1. Field of the Invention
The present invention relates to a semiconductor laser device having a semiconductor laser component mounted thereon and a method of mounting the semiconductor laser component on a submount.
2. Description of the Related Art
When a semiconductor laser component is used in systems such as an optical communication system, an optical disk, a laser, a laser-beam printer and the like, such element is packaged suitably for its use. In packaging the semiconductor laser component, a direct bonding method of directly bonding the semiconductor laser component to a component, which is disposed in the package, such as a metal block, a circular stem, and the like can be used. However, since a structure obtained through this method is simple while the heat releasing property of the semiconductor laser component is not good, temperature thereof increases and thus a lifetime of the semiconductor laser component is shortened. For this reason, it is difficult to use the direct bonding method in a high-power semiconductor laser component.
Therefore, in order to solve the above problem, there has been a method for mounting a semiconductor laser component on a submount made of Si or SiC that is excellent in thermal conductivity and processability and also a method for bonding the resultant semiconductor laser device to a package. Recently, a bonding method using a submount having an excellent heat releasing property is widely used.
Now, a conventional method of mounting a semiconductor laser component will be described.
Next, as shown in
The bonding method using the submount enables for the semiconductor laser component to be high-powered. However, the higher-powered semiconductor laser component results in enlargement of the submount, and widening of the bonding area between the semiconductor laser component 1 and the submount 2 sandwiching the bonding member 3.
In this regard, the enlargement of the submount 2 and the widening of the bonding area accompanied with the higher-powered semiconductor laser component have caused the following problems.
A volume of a substance is varied according to variation of temperature, and the rate of change (thermal expansion coefficient) of every substance is different. For this reason, when different substances (for example, semiconductor laser component and submount) are heated to bond to each other, since difference in temperature exists for a time period from the complete coagulation of the bonding member to the recovery to a normal temperature. Thus, a shearing force due to difference in thermal expansion coefficient is generated in the bonded portion and this shearing force causes a residual stress in the substances. Further, the residual stress is varied depending upon sizes and shapes of the substances and the residual stress generated in the semiconductor laser component 1 because of the following reasons increase with the enlargement of the submount 2.
When the submount 2 is small as in
Furthermore, if the bonding area between the semiconductor laser component 1 and the submount 2 sandwiching the bonding member 3 is made large in order to enhance the heat conductivity, the residual stress of the semiconductor laser component 1 increases for the following reasons. When the semiconductor laser component bonded to other substance is cooled, compression occurs around a center of the bonding surface. For this reason, the farther a place is from the center, the greater the difference in the amount of compression between different substances becomes and thus the shearing force becomes larger. If the bonding area increases, places away from the center are bonded, and thus the shearing force becomes larger than the area ratio. For this reason, the residual stress due to this shearing force increases.
As described above, in order to secure sufficient bonding area between the semiconductor laser component 1 and the submount 2 sandwiching the bonding member 3 and to improve the heat conductivity by making the bonding member 3 thin, the semiconductor laser component is pressure bonded on the submount by the collet 4. However, since the semiconductor laser component 1 and the submount 2 are bonded with the stress generated due to the pressure bonding, the stress due to the pressure bonding remains in the semiconductor laser component 1 even after the release of the pressure bonding by the collet 4. At that time, if the bonding area enlarges, the fluid resistance of the bonding member 3 increases and thus the force required for the pressure bonding increases. For this reason, the residual stress remaining in the semiconductor laser component 1 due to the pressure bonding increases with the enlargement of the bonding area.
In order to improve the heat releasing property, the submount 2 is bonded to the vicinity of a light emitting region of the semiconductor laser component 1. For this reason, the light emitting region is positioned at a position having a high residual stress in the semiconductor laser component 1.
In general, when current flows in the semiconductor laser component 1 by applying a stress of 100 MPa or more to the light emitting region, crystals are transposed, which deteriorates the laser characteristic or destroys the semiconductor laser component 1. This phenomenon occurs when the stress of 100 MPa or more is applied to a part of the light emitting region. In addition, the higher-powered semiconductor laser component 1 makes the residual stress in the light emitting region larger. For this reason, when current flows, the laser characteristic is deteriorated or the semiconductor laser component 1 is destroyed.
However, as described above, since the residual stress of the semiconductor laser component 1 is generated locally due to various causes and the distribution of stress varies due to sizes and shapes of the semiconductor laser component 1, the submount 2 and the collet 4, and the pressing force of the collet 4, etc. Accordingly, there is no correlation between the macroscopic deformation (bending) and the residual stress of the semiconductor laser component 1, which makes it difficult to specify the causes.
In order to solve the above problems, it is an object of the present invention to provide a method of mounting a semiconductor laser component capable of preventing deterioration of laser characteristics and destruction of the semiconductor laser component due to residual stress as well as preventing decrease of a lifetime due to increase in temperature of the semiconductor laser component.
In order to accomplish the above object, the present invention provides a method of mounting a semiconductor laser component having a light emitting portion on a submount through a bonding member, the method comprising steps of: setting the submount having a bonding member at a mount surface thereof on a heating table;
heating the submount to bring the bonding member up to a temperature more than a melting point thereof;
positioning the semiconductor laser component on the mount surface of the submount, by a collet means;
pressure-bonding the semiconductor laser component on the mount surface of the submount by the collet means; and
heating again the submount on the heating table without pressure by the collet after the bonding member is completely coagulated.
According to the present invention, since the semiconductor laser component is pressure-bonded on the mount surface of the submount by the collet and then the semiconductor laser component is released from the collet after the bonding member is completely coagulated, the bonding member is very thin (the bonding member having a thickness of 4±1 μm is pressure bonded into a thickness of about 1 μm to about 1.5 μm). Thus, heat is released from the semiconductor laser component to the submount without any hindrance. Furthermore, by heating again the pressure-bonded semiconductor laser component through the submount up to a melting point of the bonding member, it is possible to decrease the residual stress of the semiconductor laser component. Therefore, the bonding area between the semiconductor laser component and the submount can be secured sufficiently, the thickness of the bonding member can be made-very thin to enhance heat conductivity, and the residual stress of the semiconductor laser component can be decreased, so that deterioration of laser characteristics and destruction of the semiconductor laser component can be suppressed. Besides, the process of heating again (second heating) decreases the residual stress without mis-registration of the bonding position and also an increase of the bonding thickness.
In the present invention, the submount may be provided with Au plating at a bonding surface area for a laser component to decrease the thermal contact resistance during the bonding process. The process of heating again should be carried out for a plurality of laser components together to shorten the mounting time, by which it is possible to improve productivity and reduce cost.
In the present invention, since a method of the first heating is different from that of the second heating, respectively, each heating is carried out suitably for each heating condition, which makes it possible to improve productivity and reduce cost.
According to the present invention, the heating of the submount can be carried out using various methods. However, by heating the submount using a hot-air heating method, the vicinity of the bonding member inherently to be heated can be concentrically heated or a plurality of submounts can be heated together without complicating a heating apparatus. Further, by directly heating the submount using an ohmic-resistance heating method, the heat quantity generated within a mounting apparatus can be decreased and the destruction due to increase in temperature of the mounting apparatus can be prevented. Furthermore, by heating the submount using a high-frequency heating method, a plurality of submounts can be heated together without complicating a heating apparatus.
According to the present invention, even if a Pb-free solder (such as Au—Sn, An—Ag—Bi—In, Sn—Zn—Bi, Sn—Bi—Ag) having a melting point higher than that of an eutectic crystal solder (Pb—Sn) is used as the bonding member, the residual stress can be released by heating again the laser components, and as a result, the Pb-free bonding can be realized.
According to the present invention, although a GaN or GaAs or AlInGaP system semiconductor element is used as the semiconductor laser component and Si or SiC is used as the submount, the residual stress does not remain in the semiconductor laser component and thus combination of both materials can be combined.
According to the present invention, since a semiconductor laser device having a semiconductor laser component mounted on a circuit board through a submount, wherein the semiconductor laser component is mounted on the submount through a bonding member including a Pb-free solder member by pressure bonding in a manner to have a residual stress due to the pressure boding the semiconductor laser device on the submount, it is possible to prevent deterioration of laser characteristics and destruction of the semiconductor laser component.
Furthermore, although the present invention is described below based on embodiments of a semiconductor laser component, the present invention is applicable to a method of mounting an electric element, similar to the semiconductor laser component, to a submount by means of pressure-bonding.
The above and other objectives and features of the present invention will become more apparent from the following description of preferred embodiments thereof with reference to the accompanying drawings throughout which like parts are designated by like reference numerals, and wherein:
Now, preferred embodiments of the present invention will be described with reference to
Next, advantages of the mounting method according to this embodiment will be described. In the conventional mounting method, since the semiconductor laser component 1 and the submount 2 are heated and bonded, a difference in temperature is generated from a period of completing coagulation of the bonding member 3 to a period of recovery to a normal temperature, and thus a residual stress due to a difference in thermal expansion coefficient is generated in the bonded portion. Furthermore, in order to secure enough bonding area between the semiconductor laser component 1 and the submount 2 sandwiching the bonding member 3 and to improve the heat conductivity by making the bonding member 3 thin, the semiconductor laser component is pressure bonded on the submount by the collet 4.
For this reason, since the semiconductor laser component 1 and the submount 2 is bonded to generate the stress, the stress due to the pressure bonding remains in the semiconductor laser component 1 even after the pressure bonding by the collet 4 is released. This residual stress increases due to the enlargement of the submount 2 and the increase of the bonding area accompanied with the high-power semiconductor laser component. In order to improve the heat releasing property, the submount 2 is bonded in the vicinity of a light emitting region of the semiconductor laser component 1, and as a result, the residual stress generated in the semiconductor laser component 1 is concentrated in the vicinity of the bonding surface with the submount 2. Therefore, the residual stress becomes higher in the light emitting region.
In general, when current flows in the semiconductor laser component 1 by applying a stress of 100 MPa or more to the light emitting region, crystals are transposed, which deteriorate the laser characteristic or destroys the semiconductor laser component 1. Conventionally, since the residual stress was small in the semiconductor laser component 1, the destruction of the semiconductor laser component 1 due to the crystal transposition did not occur. However, with the increase of the residual stress accompanied with the recent high power, the semiconductor laser component 1 is destroyed due to the crystal potential.
On the contrary, in this embodiment, in order to decrease the residual stress of the semiconductor laser component 1, the submount 2, on which the semiconductor laser component 1 is mounted, is heated again up to the temperature that is more than the melting point of the bonding member 3 after the conventional processes. By melting the bonding member 3 again, the bonding containing the stress of the semiconductor laser component 1 and the submount 2, which is a cause of the residual stress, is released, and thus the residual stress is released from the semiconductor laser component 1 and the submount 2.
Thereafter, when the bonding member 3 is coagulated by cooling again, the semiconductor laser component 1 and the submount 2 are bonded with release of the residual stress due to the pressure bonding of the collet 4. In addition, the pressure bonding by the collet 4 in the first heating, can make the bonding area between the semiconductor laser component 1 and the submount 2 secured sufficiently and the bonding member 3 can be made very thin. Thus, it is not necessary to carry out the pressure bonding by the collet 4 in the second heating process. In this embodiment as described above, since it is possible to decrease the residual stress of the semiconductor laser component 1 together with the required heat releasing property, it is possible to prevent the deterioration of laser characteristics or the destruction of the semiconductor laser component.
Furthermore, in the above embodiment, although the submount 2 is heated on the heating table 5, the same advantages can be obtained by using at least one selected from the group consisting of hot-air heating, ohmic-resistance heating or high-frequency heating. Furthermore, the heating may be carried out through the collet.
Next, advantages of the mounting method according to this embodiment will be described with reference to a comparison diagram in
In Example 1, since the first heating operation and the second heating operation are carried out using the same heating apparatus, the mounting apparatus can be enlarged but the mounting time can be lengthened due to the second heating operation. In addition, since the second heating operation does not use the collet 4, the production efficiency decreases.
On the contrary, in this embodiment, since the first second heating operations are carried out using different heating apparatuses, the mounting apparatus is enlarged. However, the collet 4 can always be utilized, which makes it possible to prevent the decrease of production efficiency. As a result, as shown in
Furthermore, since the semiconductor laser device is heated without using the collet 4 in the second heating operation, the heat capacity for heating can be saved more than in the case that the plurality of semiconductor laser components are simultaneously heated, and thus it is possible to reduce cost and to prevent the destruction due to increase in temperature of the mounting apparatus.
Furthermore, although in the above embodiment, a method of the first heating operation is the same as the second heating operation, the same advantages can be obtained even if the heating methods are different from each other. Furthermore, for the following reasons, it is more effective when the first heating operation is carried out by a contact type using the heating table and the like and the second heating operation is carried out by a non-contact type using hot-air heating and the like. Since the first heating operation is carried out by using the collet 4, the first heating operation cannot be carried out in a sealed space.
For this reason, a more efficient heating process is carried out by the contact type heating method. Since the second heating operation can be carried out in a sealed space, the contact type heating method and the non-contact type heating method do not render any difference in efficiency. However, when heating is carried out in a multi-layer arrangement as shown in
It should be noted that a specific shape and structure of each part in the above embodiment is only an example of the present invention and thus does not limit the technical scope of the present invention.
Number | Name | Date | Kind |
---|---|---|---|
3790738 | Laub et al. | Feb 1974 | A |
4576326 | Hawrylo | Mar 1986 | A |
5309545 | Spigarelli et al. | May 1994 | A |
5579979 | Kurpiela | Dec 1996 | A |
6142356 | Yamazaki et al. | Nov 2000 | A |
6808316 | Nakanishi et al. | Oct 2004 | B2 |
6827501 | Yasuda et al. | Dec 2004 | B2 |
6897410 | Ho et al. | May 2005 | B1 |
20030015721 | Slater et al. | Jan 2003 | A1 |
20040195297 | Powers et al. | Oct 2004 | A1 |
20050127144 | Mochida et al. | Jun 2005 | A1 |
20050141579 | Yamane et al. | Jun 2005 | A1 |
Number | Date | Country |
---|---|---|
2002-217480 | Aug 2002 | JP |
Number | Date | Country | |
---|---|---|---|
20060171434 A1 | Aug 2006 | US |