1. Field of Invention
This invention relates generally to a semiconductor memory sensing scheme. In particular, it relates to a pre-charging circuit for SRAM memory data accessing which connects to bit line and bit line-bar of semiconductor memory array which helps in reducing power consumption during accessing the memory cell.
2. Description of Related Art
A semiconductor memory is typically comprised of an array of memory cells which are aligned in rows and columns as shown in
In an CMOS circuit, “Ground, or 0V” is mostly commonly used to represent a logic “0”, while a “Supply voltage, VDD” is mostly commonly used to represent a logic “1”, Data accessing of a memory cell is done by applying an input voltage to a selected word line, WL or a row, and a selected bit line, BL or a column. The word line selection is done by a word line decoder 12 and a word line driver 13. A column decoder 17 selects the output bit of a memory array. A sense amplifier 16 is commonly implemented to quickly convert the voltage difference between BL 18 and BL-Bar 19 into a logic level of “0” or “1” with a shorter time delay.
For the consideration of silicon die area and cost, a memory array comprises a large amount of memory cells which makes capacitive load higher and might slow down the accessing time if no high speed sensing scheme is implemented to reduce the time delay, For the consideration of performance and silicon area, the bit lines, BL 25, 18, and BL-Bar 26, 19 are typically pre-charged to a predetermined voltage, for example to the VDD, a power supply level when no operation of memory accessing, and the N-type pull-down device 24 starts sinking current 23 when the word line is turned on. An N-type device has in principle half of intrinsic resistance compared to a P-type device which causes the saving of SRAM cell area and faster in differentiating the BL and BL-bar which are the input voltage to the sense amplifier.
a depicts the most commonly used prior art sensing scheme of a memory accessing. An SRAM cell 222 is used as an example. An SRAM cell has a back-to-back CMOS inverter gates with two pass transistors for accessing shown in
The sense amplifier 27 senses whether the bit line is above or below a predetermined voltage. The sense amplifier generates an output that is at one level of two voltage potentials. The first voltage potential corresponds with the voltage difference between the bit line and the bit line-bar being at a voltage level no less than a predetermined voltage. And the second voltage potential corresponds with the voltage difference between the bit line and the bit line-bar being at a voltage level less than a predetermined voltage. In a practical case, the output voltage of a sense amplifier swings from “Ground” to “Supply, VDD”.
The design of a sense amplifier generally includes consideration of several performance characteristics. Typically, the most important performance characteristics are speed of operation and power dissipation. That is, it is desirable that the sense amplifier sense the bit line voltage difference as quickly as possible, and that the sense amplifier dissipates the least amount of power while sensing the bit line voltage difference. More or less the external disturbances and noise will affect the sense amplifier output.
There are some conflicts in speed, power dissipation and stability in the prior art sensing scheme by using P-type device to pull up the voltage of bit line and bit line-bar during pre-charging cycle and let the N-type device of the SRAM cell to sink the current to differentiate the voltage level between bit line and bit line-bar. For ensuring the functionality of the sensing amplifier, the differential voltage between bit line and bit line-bar which are input to the sense amplifier should be high, which means the power dissipation maintains high. A lower differential voltage input to the sense amplifier would dissipate low power and save time of sinking from one of the N-type transistor of the SRAM cell but will cause higher danger of failure in the sensing amplifier.
The present invention of a semiconductor memory sensing scheme which successfully reduces noise and power/ground bouncing and allows smaller voltage swing of bit line and bit line-bar hence avoids dissipating higher power.
The present invention of a sensing scheme discharges the bit line and bit line bar nodes much quickly through N-type devices coupling between ground and the bit line or bit line-bar during non-accessing mode. N-type devices discharge the bit line or bit line-bar quickly. This allows more time for accessing or data evaluation cycle and allows more duration time for sensing amplifier to output a more stable data.
The present invention of a sensing scheme applies a delay circuit to postpone the operation of discharging and hence to avoid overlapping between discharging the bit line (bit line-bar) and the memory cells.
According to an embodiment of this invention of the sensing scheme, since the differential input voltage to the sense amplifier is also correspondingly smaller, the P-type device in the SRAM cell pulls up the bit line or bit line-bar voltage relatively slower than conventional means of using the N-type device to pull down the bit line or bit line-bar, the time requires to obtain a stable output from a sense amplifier is very close for a P-type device to pull up or an N-type device to pull down the bit line or the bit line-bar.
According to an embodiment of this invention of the sensing scheme, one of bit line and bit line-bar nodes are pulled up much slowly by P-type transistor within an SRAM memory cell which significantly reduces noise magnitude of power supply and ground bouncing during memory cell data accessing.
According to another embodiment of this invention of the sensing scheme, an equalizer device coupling between the bit line and bit line-bar is implemented to minimize the voltage difference between the bit line and bit line-bar when they are discharging.
According to another embodiment of this invention of the sensing scheme, a self-timer circuit is implemented to pull down the word line voltage to isolate the P-type transistors within the SRAM cells from further pulling up the bit line or bit line-bar node voltage when a stable output voltage from a sense amplifier is obtained.
According to another embodiment of this invention of the sensing scheme, the self-timer circuit also quickly drives out a “discharging” signal to discharge the nodes of bit line and bit line-bar when memory array goes out of accessing mode.
Other aspects and advantages of the present invention will become apparent from the following detailed description, taken in conjunction with the accompanying drawings, illustrating by way of example the principles of the invention. It is to be understood that both the foregoing general description and the following detailed description are by examples, and are intended to provide further explanation of the invention as claimed.
a illustrates a simplified prior art sensing scheme of accessing a memory cell.
b depicts timing of memory cell data accessing of a prior art sensing scheme.
In addition to the parasitic diode leakage current, there are two main factors consuming power in semiconductor memory circuits. The first one is differentiating the voltage between bit line and bit line-bar which are input into the sense amplifier. The other is the leak current caused by the overlapping of pre-charging and word line signal. The operation of charging and discharging the bit line and bit line-bar results in power consumption. The equation below shows the power consumption calculation. CL is the capacitive loading, f is the switching frequency which is equivalent to charging and discharging frequency, delta V is the magnitude of the voltage swing. These three factors dominate the power consumption of the memory data sensing.
P=C
×ΔV
2
×f
External noise coupled into the sense amplifier causes the sense amplifier to inadvertently switch from one output voltage potential to another output voltage potential. That is, the noise coupled into the sense amplifier causes the sense amplifier to output a wrong logic level when the bit line voltage difference is at a potential level less than a threshold level.
Clues to cause wrong output out of a sense amplifier in memory accessing include: the coupling noise, power supply and ground bouncing, pre-charging voltage level difference, unbalance voltage of the sensing path and offset voltage of a sense amplifier. That is why in a practical design, a larger voltage difference, for example, 300 mV, between bit line and bit line-bard is required to ensure a proper functionality of a sense amplifier. From the power consumption equation, it is obvious that the greater the voltage swing between pre-charging and discharging voltage levels, the more the power consumption will be. Therefore, the smaller differential between the memory cell pull-up voltage level and the discharge voltage level is critical for power consumption in memory designs. While a smaller voltage difference input to the sense amplifier can cause error in sensing as described above. Therefore, the stability of the sensing path and the power consumption becomes conflicting requirements in the memory design.
One of the main sources of the noise is the inductive current noise which is generated when current flows through parasitic inductive circuit similar to said an inductor. The higher inductance or the higher amount the current through the inductor in a certain short period of time, the higher the magnitude the noise will be generated. As shown in
a depicts the simplified most commonly used prior art of sensing scheme of a memory accessing. A pre-charging signal is applied to the gates of P-type pull-up transistors 21, 22. When memory cell is no longer being accessed, the pre-charge signal becomes low and turns on the pull-up devices 21, 22 which pull bit line and bit line-bar all the way up to VDD. During reading, the word line is driven high and turns on the memory cell 222. One of the two N-type devices 24a, 24b with the gate on high voltage starts is turned on and sinking the current. The other node DB, connecting to the BL through a pass transistor will keep the same logic “High” state since node DB the BL have the same voltage level. A simplified timing diagram shown in
The kind of commonly used sensing scheme with P-type pull-up devices to pre-charge bit lines and bit line-bars consumes higher power during memory accessing since the N-type transistor of the memory cell sinks the current quickly with thousands of bit line get discharged simultaneously and cause higher coupling noise and requires larger differential voltage between the bit line and the bit line-bar to ensure the accuracy of the sense amplifier. Overlapping between pre-charging and word line is another cause of current leakage. During overlapping, current might flow through the pull-up transistors to the memory cells. The longer the duration of overlapping between pre-charge and word line signals, the more current will be leaked.
According to an embodiment of the present invention, a self-timer 49 is implemented to disable the word line decoder 46 and to pull down the word line driver 47 when the memory cell pulls one node of the bit line and the bit line-bar high enough, for example, said 150 mV, to allow the sense amplifier to function properly. The self-timer enables a current sensing dynamic sense amplifier 48 when the differential voltage between bit line and bit line-bar reaches the predetermined threshold value. Overlapping phenomenon might cause current leaking by drawing current from memory cell to ground through the pull-down devices 41, 42. Since there could be hundreds or even thousands of memory cells hooked to a word line, a bit line or a bit line-bar, a heavy capacitive load of word line or bit line and bit line-bar makes it easy for overlapping phenomenon between word line and pull-down devices happen. In the present invention, a delay device 412 is used to avoid overlapping between pull down devices 41, 42 and word line driver 47 which helps in avoid leaking current flowing from memory cell to ground through the pull-down devices 41, 42. A delay device is comprised of a long length and slow transistor or easily implemented by a capacitor which is commonly used to slow down the speed of charging and discharging.
The corresponding timing diagram of the present invention of a low power memory sensing scheme is shown in
It will be apparent to those skills in the art that various modifications and variations can be made to the structure of the present invention without departing from the scope or the spirit of the invention. In the view of the foregoing, it is intended that the present invention cover modifications and variations of this invention provided they fall within the scope of the following claims and their equivalents.