The present invention relates generally to integrated circuits, and in particular to in-service programmable logic arrays with low tunnel barrier interpoly insulators.
Logic circuits are an integral part of digital systems, such as computers. Essentially, a logic circuit processes a number of inputs to produce a number of outputs for use by the digital system. The inputs and outputs are generally electronic signals that take on one of two “binary” values, a “high” logic value or a “low” logic value. The logic circuit manipulates the inputs using binary logic which describes, in a mathematical way, a given or desired relationship between the inputs and the outputs of the logic circuit.
Logic circuits that are tailored to the specific needs of a particular customer can be very expensive to fabricate on a commercial basis. Thus, general purpose very large scale integration (VLSI) circuits are defined. VLSI circuits serve as many logic roles as possible, which helps to consolidate desired logic functions. However, random logic circuits are still required to tie the various elements of a digital system together.
Several schemes are used to implement these random logic circuits. One solution is standard logic, such as transistor-transistor logic (TTL). TTL integrated circuits are versatile because they integrate only a relatively small number of commonly used logic functions. The drawback is that large numbers of TTL integrated circuits are typically required for a specific application. This increases the consumption of power and board space, and drives up the overall cost of the digital system.
One alternative to standard logic is fully custom logic integrated circuits. Custom logic circuits are precisely tailored to the needs of a specific application. This allows the implementation of specific circuit architectures that dramatically reduces the number of parts required for a system. However, custom logic devices require significantly greater engineering time and effort, which increases the cost to develop these circuits and may also delay the production of the end system.
A less expensive alternative to custom logic is the “programmable logic array.” Programmable logic arrays take advantage of the fact that complex combinational logic functions can be reduced and simplified into various standard forms. For example, logical functions can be manipulated and reduced down to traditional Sum of Products (SOP) form. In SOP form, a logical function uses just two types of logic functions that are implemented sequentially. This is referred to as two-level logic and can be implemented with various conventional logic functions, e.g., AND-OR, NAND-NAND, NOR-NOR.
One benefit of the programmable logic array is that it provides a regular, systematic approach to the design of random, combinational logic circuits. A multitude of logical functions can be created from a common building block, e.g., an array of transistors. The logic array is customized or “programmed” by creating a specific metallization pattern to interconnect the various transistors in the array to implement the desired function.
Programmable logic arrays are fabricated using photolithographic techniques that allow semiconductor and other materials to be manipulated to form integrated circuits as is known in the art. These photolithographic techniques essentially use light that is focused through lenses and masks to define patterns in the materials with microscopic dimensions. The equipment and techniques that are used to implement this photolithography provide a limit for the size of the circuits that can be formed with the materials. Essentially, at some point, the lithography cannot create a fine enough image with sufficient clarity to decrease the size of the elements of the circuit. In other words, there is a minimum dimension that can be achieved through conventional photolithography. This minimum dimension is referred to as the “critical dimension” (CD) or minimum “feature size” (F) of the photolithographic process. The minimum feature size imposes one constraint on the size of the components of a programmable logic array. In order to keep up with the demands for larger programmable logic arrays, designers search for ways to reduce the size of the components of the array.
As the density requirements become higher and higher in logic and memories it becomes more and more crucial to minimize device area. The programmable logic array (PLA) circuit in the NOR-NOR configuration is one example of an architecture for implementing logic circuits.
Flash memory cells are one possible solution for high density memory requirements. Flash memories include a single transistor, and with high densities would have the capability of replacing hard disk drive data storage in computer systems. This would result in delicate mechanical systems being replaced by rugged, small and durable solid-state memory packages, and constitute a significant advantage in computer systems. What is required then is a flash memory with the highest possible density or smallest possible cell area.
Flash memories have become widely accepted in a variety of applications ranging from personal computers, to digital cameras and wireless phones. Both INTEL and AMD have separately each produced about one billion integrated circuit chips in this technology.
The original EEPROM or EARPROM and flash memory devices described by Toshiba in 1984 used the interpoly dielectric insulator for erase. (See generally, F. Masuoka et al., “A new flash EEPROM cell using triple polysilicon technology,” IEEE Int. Electron Devices Meeting, San Francisco, pp. 464-67, 1984; F. Masuoka et al., “256K flash EEPROM using triple polysilicon technology,” IEEE Solid-State Circuits Conf., Philadelphia, pp. 168-169, 1985). Various combinations of silicon oxide and silicon nitride were tried. (See generally, S. Mori et al., “reliable CVD inter-poly dialectics for advanced E&EEPROM,” Symp. On VLSI Technology, Kobe, Japan, pp. 16-17, 1985). However, the rough top surface of the polysilicon floating gate resulted in, poor quality interpoly oxides, sharp points, localized high electric fields, premature breakdown and reliability problems.
Widespread use of flash memories did not occur until the introduction of the ETOX cell by INTEL in 1988. (See generally, U.S. Pat. No. 4,780,424, “Process for fabricating electrically alterable floating gate memory devices,” Oct. 25, 1988; B. Dipert and L. Hebert, “Flash memory goes mainstream,” IEEE Spectrum, pp. 48-51, October, 1993; R. D. Pashley and S. K. Lai, “Flash memories, the best of two worlds,” IEEE Spectrum, pp. 30-33, December 1989). This extremely simple cell and device structure resulted in high densities, high yield in production and low cost. This enabled the widespread use and application of flash memories anywhere a non-volatile memory function is required. However, in order to enable a reasonable write speed the ETOX cell uses channel hot electron injection, the erase operation which can be slower is achieved by Fowler-Nordhiem tunneling from the floating gate to the source. The large barriers to electron tunneling or hot electron injection presented by the silicon oxide-silicon interface, 3.2 eV, result in slow write and erase speeds even at very high electric fields. The combination of very high electric fields and damage by hot electron collisions in the oxide result in a number of operational problems like soft erase error, reliability problems of premature oxide breakdown and a limited number of cycles of write and erase.
Other approaches to resolve the above described problems include; the use of different floating gate materials, e.g. SiC, SiOC, GaN, and GaAIN, which exhibit a lower work function (see
One example of the use of different floating gate (
An example of the use of the structured surface approach (
Finally, an example of the use of amorphous SiC gate insulators (
Additionally, graded composition insulators to increase the tunneling probability and reduce erase time have been described by the same inventors. (See, L. Forbes and J. M. Eldridge, “GRADED COMPOSITION GATE INSULATORS TO REDUCE TUNNELING BARRIERS IN FLASH MEMORY DEVICES,” application Ser. No. 09/945,514.
However, all of these approaches relate to increasing tunneling between the floating gate and the substrate such as is employed in a conventional ETOX device and do not involve tunneling between the control gate and floating gate through and inter-poly dielectric.
Therefore, there is a need in the art to provide improved in service programmable logic arrays. The in-service programmable logic arrays should provide improved flash memory densities while avoiding the large barriers to electron tunneling or hot electron injection presented by the silicon oxide-silicon interface, 3.2 eV, which result in slow write and erase speeds even at very high electric fields. There is also a need to avoid the combination of very high electric fields and damage by hot electron collisions in the which oxide result in a number of operational problems like soft erase error, reliability problems of premature oxide breakdown and a limited number of cycles of write and erase. Further, when using an interpoly dielectric insulator erase approach, the above mentioned problems of having a rough top surface on the polysilicon floating gate which results in, poor quality interpoly oxides, sharp points, localized high electric fields, premature breakdown and reliability problems must be avoided.
The above mentioned problems with in service programmable logic arrays and other problems are addressed by the present invention and will be understood by reading and studying the following specification. Systems and methods are provided for in service programmable logic arrays using logic cells, or non-volatile memory cells with metal oxide and/or low tunnel barrier interpoly insulators.
In one embodiment of the present invention, in service programmable logic arrays with ultra thin vertical body transistors are provided. The in-service programmable logic array includes a first logic plane that receives a number of input signals. The first logic plane has a plurality of logic cells arranged in rows and columns that are interconnected to provide a number of logical outputs. A second logic plane has a number of logic cells arranged in rows and columns that receive the outputs of the first logic plane and that are interconnected to produce a number of logical outputs such that the in service programmable logic array implements a logical function. Each of the logic cells includes includes a first source/drain region and a second source/drain region separated by a channel region in a substrate. A floating gate opposing the channel region and is separated therefrom by a gate oxide. A control gate opposes the floating gate. The control gate is separated from the floating gate by a low tunnel barrier intergate insulator. The low tunnel barrier intergate insulator includes a metal oxide insulator selected from the group consisting of PbO, Al2O3, Ta2O5, TiO2, ZrO2, and Nb2O5. The floating gate includes a polysilicon floating gate having a metal layer formed thereon in contact with the low tunnel barrier intergate insulator. And, the control gate includes a polysilicon control gate having a metal layer formed thereon in contact with the low tunnel barrier intergate insulator.
These and other embodiments, aspects, advantages, and features of the present invention will be set forth in part in the description which follows, and in part will become apparent to those skilled in the art by reference to the following description of the invention and referenced drawings or by practice of the invention. The aspects, advantages, and features of the invention are realized and attained by means of the instrumentalities, procedures, and combinations particularly pointed out in the appended claims.
In the following detailed description of the invention, reference is made to the accompanying drawings which form a part hereof, and in which is shown, by way of illustration, specific embodiments in which the invention may be practiced. The embodiments are intended to describe aspects of the invention in sufficient detail to enable those skilled in the art to practice the invention. Other embodiments may be utilized and changes may be made without departing from the scope of the present invention. In the following description, the terms wafer and substrate are interchangeably used to refer generally to any structure on which integrated circuits are formed, and also to such structures during various stages of integrated circuit fabrication. Both terms include doped and undoped semiconductors, epitaxial layers of a semiconductor on a supporting semiconductor or insulating material, combinations of such layers, as well as other such structures that are known in the art. The following detailed description is not to be taken in a limiting sense, and the scope of the present invention is defined only by the appended claims.
The term “horizontal” as used in this application is defined as a plane parallel to the conventional plane or surface of a wafer or substrate, regardless of the orientation of the wafer or substrate. The term “vertical” refers to a direction perpendicular to the horizonal as defined above. Prepositions, such as “on”, “side” (as in “sidewall”), “higher”, “lower”, “over” and “under” are defined with respect to the conventional plane or surface being on the top surface of the wafer or substrate, regardless of the orientation of the wafer or substrate. The following detailed description is, therefore, not to be taken in a limiting sense, and the scope of the present invention is defined only by the appended claims, along with the full scope of equivalents to which such claims are entitled.
The present invention, describes the use of metal oxide inter-poly dielectric insulators between the control gate and the floating gate. An example is shown in
(i) Flexibility in selecting a range of smooth metal film surfaces and compositions that can be oxidized to form tunnel barrier insulators.
(ii) Employing simple “low temperature oxidation” to produce oxide films of highly controlled thickness, composition, purity and uniformity.
(iii) Avoiding inadvertent inter-diffusion of the metal and silicon as well as silicide formation since the oxidation can be carried out at such low temperatures.
(iv) Using metal oxides that provide desirably lower tunnel barriers, relative to barriers currently used such as SiO2.
(v) Providing a wide range of higher dielectric constant oxide films with improved capacitance characteristics.
(vi) Providing a unique ability to precisely tailor tunnel oxide barrier properties for various device designs and applications.
(vii) Permitting the use of thicker tunnel barriers, if needed, to enhance device performance and its control along with yield and reliability.
(viii) Developing layered oxide tunnel barriers by oxidizing layered metal film compositions in order, for example, to enhance device yields and reliability more typical of single insulating layers.
(ix) Eliminating soft erase errors caused by the current technique of tunnel erase from floating gate to the source.
In one embodiment of the present invention, low tunnel barrier intergate insulator 215 includes a metal oxide insulator selected from the group consisting of lead oxide (PbO) and aluminum oxide (Al2O3). In an alternative embodiment of the present invention, the low tunnel barrier intergate insulator 215 includes a transition metal oxide and the transition metal oxide is selected from the group consisting of Ta2O5, TiO2, ZrO2, and Nb2O5. In still another alternative embodiment of the present invention, the low tunnel barrier intergate insulator 215 includes a Perovskite oxide tunnel barrier.
According to the teachings of the present invention, the floating gate 209 includes a polysilicon floating gate 209 having a metal layer 216 formed thereon in contact with the low tunnel barrier intergate insulator 215. Likewise, the control gate 213 includes a polysilicon control gate 213 having a metal layer 217 formed thereon in contact with the low tunnel barrier intergate insulator 215. In this invention, the metal layers, 216 and 217, are formed of the same metal material used to form the metal oxide interpoly insulator 215.
According to the teachings of the present invention, the low tunnel barrier intergate insulator 315 includes a metal oxide insulator 315 selected from the group consisting of PbO, Al2O3, Ta2O5, TiO2, ZrO2, and Nb2O5. In still another alternative embodiment of the present invention, the low tunnel barrier intergate insulator 315 includes a Perovskite oxide tunnel barrier. The floating gate 309 includes a polysilicon floating gate 309 having a metal layer 316 formed thereon in contact with the low tunnel barrier intergate insulator 315. The control gate 313 includes a polysilicon control gate 313 having a metal layer 317 formed thereon in contact with the low tunnel barrier intergate insulator 315.
As shown in
As will be explained in more detail below, the floating gate 309 and control gate 313 orientation shown in
As shown in
As shown in the embodiment of
In this embodiment, a single control gate 513 is shared by the pair of floating gates 509-1 and 509-2 on opposing sides of the trench 530. As one of ordinary skill in the art will understand upon reading this disclosure, the shared single control gate 513 can include an integrally formed control gate line. As shown in
As shown in the embodiment of
In the embodiment of
As shown in the embodiment of
In the embodiment of
As shown in the embodiment of
In the embodiment of
As shown in the embodiment of
As one of ordinary skill in the art will understand upon reading this disclosure, in each of the embodiments described above in connection with
Using
As will be apparent to one of ordinary skill in the art upon reading this disclosure, and as will be described in more detail below, write can still be achieved by hot electron injection and/or, according to the teachings of the present invention, tunneling from the control gate. According to the teachings of the present invention, block erase is accomplished by driving the control gates with a relatively large positive voltage and tunneling from the metal on top of the floating gate to the metal on the bottom of the control gate.
The design considerations involved are determined by the dielectric constant, thickness and tunneling barrier height of the interpoly dielectric insulator 707 relative to that of the silicon dioxide gate insulator, e.g. gate oxide 703. The tunneling probability through the interpoly dielectric 707 is an exponential function of both the barrier height and the electric field across this dielectric.
As shown in
The tunneling current in erasing charge from the floating gate 705 by tunneling to the control gate 713 will then be as shown in
where E is the electric field across the interpoly dielectric insulator 707 and Eo depends on the barrier height. Aluminum oxide has a current density of 1 A/cm2 at a field of about E=1V/20 A=5×10+6 V/cm. Silicon oxide transistor gate insulators have a current density of 1 A/cm2 at a field of about E=2.3V/23 A=1×10+7 V/cm.
The lower electric field in the aluminum oxide interpoly insulator 707 for the same current density reflects the lower tunneling barrier of less than 2 eV, shown in
Methods of Formation
Several examples are outlined below in order to illustrate how a diversity of such metal oxide tunnel barriers can be formed, according to the teachings of the present invention. Processing details and precise pathways taken which are not expressly set forth below will be obvious to one of ordinary skill in the art upon reading this disclosure. Firstly, although not included in the details below, it is important also to take into account the following processing factors in connection with the present invention:
(i) The poly-Si layer is to be formed with emphasis on obtaining a surface that is very smooth and morphologically stable at subsequent device processing temperatures which will exceed that used to grow Metal oxide.
(ii) The native SiOx oxide on the poly-Si surface must be removed (e.g., by sputter cleaning in an inert gas plasma in situ) just prior to depositing the metal film. The electrical characteristics of the resultant Poly-Si/Metal/Metal oxide/Metal/Poly-Si structure will be better defined and reproducible than that of a Poly-Si/Native SiOx/Metal/Metal oxide/Poly-Si structure.
(iii) The oxide growth rate and limiting thickness will increase with oxidation temperature and oxygen pressure. The oxidation kinetics of a metal may, in some cases, depend on the crystallographic orientations of the very small grains of metal which comprise the metal film. If such effects are significant, the metal deposition process can be modified in order to increase its preferred orientation and subsequent oxide thickness and tunneling uniformity. To this end, use can be made of the fact that metal films strongly prefer to grow during their depositions having their lowest free energy planes parallel to the film surface. This preference varies with the crystal structure of the metal. For example, fcc metals prefer to form {111} surface plans. Metal orientation effects, if present, would be larger when only a limited fraction of the metal will be oxidized and unimportant when all or most of the metal is oxidized.
(iv) Modifications in the structure shown in
This oxide barrier has been studied in detail using Pb/PbO/Pb structures. The oxide itself can be grown very controllably on deposited lead films using either thermal oxidation or rf sputter etching in an oxygen plasma. It will be seen that there are a number of possible variations on this structure. Starting with a clean poly-Si substrate, one processing sequence using thermal oxidation involves:
(i) Depositing a clean lead film on the poly-Si floating gate at ˜25 to 75 C in a clean vacuum system having a base pressure of ˜10−8 Torr or lower. The Pb film will be very thin with a thickness within 1 or 2 A of its target value.
(ii) Lead and other metal films can be deposited by various means including physical sputtering and/or from a Knudsen evaporation cell. The sputtering process also offers the ability to produce smoother films by increasing the re-sputtering-to-deposition ratio since re-sputtering preferentially reduces geometric high points of the film.
(iii) Using a “low temperature oxidation process” to grow an oxide film of self-limited thickness. In this case, oxygen gas is introduced at the desired pressure in order to oxidize the lead in situ without an intervening exposure to ambient air. For a fixed oxygen pressure and temperature, the PbO thickness increases with log(time). Its thickness can be controlled via time or other parameters to within 0.10 A, as determined via in situ ellipsometric or ex situ measurements of Josephson tunneling currents. This control is demonstrated by the very limited statistical scatter of the current PbO thickness data shown in the insert of
(iv) Re-evacuate the system and deposit the top lead electrode. This produces a tunnel structure having virtually identical tunnel barriers at both Pb/O interfaces.
(v) The temperature used to subsequently deposit the Poly-Si control gate must be held below the melting temperature (327 C) of lead. The PbO itself is stable (up to ˜500 C or higher) and thus introduces no temperature constraint on subsequent processes. One may optionally oxidize the lead film to completion, thereby circumventing the low melting temperature of metallic lead. In this case, one would form a Poly-Si/PbO/Poly-Si tunnel structure having an altered tunnel barrier for charge injection. Yet another variation out of several would involve: oxidizing the lead film to completion; replacing the top lead electrode with a higher melting metal such as Al; and, then adding the poly-Si control layer. This junction would have asymmetrical tunneling behavior due to the difference in barrier heights between the Pb/PbO and PbO/Al electrodes.
A number of studies have dealt with electron tunneling in Al/Al2O3/Al structures where the oxide was grown by “low temperature oxidation” in either molecular or plasma oxygen. Before sketching out a processing sequence for these tunnel barriers, note:
(i) Capacitance and tunnel measurements indicate that the Al2O3 thickness increases with the log (oxidation time), similar to that found for PbO/Pb as well as a great many other oxide/metal systems.
(ii) Tunnel currents are asymmetrical in this system with somewhat larger currents flowing when electrons are injected from Al/Al2O3 interface developed during oxide growth. This asymmetry is due to a minor change in composition of the growing oxide: there is a small concentration of excess metal in the Al2O3, the concentration of which diminishes as the oxide is grown thicker. The excess Al+3 ions produce a space charge that lowers the tunnel barrier at the inner interface. The oxide composition at the outer Al2O3/Al contact is much more stoichiometric and thus has a higher tunnel barrier. In situ ellipsometer measurements on the thermal oxidation of Al films deposited and oxidized in situ support this model. In spite of this minor complication, Al/Al2O3/Al tunnel barriers can be formed that will produce predictable and highly controllable tunnel currents that can be ejected from either electrode. The magnitude of the currents are still primarily dominated by Al2O3 thickness which can be controlled via the oxidation parametrics.
With this background, we can proceed to outline one process path out of several that can be used to form Al2O3 tunnel barriers. Here the aluminum is thermally oxidized although one could use other techniques such as plasma oxidation or rf sputtering in an oxygen plasma. For the sake of brevity, some details noted above will not be repeated. The formation of the Al/Al2O3/Al structures will be seen to be simpler than that described for the Pb/PbO/Pb junctions owing to the much higher melting point of aluminum, relative to lead.
(i) Sputter deposit aluminum on poly-Si at a temperature of ˜25 to 150 C. Due to thermodynamic forces, the micro-crystallites of the f.c.c. aluminum will have a strong and desirable (111) preferred orientation.
(ii) Oxidize the aluminum in situ in molecular oxygen using temperatures, pressure and time to obtain the desired Al2O3 thickness. As with PbO, the thickness increases with log (time) and can be controlled via time at a fixed oxygen pressure and temperature to within 0.10 Angstroms, when averaged over a large number of aluminum grains that are present under the counter-electrode. One can readily change the Al2O3 thickness from ˜15 to 35 A by using appropriate oxidation parametrics. The oxide will be amorphous and remain so until temperatures in excess of 400 C are reached. The initiation of recrystallization and grain growth can be suppressed, if desired, via the addition of small amounts of glass forming elements (e.g., Si) without altering the growth kinetics or barrier heights significantly.
(iii) Re-evacuate the system and deposit a second layer of aluminum.
(iv) Deposit the Poly-Si control gate layer using conventional processes.
Single layers of Ta2O5, TiO2, ZrO2, Nb2O5 and similar transition metal oxides can be formed by “low temperature oxidation” of numerous Transition Metal (e.g., TM oxides) films in molecular and plasma oxygen and also by rf sputtering in an oxygen plasma. The thermal oxidation kinetics of these metals have been studied for decades. In essence, such metals oxidize via logarithmic kinetics to reach thicknesses of a few to several tens of angstroms in the range of 100 to 300 C. Excellent oxide barriers for Josephson tunnel devices can be formed by rf sputter etching these metals in an oxygen plasma. Such “low temperature oxidation” approaches differ considerably from MOCVD processes used to produce these TM oxides. MOCVD films require high temperature oxidation treatments to remove carbon impurities, improve oxide stoichiometry and produce recrystallization. Such high temperature treatments also cause unwanted interactions between the oxide and the underlying silicon and thus have necessitated the introduction of interfacial barrier layers.
An approach was developed utilizing “low temperature oxidation” to form duplex layers of TM oxides. Unlike MOCVD films, the oxides are very pure and stoichiometric as formed. They do require at least a brief high temperature (est. 700 to 800 C but may be lower) treatment to transform their microstructures from amorphous to crystalline and thus increase their dielectric constants to the desired values (>20 or so). Unlike MOCVD oxides, this treatment can be carried out in an inert gas atmosphere, thus lessening the possibility of inadvertently oxidizing the poly-Si floating gate. While this earlier disclosure was directed at developing methods and procedures for producing high dielectric constant films for storage cells for DRAMs, the same teachings can be applied to producing thinner metal oxide tunnel films for the flash memory devices described in this disclosure. The dielectric constants of these TM oxides are substantially greater (>25 to 30 or more) than those of PbO and Al2O3. Duplex layers of these high dielectric constant oxide films are easily fabricated with simple tools and also provide improvement in device yields and reliability. Each oxide layer will contain some level of defects but the probability that such defects will overlap is exceedingly small. Effects of such duplex layers were first reported by one J. M. Eldridge of the present authors and are well known to practitioners of the art. It is worth mentioning that highly reproducible TM oxide tunnel barriers can be grown by rf sputtering in an oxygen ambient. Control over oxide thickness and other properties in these studies were all the more remarkable in view of the fact that the oxides were typically grown on thick (e.g., 5,000 A) metals such as Nb and Ta. In such metal-oxide systems, a range of layers and suboxides can also form, each having their own properties. In the present disclosure, control over the properties of the various TM oxides will be even better since we employ very limited (perhaps 10 to 100 A or so) thicknesses of metal and thereby preclude the formation of significant quantities of unwanted, less controllable sub-oxide films. Thermodynamic forces will drive the oxide compositions to their most stable, fully oxidized state, e.g., Nb2O5, Ta2O5, etc. As noted above, it will still be necessary to crystallize these duplex oxide layers. Such treatments can be done by RTP and will be shorter than those used on MOCVD and sputter-deposited oxides since the stoichiometry and purity of the “low temperature oxides” need not be adjusted at high temperature.
Fairly detailed descriptions for producing thicker duplex layers of TM oxides have been given in the copending application by J. M. Eldridge, entitled “Thin Dielectric Films for DRAM Storage Capacitors,” patent application Ser. No. 09/651,380 filed Aug. 29, 2000, so there is no need to repeat them here. Although perhaps obvious to those skilled in the art, one can sketch out a few useful fabrication guides:
(i) Thinner TM layers will be used in this invention relative to those used to form DRAMs. Unlike DRAMs where leakage must be eliminated, the duplex oxides used here must be thin enough to carry very controlled levels of current flow when subjected to reasonable applied fields and times.
(ii) The TM and their oxides are highly refractory and etchable (e.g., by RIE). Hence they are quite compatible with poly-Si control gate processes and other subsequent steps.
(iii) TM silicide formation will not occur during the oxidation step. It could take place at a significant rate at the temperatures used to deposit the poly-Si control gate. If so, several solutions can be applied including:
Although no applications may be immediately obvious, it is conceivable that one might want to form a stack of oxide films having quite different properties, for example, a stack comprised of a high dielectric constant (k) oxide/a low k oxide/a high k oxide. “Low temperature oxidation” can be used to form numerous variations of such structures. While most of this disclosure deals with the formation and use of stacks of oxide dielectrics, it is also possible to use “low temperature oxidation” to form other thin film dielectrics such as nitrides, oxynitrides, etc. that could provide additional functions such as being altered by monochromatic light, etc. These will not be discussed further here.
Some results have been obtained which demonstrate that at least a limited range of high temperature, super-conducting oxide films can be made by thermally oxidizing Y—Ba—Cu alloy films. The present inventors have also disclosed how to employ “low temperature oxidation” and short thermal treatments in an inert ambient at 700 C in order to form a range of perovskite oxide films from parent alloy films. The dielectric constants of crystallized, perovskite oxides can be very large, with values in the 100 to 1000 or more range. The basic process is more complicated than that needed to oxidize layered films of transition metals. (See Example III.) The TM layers would typically be pure metals although they could be alloyed. The TMs are similar metallurgically as are their oxides. In contrast, the parent alloy films that can be converted to a perovskite oxide are typically comprised of metals having widely different chemical reactivities with oxygen and other common gasses. In the Y—Ba—Cu system referenced above, Y and Ba are among the most reactive of metals while the reactivity of Cu approaches (albeit distantly) those of other noble metals. If the alloy is to be completely oxidized, then thin film barriers such as Pd, Pt, etc. or their conductive oxides must be added between the Si and the parent metal film to serve as: electrical contact layers; diffusion barriers; and, oxidation stops. In such a case, the Schottky barrier heights of various TM oxides and perovskite oxides in contact with various metals will help in the design of the tunnel device. In the more likely event that the perovskite parent alloy film will be only partially converted to oxide and then covered with a second layer of the parent alloy (recall the structure of
Methods of Operation
Write Operation
Write can be achieved by the normal channel hot electron injection and gate current through the silicon oxide to the floating gate. This is done by selecting a particular column by applying a high control gate voltage and applying relatively large drain voltage as is done with conventional ETOX flash memory devices. However, according to the teachings of the present invention, write can also be accomplished by applying a positive voltage to the substrate or well select line and a large negative voltage to the control gates, electrons will tunnel from the control gate to the floating gate. The low tunnel barrier will provide an easy write operation and the selection of the substrate or well bias will provide selectivity and address only one device.
Erase Operation
According to the teachings of the present invention, erase is achieved by providing a negative voltage to the substrate or well address line and a large positive voltage to the control gate. This causes electrons to tunnel off of the floating gate on to the control gate. A whole row can be erased by addressing all the column lines along that row and a block can be erased by addressing multiple row back gate or substrate/well address lines.
Read Operation
Read is accomplished as in conventional ETOX flash memory devices. A column line is addressed by applying a positive control gate voltage and sensing the current along the data bit or drain row address line.
System Level
The conventional logic array shown in
First logic plane 810 includes a number of thin oxide gate transistors, e.g. transistors 801-1, 801-2, . . . , 801-N. The thin oxide gate transistors, 801-1, 801-2, . . . , 801-N, are located at the intersection of input lines 812, and interconnect lines 814. In the conventional PLA of
In this embodiment, each of the interconnect lines 814 acts as a NOR gate for the input lines 812 that are connected to the interconnect lines 814 through the thin oxide gate transistors, 801-1, 801-2, . . . , 801-N, of the array. For example, interconnection line 814A acts as a NOR gate for the signals on input lines 812A and 812B. That is, interconnect line 814A is maintained at a high potential unless one or more of the thin oxide gate transistors, 801-1, 801-2, . . . , 801-N, that are coupled to interconnect line 814A are turned on by a high logic level signal on one of the input lines 812. When a control gate address is activated, through input lines 812, each thin oxide gate transistor, e.g. transistors 801-1, 801-2, . . . , 801-N, conducts which performs the NOR positive logic circuit function, an inversion of the OR circuit function results from inversion of data onto the interconnect lines 814 through the thin oxide gate transistors, 801-1, 801-2, . . . , 801-N, of the array.
As shown in
It is noted that the configuration of
First logic plane 910 receives a number of input signals at input lines 912. In this example, no inverters are provided for generating complements of the input signals. However, first logic plane 910 can include inverters to produce the complementary signals when needed in a specific application.
First logic plane 910 includes a number of floating gate driver transistors, 901-1, 901-2, . . . , 901-N, that form an array such as an array of non-volatile memory cells, or flash memory cells. The floating gate driver transistors, 901-1, 901-2, . . . , 901-N, are located at the intersection of input lines 912, and interconnect lines 914. Not all of the floating gate driver transistors, 901-1, 901-2, . . . , 901-N, are operatively conductive in the first logic plane. Rather, the floating gate driver transistors, 901-1, 901-2, . . . , 901-N, are selectively programmed, as described in detail below, to respond to the input lines 912 and change the potential of the interconnect lines 914 so as to implement a desired logic function. This selective interconnection is referred to as programming since the logical function implemented by the programmable logic array is entered into the array by the floating gate driver transistors, 901-1, 901-2, . . . , 901-N, that are used at the intersections of input lines 912, and interconnect lines 914 in the array.
In this embodiment, each of the interconnect lines 914 acts as a NOR gate for the input lines 912 that are connected to the interconnect lines 914 through the floating gate driver transistors, 901-1, 901-2, . . . , 901-N, of the array 900. For example, interconnection line 914A acts as a NOR gate for the signals on input lines 912A, 912B and 912C. Programmability of the vertical floating gate driver transistors, 901-1, 901-2, . . . , 901-N is achieved by charging the vertical floating gates. When the vertical floating gate is charged, that floating gate driver transistor, 901-1, 901-2, . . . , 901-N will remain in an off state until it is reprogrammed. Applying and removing a charge to the vertical floating gates is performed by tunneling charge between the floating gate and control gates of the floating gate driver transistors, 901-1, 901-2, . . . , 901-N through a low tunnel barrier interpoly, or intergate insulator as described in detail above and in connection with
Floating gate driver transistors, 901-1, 901-2, . . . , 901-N not having a corresponding vertical floating gate charged operate in either an on state or an off state, wherein input signals received by the input lines 912A, 912B and 912C determine the applicable state. If any of the input lines 912A, 912B and 912C are turned on by input signals received by the input lines 912A, 912B and 912C, then a ground is provided to load device transistors 916. The load device transistors 916 are attached to the interconnect lines 914. The load device transistors 916 provide a low voltage level when any one of the floating gate driver transistors, 901-1, 901-2, . . . , 901-N connected to the corresponding interconnect line 914 is activated. This performs the NOR logic circuit function, an inversion of the OR circuit function results from inversion of data onto the interconnect lines 914 through the floating gate driver transistors, 901-1, 901-2, . . . , 901-N of the array 900. When the floating gate driver transistors, 901-1, 901-2, . . . , 901-N are in an off state, an open is provided to the drain of the load device transistors 916. The VDD voltage level is applied to corresponding input lines, e.g. the interconnect lines 914 for second logic plane 922 when a load device transistors 916 is turned on by a clock signal received at the gate of the load device transistors 916 (Φ). Each of the floating gate driver transistors, 901-1, 901-2, . . . , 901-N described herein are formed according to the teachings of the present invention as described in detail in connection with
In a similar manner, second logic plane 922 comprises a second array of floating gate driver transistors, 902-1, 902-2, . . . , 902-N that are selectively programmed to provide the second level of the two level logic needed to implement a specific logical function. In this embodiment, the array of floating gate driver transistors, 902-1, 902-2, . . . , 902-N is also configured such that the output lines 920 comprise a logical NOR function of the signals from the interconnection lines 914 that are coupled to particular output lines 920 through the floating gate driver transistors, 902-1, 902-2, . . . , 902-N of the second logic plane 922.
Programmability of the vertical floating gate driver transistors, 902-1, 902-2, . . . , 902-N is achieved by charging the vertical floating gate. When the vertical floating gate is charged, that floating gate driver transistor, 902-1, 902-2, . . . , 902-N will remain in an off state until it is reprogrammed. Applying and removing a charge to the vertical floating gates is performed by tunneling charge between the floating gate and control gates of the floating gate driver transistors, 901-1, 901-2, . . . , 901-N through a low tunnel barrier interpoly, or intergate insulator as described in detail above and in connection with
Floating gate driver transistors, 902-1, 902-2, . . . , 902-N not having a corresponding vertical floating gate charged operate in either an on state or an off state, wherein signals received by the interconnect lines 914 determine the applicable state. If any of the interconnect lines 914 are turned on, then a ground is provided to load device transistors 924 by applying a ground potential to the source line or conductive source plane coupled to the transistors first source/drain region as described herein. The load device transistors 924 are attached to the output lines 920. The load device transistors 924 provide a low voltage level when any one of the floating gate driver transistors, 902-1, 902-2, . . . , 902-N connected to the corresponding output line is activated. This performs the NOR logic circuit function, an inversion of the OR circuit function results from inversion of data onto the output lines 920 through the floating gate driver transistors, 902-1, 902-2, . . . , 902-N of the array 900. When the floating gate driver transistors, 902-1, 902-2, . . . , 902-N are in an off state, an open is provided to the drain of the load device transistors 924. The VDD voltage level is applied to corresponding output lines 920 for second logic plane 922 when a load device transistor 924 is turned on by a clock signal received at the gate of the load device transistors 924 (Φ). In this manner a NOR-NOR electrically programmable logic array is most easily implemented utilizing the normal PLA array structure. Each of the floating gate driver transistors, 902-1, 902-2, . . . , 902-N described herein are formed according to the teachings of the present invention as described in detail in connection with
Thus
The absence or presence of stored charge on the floating gates is read by addressing the input lines 912 or control gate lines and y-column/sourcelines to form a coincidence in address at a particular floating gate. The control gate line would for instance be driven positive at some voltage of 1.0 Volts and the y-column/sourceline grounded, if the floating gate is not charged with electrons then the transistor would turn on tending to hold the interconnect line on that particular row down indicating the presence of a stored “one” in the cell. If this particular floating gate is charged with stored electrons, the transistor will not turn on and the presence of a stored “zero” indicated in the cell. In this manner, data stored on a particular floating gate can be read.
Programming can be achieved by hot electron injection. In this case, the interconnect lines, coupled to the second source/drain region for the non-volatile memory cells in the first logic plane, are driven with a higher drain voltage like 2 Volts for 0.1 micron technology and the control gate line is addressed by some nominal voltage in the range of twice this value. Electrons can also be transfered between the floating gate and the control gate through the low tunnel barrier intergate insulator to selectively program the non-volatile memory cells, according to the teachings of the present invention, by the address scheme as described above in connection with
One of ordinary skill in the art will appreciate upon reading this disclosure that a number of different configurations for the spatial relationship, or orientation of the input lines 912, interconnect lines 914, and output lines 920 are possible. That is, the spatial relationship, or orientation of the input lines 912, interconnect lines 914, and output lines 920 can parallel the spatial relationship, or orientation configurations detailed above for the floating gates and control gates as described in connection with
The control unit 1030 coordinates all operations of the ALU 1020, the memory device 1040 and the I/O devices 1050 by continuously cycling through a set of operations that cause instructions to be fetched from the memory device 1040 and executed. In service programmable logic arrays, according to the teachings of the present invention, can be implemented to perform many of the logic functions performed by these components. With respect to the ALU 1020, the control unit 1030 and the I/O devices 1050, arbitrary logic functions may be realized in the “sum-of-products” form that is well known to one skilled in the art. A logic function sum-of-products may be implemented using any of the equivalent two-level logic configurations: AND-OR, NAND-NAND, NOR-OR, OR-NOR, AND-NOR, NAND-AND or OR-AND, and using the novel non-volatile memory cells of the present invention.
The above structures and fabrication methods have been described, by way of example and not by way of limitation, with respect to in service programmable logic arrays using non-volatile memory cells with low tunnel barrier interpoly insulators.
It has been shown that the low tunnel barrier interpoly insulators of the present invention avoid the large barriers to electron tunneling or hot electron injection presented by the silicon oxide-silicon interface, 3.2 eV, which result in slow write and erase speeds even at very high electric fields. The present invention also avoids the combination of very high electric fields and damage by hot electron collisions in the which oxide result in a number of operational problems like soft erase error, reliability problems of premature oxide breakdown and a limited number of cycles of write and erase. Further, the low tunnel barrier interpoly dielectric insulator erase approach, of the present invention remedies the above mentioned problems of having a rough top surface on the polysilicon floating gate which results in, poor quality interpoly oxides, sharp points, localized high electric fields, premature breakdown and reliability problems.
According to the teachings of the present invention, any arbitrary combinational logic function can be realized in the so-called sum-of-products form. A sum of products may be implemented by using a two level logic configuration such as the NOR-NOR arrays shown in
This application is a continuation of U.S. application Ser. No. 10/788,810, filed on Feb. 27, 2004 now U.S. Pat. No. 7,074,673; which is a divisional of U.S. application Ser. No. 09/945,512 filed on Aug. 30, 2001 now U.S. Pat. No. 7,087,954; each of which is incorporated herein by reference. This application is related to the following co-pending, commonly assigned U.S. patent applications: “DRAM Cells with Repressed Memory Metal Oxide Tunnel Insulators,” Ser. No. 09/945,395; “Programmable Array Logic or Memory Devices with Asymmetrical Tunnel Barriers,” Ser. No. 09/943,134; “Dynamic Electrically Alterable Programmable Memory with Insulating Metal Oxide Interpoly Insulators,” Ser. No. 09/945,498; “Flash Memory with Low Tunnel Barrier Interpoly Insulators,” Ser. No. 09/945,507; “SRAM Cells with Repressed Floating Gate Memory, Metal Oxide Tunnel Interpoly Insulators,” Ser. No. 09/945,554; “Programmable Memory Address and Decode Devices with Low Tunnel Barrier Interpoly Insulators,” Ser. No. 09/945,500; which were filed Aug. 30, 2001, and each of which disclosure is herein incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
4295150 | Adam | Oct 1981 | A |
4412902 | Michikami et al. | Nov 1983 | A |
4510584 | Dias et al. | Apr 1985 | A |
4545035 | Guterman et al. | Oct 1985 | A |
4556975 | Smith et al. | Dec 1985 | A |
4665417 | Lam | May 1987 | A |
4672240 | Smith et al. | Jun 1987 | A |
4688078 | Hseih | Aug 1987 | A |
4757360 | Faraone et al. | Jul 1988 | A |
4780424 | Holler | Oct 1988 | A |
4939559 | DiMaria et al. | Jul 1990 | A |
5042011 | Casper et al. | Aug 1991 | A |
5057448 | Kuroda | Oct 1991 | A |
5071782 | Mori | Dec 1991 | A |
5073519 | Rodder | Dec 1991 | A |
5153880 | Owen et al. | Oct 1992 | A |
5280205 | Green et al. | Jan 1994 | A |
5331188 | Acovic et al. | Jul 1994 | A |
5350738 | Hase et al. | Sep 1994 | A |
5353431 | Doyle et al. | Oct 1994 | A |
5399516 | Bergendahl et al. | Mar 1995 | A |
5418389 | Watanabe | May 1995 | A |
5429966 | Wu et al. | Jul 1995 | A |
5474947 | Chang et al. | Dec 1995 | A |
5488612 | Heybruck | Jan 1996 | A |
5497494 | Combs et al. | Mar 1996 | A |
5498558 | Kapoor | Mar 1996 | A |
5508544 | Shah | Apr 1996 | A |
5600592 | Atsumi et al. | Feb 1997 | A |
5618575 | Peter | Apr 1997 | A |
5618761 | Eguchi et al. | Apr 1997 | A |
5619051 | Endo | Apr 1997 | A |
5619642 | Nielson et al. | Apr 1997 | A |
5627785 | Gilliam et al. | May 1997 | A |
5677867 | Hazani | Oct 1997 | A |
5691209 | Liberkowski | Nov 1997 | A |
5691230 | Forbes | Nov 1997 | A |
5739544 | Yuki et al. | Apr 1998 | A |
5739567 | Wong | Apr 1998 | A |
5768192 | Eitan | Jun 1998 | A |
5798548 | Fujiwara | Aug 1998 | A |
5801401 | Forbes | Sep 1998 | A |
5808943 | Sato et al. | Sep 1998 | A |
5852306 | Forbes | Dec 1998 | A |
5880991 | Hsu et al. | Mar 1999 | A |
5923056 | Lee et al. | Jul 1999 | A |
5936274 | Forbes et al. | Aug 1999 | A |
5952692 | Nakazato et al. | Sep 1999 | A |
5959465 | Beat | Sep 1999 | A |
5969383 | Chang et al. | Oct 1999 | A |
5973355 | Shirai et al. | Oct 1999 | A |
5981350 | Geusic et al. | Nov 1999 | A |
5986932 | Ratnakumar et al. | Nov 1999 | A |
5991225 | Forbes et al. | Nov 1999 | A |
6009011 | Yamauchi | Dec 1999 | A |
6025228 | Ibok et al. | Feb 2000 | A |
6025627 | Forbes et al. | Feb 2000 | A |
6031263 | Forbes et al. | Feb 2000 | A |
6069380 | Chou et al. | May 2000 | A |
6069816 | Nishimura | May 2000 | A |
6077745 | Burns, Jr. et al. | Jun 2000 | A |
6087222 | Jung Lin et al. | Jul 2000 | A |
6091626 | Madan | Jul 2000 | A |
6108240 | Lavi et al. | Aug 2000 | A |
6118159 | Willer et al. | Sep 2000 | A |
6124729 | Noble et al. | Sep 2000 | A |
6127227 | Lin et al. | Oct 2000 | A |
6134175 | Forbes et al. | Oct 2000 | A |
6135175 | Gaudreault et al. | Oct 2000 | A |
6141238 | Forbes et al. | Oct 2000 | A |
6141248 | Forbes et al. | Oct 2000 | A |
6143636 | Forbes et al. | Nov 2000 | A |
6153468 | Forbes et al. | Nov 2000 | A |
6157061 | Kawata | Dec 2000 | A |
6163049 | Bui | Dec 2000 | A |
6169306 | Gardner et al. | Jan 2001 | B1 |
6191459 | Hofmann et al. | Feb 2001 | B1 |
6204529 | Lung et al. | Mar 2001 | B1 |
6208164 | Noble et al. | Mar 2001 | B1 |
6210999 | Gardner et al. | Apr 2001 | B1 |
6229175 | Uchida | May 2001 | B1 |
6238976 | Noble et al. | May 2001 | B1 |
6246606 | Forbes et al. | Jun 2001 | B1 |
6249020 | Forbes et al. | Jun 2001 | B1 |
6249460 | Forbes et al. | Jun 2001 | B1 |
6306708 | Peng | Oct 2001 | B1 |
6307775 | Forbes et al. | Oct 2001 | B1 |
6317364 | Guterman et al. | Nov 2001 | B1 |
6323844 | Yeh et al. | Nov 2001 | B1 |
6335554 | Yoshikawa | Jan 2002 | B1 |
6341084 | Numata et al. | Jan 2002 | B2 |
6351411 | Forbes et al. | Feb 2002 | B2 |
6376312 | Yu | Apr 2002 | B1 |
6377070 | Forbes | Apr 2002 | B1 |
6396745 | Hong et al. | May 2002 | B1 |
6424001 | Forbes et al. | Jul 2002 | B1 |
6433382 | Orlowski et al. | Aug 2002 | B1 |
6440801 | Furukawa et al. | Aug 2002 | B1 |
6461905 | Wang et al. | Oct 2002 | B1 |
6461931 | Eldridge | Oct 2002 | B1 |
6475857 | Kim et al. | Nov 2002 | B1 |
6476434 | Noble et al. | Nov 2002 | B1 |
6504207 | Chen et al. | Jan 2003 | B1 |
6514842 | Prall et al. | Feb 2003 | B1 |
6519176 | Hamzaoglu et al. | Feb 2003 | B1 |
6521943 | Mine et al. | Feb 2003 | B1 |
6541280 | Kaushik et al. | Apr 2003 | B2 |
6566682 | Forbes | May 2003 | B2 |
6574143 | Nakazato | Jun 2003 | B2 |
6586797 | Forbes et al. | Jul 2003 | B2 |
6730575 | Eldridge | May 2004 | B2 |
6740928 | Yoshii et al. | May 2004 | B2 |
6753568 | Nakazato et al. | Jun 2004 | B1 |
6754108 | Forbes | Jun 2004 | B2 |
6778441 | Forbes et al. | Aug 2004 | B2 |
6881994 | Lee et al. | Apr 2005 | B2 |
6894944 | Ishibashi et al. | May 2005 | B2 |
6903367 | Forbes | Jun 2005 | B2 |
6950340 | Bhattacharyya | Sep 2005 | B2 |
6952032 | Forbes et al. | Oct 2005 | B2 |
6958937 | Forbes et al. | Oct 2005 | B2 |
6963103 | Forbes | Nov 2005 | B2 |
7027328 | Forbes et al. | Apr 2006 | B2 |
7042043 | Forbes et al. | May 2006 | B2 |
7068544 | Forbes et al. | Jun 2006 | B2 |
7074673 | Leonard | Jul 2006 | B2 |
7075829 | Forbes | Jul 2006 | B2 |
7087954 | Forbes | Aug 2006 | B2 |
7112841 | Eldridge et al. | Sep 2006 | B2 |
7126183 | Forbes et al. | Oct 2006 | B2 |
7132711 | Forbes et al. | Nov 2006 | B2 |
7135734 | Eldridge et al. | Nov 2006 | B2 |
7136302 | Forbes et al. | Nov 2006 | B2 |
7154138 | Hofmann et al. | Dec 2006 | B2 |
7166886 | Forbes | Jan 2007 | B2 |
7187587 | Forbes | Mar 2007 | B2 |
20010013621 | Nakazato | Aug 2001 | A1 |
20010041250 | Werkhoven et al. | Nov 2001 | A1 |
20010055838 | Walker et al. | Dec 2001 | A1 |
20020008324 | Shinkawata | Jan 2002 | A1 |
20020024083 | Noble et al. | Feb 2002 | A1 |
20020028541 | Lee et al. | Mar 2002 | A1 |
20020106536 | Lee et al. | Aug 2002 | A1 |
20020109138 | Forbes | Aug 2002 | A1 |
20020109158 | Forbes et al. | Aug 2002 | A1 |
20020137250 | Nguyen et al. | Sep 2002 | A1 |
20020140022 | Lin et al. | Oct 2002 | A1 |
20020175326 | Reed et al. | Nov 2002 | A1 |
20020176293 | Forbes et al. | Nov 2002 | A1 |
20030042528 | Forbes | Mar 2003 | A1 |
20030043637 | Forbes et al. | Mar 2003 | A1 |
20030134475 | Hofmann et al. | Jul 2003 | A1 |
20030207032 | Ahn et al. | Nov 2003 | A1 |
20030207540 | Ahn et al. | Nov 2003 | A1 |
20040032773 | Forbes | Feb 2004 | A1 |
20040160830 | Forbes | Aug 2004 | A1 |
20040207038 | Hofmann et al. | Oct 2004 | A1 |
20050023595 | Forbes et al. | Feb 2005 | A1 |
20050023602 | Forbes et al. | Feb 2005 | A1 |
20050023603 | Eldridge et al. | Feb 2005 | A1 |
20050024945 | Forbes | Feb 2005 | A1 |
20050026349 | Forbes et al. | Feb 2005 | A1 |
20050169054 | Forbes | Aug 2005 | A1 |
20060002192 | Forbes et al. | Jan 2006 | A1 |
20060186458 | Forbes et al. | Aug 2006 | A1 |
20060199338 | Eldridge et al. | Sep 2006 | A1 |
20060231886 | Forbes et al. | Oct 2006 | A1 |
20060234450 | Forbes et al. | Oct 2006 | A1 |
20060237768 | Forbes et al. | Oct 2006 | A1 |
20060263981 | Forbes | Nov 2006 | A1 |
20060274580 | Forbes | Dec 2006 | A1 |
20060278917 | Forbes et al. | Dec 2006 | A1 |
Number | Date | Country | |
---|---|---|---|
20060001049 A1 | Jan 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09945512 | Aug 2001 | US |
Child | 10788810 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10788810 | Feb 2004 | US |
Child | 11202460 | US |