SINGLE-STAGE DC-DC POWER CONVERTER

Information

  • Patent Application
  • 20190028034
  • Publication Number
    20190028034
  • Date Filed
    July 24, 2017
    7 years ago
  • Date Published
    January 24, 2019
    5 years ago
Abstract
A power converter is provided. The power converter includes an input side having a first input winding and a second input winding coupled in electrical series to the first input winding. The power converter also includes an output side having a first output winding and a second output winding coupled in electrical parallel to the first output winding.
Description
BACKGROUND

The field of the invention relates generally to power converters, and more particularly, to single-stage DC-DC power converters.


As the human population grows, there is a constant need to provide more power without using up or misusing Earth's resources. Power converter circuit market trends indicate that each new generation of converter products generally deliver increased power density and higher efficiency, having reduced total power loss. In one example application, an intermediate bus power system includes a bus converter circuit that provides a DC bus voltage to a plurality of point-of-load converters circuits (POLs) through an intermediate bus structure. However, having multiple conversion stages results in more wasted energy, and provides larger footprints and increased radiated emissions.


BRIEF DESCRIPTION

In one embodiment, a power converter is provided. The power converter includes an input side having a first input winding and a second input winding coupled in electrical series to the first input winding. The power converter also includes an output side having a first output winding and a second output winding coupled in electrical parallel to the first output winding.


In another embodiment, a method of assembling a power converter is provided. The method includes providing a first input winding, and coupling a second input winding in electrical series to the first input winding. The first and second input windings define an input side of the power converter. The method also includes providing a first output winding, and coupling a second output winding in electrical parallel to the first output winding. The first and second output windings define an output side of the power converter.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a circuit diagram of an exemplary power converter.



FIG. 2 is a perspective view of the power converter shown in FIG. 1 embodied on a PWB.



FIG. 3 is a side view of the PWB shown in FIG. 2 illustrating a connection of the inductors shown in FIGS. 1 and 2.



FIG. 4 is a cross-sectional view of the PWB shown in FIG. 2 taken at line 2-2.





Although specific features of various embodiments may be shown in some drawings and not in others, this is for convenience only. Any feature of any drawing may be referenced and/or claimed in combination with any feature of any other drawing.


DETAILED DESCRIPTION


FIG. 1 is a circuit diagram of an exemplary power converter 100. Power converter 100 is configured to convert an input voltage Vin to an output voltage Vout. Power converter 100 includes an input side 102 and an output side 104 that are isolated from one another by galvanic isolation by a transformer 106. Thus, input side 102 and output side 104 include separate grounding structures.


Input side 102 includes an input voltage Vin having positive and negative terminals (indicated by “+” and “−” signs, respectively), a first switching device 108, a second switching device 110, a third switching device 112, and a fourth switching device 114. Switching devices 108, 110, 112, and 114 are electrically connected to transformer 106. Output side 104 includes a fifth switching device 116, a sixth switching device 118, a seventh switching device 120, an eighth switching device 122, a plurality of output inductors 124, 126, 128, 130, a capacitance device Cout, and a load RL. The output voltage Vout is the voltage across load RL.


In the exemplary embodiment, on input side 102, transformer 106 includes a first input winding 132 coupled in electrical series to a second input winding 134. More specifically, first input winding 132 includes a first terminal 136 and a second terminal 138. Second input winding 134 includes a first terminal 140 that is electrically coupled to second terminal 138 of first input winding 132, and a second terminal 142.


In the exemplary embodiment, first switching device 108 is coupled to first terminal 136 of first input winding 132 and to the positive terminal of input voltage Vin. Second switching device 110 is coupled to first terminal 136 of first input winding 132 and to the negative terminal of input voltage Vin. Third switching device 112 is coupled to second terminal 142 of second input winding 134 and to the positive terminal of input voltage Vin. Fourth switching device 114 is coupled to second terminal 142 of second input winding 134 and to the negative terminal of input voltage Vin. In the exemplary embodiment, switching devices 108, 110, 112, and 114 form a full bridge rectifier.


On output side 104, transformer 106 includes a first output winding 144 coupled in electrical parallel to a second output winding 146. More specifically, first output winding 144 includes a first terminal 148 and a second terminal 150. Second output winding 146 includes a first terminal 152 and a second terminal 154.


Fifth switching device 116 is coupled to first terminal 148 of first output winding 144 and to a common ground GND. Sixth switching device 118 is coupled to second terminal 150 of first output winding 144 and common ground GND. Seventh switching device 120 is coupled to first terminal 152 of second output winding 146 and common ground GND. Eighth switching device 122 is coupled to second terminal 154 of second output winding 146 and common ground GND.


First output inductor 124 includes a first terminal 156 coupled to first terminal 148 of first output winding 144, and a second terminal 158. Second output inductor 126 includes a first terminal 160 coupled to second terminal 150 of first output winding 144, and a second terminal 162. Second terminal 158 of first output inductor 124 and second terminal 162 of second output inductor 126 are coupled together. This arrangement of first and second output inductors 124 and 126 forms a first current doubler 164 at the output of first output winding 144.


Third output inductor 128 includes a first terminal 165 coupled to first terminal 152 of second output winding 146, and a second terminal 166. Fourth output inductor 130 includes a first terminal 168 coupled to second terminal 154 of second output winding 146, and a second terminal 170. Second terminal 166 of third output inductor 128 and second terminal 170 of fourth output inductor 130 are coupled together. This arrangement of third and fourth output inductors 128 and 130 forms a second current doubler 172 at the output of second output winding 146.


Moreover, second terminals 158 and 162 of first and second output inductors 124 and 126 are coupled to second terminals 166 and 170 of third and fourth output inductors 128 and 130. As a result, first current doubler 164 is coupled in electrical parallel to second current doubler 172.


Load RL is coupled in parallel to first and second current doublers 164 and 172. A capacitance device Cout is preferably coupled in parallel with load RL to filter output voltage Vout of power converter 100.


In the exemplary embodiment, switching devices 108-114 and 116-120 are metal-oxide semiconductor field-effect transistors (“MOSFETs”), although any other suitable switching device that enables power converter 100 to function as described herein may be used. In alternative embodiments, input side 102 and output side 104 may include any suitable number of switching devices arranged in any suitable configuration that enables power converter 100 to function as described herein.


In the exemplary embodiment, power converter 100 is configured to perform DC-DC conversion from 48V to 1V with a high output current. The high output current is about 230 amps, but may be any value between about 100 to 300 amps. First and second input windings 132 and 134 each include 5 turns, while first and second output windings 144 and 146 each include turn. This results in a 5:1 turns ratio on each transformer winding.


On output side 104, two of inductors 124 and 128, 126 and 130 work simultaneously based on the switching sequence from a controller 174. Two inductors are charging, while the other two inductors are discharging. The benefit is that with four branches splitting the output current of 230 A, each branch carries about 57.5 A to the load. By coupling each pair of inductors 124/126 and 128/130, the core area between them is reduced, enabling four devices that carry ¼ of the total current. Using a single output inductor similar to typical known approaches requires a very large inductor to do the same job.


Further, controller 174 is configured to monitor current output by each of inductors 124-130. Based on the monitored output current, controller 174 is configured to compensate for any imbalances in the inductance or the PWB or the FETs to control each of inductors 124-130 outputting ¼ of the power.



FIG. 2 is a perspective view of power converter 100 (shown in FIG. 1) embodied on a PWB 200. FIG. 3 is a side view of PWB 200 illustrating a connection of inductors 124-130 on PWB 200. FIG. 4 is a cross-sectional view of PWB 200 taken at line 2-2.


Because of the large amount of output current (i.e. 230 A), known systems include an inductor soldered onto the PWB, and output pins soldered to the PWB and traces to transfer the current out to a customer PWB. To reduce the number of soldering connections and thus, reduce the amount of current loss, PWB 200 includes a plurality of output pins 202 coupled to a bottom side 204 of PWB 200. Each output pin 202 is not quite a hole through PWB 200, but rather each output pin 202 extends about halfway through PWB 200. A top side 206 of PWB 200 includes voids 208 for receiving inductors 124-130.


Second terminal 158, 162, 166, 170 of each inductor 124-130 includes a leg that is shorter than the leg of first terminal 156, 160, 165, 168. As opposed to extending through PWB 200 and being soldered in place, second terminals 158, 162, 166, 170 are inserted into voids 208 on PWB 200 and connect directly to output pins 202. A small amount of solder couples second terminals 158, 162, 166, 170 in place.


Exemplary embodiments of single stage DC-DC power converters are described herein. A power converter includes an input side having a first input winding and a second input winding coupled in electrical series to the first input winding. The power converter also includes an output side having a first output winding and a second output winding coupled in electrical parallel to the first output winding.


As compared to at least some power converters, in the systems and methods described herein, a power converter utilizes parallel-coupled output windings that are electrically coupled in electrical parallel a respective current doubler. The current doublers include four output inductors, each coupled to a respective terminal each of the parallel-coupled output windings. Using the parallel-coupled output windings electrically coupled in parallel to current doublers facilitates a single stage DC-DC power converter that does not require an intermediate conversion stage, thereby reduces the footprint of the power converter, while reducing loss and improving efficiency of the power converter.


The order of execution or performance of the operations in the embodiments of the invention illustrated and described herein is not essential, unless otherwise specified. That is, the operations may be performed in any order, unless otherwise specified, and embodiments of the invention may include additional or fewer operations than those disclosed herein. For example, it is contemplated that executing or performing a particular operation before, contemporaneously with, or after another operation is within the scope of aspects of the invention.


Although specific features of various embodiments of the invention may be shown in some drawings and not in others, this is for convenience only. In accordance with the principles of the invention, any feature of a drawing may be referenced and/or claimed in combination with any feature of any other drawing.


This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal language of the claims.

Claims
  • 1. A power converter comprising: a transformer having an input side and an output side, the input side and output side being galvanically isolated from each other, the input side comprising: a first input winding;a second input winding coupled in electrical series to said first input winding;the output side comprising: a first output winding;a second output winding coupled in electrical parallel to said first output winding; anda first current doubler coupled to said first output winding; anda second current doubler coupled to said second output winding.
  • 2. (canceled)
  • 3. The power converter in accordance with claim 1, wherein an output of said first current doubler is coupled in electrical parallel to an output of said second current doubler.
  • 4. The power converter in accordance with claim 1, wherein: said first current doubler comprises: a first output inductor comprising a first terminal coupled to a first terminal of said first output winding, and a second terminal coupled to a load; anda second output inductor comprising a first terminal coupled to a second terminal of said first output winding, and a second terminal coupled to the load and said second terminal of said first output inductor; andsaid second current doubler comprises: a third output inductor comprising a first terminal coupled to a first terminal of said second output winding, and a second terminal coupled to the load; anda fourth output inductor comprising a first terminal coupled to a second terminal of said second output winding, and a second terminal coupled to the load and said second terminal of said second output inductor.
  • 5. The power converter in accordance with claim 4, wherein said first output inductor and said second output inductor are coupled in electrical parallel.
  • 6. The power converter in accordance with claim 4, wherein said third output inductor and said fourth output inductor are coupled in electrical parallel.
  • 7. The power converter in accordance with claim 4, wherein each of said first, second, third, and fourth output inductors outputs at least a portion of current to the load.
  • 8. The power converter in accordance with claim 7, wherein each of said first, second, third, and fourth output inductors outputs ¼ of the current to the load.
  • 9. The power converter in accordance with claim 1, wherein said first input winding correlates to said first output winding, and said second input winding correlates to said second output winding.
  • 10. The power converter in accordance with claim 9, wherein: said first input winding and said first output winding have a turns ratio of 5:1; andsaid second input winding and said second output winding have a turns ratio of 5:1.
  • 11. The power converter in accordance with claim 1, wherein said power converter is configured to perform direct current to direct current (DC-DC) conversion.
  • 12. The power converter in accordance with claim 11, wherein said power converter is configured to perform single stage DC-DC conversion.
  • 13. The power converter in accordance with claim 12, wherein said power converter is configured to perform single stage DC-DC conversion from 48V to 1V.
  • 14. The power converter in accordance with claim 1, further comprising a printed wiring board (PWB) comprising a top side and a bottom side.
  • 15. The power converter in accordance with claim 14, further comprising a plurality of output pins extending approximately halfway through said bottom side of said PWB.
  • 16. The power converter in accordance with claim 15, further comprising at least one void defined in said top side of said PWB, said at least one void corresponding to an output pin of said plurality of output pins and configured to receive an output terminal of an output inductor.
  • 17. A method of assembling a power converter, said method comprising: providing a transformer having an input side and an output side, the input side comprising a first input winding and a second input winding in electrical series to the first input winding; the output side comprisinga first output winding; anda second output winding in electrical parallel to the first output winding;galvanically isolating the input side from the output side;coupling a first current doubler to the first output winding; andcoupling a second current doubler to the second output winding.
  • 18. (canceled)
  • 19. The method in accordance with claim 17, further comprising coupling an output of the first current doubler in electrical parallel to an output of the second current doubler.
  • 20. The method in accordance with claim 17, wherein: coupling the first current doubler to the first output winding comprises: coupling a first terminal of a first output inductor to a first terminal of the first output winding, and coupling a second terminal of the first output inductor to a load; andcoupling a first terminal of a second output inductor to a second terminal of the first output winding, and coupling a second terminal of the second output inductor to the load and the second terminal of the first output inductor; andcoupling a second current doubler to the second output winding comprises: coupling a first terminal of a third output inductor to a first terminal of the second output winding, and coupling a second terminal of the third output inductor to the load; and coupling a first terminal of a fourth output inductor to a second terminal of the second output winding, and coupling a second terminal of the fourth output inductor to the load and the second terminal of the second output inductor.
  • 21. The power converter in accordance with claim 1, wherein, said input side and said output side comprise separate respective grounding structures.
  • 22. The method in accordance with claim 17, further comprising coupling the input side and the output side of the transformer to separate respective grounding structures.