown in
The source/drain region 120 may be formed of the epitaxial layer, and may include, for example, silicon (Si), silicon germanium (SiGe) or silicon carbide (SiC). In addition, the source/drain region 120 may further include the impurities such as arsenic (As) and/or phosphorus (P). In some example embodiments, the source/drain region 120 may include a plurality of regions including different concentrations of an element and/or a doping element.
The gate structure GL may intersect the active fin 105, and may be extending in the second direction D2. A channel region of the transistor may be formed in the active fin 105 intersecting the gate structure GL. The gate structure GL may include a gate spacer 146, a gate insulating film 142, a gate electrode 145 and a gate capping layer 148.
The gate insulating film 142 may be provided between the active fin 105 and the gate electrode 145. In some example embodiments, the gate insulating film 142 may include a plurality of layers or may be extending to a side surface of the gate electrode 145. The gate insulating film 142 may include oxide, nitride or a high dielectric material (or. high-k material). The high dielectric material may be a dielectric material having a higher dielectric constant than a silicon oxide layer (SiO2). The gate electrode 145 may include a conductive material, and may include, for example, a metal nitride such as titanium nitride (TiN), tantalum nitride (TaN) or tungsten nitride (WN), and/or a metal material such as aluminum (Al), tungsten (W) or molybdenum (Mo). Alternatively, the gate electrode 145 may include a semiconductor material such as doped polysilicon. The gate electrode 145 may include two or more multi-layers. The gate electrodes 145 may be provided to be separated from each other between at least some adjacent transistors in the second direction D2 based on a configuration of the circuit of the semiconductor device 100A. For example, a separate gate-cut may be formed on the gate electrode 145 to have the plurality of gate electrodes 145 separated from each other.
The gate spacers 146 may be positioned on both sides of the gate electrode 145. The gate spacer 146 may insulate the source/drain region 120 from the gate electrode 145. In some example embodiments, the gate spacer 146 may have a multi-layer structure. The gate spacer 146 may include oxide, nitride, oxynitride, and in particular, a low dielectric material. For example, the gate spacer 146 may include at least one of silicon oxide (SiO2), silicon nitride (SiN), silicon cyanide (SiCN), silicon oxycarbide (SiOC), Silicon oxynitride (SiON) and silicon oxycarbonnitride (SiOCN).
The gate capping layer 148 may be provided on a top of the gate electrode 145, and the lower surface and side surfaces thereof may respectively be surrounded by the gate electrode 145 and the gate spacer 146. For example, the gate capping layer 148 may include oxide, nitride and oxynitride.
The lower interlayer-insulating layer 130 may be provided to cover the source/drain region 120 and the gate structure GL. The lower interlayer-insulating layer 130 may include, for example, at least one of oxide, nitride and oxynitride, and may include a low dielectric material.
The contact structure 180 may include the first contact structure CT_A connected to the source/drain region 120 by penetrating through the lower interlayer-insulating layer 130 and the second contact structure CT_B shown in
The contact structure 180 may include a metal material such as tungsten (W), aluminum (Al) or copper (Cu), or the semiconductor material such as doped polysilicon. In addition, in some example embodiments, the contact structure 180 may include a conductive barrier or a metal-semiconductor layer such as a silicide layer that is provided at an interface on which the contact structure 180 is in contact with the source/drain region 120 and the gate electrode 145.
The upper interlayer-insulating layer 160 may include first and second low dielectric layers 162 and 164 covering the contact structures 180. The first and second etch stop layers 151 and 152 may respectively be provided on lower surfaces of the first and second low dielectric layers 162 and 164. The first signal line M1 and the first and second power straps PS1 and PS2 may be provided on the second dielectric layer 164. The contact via V0 may pass through the first dielectric layer 162 to connect the contact structure 180 and the first and second power straps PS1 and PS2 to each other. In this example embodiment, a conductive barrier layer 175 may be further included in each of the first signal line M1, the first and second power straps PS1 and PS2, and the contact via V0. This example embodiment exemplary describes that this wiring structure is a structure formed by a single damascene process, and is not limited thereto.
Meanwhile, in this example embodiment, as shown in
In this manner, the semiconductor device 100A according to this example embodiment may introduce, as the pattern for a power tap, the first and second power straps PS1 and PS2, provided on the same row as the signal lines M1a and M1b, while being parallel to the signal lines M1a and M1b, instead of using the power rails each having the relatively large width, thereby improving the density and design freedom of the signal lines under the same arrangement condition.
Each of
Referring to
Like the previous example embodiment, the semiconductor device 100A′ according to this example embodiment may include the substrate 101, the first and second active regions ACT1 and ACT2 each including the active pattern 105 or AF, the device isolation layer 110, the source/drain region 120, the gate structure 140 or GL having the gate electrode 145, the lower interlayer-insulating layer 130, the contact structure 180 (i.e., CT_A or CT_B), the upper interlayer-insulating layer 160, first signal lines M1, M1a, and M1b, and the first and second power straps PS1 and PS2.
Referring to
The plurality of channel layers 115 may be two or more channel layers each provided on the active pattern 110 while being spaced apart from each other in the third direction D3, perpendicular to the top surface of the active pattern 110. The channel layer 115 may be connected to the source/drain region 120 and may be spaced apart from the top surface of the active fin 110. The channel layer 115 may have the same or similar width as the active fin 110 in the second direction D2, and may have the same or similar width as the gate structure 140 in the first direction D1. However, when the semiconductor device 100A′ of this example embodiment uses the internal spacer IS, the channel layers 115 may have a width reduced more than a lower surface of the gate structure 140.
The plurality of channel layers 115 may each be made of the semiconductor material, and may include, for example, at least one of silicon (Si), silicon germanium (SiGe) and germanium (Ge). The channel layer 115 may be made of, for example, the same material as the substrate 101. The number and shape of the channel layer 115 included in one channel structure may be variously changed according to example embodiments. For example, the channel layer 115 may be further provided in a region where the active fin 110 is in contact with the gate electrode 145 according to example embodiments.
The gate structure 140 may be extending on top of the active pattern 110 and the plurality of channel layers 115 while intersecting the active pattern 110 and the plurality of channel layers 115. A channel region of the transistor may be formed in the active pattern 110 and the plurality of channel layers 115, intersecting the gate structure 140. In this example embodiment, the gate insulating film 142 may not only be provided between the active fin 110 and the gate electrode 145, but also between each of the plurality of channel layers 115 and the gate electrode 145. The gate electrodes 145 may respectively be extended from the top of the active fins 110 to the top of the plurality of channel layers 115 while filling each space between the plurality of channel layers 115. The gate electrode 145 may be spaced apart from each of the plurality of channel layers 115 by the gate insulating film 142.
The inner spacer IS may be provided between the plurality of channel layers 115 while being parallel to the gate electrode 145. The gate electrode 145 may be spaced apart and electrically separated from the source/drain region 120 by the internal spacers IS. The inner spacer IS may have a flat side surface facing the gate electrode 145 or a convexly rounded shape toward the inside of the gate electrode 145. The inner spacer IS may be made of oxide, nitride or oxynitride, and in particular, a low-k film.
As described above, the semiconductor device according to this example embodiment may be applied to the transistor of any of various structures, and may be implemented as a semiconductor device including a vertical field effect transistor (i.e., vertical FET, VFET) having an active region extending perpendicularly to the top surface of the substrate and the gate structure surrounding the active region, or a semiconductor device including a negative capacitance FET (NCFET) using a gate insulating film having a ferroelectric feature, in addition to the example embodiments described above.
Referring to
Referring to
For example, the first active region ACT1 may be a p-type semiconductor substrate or a p-type active region PR provided as a p-type well, and may be provided as a region for the n-type transistor. The second active region ACT2 may be an n-type active region NR provided as an n-type well, and may be provided as a region for the p-type transistor.
As shown in
This example embodiment shows that the plurality of active fins AF are four active fins, and the same number of active patterns AF, e.g. two active patterns, are provided in each of the first and second active regions ACT1 and ACT2, for example. However, different numbers (one, or three or more) of active fins may be provided in the first and second active regions ACT1 and ACT2.
In addition, the standard cell 100B (or semiconductor device) shown in
The first contact structures CT_A may be provided on the active fins AF positioned on both sides of the four gate structures GL. In this example embodiment, the first contact structures CT_A may be extending over two active fins AF respectively provided on the first and second active regions ACT1 and ACT2. The first contact structures CT_A may serve as source/drain contacts. Some of the first contact structures CT_A may be extending to be adjacent to the first or second boundary CB1 or CB2 facing the contact structure in the second direction D2 in order to be connected to the power transmission line.
Referring to
The first and second power lines PL1 and PL2 may respectively be provided on the first and second boundaries CB1 and CB2. Four first signal lines M1 extending in the first direction D1 may be arranged by the same pitch (and/or space) between the first and second power lines PL1 and PL2. It is possible to omit at least one of the four first signal lines M1 arranged by the same pitch in a unit standard cell. For example, in this example embodiment, it is possible to omit the first signal of the second from the top among the four first signal lines M1 because this signal is not connected to the other lines or the active region and thus does not form a circuit
The first and second power lines PL1 and PL2 may respectively be connected to some portions of the first contact structures CT_A by the contact vias V0 (see
On a second level higher than the first level, the plurality of second signal lines M2 may be extending in the second direction D2 and arranged in the first direction D1. The second signal line M2 may be provided on the first signal line M1. In this example embodiment, the second signal line M2 positioned at the center of the second signal lines M2 may be connected to two first signal lines M1 respectively adjacent to the first and second power lines PL1 and PL2 by the second vias V1.
By connecting the first and second signal lines M1 and M2, the contact via V0 and the first via V1 to each other, the semiconductor device 100 according to this example embodiment may be the inverter element including the four p-type transistors and the four n-type transistors, arranged between the first and second power lines PL1 and PL2.
In the semiconductor device 100B according to this example embodiment, the pattern for the power tap may be provided on a third level higher than the second level.
Referring to
On the third level, a plurality of third signal lines M3 may be extending in the first direction D1 and arranged in the second direction D2. The first and second power straps PS1 and PS2 may be extending at the same third level as the plurality of third signal lines M3 in the second direction D2. The first and second power straps PS1 and PS2 may respectively be arranged on the same row as some signal lines M3a and M3b among the plurality of third signal lines M3 in the first direction D1. Like the above example embodiments, each of the first and second power straps PS1 and PS2 may have the width equal to a width of each of the signal lines M3a and M3b.
In this example embodiment, the first and second power straps PS1 and PS2 may respectively be positioned on the first and second cell boundaries CB1 and CB2, and may overlap the first and second power lines PL1 and PL2 in the third direction D3. The first and second power straps PS1 and PS2 may respectively be connected to the first and second power supply lines PM1 and PM2 through the second via V2.
In this manner, a voltage applied to the semiconductor device 100B may be transmitted to the first and second power lines PL1 and PL2 through the first and second power straps PS1 and PS2 and the first and second power supply lines PM1 and PM2, respectively.
As shown in
In addition, as shown in
As described above, each of the first and second power lines PL1 and PL2 may have the width larger than the width W1 of the plurality of first signal lines M1, and the first and second power lines PL1 and PL2 and the plurality of first signal lines M1 may be arranged by the same first interval in the second direction D2. The plurality of third signal lines M3 may be arranged at the same second interval in the second direction D2. In this case, even though the first and second intervals are the same as each other, each width of the first and second power lines PL1 and PL2 may be relatively large as shown in
In this example embodiment, the power strap may be provided on the same row as the signal line at a higher level (e.g., third signal line) while being parallel thereto even when the pattern for the power tap is positioned on the line at the higher level. The third signal lines M3 may be arranged with higher integration than the first signal lines M1 even when arranged by the same interval or pitch as the first signal lines M1.
Referring to
The substrate 101 may have the top surface extending in the first direction D1 and the second direction D2. For example, the substrate 101 may have the first active region ACT1, and may have the second active region ACT2 including a doped region such as the N-well. The first and second active regions ACT1 and ACT2 may be defined in the substrate 101 by the device isolation layer 110, and may be extending in the first direction D1.
The active pattern AF used in this example embodiment may include the active fin 105 protruding from the substrate 101 in the third direction D3. The active fin 105 may have the upper end protruding to a predetermined height from the top surface of the device isolation layer 110. The active fin 105 positioned on each of the two sides of the gate structure GL may be partially recessed, and the source/drain region 120 may be provided on the recessed active fin 105. In some example embodiment, the active region ACT may have the doped region including impurities. The source/drain region 120 may be provided in the region in which the active fin 105 positioned on each of the two sides of the gate structure GL or 140 is recessed. The source/drain regions 120 may each have the shape of merged regions connected to each other between the adjacent active fins 105 in the second direction D2, as shown in
The gate structure GL may intersect the active fin 105, and may be extending in the second direction D2. The channel region of the transistor may be formed in the active fin 105 intersecting the gate structure GL. The gate structure GL may include the gate spacer 146, the gate insulating film 142, the gate electrode 145 and the gate capping layer 148, like the above example embodiment (see
The lower interlayer-insulating layer 130 may be provided to cover the source/drain region 120 and the gate structure GL. The lower interlayer-insulating layer 130 may include, for example, at least one of oxide, nitride and oxynitride, and may include the low dielectric material.
The contact structure 180 may include the first contact structure CT_A connected to the source/drain region 120 by penetrating through the lower interlayer-insulating layer 130 and the second contact structure CT_B connected to the gate electrode 145 by penetrating through the lower interlayer-insulating layer 130 and the gate capping layer 148. In some example embodiments, the contact structure 180 may include the conductive barrier or the metal-semiconductor layer such as a silicide layer that is provided at the interface on which the contact structure 180 is in contact with the source/drain region 120 and the gate electrode 145.
The upper interlayer-insulating layer 160 may include first to fourth low dielectric layers 162, 164,166 and 168 covering the contact structure 180. First to fourth etch stop layers 151, 152, 153 and 154 may respectively be provided on lower surfaces of the first to fourth low dielectric layers 162, 164, 166 and 168.
The first signal lines M1 extending in the first direction D1 and the first and second power lines PL1 and PL2, each having a relatively large width, may respectively be provided on the second dielectric layer 164. The contact via V0 may pass through the first dielectric layer 162 to connect the first and second power lines PL1 and PL2 to the contact structure 180.
The second signal lines M2 and the first and second power supply lines PM1 and PM2, extending in the second direction D2, may respectively be provided on the third dielectric layer 166, and the first and second power supply lines PM1 and PM2 may respectively be connected to the first and second power lines PL1 and PL2 through the first via V1.
The third signal lines M3 and the first and second power straps PS1 and PS2, extending in the first direction D1, may respectively be provided on the fourth dielectric layer 168, and the first and second power straps PS1 and PS2 may respectively be connected to the first and second power supply lines PM1 and PM2 through the second via V2.
In this example embodiment, the conductive barrier layer 175 may be further included in each of the first to the third signal lines M1, M2 and M3, the first and second power straps PS1 and PS2, the first and second power supply lines PM1 and PM2, the first and second power lines PL1 and PL2, the contact via V0 and the first and second vias V1 and V2. This wiring structure may be formed by the single damascene process or a dual damascene process.
As shown in
Referring to
The routing structure used in this example embodiment may have metal line arrangements of the first and second levels, similar to those of the previous example embodiment. The first and second power lines PL1 and PL2 may respectively be provided on the first and second boundaries CB1 and CB2, and the four first signal lines M1 may be arranged by the same pitch (and/or space) between the first and second power lines PL1 and PL2.
On the second level, the plurality of second signal lines M2 may be extending in the second direction D2 and arranged in the first direction D1. In this example embodiment, the second signal line M2 positioned at the center of the second signal lines M2 may be connected to two first signal lines M1 respectively adjacent to the first and second power lines PL1 and PL2 by the second vias V1.
On the third level, the plurality of third signal lines M3 may be extending in the first direction D1 and arranged in the second direction D2. The first and second power straps PS1 and PS2 may respectively be arranged on the same row as some signal lines M3a and M3b among the plurality of third signal lines M3, while spaced from each other in the first direction D1. Unlike the previous example embodiments, the first and second power straps PS1 and PS2 are offset from the first and second cell boundaries CB1 and CB2, and respectively positioned in the cell boundaries. The third signal line M3 may be provided on the first cell boundary CB1, and the third signal line M3 adjacent to the second cell boundary CB2 may also be offset from the second cell boundary CB2.
Referring to
In this manner, the voltage applied to the semiconductor device 100B′ may respectively be transmitted to the first and second power lines PL1 and PL2 through the first and second power straps PS1 and PS2 and the first and second power supply lines PM1 and PM2, respectively. In addition, the third signal lines M3 may be arranged with the higher integration than the first signal lines M1 even when arranged by the same interval as the first signal lines M1, thus having the improved design freedom at least on the third level.
As set forth above, in the example embodiments of the disclosure, the signal lines may have the improved density and design freedom even under the limited condition of the same pitch between the signal lines by using the power straps provided on the same row as the signal lines while being parallel thereto instead of the power rails each having the relatively large width as the pattern for the power tap.
The disclosure may be defined by the appended claims rather than being limited to the description above and the accompanying drawings. Therefore, it will be apparent to those skilled in the art that various modifications and variations could be made without departing from the scope of the disclosure as defined by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
10-2021-0113699 | Aug 2021 | KR | national |