This present invention relates to all semiconductor devices and systems. Particularly it applies to diffused diodes, avalanche diodes, Schottky devices, power MOS transistors, JFET's, RF bipolar transistors, IGBTs (Insulated Gate Bipolar Transistors), varactors, digital VLSI, mixed signal circuits and sensor devices including camera ICs employing CCD (Charge Coupled Device) as well as CMOS technologies.
Bipolar Junction transistors (BJT) are minority carrier devices as the principle device conduction mechanism. However, majority carriers also a small yet finite role in modulating the conductivity in BJTs. Consequently, both carriers (electrons and holes) play a role in the switching performance of BJTs. The maximum frequency of operation in BJTs is limited by the base transit time as well as the quick recombination of the majority carriers when the device is switched off (prior to beginning the next cycle). The dominant carrier mechanism in BJTs is carrier diffusion. Carrier drift current component is fairly small, especially in uniformly doped base BJTs. Efforts have been made in graded base transistors to create an ‘aiding drift field’, to enhance the diffusing minority carrier's speed from emitter to collector. However, most semiconductor devices, including various power MOSFETs (traditional, DMOS, lateral, vertical and a host of other configurations), IGBT's (Insulated Gated Base Transistors), still use a uniformly doped drift epitaxial region in the base.
‘Retrograde’ wells have been attempted, with little success, to help improve soft error immunity in SRAM's and visual quality in imaging circuits.
For a more complete understanding of the present invention, and the advantages thereof, reference is now made to the following descriptions taken in conjunction with the accompanying drawings, in which:
a), 3(b), 3(c), 3(d) illustrate cross sections commonly used CMOS silicon substrate with two wells (one n-well in which p-channel transistors are subsequently fabricated, and, one p-well in which n-channel transistors are subsequently fabricated)—typical IC, EEPROM using tunnel insulator, DRAM and NAND flash;
a), 5(b), 5(c) illustrate the cross sections of a MOS silicon substrate with two wells, and, an underlying layer using embodiments of the invention to improve performance in each application—VLSI logic, DRAM/image IC, nonvolatile memory IC.
The relative doping concentrations of emitter and collector regions varies from 1018 to 1020/cm3, where as the base region is 1014 to 1016/cm3 depending on the desired characteristics of the BJT. In graded base p-n-p transistors, the donor dopant concentration may be 10 to 100× at the emitter-base junction, relative to the base-collector junction (1×). The gradient can be linear, quasi linear, exponential or complimentary error function. The relative slope of the donor concentration throughout the base, creates a suitable aiding drift electric field, to help the holes (p-n-p transistor) transverse from emitter to collector. Since the aiding drift field helps hole conduction, the current gain at a given frequency is enhanced, relative to a uniformly-doped-(base) BJT. The improvement in cut-off frequency (or, frequency at unity gain, fT) can be as large as 2×-5×.Similar performance improvements are also applicable to n-p-n transistors.
As illustrated in
As illustrated in
One of ordinary skill and familiarity in the art will recognize that the concepts taught herein can be customized and tailored to a particular application in many advantageous ways. For instance, minority carriers can be channeled to the surface, to aid programming in nonvolatile memory devices (NOR, NAND, multivalued-cell). Moreover, single well, as well triple-well CMOS fabrication techniques can also be optimized to incorporate these embodiments, individually and collectively. Any modifications of such embodiments (described here) fall within the spirit and scope of the invention. Hence, they fall within the scope of the claims described below
Although the invention has been described with reference to specific embodiments, these descriptions are not meant to be construed in a limiting sense. Various modifications of the disclosed embodiments, as well as alternative embodiments of the invention will become apparent to persons skilled in the art upon reference to the description of the invention. It should be appreciated by those skilled in the art that the conception and the specific embodiment disclosed may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the present invention. It should also be realized by those skilled in the art that such equivalent constructions do not depart from the spirit and scope of the invention as set forth in the appended claims.
It is therefore, contemplated that the claims will cover any such modifications or embodiments that fall within the true scope of the invention.
This application is a Divisional of U.S. application Ser. No. 10/934,915, filed on Sep. 3, 2004, now abandoned which application is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4160985 | Kamins et al. | Jul 1979 | A |
4481522 | Jastrzebski et al. | Nov 1984 | A |
5029277 | Kane | Jul 1991 | A |
5517052 | Ishaque | May 1996 | A |
5637898 | Baliga | Jun 1997 | A |
6831292 | Currie et al. | Dec 2004 | B2 |
20020056883 | Baliga | May 2002 | A1 |
20020084430 | Bamji et al. | Jul 2002 | A1 |
20020093281 | Cathey | Jul 2002 | A1 |
20020102783 | Fujimoto et al. | Aug 2002 | A1 |
20020134419 | Macris | Sep 2002 | A1 |
20030042511 | Rhodes | Mar 2003 | A1 |
20060113592 | Pendharkar et al. | Jun 2006 | A1 |
Entry |
---|
A. S. Grove, Physics and Technology of Semiconductor Devices, John Wiley Sons, Inc., New York, Nov. 1967. |
W. Murray Bullis and W. R. Runyan, Influence of Mobility and Lifetime Variations on Drift-Field Effects in Silicon-Junction Devices, IEEE Transactions on Electron Devices, vol. Ed-14, No. 2, Feb. 1967. |
Berinder Brar et al., Herb's Bipolar Transistors, IEEE Transactions on Electron Devices, vol. 48, No. 11, Nov. 2001. |
Number | Date | Country | |
---|---|---|---|
20070158790 A1 | Jul 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10934915 | Sep 2004 | US |
Child | 11622496 | US |