This invention relates generally to a single-chip and a method of making the same. More particularly, the present invention relates to a single-chip containing a porous-wafer battery and a device.
As devices become smaller and more powerful, the demand for batteries having a decreased size, while keeping or increasing capacity and current ability is necessitated. The current state of the art including lithium and other types of batteries are not able to meet the needs for this demand. Current design of lithium batteries only has a limited potential for energy storage because of the cell design and the requirement of packaging.
One requirement for current and future batteries is the ability to integrate a chip on or in a battery. For example, integrating a controller with a battery in a chip may reduce an overall size of the controller and the battery. It may eliminate long conductive traces. It also provides better safety for battery cells because of a real time monitoring by a nearby controller. Another requirement is to integrate a battery on a device. For example, the battery can provide power to the device.
A chip comprises a porous wafer battery and a device. The chip further comprises a wafer containing the device and at least a portion of the porous wafer battery. The wafer comprises a silicon substrate. The silicon substrate comprises a first region and a second region. The first region comprises a plurality of pores of the porous wafer battery. The second region 345 comprises a trench to accommodate a gate electrode of the device.
A method of fabrication a chip comprising the steps of providing a substrate comprising a plurality of doped regions; patterning a mask on a front surface of the substrate; applying an etching process forming the plurality of pores in the first region of the substrate and the trench in the second region of the substrate; and then removing the mask.
The chip 300 further comprises a wafer 305 containing the porous wafer battery 320 and the device 340. The wafer 305 comprises a silicon substrate 310. The silicon substrate 310 comprises a first region 335 and a second region 345. The first region 335 comprises a plurality of pores 380. The second region 345 comprises a trench 483 to accommodate a gate electrode 484. The first region 335 of the silicon substrate 310 is directly connected to the second region 345 of the silicon substrate 310. The plurality of pores 380 are not symmetric with respect to X-axis because of the device 340 at the second region 345. The plurality of pores 380 are not symmetric with respect to Y-axis because of the device 340 at the second region 345.
In examples of the present disclosure, the silicon substrate 310 is of a circular disk shape having a centerline 331. In one example, a diameter of the silicon substrate 310 is 4 inches. In another example, a diameter of the silicon substrate 310 is 6 inches. In still another example, a diameter of the silicon substrate 310 is 8 inches. In yet another example, a diameter of the silicon substrate 310 is 12 inches. In yet still another example, a diameter of the silicon substrate 310 is 18 inches. The device 340 is of a rectangular prism shape.
In examples of the present disclosure, a top surface 435 of the first region 335 and a top surface 445 of the second region 345 are coplanar. Therefore, a same mask can be used for a same etching process to etch the plurality of pores 380 and the trench 483.
In one example, a depth 485 of the plurality of pores 380 is larger than a depth 495 of the trench 483. In another example, a depth 485 of the plurality of pores 380 is the same as a depth 495 of the trench 483. In still another example, a depth 485 of the plurality of pores 380 is smaller than a depth 495 of the trench 483.
In examples of the present disclosure, a conductive layer 430 is on a respective side wall 442 of each of the plurality of pores 380. A passivation layer 476 is on a front side of the first region 335 of the silicon substrate 310. The first region 335 of the silicon substrate 310 comprises a plurality of pores 380 and a P+ doped region 123. The passivation layer 476 comprises a plurality of passivation sections 477. Each of the plurality of passivation sections 477 is of a letter U shape. A first leg 471 of the letter U shape is directly attached to the conductive layer 430 of a first selected pore 491 of the plurality of pores 380. A second leg 472 of the letter U shape is directly attached to the conductive layer 430 of a second selected pore 492 of the plurality of pores 380. A length of the first leg 471 and a length of the second leg 472 is in a range from 20 microns to 50 microns.
In examples of the present disclosure, an adhesion promotion layer 447 is between the conductive layer 430 and the respective side wall 442 of each of the plurality of pores 380.
In examples of the present disclosure, a respective side wall 442 of each of the plurality of pores 380 is perpendicular to a front surface of the silicon substrate 310.
In examples of the present disclosure, the porous wafer battery 320 is electrically and mechanically connected to another device 399 (optional, shown in dashed lines), external to the chip, through a plurality of conductive traces 398 (optional, shown in dashed lines).
Similar to FIGS. 4A and 4B of U.S. Pat. No. 9,887,287 to Lichtenwalner, et al., the device 340 comprises a p-well region 451, a heavily-doped n-type source region 453, a gate electrode 461, gate insulating layer 463, and a p-type deep shielding connection pattern 469.
Similar to FIG. 5 of U.S. Pat. No. 9,887,287 to Lichtenwalner, et al., the device 540 comprises a p-well region 551, a heavily-doped n-type source region 553, a gate electrode 561, gate insulating layer 563, and a p-type deep shielding connection pattern 569. The gate electrode 561 is of a trapezoid shape in the cross-sectional plot.
In examples of the present disclosure, the chip 500 further comprises an additional wafer 590. The additional wafer 590 comprises an additional silicon substrate 592 and an additional passivation layer 591 on a front side of the additional silicon substrate 592. The additional silicon substrate 592 comprises an additional plurality of pores 594. The passivation layer 511 of the wafer 510 directly contacts the additional passivation layer 591 of the additional wafer 590. The first region 509 of the wafer 510 serves as an anode and the additional wafer 590 serves as a cathode. In examples of the present disclosure, a size of the additional wafer 590 is smaller than a size of the wafer 510.
In block 602, referring now to
In block 604, referring now to
In block 606, referring now to
In block 606, referring now to
Similar to FIG. 3A of provisional patent applications 62/930,018, the device 240 is fabricated. Then, the porous wafer battery 220 is implanted on the device 240.
Similar to FIG. 3B of provisional patent applications 62/930,018, the porous wafer battery 120 is fabricated. Then, the device 140 is implanted on the porous wafer battery 120.
Similar to FIG. 3C of provisional patent applications 62/930,018, the device 340 and the porous wafer battery 220 are made from a same wafer and share a predetermined manufacturing steps.
Similar to FIG. 3D of provisional patent applications 62/930,018, the porous wafer battery 520 is made by a first wafer and a second wafer. The device 540 and a portion of the porous wafer battery 520 are made from the first wafer and share a predetermined manufacturing steps.
Those of ordinary skill in the art may recognize that modifications of the embodiments disclosed herein are possible. For example, a number of the plurality of pores may vary. Other modifications may occur to those of ordinary skill in this art, and all such modifications are deemed to fall within the purview of the present invention, as defined by the claims.
This patent application claims benefit of provisional patent applications 62/930,016, 62/930,018, 62/930,019, 62/930,020, and 62/930,021 because of a common inventor, Slobodan Petrovic. The disclosures made in the provisional patent applications 62/930,016, 62/930,018, 62/930,019, 62/930,020, and 62/930,021 are hereby incorporated by reference. The disclosures made in U.S. Ser. No. 7,794,510 to Hopper, et al. and U.S. Ser. No. 9,887,287 to Lichtenwalner, et al. are also hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
62930016 | Nov 2019 | US | |
62930018 | Nov 2019 | US | |
62930019 | Nov 2019 | US | |
62930020 | Nov 2019 | US | |
62930021 | Nov 2019 | US |