The present invention relates to a semiconductor module configured to sense and limit an overcurrent of a diode bridge circuit.
As one of power modules, there is a converter module equipped with a diode bridge circuit to convert an alternating current to a direct current. As one of the converter modules, there is an IPM (Intelligent Power Module) for a converter equipped with a protection function circuit. In the IPM for converter, an IGBT (Insulated Gate Bipolar Transistor), which is an active element connected in anti-parallel to a diode is equipped with a current sensor or a temperature sensor. In the converter module, it is mainly the diode of the diode bridge circuit that generates heat by the current flowing therein. However, since an element equipped with the current sensor and capable of protective shutdown is the IGBT, there is a problem that the protective shutdown is delayed at the time of an energization abnormality, and the module breaks down.
Conventionally, in the converter module, a thyristor and a resistor are connected in parallel between the diode bridge circuit and an inverter circuit. When the power supply is activated, the thyristor is off, and a current flows to a resistor side, which prevents an inrush current. When the thyristor is turned on after a charging time of an electrolytic capacitor has elapsed, a current flows to a thyristor side to suppress generation loss of the circuit.
However, since the thyristor cannot be turned off once it is turned on, there is a problem that the diode bridge circuit or a customer system breaks down when an energization abnormality such as an overcurrent occurs during the activation of the power supply.
Japanese Patent Application Laid-Open No. 2000-270468 discloses a power supply control apparatus that senses a current flowing through an AC-DC converter by a current detection circuit and prevents an inrush current after turning on the power supply. In the power supply control apparatus of Japanese Patent Application Laid-Open No. 2000-270468, when the current detection circuit detects a current value equal to or larger than a certain value, a switch control circuit operates a switch circuit to short-circuit both ends of a resistor, thereby preventing the inrush current. However, the power supply control apparatus of Japanese Patent Application Laid-Open No. 2000-270468 has a problem that it does not have a function of turning off an AC switch when an energization abnormality such as an overcurrent occurs during power supply activation, and cannot control a current flowing through the AC-DC converter, so that the AC-DC converter breaks down.
It is an object of the present invention to provide a semiconductor module which can be protected when an energization abnormality such as an overcurrent occurs during activation.
A semiconductor module of the present invention includes a diode bridge circuit, a sensor, a current limiting circuit, and a protection circuit. The sensor measures a current value of the diode bridge circuit. The current limiting circuit has a first switching element connected to the diode bridge circuit. The protection circuit switches ON and OFF the first switching element in accordance with the current value of the diode bridge circuit measured by the sensor.
In the semiconductor module of the present invention, since the current limiting circuit has the first switching element, it is possible to suppress not only an inrush current at the time of power supply activation start but also a subsequent overcurrent.
These and other objects, features, aspects and advantages of the present invention will become more apparent from the following detailed description of the present invention when taken in conjunction with the accompanying drawings.
The diode bridge circuit 11 includes a diode 11R1 of an R phase upper arm, a diode 11R2 of an R phase lower arm, a diode 11S1 of an S phase upper arm, 11S2 of an S phase lower arm, a diode 11T1 of a T phase upper arm, and a diode 11T2 of a T phase lower arm. Cathodes of the diodes 11R1, 11S1, 11T1 are connected to a P terminal of the electrolytic capacitor 13 via the current limiting circuit 14, and anodes of the diodes 11R2, 11S2, 11T2 are connected to an N terminal of the electrolytic capacitor 13.
The inverter circuit 12 includes an IGBT 12U1 of a U phase upper arm, an IGBT 12U2 of a U phase lower arm, an IGBT 12V1 of a V phase upper arm, an IGBT 12V2 of a V phase lower arm, an IGBT 12W1 of a W phase upper arm, and an IGBT 12W2 of a W phase lower arm. Moreover, diodes 12DU1, 12DU2, 12DV1, 12DV2, 12DW1, 12DW2 are connected in anti-parallel to the IGBTs 12U1, 12U2, 12 V1, 12V2, 12W1, 12W2, respectively. Collectors of the IGBTs 12U1, 12V1, 12W1 are connected to the P terminal of the electrolytic capacitor 13, and emitters of the IGBTs 12U2, 12V2, 12W2 are connected to the N terminal of the electrolytic capacitor 13.
The current limiting circuit 14 is connected between the diode bridge circuit 11 and the inverter circuit 12. One end of the current limiting circuit 14 is connected to the cathodes of the diodes 11R1, 11S1, 11T1, and another end is connected to the P terminal of the electrolytic capacitor 13. The current limiting circuit 14 has a configuration in which a thyristor 141 and a current limiting resistor 142 are connected in parallel.
In contrast, in a converter module of each preferred embodiment described below, a diode bridge circuit 11 or a customer system 15 is protected when an energization abnormality such as an overcurrent occurs during power supply activation.
<B-1. Configuration>
The sensor 17 is connected to cathodes of diodes 11R1, 11S1, 11T1 of the diode bridge circuit 11, and measures a current value of the diode bridge circuit 11. That is, the sensor 17 measures a total value of currents flowing through the diodes 11R1, 11S1, 11T1.
The current limiting circuit 16A has one end connected to the sensor 17, and another end connected to the P terminal of the electrolytic capacitor 13. The current limiting circuit 16A has a configuration in which an IGBT 161 as a first switching element, and a current limiting resistor 162 are connected in parallel. Here, the IGBT 161 is used as the first switching element, but another transistor such as a MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor) may be used.
The protection circuit 18 is electrically connected to the sensor 17 and controls ON and OFF of the IGBT 161 of the current limiting circuit 16A in accordance with a value of an output current of the diode bridge circuit 11 measured by the sensor 17.
<B-2. Operation>
<B-3. Effects>
The semiconductor module 101 includes the diode bridge circuit 11, the sensor 17 configured to measure the current value of the diode bridge circuit 11, the current limiting circuit 16A having the IGBT 161 as the first switching element connected to the diode bridge circuit 11, and the protection circuit 18 configured to switch ON and OFF the IGBT 161 in accordance with the current value of the diode bridge circuit 11 measured by the sensor 17. In the semiconductor module 101, by switching ON and OFF the IGBT 161, it is possible to limit the current of the diode bridge circuit 11. Accordingly, the overcurrent can be suppressed not only due to the inrush current at the time of power supply activation but also due to the subsequent energization abnormality. This can prevent breakdown of the diodes constituting the diode bridge circuit 11 or the customer system 15.
The current limiting circuit 16A includes the current limiting resistor 162 connected in parallel to the IGBT 161. Accordingly, when the IGBT 161 is off, the current flows through the current limiting resistor 162, so that the current of the diode bridge circuit 11 can be limited.
<C-1. Configuration>
<C-2. Operation>
<C-3. Effects>
The semiconductor module 102 of the second preferred embodiment includes the IGBT 163, which is the second switching element connected in series to the current limiting resistor 162. If an overcurrent is applied to the current limiting resistor 162 for a long time, there is concern that the current limiting resistor 162 generates heat and the reliability of the semiconductor module 102 is impaired. However, the semiconductor module 102 shuts off the IGBT 163 by the protection circuit 18 and stops the operation when the energization time of the overcurrent exceeds the time period T2, so that the semiconductor module 102 has high reliability.
<D-1. Configuration>
<D-2. Operation>
It is assumed that an energization abnormality such as an overcurrent occurs at the time t6, and that the bus current increases. When the measured value of the bus current in the sensor 17 exceeds the threshold value at the time t7, the protection circuit 18 sets the gate voltage of the IGBT 161 to V1. However, it is assumed herein that the bus current does not decrease and that the time period T2 has passed while keeping a value equal to or more than the threshold value. At this time, the protection circuit 18 turns off the IGBT 163, that is, sets the gate voltage to 0, which is an off-voltage, and completely shuts off the current flowing through the current limiting circuit 16B. In this way, the operation of the semiconductor module 103 is completely stopped. The time period T2 is longer than the time period T1 from the time t0 to the time t2 or the time period T1 from the time t4 to the time t5.
<D-3. Effects>
In the semiconductor module 103 of the third preferred embodiment, the protection circuit 18 controls a control voltage of the IGBT 161 in at least three stages of the off-voltage, the first on-voltage, and the second on-voltage higher than the first on-voltage in accordance with the current value of the diode bridge circuit 11 measured by the sensor 17. By setting the gate voltage of the IGBT 161 to the first on-voltage, the protection circuit 18 can suppress the inrush current at the power supply activation or the overcurrent due to the subsequent energization abnormality. Further, by setting the gate voltage of the IGBT 161 to the second on-voltage, the protection circuit 18 can suppress the loss in the circuit when the bus current is small. Furthermore, when the overcurrent continues for a long time, the protection circuit 18 turns off the IGBT 161 to completely shut off the current flowing through the semiconductor module 103, which brings about high reliability. In addition, since the current limiting resistor is unnecessary in the current limiting circuit 16C, miniaturization of the semiconductor module 103 can be achieved.
<E-1. Configuration>
<E-2. Effects>
In the first preferred embodiment, the protection circuit 18 controls ON/OFF of the IGBT 161 of the current limiting circuit 16A, based on the total of current values of the diodes of each phase in the diode bridge circuit 11. In contrast, in the semiconductor module 104 of the fourth preferred embodiment, the sensors 17R1, 17R2, 17S1, 17S2, 17T1, 17T2 are connected in parallel to the respective diodes 11R1, 11R2, 11S1, 11S2, 11T1, 11T2 constituting the diode bridge circuit 11, and a current value of each of the diodes 11R1, 11R2, 11S1, 11S2, 11T1, 11T2 is measured as the current value of the diode bridge circuit 11. Accordingly, the protection circuit 18 can control ON/OFF of the IGBT 161, based on the current value of each of the diodes constituting the diode bridge circuit 11. Specifically, the protection circuit 18 turns off the IGBT 161 and performs current limitation if the current value of even one of the diodes 11R1, 11S2, 11S1, 11S2, 11T1, 11T2 exceeds a threshold value. This makes it possible to grasp the current of each phase of the diode bridge circuit 11 more accurately and to perform current limitation, so that high reliability is obtained.
<F-1. Configuration>
The protection circuit 19 acquires the current values of the diodes 11R1, 11R2, 11S1, 11S2, 11T1, 11T2 constituting the diode bridge circuit 11 from the sensors 17R1, 17R2, 17S1, 17S2, 17T1, 17T2, respectively. Then, the protection circuit 19 outputs an alarm to the customer system 15 if there is even one of the diodes 11R1, 11R2, 11S1, 11S2, 11T1, 11T2 whose current value exceeds the threshold value. Here, as a method of the alarm, an analog signal may be used, or a digital signal may be used.
<F-2. Effects>
In the semiconductor module 105 of the fifth preferred embodiment, the protection circuit 19 outputs the alarm signal to the outside of the semiconductor module 105 in accordance with the current value of the diode bridge circuit 11 measured by the sensor 17. Accordingly, according to the semiconductor module 105, when an overcurrent is generated in the diode bridge circuit 11, it is possible to output an alarm to the customer system 15. As a result, a customer can protect the semiconductor module 105 or the customer system 15 at arbitrary timing before it breaks down, which brings about high reliability. Moreover, since the customer system 15 can keep a log of the alarms of energization abnormalities, heating abnormalities or the like, it is possible to follow a history of abnormal states, so that troubleshooting at the time of trouble occurrence becomes easy.
<G-1. Configuration>
<G-2. Effects>
Since each of the semiconductor modules 106, 106A of the sixth preferred embodiment includes the IGBTs 20R1, 20R2, 20S1, 20S2, 20T1, 20T2 connected in anti-parallel to the diodes 11R1, 11R2, 11S1, 11S2, 11T1, 11T2 constituting the diode bridge circuit, respectively, it can be used as a converter module or a converter IPM at the time of power regeneration.
Further, the semiconductor module 106A includes drive circuits 21R1, 21R2, 21S1, 21S2, 21T1, 21T2 of the IGBTs 20R1, 20R2, 20S1, 20S2, 20T1, 20T2 and the protection circuit. Therefore, protection of the diodes 11R1, 11R2, 11S1, 11S2, 11T1, 11T2 and protection of the IGBTs 20R1, 20R2, 20S1, 20S2, 20T1, 20T2 can be performed by the one semiconductor module 106A, which brings about high reliability.
<H-1. Configuration>
<H-2. Modification>
The inverter module shown in
Consequently, the IGBT and the diode in an anti-parallel connection relationship are realized by one RC-IGBT. An RC-IGBT chip 35 results from making the IGBT and the diode into one chip, and has diode portions 33 constituting the diode, and IGBT portions 34 constituting the IGBT, as shown in
<H-3. Effects>
The semiconductor modules 107, 107A, 107B according to the eighth preferred embodiment are each provided with the inverter circuit 22 in addition to the diode bridge circuit 11. By mounting these circuits in the same package, the modules required for power conversion are packaged in one package. Accordingly, by using the semiconductor modules 107, 107A, 107B, it is possible to miniaturize the power conversion apparatus.
In addition, by configuring the diode and the IGBT, which are connected in anti-parallel, by the RC-IGBT in the semiconductor module 107B, the mounting area of the chips can be reduced, and the semiconductor module 107B can be miniaturized.
A wide band gap semiconductor of SiC, GaN or like may be used for the semiconductor element such as the diode or the IGBT included in the semiconductor module 107B. Since the wide band gap semiconductor can be used at a high temperature, demand for the wide band gap semiconductor as a semiconductor module is increasing, and miniaturization and high integration of the semiconductor module using the wide band gap semiconductor are desired. Since the semiconductor module 107B can be miniaturized as shown in
It is possible to configure a power conversion apparatus such as an inverter apparatus, a converter apparatus, a servo amplifier, or a power supply unit by mounting one or more of the semiconductor modules described in each of the above preferred embodiments. By using the semiconductor module described in each of the preferred embodiments, high reliability or miniaturization of the power conversion apparatus itself can be realized.
In the present invention, within the scope of the invention, each of the preferred embodiments can be freely combined, and each of the preferred embodiments can be appropriately modified or omitted.
While the invention has been shown and described in detail, the foregoing description is in all aspects illustrative and not restrictive. It is therefore understood that numerous modifications and variations can be devised without departing from the scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
JP2018-166532 | Sep 2018 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5828112 | Yamaguchi | Oct 1998 | A |
6194856 | Kobayashi | Feb 2001 | B1 |
20130033794 | Baek | Feb 2013 | A1 |
20130257301 | Tran | Oct 2013 | A1 |
20130336028 | Kawamura | Dec 2013 | A1 |
Number | Date | Country |
---|---|---|
103701086 | Apr 2014 | CN |
105140889 | Dec 2015 | CN |
H10-239360 | Sep 1998 | JP |
2000-270468 | Sep 2000 | JP |
2007-159344 | Jun 2007 | JP |
2008-042124 | Feb 2008 | JP |
2008-072848 | Mar 2008 | JP |
2010-172183 | Aug 2010 | JP |
2012-070531 | Apr 2012 | JP |
2014-045551 | Mar 2014 | JP |
2015-012706 | Jan 2015 | JP |
20170021407 | Feb 2017 | KR |
201517471 | May 2015 | TW |
Entry |
---|
Datasheet, “Silicon Coarbide Schottky Rectifier Bridge”, IXYS, 2008 (Year: 2008). |
X. Huang, D. Chang and T. Q. Zheng, “Research on control characteristics of PWM rectifier with RC-IGBT,” 2017 12th IEEE Conference on Industrial Electronics and Applications (ICIEA), Siem Reap, 2017, pp. 1570-1575. (Year: 2017). |
An Office Action; “Notice of Reasons for Refusal”, mailed by the Japanese Patent Office dated Jul. 13, 2021, which corresponds to Japanese Patent Application No. 2018-166532 and is related to U.S. Appl. No. 16/448,353; with English language translation. |
Number | Date | Country | |
---|---|---|---|
20200083700 A1 | Mar 2020 | US |