The present invention relates to sharpening a cutting edge on cutting tools and, more particularly, to wet sharpeners with a wet, rotating grinding stone, and accessories used in conjunction therewith to sharpen the cutting edge on cutting tools.
Tool sharpeners, such as grinders, are used to sharpen cutting edges on wood carving tools, such as cabinet maker tools, chisels, gouges, and the like, and cutting tools, such as plane blades, jointer blades, axes, scissors, knives, and the like. Typically, wet sharpeners have a rotating abrasive grinding wheel mounted along the side of a motor housing where the rim of the grinding stone is kept wet by having it rotate through a tray holding water. The water provides a slight level of lubrication between the tool being sharpened and the rim of the grinding stone to prevent overheating and damaging the tool being sharpened (e.g., burning the tool edge, removing the temper or causing a loss in hardness of the metal tool being sharpened), as well as to decrease the wear of the grinding stone. Some wet sharpeners provide a second grinding, honing or polishing wheel mounted on the opposite side of the housing as the first grinding stone. In view of the multiple uses for such tool sharpeners, the term sharpening as used herein will generally refer to all uses of such tool sharpeners including, but not limited to, grinding, sharpening, honing, polishing, etc.
The sharpener typically has many accessories such as jigs or support tools used to hold carving and cutting tools on a support bar in front of the grinding stone in order to keep the tool steady when it is placed against the grinding stone. A number of small separate gauges also are used to configure the jigs for a desired grinding angle or to measure cutting edge sizes on the tools. Since these numerous accessories are separate from the sharpener and its supports, they can often be lost or misplaced rather easily. Thus, a convenient storage compartment or space is desired to address this problem.
The grinding stone mounted on the side of the motor housing is typically rotated at a single, low speed in order to maintain a certain amount of moisture on the grinding stone rim. However, protracted use causes a reduction of the diameter of the wet grinding wheel and, accordingly, decreases the outer rim or surface speed of the grinding wheel. For example, a 10″ diameter wheel worn down to a 6″ diameter, results in a 40% reduction in surface speed. Erosion of the wet grinding wheel reduces the ability of the grinding wheel to efficiently cut and sharpen a tool (i.e., reduces “cutting aggression”). A wet sharpener is needed that can compensate for this erosion.
Known dry wheel bench grinders, employ a variable speed motor for careful sharpening of fine edges to vary the aggressiveness of the grinding. However, such grinders operate at speeds that are too high to be used with wet sharpeners, such as for example ranges of 2000 RPM and faster. Speeds this high cannot be used on wet sharpeners because at such a high speed, the water is thrown off of the grinding stone and does not adhere to the rim of the grinding stone. Without sufficient water on its rim, the grinding wheel will undesirably wear and overheat. Therefore, it is desirable to address these shortcomings as well as those associated with grinding wheel erosion discussed above.
Conventional wet sharpeners further employ a pendulum structure where the motor hangs from a bar and is free to swing relative to the grinding stone rim. Gravity holds the motor, and more specifically the motor's drive shaft, against the drive wheel of the grinding stone. This enables the motor to rotate the grinding stone purely through friction between its rotating drive shaft and the grinding stone drive wheel.
The gravity-friction based drive force, however, is not always adequate to rotate the grinding stone at a constant speed (constant RPM) or to rotate the grinding stone fast enough. In addition, other factors such as contaminates or liquids on the contact points between the drive wheel rim and drive shaft can further reduce the friction coefficient of the contact. Thus, a need exists for a wet sharpener that provides a stronger frictional force than a simple pendulum-gravity configuration and that can compensate for debris or liquids that reduce friction at the contact points.
The typical, rotating grinding stone is mounted on the side of a sharpener's motor housing and is held near a horizontally extending, support bar also mounted on the motor housing. The support bar supports different jigs which, in turn, support the tool while being sharpened by the grinding stone. The jigs hold the tool at selected angles relative to the grinding stone as the tool is placed in contact with the abrasive, outer rim of the grinding stone.
One such jig is a straight edge jig. This jig includes a base plate that mounts on the sharpener support bar while the tool to be sharpened, such as a flat, hand plane iron, is placed across the base plate of the jig. An upper plate is placed over the tool, to clamp the tool between the base and upper plate. The straight edge jig can be rotated away and toward the grinding stone (i.e., rotated about the horizontal support bar so that the axis of rotation of the jig is parallel to the axis of rotation of the grinding stone). The jig is rotated to select the angle of the tool relative to the grinding stone surface, as well as moved side-to-side along the support bar in front of the grinding stone to sharpen or form a straight cutting edge on the tool.
Another jig is disclosed by U.S. Pat. No. 6,447,384. This jig holds a tool in a casing that can be swiveled horizontally to a range of inclined positions relative to the base of the jig, the support bar and the grinding stone. The jig also can be rotated vertically upon the support bar in a range of grinding angles relative to the grinding stone.
While these jigs enable sharpening or creation of a curved cutting edge, which is horizontal or inclined, they do not enable creation of a true ‘vertical’ cambered surface or cutting edge where the side edges of a flat plate or iron cutting tool are thinner than at the center of the cutting tool. In addition, the jig disclosed by the '384 patent is particularly suited to hold round or beveled tools in its V-shaped seats. While it can hold flat tools, the user tends to have a difficult time arranging the flat tool or iron to sit level within the V-shaped seat of the jig.
U.S. Pat. No. 6,393,712 discloses a multi-jointed arm jig with an elbow joint and wrist joint for sharpening or forming curved surfaces on round tools, such as cylindrical gouges, held at the end of the arm. These jigs, however, do not hold flat tools or irons.
Currently, the only way to create a cambered edge on a flat tool held by these jigs is to manually twist the tool as it is placed along the thickness of the grinding stone. Thus, no way exists to obtain identical cuts from tool-to-tool since the cuts are made by hand.
A need exists for a camber jig that provides support for a flat tool, such as a hand plane iron, while easily forming a cambered cutting edge on the tool without the need for manually twisting or turning the tool by hand. A need also exists to make a repeatable process to produce the same camber on multiple tools.
In addition to jigs, gauges are often used with tool sharpeners in order to recreate the conditions for forming a particularly shaped cutting edge on a tool and for determining the exact angles created on tools. Some gauges are provided for measuring the grinding angle (i.e., the angle of the tool held in a jig or on a tool support relative to the tangent line where the tool meets the circular grinding surface on a grinding stone).
U.S. Pat. No. 6,189,225 discloses a grinding angle gauge that can be used on grinding stones or wheels of varying diameters. The angle gauge includes two adjustable pointers on opposite ends of a frame. At one end, a rounded end of a pointer rests on the grinding stone and can be turned to delineations of the diameter of the wheel. The pointer at the other end of the frame has a flat end for placement on a tool support, jig, or tool at the point where the implement contacts the grinding stone. The pointed end of the second pointer will indicate the angle of the support or jig. One shortcoming with such gauges, however, is that they are often difficult to operate and cost more due to their complex construction. Thus, a less expensive, less complicated gauge is desired for measuring this angle.
Other known gauges are used for measuring the diameter of the grinding wheel or the angle of the cutting edge on the tool. These known gauges, however, are frequently cumbersome to use, inaccurate and cannot be conveniently stored on the sharpener. Thus, a need also exists for gauges that address these shortcomings.
Referring to
Each sidewall 14, 16 of the housing 12 has a side panel 26, 28 respectively enclosing the interior of the housing 12 and that ends at a bottom plate 30 or 32 extending perpendicular from a corresponding side panel 26 or 28 in order to form a widened base. Each sidewall 14, 16 also has a respective corresponding front, triangular brace 34, 36, and backward extending triangular braces 35, 37 (shown on
As shown in
Referring to
The grinding stone illustrated is made of a ceramic material containing aluminum-oxide and may be provided in a wide range of grit ratings. For example, for some applications a very coarse grit, such as a 200 grit stone, may be desired. For other applications, a much more fine grit, such as a 1000 grit stone, may be desired. Thus, it should be understood that the material and coarseness/fineness of the stone may be varied over a wide range depending on the application for which the operator wishes to use the sharpener 10.
In the embodiment illustrated, a honing wheel 46 is connected to the opposite end of axel 44 in a manner similar to that of the grinding stone 42. More particularly, the threaded end 44b of axel 44 is inserted through the central opening in honing wheel 46. The honing wheel 46 is then fastened to the axel 44 via a fastener, such as nut cap 47. A washer may be placed between the nut 47 and the honing wheel 46 in order to more securely fasten the honing wheel 46 to the axel 44. Thus, once assembled, rotation of honing wheel 46 will result in corresponding rotations of axel 44 and grinding stone 42 connected thereto.
A motor 50 is also disposed in the interior 48 of the housing 12 and rotates a drive shaft 52 that rotates the honing wheel 46, which in turn, rotates the axle 44 and the grinding stone 42. The drive shaft 52 extends out of the motor 50 and through the left side panel 26 in order to contact the honing wheel 46. It will be appreciated, however, that other structures for rotating the wheels 42, 46 are contemplated such as a motor that rotates the grinding stone directly instead of the honing wheel or only rotates the grinding stone 42, such as a direct drive arrangement wherein the motor directly drives the grinding stone 42, or other embodiments such as a geared transmission wherein the drive shaft 52 drives a gear or gears which in turn drive at least one of the wheels 42, 46.
Referring to
The purpose for offering a plurality of positions to mount the container 54 to the housing 12 is to allow the user to adjust the height of the container 54 when either the diameter of the wheel 42 has shrunk due to wear or the water level in the container 54 has dropped and cannot be readily replaced or replenished. Although the embodiment illustrated uses mating hooks and lips for releasably connecting the container 54 to the housing 12, it should be understood that any number of different mating structures may be used to connect the container 54 to the housing 12, such as for example, tenon and mortise structures, hook and loop structures, buttons, clips, etc. For example, in one alternate embodiment, the container 54 may define openings to which hooks extending from the housing 12 are connected.
Referring to
While the upper splashguard 62 is shown to be generally rectangular, it may have many other shapes including those that are more semi-circular in shape to more closely match the splash patterns from the wet grinding stone 42. The splashguard 60 may also have a variety of different shapes as long as it continues to catch and return ejected coolant to the reservoir of container 54.
The tool sharpener 10 also has three horizontally extending support bars 68 (also called the ‘universal support’) for holding the various accessories, such as jigs and supports, for the sharpening of tools (not shown). The support bars 68 are mounted on the top panel 22 of the housing 12 by using collars 70 and threaded fasteners 72 with gnarled knobs 74. In a preferred form, the support bars 68 are made of iron or other hard metals that can withstand the pressure placed on the bars 68 when accessories are used therewith to sharpen tools via sharpener 10.
Referring to
Similarly, when a base 18 is provided, the interior 94 of the base 18 can hold at least one receptacle although a plurality of receptacles, such as drawers 78b and 78c, are preferred. The drawers 78b and 78c may have the same structure as receptacle 78a although the dimensions or structure of the receptacles may also be different, if desired. For example, alternate drawer members may have sliding rail members with bearings attached to the drawers in order to allow the drawers to open and close more easily when under load. In yet other forms, drawers of different shapes and sizes may be provided and/or drawers may extend from the sides or rear of base 18, rather than the front alone.
The base 18 is preferably formed by a back wall 96 (shown on
The receptacles 78a-c also have a downwardly extending tab 110 (shown in dashed line in
It will be appreciated that the storage spaces within the interior 48, 94 of the housing 12 or base 18 can be configured to use receptacles of many different types. For instance, instead of the drawers, the interior storage spaces may have a permanent receptacle 78 that is accessible from the exterior of the tool sharpener by either an opening that remains open or selectively covered by any type of door, such as a hinged or sliding doors. The receptacle 78 may have its own walls or may not have any walls at all by simply relying on the walls of the housing 12 or base 18 to provide the enclosure for the implements to be placed in the storage area. Further, more than one drawer or receptacle may form a single storage space whether they are stacked or placed side by side or otherwise, and may be accessible through one or more openings on the housing 12 or base 18.
Referring to
It will further be appreciated that the side walls 114, bottom wall 116 or the back wall may be formed of a net, webbing or other apertured structure that holds accessories or tools by inserting the accessory or tool through a hole on one of the walls. The exterior storage receptacle 112 can be sized to hold one or more accessories or tools or even be configured to correspond to the shape of one or more of the accessories.
Referring now to
Alternatively, the rotation speed may be increased to intentionally increase the grinding aggression. This has the effect of reducing the total time for sharpening a tool without requiring increased pressure or force to be applied to the tool. Thus, the user is able to select a speed which subjectively feels the most comfortable and/or the most efficient.
In one form, the variable speed control may be configured to provide a range of low speeds, such as for example speeds between approximately 50 to 150 RPM, which avoid significant ejection of the coolant from the reservoir 54 and the contacting surface or rim 132 of the grinding stone 42 in order to maintain the fluid level in the reservoir 54 and temperature of the contacting surface 132 within acceptable levels. In operation, the diameter of the grinding wheel 42 is measured to determine if the rotation (e.g., speed or RPM) of the wheel should be adjusted to avoid having the grinding wheel 42 rotate at too low a rate of speed/RPM or too high a rate of speed/RPM (Step 150 in
In the embodiment illustrated in
In the embodiment illustrated, indicia 136 is displayed on the back face 134 of sharpener 10 in the vicinity of the dial 130 so that dial 130 can be rotated to a predetermined position to select a desired setting within a range of possible settings. The indicia 136 may display speed, RPMs, corresponding grinding stone diameters, or any combination or one of these. For example, the indicia may provide a scale identifying different predetermined speed/RPM settings which are desired for certain grinding stone diameters (Step 152 in
The actuator 124 may also include a pointer or needle 146 (
In yet other embodiments, the location of the indicia 136 and pointer 146 may be reversed so that the knob or dial 130 includes indicia and the tool sharpener housing 12 includes a pointer. With this configuration, the operator may track the position of the actuator and select the desired motor speed/RPM by rotating the actuator until the indicia on the knob 130 lines up with the pointer on the tool sharpener housing. In still other forms, both the knob 130 and housing 12 may contain indicia which the operator may use to track the actuator's position and/or set the desired motor speed/RPM.
In the embodiment illustrated, the actuator 124 may be rotated about its axis approximately three-hundred fifty degrees (350°), with most (if not all) increments corresponding to a change in motor speed or RPM. As mentioned above, however, the preferred indicia will not attempt to track every possible setting of the actuator or motor speed/RPM, but rather will attempt to mark relevant settings that help the user in adjusting the rotation of the grinding stone 42 when needed. For example, in the embodiment discussed above, the five demarcations mentioned were selected because they represent a preferred change in speed/RPM based on various grinding stone diameters. The scale selected illustrates the desired speed/RPM each time the diameter of the grinding stone is reduced by an inch. For example, the first setting on the scale identifies the desired speed/RPM when the grinding stone is ten inches (10″) in diameter. The next setting identifies the desired speed/RPM when the grinding stone is nine inches (9″) in diameter. The next setting identifies the desired speed/RPM when the grinding stone is eight inches (8″) in diameter. The next setting identifies the desired speed/RPM when the grinding stone is seven inches (7″) in diameter. The final setting identifies the desired speed/RPM when the grinding stone is six inches (6″) in diameter.
Although the preferred scale uses one inch diameter increments, it should be understood, that this scale provides users with sufficient information to adjust the tool sharpener 10 to operate at other desired speeds/RPMs. For example, if the user determines that the diameter of the grinding stone is nine and a half inches (9.5″), the scale allows the user to rotate the actuator 124 until the pointer 146 is positioned between the settings for ten inch (10″) and nine inch (9″) diameters. Furthermore, as mentioned above, a number of different scales may be used for the indicia 136. For example, the indicia may identify desired increments of speed/RPM rather than grinding stone diameter. In yet other embodiments, the indicia may identify the desired speed/RPM for different metals that the grinding stone 42 will be used on. For example, different speeds/RPMs (or ranges of speeds/RPMs) may be provided for tools made of softer metals than for tools made of harder metals.
In other embodiments, the actuator 124 may only adjust the speed/RPM when predetermined positions are reached, rather than continuously adjusting the speed/RPM as the actuator 124 is rotated. For example, rotation of the actuator between a first predetermined position to a second predetermined position may not cause a change in the speed/RPM until the second predetermined position is reached. This may be accomplished by programming a controller, such as an integrated circuit (“IC”), to determine the input from an actuator, such as a potentiometer, and maintain the current motor speed until predetermined inputs or changes in input are reached.
In still other embodiments, the tool sharpener 10 may be provided with an actuator 124 that has positive stops at predetermined intervals which allow the user to easily adjust the speed/RPM from one setting to another without concern that the desired speed has been exactly reached. For example, a ball and detent configuration may be used which allows the actuator 124 to snap into a predetermined position once a desired speed/RPM has been reached. In cases such as this, where a plurality of different desired settings (e.g., speed, RPM, etc.) positions may exist, the actuator may be designed to have a plurality of positions wherein the actuator 124 snaps into position via the ball and detent configuration.
As shown in
Although the circuit illustrates the actuator 124 as a potentiometer or rheostat and the controller as an IC, it should be understood that alternate components may be used to perform the same function. For example, the actuator 124 may be in the form of a multiple position switch capable of varying the speed/RPM of the motor output shaft. Similarly, the controller may be in the form of a different type of processor or logic control, such as for example a programmable logic controller, microprocessor or other micro-controller, or simply individual logic components.
In
In a preferred form, the variable speed control may also include a sensor for monitoring the speed of the motor output shaft and/or the grinding stone 42 connected thereto. This sensor allows the IC to ensure that the circuit 138 is operating correctly and that the motor output shaft is being driven at the desired or selected speed/RPM. For example, in circuit 138, a magnetic sensor, such as Hall Effect sensor 140, is connected to the IC 144 and the motor output shaft to calculate the actual speed/RPM of the motor output shaft. It should be understood, however, that such a sensor is merely an optional feature and need not be part of the variable speed control if desired. For example, in
It should also be understood that, although a magnetic hall effect sensor 140 is illustrated in
Referring again to
It will be appreciated that many other configurations for the actuator 124 exist other than the dial 130 such as a key pad for typing in the desired speed, or other types of inputs or switches such as slides or buttons indicating selected speeds, whether predetermined or not. It will also be appreciated that the speed controller 126 could be programmed to change the rotation speed of the grinding stone 42 on its own if it received a signal that automatically detected a change in diameter or speed/RPM of the grinding stone 42. For example, automatic detection of the grinding stone diameter could be accomplished via a variety of optical sensors, such as for example, optical pairs, photo diodes and transistors, infrared (“IR”) sensors, fiber optic sensors, or other optoelectronic sensors, ultrasonic sensors, or other presence/absence sensors. In one form, the tool sharpener 10 may be provided with multiple photo transistors/diodes connected to the controller 126 and spaced such that one photo transistor is switched on when the grinding stone diameter reaches nine inches (9″) in diameter, another photo transistor turns on when the grinding stone diameter reaches eight inches (8″) in diameter, and so on. Upon the detection of each transistor being turned on, the IC may be programmed to automatically adjust the speed/RPM of the motor output shaft to account for the change in the diameter of the grinding stone 42.
In yet another form, the tool sharpener 10 may use a combination of feedback sensors to determine whether or not the grinding stone is operating as desired and allowing the IC to take corrective action if it is not. For example, if the optical feedback sensors indicate that the diameter of grinding stone has reached a predetermined smaller diameter and the magnetic Hall Effect feedback sensor indicates that the grinding stone 42 is not rotating at a desired speed/RPM, then the IC 144 may be programmed to take corrective action to compensate for this feedback or data. Thus, it should be clear that feedback sensors may be utilized in a variety of ways in conjunction with the tool sharpener 10.
In the manual grinding stone diameter detection method illustrated in
The proximal end 210 of the gauge member 202 has a through-hole 212 that receives an elongated stop 214 with enlarged longitudinal ends 216, 218. The through-hole 212 and stop 214 are sized so that the stop is free to translate axially within the through-hole 212, similar to that of a slotted T-handle found on a vise or clamp. The enlarged ends 216, 218 secure the stop 214 to the distal end 210. It should be understood, however, that in alternate embodiments the stop 214 need not be movable with respect to the through-hole 212 so long as it can be rotated into and out of engagement with the grinding stone 42.
When stored or placed in its stored position (as shown in
In yet other embodiments, the gauge member 202 may be designed to completely retract into the housing 12 or retract sufficiently so that the distal end 210 is flush with the back panel 24. The gauge 202 could then be configured so that by either pushing on the distal end 210 or actuating another mechanism would eject at least a portion of the gauge member 202 out of the housing 12 so that the user could pull the gauge further out of the housing and measure the diameter of the grinding stone 42. For example, the gauge member 202 could be designed so that by pushing the distal end 210 in toward the interior of the housing 12, the gauge member 202 would be slightly popped out of the housing leaving a portion of the gauge member 202 exposed so that the user could pull the gauge member 202 out of the housing 12 and rotated into contact with the grinding stone 42. Then, as mentioned above, the biasing mechanism 208 would position the stop 214 against the stone so that an accurate diameter reading may be made.
It will be appreciated that many other ways exist for measuring the diameter of the grinding stone or wheel 42 such as using indicia 222 displayed on the top panel 22 of the housing 12 and next to the outer rim 132 of the grinding stone 42 (as shown in
With reference to
In alternate embodiments, the motor 50 may be configured to either directly drive axle 44, such as by way of a geared transmission, in lieu of the frictional engagement configuration discussed above, or by way of a belt driven system. For example, in one form, the motor output shaft may be connected to a drive gear that drives a gear or gears connected to axle 44. In other forms, the motor output shaft may drive a hub connected to a belt, such as a V-belt, which in turns drives a hub connected to axle 44.
In place of or in addition to the friction adjustment device 160, alternate embodiments of the tool sharpener 10, such as those using a belt drive, may also include a tension adjustment mechanism which allows tension between the motor output shaft 52 and the member or members driven by the motor output shaft 52 to be tightened and/or released in order to ensure that the operation of the motor 50 provides the desired rotation of the honing wheel 46 and/or grinding stone 42 in any particular application. For example, in the belt driven system discussed above, the motor 50 may be connected to a screw drive which allows the motor to be moved in one general direction to increase the amount of tension applied to the V-belt by the hub connected to the motor 50 and in a generally opposite direction to reduce the amount of tension applied to the V-belt by the hub connected to the motor 50. In yet other forms, a tension adjusting mechanism such as a screw drive may move the axle 44 and hub associated therewith.
In the embodiment shown in
In order to compensate for an undesirable reduction in friction, the friction adjustment device 160 adds a second force, in addition to the first force caused by gravity, that acts upon the drive shaft 52 to ensure an adequate amount of friction exists between the drive shaft 52 and inner rim 168. To accomplish this, the friction adjustment device 160, at a minimum, includes an actuator 170 with a member 171 that extends in the interior 48 of the housing 12 and toward at least either the motor 50 or the drive shaft 52.
The member 171 engages the motor 50 or drive shaft 52, temporarily or permanently, so that driving the member in a direction that pushes the motor 50 and/or the drive shaft 52 toward the outer rim 168 of the honing wheel 46 creates the second force applied against the drive shaft (Step 184 on
The actuator 170, in one example, includes a gnarled knob 172 mounted on the exterior of the front panel 20 of the housing 12 and is attached to a threaded shank 174 that forms the member 171. The shank 174 is threaded directly to the front panel 20 for extending through the front panel 20 and into the interior of housing 12 so that it points toward the motor 50. Upon rotation of the knob 172, the shank 174 is driven axially and farther into the interior 48 of the housing 12 so that it abuts (if it isn't already), and presses horizontally against, the outer surface 176 of the motor 50 and forms the second force against the drive shaft 52 to increase the friction between the drive shaft 52 and outer rim 168 of the honing wheel 46.
It will be appreciated that other configurations for the actuator 170 and member 171 exist other than a knob or screw including any kind of configuration with levers, slides, switches, cams or any other mechanical device that will move the motor 50 and drive shaft 52 towards the inner rim 168 of the honing wheel 46. It will also be appreciated that the member 171 could move in other directions other than horizontal to create the second force (i.e., it could be slanted or even move vertically against a cylindrical motor body for instance).
It will also be appreciated that alternative embodiments exist where the drive shaft 52 directly contacts the contacting surface 188 of the honing wheel or where the inner rim 168 faces inward instead of outward on hub 43 and the drive shaft is urged radially outward and against the inner rim 168 by gravity or other mechanically or magnetically created forces. It will also be understood that the drive shaft 52 may not directly contact the honing wheel when intermediary pieces such as wheels, gears, or additional shafts or even coatings, layers, or concentric pieces such as collars are used on either the honing wheel or the end of the drive shaft to further control the friction between the honing wheel and the drive shaft. In still other embodiments, and as mentioned above, the drive shaft 52 may directly drive the grinding stone 42 or axel 44 rather than the honing wheel 46 and, thus, these drive embodiments and friction adjustment mechanisms may be applied to the grinding stone 42 or axel 44 instead of the honing wheel 46 in certain embodiments.
Referring to
As illustrated in
In the embodiment illustrated, the upper and lower plates 262 and 266 are generally rectangular to match the generally rectangular outer periphery of the wet sharpener 250 to avoid unnecessary extensions beyond the sharpener that might interfere with the manipulation of the accessories used with the sharpener or a user's desired position while operating the sharpener. It should be understood, however, that the pivot table 258 could have an outer periphery with a circular shape or other shapes, if desired.
Four fasteners 268, similar to fasteners 40 on wet sharpener 10, secure the housing 252 to the top of the upper plate 266. The pivot table 252 also has four feet 270 secured by counter-sunk screws 288 to the lower plate 262 for support. The counter-sunk screws 288 may be extended beyond the bottom of the feet 270 to connect to the base 260 if desired and as explained above for fasteners 40. A locking mechanism 272 secures the upper plate 266 in any rotated orientation relative to the lower plate 264.
In more detail, the upper plate 266 is secured to the lower plate 262 by a fastener 274 that, in this case, also defines an axis of rotation R (shown in
The support disc 264 is disposed concentrically around the axis of rotation R and the raised disc portion 278. The support disc 264 also may be secured to the lower plate 262 by screws, adhesive, or any other known attachment device so that at least a bottom portion 284 and an annular, outer, side rim 286 of the support disc 264 does not rotate for engagement with the locking mechanism as explained further below. In one form, the entire disc 264 does not rotate. In this case, the disc 264 may have a low friction top surface so that the upper plate 262 slides against the disc 264 as it rotates. Alternatively, the top portion of the disc 264 may not contact the top plate 262 at all. In this alternative, the disc 264 is used mainly with the locking mechanism 272 explained below.
In another alternative, the disc 264 may have a rotating, annular top portion that is secured to, and rotates with, the upper plate 262. In this case, the top portion of the disc rotates relative to the bottom portion of the disc. For this alternative, the disc may have a ball bearing channel or other mechanism between the top portion and bottom portion of the disc in order to facilitate the rotation of the top portion of the disc and top plate 262.
In one form, the locking mechanism 272 includes a releasable fastener such as a thumb screw 292, as shown in
When the thumb screw 292 is disengaged from the lower plate bore 287, the upper plate is free to rotate upon screw 274. The thumb screw 292 may be held in the upper plate bore 294 while the upper plate rotates. In one form, the upper plate bore 294 is place on the opposite side of the upper plate 266 from the side near the wet grinding stone 254 so that the thumb screw 274 cannot be rotated under the grinding stone 265 where the thumb screw could get wet from splashing water.
Once rotated to a desired position that is not in front of one of the protrusions 298, the thumb screw 292 is screwed radially inward until it engages the outer rim 286 of the support disc 264 to lock the upper plate 262 in place in the rotated orientation. The locking engagement between the thumb screw 274 and the outer rim 286 may be a friction engagement, such as that of a set screw, so that the top plate 266 may be pivoted to any desired angle relative to the 0 degree position shown in
Referring to
It will be understood that the locking mechanism may take many different forms instead of, or in addition to, the biased pin and thumb screw configurations described above. For example, the locking mechanism may use a vise-type clamp on the exterior and outer periphery of the lower and upper plates 262 and 264. Such a clamp may be separable from, integral with, or permanently fixed to the plates 262 and 264. In other options, the locking mechanism may use a cam to rotate and engage an outer rim of the upper plate 262 or a support portion thereof. In yet other configurations, the upper plate may be connected to a radially extending handle that engages a circumferentially or linearly extending configuration opposing the handle and that locks the handle, and in turn, the upper plate in place. Such a configuration may be a ratchet or slide that locks the handle in a certain radial position or that the handle may be locked to, such as by a fastener.
Referring now to
The camber jig 300 has a base 302 rotatably mounted on one of the horizontal support bars 68 of the tool sharpener 10. As shown in
As shown in
A fulcrum 320 extends downward from a bottom surface 322 of the pivoting member 304 and is received by a recess, such as indent 324, in the middle of the top surface 326 of the base. In this example, the fulcrum 320 is an elongated wall 328 with a distal end 330. The indent 324 has a corresponding semi-circular bottom 330. The indent 324 is dimensioned larger than the fulcrum 320 to permit the fulcrum to rock laterally within the indent 324. With this configuration, the pivoting member 304 pivots in a seesaw motion relative to the base 302 and about an axis of rotation ‘C’ (shown in
It will be appreciated that the fulcrum can have any shape that permits the pivoting member 304 to rock in at least seesaw fashion about axis ‘C’. Thus, the fulcrum 320 could be shortened and/or rounded to permit a pivoting member to rock back and forth perpendicular to axis ‘C’ or in any number of other directions in addition to the direction of the current seesaw motion. In addition, while fulcrum 320 is shown to be integrally formed with the pivoting member 304, many other configurations will work just as well such as the fulcrum being separate to all other parts or integral to the base 302 instead. In other options, fulcrum 320 need not be in the longitudinal center of the pivoting member 304 and base 302, and may be placed off-center instead or may even be adjustable so that the position of the fulcrum is selectable along the bottom surface 322 of the pivoting member 304. At a minimum, the fulcrum 320 need only be positioned under the center of the tool 308 so that rocking the tool back and forth produces a symmetrical curved cutting edge where symmetrical for reference here is from lateral side to lateral side 309, 311 as shown in
The base 302 is elongated and has two opposing, longitudinal ends 334, 336. At least one of the ends 334, 336, but preferably both ends, have a wall 338, 340 respectively, extending upward from the top surface 326 of the base 302. The walls 338, 340 are disposed in the vicinity of the one of the opposing, longitudinal ends 342, 344 of the pivoting member 304. The ends 342, 344 of the pivoting member 304 are configured for engaging the walls 338, 340 respectively in order to secure the pivoting member 304 laterally on the base 302 while permitting the pivoting member 304 to move vertically in the rocking or seesaw motion. Thus, each end 342, 344 of the pivoting member 304 respectively has a protrusion or tab 346 or 348 that extends horizontally to its corresponding wall 338, 340. The tabs 346, 348 (as shown in
Referring to
The rocking knobs 358, 360 are provided so that a user can hold the ends of the camber jig 300 in their hands and conveniently place their thumbs respectively on the two rocking knobs 358, 360 to rock the pivoting member in the seesaw motion. Thus, pressing alternatively on the knobs alternatively lowers the ends 342, 344 of the pivoting member 304 towards the base 302.
In order to secure the tool 308 to the camber jig 300, the securing mechanism 305 includes two threaded posts 374, 376 that extend upward from a top surface 378 of the pivoting member 304. The clamping plate 306 has two spaced holes 380, 382 that correspond to the positions of the posts 374, 376 respectively. The securing mechanism 305 has corresponding plastic, gnarled locking caps 384, 386 each with internally threaded stems 385, 387 respectively for engaging the posts 374, 376. Resilient members 388, 390, such as conical, helical springs, are disposed on the posts and between the clamping plate 306 and the top surface 378 of the pivoting member 304. This biases the clamping plate upward to maintain an opening 391 (shown in
The camber jig 300 also has an alignment bracket 392 for positioning the tool 308 perpendicular to the longitudinal direction L of the jig 300 (shown in
As shown in
An array of grooves 410 extends horizontally along the front and back edges 402, 412 and along the slot 400. The fastener 408 is wide enough to engage and be secured laterally within the grooves 410, and the user may center the tool 308 on the pivoting member 304 by counting the grooves 410 from the center of the mounted tool to the two lateral edges 309, 311 of the tool. Aligned sidewalls 414, 416 on the bracket 392 abut the tool 308 to ensure the tool is perpendicular to the longitudinal direction L of the camber jig 300. The bracket 392 also is reversible (i.e., the fastener 408 can face toward the front or the back of the jig 300).
Referring to
Each upward stopper device 418 has a threaded locking post 422 or 424 extending upward from the top surface 326 of the base 302. The locking posts 422, 424 extend through slots 426, 428 respectively (shown on
The downward stopper devices 420 have a screw 442 or 444 with a threaded shank or similar type of post 446, 448 respectively, and an oversized, circular, generally flat head 450, 452 with a gnarled outer rim 545. The posts 446, 448 extend upward through holes 456, 458 on the base 302. A threaded locking washer 460, 462 is respectively mounted on the posts 446, 448 and disposed below the base 302. The posts 446, 448 both have rounded distal ends 464, 466 for abutting the bottom surface 322 of the pivoting member 304. Both the holes 456, 458 and the locking washers 460, 462 may have threaded bushings 468, 470 in order to form the fine threads that engage the posts 446, 448 when it is more cost efficient such as when the camber jig is forged such that creating fine threads is relatively expensive on forged pieces. The bushings 468, 470 may be of a different type of material than that of the remainder of the camber jig 300 such as brass. The bottom surface 322 of the pivoting member 304 may or may not have an indent (not shown) aligned with the posts 446, 448 to prevent any lateral slipping of the posts against the bottom surface 322.
In operation, the washers 460, 462 are threaded away from the base 302 so that the screws 442, 444 are free to be axially adjusted up and down through the holes 456, 458 to a desired height to set the minimum height of the pivoting member 304 above the top surface 326 of the base 302 for that corresponding side of the jig 300. Once the desired position is reached, the washers 460, 462 are threaded up along the posts 446, 448 and tightly against the bottom surface 472 of the base 302 for locking the screws 442, 444 axially in place. The downward stopper devices 420 are also individually adjustable so that the pivoting member 304 can be maintained in a horizontal position or in any slanting position so that one end 342, 344 of the pivoting member 304 is higher above the base 302 than the other end of the pivoting member.
It will be appreciated that many other configurations exist for the upward and downward stopper devices 418, 420 as long as the structure is adjustable to set the limits of the rocking motion of the pivoting member and/or to maintain at least one end of the pivoting member 304 in a horizontal, relative to the base, or slanted position when a range of positions are available.
It will also be appreciated that the camber jig 300 will still operate even though the pivoting member 304 is not positioned entirely over the base 302 of the jig. Thus, the pivoting member 304 may be longer or wider than the base 302 so that it extends beyond the base and has free ends that reciprocate up and down without direct attachment to the base 302 as long as the pivoting member 304 can hold a flat tool for forming a cambered cutting edge on the tool. The attachment between the base 302 and pivoting member 304 may even be minimal such that the fulcrum 320 may be the only attachment between the pivoting member 304 and the base 302.
Referring now to
The gauge 500 also has an angle indictor 530 that has a pointed end 532 and an opposing, back, flat end 534 that extends perpendicular to the longitudinal direction of the indicator 530. The indicator 530 has a downwardly extending stem 536 for mounting through a hole 538 on the scale member 512 and into a mounting collar 540 integrally formed with, or otherwise attached to, the body 504 and centered at the axis of rotation R for the scale member 512 and the indicator 530. A circumferentially extending slot 542 on the indicator 530 aligns with a slot 544 on the scale member 512, which is long enough to permit full rotation of the scale member 512 within the recess 514. The two slots 542 and 544 align with a hole 546 where both slots and the hole receive a fastener 548. A locking knob 550 engages the fastener 548 and is disposed on top of the indicator 530. Similar to locking knob 520, the locking knob 550 has a wide gnarled head 552 for grasping and a stem 554 with interior threading for engaging the fastener 548. The outside diameter of the stem 554 is wider than slot 542 for locking the indicator 530 against the scale member 512 and body 504.
The scale member 512 has at least one arrow 568, though two are shown, displayed on the top surface 526 of the scale member 512 and pointing toward grinding stone diameter indicia 556 arranged circumferentially along an upper edge 564 of the body 504. Angle indicia 558 also extends circumferentially on the top surface 526 of the scale member 512 and where the pointed end 532 can point to the indicia 558. The body 504 also has a recess 560 on both sides of the body 504 (only one side is shown) for receiving a grooved handle grip 562 that is adhered to the body 504.
In operation, first the knobs 520 and 550 are loosened so that the scale member 512 and indicator 530 are free to rotate about the mounting collar 540 and rotational axis R. The scale member 512 is then rotated until the arrow 568 on the scale member 512 is aligned with the current diameter of the grinding stone 42 as indicated by the indicia 556 on the body 504. With the knob 520 turned to lock the scale member 512 in place, knob 550 can be loosened or tightened as needed to move the indicator 530 without moving the scale member 512.
In order to determine the angle of an implement 502 such as a tool, jig or support, relative to the grinding stone, the angle gauge 500 is placed on the grinding stone 42 so that the periphery 510 of the body 504 rests on the grinding stone 42 and the left or inner corner 566 of the flat end 534 of the indicator 530 also rests on the outer rim 132 of the grinding stone 42. The flat end 534 of the indicator 530 is placed flush against the implement 502 at the angle grinding is to take place. In this position, as shown in
Referring to
The first member 602 has a circumferential extending slot 612 that is centered around an axis of rotation AR. A hole 614 is provided on the second member 604 and is aligned with the slot 612 so that a fastener 616 such as a screw, can extend through the slot 612 and thread to the hole 614. The fastener 616 has an enlarged, gnarled head 618 that can be tightened against the first member 602 to secure it in a selected position on the second member 604.
In operation, a first side (not shown) of the tool's cutting edge is placed flush against a first measuring edge 620 on the first member 602, and the bottom member 604 is then be rotated until its second measuring edge 622 extends flush against a second side (not shown) of the cutting edge on the tool so that the first and second measuring edges 620, 622 represent the angle of the cutting edge on the tool. So positioned, the pointer 624 then indicates the angle of the cutting edge on the indicia array 608.
Either of the gauges 500 and/or 600 may be mounted on one of the panels 20, 22, 24, 26 and/or 28 of the housing 12 or on the base 18 for convenient storage. As shown on
Lastly, in addition to the accessories mentioned above, the sharpener 10 may also include a secondary honing wheel which is shaped to allow angled or curved surfaces of the tool being sharpened to be honed and polished. For example, in the embodiment illustrated in
In the embodiment illustrated, a shank 51 is provided with internal threads, such as a threaded bore, on one end and external threads, such as a bolt portion, on the opposite end. To install the secondary honing wheel, the honing wheel fastener 47 and washer (if any) are removed from the threaded end 44b of axel 44 and the threaded bore end of shank 51 is fastened to threaded end 44b of axel 44. A mating surface, such as flats 51a and 51b, is provided to allow a tool, such as a pliers or wrench, to be connected to the shank 51 and used to securely fasten the shank to the axel 44. Then, the secondary honing wheel 49 is installed onto the threaded bolt portion of the shank 51 so that the threaded bolt portion passes through the central opening in the honing wheel 49. The honing wheel fastener 47 and washer (if any) may then be inserted on the distal end of the threaded bolt portion of shank 51 and tightened to secure the secondary honing wheel 49 to the axel 44 and the primary honing wheel 46. Thus, when the axel 44 is driven by the motor 50, both the primary and secondary honing wheels 46 and 49 will be rotated.
In the form illustrated, the secondary honing wheel 49, like the primary honing wheel 46, is made of leather and used to hone, polish, or deburr the tool being sharpened. Of course, if desired, the secondary honing wheel 49 and shank 51 may be removed from axel 44 and left off. It also should be understood that the secondary honing wheel 49, like the primary honing wheel 46 and grinding wheel 42, can be connected to the tool sharpener 10 in a variety of different manners and with a variety of different fasteners as discussed above.
While the specification illustrates and describes particular embodiments of the present invention, it will be appreciated that numerous changes and modifications will occur to those skilled in the art, and it is intended in the appended claims to cover all those changes and modifications which fall within the true spirit and scope of the present invention.
This application claims the benefit of U.S. Provisional Application No. 60/775,375, filed Feb. 21, 2006, which is hereby incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
246625 | Merrill | Sep 1881 | A |
264726 | Maltby | Sep 1882 | A |
277882 | Carr | May 1883 | A |
494893 | Ross, Jr. | Apr 1893 | A |
1118684 | Ross | Nov 1914 | A |
1171569 | Wanda | Feb 1916 | A |
1279025 | Shay | Sep 1918 | A |
2128591 | McGill | Aug 1938 | A |
2369642 | Benning | Feb 1945 | A |
2398306 | Hermanson | Apr 1946 | A |
2411609 | Zenick | Nov 1946 | A |
2468395 | Fredin | Apr 1949 | A |
2505215 | Siegerist | Apr 1950 | A |
2583159 | Swanson | Jan 1952 | A |
2887833 | Passarotti | May 1959 | A |
2911771 | Amiet | Nov 1959 | A |
2922263 | Bogert, Sr. | Jan 1960 | A |
2998683 | Wegener | Sep 1961 | A |
3030131 | Scherry | Apr 1962 | A |
3252223 | Gettel | May 1966 | A |
3298106 | Duvall | Jan 1967 | A |
3482325 | Mitchell | Dec 1969 | A |
3730569 | Feinler | May 1973 | A |
4005553 | Eller | Feb 1977 | A |
4095376 | Lotane | Jun 1978 | A |
4142332 | Clarke | Mar 1979 | A |
4435103 | Becker et al. | Mar 1984 | A |
4483104 | Welliver | Nov 1984 | A |
4547999 | Reiling et al. | Oct 1985 | A |
4936053 | Shanelec | Jun 1990 | A |
5218787 | Rice | Jun 1993 | A |
5301473 | Seear | Apr 1994 | A |
5331774 | Domenella | Jul 1994 | A |
D366662 | Haffely et al. | Jan 1996 | S |
5527208 | Blake et al. | Jun 1996 | A |
5611149 | Fujiwara | Mar 1997 | A |
5810649 | Oar et al. | Sep 1998 | A |
5816735 | Jansson | Oct 1998 | A |
5938511 | Patterson | Aug 1999 | A |
6067721 | Dall'aglio et al. | May 2000 | A |
6189225 | Jansson | Feb 2001 | B1 |
6254455 | Irvine et al. | Jul 2001 | B1 |
D447155 | Lin Ku | Aug 2001 | S |
6305623 | Sotsky et al. | Oct 2001 | B1 |
6393712 | Jansson | May 2002 | B1 |
6447384 | Jansson | Sep 2002 | B1 |
6623340 | Jansson | Sep 2003 | B2 |
D490522 | Jansson | May 2004 | S |
D505683 | Pfaff | May 2005 | S |
6926596 | Tarris | Aug 2005 | B1 |
20050176355 | Tarris | Aug 2005 | A1 |
20050287934 | Jansson | Dec 2005 | A1 |
Number | Date | Country |
---|---|---|
69921228 | Mar 2006 | DE |
202006003540 | Jun 2006 | DE |
225806 | Jun 1987 | EP |
0958888 | Nov 1999 | EP |
1604778 | Dec 2005 | EP |
2671385 | Jul 1992 | FR |
2000024887 | Jan 2000 | JP |
9502771 | Jan 1995 | WO |
Number | Date | Country | |
---|---|---|---|
20070218819 A1 | Sep 2007 | US |
Number | Date | Country | |
---|---|---|---|
60775375 | Feb 2006 | US |