This invention relates to the manufacture of semiconductors, and more particularly to a method and apparatus for controlling the chemical-mechanical planarization (“CMP”) of semiconductor wafers in real time during the process, and particularly for determining when the end-point of the process has been reached.
As semiconductor devices are scaled down to submicron dimensions, planarization technology becomes increasingly important, both during the fabrication of the device and for the formation of multi-level interconnects and wiring. Chemical-mechanical planarization has recently emerged as a promising technique for achieving a high degree of planarization for submicron very large integrated circuit fabrication.
CMP is currently used for 0.35 μm device manufacturing and is generally viewed as a necessary technology for the manufacture of next generation 0.25 μm devices. Typically, CMP is used for removing a thickness of an oxide material which has been deposited onto a substrate, or on which a variety of integrated circuit devices have been formed. A particular problem that is encountered when a device surface is chemically-mechanically planarized/polished is the determination when the surface has been sufficiently planarized, or when the planarization end-point has been reached because when removing or planarizing an oxide layer it is desirable to remove the oxide only to the top of the various integrated circuit devices without, however, removing any portions of the latter.
In the past, the surface characteristics and the planar end-point of the planarized wafer surface have been detected by removing the semiconductor wafer from a polishing apparatus and physically examining it with techniques with which dimensional and planar characteristics can be ascertained. Typically, commercial instruments such as surface profilometers, ellipsometers, or quartz crystal oscillators are used for this purpose. If the semiconductor wafer being inspected does not meet specifications, it must be placed back into the polishing apparatus and further planarized. This is time-consuming and labor-intensive. In addition, if the inspection occurred too late; that is, after too much material has been removed from the wafer, the part becomes unusable and a reject. This adversely affected the product yield attainable with such processes and techniques.
It would therefore be desirable if a technique were available which permits one to control and terminate semiconductor device CMP processes effectively and efficiently. Some techniques proposed in the past involved utilizing sound generated during CMP for controlling the process and/or determining its end-point.
For example, U.S. Pat. No. 5,245,794 suggests to detect the CMP end-point during semiconductor wafer polishing by sensing acoustic waves which are generated by the rubbing contact between a polishing pad and a hard surface underlying a softer material that is being removed. Wave energy in the range of 35–100 Hz is sensed, converted into an audio signal, processed, and used to determine the end-point for the CMP after the signal has been sensed for a predetermined time.
U.S. Pat. No. 5,240,552 discloses to control a semiconductor wafer CMP by directing sound from an external source against the surface being polished and measuring the transit time of the acoustic waves reflected from the surface. From the latter, a desired characteristic, such as the amount of surface layer removed and/or remaining, can be calculated.
U.S. Pat. No. 5,439,551 discloses several CMP end-point detection techniques, including one that requires that a change in the sound waves emitted during polishing be detected and that polishing cease upon the detection of the change. A microphone-like, noncontact pick-up detects audible sound generated by the action of the polishing pad against the workpiece in the presence of a slurry. Although not specifically set forth in the '551 patent, it suggests that audible frequencies of sound are being measured because the patent discloses, amongst others, that the frequency of sound signals can be tailored.
A still further approach for determining the CMP end-point is disclosed in U.S. Pat. No. 5,222,329. One aspect of this patent discloses to determine an interface end-point by detecting acoustic waves which develop a certain sound intensity versus frequency characteristic when the metal/underlayer interfaces are about to be reached in a CMP process. In other words, the signal amplitude in a certain frequency band is used to determine the end-point.
Another aspect of the '329 patent suggests to determine the end-point on the basis of a given material thickness by measuring the frequency of the acoustic waves generated by the CMP process and comparing the signals in a spectrum analyzer with known (or pre-established) frequency characteristics for the materials in question.
Although these prior art approaches provide certain improvements over earlier end-point detection techniques employing physical and/or optical measuring instruments, for example, they have their shortcomings. In some instances, the detected signals require complicated processing; in others, they require the storage of characteristic data for any given material before it can be measured, and all of them require relatively intricate, sensitive and therefore costly controls and instruments.
In contrast to the prior art, the present invention uses acoustic emissions (“AE”) for controlling the progress of and/or determining the end-point for a CMP process during semiconductor polishing.
For purposes of the present application, AE refers to the group of phenomena where transient elastic waves are generated by the rapid release of energy from localized sources within a material. The fundamental difference between AE and the field generally referred to as “ultrasonics” is that AE is generated by the material itself, while in “ultrasonics” the acoustic wave is generated by an external source and introduced into and/or reflected off the material. AE can be generated by a large number of different mechanisms, including, for example, the fracture of crystallites, grain boundary sliding, friction, liquefaction and solidification, dissolution and solid-solid phase transformation, leaks, cavitation, and the like.
“Ultrasonics” refers to a nondestructive, passive testing technique in which acoustic waves, typically but not necessarily ultrasonic waves, are directed against the surface of an object. The reflected waves are then observed and used to determine one or more physical characteristics of the object such as, for example, a thickness, a surface condition or the like.
AE, which involves frequencies in the range of between about 50–1,000 kHz, is different and must be distinguished from audible sound which is typically in the range of between 1 kHz to 20 kHz. The former refers to high frequencies, including ultrasonic frequency waves such as stress waves, for example, which propagate through a structure due to a release of energy by the structure, and which are in the range of about 50 kHz to about 1 MHz.
In particular, the present invention detects and utilizes the energy of AE to control and/or determine the end-point of CMP processes in general and the CMP of semiconductor wafers in particular.
The inventors and others have previously recognized that AE is quite sensitive to the change in friction and wear mechanisms in sliding processes. For example, one of the coinventors, in collaboration with others, previously discovered that a dry texturing process for hard disks can be divided into four stages and that acceptable texture surfaces exist only in the first two stages, based on measured AE and forces. It is also known that AE signals are sensitive to surface geometry variation when sliding motion is involved.
Research has shown that AE can be used for monitoring the material removal rate and/or observing a reduction in the removal rate due to changes in abrasive size with lapping time.
The inventors therefore theorized that AE might be useful in the control of CMP and particularly its end-point detection, for products in general and especially for modern semiconductor devices which have several layers, including an interlayer dielectric used for insulation. Such devices usually need to be planarized for the next litography step in the manufacture of the device. For example, in a logic device having five or more layers, at least one layer should be perfectly planar.
Interlayer dielectric planarization has become more critical as the number of metal stack layers has increased. While numerous traditional planarization technologies are available, it is generally agreed that conventional technologies primarily smooth the topography locally and have little or no effect on global planarization. CMP is presently the only planarization technology known to provide global planarization of topography with low post planarization slope.
The manufacture of semiconductor devices initially involves the formation of metal interconnections which are covered with an insulator film. This is followed by a planarization process to eliminate the topography in the dielectric material and remove all upward projections or hills from the surface. Surfaces which protrude above the surrounding topography have a higher removal rate than do lower surfaces. Smaller features are rounded off and polished faster than larger features.
During CMP, there are several sources which emit AE. For example, since surface characteristics of the dielectric layer directly affect the interaction between slurry particles and the dielectric layer, there are two potential AE sources in the beginning of the process, namely slurry particle-dielectric layer abrasion and slurry particle-trench impact. Further, a change of friction occurs when the first (e.g. dielectric) material has been removed to be planar and the second, underlying material becomes exposed. At the beginning of CMP, the brittle-brittle material interaction area is relatively large. Since both brittle-brittle materials abrasion and trench impact are likely to generate relatively more acoustic emissions, in particular more AE energy, for example, than are generated after CMP is finished, the generated AE energy is higher at the beginning of CMP than at the end. After the surface is planarized, the major AE sources will be particle-dielectric abrasion and particle-metal abrasion. Particle-metal abrasion generates relatively fewer acoustic emissions as the brittle-brittle interaction surface area becomes smaller when the CMP is nearly complete. As a result, the generated AE energy was found to be significantly lower when the CMP end-point is reached than at the start of CMP.
In accordance with the present invention, the sudden, sustained drop or reduction in the generated AE energy signals that is encountered when the CMP end-point has been reached is used to terminate CMP at the appropriate point of the CMP process.
In its broadest aspect, therefore, the present invention involves a method for terminating and/or controlling a chemical-mechanical polishing operation on a workpiece such as a semiconductor wafer having a surface to be polished. The method involves monitoring acoustic emission energy generated during CMP and terminating the CMP in response to detecting a significant change such as a sharp drop in the acoustic energy emission and/or adjusting the CMP in response to other changes in the AE energy.
In a presently preferred embodiment of the invention, the AE energy is sensed with a transducer that monitors the AE energy resulting from the relative movement between the wafer surface and a polishing pad. The transducer is attached to the back side of the head holding the wafer or of the polishing pad which faces away from the wafer. When the drop in the AE energy is sensed by the transducer, CMP is terminated.
Preferably, the AE energy is measured as the “rms” (root mean square) voltage (Vrms) of the raw AE signal or a continuous AE count rate of the Vrms signal, although, if desirable, other ways of determining the energy of the AE signal, generally defined as the integral of the amplitude of the signal over a time period, can be used.
The CMP end-point detection of the present invention is particularly useful for semiconductor device trench isolation structure CMP. Trench structures are utilized in advanced IC fabrication to prevent latch-up and to isolate the n-channel from p-channel devices in CMOS circuits, to isolate the transistors of bipolar circuits, and to serve as storage-capacitor structures in DRAMs. Trenches are attractive for several reasons, for example, because they allow circuitry to be placed closer together, thereby using space more efficiently without adversely impacting device performance.
The present invention is also particularly suited for damascene structure CMP. The semiconductor industry is currently moving towards the use of metal damascene processes for the wiring of circuits on chips because metal damascene can achieve the minimum interconnect pitch to thereby increase wiring density. Usually damascene processes include the steps of etching vias and trenches into dielectric layers, filling the features with metal, and CMP polishing to form a planarized, embedded surface. It is anticipated that damascene architectures will become an increasingly important option for wireability of sub 0.25 μm generation interconnects.
The manufacture of a damascene structure typically involves three separate CMP processes, one for the formation of vertical interconnections (plugs), one used during the formation of the horizontal interconnects (lines), and another one for the planarization of the wafer. In each instance the AE energy emissions will vary between the beginning and the end of the CMPs quite similarly. Thus, the end-point detection of the present invention for interlayer dielectric CMPs is ideally suited for trench isolation structures and damascene structures.
Since AE energy monitoring and resulting signal processing is relatively simple and effective, and since for the above summarized reasons there will almost always be a pronounced and sustained change in the energy output when the interface of two materials is reached, the AE energy control of CMP in accordance with the present invention constitutes a significant improvement in monitoring the overall CMP process and establishing its end-point.
Since wafer thickness in general and the thickness of dielectric layer 6 in particular cannot be measured while CMP is in progress, it is difficult to determine at what point the planarized surface 12 is flush with top surface 14 of the patterned metal structure. With the present invention, this determination can be made in real time by monitoring the acoustic emissions generated as CMP progresses. As was mentioned above, there will be a significant and lasting change in the energy of the acoustic emissions when the CMP reaches the top surface of the metal structure. When this change occurs, the CMP is terminated.
Referring to
A wafer holder 24 is located above the turntable and forms a chamber 26 with a lower end plate 28 that includes a downwardly open cutout 30. A head 34, made, for example, of aluminum, protrudes through the cutout and is resiliently suspended from the lower end plate of the chamber by a flexible ring 32 made, for example, of rubber or neoprene. Another drive 36 rotates wafer holder 24 about its upright axis and is controlled by control unit 75.
A semiconductor wafer 38 (or other workpiece that requires CMP) is disposed between the upwardly facing surface 40 of the polishing pad 20 and a downwardly oriented surface 42 of the wafer holder.
To planarize, a given surface 44 of the wafer is attached to the under side 42 of head 36, for example by applying a wafer-holding vacuum, placing a thin polyurethane film between the wafer and the under side of the head which acts as a light adhesive, or by other suitable means. The wafer holder 24 is then lowered (or turntable 18 is raised), and a slurry including an appropriate abrasive (in the form of small (e.g. 0.3μ) abrasive particles is flowed from a slurry supply 48 to form a thin abrasive slurry layer 50 over the top surface of the polishing pad. The wafer is pressed against the under side 42 of head 34 and the top surface of the polishing pad in an accurately controlled manner (as is well known in the industry) to limit and control the forces between them. Typically, the pressure between the opposing surfaces of the wafer and the polishing pad should not exceed about 9 psi. Drives 22 and 36 rotate the turntable and the wafer holder, respectively, about their axes and may include drive units (not separately shown) for rotating the holder about dual, spaced-apart parallel axes or for adding linear motion to the rotational movement of the holder (not shown). The rotation of the polishing pad assists in carrying the slurry deposited on the pad to the wafer (which is positioned off-center on the pad as shown in
Generally, the slurry is selected so that it chemically attacks the wafer surface to facilitate its removal by the abrasives in the slurry. Thus, for planarizing silicon layers on semiconductor structures, for example, a suitable slurry is preferably one which converts the silicon layer into a hydroxilated form. Such a slurry is commercially available and has colloidally suspended silica in a high pH (10.7) aqueous solution of NH3OH with a mean particle diameter of 140 nm and 13% (by weight) solids. For other materials, such as oxides or metals, for example, slurries having the same or similar effect on the material being planarized are selected, as is well known to those skilled in the art.
A pad conditioner 52 can be provided for maintaining the upper surface 40 of polishing pad 20 in the desired state.
CMP machine 16 includes a sensor or transducer 54 for monitoring and picking up acoustic emissions generated in the wafer while CMP is in progress. The sensor is preferably of the type which uses either a piezo electric ceramic element or a thin film piezo electric element. In one preferred embodiment of the invention, the sensor is attached to a back side 56 of wafer holding head 34 so that it becomes integrated with the head and can pick up AE waves generated by the wafer during CMP. If desired, the sensor can also be attached to the back side of turntable 18. It generates signals which are a function of the acoustic emissions picked up by it. For the needed subsequent signal processing, holder 24 preferably includes a transmitter 58 for feeding the picked-up AE signals to a receiver 60 via spaced-apart ring antennas 62, 64 located, for example, about a drive shaft 86 of holder 24.
Referring now to
In this process, the following are primary AE sources:
There are other AE sources but their emissions are typically of a relatively lesser magnitude as compared to the sources mentioned above.
As has already been mentioned, AE energy can be conveniently determined on the basis of the rms voltage of the picked-up raw AE signals. A preferred way of doing this is by determining the magnitude of the rms voltage (Vrms) according to the following equation:
wherein: V=voltage of the acoustic emissions signal
Alternatively, a close approximation of Vrms can be obtained on the basis of a continuous count rate for either the raw AE signal or the Vrms signal. The count rate reflects the state of the CMP process and can be used to determine the magnitude of the AE energy with a high degree of accuracy because of the relationship between the rms voltage and the count rate. The count rate is the number of times the signal crosses a predetermined, fixed threshold voltage in a unit of time. The following equation shows the relationship between the count rate and the rms voltage:
{dot over (N)}=f·e−(V
wherein: {dot over (N)}=count rate
Thus, a sudden, lasting drop in the count rate, for example, is indicative that the CMP end-point has been reached. One of the principal advantages of using the count rate for determining the magnitude of the AE energy is that it is easy to measure.
While CMP is in progress, the rms voltage, the AE continuous count rate, or another measurable component of the rms voltage which reflects the state of the CMP process are continuously monitored, thereby also monitoring the AE energy generated by the process. When there is a sudden change in the monitored signals, for semiconductor wafer CMP usually a sudden and lasting drop in the magnitude of the monitored signals, the end-point of CMP is reached because the signals indicate that the CMP process has removed the dielectric so that it is flush with the top of the underlying metal structure.
This can be employed in accordance with the present invention to detect long-term changes resulting, for example, from the wear of the polishing pad, a change in the polishing pressure applied to the wafer, a change in the composition of the slurry, and the like. Such changes typically develop slowly over time while multiple wafers are polished. In contrast, when the CMP end-point is reached, there is the sudden change (drop) in the AE energy.
By monitoring long-term changes in the AE energy generated during CMP of typically multiple wafers during otherwise steady state operations (e.g. while only the dielectric layer is removed), necessary adjustments to the process can be made whenever the long-term changes exceed a preestablished limit. Thus, the present invention not only permits one to actively and instantaneously detect the CMP end-point, by monitoring the steady state portion of CMP from one wafer to the next, changes in the process can be detected and corrective action can be taken before serious problems arise, thereby reducing the likelihood of fabricating rejects.
Referring now to
Thereafter, a third ILD 114 is conventionally deposited over planarized surface 112, followed by the deposition of a further SiN etch stop layer 116 and a fourth ILD 118. The latter is masked and etched (as shown in
This application is a continuation application of U.S. patent application Ser. No. 08/869,328, filed on Jun. 5, 1997 now U.S. Pat. No. 6,910,942, which is herein incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
5222329 | Yu | Jun 1993 | A |
5240552 | Yu et al. | Aug 1993 | A |
5245794 | Salugsugan | Sep 1993 | A |
5439551 | Meikle et al. | Aug 1995 | A |
5685766 | Mattingly et al. | Nov 1997 | A |
6910942 | Dornfeld et al. | Jun 2005 | B1 |
Number | Date | Country | |
---|---|---|---|
20050215178 A1 | Sep 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 08869328 | Jun 1997 | US |
Child | 11097779 | US |