1. Field of the Invention
The present invention relates to a semiconductor device and method for manufacturing the same wherein a semiconductor laser is mounted on a submount via a solder in a junction-down manner, and in particular to a semiconductor device and method for manufacturing the same capable of securing higher dissipation characteristics and improving the yield.
2. Background Art
A semiconductor laser is mounted on a submount via a solder in a junction-up manner or a junction-down manner. When the chip width is shrunk for cost saving, the space for wire bonding avoiding contact with the light-emitting stripes is lost if the junction-up manner is used. Therefore, the junction-down manner is generally used (for example, refer to Japanese Patent Laid-Open No. 5-110203). In addition, since the junction-down manner has favorable heat dissipation characteristics, the properties of the chip at high power and/or high temperature can be improved.
Due to compressing for mounting, the solder spreads outward and runs out to the side of the chip, and builds up along the side surface of the chip. When the junction-up manner is used, since the p-n junction of the semiconductor laser is remote from the mounting surface, the p-n junction is not short-circuited with the solder. However, when the junction-down manner is used, a problem wherein the p-n junction is short-circuited with the solder to lower the yield is caused.
In GaN-based semiconductor lasers, since the crystal growing speed is low, and for reducing the heat damage to the active layer, the total thickness of the upper clad layer on the active layer and the contact layer is generally less than 1 μm. This thickness is thinner than the total thickness of the GaAs-based semiconductor laser and the like of 3 to 5 μm. Therefore, since the distance from the mounting surface to the p-n junction is short in the case of the GaN-based semiconductor laser, the above-described problem is particularly significant.
In addition, it is considered to surround the electrode with an insulating film between the submount and the semiconductor laser so as to prevent the solder to wrap around the side surface of the semiconductor laser. However, since the heat dissipation of the insulating film is low, heat generated in the light-emitting region of the semiconductor laser cannot be sufficiently dissipated into the submount.
In view of the above-described problems, an object of the present invention is to provide a semiconductor device and method for manufacturing the same capable of securing higher dissipation characteristics and improving the yield.
According to the present invention, a semiconductor device comprises: a submount; a semiconductor laser mounted on the submount via a solder in a junction-down manner and including a semiconductor substrate, a semiconductor laminated structure containing a p-n junction on the semiconductor substrate, and an electrode on the semiconductor laminated structure and joined to the submount via the solder; and a high-melting-point metal film or a high-melting-point dielectric film placed between the submount and the semiconductor laminated structure and surrounding the electrode.
The present invention makes it possible to secure higher dissipation characteristics and improve the yield.
Other and further objects, features and advantages of the invention will appear more fully from the following description.
A semiconductor device according to the embodiments of the present invention will be described referring to the drawings. The same components will be denoted by the same symbols, and the repeated descriptions may be omitted.
First Embodiment
A high-melting-point metal film 10 is placed so as to surround the electrode 8. The high-melting-point metal film 10 is composed of platinum (Pt), nickel (Ni), nickel chromium alloy (NiCr), tungsten (W), titanium (T), tungsten-titanium (TiW), molybdenum (Mo), tantalum (Ta), or niobium (Nb). In place of the high-melting-point metal film 10, a high-melting-point dielectric film composed of an oxide or nitride film of the material of the above-described high-melting-point metal film 10.
As described above, in the present embodiment, the high-melting-point metal film 10 or the high-melting-point dielectric film is placed so as to surround the electrode 8 between the submount 12 and the semiconductor laminated structure 3. Since the solder 11 is prevented from wrapping around the side surface of the semiconductor laser 1 to cause the short-circuiting of the p-n junction by the high-melting-point metal film 10 or the high-melting-point dielectric film, the yield can be improved.
Furthermore, the high-melting-point metal film 10 and the high-melting-point dielectric film have about 10 times higher thermal conductivity than the insulating film. The thermal conductivity of high-melting-point metals is 50 to 200 W/m·K, whereas the thermal conductivity of SiO2 and SiN, which are materials for general insulating films, is 10 W/m·K or lower and 20 W/m·K or lower, respectively.
Heat generated in the light-emitting region 13 of the semiconductor laser 1 is dissipated into the submount 12 via the electrode 8, the high-melting-point metal film 10, and the solder 11. When the electrode 8 is surrounded by the high-melting-point metal film 10 or the high-melting-point dielectric film according to the present embodiment, higher dissipation characteristics can be secured comparing to the case wherein the electrode 8 is surrounded by the insulating film. This is particularly advantageous in semiconductor lasers wherein several hundreds of milliwatts or more high power is required, or semiconductor lasers whose operation current and voltage are high.
Second Embodiment
During mounting, an excessive solder 11 can be flowed into the channel 14. Therefore, since the solder 11 is prevented from wrapping around the side surface of the semiconductor laser 1 to cause the short-circuiting by the p-n junction, the yield can be improved.
The width of the channel 14 is 30 μm or smaller, preferably, 5 to 20 μm. The depth of the channel 14 is about 1 to 10 μm deeper than the depth of p-n junction. Thereby, the volume of the channel 14 where excessive solder 11 flows in can be enlarged.
The location of the channel 14 is 5 to 30 μm inside, preferably 5 to 20 μm from the end of the semiconductor laser 1. By thus making the channel 14 close to the end of the chip, the bonding width can be increased and adhesion strength can be secured even when the width of the semiconductor laser 1 is shrunk to 150 μm or less, for example, nearly 100 μm.
Third Embodiment
During this mounting, as shown in
When the first alloy layer 16 reaches the metal pad 15, Au, which is a component material of the metal pad 15, diffuses into the first alloy layer 16, and the second alloy layer 17 is formed. The second alloy layer 17 is composed of, for example, 85% by weight of Au and 15% by weight of Sn. The melting point of the second alloy layer 17 elevates to about 400° C. Therefore, since the melting point of the second alloy layer 17 is higher than the mounting temperature (about 300 to 350° C.), when the solder 11 reaches the metal pad 15 and becomes the second alloy layer 17, the fusion of the solder 11 is stopped. Therefore, since the solder 11 is prevented from wrapping around the side surface of the semiconductor laser 1 to cause the short-circuiting of the p-n junction, the yield can be improved.
The thickness of the metal pad 15 is set up so that the volume of the space surrounded by the submount 12, the semiconductor laminated structure 3, and the metal pad 15 becomes substantially equal to the volume after the solder 11 becomes alloyed. Specifically, the thickness of the metal pad 15 is about several to 30 percent thinned than the thickness of the solder 11 in
Since the melting point of the Au—Sn solder is also elevated when the content of Sn is increased, a metal pad 15 containing Sn as a component material may also be used. In such a case, for example, the second alloy layer 17 is composed of 70% by weight of Au and 30% by weight of Sn, the melting point thereof becomes about 390° C. Therefore, an equivalent effect can be obtained.
The solder 11 is not limited to the Au—Sn solder, but may be composed of materials which form Sn—Ag-based, Sn—Ag—Cu-based, Sn—Zn-based, Sn—Bi-based, Pb—Sn-based, Au—Si-based, or Au—Ge-based alloys, whose melting point is changed depending on the component ratios. Then, as the material for the metal pad 15, a material containing a material that elevates the melting point of the solder 11 when alloyed with the solder 11, or added to the solder 11 is used. Thereby, an equivalent effect can be obtained.
Fourth Embodiment
As shown in
Here, the thickness of the Au film 19 is set up so that the volume of the space surrounded by the submount 12, the electrode 8, and the Au film 19 becomes substantially equal to the volume of the alloyed solder 11. Specifically, the thickness of the Au film 19 is thinned by about several to 30 percent than the thickness of the solder 11 shown in
Fifth Embodiment
During mounting, the solder 11 flows in the channel 20 of the submount 12. Thereby, as shown in
Sixth Embodiment
Specifically, the flux is the aqueous solution of borax (sodium 4-borate, Na2B4O5(OH)4.8H2O) or zinc chloride (znCl2), which has characteristics to solve metal oxides. The metallic material to lower the melting point when alloyed with the solder 11 is specifically Ag for the Sn—Cu solder, Bi for the Sn—Ag—Bi—Cu solder, In for the Sn—Ag solder, and Ag, Al, or Ga for the Sn-9Zn solder. For the Sn-0.75Cu solder (melting point: 227° C.), the melting point of Ag-added Sn-3.5Ag-0.75Cu is 217° C. For the Sn-2.5Ag-1.0Bi-0.5Cu solder (melting point 214° C.), the melting point of Sn-2.0Ag-3.0Bi-0.75Cu having a high Bi content is 207° C.
During this mounting, if the attractive material 25 is mixed in the solder 11, the fluidity of the solder 11 is improved. Thereby, the solder 11 easily flows into the channel 20. Therefore, since the solder 11 is prevented from wrapping around the side surface of the semiconductor laser 1 to cause the short-circuiting of the p-n junction, the yield can be improved. In addition, when the attractive material 25 is thinner, the excessive solder 11 easier flows into the channel 20. Also the area of the attractive material 25 is larger, the more solder 11 can be attracted.
Seventh Embodiment
First, a plurality of semiconductor laser 1 each having a semiconductor laminated structure 3 containing a p-n junction and an electrode 8 on the semiconductor laminated structure 3 are formed on a wafer-shaped n-type GaN substrate 2.
Next, as shown in
Next, as shown in
Next, cleavage or the like is carried out along the channels 26 and 27 for separating into individual semiconductor lasers 1. Then, the semiconductor laser 1 is mounted on the submount 12 via the solder 11 by a junction-down manner.
As described above, since the resistance elevating treatment is carried out on the internal surface of the channels 26 and 27, the resistance elevated region 28 has been formed on the side surface of the semiconductor laser 1. Therefore, since the solder 11 is prevented from wrapping around the side surface of the semiconductor laser 1 to reach the p-n junction and cause the short-circuiting of the p-n junction, the yield can be improved.
Generally, since the cleavage surface is protected by coating, no p-n junction is exposed. Therefore, the above-described resistance elevating treatment is not required. Furthermore, although laser scribing was used to both the channel 26 for separating and the channel 27 for cleavage, laser scribing may be used only to the channel 26 for separating,
Laser scribing excels in fine processing compared with needle scribing, and working speed is high. Laser scribing also excels in process controllability compared with etching, deep scribing is feasible. Especially, since there is no suitable etchant is available for GaN-based semiconductor laser, and wet etching is difficult, laser scribing or dry etching is required.
Obviously many modifications and variations of the present invention are possible in the light of the above teachings. It is therefore to be understood that within the scope of the appended claims the invention may be practiced otherwise than as specifically described.
The entire disclosure of a Japanese Patent Application No. 2010-088912, filed on Apr. 7, 2010 including specification, claims, drawings and summary, on which the Convention priority of the present application is based, are incorporated herein by reference in its entirety.
Number | Date | Country | Kind |
---|---|---|---|
2010-088912 | Apr 2010 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
7045827 | Gallup et al. | May 2006 | B2 |
7053492 | Takahashi et al. | May 2006 | B2 |
7257138 | Sato et al. | Aug 2007 | B2 |
20060002444 | Wang et al. | Jan 2006 | A1 |
20080237814 | Bayan | Oct 2008 | A1 |
Number | Date | Country |
---|---|---|
1574319 | Feb 2005 | CN |
101276798 | Oct 2008 | CN |
59-121989 | Jul 1984 | JP |
60-239086 | Nov 1985 | JP |
2-253690 | Oct 1990 | JP |
3-217065 | Sep 1991 | JP |
4-315486 | Nov 1992 | JP |
5-110203 | Apr 1993 | JP |
5-67033 | Sep 1993 | JP |
6-37403 | Feb 1994 | JP |
6-260723 | Sep 1994 | JP |
6-350202 | Dec 1994 | JP |
7-38208 | Feb 1995 | JP |
11-284098 | Oct 1999 | JP |
2000-4064 | Jan 2000 | JP |
2002-359427 | Dec 2002 | JP |
2007-103804 | Apr 2007 | JP |
Entry |
---|
State Intellectual Property Office of the People'S Republic of China, Chinese Office Action in Chinese Patent Application 201110085019.7 (Jan. 6, 2013). |
State Intellectual Property Office of the People'S Republic of China, Office Action in Chinese Patent Application No. 2011100850197 (Aug. 12, 2013). |
Number | Date | Country | |
---|---|---|---|
20110249694 A1 | Oct 2011 | US |