This application is based upon and claims the benefit of priority from Japanese Patent Application No. 2016-030283, filed Feb. 19, 2016, the entire contents of which are incorporated herein by reference.
Embodiments described herein relate generally to a semiconductor memory device.
An SRAM (Static Random Access Memory) can read and write data at a higher speed as compared to DRAM (Dynamic Random Access Memory) and NAND flash memory, and there is generally no need to perform a refresh operation as with DRAM. Therefore, the SRAM is often used as a cache memory of a central processing unit (CPU).
In a typical SRAM, a power-supply voltage can be lowered to reduce power consumption when in a retention mode in which only data retention is being performed (that is, no read/write operations are being conducted). A bit line pair is in a nominally floating state during this retention mode. However, in cases where a plurality of SRAM cells are connected to the bit line pair, the potential of the bit line pair may be changed under the influence of retained data of SRAM cells. More specifically, a bit line BL of the bit line pair can become a low potential (hereinafter, also referred to as L potential), and a bit line /BL easily becomes a high potential (hereinafter, also referred to as H potential) when the number of SRAM cells storing low data (hereinafter, also referred to as L data) among the plurality of SRAM cells is larger than the number of SRAM cells storing high data (hereinafter, also referred to as H data). Therefore, the retained data in the SRAM cell(s) storing the H data may be affected when the potential of the bit line BL is inverted.
In general, according to one embodiment, a semiconductor memory device includes a plurality of static random access memory (SRAM) cells connected to a bit line pair. The bit line pair comprises a first bit line and a second bit line. An equalizer circuit is configured to control an electrical connection between the first bit line and the second bit line. A timing control circuit is configured to control the equalizer circuit such that the equalizer circuit electrically disconnects the first bit line from the second bit line during a first operating mode and electrically connects the first bit line to the second bit line during a second operating mode. The first operating mode permits data to be read from or written to the plurality of SRAM cells, and the second operating mode being a retention mode during which data is not read from or written to plurality of SRAM cells.
Hereinafter, example embodiments of the present disclosure will be described with reference to the drawings.
As illustrated in
The equalizer circuit 4 functions to short-circuit (electrically connect) the bit line pair BL, /BL to each other when the plurality of SRAM cells 2 are in the second mode. The timing control circuit 5 controls timing at which the equalizer circuit 4 short-circuits the bit line pair BL, /BL.
Additionally, the semiconductor memory device 1 is provided with a word line driver 6 which drives a word line WL, and an AND gate 7. In
For an example, each SRAM cell 2 includes six MOS transistors Q1 to Q6 as illustrated in
The transistors Q1 and Q3 in the data retention unit 2a are connected in series between a power voltage node and a ground voltage node. The transistors Q2 and Q4 are connected in series between the power voltage node and the ground voltage node. The gates of the transistors Q1 and Q3 are connected to the drains of the transistors Q2 and Q4. The gates of the transistors Q2 and Q4 are connected to the drains of the transistors Q1 and Q3.
The transistor Q5 in the data transfer unit 2b switches whether the bit line BL is connected to the drains of the transistors Q1 and Q3 and the gates of the transistors Q2 and Q4. The transistor Q6 switches whether the bit line /BL is connected to the drains of the transistors Q2 and Q4 and the gates of the transistors Q1 and Q3. The gates of the transistors Q5 and Q6 are connected to the word line WL.
In the second mode, the word line WL is a low potential (hereinafter, referred to as L logic), and the transistors Q5 and Q6 are turned off. On the other hand, the transistors Q1 to Q4 are connected in a cross manner, and retains data values even when the transistors Q5 and Q6 are turned off.
The equalizer circuit 4 includes an NMOS transistor Q7 which switches whether the bit line pair BL, /BL is short-circuited as illustrated in
Furthermore, the equalizer circuit 4 is not limited to the specific configuration of having a single transistor Q7 as illustrated in
The external control signal RMI is supplied from a CPU (not illustrated) for example. The external control signal RMI is a signal to instruct the equalizer circuit 4 to short-circuit the bit line pair BL, /BL. For example, the external control signal RMI becomes the H logic when the bit line pair BL, /BL is to be short-circuited, and becomes the L logic in the first mode (the normal mode). The external control signal RMI can be used to set the power-supply potential to be low (L logic) after a certain time period elapses after a change to H logic. In addition, the external control signal RMI is necessarily set to the L logic after the power-supply potential returns to a normal potential.
An output signal WLC of the inverter 5a is input to the AND gate 7 illustrated in
The output signal EQL of the buffer 5b is input to the gate of the NMOS transistor Q7 in the equalizer circuit 4. When the external control signal RMI is the H logic, the output signal EQL of the buffer 5b also becomes the H logic, the NMOS transistor Q7 is turned on to short-circuit the bit line pair BL, /BL, and the bit line pair BL, /BL becomes a common potential.
When the external control signal RMI becomes the H logic, the output signal EQL of the buffer 5b becomes the H logic. In
When the output signal EQL becomes the H logic, the equalizer circuit 4 short-circuits the bit line pair BL, /BL. Therefore, the bit line pair BL, /BL becomes the intermediate potential VDD/2 between the power-supply potential (for example, VDD) and the ground potential (for example, 0 V) of the semiconductor memory device 1.
Thereafter, when the external control signal RMI becomes the L logic, the output signal EQL becomes the L logic. A period (time from t3 to t4) when the output signal EQL is the H logic is the second mode. Thereafter, the chip enable signal CE returns to the H logic. In
In this way, in this first embodiment, since the bit line pair BL, /BL is set to the intermediate potential in the second mode, there occurs no error in which a logic value of retained data of the SRAM cell 2 is inverted by the influence of the potential of the bit line pair BL, /BL.
In the semiconductor memory device 1 according to this first embodiment, the power-supply potential can be lowered in the second mode as compared to the first mode in order to achieve lower power consumption. When the power-supply potential is lowered, the potential of the bit line pair BL, /BL may also be lowered. Even in this first embodiment, the logic value of the retained data of the SRAM cell 2 may be inverted in such a scenario. In addition, the logic value of the retained data may be inverted by a variation in characteristics of the respective SRAM cells 2, or changes in the power-supply potential.
Furthermore, in a case where the majority of cells are “0”, the retained data of the SRAM cell 2 will be unlikely to be inverted. Therefore, the inversion in this case does not occur by a lowering of the power-supply potential to 0.575 V.
In this way, in the first embodiment, the bit line pair BL, /BL is short-circuited by the equalizer circuit 4 in the second mode where the data of the SRAM cell 2 is retained in a state of a low power-supply voltage. Therefore, the bit line pair BL, /BL can be set to the intermediate potential. Accordingly, even in a case where the majority of SRAM cells 2 among the plurality of SRAM cells 2 connected to the bit line pair BL, /BL retain specific data, there occurs no error in which the retained data of a cell is affected by the influence of the retained data of the other cells on the bit line pair BL, /BL and thus the retained data of the SRAM cells 2 will not be inverted. Therefore, it is possible to improve a data retention property of the SRAM cell while in the second mode.
In the first embodiment, the timing of the second mode was controlled according to the external control signal RMI supplied from outside of the semiconductor memory device 1. In a second embodiment, the timing of the second mode is determined inside the semiconductor memory device 1 itself.
The semiconductor memory device 1 according to the second embodiment is different from the first embodiment in the internal configuration of the timing control circuit 5, but the other configurations are substantially common with those of the first embodiment. The circuit configuration of the SRAM cell 2 in the second embodiment is also common to that depicted in
The DF/F 11 and DF/F 12 synchronize the chip enable signal CE to the rising edge of the clock signal CLK. The logical operation circuit 13 outputs the H logic signal EQL when the chip enable signal CE is the L logic, the output /Q of the DF/F 11 at the previous stage is the H logic, and the output /Q of the DF/F 12 at the later stage is the H logic. The inverter 14 outputs a signal WLC which is obtained by inverting the signal EQL. The buffer 15 outputs a signal of the same logic value as that of the signal EQL.
Thereafter, when the chip enable signal CE becomes the H logic at time t16, the output signal EQL and the signal RMO of the logical operation circuit 13 are inverted to the L logic, and the signal WLC is inverted to the H logic. Therefore, the equalizer circuit 4 stops short circuiting the bit line pair BL, /BL. In this way, the time period from t15 to t16 corresponds to the second mode.
In this way, in the second embodiment, the chip enable signal CE supplied from the outside can be synchronized with the clock signal CLK to set the period of the second mode. Accordingly, there is no need to specifically designate the period of the second mode from the outside. In addition, even in the second embodiment, the bit line pair BL, /BL can be set to the intermediate potential in the second mode similarly to the first embodiment. It is thus possible to prevent an unintended inversion of the retention data of the SRAM cell 2.
In a third embodiment, a test can be performed on whether the data written (presently retained) in the SRAM cell 2 will be inverted by the potential of the bit line pair BL, /BL. As described above, in a case where the majority of SRAM cells 2 among the plurality of SRAM cells 2 connected to the bit line pair BL, /BL store data “0”, the bit line BL easily becomes the L potential. Under such influence (bit line BL=L potential), the retained data of those particular SRAM cells 2 storing data “1” may be easily inverted (that is become “0” value data in error). Therefore, a test of whether such an error will occur is performed in the third embodiment. More specifically, the potential of the bit line pair BL, /BL is inverted, and it is determined whether the stored data in a SRAM cell 2 is inverted by the inversion in bit line pair BL, /BL potential. In this third embodiment, even though it is not confirmed in advance which potential of the bit line pair BL, /BL will cause the retained data of the SRAM cell 2 to be inverted, the SRAM cell 2 can be determined as normal by confirming that the retained data of the SRAM cell 2 is not changed when the potential to be applied to the bit line pair BL, /BL is inverted.
The test control circuit 21 performs a test about whether the retained data in the plurality of SRAM cells 2 is inverted when first complementary data of a first test value (e.g., L for bit line BL and H for bit line /BL) is supplied to the bit line pair BL, /BL while the plurality of SRAM cells 2 are in the second mode. Next, the test control circuit 21 performs a test about whether the retained data in the plurality of SRAM cells 2 is inverted when second complementary data that has a second test value (e.g., H for bit line BL and L for bit line /BL) inverse to the first complementary data is supplied to the bit line pair BL, /BL.
The test control circuit 21 includes a PMOS transistor Q11 and an NMOS transistor Q12 which are connected between the power voltage node and the ground voltage node, a first gate control circuit 22 which controls the gate voltage of the transistor Q11, a second gate control circuit 23 which controls the gate voltage of the transistor Q12, a PMOS transistor Q13 and an NMOS transistor Q14 which are connected between the power voltage node and the ground voltage node, a third gate control circuit 24 which controls the gate voltage of the transistor Q13, a fourth gate control circuit 25 which controls the gate voltage of the transistor Q14, and an inverter 26.
The drain of the PMOS transistor Q11 and the drain of the NMOS transistor Q12 both are connected to the bit line BL. The drain of the PMOS transistor Q13 and the drain of the NMOS transistor Q14 both are connected to the bit line /BL.
The first gate control circuit 22 inputs an NAND signal between an inversion logic of test data Data and a test mode signal TEST to the gate of the transistor Q11. The second gate control circuit 23 inputs an AND signal between the test data Data and the test mode signal TEST to the transistor Q12. The third gate control circuit 24 inputs an NAND signal between the test data Data and the test mode signal TEST to the gate of the transistor Q13. The fourth gate control circuit 25 inputs an AND signal between an inversion logic of the test data Data and the test mode signal TEST to the gate of the transistor Q13.
The semiconductor memory device 1 of
In this way, according to the third embodiment, when a test is performed as to whether the retained data of the SRAM cell 2 is inverted when the potential of the bit line pair BL, /BL is inverted, and even when a majority of SRAM cells 2 among the plurality of SRAM cells 2 connected to the bit line pair BL, /BL retain the same data value, it is possible to verify in advance whether the retained data of the other SRAM cells 2 will be inverted.
While certain embodiments have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the inventions. Indeed, the novel embodiments described herein may be embodied in a variety of other forms; furthermore, various omissions, substitutions and changes in the form of the embodiments described herein may be made without departing from the spirit of the inventions. The accompanying claims and their equivalents are intended to cover such forms or modifications as would fall within the scope and spirit of the inventions.
| Number | Date | Country | Kind |
|---|---|---|---|
| 2016-030283 | Feb 2016 | JP | national |