1. Technical Field
The present invention relates generally to fill tiling patterns for an integrated circuit.
2. Background Art
Current integrated circuit (IC) manufacturing techniques benefit from a uniform density of wiring or conductors within a layer. For example, uniform density is required to prevent different amounts of wear across a plane during chemical mechanical polishing. To provide uniform density, various techniques for filling of empty spaces have been developed. See, for example, U. S. Pat. Nos. 5,278,105 (Eden et al.), 5,341,310 (Gould et al.) or 5,923,563 (Lavin et al.).
One challenge in providing uniform density of wiring within a plane is addressing the effect of fill tiling patterns on the electrical properties, i.e., fill tiles acting as fringe capacitance, on an adjacent wire. In particular, fill tiles add complexity to the electrical analysis of the circuit because each shape represents a floating conductor coupled by capacitors to the wire. As a result, the fill tiles change the overall capacitance between the connected wires of the circuit, and modify the electrical analysis result. Conventionally, fill tile patterning is addressed by predicting the electrical impact of the fill tiles relative to all electrically significant shapes. By mathematically accounting for the impact of the fill tiles, new capacitances between the connected circuits can be established and then fitted to modified expressions. One conventional technique for predicting the impact of fill tiles is to assume a uniform fill tile environment around shapes based on the predicted behavior of the fill tile pattern creation program. This technique is used because it takes into account the fill tile pattern without increasing the amount of computational resources required to analyze the layout compared to actually adding the fill tiles to the layout.
This uniform fill tile pattern assumption, historically, yields acceptable results because of the orthogonal nature of the wiring and the use of square fill tiles. That is, most wiring has an orthogonal layout (i.e., wires meet at right angles) and the fill tiles are oriented parallel thereto. Advancements in processing technology, however, are now making mixed non-orthogonal and orthogonal wiring patterns possible. Unfortunately, the provision of mixed orthogonal and non-orthogonal wiring with orthogonal fill tile patterns makes the fill tile environment non-uniform relative to the wiring. Accordingly, consistent assumptions about the impact on electrical properties of the fill tile patterns are no longer possible. To illustrate,
In view of the foregoing, there is a need in the art for a method for providing a substantially uniform density and electrical characteristics for an integrated circuit having mixed orthogonal and non-orthogonal electrical structure.
The invention relates to fill tiling of wiring patterns. Typical non-orthogonal wiring patterns involve the use of wires constrained to 45 degrees relative to orthogonal wires. This constraint simplifies the problem of providing a tiling pattern which results in uniform electrical characteristics for all wires. The invention provides a method for providing a substantially uniform density and electrical characteristics between parts of an IC that are either orthogonal or angled at 45 degrees relative to one another. The invention does so by providing an integrated circuit design or integrated circuit including at least one layer having a first electrical structure angled at 45 degrees relative to a second electrical structure, wherein the fill tiles in the tiling pattern in combination with the first and second electrical structures provide a substantially uniform density and electrical characteristics across a respective layer of the IC.
The foregoing and other features of the invention will be apparent from the following more particular description of embodiments of the invention.
The embodiments of this invention will be described in detail, with reference to the following figures, wherein like designations denote like elements, and wherein:
Best Mode(s) for Carrying Out the Invention
With reference to the accompanying drawings,
The invention provides a substantially uniform density between parts 8 with fill tiling shapes by substantially matching the tiling patterns to the orientation of parts. As used herein a “fill tile” or just “tile” shall refer to a conductive shape that is added to an area of an IC that does not include other structure, such as wiring, to provide a substantially uniform density for the area. As known in the art, fill tiles can be repeated to form patterns to provide a substantially uniform density over wider areas.
With reference to
With reference to
Circular tiles could be used to provide a uniform tiling pattern for wires of any orientation but circular shapes are not supported by some CAD programs and their use complicates the electrical analysis unnecessarily. This pattern could be generated by using the techniques used to generate standard fill tiles (i.e., shapes with horizontal and vertical edges) but replacing the standard square fill tile with a circle of the same or nearly the same area.
It should be recognized that the teachings of the invention as described above can be repeated for each layer of IC 6.
While this invention has been described in conjunction with the specific embodiments outlined above, it is evident that many alternatives, modifications and variations will be apparent to those skilled in the art. Accordingly, the embodiments of the invention as set forth above are intended to be illustrative, not limiting. Various changes may be made without departing from the spirit and scope of the invention as defined in the following claims.
The invention is useful for providing a substantially uniform density in a layer of an integrated circuit having electrical structure that is angled at 45 or 90 degrees relative to other electrical structure.
| Number | Name | Date | Kind |
|---|---|---|---|
| 5278105 | Eden et al. | Jan 1994 | A |
| 5742086 | Rostoker et al. | Apr 1998 | A |
| 5790417 | Chao et al. | Aug 1998 | A |
| 5822214 | Rostoker et al. | Oct 1998 | A |
| 5923563 | Lavin et al. | Jul 1999 | A |
| 6344409 | Jaso et al. | Feb 2002 | B1 |
| 6499135 | Li et al. | Dec 2002 | B1 |
| 6690025 | Won et al. | Feb 2004 | B2 |
| 6847457 | Tobiason et al. | Jan 2005 | B2 |
| 20030229875 | Smith et al. | Dec 2003 | A1 |
| Number | Date | Country | |
|---|---|---|---|
| 20040139417 A1 | Jul 2004 | US |