The present invention relates generally to panels and wall structures and related methods of manufacture. More particularly, exemplary embodiments of the present invention relate to synthetic panels and wall structures that simulate the appearance of other building products. For instance, exemplary embodiments of the panels and wall structures of the present invention may simulate conventional building or construction materials such as panels and wall structures made from materials including, but not limited to, stone, brick, masonry, stucco, concrete, wood, other conventional building and construction materials, and combinations thereof.
Other simulated building products possess many drawbacks that limit their effectiveness. For example, other simulated stone panels commonly align the edges of the synthetic stones in a substantially straight line along each edge of the panels. As a result, when the panels are interconnected together, there are obvious straight lines that extend across the wall structure where the panels are joined together. Thus, no matter how realistic each individual panel may look, the overall wall structure looks synthetic because it is obvious where the panels have been joined together. In addition, other simulated building products lack an adequate transition to another type of building material. For example, other simulated stone panels lack an adequate transition to other building materials such as siding or stucco.
Exemplary embodiments of the present invention include products and methods that may enhance the manufacturing, structure, appearance, assembly, or installation of synthetic building or construction products. In particular, exemplary embodiments include panels, wall structures, and other panel assemblies that may have contoured or textured surfaces to simulate the appearances of other building or construction products. For instance, exemplary embodiments of panels, wall structures, and other panel assemblies may have contoured and textured surfaces that may simulate the appearances of conventional building or construction materials including, but not limited to, stone, bricks, masonry, concrete, stucco, wood, other conventional building materials, and combinations of any of these materials.
Exemplary embodiments of the present invention may be selected to suit a desired application. For instance, some exemplary embodiments of the present invention include panels that may have an improved configuration for obscuring the joint between adjacent panels when installed. Some exemplary embodiments of the present invention also include components for improving the transition to another building or construction material. Furthermore, some exemplary embodiments of the present invention include an improved method of installing a synthetic wall structure or panel assembly that helps to obscure the joint between adjacent panels. In addition, some exemplary embodiments of the present invention include improved methods for manufacturing panels and wall structures that are adapted to simulate other building or construction materials.
In addition to the novel features and advantages mentioned above, other features and advantages of the present invention will be readily apparent from the following descriptions of the drawings and exemplary embodiments.
The present invention is directed to products and methods that may enhance the manufacturing, structure, appearance, assembly, or installation of synthetic building or construction products. Exemplary embodiments of the present invention include panels that may have contoured or textured surfaces adapted to simulate the appearances of other building products. For instance, exemplary embodiments of panels of the present invention may have contoured and textured surfaces that may simulate the appearances of conventional building or construction materials including, but not limited to, stone, bricks, masonry, concrete, stucco, wood, other conventional building materials, and combinations of any of these materials.
Exemplary embodiments of the present invention may be used for various applications. For instance, exemplary embodiments of panels include, but are not limited to, wall panels, fence panels, siding panels, and other suitable types of panels. As a result, exemplary embodiments of panels of the present invention may be used to make various types of barriers or structures such as walls, fences, siding assemblies, other types of panel assemblies, and any other suitable types of barriers or structures.
More particularly,
In one example,
It should be also recognized that
The panels may be manufactured using any suitable process for providing the desired appearance. For example, U.S. Pat. No. 6,726,864 and U.S. Patent Application Publication No. US 2005/0087908 describe simulated substrate texture processes that may be useful for manufacturing exemplary panels of the present invention. U.S. Pat. No. 6,726,864 and U.S. Patent Application Publication No. US 2005/0087908 also describe materials that may be useful for simulating the appearance of certain building or construction products. Accordingly, the entirety of U.S. Pat. No. 6,726,864 and U.S. Patent Application Publication No. US 2005/0087908 are also incorporated by reference.
For instance, in one exemplary method of manufacturing a panel, a mold may be used that is configured to form a panel that is adapted to simulate the appearance of stones or another desired building or construction material. In addition, materials may be selected that are adapted to simulate the colors and textures of stones or another building or construction material. An adhesive, the coloring and texturing materials, and a base resin charge may be then be provided in the mold such that the adhesive retains the coloring and texturing materials. Molding may then be performed at a temperature sufficient to accomplish melting fusion and thereby form the panel. One example of a molding process is rotational molding. Examples of other suitable molding processes for manufacturing exemplary panels include, but are not limited to, blow molding, vacuum molding, compression casting, compression molding, and injection molding.
Examples of composite mixtures suitable for manufacturing some exemplary embodiments of panels (preferably via molding processes contemplated hereunder) may comprise some or all the following components:
As will be appreciated by those skilled in the art, selection of a suitable molding powder or resin is a step of a successful molding operation. Any suitable plastic may be used to manufacture an exemplary panel of the present invention. For example, it has been found that suitable UV-stabilized polyethylene raw material resins that are commercially available from several manufacturers, with a melt index in the range 2.0-6.5, are particularly applicable to some exemplary embodiments of the present invention. Some resins having an acceptable combination of density per ASTM D-1505 and melt index per ASTM D-1238 (condition 2.16, 190) are illustrated in Table 1. It will be appreciated that these formulations—in conjunction with the manufacturing techniques taught hereunder—may be used to produce exemplary panels having superior mechanical properties, e.g., higher stiffness, excellent low temperature impact strength, and environmental stress crack resistance.
Polyethylene raw materials contemplated by some exemplary embodiments of the present invention may be readily obtained from suppliers worldwide. Suppliers in the United States include Southern Polymer, Inc. of Atlanta, Ga.; Mobil Chemical of Edison, N.J.; Millennium Petrochemicals Inc. of Cincinnati, Ohio; H. Muehlstein & Company, Inc. of Houston, Tex.; Chroma Corporation of McHenry, Ill.; A. Schulman, Inc. of Akron, Ohio; and Formosa Plastics. For instance, an exemplary Southern Polymer LLDPE resin corresponding to properties shown in column 4 of Table 1, includes a tensile strength of 2,700 psi per ASTM D-638 (2″ per minute, Type IV specimen, @0.125″ thickness), heat distortion temperature of 53° C. @ 66 psi and 40° C. @ 264 psi per ASTM D-648, low temperature impact of 50 ft. lbs. for a ⅛″ specimen and 190 ft. lbs. for a ¼″ specimen per ARM Low Impact Resistance.
As another example, Millennium Petrochemicals sells LLDPE resin GA-635-661 corresponding to properties shown in column 6 of Table 1, which includes a tensile strength of 2,500 psi per ASTM D-638, heat distortion temperature of 50° C. @ 66 psi and 35° C. @ 264 psi per ASTM D-648, low temperature impact of 45 ft. lbs. for a ⅛″ specimen and 200 ft. lbs. for a ¼″ specimen per ARM Low Impact Resistance, and ESCR Condition A, F50 of greater than 1,000 hrs. per ASTM D-1693 @ 100% Igepal and 92 hrs. @ 10% Igepal. Similarly, Mobil Chemical sells MRA-015 corresponding to properties shown in column 5 of Table 1, which includes a tensile strength of 2,650 psi, heat distortion temperature of 56° C. @ 66 psi and 39° C. @ 264 psi, low temperature impact of 58 ft. lbs. for a ⅛″ specimen and 180 ft. lbs. for a ¼″ specimen, and ESCR Condition A, F50 of more than 1,000 hrs. @ 100% Igepal. Similarly, Nova Chemicals sells TR-0338-U/UG corresponding to properties shown in column 3 of Table 1, which includes a tensile strength of 3,000 psi, heat distortion temperature of 50° C. @ 66 psi, low temperature impact of 60 ft. lbs. for a ⅛″ specimen, and ESCR Condition A, F50 of more than 1,000 hrs. @ 100% Igepal.
As yet another example is Formosa Plastics' Formolene L63935U having Melt Index of 3.5 and density of 0.939, along with flexural modulus of 110,000 psi, a tensile strength of 3,300 psi at yield, heat defection temperature of 54° C. @ 66 psi, low temperature impact of 60 ft. lbs. for a ⅛″ specimen, and ESCR Condition A, F50 of greater than 1,000 hrs. @ 100% Igepal and 60 hrs. @ 10% Igepal.
Another component of the combinations of materials taught by an exemplary embodiment of the present invention may be an adhesive adapted to accomplish the purposes herein described in detail. For example, XP-10-79° C. pressure sensitive adhesive of Chemical Technology Inc. (Detroit, Mich.) is a water base adhesive with a styrene butadiene adhesive base designed to bond various foam substrates, such as polyethylene and polystyrene. Representative properties include a viscosity of 5000-7000 cps Brookfield RVT Spindle #3 @ 77° F.; pH of 7.5-9.5; weight per gallon of 8.3 lb; no flash point; color blue; 50-54% solids; 20 minutes dry time; no freeze/thaw cycle (may be frozen). Another example of a suitable adhesive is a Henkel Adhesives (Lewisville, Tex.) polyvinyl resin emulsion 52-3069 having a viscosity of 3750 cps Brookfield RVT @ 76° F.; pH 4.5; weight per gallon of 9.0 lb; 55% solids; 212 boiling point ° F.; specific gravity of 1.1; vapor pressure the same as water @ 20° C.; solubility in water is dispersible when wet; white fluid appearance; polyvinyl odor; no flash point. Nevertheless, it should be recognized that any other suitable adhesive may be used for an exemplary method of the present invention.
It will be appreciated that another component of an exemplary embodiment of the present invention is pigment colors and texturing materials that may, for example, be selected from a broad group of organic materials, inorganic materials, mineral oxides, cement, graded silica aggregates, and special conditioning admixtures. For example, one suitable pigment color component is Bomanite Color Hardener, among others, which is a dry shake material designed for coloring and hardening concrete flatwork. It is comprised of a blend of mineral oxide pigments, cement, and graded silica aggregates. It has also been found that special conditioning admixtures may be included in exemplary formulations to improve workability.
Bomanite Color Hardener has been found to be useful either in its regular grade or in its heavy duty grade. As will be appreciated by those skilled in the art, the regular grade is commonly intended for applications such as residential driveways, patios, pool decks, entryways, walkways, showroom floors, lobbies, and medians. On the other hand, the heavy duty grade, formulated with specially graded Emery, i.e., aluminum oxide for increasing wear resistance, is commonly intended for heavy-traffic applications such as vehicular entrances, theme parks, plazas, crosswalks, street sections, and highly-trafficked sidewalks. As will be understood by those conversant in the art, color hardeners such as Bomanite Color Hardener may afford a variety and intensity of colors such that many hues—ranging from soft pastels to vivid blues and purples—may be obtained with improved imprinting, increased durability, and increased resistance to wearing and fading.
As will be readily appreciated by those skilled in the art, another component material taught by an exemplary embodiment of the present invention is foam, which may include, but is not limited to, conventional ½ pound density packing urethane foam. For such exemplary structures and panels as simulated stone and masonry and brick wall panels, this urethane foam may impart not only excellent sound absorption qualities, but also structural stability. It should be evident to those skilled in the art that exemplary simulated stone, masonry, and brick texture wall panels such as contemplated by the present invention may accurately replicate the look-and-feel of stone, masonry, and brick, respectively, and simultaneously may also replicate some of the physical properties of stone, masonry, and brick.
Molding processes including, but not limited to, rotational molding and compression casting have been found to be advantageous for manufacturing some exemplary simulated stone, masonry and brick structures and panels of the present invention.
Some exemplary simulated stone, masonry, and brick panels contemplated by the present invention may be formed via molding effectuated at temperatures between 400-695° F. In particular, to achieve the stone, masonry and brick panels and structures contemplated by some exemplary embodiments of the present invention, it may be useful to effectuate the multi-step manufacturing procedure depicted in the block diagram in
It has been found that, generally, the best results contemplated under one exemplary embodiment of the present invention may be obtained when the outside mold temperature is about 575° F. As will be understood by those skilled in the art, the temperature of the outside mold may be sufficiently elevated in the range 250-400° F. to enable flashing of the adhesive (e.g., a modified latex adhesive). It should be understood that the term “flashing” is meant to correspond to substantially removing all of the water from a water-based adhesive so that only solids remain; this, of course, may avoid the adverse formation of steam in the mold as heat is applied thereto in an exemplary method of the present invention.
After the mold is preheated as hereinbefore described, in step 220, the mold may be opened to provide access to its face for placement of adhesives, color components, and texture components. More particularly, in an exemplary method with the mold now opened, the face of the mold may be lightly coated with adhesive and allowed to set until the glue flashes or becomes tacky to touch. One example of a glue found to be effective for the purposes of one exemplary embodiment of the present invention is Henkel MM 8-15-1. For example, it has been found to be particularly effective to spray latex adhesive using an airless spray means in such quantity to assure the in situ retention of coloring pigments and texturing materials. Ergo, it should be clear that a preheating step of an exemplary method may be incorporated in an exemplary manufacturing process to enable a modified latex adhesive to be flashed-off the mold surface. That is, an exemplary preheating step may cause the water portion of the adhesive to evaporate, thereby leaving a solid residue for retaining coloring pigments and texturing materials in place while a resin is melting and being formed into a wall panel, for example, such as contemplated by an exemplary embodiment of the present invention.
In the next step depicted in the example of
Referring to one exemplary simulated stone and/or masonry and/or brick textured wall panel as an illustrative panel that may be manufactured by the techniques taught by an exemplary method of the present invention, it has been found that providing color pigments and texturing components in a range of about 5-20% of the total weight of a base resin may provide desirable results for some exemplary embodiments of simulated stone, masonry, and brick panels.
Again, using an exemplary simulated stone and/or masonry and/or brick wall panel for illustrative purposes, it will become evident that an example of a completely formulated and manufactured wall panel may comprise base resin, color pigments and texturing components, and unflashed adhesives. Thus, to produce such an exemplary wall panel, in step 240 of this exemplary method, the mold may be loaded with a base resin charge (e.g., polyethylene) optionally in conjunction with other polymers and oxide pigments. As previously described with regard to step 230, color hardener, such as a Coloration Systems hardener, consisting of graded silica aggregates, cement, and mineral oxide pigments, may have been previously applied to the face of the mold using a dry shake method in one exemplary method of the present invention.
Next, in step 250, the mold may be closed and prepared for a molding cycle (e.g., rotational molding or compression casting). While, of course, any molding apparatus may suffice, it may be preferable to effectuate the molding process (step 250) using a casting oven, a rotational molding apparatus, or any other similar apparatus. As will become evident to those skilled in the art, the oven temperature in an exemplary method may be about 500° F.-650° F., preferably for sufficient time for the resin to become stable.
In step 260, as should be clear to those skilled in the art, the molded material may then subjected to a cooling cycle in the mold, in a conventional cooling jig, or in other suitable cooling system wherein the uniform shape thereof may be sustained. For instance, in one exemplary method of cooling, the molded product may be subjected to blown air, water (e.g., spray mists), or alternating cycles of blown air and water. Next, in one exemplary method, the cooled product may be removed from the mold in step 270 and placed in a reinforcing form in step 280. In step 280, a foam backer may optionally be applied to the cooled panel.
It is an advantage and feature of one exemplary embodiment of the present invention that panels (e.g., siding panels, wall panels, fence panels, barrier panels, etc.) may be produced from the materials hereinbefore described according to the exemplary molding techniques of the present invention such that the panels are not only surprisingly lightweight, but also are readily stacked and layered together. This novel stacked and layered structure may enable simulated panels or the like to be used as panels for homes, buildings, walls, fences, or the like. It is also an advantage and feature of an exemplary embodiment of the present invention that structures and panels produced as herein elucidated may be surprisingly lightweight and may be manufactured in a wide range of colors.
It will be appreciated that exemplary embodiments of the present invention may be constructed from not only polyethylene materials, but also from a plethora of other commercially available suitable plastic materials. It should also be clear that an advantage of an exemplary embodiment of the present invention may be its unique ability to inherently obtain an integrated finish, and, preferably, to obtain a totally integrated finish. Furthermore, it has been discovered that the efficacy of some exemplary embodiments of the present invention may be attributable to using synergistic formulations of special adhesives and to preparing suitable molds for receiving other synergistic combinations of virgin and recycled materials such as described herein.
It has further been discovered that, indeed, a broad range of plastics may be accommodated by the exemplary teachings herein. For instance, such components as rubber, tire rubber, and even chrome rubber may be advantageously used in some exemplary embodiments as described herein. As another example of the breadth of the applicability of exemplary embodiments of the present invention, both linear low-density polyethylene and very low-density linear polyethylene may be effectively used in some exemplary embodiments of the present invention.
As will be appreciated by those skilled in the art, manufacturing procedures of some exemplary embodiments of the present invention may incorporate compression casting, blow molding, rotational molding, injection molding, compression molding, and/or vacuum molding techniques. It has been discovered that vacuforming techniques may also be invoked to produce exemplary siding panel embodiments contemplated hereunder. For example, in some of these approaches, the specially formulated materials taught herein may be injected or drawn into a prepared mold, respectively, instead of or as a supplement to being loaded into a pre-charged mold. The exemplary simulated stone, masonry and brick textured panel embodiments that are thus produced may provide the unique characteristics and properties herein elucidated in detail.
Any embodiment of the present invention may include any of the optional or preferred features of the other embodiments of the present invention. The exemplary embodiments herein disclosed are not intended to be exhaustive or to unnecessarily limit the scope of the invention. The exemplary embodiments were chosen and described in order to explain the principles of the present invention so that others skilled in the art may practice the invention. Having shown and described exemplary embodiments of the present invention, those skilled in the art will realize that many variations and modifications may be made to affect the described invention. Many of those variations and modifications will provide the same result and fall within the spirit of the claimed invention. It is the intention, therefore, to limit the invention only as indicated by the scope of the claims.
This application claims the benefit of U.S. Provisional Application No. 60/667,633, filed Apr. 1, 2005, which is hereby incorporated by reference in its entirety. This application is also a continuation-in-part of U.S. application Ser. No. 10/971,861, filed Oct. 22, 2004, which claims the benefit of U.S. Provisional Application No. 60/514,414, filed Oct. 24, 2003, each of which is also hereby incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
60667633 | Apr 2005 | US | |
60514414 | Oct 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10971861 | Oct 2004 | US |
Child | 11278537 | Apr 2006 | US |