The present disclosure relates to but is not limited to a semiconductor structure and a method for fabricating a semiconductor structure.
A semiconductor transistor generally includes a gate positioned on a substrate and a source region and a drain region positioned in a surface of the substrate. Generally, the source region and the drain region of the transistor are correspondingly provided with a conductive plug. The conductive plug is configured to connect the transistor with other semiconductor devices to implement functions of the transistor.
A variety of capacitances may exist in the above transistor, which may have a negative effect on characteristics of the transistor, particularly the capacitances between the gate and the source region and the capacitances between the gate and the drain region generally may have a negative effect on high-frequency characteristics of the transistor.
Therefore, there is an urgent need for a solution that can reduce the capacitances between the gate and the source/drain region of semiconductor transistor.
Embodiments of the present disclosure provide a semiconductor structure and a method for fabricating a semiconductor structure.
Embodiments of the present disclosure provide a semiconductor structure. The semiconductor structure includes: a source region and a drain region arranged at intervals on a substrate; a gate oxide layer arranged between the source region and the drain region; a gate structure arranged on the gate oxide layer; and a conductive plug arranged at a corresponding location of the source region and a corresponding location of the drain region. The gate structure includes a plurality of conductive layers, at least one target conductive layer is present in the plurality of conductive layers, and a distance from the at least one target conductive layer to the conductive plug is greater than a distance from at least one adjacent layer of the target conductive layer to the conductive plug.
Embodiments of the present disclosure provide a method for fabricating a semiconductor structure. The method includes: forming a gate oxide layer; forming a gate structure on the gate oxide layer; forming a source region and a drain region on two sides of the gate structure; and forming a conductive plug at a corresponding location of the source region and a corresponding location of the drain region, respectively. The gate structure comprises a plurality of conductive layers, at least one target conductive layer is present in the plurality of conductive layers, and a distance from the at least one target conductive layer to the conductive plug is greater than a distance from at least one adjacent layer of the target conductive layer to the conductive plug.
Some embodiments of the present disclosure are shown by the above drawings, and more detailed description will be made hereinafter. These drawings and text description are not for limiting the scope of conceiving the present disclosure in any way, but for illustrating the concept of the present disclosure for those skilled in the art by referring to particular embodiments.
The terms “comprising” and “having” in the present disclosure are intended to be inclusive and specify the presence of other elements/constituent parts or the like excluding the elements/constituent parts listed out. The terms “first” and “second” and so on are merely for marker purposes, and do not impose numerical limitations on objects thereof. In the present disclosure, location terms such as “up, down, left, right” are used to refer generally to up, down, left, right as shown with reference to the drawings, without explanation to the contrary. “Inside and outside” refer to the inside and outside with respect to a contour of each component itself. It is to be understood that the above location terms denote relative terms and are used in this specification for convenience only. For example, according to the direction of the example described in the drawings, if the device of the icon is flipped upside down, the component described on “top” will become the component described on “bottom”. In the drawings, the shapes shown may be deformed according to manufacturing technique and/or tolerances. Thus, exemplary embodiments of the present disclosure are not limited to the shapes as shown in the drawings and may include shape changes caused during the manufacturing process. Further, different components and regions in the drawings are shown only schematically, and therefore the present disclosure is not limited to the dimensions or distances shown in the drawings.
In some embodiments, when a certain voltage is applied to a gate structure, an inversion layer is formed on a substrate surface between a source region and a drain region. That is, a channel of the semiconductor transistor is generated, wherein the channel length direction is a direction from the source region to the drain region or from the drain region to the source region (the direction indicated by aa′ in
As shown in FIG. Tb, the semiconductor transistor structure 10 includes: a substrate 12 a gate structure 14, and a source region 111 and a drain region 112 positioned on two sides of the gate structure 14, which may also be referred to as a source and a drain. The gate structure 14 includes a conductive layer 16, and there is provided a gate oxide layer 13 between the gate structure 14 and the substrate 12. A conductive plug 15 penetrating through a dielectric layer is provided in a region corresponding to the source region 111 and the drain region 112. The conductive plug 15 is configured to transduce an external electrical signal to the source region 111 and the drain region 112 of the transistor.
In practical applications, a variety of parasitic capacitances may exist in the above structures, particularly the parasitic capacitances between the gate and the source region and the parasitic capacitances between the gate and the drain region may have a negative effect on high-frequency characteristics of the transistor. Therefore, there is an urgent need for a solution that can reduce the parasitic capacitances between the gate and the source/drain region of semiconductor transistor.
In view of the above problems, it is found in the present disclosure that the parasitic capacitances between the gate and the source/drain region of the semiconductor transistor are positively correlated with a parasitic capacitance generated between the gate conductive layer and the conductive plug. Based on this finding, the present disclosure provides a solution to reduce the parasitic capacitance between the gate conductive layer and the conductive plug of the semiconductor transistor, thereby reducing the parasitic capacitances between the gate and the source/drain region.
Technical solutions of the present disclosure and how to solve the above technical problems based on the technical solutions of the present disclosure are described in detail below with reference to some embodiments. The following embodiments may be combined with each other, and the same or similar concepts or processes may not be repeated in some embodiments. The embodiments of the present disclosure will be described below with reference to the accompanying drawings.
a source region 211 and a drain region 212 arranged at intervals on a substrate 22;
a gate oxide layer 23 arranged between the source region 211 and the drain region 212;
a gate structure 24 arranged on the gate oxide layer 23; and
a conductive plug 25 arranged at a corresponding location of the source region 211 and a corresponding location of the drain region 212.
The gate structure 24 comprises a plurality of conductive layers, and at least one target conductive layer 26 is present in the plurality of conductive layers. A distance from the at least one target conductive layer 26 to the conductive plug 25 is greater than a distance from at least one adjacent layer of the at least one target conductive layer 26 to the conductive plug 25.
The substrate 22 may be a semiconductor substrate, such as monocrystalline silicon or polysilicon, or amorphous structure such as silicon or silicon germanium (SiGe), or may be a hybrid semiconductor structure, such as silicon carbide, indium antimonide, lead telluride, indium arsenide, indium phosphide, gallium arsenide or gallium antimonide, an alloy semiconductor, or a combination thereof. However, in this embodiment, types of the substrate 22 are not limited thereto. The gate structure comprises a plurality of conductive layers. The “target conductive layer” mentioned in this embodiment refers to one or more of a plurality of conductive layers included in the gate structure.
As shown in
In the present disclosure, it is found that in the above structure a parasitic capacitance is formed between the conductive layer of the gate structure and the conductive plug, wherein the parasitic capacitance constitutes a part of the parasitic capacitances between the gate and the source/drain region. Particularly in the semiconductor field with higher integration and smaller product size, these capacitances may have a negative effect on the device characteristics of the semiconductor transistor. In this regard, the present disclosure provides a semiconductor structure. As shown in
To more intuitively understand the present disclosure, a description is made with reference to
As can be seen by comparing
It is to be noted that only one conductive plug is illustrated in the enlarged view. However, it is to be understood that in other semiconductor structures, even if a structural location of the conductive plug is different from that as shown in the figure, the solutions of the present disclosure can still be applied to the gate structures of these semiconductor structures, such that the plurality of conductive layers of the gate structure comprise at least one target conductive layer, wherein the distance from the at least one target conductive layer to the conductive plug is greater than the distance from at least one adjacent layer of the target conductive layer to the conductive plug. Therefore, these solutions also belong to the solutions provided by the embodiments of the present disclosure. In one embodiment, the semiconductor structure may further include a lightly doped region respectively arranged on two sides of the gate structure. A short channel effect can be reduced by providing the lightly doped region on two sides of the gate.
In the semiconductor structure provided by this embodiment, the plurality of conductive layers of the gate structure include at least one target conductive layer, wherein the distance from the at least one target conductive layer to the conductive plug is greater than the distance from at least one adjacent layer of the target conductive layer to the conductive plug. Compared with a traditional gate structure, the distance between the at least one target conductive layer of the gate structure and the conductive plug is increased in this embodiment, thereby reducing the parasitic capacitance between the gate structure and the conductive plug, such that the capacitances between the gate and the source/drain region are reduced, and the device characteristics are improved.
Each part (the conductive plug and a side isolation structure) of the semiconductor structure will be illustrated below with reference to
a second dielectric layer 31 arranged on the substrate 22 and the gate structure 24; and
a contact hole 32 penetrating though the second dielectric layer 31 and exposing the corresponding source region 211 and the drain region 212, wherein a bottom of the contact hole 32 is a shallow trench structure, and at least part of the shallow trench structure is positioned in the corresponding source region 211 and the drain region 212.
The conductive plug 25 comprises a metal plug 251 filled in the contact hole 32 and a barrier layer 252 positioned between the metal plug 251 and an inner wall of the contact hole 32.
In some embodiments, the conductive plug in this embodiment penetrates through the dielectric layer and is arranged at the location corresponding to the source region and the drain region. An inner and outer multi-layer structure is adopted for the conductive plug. That is, the conductive plug comprises a metal plug positioned in the contact hole and a barrier layer attached between a surface of the metal plug and the inner wall of the contact hole. The barrier layer is configured to prevent the metal plug inside from spreading to the substrate and thus resulting in pollution of the substrate, to ensure the characteristics of the transistor. It is to be noted that the figure is only an example, this embodiment is focused on description of the structure of the conductive plug, and the conductive plug provided in this embodiment may be applied to any other embodiment with reference.
In some embodiments, a metal silicide 253 is filled between the conductive plug 25 and the inner wall of the shallow trench structure, the metal silicide being positioned between the conductive plug and the source region and the drain region. The metal silicide 253 includes, but is not limited to, cobalt silicide (CoSi). By forming the metal silicide on the inner wall of the shallow trench structure, a contact resistance between the conductive plug and the source/drain region can be reduced, and the characteristics of the transistor can be optimized.
In one embodiment, the semiconductor structure may further include a lightly doped region respectively arranged on two sides of the gate structure. A short channel effect can be reduced by providing the lightly doped region on two sides of the gate.
An inner and outer multi-layer structure is adopted for the conductive plug provided by this embodiment, which can prevent metal diffusion and thus ensuring the device characteristics of the transistor.
a side isolation structure 33 affixed to two sides of the gate structure 24 facing toward the source region 211 and the drain region 212.
In some embodiments, a multi-layer structure may be adopted for the side isolation structure. In one embodiment, the side isolation structure 33 includes a first isolation sidewall 331 and a second isolation sidewall 332. The first isolation sidewall 331 is affixed to the side surface of the gate structure 24, the second isolation sidewall 332 is positioned at a periphery of the first isolation sidewall 331, and a top of the second isolation sidewall 332 extends to a top of the first isolation sidewall 331 to form an enclosed space filled with a spacer medium 333. The spacer medium 333 includes, but is not limited to, silicon oxide, air, and the like. A material of the first isolation sidewall and a material of the second isolation sidewall may comprise silicon nitride.
Each part of the side isolation structure may be positioned on the gate oxide layer or the substrate. As an example, the first isolation sidewall is positioned on the substrate, and the spacer medium and the second isolation sidewall are positioned on the substrate (as the example in
A multi-layer structure may be adopted for the side isolation structure, which may give consideration to a support effect and a stress. In some embodiments, the first isolation sidewall and the second isolation sidewall may be made from materials such as silicon nitride with higher hardness, higher compactness and higher dielectric constant, to exert a good support effect and exert an effective isolation and insulation effect. Furthermore, in consideration of good stress, a material such as silicon oxide having good stress characteristic is filled between the first isolation sidewall and the second isolation sidewall of the side isolation structure provided by this embodiment. In one embodiment, air is filled between the first isolation sidewall and the second isolation sidewall to exert better isolation and insulation effects, and to reduce stress effects. Filling air between the first isolation sidewall and the second isolation sidewall can also reduce an equivalent dielectric constant between the gate structure 24 and the conductive plug 25, such that the parasitic capacitance therebetween is further reduced.
In one embodiment, the semiconductor structure may further include a lightly doped region 34 respectively arranged on two sides of the gate structure. A short channel effect can be reduced by providing the lightly doped region on two sides of the gate. In some embodiments, a region of the lightly doped region 34 may be determined according to device design. For example, the lightly doped region 34 is positioned below the first isolation sidewall (as the example in
In this embodiment, the side isolation structure is respectively arranged on two sides of the gate structure to prevent occurrence of short circuit between the gate and other components, thereby ensuring good characteristics of the transistor.
Different embodiments of the gate structure are described below with reference to Embodiment II. Likewise, Embodiment II may be implemented in various combinations with any other embodiment of the present disclosure, for example, implemented in combination with embodiments corresponding to an inclined side surface, the conductive plug, and the side isolation structure.
a source region 411 and a drain region 412 arranged at intervals on a substrate 42;
a gate oxide layer 43 arranged between the source region 411 and the drain region 412;
a gate structure 44 arranged on the gate oxide layer 43; and
a conductive plug 45 arranged at a corresponding location of the source region 411 and a corresponding location of the drain region 412.
The gate structure 44 includes a first conductive layer 441 and a second conductive layer 442. The first conductive layer 441 is arranged on the gate oxide layer 43, and the second conductive layer 442 is arranged on the first conductive layer 441. The second conductive layer 442 includes a plurality of metal layers (two metal layers included in the figure are taken as an example) stacked and the distance from the at least one target metal layer 46 to the conductive plug 45 is greater than the distance from at least one adjacent layer of the at least one target metal layer 46 to the conductive plug 45. The metal layer here may comprise a metal such as tungsten, or may comprise a metal compound such as titanium nitride. It is to be noted that the reference numerals in
The substrate 42 may be a semiconductor substrate, such as monocrystalline silicon or polysilicon, or amorphous structure such as silicon or silicon germanium (SiGe), or may be a hybrid semiconductor structure, such as silicon carbide, indium antimonide, lead telluride, indium arsenide, indium phosphide, gallium arsenide or gallium antimonide, an alloy semiconductor, or a combination thereof. However, in this embodiment, types of the substrate 42 are not limited thereto. The gate structure includes a first conductive layer arranged on the gate oxide layer and a second conductive layer arranged on the first conductive layer. The second conductive layer includes a plurality of metal layers, and the “target conductive layer” in this embodiment is one or more of the plurality of metal layers.
In practical applications, a threshold voltage of the transistor is mainly determined by a difference between a work function of the gate and a work function of the gate oxide layer. Therefore, in this embodiment, a size of the first conductive layer directly in contact with the gate oxide layer is not reduced to ensure work function match and to reduce a contact resistance. In addition, to optimize the characteristics of the transistor, in one embodiment, the first conductive layer 441 includes a polysilicon layer. In some embodiments, polysilicon can change its work function by doping impurities with different polarities, to adjust the threshold voltage of the transistor. In another embodiment, the second conductive layer 442 includes a plurality of metal layers, which include, but are not limited to, a titanium nitride layer and a tungsten layer. In one example, the second conductive layer includes a titanium nitride layer arranged on the polysilicon layer, and a tungsten layer arranged on the titanium nitride layer, wherein a distance from the titanium nitride layer to the conductive plug is greater than a distance from the polysilicon layer to the conductive plug. In some embodiments, the distance from the titanium nitride layer to the conductive plug is also greater than a distance from the tungsten layer to the conductive plug. It is to be noted that the above embodiments can also be implemented in combination with each other.
Similarly, compared with the gate structure without the target conductive layer, in the second conductive layer provided by this embodiment, the distance from at least one metal layer to the conductive plug is greater than the distance from at least one adjacent layer of the second conductive layer to the conductive plug. Thus, the distance from the at least one metal layer to the conductive plug is increased, such that the parasitic capacitance between the metal layer and the conductive plug is reduced. In this way, the parasitic capacitance between the whole gate structure and the source region or the drain region connected to the conductive plug is reduced.
In the semiconductor structure provided by this embodiment, the second conductive layer of the gate structure includes a plurality of metal layers, and the distance from at least one target metal layer of the plurality of metal layers to the conductive plug is greater than the distance from at least one adjacent layer of the at least one target metal layer to the conductive plug. Compared with the gate structure without such a metal layer, the distance between the metal layer and the conductive plug in this embodiment is increased, thereby reducing the parasitic capacitance between the gate structure and the conductive plug, such that the capacitances between the gate and the source/drain region are reduced, and thus the device characteristics are improved.
Different embodiments of the target conductive layer are described below with reference to Embodiment III. It is to be noted that the following embodiments may be applied to the gate structure of any other embodiment.
The target conductive layer is a bottom conductive layer among a plurality of conductive layers of the gate structure, and a distance Sm from the target conductive layer to the conductive plug is greater than a distance St from an upper adjacent layer to the conductive plug.
It is to be noted that the figures also show other structures positioned near the target conductive layer, such as the substrate, the gate oxide layer and the gate structure, which are all examples and do not limit the scope of this embodiment. In some embodiments, this embodiment focuses on description of the location and the structure of the target conductive layer, and the target conductive layer provided by this embodiment may be implemented in conjunction with any other embodiment.
As an example, on the basis of any other embodiment, the target conductive layer is a top conductive layer among the plurality of conductive layers of the gate structure, and the distance Sm from the target conductive layer to the conductive plug is greater than a distance Sb from a lower adjacent layer to the conductive plug, as shown in
As an example, on the basis of any other embodiment, the target conductive layer is a middle conductive layer among the plurality of conductive layers, wherein the middle conductive layer is positioned between the top conductive layer and the bottom conductive layer among the plurality of conductive layers. The distance Sm from the target conductive layer to the conductive plug is greater than the distance St from the upper adjacent layer to the conductive plug and the distance Sb from the lower adjacent layer to the conductive plug, as shown in
The location and the structure of the target conductive layer provided by this embodiment may be applied to the aforementioned structure, such that the distance from at least one target conductive layer in the gate structure to the conductive plug is greater than the distance from at least one adjacent layer of the target conductive layer to the conductive plug. Compared with the gate structure without such a conductive layer, the distance between the target conductive layer and the conductive plug in this embodiment is increased, thereby reducing the parasitic capacitance between the gate structure and the conductive plug, such that the capacitances between the gate and the source/drain region are reduced, and thus the device characteristics are improved.
This embodiment provides an example for combining several embodiments among the above embodiments.
a source region 711 and a drain region 712 arranged at intervals on the substrate 72, a gate oxide layer 73 arranged between the source region 711 and the drain region 712, a gate structure 74 arranged on the gate oxide layer 73, and a conductive plug 75 arranged at a corresponding location of the source region 711 and a corresponding location of the drain region 712.
The gate structure 74 includes a first conductive layer 741 and a second conductive layer 742, wherein the first conductive layer 741 is arranged on the gate oxide layer 73, and the second conductive layer 742 is arranged on the first conductive layer 741. The second conductive layer 742 includes a plurality of metal layers stacked, and a distance from at least one target metal layer 76 to the conductive plug 75 is greater than a distance from at least one adjacent layer of the at least one target metal layer 76 to the conductive plug 75. The metal layer 76 is a middle conductive layer, and a distance from an upper adjacent layer of the metal layer 76 to the conductive plug 75 is approximately equal to a distance from a lower adjacent layer to the conductive plug 75.
The semiconductor structure also includes: a second dielectric layer 31 arranged on the substrate 72 and the gate structure 74, and a contact hole 32 penetrating though the second dielectric layer 71 and exposing the corresponding source region 711 and the drain region 712, wherein a bottom of the contact hole 32 is a shallow trench structure, and at least part of the shallow trench structure is positioned in the corresponding source region 711 and the drain region 712.
The conductive plug 75 includes a metal plug 751 filled in the contact hole 32, and a barrier layer 752 positioned between the metal plug 751 and an inner wall of the contact hole 32. A metal silicide 753 is filled between the conductive plug 75 and the inner wall of the shallow trench structure, the metal silicide being positioned between the conductive plug and the source region and the drain region.
The gate structure 74 further comprises a side isolation structure 33 affixed to two side surfaces of the gate structure 74 facing toward the source region 211 and the drain region 212. The side isolation structure 33 comprises a first isolation sidewall 331 and a second isolation sidewall 332, wherein the first isolation sidewall 331 is affixed to the side surface of the gate structure 74, and the second isolation sidewall 332 is positioned at a periphery of the first isolation sidewall 331. A top of the second isolation sidewall 332 extends to a top of the first isolation sidewall 331 to form an enclosed space filled with a spacer medium 333, which may be air.
The semiconductor structure also includes a lightly doped region 34 respectively positioned on two sides of the gate structure 74.
Descriptions and effects of the above parts and structures have been described in detail in the foregoing embodiments, so reference may be made to the related contents of the foregoing embodiments, and thus theses descriptions and effects are omitted here.
The foregoing Embodiments I to IV are exemplary descriptions of the semiconductor structure provided in the present disclosure, and a method for fabricating a semiconductor structure will be illustrated below with reference to Embodiments V to VII.
Step 101: forming agate oxide layer;
Step 102: forming a gate structure on the gate oxide layer;
Step 103: forming a source region and a drain region on two sides of the gate structure; and
Step 104: forming a conductive plug at a corresponding location of the source region and a corresponding location of the drain region, respectively. The gate structure comprises a plurality of conductive layers, wherein at least one target conductive layer is present in the plurality of conductive layers. A distance from the at least one target conductive layer to the conductive plug is greater than a distance from at least one adjacent layer of the target conductive layer to the conductive plug.
In some embodiments, Step 102 includes: forming a gate structure on the gate oxide layer, wherein a top layer of the gate structure is a protection layer. That is, the gate structure may also include a top layer serving as the protection layer.
In one example, the gate structure includes a first conductive layer and a second conductive layer, and the second conductive layer includes a plurality of metal layers. As one embodiment, the gate structure may be obtained by means of the following fabrication method. Correspondingly, as shown in
Step 201: forming a first conductive layer on the gate oxide layer;
Step 202: forming a second conductive layer on the first conductive layer, wherein the second conductive layer comprises a plurality of metal layers stacked;
repeatedly performing the following Step 203 until the first conductive layer is exposed:
Step 203: if a current layer exposed in a first region is a predetermined metal layer, etching the predetermined metal layer in the first region and adjusting an etching direction and an etching rate until a next metal layer is exposed, such that a distance from the predetermined metal layer to the conductive plug is greater than a distance from at least one adjacent layer to the conductive plug; and if the current layer exposed in the first region is not the predetermined metal layer, etching down the current layer in the first region until a next metal layer is exposed, wherein the first region is a region other than a region between the source region and the drain region; and
Step 204: etching down the first conductive layer in the first region until the gate oxide layer is exposed to form the gate structure.
In some embodiments, after Step 101 is performed, a schematic structural diagram of the semiconductor structure is as shown in
As another embodiment, the gate structure in this example may also be obtained by the following fabrication method. Correspondingly, as shown in
Step 205: forming a first conductive layer on the gate oxide layer;
Step 206: forming a second conductive layer on the first conductive layer, wherein the second conductive layer comprises a plurality of metal layers stacked;
repeatedly performing the following Step 207 until the first conductive layer is exposed:
Step 207: if a current layer exposed in a first region is a predetermined metal layer, etching the predetermined metal layer in the first region for a first time until a next metal layer is exposed, and then etching the predetermined metal layer for a second time, such that a distance from the predetermined metal layer to the conductive plug is greater than a distance from at least one adjacent layer to the conductive plug; and if the current layer exposed in the first region is not the predetermined metal layer, etching down the current layer in the first region until a next metal layer is exposed, wherein the first region is a region other than a region between the source region and the drain region; and
Step 208: etching down the first conductive layer in the first region until the gate oxide layer is exposed to form the gate structure.
In some embodiments, after the above steps are performed, the structure diagram of the semiconductor structure is similar to
In the semiconductor structure provided by this embodiment, the plurality of conductive layers of the gate structure include at least one target conductive layer, wherein the distance from the at least one target conductive layer to the conductive plug is greater than the distance from at least one adjacent layer of the target conductive layer to the conductive plug. Compared with a traditional gate structure, the distance between the at least one target conductive layer of the gate structure and the conductive plug is increased in this embodiment, thereby reducing the parasitic capacitance between the gate structure and the conductive plug, such that the capacitances between the gate and the source/drain region are reduced, and the device characteristics are improved.
Step 1101: forming a second dielectric layer on the substrate and the gate structure;
Step 1102: forming a patterned etch protection layer on the second dielectric layer, the etch protection layer covering a surface of a dielectric layer except a partial region corresponding to the source region and a partial region corresponding to the drain region;
Step 1103: etching down from an exposed surface of the second dielectric layer until a surface of the source region and a surface of the drain region are exposed, and over-etching the surface of the source region and the surface of the drain region to form a contact hole with a shallow trench structure at a bottom thereof, at least part of the shallow trench structure being positioned in the corresponding source region and the drain region; and
Step 1104: forming a barrier layer on an inner wall of the contact hole, and filling a metal in the contact hole covered with the barrier layer to form the conductive plug.
In some embodiments, before Step 1104, the method may also include: forming a metal silicide on an inner wall of the shallow trench structure at the bottom of the contact hole, the metal silicide being positioned between the conductive plug and the source region and the drain region. In this embodiment, the metal silicide positioned between the conductive plug and the inner wall of the shallow trench structure may be formed.
An inner and outer multi-layer structure is adopted for the conductive plug provided by this embodiment, which can prevent metal diffusion and thus ensuring the device characteristics of the transistor. Furthermore, by forming the metal silicide on the inner wall of the shallow trench structure, a contact resistance between the conductive plug and the source/drain region can be reduced, and the characteristics of the transistor can be optimized.
Step 1201: forming a side isolation structure on two side surfaces of the gate structure facing toward the source region and the drain region.
In some embodiments, Step 1201 includes: forming a first isolation sidewall on the side surface of the gate structure facing toward the source region and the drain region; covering an outer wall of the first isolation sidewall with a spacer medium; forming a second isolation sidewall on an outer wall of the spacer medium, wherein a top of the second isolation sidewall extends to a top of the first isolation sidewall to form an enclosed space surrounding the spacer medium. The spacer medium may include, but is not limited to, silicon oxide.
Each part of the side isolation structure may be positioned on the gate oxide layer or the substrate to implement isolation. As another example, the first isolation sidewall is positioned on the gate oxide layer, and the spacer medium and the second isolation sidewall are positioned on the substrate. In corresponding process implementation, the first isolation sidewall may be formed before the gate oxide layer is etched, then the gate oxide layer is etched, and finally the second isolation sidewall is formed. As another example, the first isolation sidewall and the spacer medium are positioned on the gate oxide layer, and the second isolation sidewall is positioned on the substrate. In the corresponding process, the first isolation sidewall and the spacer medium may be formed before the gate oxide layer is etched, then the gate oxide layer is etched, and finally the second isolation sidewall is formed. As yet another example, the first isolation sidewall, the spacer medium, and the second isolation sidewall are all positioned on the gate oxide layer. In the corresponding process, the first isolation sidewall, the spacer medium and the second isolation sidewall may be formed before the gate oxide layer is etched, then the gate oxide layer is etched, and finally the second isolation sidewall is formed. In some embodiments, the step of forming the source and drain regions may be performed after the gate oxide layer is etched.
In some embodiments, Step 1201 includes: forming a third isolation sidewall on side surfaces of the gate structure facing toward the source region and the drain region; covering a third dielectric layer on an outer wall of the third isolation sidewall; forming a fourth isolation sidewall on an outer wall of the third dielectric layer, wherein a top of the fourth isolation sidewall extends to a top of the third isolation sidewall to form an enclosed space surrounding the third dielectric layer; etching the top of the fourth isolation sidewall until a surface of the third dielectric layer is exposed to form an etching hole; etching the third dielectric layer through the etching hole until reaching a surface of the gate oxide layer; and enclosing the etching hole between the top of the fourth isolation sidewall and the top of the third isolation sidewall by means of a rapid deposition process to form an enclosed space filled with air. Similarly, each part of the side isolation structure in this embodiment may also be positioned on the gate oxide layer or the substrate, and reference may be made to the description of the previous embodiment for the related contents, which are not to be repeated here.
In one embodiment, to reduce the short channel effect, the semiconductor structure may further include a lightly doped region positioned on two sides of the gate structure. Accordingly, the fabrication method further comprises: forming a lightly doped region positioned on two sides of the gate structure. In some embodiments, a region of the lightly doped region may be determined according to device design. For example, the lightly doped region is positioned below the first isolation sidewall, or below the first isolation sidewall and the spacer medium, or below the first isolation sidewall, the spacer medium, and the second isolation sidewall. Accordingly, the step of forming the lightly doped region may be performed after the first isolation sidewall is formed, or performed after the first isolation sidewall and the spacer medium are formed, or performed after the second isolation sidewall is formed. However, this embodiment does not limit an execution order of technological processes.
As a process example in combination with the aforementioned embodiment of the protection layer, the step of forming the protection layer may be performed before the side isolation structure is formed, or in practical applications, if the material of the protection layer is the same as that of the isolation sidewall structure, the protection layer may be formed together in the process of forming the side isolation structure, or the protection layer may be formed after the side isolation structure is formed. This embodiment does not limit an execution order of technological processes. That is, the technological processes provided by this embodiment are configured for forming the semiconductor structure in the previous embodiments.
In this embodiment, the side isolation structure is respectively arranged on two sides of the gate structure to prevent occurrence of short circuit between the gate and other components, thereby ensuring good characteristics of the transistor. Consideration is given to a support effect and good stress characteristics.
Other embodiments of the present disclosure will be apparent to those skilled in the art from consideration of the specification and practice of the present disclosure disclosed here. The present disclosure is intended to cover any variations, uses, or adaptations of the present disclosure following the general principles thereof and including such departures from the present disclosure as come within known or customary practice in the art. It is intended that the specification and embodiments be considered as exemplary only, with a true scope and spirit of the present disclosure being indicated by the following claims.
It will be appreciated that the present disclosure is not limited to the exact construction that has been described above and illustrated in the accompanying drawings, and that various modifications and changes can be made without departing from the scope thereof. It is intended that the scope of the present disclosure only be limited by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
202110432617.0 | Apr 2021 | CN | national |
This application is a continuation of PCT/CN2021/112138, filed on Aug. 11, 2021, which claims priority to Chinese Patent Application No. 202110432617.0 titled “SEMICONDUCTOR STRUCTURE AND METHOD FOR FABRICATING SEMICONDUCTOR STRUCTURE” and filed to the State Intellectual Property Office on Apr. 21, 2021, the entire contents of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | PCT/CN2021/112138 | Aug 2021 | US |
Child | 17571535 | US |