Single-vector gene construct comprising insulin and glucokinase genes

Information

  • Patent Grant
  • 11033638
  • Patent Number
    11,033,638
  • Date Filed
    Thursday, January 7, 2016
    8 years ago
  • Date Issued
    Tuesday, June 15, 2021
    3 years ago
Abstract
The invention relates to a viral expression construct and related viral vector and composition and to their use wherein the construct and vector comprise elements a) and b): a) a nucleotide sequence encoding an insulin operably linked to a first promoter, b) a nucleotide sequence encoding a glucokinase operably linked to a second promoter and the viral expression construct and related viral vector comprise at least one of elements c), d) and e): c) the first and the second promoters are positioned in reverse orientation within the expression construct, d) the first and the second promoters are positioned in reverse orientation within the expression construct and are located adjacent to each other and e) the first promoter is a CMV promoter, preferably a mini CMV promoter.
Description
CROSS REFERENCE TO RELATED APPLICATIONS

The present application is the 35 U.S.C. 371 National Stage of International Application Number PCT/EP2016/050147, filed Jan. 7, 2016, which claims priority from European patent application 15150376.0, filed Jan. 7, 2015, the contents of which are incorporated herein by reference,


SEQUENCE LISTING SUBMISSION VIA EFS-WEB

A computer readable text file, entitled “031902-5028-US-Sequence-Listing.txt”, created on or about Jul. 5, 2017 with a file size of about 159 KB contains the sequence listing for this application and is hereby incorporated by reference in its entirety.


FIELD OF THE INVENTION

The invention pertains to the medical field, comprising gene therapy compositions for use in the treatment of Diabetes Type 1 (T1D), Diabetes Type 2 (T2D) and/or Monogenic Diabetes, either in higher mammals, particularly pets and more particularly dogs; or in human beings.


BACKGROUND OF THE INVENTION

The two main forms of diabetes mellitus are type 1 (TID) and type 2 (T2D) (Diabetes care, 1997, 20-1183-1197). TED is characterized by a severe lack of insulin production due to specific destruction of the pancreatic β-cells. β-cell loss in TID is the result of an autoimmune mediated process, where a chronic inflammation called insulitis causes β-cell destruction (Eizirik D. L. et al, 2001, Diabetologia, 44:2115-2133 and Mathis D et al, 2001, Nature, 414: 792-798).


TID is one of the most common endocrine and metabolic conditions in childhood; incidence is rapidly increasing, especially among young children. TID is diagnosed when the autoimmune-mediated β-cell destruction is almost complete and patients need insulin-replacement therapy to survive. TID in an adult may present itself as T2D, with a slow deterioration in metabolic control, and subsequent progression to insulin dependency. This form is called latent autoimmune diabetes mellitus in adults (LADA) (Diabetes Atlas 4th edition, 2009, International Diabetes Federation).


Lifelong insulin treatment is the therapy of choice for TID. While lifelong treatment with exogenous insulin successfully manages diabetes, correct maintenance of a normoglycemic state can be challenging, Chronic hyperglycemia leads to severe microvascular (retinopathy and nephropathy), macrovascular (stroke, myocardial infarction), and neurological complications. These devastating complications can be prevented by normalization of blood glucose levels. Brittle diabetes is one example of a difficult-to-manage disease. Additionally, in many underdeveloped countries, especially in less privileged families, access to self-care tools and also to insulin is limited and this may lead to severe handicap and early death in diabetic children (Diabetes Atlas 4th edition, 2009, International Diabetes Federation, Beran D. et al 2006, Lancet, 368: 1689-1695, and Gale E. A., et al, 2006, Lancet, 368: 1626-1628). The most common cause of death in a child with diabetes, from a global perspective, is lack of access to insulin; thus the availability of a one-time gene therapy approach could make a difference in terms of prognosis when access to insulin is limited (Greenwood H. L. et al, 2006, PLoS Med 3. e381).


The reduction of hyperglycemia and maintenance of normoglycemia is a goal of any therapeutic approach to TID. The current therapy for most diabetic patients is based on regular subcutaneous injections of mixtures of soluble (short-acting) insulin and lente (long-acting) insulin preparations. Other therapeutical approaches include gene therapy, which would offer the potential advantage of an administration of a viral vector, which could ideally provide the necessary insulin through the lifetime of the diabetic subject. WO 2012/007458 discloses the generation of two viral vectors, one expressing the insulin gene and one expressing the glucokinase gene as a treatment of diabetes. However, there is still a need for an improved diabetes treatment wherein a lower dose of vector could be used, wherein a concomitant expression of each gene is provided in each transfected cell, wherein an attractive yield of the virus could be obtained and/or wherein potential induced side effects due to immunological properties of the capsid are lowered.


Therefore there is still a need for designing new treatments for diabetes which do not have all the drawbacks of existing treatments.


DESCRIPTION OF THE INVENTION

The inventors designed improved gene therapy strategies based on adeno-associated viral (AAV) vector-mediated insulin/glucokinase muscle gene transfer to counteract diabetic hyperglycemia, dual-gene viral constructs encoding insulin and glucokinase were generated to ensure concomitant expression of both transgenes in transduced muscle cells.


Generation of dual-gene vectors will also allow decreasing vector dose, which in turn, should result in reduced risk of capsid-triggered immunity or other toxicities. From a regulatory point of view, the use of a dual vector will greatly facilitate the development of the treatment. Moreover, the use of a dual vector will allow for a dramatic reduction in the cost of manufacturing of AAV vectors. However, the skilled person knows that such a dual vector due to its size may not always be produced in sufficient yields to be used in a therapeutic setting and may not always be found to ensure acceptable expression levels of both transgenes. All dual vectors tested in the experimental part could be produced at acceptable titers and were found to be able to ensure acceptable expression levels of both transgenes.


Therefore the generation of such AAV dual vectors that contain both the insulin and glucokinase transgenes and potentially have improved therapeutic efficacy is not routine for a person skilled in the art, as demonstrated in the experimental part.


Viral Expression Construct


In a first aspect there is provided a viral expression construct comprising the elements a) and b):


a) a nucleotide sequence encoding an insulin operably linked to a first promoter,


b) a nucleotide sequence encoding a glucokinase operably linked to a second promoter, and said viral expression construct comprises at least one of elements c), d) and e)


c) the first and the second promoters are positioned in reverse orientation within the expression construct,


d) the first and the second promoters are positioned in reverse orientation within the expression construct and are located adjacent to each other and


e) the first promoter is a CMV promoter, preferably a mini CMV promoter.


The definition of “viral expression construct”, “promoter”, “operatively linked” has been provided in the part of the description entitled “general definitions”. Within the context of the invention, elements a) and b) define the expression cassette of a viral expression construct of the invention as further explained in the part of the description entitled “general definitions”.


In the context of the invention, a nucleotide sequence encoding an insulin could be replaced by:

    • i. a nucleotide sequence comprising a nucleotide sequence that has at least 60% sequence identity or similarity with SEQ ID NO: 1;
    • ii. a nucleotide sequence the complementary strand of which hybridizes to a nucleic acid molecule of sequence of (i);
    • iii. a nucleotide sequence the sequence of which differs from the sequence of a nucleic acid molecule of (i) or (ii) due to the degeneracy of the genetic code; or,
    • iv. a nucleotide sequence that encodes an amino acid sequence that has at least 60% amino acid identity or similarity with an amino acid sequence encoded by a nucleotide sequence SEQ ID NO: 1.


A preferred nucleotide sequence encoding an insulin has at least 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 99%, 100% identity with SEQ ID NO:1. Identity may be assessed over the whole SEQ ID NO or over part thereof as explained in the part of the description entitled “general definitions”. SEQ ID NO:1 is a nucleotide sequence encoding human insulin. The nucleotide sequence encoding an insulin may be derived from any insulin gene, preferably from dog, human or rat; or a mutated insulin gene, or a codon optimized insulin gene, preferably from human, dog or rat as for example disclosed in WO 2012/007458 which is incorporated by reference in its entirety.


An insulin as used herein exerts at least a detectable level of an activity of an insulin as known to the skilled person. An activity of an insulin is the regulation of hyperglycemia. This could be assessed using any technique known to the skilled person or as was done in the experimental part.


In the context of the invention, a nucleotide sequence encoding a glucokinase could be replaced by:

    • i. a nucleotide sequence comprising a nucleotide sequence that has at least 60% sequence identity or similarity with SEQ ID NO: 2;
    • ii. a nucleotide sequences the complementary strand of which hybridizes to a nucleic acid molecule of sequence of (i);
    • iii. a nucleotide sequence the sequence of which differs from the sequence of a nucleic acid molecule of (i) or (ii) due to the degeneracy of the genetic code; or,
    • iv. a nucleotide sequence that encodes an amino acid sequence that has at least 60% amino acid identity or similarity with an amino acid sequence encoded by a nucleotide sequence SEQ ID NO: 2.


A preferred nucleotide sequence encoding an insulin has at least 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 99%, 100% identity with SEQ ID NO:2. Identity may be assessed over the whole SEQ ID NO or over part thereof as explained in the part of the description entitled “general definitions”. SEQ ID NO:2 is a nucleotide sequence encoding human glucokinase. The nucleotide sequence encoding a glucokinase may be derived from any glucokinase gene, preferably from human or rat; or a mutated glucokinase gene, or a codon optimized glucokinase gene, preferably from human or rat as for example disclosed in WO 2012/007458 which is incorporated by reference in its entirety.


A glucokinase as used herein exerts at least a detectable level of an activity of a glucokinase as known to the skilled person. An activity of a glucokinase is to phosphorylate glucose. This activity could be assessed using assays known to the skilled person.


In the context of the invention, a first promoter is a promoter which is operatively linked to the insulin nucleotide sequence defined above and a second promoter is a promoter which is operatively linked to the glucokinase nucleotide sequence defined above.


In one embodiment, the first and second promoters are different. It is therefore not excluded that the first and second promoters are identical. In one embodiment, both promoters are cell-specific and/or tissue-specific, preferably both promoters are specific for skeletal muscle.


A preferred first promoter is a CMV promoter (element e).


In the context of the invention, a nucleotide sequence of a CMV promoter could be replaced by a nucleotide sequence comprising a nucleotide sequence that has at least 60% sequence identity or similarity with SEQ ID NO: 3. A preferred nucleotide sequence has at least 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 99%, 100% identity with SEQ ID NO:3. Identity may be assessed over the whole SEQ ID NO or over part thereof as explained in the part of the description entitled “general definitions”.


A first promoter as used herein (especially when his sequence is defined has having a minimal identity percentage with a given SEQ ID NO) should exert at least an activity of a promoter as known to the skilled person. Please be referred to the part of the description entitled “general definitions” for a definition of such activity. Preferably a first promoter defined has having a minimal identity percentage with a given SEQ ID NO should control transcription of the nucleotide sequence it is operably linked thereto (i.e. a nucleotide sequence encoding an insulin for the first promoter) as assessed in an assay known to the skilled person. The same holds for a second promoter with a nucleotide sequence encoding a glucokinase).


Preferably said CMV promoter is used together with an intronic sequence. In this context an intronic sequence may be replaced by a nucleotide sequence comprising a nucleotide sequence that has at least 60% sequence identity or similarity with SEQ ID NO: 4. A preferred nucleotide sequence has at least 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 99%, 100% identity with SEQ ID NO:4. Identity may be assessed over the whole SEQ ID NO or over part thereof as explained in the part of the description entitled “general definitions”.


In a more preferred embodiment, a CMV promoter is a mini CMV promoter. In the context of the invention, a nucleotide sequence of a mini CMV promoter could be replaced by a nucleotide sequence comprising a nucleotide sequence that has at least 60% sequence identity or similarity with SEQ ID NO: 5. A preferred nucleotide sequence has at least 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 99%, 100% identity with SEQ ID NO:5. Identity may be assessed over the whole SEQ ID NO or over part thereof as explained in the part of the description entitled “general definitions”.


In an even more preferred embodiment, a nucleotide sequence of a mini CMV promoter comprising a nucleotide sequence that has at least 60% sequence identity or similarity with SEQ ID NO: 24. A preferred nucleotide sequence has at least 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 99%, 100% identity with SEQ ID NO:24. Even more preferably, a nucleotide sequence a mini CMV promoter has at least 60% sequence identity or similarity with SEQ ID NO: 24 or at least 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 99%, 100% identity with SEQ ID NO:24 and has a length of 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 109, 110 nucleotides.


Identity may be assessed over the whole SEQ ID NO or over part thereof as explained in the part of the description entitled “general definitions”.


In an embodiment, said mini CMV promoter may be used together with the intronic sequence defined above.


A preferred second promoter is a RSV promoter.


In the context of the invention, a nucleotide sequence of a RSV promoter could be replaced by a nucleotide sequence comprising a nucleotide sequence that has at least 60% sequence identity or similarity with SEQ ID NO: 6. A preferred nucleotide sequence has at least 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 99%, 100% identity with SEQ ID NO:6. Identity may be assessed over the whole SEQ ID NO or over part thereof as explained in the part of the description entitled “general definitions”.


Preferably said RSV promoter is used together with an intronic sequence. In this context an intronic sequence may be replaced by a nucleotide sequence comprising a nucleotide sequence that has at least 60% sequence identity or similarity with SEQ ID NO: 23. A preferred nucleotide sequence has at least 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 99%, 100% identity with SEQ ID NO:23. Identity may be assessed over the whole SEQ ID NO or over part thereof as explained in the part of the description entitled “general definitions”.


In a preferred embodiment, the first and the second promoters are positioned in reverse orientation within the viral expression construct (element c). In this embodiment, it implies that the insulin and the glucokinase nucleotide sequences are read in opposite directions. More preferably, in this configuration, the first and the second promoters are adjacent to each other (element d). In this context, “adjacent” means that 0, 2, 5, 10, 20, 30, 50, 100, 200, 300, 400, 500, 600, 700 bases are present between the first and the second promoters.


Several viral expression constructs are therefore encompassed by the present invention:


A viral expression construct comprising elements a), b) and c),


A viral expression construct comprising elements a), b) and d),


A viral expression construct comprising elements a), b) and e),


A viral expression construct comprising elements a), b) and e), wherein the CMV promoter is a mini CMV promoter,


A viral expression construct comprising elements a), b), d) and e),


A viral expression construct comprising elements a), b), d) and e), wherein the CMV promoter is a mini CMV promoter.


For each of these preferred viral expression constructs defined above, the second promoter is preferably a RSV promoter as defined herein.


In an embodiment, a viral expression construct is encompassed comprising elements a) and b) and at least one of elements c), d) and e), wherein the first promoter is a CMV promoter, preferably a mini CMV promoter and/or wherein the second promoter is a RSV promoter.


Additional sequences may be present in the viral expression construct of the invention as explained in detail in the part of the description entitled “general definitions”. Preferred additional sequences include ITRs, SV40 (i.e. which means SV40 polyadenylation signal) (SEQ ID NO: 22), bGH (i.e. which means bGH polyadenylation signal) (SEQ ID NO:7), SV40 polyadenylation signal and enhancer sequence (SEQ ID NO:30), SV40 enhancer sequence (SEQ ID NO: 33). Within the context of the invention, “ITRs” is intended to encompass one 5′ITR and one 3′ITR, each being derived from the genome of a AAV. Preferred ITRs are from AAV2 and are represented by SEQ ID NO: 31 (5′ ITR) and SEQ ID NO: 32 (3′ ITR). Within the context of the invention, it is encompassed to use the SV40 enhancer sequence either included in the SV40 polyadenylation signal (as SEQ ID NO:30) or as a separate sequence (as SEQ ID NO:33). It is also encompassed to use the SV40 polyadenylation signal and the SV40 enhancer sequence as two separate sequences (SEQ ID NO:22 and SEQ ID NO: 33) or as a single sequence (SEQ ID NO:30).


Each of these additional sequences may be present in the viral expression construct of the invention (see for example as depicted in FIGS. 1, 2, 4, 7, 13, 16).


In an embodiment, the viral expression construct comprising elements a) and b), and at least one of elements c), d) and e) as earlier defined and further comprises:

    • ITRs that flank the expression cassette of said construct,
    • SV40 or bGH polyadenylation signals that are located at the 3′ of the nucleotide sequence encoding the glucokinase or insulin and/or
    • SV40 polyadenylation signals and enhancer sequence that is located at the 3′ of the nucleotide sequence encoding the glucokinase or insulin and/or
    • SV40 enhancer sequence that is located at the 5′ of the nucleotide sequence encoding the glucokinase or insulin.


In a preferred embodiment, the viral expression construct comprising elements a) and b), and at least one of elements c), d) and e) as earlier defined and further comprises ITRs that flank the expression cassette of said construct and optionally

    • SV40 or bGH polyadenylation signals that are located at the 3′ of the nucleotide sequence encoding the glucokinase or insulin and/or
    • SV40 polyadenylation signals and enhancer sequence that is located at the 3′ of the nucleotide sequence encoding the glucokinase or insulin and/or
    • SV40 enhancer sequence that is located at the 5′ of the nucleotide sequence encoding the glucokinase or insulin.


If the SV40 enhancer sequence is not included in the SV40 polyadenylation signal, the SV40 enhancer sequence is preferably located 5′ of the nucleotide sequence encoding the glucokinase or insulin.


These sequences were used in the experimental part in some of the constructs identified herein.


Therefore in one embodiment, for each of these preferred viral expression constructs defined above an additional sequence may be present selected from the group consisting of: ITRs, SV40 polyadenylation signal, bGH polyadenylation signal, SV40 polyadenylation signal and enhancer sequence, SV40 enhancer sequence.


In a preferred embodiment, a viral expression construct is encompassed comprising elements a) and b) and at least one of elements c), d) and e),


wherein the first promoter is a CMV promoter, preferably a mini CMV promoter and/or


wherein the second promoter is a RSV promoter and/or


wherein an additional sequence is present which is selected from the group consisting of: ITRs, SV40 polyadenylation signal, bGH polyadenylation signal, SV40 polyadenylation signal and enhancer sequence, SV40 enhancer sequence.


Preferred ITRs are those of AAV2 which are represented by SEQ ID NO: 31 (5′ ITR) and SEQ ID NO: 32 (3′ ITR).


Preferred viral expression constructs comprise elements a) and b) and at least one of elements c), d) and e) and are such that the expression cassette as defined by elements a), b) and at least one of elements c), d), e) is flanked by a 5′ITR and a 3′ITR.


Other preferred viral expression constructs comprise elements a) and b) and at least one of elements c), d) and e) and are such that the expression cassette as defined by elements a), b) and at least one of c), d), e) is flanked by a 5′ITR and a 3′ITR. In addition, SV40 polyadenylation signals are present.


Other preferred viral expression constructs comprise elements a) and b) and at least one of elements c), d) and e) and are such that the expression cassette as defined by elements a), b) and at least one of c), d), e) is flanked by a 5′ITR and a 3′ITR. In addition, SV40 and bGH polyadenylation signals are present.


Other preferred viral expression constructs comprise elements a) and b) and at least one of elements c), d) and e) and are such that the expression cassette as defined by elements a), b) and at least one of c), d), e) is flanked by a 5′ITR and a 3′ITR. In addition, SV40 enhancer sequence is present. Other preferred viral expression constructs comprise elements a) and b) and at least one of elements c), d) and e) and are such that the expression cassette as defined by elements a), b) and at least one of c), d), e) is flanked by a 5′ITR and a 3′ITR. In addition, SV40 enhancer sequence and SV40 polyadenylation signals are present as two separate sequences.


Other preferred viral expression constructs comprise elements a) and b) and at least one of elements c), d) and e) and are such that the expression cassette as defined by elements a), b) and at least one of c), d), e) is flanked by a 5′ITR and a 3′ITR. In addition, SV40 enhancer sequence and SV40 polyadenylation signals are present as two separate sequences. In this embodiment, bGH polyadenylation signals are also present.


Other preferred viral expression constructs comprise elements a) and b) and at least one of elements c), d) and e) and are such that the expression cassette as defined by elements a), b) and at least one of c), d), e) is flanked by a 5′ITR and a 3′ITR. In addition, SV40 polyadenylation signals and enhancer sequence are present together with bGH polyadenylation signals are present.


Most preferred designed viral expression constructs include:


Construct A (represented by a nucleotide sequence comprising SEQ ID NO: 8),


Construct D (represented by a nucleotide sequence comprising SEQ ID NO: 9),


Construct E (represented by a nucleotide sequence comprising SEQ ID NO: 10),


Construct F (represented by a nucleotide sequence comprising SEQ ID NO: 11),


Construct G (represented by a nucleotide sequence comprising SEQ ID NO: 12),


Construct J (represented by a nucleotide sequence comprising SEQ ID NO: 13),


Construct K (represented by a nucleotide sequence comprising SEQ ID NO: 14),


Construct L (represented by a nucleotide sequence comprising SEQ ID NO: 15),


Construct M (represented by a nucleotide sequence comprising SEQ ID NO: 16).


Construct Q (represented by a nucleotide sequence comprising SEQ ID NO: 27).


Construct S (represented by a nucleotide sequence comprising SEQ ID NO: 29).


As the skilled person will understand, each of these viral expression constructs already comprise two ITRs from AAV2 (i.e. SEQ ID NO: 31 (5′ ITR) and SEQ ID NO: 32 (3′ ITR)).


Best results were obtained with constructs F (SEQ ID NO: 11), construct J (SEQ ID NO: 13), construct K (SEQ ID NO: 14), construct L (SEQ ID NO: 15), construct M (SEQ ID NO: 16), construct Q (SEQ ID NO: 27) and construct S (SEQ ID NO: 29).


Constructs L and Q comprise both bGH polyadenylation signal and SV40 polyadenylation signal sequences, the order of each of these 3′untranslated sequences being interchanged (see FIGS. 7 and 13).


Construct S comprises both bGH polyadenylation signal and SV40 polyadenylation signal and enhancer sequences (see FIG. 16).


As explained in the general part entitled “general definitions”, throughout this application, each time one refers to a specific nucleotide sequence SEQ ID NO (take SEQ ID NO: 8, 9, 10, 11, 12, 13, 14, 15, 16, 27, 29) representing the preferred constructs designed herein, one may replace it by:

    • i. a nucleotide sequence comprising a nucleotide sequence that has at least 60% sequence identity or similarity with SEQ ID NO: 8, 9, 10, 11, 12, 13, 14, 15, 16, 27 or 29;
    • ii. a nucleotide sequences the complementary strand of which hybridizes to a nucleic acid molecule of sequence of (i);
    • iii. a nucleotide sequence the sequence of which differs from the sequence of a nucleic acid molecule of (i) or (ii) due to the degeneracy of the genetic code.


Each nucleotide sequence described herein by virtue of its identity percentage (at least 60%) with a given nucleotide sequence respectively has in a further preferred embodiment an identity of at least 65%, 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, 99% or more identity with the given nucleotide respectively. In a preferred embodiment, sequence identity is determined by comparing the whole length of the sequences as identified herein. Unless otherwise indicated herein, identity with a given SEQ ID NO means identity or similarity based on the full length of said sequence (i.e. over its whole length or as a whole).


A construct defined by its minimum identity (i.e. at least 60%) to a given SEQ ID NO as identified above is encompassed within the scope of the invention when this construct or a viral expression construct or a viral vector comprising this construct or a composition comprising this construct or vector is able to induce the expression of insulin and glucokinase in a cell, preferably in a muscle cell. The expression of both genes could be assessed using techniques known to the skilled person. In a preferred embodiment, said expression is assessed as carried out in the experimental part.


In a preferred embodiment, a viral expression construct is such that the construct is represented by a nucleotide sequence comprising SEQ ID NO: 8, 9, 10, 11, 12, 13, 14, 15, 16, 27 or 29 or a sequence having at least 60% identity with SEQ ID NO: 8, 9, 10, 11, 12, 13, 14, 15, 16, 27 or 29.


Viral Vector


In a further aspect, there is provided a viral vector. A viral vector comprises a viral expression construct as defined above. A viral vector is further defined in the part of the description entitled “general definitions”. Preferably a viral vector is a retrovirus vector, an adenovirus vector, an adeno-associated virus vector, a herpesvirus vector, a polyoma virus vector or a vaccinia virus vector. More detail is also provided in the part of the description entitled “general definitions”.


In an embodiment, an adeno-associated viral vector is used comprising each of the elements defined earlier herein and a rAAV based genome comprising inverted terminal repeats (ITR) or a part thereof. Preferred ITRs are those of AAV2 which are represented by SEQ ID NO: 31 (5′ ITR) and SEQ ID NO: 32 (3′ ITR).


Preferably, said adeno-associated viral vector is an adeno-associated virus vector, more preferably an AAV1 vector.


A viral expression construct and a viral vector of the invention are preferably for use as a medicament. The medicament is preferably for preventing, delaying, curing, reverting and/or treating a diabetes. Diabetes may be Diabetes Type 1, Diabetes Type 2 or Monogenic Diabetes. The subject treated may be a higher mammal, e.g. cats, rodent, (preferably mice, rats, gerbils and guinea pigs, and more preferably mice and rats), or dogs, or in human beings.


Composition


In a further aspect there is provided a composition comprising a viral expression construct or a viral vector as defined earlier herein. This composition is preferably called a gene therapy composition. Preferably, the composition is a pharmaceutical composition said pharmaceutical composition comprising a pharmaceutically acceptable carrier, adjuvant, diluents, solubilizer, filler, preservative and/or excipient.


Such pharmaceutically acceptable carrier, filler, preservative, solubilizer, diluent and/or excipient may for instance be found in Remington: The Science and Practice of Pharmacy, 20th Edition. Baltimore, Md.: Lippincott Williams & Wilkins, 2000.


In a preferred embodiment, said composition is for use as a medicament, preferably for preventing, delaying, curing, reverting and/or treating a diabetes. Diabetes may be Diabetes Type 1, Diabetes Type 2 or Monogenic Diabetes. The subject treated may be a higher mammal, e.g. cats, rodent, (preferably mice, rats, gerbils and guinea pigs, and more preferably mice and rats), or dogs, or in human beings.


Said viral expression construct, viral vector and/or composition are preferably said to be able to be used for preventing, delaying, reverting, curing and/or treating a diabetes, when said viral expression construct, viral vector and/or composition are able to exhibit an anti-diabetes effect. An anti-diabetes effect may be reached when glucose disposal in blood is increased and/or when glucose tolerance is improved. This could be assessed using techniques known to the skilled person or as done in the experimental part. In this context, “increase” (respectively “improvement”) means at least a detectable increase (respectively a detectable improvement) using an assay known to the skilled person or using assays as carried out in the experimental part.


An anti-diabetes effect may also be observed when the progression of a typical symptom (i.e. insulitis, beta cell loss, . . . ) has been slowed down as assessed by a physician. A decrease of a typical symptom may mean a slow down in progression of symptom development or a complete disappearance of symptoms. Symptoms, and thus also a decrease in symptoms, can be assessed using a variety of methods, to a large extent the same methods as used in diagnosis of diabetes, including clinical examination and routine laboratory tests. Such methods include both macroscopic and microscopic methods, as well as molecular methods, X-rays, biochemical, immunohistochemical and others.


A medicament as defined herein (viral expression construct, viral vector, composition) is preferably able to alleviate one symptom or one characteristic of a patient or of a cell, tissue or organ of said patient if after at least one week, one month, six month, one year or more of treatment using a viral expression vector or a composition of the invention, said symptom or characteristic is no longer detectable.


A viral expression construct or a viral vector or a composition as defined herein for use according to the invention may be suitable for administration to a cell, tissue and/or an organ in vivo of individuals affected by or at risk of developing a diabetes, and may be administered in vivo, ex vivo or in vitro. Said combination and/or composition may be directly or indirectly administrated to a cell, tissue and/or an organ in vivo of an individual affected by or at risk of developing a diabetes, and may be administered directly or indirectly in vivo, ex vivo or in vitro. A preferred administration mode is intramuscular.


A viral expression construct or a viral vector or a composition of the invention may be directly or indirectly administered using suitable means known in the art. Improvements in means for providing an individual or a cell, tissue, organ of said individual with a viral expression construct or a viral vector or a composition of the invention are anticipated, considering the progress that has already thus far been achieved. Such future improvements may of course be incorporated to achieve the mentioned effect of the invention. A viral expression construct or a viral vector or a composition can be delivered as is to an individual, a cell, tissue or organ of said individual. Depending on the disease or condition, a cell, tissue or organ of said individual may be as earlier defined herein. When administering a viral expression construct or a viral vector or a composition of the invention, it is preferred that such viral expression construct or vector or composition is dissolved in a solution that is compatible with the delivery method. For intravenous, subcutaneous, intramuscular, intrathecal, intraarticular and/or intraventricular administration it is preferred that the solution is a physiological salt solution. Intramuscular administration is a preferred administration mode. More preferably intramuscular administration is carried out using a multineedle. As encompassed herein, a therapeutically effective dose of a viral expression construct, vector or composition as mentioned above is preferably administered in a single and unique dose hence avoiding repeated periodical administration. More preferably, the single dose is administered to muscle tissue, and even more preferably by means of a unique multi-needle injection.


A further compound may be present in a composition of the invention. Said compound may help in delivery of the composition. Below is provided a list of suitable compounds: compounds capable of forming complexes, nanoparticles, micelles and/or liposomes that deliver each constituent as defined herein, complexed or trapped in a vesicle or liposome through a cell membrane. Many of these compounds are known in the art. Suitable compounds comprise polyethylenimine (PEI), or similar cationic polymers, including polypropyleneimine or polyethylenimine copolymers (PECs) and derivatives, synthetic amphiphiles (SAINT-18), Lipofectin™, DOTAP.


Depending on their identity, the skilled person will know which type of formulation is the most appropriate for the composition, as defined herein.


In this context a further compound may be insulin that could be regularly injected.


Method/Use


In a further aspect there is provided a method for preventing, delaying, reverting, curing and/or treating a diabetes wherein a viral expression construct or viral vector or composition as defined herein as defined herein is being used.


Such a method is preferably for alleviating one or more symptom(s) of diabetes in an individual, in a cell, tissue or organ of said individual or alleviate one or more characteristic(s) or symptom(s) of a cell, tissue or organ of said individual, the method comprising administering to said individual a viral expression construct or viral vector or a composition as defined herein.


In a further aspect there is provided a use of a viral expression construct or viral vector or a composition as defined herein for the manufacture of a medicament for preventing, delaying, reverting, curing and/or treating a diabetes.


Diabetes and the type of subject treated have been earlier defined herein.


In one embodiment said method or use is performed in vitro, for instance using a cell culture. Preferably, said method or use is in vivo. Each feature of these methods/uses has already been defined herein. In a method of the invention, a viral expression construct or vector and/or a composition may be combined with an additional compound known to be used for treating diabetes in an individual.


In a preferred embodiment, a treatment in a use or in a method according to the invention does not have to be repeated. Alternatively in a use or a method according to the invention said administration of the viral expression construct or of said composition may be repeated each year or each 2, 3, 4, 5, 6 years.


GENERAL DEFINITIONS

Identity/Similarity


In the context of the invention, a protein or a protein fragment as insulin or glucokinase is represented by an amino acid sequence.


In the context of the invention, a nucleic acid molecule as a nucleic acid molecule encoding an insulin or a nucleic acid molecule encoding a glucokinase is represented by a nucleic acid or nucleotide sequence which encodes a protein or a polypeptide or a protein fragment or a peptide or a derived peptide. A nucleic acid molecule may comprise a regulatory region.


It is to be understood that each nucleic acid molecule or protein or protein fragment or peptide or derived peptide or polypeptide or construct as identified herein by a given Sequence Identity Number (SEQ ID NO) is not limited to this specific sequence as disclosed. Each gene sequence or nucleotide sequence or nucleic acid sequence as identified herein encoding a given protein or polypeptide or construct or protein fragment or peptide or derived peptide or is itself a protein or a protein fragment or polypeptide or construct or peptide or derived peptide. Throughout this application, each time one refers to a specific nucleotide sequence SEQ ID NO (take SEQ ID NO: X as example) encoding a given polypeptide, one may replace it by:

    • i. a nucleotide sequence comprising a nucleotide sequence that has at least 60% sequence identity or similarity with SEQ ID NO: X;
    • ii. a nucleotide sequences the complementary strand of which hybridizes to a nucleic acid molecule of sequence of (i);
    • iii. a nucleotide sequence the sequence of which differs from the sequence of a nucleic acid molecule of (i) or (ii) due to the degeneracy of the genetic code; or,
    • iv. a nucleotide sequence that encodes an amino acid sequence that has at least 60% amino acid identity or similarity with an amino acid sequence encoded by a nucleotide sequence SEQ ID NO: X.


Throughout this application, each time one refers to a specific amino acid sequence SEQ ID NO (take SEQ ID NO: Y as example), one may replace it by: a polypeptide comprising an amino acid sequence that has at least 60% sequence identity or similarity with amino acid sequence SEQ ID NO: Y.


Each nucleotide sequence or amino acid sequence described herein by virtue of its identity or similarity percentage (at least 60%) with a given nucleotide sequence or amino acid sequence respectively has in a further preferred embodiment an identity or a similarity of at least 65%, 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, 99% or more identity or similarity with the given nucleotide or amino acid sequence respectively. In a preferred embodiment, sequence identity or similarity is determined by comparing the whole length of the sequences as identified herein. Unless otherwise indicated herein, identity or similarity with a given SEQ ID NO means identity or similarity based on the full length of said sequence (i.e. over its whole length or as a whole).


Each non-coding nucleotide sequence (i.e. of a promoter or of another regulatory region) could be replaced by a nucleotide sequence comprising a nucleotide sequence that has at least 60% sequence identity or similarity with SEQ ID NO: A. A preferred nucleotide sequence has at least 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 99%, 100% identity with SEQ ID NO:A. Identity may be assessed over the whole SEQ ID NO or over part thereof as explained herein. In a preferred embodiment, such non-coding nucleotide sequence such as a promoter exhibits or exerts at least an activity of such a non-coding nucleotide sequence such as an activity of a promoter as known to the skilled person.


“Sequence identity” is herein defined as a relationship between two or more amino acid (polypeptide or protein) sequences or two or more nucleic acid (polynucleotide) sequences, as determined by comparing the sequences. In a preferred embodiment, sequence identity is calculated based on the full length of two given SEQ ID NO or on part thereof. Part thereof preferably means at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, or 100% of both SEQ ID NO. In the art, “identity” also means the degree of sequence relatedness between amino acid or nucleic acid sequences, as the case may be, as determined by the match between strings of such sequences.


“Similarity” between two amino acid sequences is determined by comparing the amino acid sequence and its conserved amino acid substitutes of one polypeptide to the sequence of a second polypeptide. “Identity” and “similarity” can be readily calculated by known methods, including but not limited to those described in (Computational Molecular Biology, Lesk, A. M., ed., Oxford University Press, New York, 1988; Biocomputing: Informatics and Genome Projects, Smith, D. W., ed., Academic Press, New York, 1993; Computer Analysis of Sequence Data, Part I, Griffin, A. M., and Griffin, H. G., eds., Humana Press, New Jersey, 1994; Sequence Analysis in Molecular Biology, von Heine, G., Academic Press, 1987; and Sequence Analysis Primer, Gribskov, M. and Devereux, J., eds., M Stockton Press, New York, 1991; and Carillo, H., and Lipman, D., SIAM J. Applied Math., 48:1073 (1988).


Preferred methods to determine identity are designed to give the largest match between the sequences tested. Methods to determine identity and similarity are codified in publicly available computer programs. Preferred computer program methods to determine identity and similarity between two sequences include e.g. the GCG program package (Devereux, J., et al., Nucleic Acids Research 12 (1): 387 (1984)), BestFit, BLASTP, BLASTN, and FASTA (Altschul, S. F. et al., J. Mol. Biol. 215:403-410 (1990). The BLAST X program is publicly available from NCBI and other sources (BLAST Manual, Altschul, S., et al., NCBI NLM NIH Bethesda, Md. 20894; Altschul, S., et al., J. Mol. Biol. 215:403-410 (1990). The well-known Smith Waterman algorithm may also be used to determine identity.


Preferred parameters for polypeptide sequence comparison include the following: Algorithm: Needleman and Wunsch, J. Mol. Biol. 48:443-453 (1970); Comparison matrix: BLOSSUM62 from Hentikoff and Hentikoff, Proc. Natl. Acad. Sci. USA. 89:10915-10919 (1992); Gap Penalty: 12; and Gap Length Penalty: 4. A program useful with these parameters is publicly available as the “Ogap” program from Genetics Computer Group, located in Madison, Wis. The aforementioned parameters are the default parameters for amino acid comparisons (along with no penalty for end gaps).


Preferred parameters for nucleic acid comparison include the following: Algorithm: Needleman and Wunsch, J. Mol. Biol. 48:443-453 (1970); Comparison matrix: matches=+10, mismatch=0; Gap Penalty: 50; Gap Length Penalty: 3. Available as the Gap program from Genetics Computer Group, located in Madison, Wis. Given above are the default parameters for nucleic acid comparisons.


Optionally, in determining the degree of amino acid similarity, the skilled person may also take into account so-called “conservative” amino acid substitutions, as will be clear to the skilled person. Conservative amino acid substitutions refer to the interchangeability of residues having similar side chains. For example, a group of amino acids having aliphatic side chains is glycine, alanine, valine, leucine, and isoleucine; a group of amino acids having aliphatic-hydroxyl side chains is serine and threonine; a group of amino acids having amide-containing side chains is asparagine and glutamine; a group of amino acids having aromatic side chains is phenylalanine, tyrosine, and tryptophan; a group of amino acids having basic side chains is lysine, arginine, and histidine; and a group of amino acids having sulphur-containing side chains is cysteine and methionine. Preferred conservative amino acids substitution groups are: valine-leucine-isoleucine, phenylalanine-tyrosine, lysine-arginine, alanine-valine, and asparagine-glutamine. Substitutional variants of the amino acid sequence disclosed herein are those in which at least one residue in the disclosed sequences has been removed and a different residue inserted in its place. Preferably, the amino acid change is conservative. Preferred conservative substitutions for each of the naturally occurring amino acids are as follows: Ala to Ser; Arg to Lys; Asn to Gln or His; Asp to Glu; Cys to Ser or Ala; Gln to Asn; Glu to Asp; Gly to Pro; His to Asn or Gln; Ile to Leu or Val; Leu to Ile or Val; Lys to Arg; Gln or Glu; Met to Leu or Ile; Phe to Met, Leu or Tyr; Ser to Thr; Thr to Ser; Trp to Tyr; Tyr to Trp or Phe; and, Val to Ile or Leu.


Gene or Coding Sequence


“Gene” or “coding sequence” or “nucleic acid” or “nucleic” refers to a DNA or RNA region (the transcribed region) which “encodes” a particular protein such as an insulin or a glucokinase. A coding sequence is transcribed (DNA) and translated (RNA) into a polypeptide when placed under the control of an appropriate regulatory region, such as a promoter. A gene may comprise several operably linked fragments, such as a promoter, a 5′ leader sequence, an intron, a coding sequence and a 3′nontranslated sequence, comprising a polyadenylation site or a signal sequence. A chimeric or recombinant gene (such as a chimeric insulin gene or a chimeric glucokinase gene) is a gene not normally found in nature, such as a gene in which for example the promoter is not associated in nature with part or all of the transcribed DNA region. “Expression of a gene” refers to the process wherein a gene is transcribed into an RNA and/or translated into an active protein.


Promoter


As used herein, the term “promoter” refers to a nucleic acid fragment that functions to control the transcription of one or more genes (or coding sequence), located upstream with respect to the direction of transcription of the transcription initiation site of the gene, and is structurally identified by the presence of a binding site for DNA-dependent RNA polymerase, transcription initiation sites and any other DNA sequences, including, but not limited to transcription factor binding sites, repressor and activator protein binding sites, and any other sequences of nucleotides known to one of skill in the art to act directly or indirectly to regulate the amount of transcription from the promoter. A “constitutive” promoter is a promoter that is active under most physiological and developmental conditions. An “inducible” promoter is a promoter that is regulated depending on physiological or developmental conditions. A “tissue specific” promoter is preferentially active in specific types of differentiated cells/tissues, such as preferably a muscle cell or tissue derived therefrom.


Operably Linked


“Operably linked” is defined herein as a configuration in which a control sequence such as a promoter sequence or regulating sequence is appropriately placed at a position relative to the nucleotide sequence of interest, preferably coding for an insulin or a glucokinase such that the promoter or control or regulating sequence directs or affects the transcription and/or production or expression of the nucleotide sequence of interest, preferably encoding an insulin or a glucokinase in a cell and/or in a subject. For instance, a promoter is operably linked to a coding sequence if the promoter is able to initiate or regulate the transcription or expression of a coding sequence, in which case the coding sequence should be understood as being “under the control of” the promoter. When one or more nucleotide sequences and/or elements comprised within a construct are defined herein to be “configured to be operably linked to an optional nucleotide sequence of interest”, said nucleotide sequences and/or elements are understood to be configured within said construct in such a way that these nucleotide sequences and/or elements are all operably linked to said nucleotide sequence of interest once said nucleotide sequence of interest is present in said construct.


Viral Expression Construct


An expression construct carries a genome that is able to stabilize and remain episomal in a cell. Within the context of the invention, a cell may mean to encompass a cell used to make the construct or a cell wherein the construct will be administered. Alternatively a construct is capable of integrating into a cell's genome, e.g. through homologous recombination or otherwise. A particularly preferred expression construct is one wherein a nucleotide sequence encoding an insulin and a glucokinase as defined herein, is operably linked to a first and a second promoters as defined herein wherein said promoters are capable of directing expression of said nucleotide sequences (i.e. coding sequences) in a cell. Such a preferred expression construct is said to comprise an expression cassette. An expression cassette as used herein comprises or consists of a nucleotide sequence encoding an insulin and an nucleotide sequence encoding a glucokinase, each of them being operably linked to a promoter (i.e. a first and a second promoter) wherein said promoters are capable of directing expression of said nucleotide sequences. A viral expression construct is an expression construct which is intended to be used in gene therapy. It is designed to comprise part of a viral genome as later defined herein.


Expression constructs disclosed herein could be prepared using recombinant techniques in which nucleotide sequences encoding said insulin and glucokinased are expressed in a suitable cell, e.g. cultured cells or cells of a multicellular organism, such as described in Ausubel et al., “Current Protocols in Molecular Biology”, Greene Publishing and Wiley-Interscience, New York (1987) and in Sambrook and Russell (2001, supra); both of which are incorporated herein by reference in their entirety. Also see, Kunkel (1985) Proc. Natl. Acad. Sci. 82:488 (describing site directed mutagenesis) and Roberts et al. (1987) Nature 328:731-734 or Wells, J. A., et al. (1985) Gene 34: 315 (describing cassette mutagenesis).


Typically, a nucleic acid or nucleotide sequence encoding an insulin and a glucokinase are used in an expression construct or expression vector. The phrase “expression vector” generally refers to a nucleotide sequence that is capable of effecting expression of a gene in a host compatible with such sequences. These expression vectors typically include at least suitable promoter sequences and optionally, transcription termination signals. An additional factor necessary or helpful in effecting expression can also be used as described herein. A nucleic acid or DNA or nucleotide sequence encoding an insulin and a glucokinase is incorporated into a DNA construct capable of introduction into and expression in an in vitro cell culture. Specifically, a DNA construct is suitable for replication in a prokaryotic host, such as bacteria, e.g., E. coli, or can be introduced into a cultured mammalian, plant, insect, (e.g., Sf9), yeast, fungi or other eukaryotic cell lines.


A DNA construct prepared for introduction into a particular host may include a replication system recognized by the host, an intended DNA segment encoding a desired polypeptide, and transcriptional and translational initiation and termination regulatory sequences operably linked to the polypeptide-encoding segment. The term “operably linked” has already been defined herein. For example, a promoter or enhancer is operably linked to a coding sequence if it stimulates the transcription of the sequence. DNA for a signal sequence is operably linked to DNA encoding a polypeptide if it is expressed as a preprotein that participates in the secretion of a polypeptide. Generally, a DNA sequence that is operably linked are contiguous, and, in the case of a signal sequence, both contiguous and in reading frame. However, enhancers need not be contiguous with a coding sequence whose transcription they control. Linking is accomplished by ligation at convenient restriction sites or at adapters or linkers inserted in lieu thereof, or by gene synthesis.


The selection of an appropriate promoter sequence generally depends upon the host cell selected for the expression of a DNA segment. Examples of suitable promoter sequences include prokaryotic, and eukaryotic promoters well known in the art (see, e.g. Sambrook and Russell, 2001, supra). A transcriptional regulatory sequence typically includes a heterologous enhancer or promoter that is recognised by the host. The selection of an appropriate promoter depends upon the host, but promoters such as the trp, lac and phage promoters, tRNA promoters and glycolytic enzyme promoters are known and available (see, e.g. Sambrook and Russell, 2001, supra). An expression vector includes the replication system and transcriptional and translational regulatory sequences together with the insertion site for the polypeptide encoding segment can be employed. In most cases, the replication system is only functional in the cell that is used to make the vector (bacterial cell as E. Coli). Most plasmids and vectors do not replicate in the cells infected with the vector. Examples of workable combinations of cell lines and expression vectors are described in Sambrook and Russell (2001, supra) and in Metzger et al. (1988) Nature 334: 31-36. For example, suitable expression vectors can be expressed in, yeast, e.g. S. cerevisiae, e.g., insect cells, e.g., Sf9 cells, mammalian cells, e.g., CHO cells and bacterial cells, e.g., E. coli. A cell may thus be a prokaryotic or eukaryotic host cell. A cell may be a cell that is suitable for culture in liquid or on solid media.


Alternatively, a host cell is a cell that is part of a multicellular organism such as a transgenic plant or animal.


Viral Vector


A viral vector or a gene therapy vector is a vector that comprises a viral expression construct as defined above.


A viral vector or a gene therapy vector is a vector that is suitable for gene therapy. Vectors that are suitable for gene therapy are described in Anderson 1998, Nature 392: 25-30; Walther and Stein, 2000, Drugs 60: 249-71; Kay et al., 2001, Nat. Med. 7: 33-40; Russell, 2000, J. Gen. Virol. 81: 2573-604; Amado and Chen, 1999, Science 285: 674-6; Federico, 1999, Curr. Opin. Biotechnol. 10: 448-53; Vigna and Naldini, 2000, J. Gene Med. 2: 308-16; Marin et al., 1997, Mol. Med. Today 3: 396-403; Peng and Russell, 1999, Curr. Opin. Biotechnol. 10: 454-7; Sommerfelt, 1999, J. Gen. Virol. 80: 3049-64; Reiser, 2000, Gene Ther. 7: 910-3; and references cited therein.


A particularly suitable gene therapy vector includes an Adenoviral and Adeno-associated virus (AAV) vector. These vectors infect a wide number of dividing and non-dividing cell types including synovial cells and liver cells. The episomal nature of the adenoviral and AAV vectors after cell entry makes these vectors suited for therapeutic applications. (Russell, 2000, J. Gen. Virol. 81: 2573-2604; Goncalves, 2005, Virol J. 2(1):43) as indicated above. AAV vectors are even more preferred since they are known to result in very stable long term expression of transgene expression (up to 9 years in dog (Niemeyer et al, Blood. 2009 Jan. 22; 113(4):797-806) and ˜2 years in human (Nathwani et al, N Engl J Med. 2011 Dec. 22; 365(25):2357-65, Simonelli et al, Mol Ther. 2010 March; 18(3):643-50. Epub 2009 Dec. 1.)). Preferred adenoviral vectors are modified to reduce the host response as reviewed by Russell (2000, supra). Method for gene therapy using AAV vectors are described by Wang et al., 2005, J Gene Med. March 9 (Epub ahead of print), Mandel et al., 2004, Curr Opin Mol Ther. 6(5):482-90, and Martin et a, 2004, Eye 18(11):1049-55, Nathwani et al, N Engl J Med. 2011 Dec. 22; 365(25):2357-65, Apparailly et al, Hum Gene Ther. 2005 April; 16(4):426-34.


Another suitable gene therapy vector includes a retroviral vector. A preferred retroviral vector for application in the present invention is a lentiviral based expression construct. Lentiviral vectors have the ability to infect and to stably integrate into the genome of dividing and non-dividing cells (Amado and Chen, 1999 Science 285: 674-6). Methods for the construction and use of lentiviral based expression constructs are described in U.S. Pat. Nos. 6,165,782, 6,207,455, 6,218,181, 6,277,633 and 6,323,031 and in Federico (1999, Curr Opin Biotechnol 10: 448-53) and Vigna et al. (2000, J Gene Med 2000; 2: 308-16).


Other suitable gene therapy vectors include a herpes virus vector, a polyoma virus vector or a vaccinia virus vector.


A gene therapy vector comprises a nucleotide sequence encoding an insulin and a glucokinase to be expressed, whereby each of said nucleotide sequence is operably linked to the appropriate regulatory sequences. Such regulatory sequence will at least comprise a promoter sequence. Suitable promoters for expression of a nucleotide sequence encoding an insulin and a glycokinase from gene therapy vectors include e.g. cytomegalovirus (CMV) intermediate early promoter, viral long terminal repeat promoters (LTRs), such as those from murine moloney leukaemia virus (MMLV) rous sarcoma virus, or HTLV-1, the simian virus 40 (SV 40) early promoter and the herpes simplex virus thymidine kinase promoter. Suitable promoters are described below.


Several inducible promoter systems have been described that may be induced by the administration of small organic or inorganic compounds. Such inducible promoters include those controlled by heavy metals, such as the metallothionine promoter (Brinster et al. 1982 Nature 296: 39-42; Mayo et al. 1982 Cell 29: 99-108), RU-486 (a progesterone antagonist) (Wang et al. 1994 Proc. Natl. Acad. Sci. USA 91: 8180-8184), steroids (Mader and White, 1993 Proc. Natl. Acad. Sci. USA 90: 5603-5607), tetracycline (Gossen and Bujard 1992 Proc. Natl. Acad. Sci. USA 89: 5547-5551; U.S. Pat. No. 5,464,758; Furth et al. 1994 Proc. Natl. Acad. Sci. USA 91: 9302-9306; Howe et al. 1995 J. Biol. Chem. 270: 14168-14174; Resnitzky et al. 1994 Mol. Cell. Biol. 14: 1669-1679; Shockett et al. 1995 Proc. Natl. Acad. Sci. USA 92: 6522-6526) and the tTAER system that is based on the multi-chimeric transactivator composed of a tetR polypeptide, as activation domain of VP16, and a ligand binding domain of an estrogen receptor (Yee et al., 2002, U.S. Pat. No. 6,432,705).


A gene therapy vector may optionally comprise a further nucleotide sequence coding for a further polypeptide. A further polypeptide may be a (selectable) marker polypeptide that allows for the identification, selection and/or screening for cells containing the expression construct. Suitable marker proteins for this purpose are e.g. the fluorescent protein GFP, and the selectable marker genes HSV thymidine kinase (for selection on HAT medium), bacterial hygromycin B phosphotransferase (for selection on hygromycin B), Tn5 aminoglycoside phosphotransferase (for selection on G418), and dihydrofolate reductase (DHFR) (for selection on methotrexate), CD20, the low affinity nerve growth factor gene. Sources for obtaining these marker genes and methods for their use are provided in Sambrook and Russel (2001) “Molecular Cloning: A Laboratory Manual (3rd edition), Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, New York.


A gene therapy vector is preferably formulated in a pharmaceutical composition as defined herein. In this context, a pharmaceutical composition may comprise a suitable pharmaceutical carrier as earlier defined herein.


Adeno-Associated Virus Vector (AAV Vector)


A preferred viral vector or a preferred gene therapy vector is an AAV vector. An AAV vector as used herein preferably comprises a recombinant AAV vector (rAAV). A “rAAV vector” as used herein refers to a recombinant vector comprising part of an AAV genome encapsidated in a protein shell of capsid protein derived from an AAV serotype as explained herein. Part of an AAV genome may contain the inverted terminal repeats (ITR) derived from an adeno-associated virus serotype, such as AAV1, AAV2, AAV3, AAV4, AAV5 and others. Preferred ITRs are those of AAV2 which are represented by SEQ ID NO: 31 (5′ ITR) and SEQ ID NO: 32 (3′ ITR).


Protein shell comprised of capsid protein may be derived from an AAV serotype such as AAV1, 2, 3, 4, 5 and others. A preferred AAV capsid is a AAV1 capsid. A preferred ITR is from the AAV2. A protein shell may also be named a capsid protein shell. rAAV vector may have one or preferably all wild type AAV genes deleted, but may still comprise functional ITR nucleic acid sequences. Functional ITR sequences are necessary for the replication, rescue and packaging of AAV virions. The ITR sequences may be wild type sequences or may have at least 80%, 85%, 90%, 95, or 100% sequence identity with wild type sequences or may be altered by for example in insertion, mutation, deletion or substitution of nucleotides, as long as they remain functional. In this context, functionality refers to the ability to direct packaging of the genome into the capsid shell and then allow for expression in the host cell to be infected or target cell. In the context of the present invention a capsid protein shell may be of a different serotype than the rAAV vector genome ITR.


A nucleic acid molecule represented by a nucleic acid sequence of choice is preferably inserted between the rAAV genome or ITR sequences as identified above, for example an expression construct comprising an expression regulatory element operably linked to a coding sequence and a 3′ termination sequence. Said nucleic acid molecule may also be called a transgene.


“AAV helper functions” generally refers to the corresponding AAV functions required for rAAV replication and packaging supplied to the rAAV vector in trans. AAV helper functions complement the AAV functions which are missing in the rAAV vector, but they lack AAV ITRs (which are provided by the rAAV vector genome). AAV helper functions include the two major ORFs of AAV, namely the rep coding region and the cap coding region or functional substantially identical sequences thereof. Rep and Cap regions are well known in the art, see e.g. Chiorini et al. (1999, J. of Virology, Vol 73(2): 1309-1319) or U.S. Pat. No. 5,139,941, incorporated herein by reference. The AAV helper functions can be supplied on a AAV helper construct. Introduction of the helper construct into the host cell can occur e.g. by transformation, transfection, or transduction prior to or concurrently with the introduction of the rAAV genome present in the rAAV vector as identified herein. The AAV helper constructs of the invention may thus be chosen such that they produce the desired combination of serotypes for the rAAV vector's capsid protein shell on the one hand and for the rAAV genome present in said rAAV vector replication and packaging on the other hand.


“AAV helper virus” provides additional functions required for AAV replication and packaging. Suitable AAV helper viruses include adenoviruses, herpes simplex viruses (such as HSV types 1 and 2) and vaccinia viruses. The additional functions provided by the helper virus can also be introduced into the host cell via vectors, as described in U.S. Pat. No. 6,531,456 incorporated herein by reference.


A “transgene” is herein defined as a gene or a nucleic acid molecule (i.e. a molecule encoding an insulin and a molecule encoding a glucokinase) that has been newly introduced into a cell, i.e. a gene that may be present but may normally not be expressed or expressed at an insufficient level in a cell. In this context, “insufficient” means that although said insulin and glucokinase is expressed in a cell, a condition and/or disease as defined herein could still be developed. In this case, the invention allows the over-expression of an insulin and a glucokinase. The transgene may comprise sequences that are native to the cell, sequences that naturally do not occur in the cell and it may comprise combinations of both. A transgene may contain sequences coding for an insulin and a glucokinase and/or additional proteins as earlier identified herein that may be operably linked to appropriate regulatory sequences for expression of the sequences coding for an insulin and a glucokinase in the cell. Preferably, the transgene is not integrated into the host cell's genome.


“Transduction” refers to the delivery of an insulin and a glucokinase into a recipient host cell by a viral vector. For example, transduction of a target cell by a rAAV vector of the invention leads to transfer of the rAAV genome contained in that vector into the transduced cell. “Host cell” or “target cell” refers to the cell into which the DNA delivery takes place, such as the muscle cells of a subject. AAV vectors are able to transduce both dividing and non-dividing cells.


Production of an AAV Vector


The recombinant AAV vector, including all combinations of AAV serotype capsid and AAV genome ITRs, is produced using methods known in the art, as described in Pan et al. (J. of Virology 1999, Vol 73(4):3410-3417) and Clark et al. (Human Gene Therapy, 1999, 10:1031-1039), incorporated herein by reference. In short, the methods generally involve (a) the introduction of the rAAV genome into a host cell, (b) the introduction of an AAV helper construct into the host cell, wherein the helper construct comprises the viral functions missing from the rAAV genome and (c) introducing a helper virus into the host cell. All functions for rAAV vector replication and packaging need to be present, to achieve replication and packaging of the rAAV genome into rAAV vectors. The introduction into the host cell can be carried out using standard virological techniques and can be simultaneously or sequentially. Finally, the host cells are cultured to produce rAAV vectors and are purified using standard techniques such as CsCl gradients (Xiao et al. 1996, J. Virol. 70: 8098-8108). Residual helper virus activity can be inactivated using known methods, such as for example heat inactivation. The purified rAAV vector is then ready for use in the methods. High titres of more than 1012 particles per ml and high purity (free of detectable helper and wild type viruses) can be achieved (Clark et al. supra and Flotte et al. 1995, Gene Ther. 2: 29-37).


The rAAV genome present in a rAAV vector comprises at least the nucleotide sequences of the inverted terminal repeat regions (ITR) of one of the AAV serotypes (preferably the ones of serotype AAV2 as disclosed earlier herein), or nucleotide sequences substantially identical thereto or nucleotide sequences having at least 60% identity thereto, and nucleotide sequence encoding an insulin and a glucokinase (under control of a suitable regulatory element) inserted between the two ITRs. A vector genome requires the use of flanking 5′ and a 3′ ITR sequences to allow for efficient packaging of the vector genome into the rAAV capsid.


The complete genome of several AAV serotypes and corresponding ITR has been sequenced (Chiorini et al. 1999, J. of Virology Vol. 73, No. 2, p 1309-1319). They can be either cloned or made by chemical synthesis as known in the art, using for example an oligonucleotide synthesizer as supplied e.g. by Applied Biosystems Inc. (Fosters, Calif., USA) or by standard molecular biology techniques. The ITRs can be cloned from the AAV viral genome or excised from a vector comprising the AAV ITRs. The ITR nucleotide sequences can be either ligated at either end to the nucleotide sequence encoding one or more therapeutic proteins using standard molecular biology techniques, or the wild type AAV sequence between the ITRs can be replaced with the desired nucleotide sequence.


Preferably, the rAAV genome as present in a rAAV vector does not comprise any nucleotide sequences encoding viral proteins, such as the rep (replication) or cap (capsid) genes of AAV. This rAAV genome may further comprise a marker or reporter gene, such as a gene for example encoding an antibiotic resistance gene, a fluorescent protein (e.g. gfp) or a gene encoding a chemically, enzymatically or otherwise detectable and/or selectable product (e.g. lacZ, aph, etc.) known in the art.


The rAAV genome as present in said rAAV vector further comprises a promoter sequence operably linked to the nucleotide sequence encoding an insulin and a glucokinased. Preferred promoter sequences are promoters which confer expression in muscle cells and/or muscle tissues. Examples of such promoters include a CMV and a RSV promoters as earlier defined herein.


A suitable 3′ untranslated sequence may also be operably linked to the nucleotide sequence encoding an insulin and a glucokinase. Suitable 3′ untranslated regions may be those naturally associated with the nucleotide sequence or may be derived from different genes, such as for example the bovine growth hormone 3′ untranslated region (bGH polyadenylation signal (SEQ ID NO:7), SV40 polyadenylation signal (SEQ ID NO:22), SV40 polyadenylation signal and enhancer sequence (SEQ ID NO: 30).


Within the context of the invention, when one refers to “SV40”, it means SV40 polyadenylation signal. When one refers to “SV40 enhancer sequence”, it means SV40 polyadenylation signal and enhancer sequence. However, the invention also encompasses the use of SV40 polyadenylation signal (SEQ ID NO:22) and SV40 enhancer sequence (SEQ ID NO:33) as two separate sequences.


These sequences were used in the preferred constructs prepared in the experimental part. Constructs L and Q comprise both bGH polyA and SV40 polyadenylation signal sequences, the order of each of these 3′untranslated sequences being interchanged (see FIGS. 7 and 13).


Construct S comprises both bGH polyA and SV40 polyadenylation signal and enhancer sequences (see FIG. 16).


Optionally, additional nucleotide sequences may be operably linked to the nucleotide sequence(s) encoding an insulin and a glucokinase, such as nucleotide sequences encoding signal sequences, nuclear localization signals, expression enhancers, and the like.


In this document and in its claims, the verb “to comprise” and its conjugations is used in its non-limiting sense to mean that items following the word are included, but items not specifically mentioned are not excluded. In addition the verb “to consist” may be replaced by “to consist essentially of” meaning that a viral expression construct, viral vector, composition, gene therapy composition, as defined herein may comprise additional component(s) than the ones specifically identified, said additional component(s) not altering the unique characteristic of the invention.


In addition, reference to an element by the indefinite article “a” or “an” does not exclude the possibility that more than one of the element is present, unless the context clearly requires that there be one and only one of the elements. The indefinite article “a” or “an” thus usually means “at least one”.


The word “approximately” or “about” when used in association with a numerical value (approximately 10, about 10) preferably means that the value may be the given value of 10 more or less 1% of the value.


All patent and literature references cited in the present specification are hereby incorporated by reference in their entirety. In this context WO 2012/007458 is incorporated by reference in its entirety. Each embodiment as identified herein may be combined together unless otherwise indicated.


The invention is further explained in the following examples. These examples do not limit the scope of the invention, but merely serve to clarify the invention.





FIGURE LEGENDS


FIG. 1. Schematic representation of the dual-gene RSV-rGck-CMV-hIns AAV construct described in A.2. ITR: Inverted Terminal Repeat; RSV: Rous Sarcoma Virus promoter; rGck: rat glucokinase cDNA; SV40: simian virus 40 polyadenylation signal; CMV: cytomegalovirus promoter; hINS: human insulin cDNA.


Construct A: RSV-rGck-CMV-hIns (size: 4.9 kb) (SEQ ID NO: 8) is depicted in FIG. 1.



FIG. 2. Schematic representation of the single-gene AAV constructs described in A.2. ITR: Inverted Terminal Repeat; CMV: cytomegalovirus promoter; hINS: human insulin cDNA; SV40: simian virus 40 polyadenylation signal; RSV: Rous Sarcoma Virus promoter; rGck: rat glucokinase cDNA.


Construct B is depicted in FIG. 2: CMV-hIns (SEQ ID NO: 17).


Construct C is depicted in FIG. 2: RSV-rGck (SEQ ID NO: 18).



FIG. 3. Expression of insulin and glucokinase in HEK293 cells. The left histogram represents the expression of insulin in cells transfected with CMV-hIns (B) or RSV-rGck-CMV-hIns (A) plasmids. The right histogram represents the expression of glucokinase in cells transfected with RSVr-Gck (C) or RSV-rGck-CMV-hIns (A).



FIG. 4. Schematic representation of the dual-gene AAV constructs described in A.3. ITR: Inverted Terminal Repeat; CMV: cytomegalovirus promoter; hINS: human insulin cDNA; SV40: simian virus 40 polyadenylation signal; RSV: Rous Sarcoma Virus promoter; hGck: human glucokinase cDNA; bGH: bovine growth hormone polyadenylation signal.


Construct D is depicted in FIG. 4: CMV-hIns-RSV-hGck (size: 4.7 kb) (SEQ ID NO:9).


Construct E is depicted in FIG. 4: RSV-hGck-CMV-hIns (size: 4.7 kb) (SEQ ID NO:10).


Construct F is depicted in FIG. 4: CMV-hIns(rev)-RSV-hGck (size: 4.7 kb) (SEQ ID NO: 11).


Construct G is depicted in FIG. 4: RSV-hGck-CMV-hIns(rev) (size: 4.7 kb) (SEQ ID NO: 12).



FIG. 5. Schematic representation of the single-gene AAV constructs described in A.3. ITR: Inverted Terminal Repeat; CMV: cytomegalovirus promoter; hINS: human insulin cDNA; SV40: simian virus 40 polyadenylation signal; RSV: Rous Sarcoma Virus promoter; hGck: human glucokinase cDNA; bGH: bovine growth hormone polyadenylation signal.


Construct H is depicted in FIG. 5: CMV-hIns (SEQ ID NO:19).


Construct I is depicted in FIG. 5: RSV-hGck (SEQ ID NO: 20).



FIG. 6. Expression of insulin and glucokinase in HEK293 cells. The left histogram represents the expression of human insulin in cells transfected with CMV-hIns (construct H), CMV-hIns-RSV-hGck (construct D), RSV-hGck-CMV-hIns (construct E), CMV-hIns(rev)-RSV-hGck (construct F) or RSV-hGck-CMV-hIns(rev) (construct G) plasmids. The right histogram represents the expression of human glucokinase in cells transfected with RSV-hGck (construct I), CMV-hIns-RSV-hGck (construct D), RSV-hGck-CMV-hIns (construct E), CMV-hIns(rev)-RSV-hGck (construct F) or RSVh-Gck-CMV-hIns(rev) (construct G).



FIG. 7. Schematic representation of the dual-gene AAV constructs described in A.4. ITR: Inverted Terminal Repeat; MiniCMV: minicytomegalovirus promoter; hINS: human insulin cDNA; SV40: simian virus 40 polyadenylation signal; RSV: Rous Sarcoma Virus promoter; hGck: human glucokinase cDNA; bGH: bovine growth hormone polyadenylation signal.


Construct J is depicted in FIG. 7: miniCMV-hIns-RSV-hGck (size: 4 kb) (SEQ ID NO:13).


Construct K is depicted in FIG. 7: RSV-hGck-miniCMV-hIns (size: 4 kb) (SEQ ID NO:14).


Construct L is depicted in FIG. 7: miniCMV-hIns(rev)-RSV-hGck (size: 4 kb) (SEQ ID NO:15).


Construct M is depicted in FIG. 7: RSV-hGck-miniCMV-hIns(rev) (size: 4 kb) (SEQ ID NO:16).



FIG. 8. Schematic representation of the single-gene AAV described in A.4. ITR: Inverted Terminal Repeat; MiniCMV: minicytomegalovirus promoter; INS: human insulin cDNA; SV40: simian virus 40 polyadenylation. signal; RSV: Rous Sarcoma Virus promoter; Gck: human glucokinase cDNA; bGH: bovine growth hormone polyadenylation signal.


Construct N is depicted in FIG. 8: miniCMV-hIns (SEQ ID NO:21).


Construct I is depicted in FIG. 8: RSV-hGcK-bGH (SEQ ID NO:20).



FIG. 9. Expression levels of insulin and glucokinase in HEK293 cells. The left histogram represents the expression of human insulin in cells transfected with miniCMV-Ins (construct N), miniCMV-hIns-RSV-Gck (construct J), RSV-hGck-miniCMV-hIns (construct K), miniCMV-hIns(rev)-RSV-hGck (construct L) or RSV-hGck-miniCMV-hIns(rev) (construct M) plasmids. The right histogram represents the expression of human glucokinase in cells transfected with RSV-hGck (construct I), miniCMV-hIns-RSV-hGck (construct J), RSV-hGck-miniCMV-hIns (construct K), miniCMV-hIns(rev)-RSV-hGck (construct L) or RSV-hGck-miniCMV-hIns(rev) (construct M) plasmids.



FIG. 10. AAV-mediated expression levels of insulin and glucokinase in the skeletal muscle of wild-type animals. Three weeks after vector administration, insulin (A) and glucokinase (B) expression was analysed by quantitative real time PCR in tibialis and gastrocnemius of control uninjected mice (CT), or in mice injected with the combination of the single vectors AAV1-miniCMV-hINS and AAV1-RSV-hGck (constructs N+I) or with the dual vector AAV1-miniCMV-hINS-rev-RSV-hGck (construct L). The amount of insulin and glucokinase was normalized to 36B4 expression. N.D., non detected, a.u. arbitrary units.



FIG. 11. Comparison of the ability to dispose of glucose after a load in animals injected with either a combination of single vectors or a dual-gene AAV vector. (A) Control mice (CT), mice injected with the combination of single vectors AAV1-miniCMV-hINS and AAV1-RSV-hGck (constructs N+I) and mice injected with the dual viral vector AAV1-miniCMV-hINS-rev-RSV-hGck (construct L) were given an intraperitoneal injection of 2 g glucose/kg body weight. Blood samples were taken from the tail of the animals at indicated time points and glucose concentration was determined. (B) The area under the curve (AUC) of the glucose tolerance test was calculated. a.u. arbitrary units. *p<0.05 vs N+I.



FIG. 12. Comparison of the ability to dispose of glucose after a load in diabetic animals injected with either a combination of single vectors or a dual-gene AAV vector. Healthy mice (No STZ), diabetic control mice (CT), diabetic mice injected with the combination of single vectors AAV1-miniCMV-hINS and AAV1-RSV-hGck (constructs N+I), and diabetic mice injected with the dual viral vector AAV1-miniCMV-hINS-rev-RSV-hGck (construct L) were given an intraperitoneal injection of 1 g glucose/kg body weight. (A) Fasting glucose levels. (B) Blood samples were taken from the tail of the animals at indicated time points and glucose concentration was determined. (C) The area under the curve (AUC) of the glucose tolerance test was calculated. a.u., arbitrary units. *p<0.05 vs N+I



FIG. 13. Schematic representation of the dual-gene and single-gene AAV described in A.5. ITR: Inverted Terminal Repeat; MiniCMV: minicytomegalovirus promoter; INS: human insulin cDNA; SV40: simian virus 40 polyadenylation signal; RSV: Rous Sarcoma Virus promoter; Gck: human glucokinase cDNA; bGH: bovine growth hormone polyadenyilation signal.


Construct O is depicted in FIG. 13: miniCMV-hIns-bGH (size: 1.4 kb) (SEQ ID NO:25).


Construct P is depicted in FIG. 13: RSV-hGck-SV40 (size: 2.9 kb) (SEQ ID NO:26).


Construct Q is depicted in FIG. 13: miniCMV-hIns-bGH(rev)-RSV-hGck-SV40 (size: 4 kb) (SEQ ID NO:27).



FIG. 14. AAV-mediated expression levels of insulin and glucokinase in the skeletal muscle of wild-type animals. Three weeks after vector administration, insulin (A) and glucokinase (B) expression was analysed by quantitative real time PCR in tibialis and gastrocnemius of control uninjected mice (CT), or in mice injected with the combination of the single vectors AAV1-miniCMV-hIns-bGH and AAV1-RSV-hGck-SV40 (constructs O+P) or with the dual vector AAV1-miniCMV-Insulin-bGH(rev)-RSV-Glucokinase-SV40 (construct Q). The amount of insulin and glucokinase was normalized to 36B4 expression. N.D., non detected. a.u., arbitrary units. *p<0.05 vs O+P



FIG. 15. Comparison of the ability to dispose of glucose after a load in animals injected with either a combination of single vectors or a dual-gene AAV vector. (A) Control mice (CT), mice injected with the combination of single vectors AAV1-miniCMV-hIns-bGH and AAV1-RSV-hGck-SV40 (constructs O+P) and mice injected with the dual viral vector AAV1-miniCMV-Insulin-bGH(rev)-RSV-Glucokinase-SV40 (construct Q) were given an intraperitoneal injection of 2 g glucose/kg body weight. Blood samples were taken from the tail of the animals at indicated time points and glucose concentration was determined. (B) The area under the curve (AUC) of the glucose tolerance test was calculated. a.u., arbitrary units. *p<0.05 vs O+P



FIG. 16. Schematic representation of the dual-gene and single-gene AAV described in A.G. ITR: Inverted Terminal Repeat; MiniCMV: minicytomegalovirus promoter; INS: human insulin cDNA; SV40 enhancer: SV40 enhancer and simian virus 40 polyadenylation signal; RSV: Rous Sarcoma Virus promoter; Gck: human glucokinase cDNA; bGH: bovine growth hormone polyadenylation signal.


Construct R is depicted in FIG. 16: miniCMV-hIns-SV40enhancer (size: 1.6 kb) (SEQ ID NO:28).


Construct S is depicted in FIG. 16: miniCMV-hIns-SV40enhancer(rev)-RSV-hGck-bGH (size: 4.2 kb) (SEQ ID NO:29).



FIG. 17. AAV-mediated expression levels of insulin and glucokinase in the skeletal muscle of wild-type animals. Three weeks after vector administration, insulin (A) and glucokinase (B) expression was analysed by quantitative real time PCR in tibialis and gastrocnemius of control uninjected mice (CT), or in mice injected with the combination of the single vectors AAV1-miniCMV-hIns-SV40enhancer and AAV1-RSV-hGck (constructs R+I) or with the dual vector AAV1-miniCMV-hIns-SV40enhancer(rev)-RSV-hGck-bGH (construct S). The amount of insulin and glucokinase was normalized to 36B4 expression. N.D., non detected. a.u., arbitrary units. *p<0.05 vs R+I.



FIG. 18. Comparison of the ability to dispose of glucose after a load in animals injected with either a combination of single vectors or a dual-gene AAV vector. (A) Control mice (CT), mice injected with the combination of single vectors AAV1-miniCMV-hIns-SV40enhancer and AAV1-RSV-hGck (R+I) and mice injected with the dual viral vector AAV1-miniCMV-hIns-SV40enhancer(rev)-RSV-hGck-bGH (S) were given an intraperitoneal injection of 2 g glucose/kg body weight. Blood samples were taken from the tail of the animals at indicated time points and glucose concentration was determined. (B) The area under the curve (AUC) of the glucose tolerance test was calculated. a.u., arbitrary units. *p<0.05 vs R+I.





EXAMPLES

Throughout the application, one refers to constructs or vectors based on/comprising constructs A to S. The letter identifies the type of construct used and the same letter could be used to refer to a vector based on/derived from and/or comprising said construct. This is the reason why the ITRs are present in each of the FIG. 1, 2, 4, 5, 7, 8, 13 or 16 depicting each of the AAV viral vectors comprising said construct.


A. Generation of Dual-Gene Adeno-Associated Viral (AAV) Vector Constructs for the Concomitant Expression of Insulin and Glucokinase


In order to develop more effective gene therapy strategies based on adeno-associated viral vector-mediated insulin/glucokinase muscle gene transfer to counteract diabetic hyperglycemia, dual-gene viral constructs encoding insulin and glucokinase were generated to ensure concomitant expression of both transgenes in transduced muscle cells.


Generation of dual-gene AAV1-Ins+Gck vectors will also allow decreasing vector dose, which in turn, should result in reduced risk of capsid-triggered immunity or other toxicities. From a regulatory point of view, the use of a dual vector will greatly facilitate the development of the treatment. Moreover, the use of a dual vector will allow for a dramatic reduction in the cost of manufacturing of AAV vectors.


The generation of such AAV dual vectors that contain both the insulin and glucokinase transgenes and potentially have improved therapeutic efficacy is not, however, entirely routine for a person skilled in the art, as demonstrated below.


In the experimental part, the nucleotide sequence encoding insulin was SEQ ID NO:1, the nucleotide sequence encoding glucokinase was SEQ ID NO:2. The nucleotide sequence of the CMV promoter was SEQ ID NO: 3 used with associated intronic sequence SEQ ID NO:4. The nucleotide sequence of the RSV promoter was SEQ ID NO: 6 with associated intronic sequence SEQ ID NO:23. The nucleotide sequence of the mini CMV promoter was SEQ ID NO:5. The nucleotide sequence of the bGH regulatory region was SEQ ID NO: 7. The nucleotide sequence of the SV40 was SEQ ID NO: 22.


A.1. Dual-Gene AAV-CMV-Insulin-CMV-Glucokinase Construct


In the therapeutic approach that utilized 2 different AAV1 vectors to mediate the gene transfer to the skeletal muscle of the insulin and glucokinase genes when administered to mice and dogs (Mas, A. et al., Diabetes (2006) 55:1546-1553; Callejas, D. et al. Diabetes (2013) 62:1718-1729), the expression of both transgenes was driven by the CMV promoter. Therefore, the most obvious option to be considered while generating the dual-gene AAV constructs would have been to use CMV-Insulin and CMV-Glucokinase expression cassettes within the same vector. However, this option was discarded because the presence of the same promoter in 2 regions within the same construct increases dramatically the high risk of intramolecular recombination events that are sometimes observed during AAV production due to the presence of repeated sequences.


A.2. Dual-Gene CMV-Insulin-RSV-Glucokinase AAV Constructs


Taking into account the restrictions on the use of promoters discussed above, the ubiquitous Rous Sarcoma Virus (RSV) promoter was chosen to drive expression of glucokinase in the dual-gene AAV construct. This promoter was selected because, similar to the CMV promoter, it has been reported to mediate strong transgene expression in muscle cells (Yue Y. et al, 2002, Biotechniques, 33:672, p 676 Development of Multiple Cloning Site cis-Vectors for Recombinant Adeno-Associated Virus Production). Additionally, its small size is convenient given the limited cloning capacity of AAV vectors.


A dual-gene AAV1-Ins+Gck construct bearing the human insulin coding sequence driven by the CMV promoter and the rat glucokinase coding sequence driven by the RSV promoter (FIG. 1) was generated. In this dual-gene construct the SV40 polyA sequence was cloned after the insulin and glucokinase genes:


Construct A: RSV-rGck-CMV-hIns (size: 4.9 kb) (SEQ ID NO: 8) is depicted in FIG. 1.


In addition to the previously described dual-gene AAV1-Ins+Gck construct, two additional single-gene plasmids encoding either human insulin or rat glucokinase were generated, using the same AAV backbone (FIG. 2), for comparison with the dual-gene AAV1-Ins+Gck construct:


Construct B is depicted in FIG. 2: CMV-hIns (SEQ ID NO: 17).


Construct C is depicted in FIG. 2: C: RSV-rGck (SEQ ID NO: 18).


The function of the dual-gene plasmid RSV-rGck-CMV-hIns (construct A) was assessed in vitro before AAV production and insulin and glucokinase were expressed at very high levels (FIG. 3).


Having verified the functionality of the RSV-rGck-CMV-hIns (construct A) in vitro, the plasmid was used to produce the corresponding dual-gene AAV1 vector in HEK293 cells. The yield of the vector batch was, however, low. The first production of AAV1-RSV-rGck-CMV-hIns rendered no AAV vectors and the yield of the second production run was 4E11 viral genomes (vg)/roller bottle (RB), considerably lower than our in house average yield for AAV1 production (expected yield: 2E12 vg/RB). The final size of the AAV constructs was close to the limit of encapsidation capacity of the AAV1, and the observation of low yields could be consistent with the low efficiency of encapsidation of oversized genomes. Nevertheless, this result was not foreseeable because in some cases AAV constructs of approximately 5 kb have been successfully produced by our lab.


A.3. Optimized CMV-Insulin-RSV-Glucokinase Dual-Gene AAV Constructs


Given the relative low yield of the AAV batches produced with the previous dual-gene AAV constructs, we decided to completely remake the dual insulin and glucokinase expression cassettes. To this end, we designed a novel modular system that allowed us the test different combinations of coding sequences (optimized or not, and from different species) and cis-acting sequences (promoters, polyAs) at minimum effort and within optimal size for encapsidation. This new approached greatly simplified vector design.


First, we generated 4 additional dual-gene constructs containing the human insulin coding sequence under the control of the CMV promoter and the human glucokinase coding sequence driven by the RSV promoter. We tested the effect of positioning the insulin expression cassette upstream of the glucokinase expression cassette and viceversa, and also in reverse orientation (FIG. 4).


In addition, in this new set of constructs, the CMV-hInsulin cassette included the SV40 polyA sequence whereas the bovine growth hormone polyA sequence was cloned in the RSV-hGlucokinase cassette, as the latter is shorter and mediates higher transgene expression than the SV40 polyA (Azzoni A R, J Gene Med. 2007: The impact of polyadenylation signals on plasmid nuclease-resistance and transgene expression). The new constructs are:


Construct D is depicted in FIG. 4: CMV-hIns-RSV-hGck (size: 4.7 kb) (SEQ ID NO:9).


Construct E is depicted in FIG. 4: RSV-hGck-CMV-hIns (size: 4.7 kb) (SEQ ID NO:10).


Construct F is depicted in FIG. 4: CMV-hIns(rev)-RSV-hGck (size: 4.7 kb) (SEQ ID NO: 11).


Construct G is depicted in FIG. 4: RSV-hGck-CMV-hIns(rev) (size: 4.7 kb) (SEQ ID NO: 12).


In addition to the aforementioned 4 dual-gene AAV1-Ins+Gck constructs (constructs D, E, F and G)), two additional single-gene plasmids encoding either insulin or glucokinase were generated using the same AAV backbone (FIG. 5) for comparison with the four new dual-gene AAV1-Ins+Gck constructs:


Construct H is depicted in FIG. 5: CMV-hIns (SEQ ID NO:19).


Construct I is depicted in FIG. 5: RSV-hGck (SEQ ID NO: 20).


We assessed the function of the dual-gene constructs D, E, F and G plasmids in vitro in HEK293 cells and the F construct (CMV-hIns(rev)-RSV-rGck) mediated the highest insulin and glucokinase expression (FIG. 6). Therefore, said plasmid was used to produce the corresponding dual-gene AAV1 vector in HEK293 cells. Although the size of the CMV-hIns(rev)-RSV-rGck (construct F) genome construct was within optimal AAV encapsidation capacity, a vector batch of low yield was obtained again (5.5E11 vg/RB). Based on previous observations with other AAV constructs manufactured in our lab, we postulate that, in addition to the size of the vector genome, the conformation of the DNA may also impacts encapsidation efficiency, which could potentially explain the relative low manufacturing yield of this new dual construct.


A.4. Optimized miniCMV-Insulin-RSV-Glucokinase Dual-Gene AAV Constructs


Given that the AAV1-CMV-hIns(rev)-RSV-hGck production rendered a relative low yield, we decided to further decrease the size of the dual-gene construct replacing the CMV promoter by a short version of such promoter, named mini CMV promoter. We generated 4 new dual-gene constructs bearing the human insulin coding sequence under the control of the mini CMV promoter and the human glucokinase coding sequence driven by the RSV promoter. The SV40 and the bGH polyA were used as polyA sequences, respectively. Again, we tested the effect of positioning the insulin expression cassette upstream of the glucokinase expression cassette or viceversa, and also the effect of positioning it the glucokinase expression cassette in reverse orientation (FIG. 7). The new constructs are:


Construct J is depicted in FIG. 7: miniCMV-hIns-RSV-hGck (size: 4 kb) (SEQ ID NO:13).


Construct K is depicted in FIG. 7: RSV-hGck-miniCMV-hIns (size: 4 kb) (SEQ ID NO:14).


Construct L is depicted in FIG. 7: miniCMV-hIns(rev)-RSV-hGck (size: 4 kb) (SEQ ID NO:15).


Construct M is depicted in FIG. 7: RSV-hGck-miniCMV-hIns(rev) (size: 4 kb) (SEQ ID NO:16).


In addition to these 4 new dual-gene AAV1-Ins+Gck constructs (J, K, L and M), an additional single-gene plasmid encoding insulin was generated using the same AAV backbone for comparison with the 4 new dual-gene AAV1-Ins+Gck constructs. The single-gene plasmid encoding Gck was the previously mentioned RSV-hGCK (construct I) (FIG. 8).


Construct N is depicted in FIG. 8: miniCMV-hIns (SEQ ID NO:21).


Construct I is depicted in FIG. 8: RSV-hGCK-bGH (SEQ ID NO:20).


We assessed the function of constructs J, K, L and M dual-gene plasmids in vitro in HEK293 cells and the (L) construct, miniCMV-hIns(rev)-RSV-hGck, mediated the highest expression of insulin and glucokinase (FIG. 9).


This (L) construct (miniCMV-hIns(rev)-RSV-hGck) and the same construct (J) but in sense orientation (miniCMV-hIns-RSV-hGck dual-promoter) were used to produce the corresponding dual-gene AAV1 vectors in HEK293 cells.


In these cases, AAV production yields were within the expected value, being 2.1E12 vg/RB for AAV1-miniCMV-hIns(rev)-RSV-hGck (construct L) and 1.9E12 vg/RB for AAV1-miniCMV-hIns-RSV-hGck (construct J).


B. Increased Transgene Expression and Efficacy of Dual-Gene AAV1-miniCMV-hIns(rev)-RSV-hGck Vectors


B.1. Increased Transgene Expression In Vivo


To verify if the administration of the double-gene AAV1-Ins+Gck vectors was superior than the co-delivery of two single-gene AAV vectors in mediating the expression of insulin and/or glucokinase and/or in the ability to improve glucose disposal in response to a glucose overload, an in vivo experiment was performed in mice.


Two groups of wild type mice were treated with either the 2 single vectors together (constructs N+I) (AAV1-miniCMV-hINS and AAV1-RSV-hGck) or with the dual gene (construct L) (AAV1-miniCMV-hINS-rev-RSV-hGck). Vectors were administered intramuscularly into tibialis and gastrocnemius muscles of both hindlimbs at a dose of 5E10 vg/muscle of each vector (constructs N and I or L).


Three weeks after vector administration, animals were sacrificed and the expression of both transgenes (insulin and glucokinase) was analysed by real time quantitative PCR in the different experimental groups. We observed that the expression of both Insulin (FIG. 10A) and Glucokinase (FIG. 10B) was higher in the muscles obtained from the animals that received the double-gene vector (construct L), in comparison to the combination of the two single vectors (constructs N+I).


B.2. Increased Efficacy In Vivo


To demonstrate the efficacy of the newly designed dual-gene constructs, the ability of the vector to enhance glucose disposal in vivo was assessed in the previous described experimental groups. To this end, a glucose tolerance test was performed in which all groups of mice were injected intraperitoneally with 2 g glucose/kg body weight, and blood glucose levels were determined at different time points.


As observed in FIG. 11, animals injected with the L dual vector showed higher glucose tolerance than animals injected with the combination of the two single vectors.


B.3. Increased Efficacy In Vivo in Diabetic Mice


In order to assess efficacy of the dual-gene (construct L) vector (AAV1-miniCMV-hIns(rev)-RSV-hGck) in diabetic animals, a dose of 5E10 vg/muscle was administered intramuscularly into tibialis and gastrocnemius muscles of both hindlimbs of mice treated with streptozotocin (STZ) to trigger the diabetic process. As control, the 2 single vectors were administered together (construct N+I) (AAV1-miniCMV-hINS and AAV1-RSV-hGck).


Eight weeks post-AAV administration, a glucose tolerance test was performed in which all groups of mice were injected intraperitoneally with 1 g glucose/kg body weight, and blood glucose levels were determined at different time points.


As observed in FIG. 12A, diabetic animals injected with the L dual vector showed decreased levels of glycaemia in fasted conditions in comparison with animals treated with the combination of the N+I single vectors. Noticeably, glucose levels displayed by animals treated with the L dual-gene vector were similar to those of non-diabetic healthy mice (FIG. 12A). Moreover, diabetic animals injected with the L dual vector showed higher glucose tolerance than animals injected with the combination of the two single vectors (N+I) (FIG. 12B-C).


C. Increased Transgene Expression and Efficacy of Dual-Gene AAV1-miniCMV-Insulin-bGH(rev)-RSV-Glucokinase-SV40


C1. Generation of Optimized miniCMV-Insulin-bGH(rev)-RSV-Glucokinase-SV40 Dual-Gene AAV Constructs


Given that polyadenylation signals have been reported to influence transgene expression (Azzoni et al., J Gene Med 2007; 9: 392-40.), we generated a new dual-gene construct bearing the human insulin coding sequence under the control of the mini CMV promoter and the bGH polyA (expression cassette in reverse orientation) and the human glucokinase coding sequence driven by the RSV promoter and SV40 polyA (construct Q; same construct as L but with polyA signals interchanged). Two additional single-gene plasmids encoding insulin and glucokinase (constructs O and P, respectively) were generated using the same AAV backbone for comparison with the new dual-gene AAV1-Ins+Gck (Q) construct (FIG. 13). The new constructs are:


Construct O is depicted in FIG. 13: miniCMV-hIns-bGH (size: 1.4 kb) (SEQ ID NO:25).


Construct P is depicted in FIG. 13: RSV-hGck-SV40 (size: 2.9 kb) (SEQ ID NO:26).


Construct Q is depicted in FIG. 13: miniCMV-hIns-bGH(rev)-RSV-hGck-SV40 (size: 4 kb) (SEQ ID NO:27).


C.2. Increased Transgene Expression In Vivo


Two groups of wild type mice were treated with either the 2 single vectors together (constructs O+P) (AAV1-miniCMV-hIns-bGH and AAV1-RSV-hGck-SV40) or with the dual gene (construct Q) (AAV1-miniCMV-Insulin-bGH(rev)-RSV-Glucokinase-SV40). Vectors were administered intramuscularly into tibialis and gastrocnemius muscles of both hindlimbs at a dose of 5E10 vg/muscle of each vector (constructs O and P or Q).


Three weeks after vector administration, animals were sacrificed and the expression of both transgenes (insulin and glucokinase) was analysed by real time quantitative PCR in the different experimental groups. We observed that the expression of both Insulin (FIG. 14A) and Glucokinase (FIG. 14B) was higher in the muscles obtained from the animals that received the double-gene vector (construct Q), in comparison to the combination of the two single vectors (constructs O+P).


C.3. Increased Efficacy In Vivo


To demonstrate the efficacy of the newly designed Q dual-gene construct (AAV1-miniCMV-Insulin-bGH(rev)-RSV-Glucokinase-SV40), the ability of the vector to enhance glucose disposal in vivo was assessed in the experimental groups previously described in section C.2. To this end, a glucose tolerance test was performed in which all groups of mice were injected intraperitoneally with 2 g glucose/kg body weight, and blood glucose levels were determined at different time points.


As observed in FIG. 15, animals injected with the Q dual vector showed higher glucose tolerance than animals injected with the combination of the two single vectors (O+P).


D. Increased Transgene Expression and Efficacy of Dual-Gene AAV1-miniCMV-hIns-SV40enhancer(Rev)-RSV-hGck-bGH


D.1. Generation of Optimized miniCMV-Insulin-SV40enhancer-RSV-Glucokinase-bGH Dual-Gene AAV Constructs


In order to increase the expression levels of insulin, the enhancer of the SV40 was incorporated at the 3′ end of the polyA. A new dual-gene construct bearing the human insulin coding sequence under the control of the mini CMV promoter and the SV40 enhancer at the 3′ end of the SV40 polyA (expression cassette in reverse orientation) and the human glucokinase coding sequence driven by the RSV promoter and the bGH polyA (construct S) was generated (FIG. 16). As control, a single-gene plasmid encoding insulin under the control of the mini CMV promoter and the SV40 enhancer at the 3′ end of the SV40 polyA (construct R) was generated (FIG. 16). The single-gene plasmid encoding Gck was the previously mentioned RSV-hGCK (construct I) (FIG. 8). The new constructs are:


Construct R is depicted in FIG. 16: miniCMV-hIns-SV40enhancer (size: 1.6 kb) (SEQ ID NO: 28).


Construct S is depicted in FIG. 16: miniCMV-hIns-SV40enhancer(rev)-RSV-hGck-bGH (size: 4.2 kb) (SEQ ID NO: 29).


D.2. Increased Transgene Expression In Vivo


Two groups of wild type mice were treated with either the 2 single vectors together (constructs R+I) (AAV1-miniCMV-hIns-SV40enhancer and AAV1-RSV-hGck) or with the dual gene (construct S) (AAV1-miniCMV-hIns-SV40enhancer(rev)-RSV-hGck-bGH). Vectors were administered intramuscularly into tibialis and gastrocnemius muscles of both hindlimbs at a dose of 5E10 vg/muscle of each vector (constructs R and I or S).


Three weeks after vector administration, animals were sacrificed and the expression of both transgenes (insulin and glucokinase) was analysed by real time quantitative PCR in the different experimental groups. We observed that the expression of both Insulin (FIG. 17A) and Glucokinase (FIG. 17B) was higher in the muscles obtained from the animals that received the double-gene vector (construct S), in comparison to the combination of the two single vectors (construct R+I).


D.3. Increased Efficacy In Vivo


To demonstrate the efficacy of the newly designed S dual-gene construct (AAV1-miniCMV-hIns-SV40enhancer(rev)-RSV-hGck-bGH), the ability of the vector to enhance glucose disposal in vivo was assessed in the experimental groups previously described in section D.2. To this end, a glucose tolerance test was performed in which all groups of mice were injected intraperitoneally with 2 g glucose/kg body weight, and blood glucose levels were determined at different time points.


As observed in FIG. 18, animals injected with the S dual vector showed higher glucose tolerance than animals injected with the combination of the two single vectors (R+I).


In conclusion, we believe the new approach based on the use of the dual-gene AAV1-INS-Gck vector allows for more—or at least the same—expression of therapeutic transgenes at considerably lower vector doses (half the vector genomes in dual-gene-treated mice), when compared to the combination of the two single vectors.


As the actions of insulin and glucokinase are synergic to create a glucose sensor in muscle, the use of dual-gene vectors allows the delivery of adequate amounts of both transgenes to the same cell. Therefore, the new approach based on the use of the dual-gene viral vector improves glucose metabolization to a higher extent when compared to the combination of the two single vectors. Moreover, it also allows for higher levels of expression of the transgenes using half the dose of viral genomes.


Sequences








TABLE 1







Overview of sequences










SEQ ID NO:
Type of sequence














1
cDNA human insulin



2
cDNA human glucokinase



3
CMV promoter



4
Intronic sequence associated with




CMV promoter



5
Mini CMV promoter



6
RSV promoter



7
bGH



8
Construct A



9
Construct D



10
Construct E



11
Construct F



12
Construct G



13
Construct J



14
Construct K



15
Construct L



16
Construct M



17
Construct B



18
Construct C



19
Construct H



20
Construct I



21
Construct N



22
SV40 polyadenylation signal



23
Intronic sequence associated with RSV




promoter



24
Equivalent mini CMV promoter



25
Construct O



26
Construct P



27
Construct Q



28
Construct R



29
Construct S



30
SV40 polyadenylation signal and




enhancer sequence



31
5′ITR



32
3′ITR



33
SV40 enhancer sequence

















CMV Promoter (Full): (SEQ ID NO: 3)


Human cytomegalovirus (CMV) immediate early 


enhancer and promoter


TGTAGTTAATGATTAACCCGCCATGCTACTTATCTACAGATCTCAATAT





TGGCCATTAGCCATATTATTCATTGGTTATATAGCATAAATCAATATTG





GCTATTGGCCATTGCATACGTTGTATCTATATCATAATATGTACATTTA





TATTGGCTCATGTCCAATATGACCGCCATGTTGGCATTGATTATTGACT





AGTTATTAATAGTAATCAATTACGGGGTCATTAGTTCATAGCCCATATA





TGGAGTTCCGCGTTACATAACTTACGGTAAATGGCCCGCCTGGCTGAC





CGCCCAACGACCCCCGCCCATTGACGTCAATAATGACGTATGTTCCCA





TAGTAACGCCAATAGGGACTTTCCATTGACGTCAATGGGTGGAGTATT





TACGGTAAACTGCCCACTTGGCAGTACATCAAGTGTATCATATGCCAA





GTCCGCCCCCTATTGACGTCAATGACGGTAAATGGCCCGCCTGGCATT





ATGCCCAGTACATGACCTTACGGGACTTTCCTACTTGGCAGTACATCTA





CGTATTAGTCATCGCTATTACCATGGTGATGCGGTTTTGGCAGTACACC





AATGGGCGTGGATAGCGGTTTGACTCACGGGGATTTCCAAGTCTCCAC





CCCATTGACGTCAATGGGAGTTTGTTTTGGCACCAAAATCAACGGGAC





TTTCCAAAATGTCGTAACAACTGCGATCGCCCGCCCCGTTGACGCAAA





TGGGCGGTAGGCGTGTACGGTGGGAGGTCTATATAAGCAGAGCTCGTT





TAGTGAACCGTCAGATCACTAG





Intronic sequence associated with CMV 


promoter (SEQ ID NO: 4)


TATTGCGGTAGTTTATCACAGTTAAATTGCTAACGCAGTCAGTGCTTCT





GACACAACAGTCTCGAACTTAAGCTGCAGTGACTCTCTTAAGGTAGCC





TTGCAGAAGTTGGTCGTGAGGCACTGGGCAGGTAAGTATCAAGGTTAC





AAGACAGGTTTAAGGAGACCAATAGAAACTGGGCTTGTCGAGACAGAG





AAGACTCTTGCGTTTCTGATAGGCACCTATTGGTCTTACTGACATCCAC





TTTGCCTTTCTCTCCACAGGTGTCCACTCCCAGTTCAATTACAGCTCTT





AAGGCTAGAGTACTTAATACGACTCACTATAGAATACGACTCACTATAG





GGAGAC





Human Insulin(A718) Cdna (SEQ ID NO: 1)


CTTCTGCCATGGCCCTGTGGATGCGCCTCCTGCCCCTGCTGGCGCTGC





TGGCCCTCTGGGGACCTGACCCAGCCGCAGCCTTTGTGAACCAACACC





TGTGCGGCTCAGATCTGGTGGAAGCTCTCTACCTAGTGTGCGGGGAAC





GAGGCTTCTTCTACACACCCAGGACCAAGCGGGAGGCAGAGGACCTGC





AGGTGGGGCAGGTGGAGCTGGGCGGGGGCCCTGGTGCAGGCAGCCTG





CAGCCCTTGGCCCTGGAGGGGTCGCGACAGAAGCGTGGCATTGTGGA





ACAATGCTGTACCAGCATCTGCTCCCTCTACCAGCTGGAGAACTACTG





CAACTAGACGCAGCC





SV40 PolyA (SEQ ID NO: 22)


GGTACCAGCGCTGTCGAGGCCGCTTCGAGCAGACATGATAAGATACAT





TGATGAGTTTGGACAAACCACAACTAGAATGCAGTGAAAAAAATGCTT





TATTTGTGAAATTTGTGATGCTATTGCTTTATTTGTAACCATTATAAGC





TGCAATAAACAAGTTAACAACAACAATTGCATTCATTTTATGTTTCAGG





TTCAGGGGGAGATGTGGGAGGTTTTTTAAAGCAAGTAAAACCTCTACA





AATGTGGTAAAATCGATTAGGATCTTCCTAGAGCATGGCTACCTAGAC





ATGGCTCGACAGATCAGCGCTCATGCTCTGGAAGATCTCG





RSV Promoter (SEQ ID NO: 6)


CATGTTTGACAGCTTATCATCGCAGATCCGTATGGTGCACTCTCAGTAC





AATCTGCTCTGATGCCGCATAGTTAAGCCAGTATCTGCTCCCTGCTTGT





GTGTTGGAGGTCGCTGAGTAGTGCGCGAGCAAAATTTAAGCTACAACA





AGGCAAGGCTTGACCGACAATTGCATGAAGAATCTGCTTAGGGTTAGG





CGTTTTGCGCTGCTTCGCGATGTACGGGCCAGATATTCGCGTATCTGA





GGGGACTAGGGTGTGTTTAGGCGAAAAGCGGGGCTTCGGTTGTACGC





GGTTAGGAGTCCCCTCAGGATATAGTAGTTTCGCTTTTGCATAGGGAG





GGGGAAATGTAGTCTTATGCAATACTCTTGTAGTCTTGCAACATGGTAA





CGATGAGTTAGCAACATGCCTTACAAGGAGAGAAAAAGCACCGTGCAT





GCCGATTGGTGGAAGTAAGGTGGTACGATCGTGCCTTATTAGGAAGGC





AACAGACGGGTCTGACATGGATTGGACGAACCACTAAATTCCGCATTG





CAGAGATATTGTATTTAAGTGCCTAGCTCGATACAATAAACGCCATTTG





ACCATTCACCACATTGGTGTGCACCTCCAAGCTGGGTACCAGCT





Intronic sequence associated with RSV 


promoter (SEQ ID NO: 23)


GAGATCTGCTTCAGCTGGAGGCACTGGGCAGGTAAGTATCAAGGTTAC





AAGACAGGTTTAAGGAGACCAATAGAAACTGGGCTTGTCGAGACAGAG





AAGACTCTTGCGTTTCTGATAGGCACCTATTGGTCTTACTGACATCCAC





TTTGCCTTTCTCTCCACAGGTGCAGCTGCTGCAGCGG





Human GcK (SEQ ID NO: 2)


TCGAGACCATGGCGATGGATGTCACAAGGAGCCAGGCCCAGACAGCCT





TGACTCTGGTAGAGCAGATCCTGGCAGAGTTCCAGCTGCAGGAGGAGG





ACCTGAAGAAGGTGATGAGACGGATGCAGAAGGAGATGGACCGCGGC





CTGAGGCTGGAGACCCATGAAGAGGCCAGTGTGAAGATGCTGCCCACC





TACGTGCGCTCCACCCCAGAAGGCTCAGAAGTCGGGGACTTCCTCTCC





CTGGACCTGGGTGGCACTAACTTCAGGGTGATGCTGGTGAAGGTGGGA





GAAGGTGAGGAGGGGCAGTGGAGCGTGAAGACCAAACACCAGATGTA





CTCCATCCCCGAGGACGCCATGACCGGCACTGCTGAGATGCTCTTCGA





CTACATCTCTGAGTGCATCTCCGACTTCCTGGACAAGCATCAGATGAA





ACACAAGAAGCTGCCCCTGGGCTCACCTTCTCCTTTCCTGTGAGGCA





CGAAGACATCGATAAGGGCATCCTTCTCAACTGGACCAAGGGCTTCAA





GGCCTCAGGAGCAGAAGGGAACAATGTCGTGGGGCTTCTGCGAGACG





CTATCAAACGGAGAGGGGACTTTGAAATGGATGTGGTGGCAATGGTGA





ATGACACGGTGGCCACGATGATCTCCTGCTACTACGAAGACCATCAGT





GCGAGGTCGGCATGATCGTGGGCACGGGCTGCAATGCCTGCTACATG





GAGGAGATGCAGAATGTGGAGCTGGTGGAGGGGGACGAGGGCCGCAT





GTGCGTCAATACCGAGTGGGGCGCCTTCGGGGACTCCGGCGAGCTGG





ACGAGTTCCTGCTGGAGTATGACCGCCTGGTGGACGAGAGCTCTGCAA





ACCCCGGTCAGCAGCTGTATGAGAAGCTCATAGGTGGCAAGTACATGG





GCGAGCTGGTGCGGCTTGTGCTGCTCAGGCTCGTGGACGAAAACCTGC





TCTTCCACGGGGAGGCCTCCGAGCAGCTGCGCACACGCGGAGCCTTCG





AGACGCGCTTCGTGTCGCAGGTGGAGAGCGACACGGGCGACCGCAAG





CAGATCTACAACATCCTGAGCACGCTGGGGCTGCGACCCTCGACCACC





GACTGCGACATCGTGCGCCGCGCCTGCGAGAGCGTGTCTACGCGCGCT





GCGCACATGTGCTCGGCGGGGCTGGCGGGCGTCATCAACCGCATGCG





CGAGAGCCGCAGCGAGGACGTAATGCGCATCACTGTGGGCGTGGATG





GCTCCGTGTACAAGCTGCACCCCAGCTTCAAGGAGCGGTTCCATGCCA





GCGTGCGCAGGCTGACGCCCAGCTGCGAGATCACCTTCATCGAGTCGG





AGGAGGGCAGTGGCCGGGGCGCGGCCCTGGTCTCGGCGGTGGCCTGT





AAGAAGGCCTGTATGCTGGGCCAGTGA





bGH PolyA (SEQ ID NO: 7)


CACGTGGAGCTCGCTGATCAGCCTCGACTGTGCCTTCTAGTTGCCAGC





CATCTGTTGTTTGCCCCTCCCCCGTGCCTTCCTTGACCCTGGAAGGTGC





CACTCCCACTGTCCTTTCCTAATAAAATGAGGAAATTGCATCGCATTGT





CTGAGTAGGTGTCATTCTATTCTGGGGGGTGGGGTGGGGCAGGACAG





CAAGGGGGAGGATTGGGAAGACAATAGCAGGCATGCTGGGGATGCGG





TGGGCTCTATGGCCACGTG





Mini-CMV: cmv intermediate early 


promoter (SEQ ID NO: 5)


TATGCCAAGTACGCCCCCTATTGACGTCAATGACGGTAAATGGCCCGC





CTGGCATTATGCCCAGTACATGACCTTATGGGACTTTCCTACTTGGCAG





TACATCTACGTATTAGTCATCGCTATTACCATGGTGATGCGGTTTTGGC





AGTACATCAATGGGCGTGGATAGCGGTTTGACTCACGGGGATTTCCAA





GTCTCCACCCCATTGACGTCAATGGGAGTTTGTTTTGGCACCAAAATCA





ACGGGACTTTCCAAAATGTCGTAACAACTCCGCCCCATTGACGCAAAT





GGGCGGTAGGCGTGTACGGTGGGAGGTCTATATAAGCAGAGCTCTCTG





GCTAACTAGAGAACCCACTGCTTAACTGGCTTATCGAAATTAATACGAC





TCACTATAGGGAGACCCAAGCTT









A: RSV-rGck-CMV-hIns (SEQ ID NO:8; FIG. 1)












pGG2-RSV-rGck-CMV-hInsplasmid sequence
















   1
CTAGACATGG CTCGACAGAT CTCAATATTG GCCATTAGCC AMATTATTCA





  51
TTGGTTATAT AGCAMAAATC AATATTGGCT ATTGGCCATT GCATACGTTG





 101
TATCTATATC ATAATATGTA CATTTATATT GGCTCATGTC CAATATGACC





 151
GCCATGTTGG CATTGATTAT TGACTAGTTA TTAATAGTAA TCAATTACGG





 201
GGTCATTAGT TCATAGCCCA TATATGGAGT TCCGCGTTAC ATAACTTACG





 251
GTAAATGGCC CGCCTGGCTG ACCGCCCAAC GACCCCCGCC CATTGACGTC





 301
AATAATGACG TATGTTCCCA TAGTAACGCC AATAGGGACT TTCCATTGAC





 351 
GTCAATGGGT GGAGTATTTA CGGTAAACTG CCCACTTGGC AGTACATCAA





 401 
GTGTATCATA TGCCAAGTCC GCCCCCTATT GACGTCAATG ACGGTAAATG





 451 
GCCCGCCTGG CATTATGCCC AGTACATGAC CTTACGGGAC TTTCCTACTT





 501 
GGCAGTACAT CTACGTATTA GTCATCGCTA TTACCATGGT GATOCGGTTT





 551 
TGGCAGTACA CCAATGGGCG TGGATAGCGG TTTGACTCAC GGGGATTTCC





 601 
AAGTCTCCAC CCCATTGACG TCAATGGGAG TTTGTTTTGG CACCAAAATC





 651 
AACGGGACTT TCCAAAATGT CGTAACAACT GCGATCGCCC GCCCCGTTGA





 701 
CGCAAATGGG CGGTAGGCGT GTACGGTGGG AGGTCTATAT AAGCAGAGCT





 751 
CGTTTAGTGA ACCGTCAGAT CACTAGAAGC TTTATTGCGG TAGTTTATCA





 801 
CAGTTAAATT GCTAACGCAG TCAGTGCTTC TGACACAACA GTCTCGAACT





 851 
TAAGCTGCAG TGACTCTCTT AAGGTAGCCT TGCAGAAGTT GGTCGTGAGG





 901 
CACTGGGCAG GTAAGTATCA AGGTTACAAG ACAGGTTTAA GGAGACCAAT





 951 
AGAAACTGGG CTTGTCGAGA CAGAGAAGAC TCTTGCGTTT CTGATAGGCA





1001 
CCTATTGGTC TTACTGACAT CCACTTTGCC TTTCTCTCCA CAGGTGTCCA





1051 
CTCCCAGTTC AATTACAGCT CTTAAGGCTA GAGTACTTAA TACGACTCAC





1101 
TATAGGCTAG CCTCGAGAAT TCTGCCATGG CCCTGTGGAT GCGCCTCCTG





1151 
CCCCTGCTGG CGCTGCTGGC CCTCTGGGGA CCTGACCCAG CCGCAGCCTT





1201 
TGTGAACCAA CACCTGTGCG GCTCAGATCT GGTGGAAGCT CTCTACCTAG





1251 
TGTGCGGGGA ACGAGGCTTC TTCTACACAC CCAGGACCAA GCGGGAGGCA





1301 
GAGGACCTGC AGGTGGGGCA GGTGGAGCTG GGCGGGGGCC CTGGTGCAGG





1351 
CAGCCTGCAG CCCTTGGCCC TGGAGGGGTC GCGACAGAAG CGTGGCATTG





1401 
TGGAACAATG CTGTACCAGC ATCTGCTCCC TCTACCAGCT GGAGAACTAC





1451 
TGCAACTAGA CGCAGCTGCA AGCTTATCGA TACCGTCGAC CCGGGCGGCC





1501 
GCTTCCCTTT AGTGAGGGTT AATGCTTCGA GCAGACATGA TAAGATACAT





1551 
TGATGAGTTT GGACAAACCA CAACTAGAAT GCAGTGAAAA AAATGCTTTA





1601 
TTTGTGAAAT TTGTGATGCT ATTGCTTTAT TTGTAACCAT TATAAGCTGC





1651 
AATAAACAAG TTAACAACAA CAATTOCATT CATTTTATGT TTCAGGTTCA





1701 
GGGGGAGATG TGGGAGGTTT TTTAAAGCAA GTAAAACCTC TACAAATGTG





1751 
GTAAAATCCG ATAAGGGACT AGAGCATGGC TACGTAGATA AGTAGCATGG





1801 
CGGGTTAATC ATTAACTACA AGGAACCCCT AGTGATGGAG TTGGCCACTC





1851 
CCTCTCTGCG CGCTCGCTCG CTCACTGAGG CCGGGCGACC AAAGOTCGCC





1901 
CGACGCCCGG GCTTTGCCCG GGCGGCCTCA GTGAGCGAGC GAGCGCGCCA





1951 
GCTGGCGTAA TAGCGAAGAG GCCCGCACCG ATCGCCCTTC CCAACAGTTG





2001 
CGCAGCCTGA ATGGCGAATG GAATTCCAGA CGATTGAGCG TCAAAATGTA





2051 
GGTATTTCCA TGAGCGTTTT TCCGTTGCAA TGGCTGGCGG TAATATTGTT





2101 
CTGGATATTA CCAGCAAGGC CGATAGTTTG AGTTCTTCTA CTCAGGCAAG





2151 
TGATGTTATT ACTAATCAAA GAAGTATTGC GACAACGGTT AATTTGCGTG





2201 
ATGGACAGAC TCTTTTACTC GGTGGCCTCA CTGATTATAA AAACACTTCT





2251 
CAGGATTCTG GCGTACCGTT CCTGTCTAAA ATCCCTTTAA TCGGCCTCCT





2301 
GTTTAGCTCC CGCTCTGATT CTAACGAGGA AAGCACGTTA TACGTGCTCG





2351 
TCAAAGCAAC CATAGTACGC GCCCTGTAGC GGCGCATTAA GCGCGGCGGO





2401 
TGTGGTGGTT ACGCGCAGCG TGACCGCTAC ACTTGCCAGC GCCCTAGCGC





2451 
CCGCTCCTTT CGCTTTCTTC CCTTCCTTTC TCGCCACGTT CGCCGGCTTT





2501 
CCCCGTCAAG CTCTAAATCG GGGGCTCCCT TTAGGGTTCC GATTTAGTGC





2551 
TTTACGGCAC CTCGACCCCA AAAAACTTGA TTAGGGTGAT GGTTCACGTA





2601 
GTGGGCCATC GCCCTGATAG ACGGTTTTTC GCCCTTTGAC GTTGGAGTCC





2651 
ACGTTCTTTA ATAGTGGACT CTTGTTCCAA ACTGGAACAA CACTCAACCC





2701 
TATCTCGGTC TATTCTTTTG ATTTATAAGG GATTTTGCCG ATTTCGGCCT





2751 
ATTGGTTAAA AAATGAGCTG ATTTAACAAA AATTTAACGC GAATTTTAAC





2801 
AAAATATTAA CGTCTACAAT TTAAATATTT GCTTATACAA TCTTCCTGTT





2851 
TTTGGGGCTT TTCTGATTAT CAACCGGGGT ACATATGATT GACATGCTAG





2901 
TTTTACGATT ACCGTTCATC GATTCTCTTG TTTGCTCCAG ACTCTCAGGC





2951 
AATGACCTGA TAGCCTTTGT AGAGACCTCT CAAAAATAGC TACCCTCTCC





3001 
GGCATGAATT TATCAGCTAG AACGGTTGAA TATCATATTG ATGGTGATTT





3051 
GACTGTCTCC GGCCTTTCTC ACCCGTTTGA ATCTTTACCT ACACATTACT





3101 
CAGGCATTGC ATTTAAAATA TATGAGGGTT CTAAAAATTT TTATCCTTGC





3151
GTTGAAATAA AGGCTTCTCC CGCAAAAGTA TTACAGGGTC ATAATGTTTT





3201
TGGTACAACC GATTTAGCTT TATGCTCTGA GGCTTTATTG CTTAATTTTG





3251
CTAATTCTTT GCCTTGCCTG TATGATTTAT TGGATGTTGG AATCGCCTGA





3301
TGCGGTATTT TCTCCTTACG CATCTGTGCG GTATTTCACA CCGCATATGG





3351
TGCACTCTCA GTACAATCTG CTCTGATGCC CGATAGTTAA GCCAGCCCCG





3401
ACACCCGCCA ACACCCGCTG ACGCGCCCTG AGGGGCTTGT CTGCTCCCGG





3451
CATCCGCTTA CAGACAAGCT GTGACCGTCT CCGGGAGCTG CATGTGTCAG





3501
AGGTTTTCAC CGTCATCACC GAAACGCGCG AGACGAAAGG GCCTCGTGAT





3551
ACGCCTATTT TTATAGGTTA ATGTCATGAT AATAATGGTT TCTTAGACGT





3601
CAGGTGGCAC TTTTCGGGGA AATGTGCGCG GAACCCCTAT TTGTTTATTT





3651
TTCTAAATAC ATTCAAATAT CTATCCGCTC ATGAGACAAT AACCCTGATA





3701
AATGCTTCAA TATTATTGAA AAAGGAAGAG TATGAGTATT CAACATTTCC





3751
GTGTCGCCCT TATTCCCTTT TTTGCGGCAT TTTGCCTTCC TGTTTTTGCT





3801
CACCCAGAAA CGCTGGTGAA AGTAAAAGAT GCTGAAGATC AGTTGGGTGC





3851
ACGAGTGGGT TACATCGAAC TGGATCTCAA CAGCGGTAAG ATCCTTGAGA





3901
GTTTTCGCCC CGAAGAACGT TTTCCAATGA TGAGCACTTT TAAAGTTCTG





3951
CTATGTGGCG CGGTATTATC CCGTATTGAC GCCGGGCAAG AGCAACTCGG





4001
TCGCCGCATA CACTATTCTC AGAATGACTT GGTTGAGTAC TCACCAGTCA





4051
CAGAAAAGCA TCTTACGGAT GGCATGACAG TAAGAGAATT ATGCAGTGCT





4101
GCCARAACCA TGAGTGATAA CACTFCGGCC AACTTACTTC TGACAACGAT





4151
CGGAGGACCG AAGGAGCTAA CCGCTTTTTT GCACAACATG GGGGATCATG





4201
TAACTCGCCT TGATCGTTGG GAACCGGAGC TGAATGAAGC CATACCAAAC





4251
GACGAGCGTG ACACCACGAT GCCTGTAGCA ATGGCAACAA CGTTGCGCAA





4301
ACTATTAACT GGCGAACTAC TTACTCTAGC TTCCCGGCAA CAATTAATAG





4351
ACTGGATGGA GGCGGATAAA GTTGCAGGAC CACTTCTGCG CTCGGCCCTT





4401
CCGGCTGGCT GGTTTATTGC TGATAAATCT GGAGCCGGTG AGCGTGGGTC





4451
TCGCGGTATC ATTGCAGCAC TGGGGCCAGA TGGTAAGCCC TCCCGTATCG





4501
TAGTTATCTA CACGACGGGG AGTCAGGCAA CTATGGATGA ACGAAATAGA





4551
CAGATCGCTG AGATAGGTGC CTCACTGATT AAGCATTGGT AACTGTCAGA





4601
CCAAGTTTAC TCATATATAC TTTAGATTGA TTTAAAACTT CATTTTTAAT





4651
TTAAAAGGAT CTAGGTGAAG ATCCTTTTTG ATAATCTCAT GACCAAAATC





4701
CCTTAACGTG AGTTTTCGTT CCACTGAGCG TCAGACCCCG TAGAAAAGAT





4751
CAAAGGATCT TCTTGAGATC CTTTTTTTCT GCGCGTAATC TGCTGCTTGC





4801
AAACAAAAAA ACCACCGCTA CCAGCGGTGG TTTGTTTGCC GGATCAAGAG





4851
CTACCAACTC TTTTTCCGAA GGTAACTGGC TTCAGCAGAG CGCAGATACC





4901
AAATACTGTC CTTCTAGTGT AGCCGTAGTT AGGCCACCAC TTCAAGAACT





4951
CTGTAGCACC GCCTACATAC CTCGCTCTGC TAATCCTGTT ACCAGTGGCT





5001
GCTGCCACTG GCGATAAGTC GTGTCTTACC GGGTTGGACT CAAGACGATA





5051
GTTACCGGAT AAGGCGCAGC GGTCGGGCTG AACGGGGGGT TCGTGCACAC





5101
AGCCCAGCTT GGAGCGAACG ACCTACACCG AACTGAGATA CCTACAGCGT





5151
GAGCTATGAG AAAGCGCCAC GCTTCCCGAA GGGAGAAAGG CGGACAGGTA





5201
TCCGGTAAGC GGCAGGGTCG GAACAGGAGA GCGCACGAGG GAGCTTCCAG





5251
GGGGAAACGC CTGGTATCTT TATAGTCCTG TCGGGTTTCG CCACCTCTGA





5301
CTTGAGCGTC GATTTTTGTG ATGCTCGTCA GGGGGGCGGA GCCTATGGAA





5351
AAACGCCAGC AACGCGGCCT TTTTACGGTT CCTGGCCTTT TGCTGGCCTT





5401
TTGCTCACAT GTTCTTTCCT GCGTTATCCC CTGATTCTGT GGATAACCGT





5451
ATTACCGCCT TTGAGTGAGC TGATACCGCT CGCCGCAGCC GAACGACCGA





5501
GCGCAGCGAG TCAGTGAGCG AGGAAGCGGA AGAGCGCCCA ATACGCAAAC





5551
CGCCTCTCCC CGCGCGTTGG CCGATTCATT AATGCAGCAG CTGCGCGCTC





5601
GCTCGCTCAC TGAGGCCGCC CGGGCAAAGC CCGGGCGTCG GGCGACCTTT





5651
GGTCGCCCGG CCTCAGTGAG CGAGCGAGCG CGCAGAGAGG GAGTGGCCAA





5701
CTCCATCACT AGGGGTTCCT TGTAGTTAAT GATTAACCCG CCATGCTACT





5751
TATCTACGTA GCCATGCTAT AGGTAGCCAT GCTCTGGAAG ATCTCGACGC





5801
GTCATGTTTG ACAGCTTATC ATCGCAGATC GCTATGGTGC ACTCTCAGTA





5851
CAATCTGCTC TGATGCCGCA TAGTTAAGCC AGTATCTGCT CCCTGCTTGT





5901
GTGTTGGAGG TCGCTGAGTA GTGCGCGAGC AAAATTTAAG CTACAACAAG





5951
GCAAGGCTTG ACCGACAATT GCATGAAGAA TCTGCTTAGG GTTAGGCGTT





6001
TTGCGCTGCT TCGCGATGTA CGGGCCAGAT ATTCGCGTAT CTGAGGGGAC





6051
TAGGGTGTGT TTAGGCGAAA AGCGGGGCTT CGGTTGTACG CGGTTAGGAG





6101
TCCCCTCAGG ATATAGTAGT TTCGCTTTTG CATAGGGAGG GGGAAATGTA





6151
GTCTTATGCA ATACTCTTGT AGTCTTGCAA CATGGTAACG ATGAGTTAGC





6201
AACATGCCTT ACAAGGAGAG AAAAAGCACC GTGCATGCCG ATTGGTGGAA





6251
GTAAGGTGGT ACGATCGTGC CTTATTAGGA AGGCAACAGA CGGGTCTGAC





6301
ATGGATTGGA CGAACCACTA AATTCCGCAT TGCAGAGATA TTGTATTTAA





6351
GTGCCTAGCT CGATACAATA AACGCCATTT GACCATTCAC CACATTGGTG





6401
TGCACCTCCA AGCTGGGTAC CAGCTGCTAG CAAGCTTGAG ATCTGCTTCA





6451
GCTGGAGGCA CTGGGCAGGT AAGTATCAAG GTTACAAGAC AGGTTTAAGG





6501
AGACCAATAG AAACTGGGCT TGTCGAGACA GAGAAGACTC TTGCGTTTCT





6551
GATAGGCACC TATTGGTCTT ACTGACATCC ACTTTGCCTT TCTCTCCACA





6601
GGTGCAGCTG CTGCAGCGGG AATTCAACAG GTGGCCTCAG GAGTCAGGAA





6651
CATCTCTACT TCCCCAACGA CCCCTGGGTT GTCCTCTCAG AGATGGCTAT





6701
GGATACTACA AGGTGTGGAG CCCAGTTGTT GACTCTGGTC GAGCAGATCC





6751
TGGCAGAGTT CCAGCTGCAG GAGGAAGACC TGAAGAAGGT GATGAGCCGG





6801
ATGCAGAAGG AGATGGACCG TGGCCTGAGG CTGGAGACCC ACGAGGAGGC





6851
CAGTGTAAAG ATGTTACCCA CCTACGTGCG TTCCACCCCA GAAGGCTCAG





6901
AAGTCGGAGA CTTTCTCTCC TTAGACCTGG GAGGAACCAA CTTCAGAGTG





6951
ATGCTGGTCA AAGTGGGAGA GGGGGAGGCA GGGCAGTGGA GCGTGAAGAC





7001
AAAACACCAG ATGTACTCCA TCCCCGAGGA CGCCATGACG GGCACTGCCG





7051
AGATGCTCTT TGACTACATC TCTGAATGCA TCTCTGACTT CCTTGACAAG





7101
CARCAGATGA AGCACAAGAA ACTGCCCCTG GGCTTCACCT TCTCCTTCCC





7151
TGTGAGGCAC GAAGACCTAG ACAAGGGCAT CCTCCTCAAT TGGACCAAGG





7201
GCTTCAAGGC CTCTGGAGCA GAAGGGAACA ACATCGTAGG ACTTCTCCGA





7251
GATGCTATCA AGAGGAGAGG GGACTTTGAG ATGGATGTGG TGGCAATGGT





7301
GAACGACACA GTGGCCACAA TGATCTCCTG CTACTATGAA GACCGCCAAT





7351
GTGAGGTCGG CATGATTGTG GGCACTGGCT GCAATGCCTG CTACATGGAG





7401
GAAATGCAGA ATGTGGAGCT GGTGGAAGGG GATGAGGGAC GCATGTGCGT





7451
CAACACGGAG TGGGGCGCCT TCGGGGACTC GGGCGAGCTG GATGAGTTCC





7501
TACTGGAGTA TGACCGGATG GTGGATGAAA GCTCAGCGAA CCCCGGTCAG





7551
CAGCTGTACG AGAAGATCAT CGGTGGGAAG TATATGGGCG AGCTGGTACG





7601
ACTTGTGCTG CTTAAGCTGG TGGACGAGAA CCTTCTGTTC CACGGAGAGG





7651
CCTCGGAGCA GCTGCGCACG CGTGGTGCTT TTGAGACCCG TTTCGTGTCA





7701
CAAGTGGAGA GCGACTCCGG GGACCGAAAG CAGATCCACA ACATCCTAAG





7751
CACTCTGGGG CTTCGACCCT CTGTCACCGA CTGCGACATT GTGCGCCGTG





7801
CCTGTGAAAG CGTGTCCACT CGCGCCGCCC ATATGTGCTC CGCAGGACTA





7851
GCTGGGGTCA TAAATCGCAT GCGCGAAAGC CGCAGTGAGG ACGTGATGCG





7901
CATCACTGTG GGCGTGGATG GCTCCGTGTA CAAGCTGCAC CCGAGCTTCA





7951
AGGAGCGGTT TCACGCCAGT GTGCGCAGGC TGACACCCAA CTGCGAAATC





8001
ACCTTCATCG AATCAGAGGA GGGCAGCGGC AGGGGAGCCG CACTGGTCTC





8051
TGCGGTGGCC TGCAAGAAGG CTTGCATGCT GGCCCAGTGA AATCCAGGTC





8101
ATATGGACCG GGACCTGGGT TCCACGGGGA CTCCACACAC CACAAATGCT





8151
CCCAGCCCAC CGGGGCAGGA GACCTATTCT GCTGCTACCC CTHHAAAATG





8201
GGGAGAGGCC CCTGCAAGCC GAGTCGGCCA GTGGGACAGC CCTAGGCTGG





8251
ATCGGCCGCT TCGAGCAGAC ATGATAAGAT ACATTGATGA GTTTGGACAA





8301
ACCACAACTA GAATGCAGTG AAAAAAATGC TTTATTTGTG AAATTTGTGA





8351
TGCTATTGCT TTATTTGTAA CCATTATAAG CTGCAATAAA CAAGTTAACA





8401
ACAACAATTG CATTCATTTT ATGTTTCAGG TTCAGGGGGA GATGTGGGAG





8451
GTTTTTTAAA GCAAGTAAAA CCTCTACAAA TGTGGTAAAA TCGATTAGGA





8501
TCTTCCTAGA GCATGGCTAC









ITR 5′: 5585-5720 bp


CMV promoter: 22-1043 bp


hIns: 1120-1466 bp


SV40 polyA: 1532-1754


ITR 3′: 1821-1971 bp


B: CMV-hIns (SEQ ID NO:17; FIG. 2)












pGG2-CMV-hIns plasmid seauence
















   1
CAGCAGCTGC GCGCTCGCTC GCTCACTGAG GCCGCCCGGG CAAAGCCCGG





  51
GCGTCGGGCG ACCTTTGGTC GCCCGGCCTC AGTGAGCGAG CGAGCGCGCA





 101
GAGAGGGAGT GGCCAACTCC ATCACTAGGG GTTCCTTGTA GTTAATGATT





 151
AACCCGCCAT GCTACTTATC TACGTAGCCA TGCTCTAGAC ATGGCTCGAC





 201
AGATCTCAAT ATTGGCCATT AGCCATATTA TTCATTGGTT ATATAGCATA





 251 
AATCAATATT GGCTATTGGC CATTGCATAC GTTGTATCTA TATCATAATA





 301 
TGTACATTTA TATTGGCTCA TGTCCAATAT GACCGCCATG TTGGCATTGA





 351 
TTATTGACTA GTTATTAATA GTAATCAATT ACGGGGTCAT TAGTTCATAG





 401 
CCCATATATG GAGTTCCGCG TTACATAACT TACGGTAAAT GGCCCGCCTG





 451 
GCTGACCGCC CAACGACCCC CGCCCATTGA CGTCAATAAT GACGTATGTT





 501 
CCCATAGTAA CGCCAATAGG GACTTTCCAT TGACGTCAAT GGGTGGAGTA





 551 
TTTACGGTAA ACTGCCCACT TGGCAGTACA TCAAGTGTAT CATATGCCAA





 601 
GTCCGCCCCC TATTGACGTC AATGACGGTA AATGGCCCGC CTGGCATTAT





 651 
GCCCAGTACA TGACCTTACG GGACTTTCCT ACTTGGCAGT ACATCTACGT





 701 
ATTAGTCATC GCTATTACCA TGGTGATGCG GTTTTGGCAG TACACCAATG





 751 
GGCGTGGATA GCGGTTTGAC TCACGGGGAT TTCCAAGTCT CCACCCCATT





 801 
GACGTCAATG GGAGTTTGTT TTGGCACCAA AATCAACGGG ACTTTCCAAA





 851 
ATGTCGTAAC AACTGCGATC GCCCGCCCCG TTGACGCAAA TGGGCGGTAG





 901 
GCGTGTACGG TGGGAGGTCT ATATAAGCAG AGCTCGTTTA GTGAACCGTC





 951 
AGATCACTAG AAGCTTTATT GCGGTAGTTT ATCACAGTTA AATTGCTAAC





1001 
GCAGTCAGTG CTTCTGACAC AACAGTCTCG AACTTAAGCT GCAGTGACTC





1051 
TCTTAAGGTA GCCTTGCAGA AGTTGGTCGT GAGGCACTGG GCAGGTAAGT





1101 
ATCAAGGTTA CAAGACAGGT TTAAGGAGAC CAATAGAAAC TGGGCTTGTC





1151 
GAGACAGAGA AGACTCTTGC GTTTCTGATA GGCACCTATT GGTCTTACTG





1201 
ACATCCACTT TGCCTTTCTC TCCACAGGTG TCCACTCCCA GTTCAATTAC





1251 
AGCTCTTAAG GCTAGAGTAC TTAATACGAC TCACTATAGG CTAGCCTCGA





1301 
GAATTCTGCC ATGGCCCTGT GGATGCGCCT CCTGCCCCTG CTGGCGCTGC





1351 
TGGCCCTCTG GGGACCTGAC CCAGCCGCAG CCTTTGTGAA CCAACACCTG





1401 
TGCGGCTCAG ATCTGGTGGA AGCTCTCTAC CTAGTGTGCG GGGAACGAGG





1451 
CTTCTTCTAC ACACCCAGGA CCAAGCGGGA GGCAGAGGAC CTGCAGGTGG





1501 
GGCAGGTGGA GCTGGGCGGG GGCCCTGGTG CAGGCAGCCT GCAGCCCTTG





1551 
GCCCTGGAGG GGTCGCGACA GAAGCGTGGC ATTGTGGAAC AATGCTGTAC





1601 
CAGCATCTGC TCCCTCTACC AGCTGGAGAA CTACTGCAAC TAGACGCAGC





1651 
TGCAAGCTTA TCGATACCGT CGACCTCGAG GAATTCACGC GTGGTACCTC





1701 
TAGAGTCGAC CCGGGCGGCC GCTTCCCTTT AGTGAGGGTT AATGCTTCGA





1751 
GCAGACATGA TAAGATACAT TGATGAGTTT GGACAAACCA CAACTAGAAT





1801 
GCAGTGAAAA AAATGCTTTA TTTGTGAAAT TTGTGATGCT ATTGCTTTAT





1851 
TTGTAACCAT TATAAGCTGC AATAAACAAG TTAACAACAA CAATTGCATT





1901 
CATTTTATGT TTCAGGTTCA GGGGGAGATG TGGGAGGTTT TTTAAAGCAA





1951 
GTAAAACCTC TACAAATGTG GTAAAATCCG ATAAGGGACT AGAGCATGGC





2001 
TACGTAGATA AGTAGCATGG CGGGTTAATC ATTAACTACA AGGAACCCCT





2051 
AGTGATGGAG TTGGCCACTC CCTCTCTGCG CGCTCGCTCG CTCACTGAGG





2101 
CCGGGCGACC AAAGGTCGCC CGACGCCCGG GCTTTGCCCG GGCGGCCTCA





2151 
GTGAGCGAGC GAGCGCGCCA GCTGGCGTAA TAGCGAAGAG GCCCGCACCG





2201 
ATCGCCCTTC CCAACAGTTG CGCAGCCTGA ATGGCGAATG GAATTCCAGA





2251 
CGATTGAGCG TCAAAATGTA GGTATTTCCA TGAGCGTTTT TCCGTTGCAA





2301 
TGGCTGGCGG TAATATTGTT CTGGATATTA CCAGCAAGGC CGATAGTTTG





2351 
AGTTCTTCTA CTCAGGCAAG TGATGTTATT ACTAATCAAA GAAGTATTGC





2401 
GACAACGGTT AATTTGCGTG ATGGACAGAC TCTTTTACTC GGTGGCCTCA





2451 
CTGATTATAA AAACACTTCT CAGGATTCTG GCGTACCGTT CCTGTCTAAA





2501 
ATCCCTTTAA TCGGCCTCCT GTTTAGCTCC CGCTCTGATT CTAACGAGGA





2551 
AAGCACGTTA TACGTGCTCG TCAAAGCAAC CATAGTACGC GCCCTGTAGC





2601 
GGCGCATTAA GCGCGGCGGG TGTGGTGGTT ACGCGCAGCG TGACCGCTAC





2651 
ACTTGCCAGC GCCCTAGCGC CCGCTCCTTT CGCTTTCTTC CCTTCCTTTC





2701 
TCGCCACGTT CGCCGGCTTT CCCCGTCAAG CTCTAAATOG GGGGCTCCCT





2751 
TTAGGGTTCC GATTTAGTGC TTTACGGCAC CTCGACCCCA AAAAACTTGA





2801 
TTAGGGTGAT GGTTCACGTA GTGGGCCATC GddCTGATAG ACGGTTTTTd





2851 
GCCCTTTGAC GTTGGAGTCC ACGTTCTTTA ATAGTGGACT CTTGTTCCAA





2901 
ACTGGAACAA CACTCAACCC TATCTCGGTC TATTCTTTTG ATTTATAAGG





2951 
GATTTTGCCG ATTTCGGCCT ATTGGTTAAA AAATGAGCTG ATTTAACAAA





3001 
AATTTAACGC GAATTTTAAC AAAATATTAA CGTCTACAAT TTAAATATTT





3051 
GCTTATACAA TCTTCdTGTT TTTGGGGCTT TTCTGATTAT CAACCGGGGT





3101 
ACATATGATT GACATGCTAG TTTTACGATT ACCGTTCATC GATTCTCTTG





3151 
TTTGCTCCAG ACTCTCAGGC AATGACCTGA TAGCCTTTGT AGAGACCTCT





3201 
CAAAAATAGC TACCCTCTCC GGCATGAATT TATCAGCTAG AACGGTTGAA





3251 
TATCATATTG ATGGTGATTT GACTGTCTCC GGCCTTTCTC ACCCGTTTGA





3301 
ATCTTTACCT ACACATTACT CAGGCATTGC ATTTAAAAMA TATGAGGGTT





3351 
CTAAAAATTT TTATCCTTGC GTTGAAATAA AGGCTTCTCC CGCAAAAGTA





3401 
TTACAGGGTC ATAATGTTTT TGGTACAACC GATTTAGCTT TATGCTCTGA





3451 
GGCTTTATTG CTTAATTTTG CTAATTCTTT GCCTTGCCTG TATGATTTAT





3501 
TGGATGTTGG AATCGCCTGA TGCGGTATTT TCTCCTTACG CATCTGTGCG





3551 
GTATTTCACA CCGCATATGG TGCACTCTCA GTACAATCTG CTCTGATGCC





3601 
GCATAGTTAA GCCAGCCCCG ACACCCGCCA ACACCCGCTG ACGCGCCCTG





3651 
ACGGGCTTGT CTGCTCCCGG CATCCGCTTA CAGACAAGCT GTGACCGTCT





3701 
CCGGGAGCTG CATGTGTCAG AGGTTTTCAC CGTCATCACC GAAACGCGCG





3751 
AGACGAAAGG GCCTCGTGAT ACGCCTATTT TTATAGGTTA ATGTCATGAT





3801 
AATAATGGTT TCTTAGACGT CAGGTGGCAC TTTTCGGGGA AATGTGCGCG





3851 
GAACCCCTAT TTGTTTATTT TTCTAAATAC ATTCAAATAT GTATCCGCTC





3901 
ATGAGACAAT AACCCTGATA AATGCTTCAA TAATATTGAA AAAGGAAGAG





3951 
TATGAGTATT CAACATTTCC GTGTCGCCCT TATTCCCTTT TTTGCGGCAT





4001 
TTTGCCTTCC TGTTTTTGCT CACCCAGAAA CGCTGGTGAA AGTAAAAGAT





4051 
GCTGAAGATC AGTTGGGTGC ACGAGTGGGT TACATCGAAC TGGATCTCAA





4101 
CAGCGGTAAG ATCCTTGAGA GTTTTCGCCC CGAAGAACGT TTTCCAATGA





4151 
TGAGCACTTT TAAAGTTCTG CTATGTGGCG CGGTATTATC CCGTATTGAC





4201 
GCCGGGCAAG AGCAACTCGG TCGCCGCATA CACTATTCTC AGAATGACTT





4251 
GGTTGAGTAC TCACCAGTCA CAGAAAAGCA TCTTACGGAT GGCATGACAG





4301 
TAAGAGAATT ATGCAGTGCT GCCATAACCA TGAGTGATAA CACTGCGGCC





4351 
AACTTACTTC TGACAACGAT CGGAGGACCG AAGGAGCTAA CCGCTTTTTT





4401 
GCACAACATG GGGGATCATG TAACTCGCCT TGATCGTTGG GAACCGGAGC





4451 
TGAATGAAGC CATACCAAAC GACGAGCGTG ACACCACGAT GCCTGTAGCA





4501 
ATGGCAACAA CGTTGCGCAA ACTATTAACT GGCGAACTAC TTACTCTAGC





4551 
TTCCCGGCAA CAATTAATAG ACTGGATGGA GGCGGATAAA GTTGCAGGAC





4601 
CACTTCTGCG CTCGGCCCTT CCGGCTGGCT GGTTTATTGC TGATAAATCT





4651 
GGAGCCGGTG AGCGTGGGTC TCGCGGMATC ATTGCAGCAC TGGGGCCAGA





4701 
TGGTAAGCCC TCCCGTATCG TAGTTATCTA CACGACGGGG AGTCAGGCAA





4751 
CTATGGATGA ACGAAATAGA CAGATCGCTG AGATAGGTGC CTCACTGATT





4801 
AAGCATTGGT AACTGTCAGA CCAAGTTTAC TCATATATAC TTTAGATTGA





4851 
TTTAAAACTT CATTTTTAAT TTAAAAGGAT CTAGGTGAAG ATCCTTTTTG





4901 
ATAATCTCAT GACCAAAATC CCTTAACGTG AGTTTTCGTT CCACTGAGCG





4951 
TCAGACCCCG TAGAAAAGAT CAAAGGATCT TCTTGAGATC CTTTTTTTCT





5001 
GCGCGTAATC TGCTGCTTGC AAACAAAAAA ACCACCGCTA CCAGCGGTGG





5051 
TTTGTTTGCC GGATCAAGAG CTACCAACTC TTTTTCCGAA GGTAACTGGC





5101 
TTCAGCAGAG CGCAGATACC AAATACTGTC CTTCTAGTGT AGCCGTAGTT





5151 
AGGCCACCAC TTCAAGAACT CTGTAGCACC GCCTACATAC CTCGCTCTGC





5201 
TAATCCTGTT ACCAGTGGCT GCTGCCAGTG GCGATAAGTC GTGTCTTACC





5251 
GGGTTGGACT CAAGACGATA GTTACCGGAT AAGGCGCAGC GGTCGGGCTG





5301 
AACGGGGGGT TCGTGCACAC AGCCCAGCTT GGAGCGAACG ACCTACACCG





5351 
AACTGAGATA CCTACAGCGT GAGCTATGAG AAAGCGCCAC GCTTCCCGAA





5401 
GGGAGAAAGG CGGACAGGTA TCCGGTAAGC GGCAGGGTCG GAACAGGAGA





5451 
GCGCACGAGG GAGCTTCCAG GGGGAAACGC CTGGTATdTT TATAGTCCTG





5501 
TCGGGTTTCG CCACCTCTGA CTTGAGCGTC GATTTTTGTG ATGCTCGTCA





5551 
GGGGGGCGGA GCCTATGGAA AAACGCCAGC AACGCGGCCT TTTTACGGTT





5601 
CCTGGCCTTT TGCTGGCCTT TTGCTCACAT GTTCTTTCCT GCGTTATCCC





5651 
CTGATTCTGT GGATAACCGT ATTACCGCCT TTGAGTGAGC TGATACCGCT





5701 
CGCCGCAGCC GAACGACCGA GCGCAGCGAG TCAGTGAGCG AGGAAGCGGA





5751 
AGAGCGCCCA ATACGCAAAC CGCCTCTCCC CGCGCGTTGG-CCGATTCATT





5801 
AATG









ITR 5′: 1-136 bp


CMV promoter: 206-1227 bp


hIns: 1304-1650


SV40 polyA: 1752-1974 bp


ITR 3′: 2041-2191 bp


C: RSV-rGck (SEQ ID NO:18; FIG. 2)










pGG2-RSV-rGck plasmid sequence



   1 GTAGATAAGT AGCATGGCGG GTTAATCATT AACTACAAGG AACCCCTAGT





  51 GATGGAGTTG GCCACTCCCT CTCTGCGCGC TCGCTCGCTC ACTGAGGCCG





 101 GGCGACCAAA GGTCGCCCGA CGCCCGGGCT TTGCCCGGGC GGCCTCAGTG





 161 AGCGAGCGAG CGCGCCAGCT GGCGTAATAG CGAAGAGGCC CGCACCGATC





 201 GCCCTTCCCA ACAGTTGCGC AGCCTGAATG GCGAATGGAA TTCCAGACGA





 251 TTGAGCGTCA AAATGTAGGT ATTTCCATGA GCGTTTTTCC GTTGCAATGG





 301 CTGGCGGTAA TATTGTTCTG GATATTACCA GCAAGGCCGA TAGTTTGAGT





 351 TCTTCTACTC AGGCAAGTGA TGTTATTACT AATCAAAGAA GTATTGCGAC





 401 AACGGTTAAT TTGCGTGATG GACAGACTCT TTTACTCGGT GGCCTCACTG





 451 ATTATAAAAA CACTTCTCAG GATTCTGGCG TACCGTTCCT GTCTAAAATC





 501 CCTTTAATCG GCCTCCTGTT TAGCTCCCGC TCTGATTCTA ACGAGGAAAG





 551 CACGTTATAC GTGCTCGTCA AAGCAACCAT AGTACGCGCC CTGTAGCGGC





 601 GCATTAAGCG CGGCGGGTGT GGTGGTTACG CGCAGCGTGA CCGCTACACT





 651 TGCCAGCGCC CTAGCGCCCG CTCCTTTCGC TTTCTTCCCT TCCTTTCTCG





 701 CCACGTTCGC CGGCTTTCCC CGTCAAGCTC TAAATCGGGG GCTCCCTTTA





 751 GGGTTCCGAT TTAGTGCTTT ACGGCACCTC GACCCCAAAA AACTTGATTA





 801 GGGTGATGGT TCACGTAGTG GGCCATCGCC CTGATAGACG GTTTTTCGCC





 851 CTTTGACGTT GGAGTCCACG TTCTTTAATA GTGGACTCTT GTTCCAAACT





 901 GGAACAACAC TCAACCCTAT CTCGGTCTAT TCTTTTGATT TATAAGGGAT





 951 TTTGCCGATT TCGGCCTATT GGTTAAAAAA TGAGCTGATT TAACAAAAAT





1001 TTAACGCGAA TTTTAACAAA ATATTAACGT CTACAATTTA AATATTTGCT





1051 TATACAATCT TCCTGTTTTT GGGGCTTTTC TGATTATCAA CCGGGGTACA





1101 TATGATTGAC ATGCTAGTTT TACGATTACC GTTCATCGAT TCTCTTGTTT





1151 GCTCCAGACT CTCAGGCAAT GACCTGATAG CCTTTGTAGA GACCTCTCAA





1201 AAATAGCTAC CCTCTCCGGC ATGAATTTAT CAGCTAGAAC GGTTGAATAT





1251 CATATTGATG GTGATTTGAC TGTCTaCGGC CTTTCTCACC CGTTTGAATC





1301 TTTACCTACA CATTACTCAG GCATTGCATT TAAAATATAT GAGGGTTCTA





1351 AAAATTTTTA TCCTTGCGTT GAAATAAAGG CTTCTCCCGC AAAAGTATTA





1401 CAGGGTCATA ATGTTTTTGG TACAACCGAT TTAGCTTTAT GCTCTGAGGC





1451 TTTATTGCTT AATTTTGCTA ATTCTTTGCC TTGCCTGTAT GATTTATTGG





1501 ATGTTGGAAT CGCCTGATGC GGTATTTTCT CCTTACGCAT CTGTGCGGTA





1551 TTTCACACCG CAMATGGTGC ACTCTCAGTA CAATCTGCTC TGATGCCGCA





1601 TAGTTAAGCC AGCCCCGACA CCCGCCAACA CCCGCTGACG CGCCCTGACG





1651 GGCTTGTCTG CTCCCGGCAT CCGCTTACAG ACAAGCTGTG ACCGTCTCCG





1701 GGAGCTGCAT GTGTCAGAGG TTTTCACCGT CATCACCGAA ACGCGCGAGA





1751 CGAAAGGGCC TCGTGATACG CCTATTTTTA TAGGTTAATG TCATGATAAT





1801 AATGGTTTCT TAGACGTCAG GTGGCACTTT TCGGGGAAAT GTGCGCGGAA





1851 CCCCTATTTG TTTATTTTTC TAAATACATT CAAATATGTA TCCGCTCATG





1901 AGACAATAAC CCTGATAAAT GCTTCAATAA TATTGAAAAA GGAAGAGTAM





1951 GAGTATTCAA CATTTCCGTG TCGCCCTTAT TCCCTTTTTT GCGGCATTTT





2001 GCCTTCCTGT TTTTGCTCAC CCAGAAACGC TGGTGAAAGT AAAAGATGCT





2051 GAAGATCAGT TGGGTGCACG AGTGGGTTAC ATCGAACTGG ATCTCAACAG





2101 CGGTAAGATC CTTGAGAGTT TTCGCCCCGA AGAACGTTTT CCAATGATGA





2151 GCACTTTTAA AGTTCTGCTA TGTGGCGCGG TATTATCCCG TATTGACGCC





2201 GGGCAAGAGC AACTCGGTCG CCGCATACAC TATTCTCAGA ATGACTTGGT





2251 TGAGTACTCA CCAGTCACAG AAAAGCATCT TACGGATGGC-ATGACAGTAA





2301 GAGAATTATG CAGTGCTGCC ATAACCATGA GTGATAACAC TGCGGCCAAC





2351 TTACTTCTGA CAACGATCGG AGGACCGAAG GAGCTAACCG CTTTTTTGCA





2401 CAACATGGGG GATCATGTAA CTCGCCTTGA TCGTTGGGAA CCGGAGCTGA





2451 ATGAAGCCAT ACCAAACGAC GAGCGTGACA CCACGATGCC TGTAGCAATG





2501 GCAACAACGT TGCGCAAACT ATTAACTGGC GAACTACTTA CTCTAGCTTC





2551 CCGGCAACAA TTAATAGACT GGATGGAGGC GGATAAAGTT GCAGGACCAC





2601 TTCTGCGCTC GGCCCTTCCG GCTGGCTGGT TTATTGCTGA TAAATCTGGA





2651 GCCGGTGAGC GTGGGTCTCG CGGTATCATT GCAGCACTGG GGCCAGATGG





2701 TAAGCCCTCC CGTATCGTAG TTATCTACAC GACGGGGAGT CAGGCAACTA





2751 TGGATGAACG AAATAGACAG ATCGCTGAGA TAGGTGCCTC ACTGATTAAG





2801 CATTGGTAAC TGTCAGACCA AGTTTACTCA TATATACTTT AGATTGATTT





2851 AAAACTTCAT TTTTAATTTA AAAGGATCTA GGTGAAGATC CTTTTTGATA





2901 ATCTCATGAC CAAAATCCCT TAACGTGAGT TTTCGTTCCA CTGAGCGTCA





2951 GACCCCGTAG AAAAGATCAA AGGATCTTCT TGAGATCCTT TTTTTCTGCG





3001 CGTAATCTGC TGCTTGCAAA CAAAAAAACC ACCGCTACCA GCGGTGGTTT





3051 GTTTGCCGGA TCAAGAGCTA CCAACTCTTT TTCCGAAGGT AACTGGCTTC





3101 AGCAGAGCGC AGATACCAAA TACTGTCCTT CTAGTGTAGC CGTAGTTAGG





3151 CCACCACTTC AAGAACTCTG TAGCACCGCC TACATACCTC GCTCTGCTAA





3201 TCCTGTMACC AGTGGCTGCT GCCAGTGGCG ATAAGTCGTG TCTTACCGGG





3251 TTGGACTCAA GACGATAGTT ACCGGATAAG GCGCAGCGGT CGGGCTGAAC





3301 GGGGGGTTCG TGCACACAGC CCAGCTTGGA GCGAACGACC TACACCGAAC





3351 TGAGATACCT ACAGCGTGAG CTATGAGAAA GCGCCACGCT TCCCGAAGGG





3401 AGAAAGGCGG ACAGGTATCC GGTAAGCGGC AGGGTCGGAA CAGGAGAGCG





3451 CACGAGGGAG CTTCCAGGGG GAAACGCCTG GTATCTTTAT AGTCCTGTCG





3501 GGTTTCGCCA CCTCTGACTT GAGCGTCGAT TTTTGTGATG CTCGTCAGGG





3551 GGGCGGAGCC TATGGAAAAA CGCCAGCAAC GCGGCCTTTT TACGGTTCCT





3601 GGCCTTTTGC TGGCCTTTTG CTCACATGTT CTTTCCTGCG TTATCCCCTG





3651 ATTCTGTGGA TAACCGMATT ACCGCCTTTG AGTGAGCTGA TACCGCTCGC





3701 CGCAGCCGAA CGACCGAGCG CAGCGAGTCA GTGAGCGAGG AAGCGGAAGA





3751 GCGCCCAATA CGCAAACCGC CTCTCCCCGC GCGTTGGCCG ATTCATTAAT





3801 GCAGCAGCTG CGCGCTCGCT CGCTCACTGA GGCCGCCCGG GCAAAGCCCG





3851 GGCGTCGGGC GACCTTTGGT CGCCCGGCCT CAGTGAGCGA GCGAGCGCGC





3901 AGAGAGGGAG TGGCCAACTC CATCACTAGG GGTTCCTTGT AGTTAATGAT





3951 TAACCCGCCA TGCTACTTAT CTACGTAGCC ATGCTCTGGA AGATCTCGAC





4001 GCGTCATGTT TGACAGCTTA TCATCGCAGA TCCGTATGGT GCACTCTCAG





4051 TACAATCTGC TCTGATGCCG CATAGTTAAG CCAGTATCTG CTCCCTGCTT





4101 GTGTGTTGGA GGTCGCTGAG TAGTGCGCGA GCAAAATTTA AGCTACAACA





4151 AGGCAAGGCT TGACCGACAA TTGCATGAAG AATCTGCTTA GGGTTAGGCG





4201 TTTTGCGCTG CTTCGCGATG TACGGGCCAG ATATTCGCGT ATCTGAGGGG





4251 ACTAGGGTGT GTTTAGGCGA AAAGCGGGGC TTCGGTTGTA CGCGGTTAGG





4301 AGTCCCCTCA GGATATAGTA GTTTCGCTTT TGCATAGGGA GGGGGAAATG





4351 TAGTCTTATG CAATACTCTT GTAGTCTTGC AACATGGTAA CGATGAGTTA





4401 GCAACATGCC TTACAAGGAG AGAAAAAGCA CCGTGCATGC CGATTGGTGG





4451 AAGTAAGGTG GTACGATCGT GCCTTATTAG GAAGGCAACA GACGGGTCTG





4501 ACATGGATTG GACGAACCAC TAAATTCCGC ATTGCAGAGA TATTGTATTT





4551 AAGTGCCTAG CTCGATACAA TAAACGCCAT TTGACCATTC ACCACATTGG





4601 TGTGCACCTC CAAGCTGGGT ACCAGCTGCT AGCAAGCTTG AGATCTGCTT





4651 CAGCTGGAGG CACTGGGCAG GTAAGTATCA AGGTTACAAG ACAGGTTTAA





4701 GGAGACCAAT AGAAACTGGG CTTGTCGAGA CAGAGAAGAC TCTTGCGTTT





4751 CTGATAGGCA CCTATTGGTC TTACTGACAT CCACTTTGCC TTTCTCTCCA





4801 CAGGTGCAGC TGCTGCAGCG GGAATTCAAC AGGTGGCCTC AGGAGTCAGG





4851 AACATCTCTA CTTCCCCAAC GACCCCTGGG TTGTCCTCTC AGAGATGGCT





4901 ATGGATACTA CAAGGTCTGG AGCCCAGTTG TTGACTCTGG TCGAGCAGAT





4951 CCTGGCAGAG TTCCAGCTGC AGGAGGAAGA CCTGAAGAAG GTGATGAGCC





5001 GGATGCAGAA GGAGATGGAC CGTGGCCTGA GGCTGGAGAC CCACGAGGAG





5051 GCCAGTGTAA AGATGTTACC CACCTACGTG CGTTCCACCC CAGAAGGCTC





5101 AGAAGTCGGA GACTTTCTCT CCTTAGACCT GGGAGGAACC AACTTCAGAG





5151 TGATGCTGGT CAAAGTGGGA GAGGGGGAGG CAGGGCAGTG GAGCGTGAAG





5201 ACAAAACACC AGATGTACTC CATCCCCGAG GACGCCATGA CGGGCACTGC





5251 CGAGATGCTC TTTGACTACA TCTCTGAATG CATCTCTGAC TTCCTTGACA





5301 AGCATCAGAT GAAGCACAAG AAACTGCCCC TGGGCTTCAC CTTCTCCTTC





5351 CCTGTGAGGC ACGAAGACCT AGACAAGGGC ATCCTCCTCA ATTGGACCAA





5401 GGGCTTCAAG GCCTCTGGAG CAGAAGGGAA CAACATCGTA GGACTTCTCC





5451 GAGATGCTAT CAAGAGGAGA GGGGACTTTG AGATGGATGT GGTGGCAATG





5501 GTGAACGACA CAGTGGCCAC AATGATCGCC TGCTACTATG AAGACCGCCA





5551 ATGTGAGGTC GGCATGATTG TGGGCACTGG CTGCAATGCC TGCTACATGG





5601 AGGAAATGCA GAATGTGGAG CTGGTGGAAG GGGATGAGGG ACGCATGTGC





5651 GTCAACACGG AGTGGGGCGC CTTCGGGGAC TCGGGCGAGC TGGATGAGTT





5701 CCTACTGGAG TATGACCGGA TGGTGGATGA AAGCTCAGCG AACCCCGGTC





5751 AGCAGCTGTA CGAGAAGATC ATCGGTGGGA AGTATATGGG CGAGCTGGTA





5801 CGACTTGTGC TGCTTAAGCT GGTGGACGAG AACCTTCTGT TCCACGGAGA





5851 GGCCTCGGAG CAGCTGCGCA CGCGTGGTGC TTTTGAGACC CGTTTCGTGT





5901 CACAAGTGGA GAGCGACTCC GGGGACCGAA AGCAGATCCA CAACATCCTA





5951 AGCACTCTGG GGCTTCGACC CTCTGTCACC GACTGCGACA TTGTGCGCCG





6001 TGCCTGTGAA AGCGTGTCCA CTCGCGCCGC CCATATGTGC TCCGCAGGAC





6051 TAGCTGGGGT CATAAATCGA ATGCGCGAAA GCCGCAGTGA GGACGTGATG





6101 CGCATCACTG TGGGCGTGGA TGGCTCCGTG TACAAGCTGC ACCCGAGCTT





6151 CAAGGAGCGG TTTCACGCCA GTGTGCGCAG GCTGACACCC AACTGCGAAA





6201 TCACCTTCAT CGAATCAGAG GAGGGCAGCG GCAGGGGAGC CGCACTGGTC





6251 TCTGCGGTGG CCTGCAAGAA GGCTTGCATG CTGGCCCAGT GAAATCCAGG





6301 TCATATGGAC CGGGACCTGG GTTCCACGGG GACTCCACAC ACCACAAATG





6351 CTCCCAGCCC ACCGGGGCAG GAGACCTATT CTGCTGCTAC CCCTGGAAAA





6401 TGGGGAGAGG CCCCTGCAAG CCGAGTCGGC CAGTGGGACA GCCCTAGGCT





6451 GGATCGGCCG CTTCGAGCAG ACATGATAAG ATACATTGAT GAGTTTGGAC





6501 AAACCACAAC TAGAATGCAG TGAAAAAAAT GCTTTATTTG TGAAATTTGT





6551 GATGCTATTG CTTTATTTGT AACCATTATA AGCTGCAATA AACAAGTTAA





6601 CAACAACAAT TGCATTCATT TTATGTTTCA GGTTCAGGGG GAGATGTGGG





6651 AGGTTTTTTA AAGCAAGTAA AACCTCTACA AATGTGGTAA AATCGATTAG





6701 GATCTTCCTA GAGCATGGCT AC






ITR 5′: 3802-3937 bp


RSV promoter: 4088-4803 bp


rGck: 4915-6292 bp


SV40 polyA: 6456-6694 bp


ITR 3′: 38-188 bp


D: CMV-hIns-RSV-hGck (SEQ ID NO: 9; FIG. 4)










pAAV-CMV-hIns-RSV-hGck plasmid sequence



   1 CCTGCAGGCA GCTGCGCGCT CGCTCGCTCA CTGAGGCCGC CCGGGCAAAG





  51 CCCGGGCGTC GGGCGACCTT TGGTCGCCCG GCCTCAGTGA GCGAGCGAGC





 101 GCGCAGAGAG GGAGTGGCCA ACTCCATCAC TAGGGGTTCC TGCGGCCGCG





 151 ATATCTGTAG TTAATGATTA ACCCGCCATG CTACTTATCT ACAGATCTCA





 201 ATATTGGCCA TTAGCCATAT TATTCATTGG TTATATAGCA TAAATCAATA





 251 TTGGCTATTG GCCATTGCAT ACGTTGTATC TATATCATAA TATGTACATT





 301 TATATTGGCT CATGTCCAAT ATGACCGCCA TGTTGGCATT GATTATTGAC





 351 TAGTTATTAA TAGTAATCAA TTACGGGGTC ATTAGTTCAT AGCCCATATA





 401 TGGAGTTCCG CGTTACATAA CTTACGGTAA ATGGCCCGCC TGGCTGACCG





 451 CCCAACGACC CCCGCCCATT GACGTCAATA ATGACGTATG TTCCCATAGT





 501 AACGCCAATA GGGACTTTCC ATTGACGTCA ATGGGTGGAG TATTTACGGT





 551 AAACTGCCCA CTTGGCAGTA CATCAAGTGT ATCATATGCC AAGTCCGCCC





 601 CCTATTGACG TCAATGACGG TAAATGGCCC GCCTGGCATT ATGCCCAGTA





 651 CATGACCTTA CGGGACTTTC CTACTTGGCA GTACATCTAC GTATTAGTCA





 701 TCGCTATTAC CATGGTGATG CGGTTTTGGC AGTACACCAA TGGGCGTGGA





 751 TAGCGGTTTG ACTCACGGGG ATTTCCAAGT CTCCACCCCA TTGACGTCAA





 801 TGGGAGTTTG TTTTGGCACC AAAATCAACG GGACTTTCCA AAATGTCGTA





 851 ACAACTGCGA TCGCCCGCCC CGTTGACGCA AATGGGCGGT AGGCGTGTAC





 901 GGTGGGAGGT CTATATAAGC AGAGCTCGTT TAGTGAACCG TCAGATCACT





 951 AGGCTAGCTA TTGCGGTAGT TTATCACAGT TAAATTGCTA ACGCAGTCAG





1001 TGCTTCTGAC ACAACAGTCT CGAACTTAAG CTGCAGTGAC TCTCTTAAGG





1051 TAGCCTTGCA GAAGTTGGTC GTGAGGCACT GGGCAGGTAA GTATCAAGGT





1101 TACAAGACAG GTTTAAGGAG ACCAATAGAA ACTGGGCTTG TCGAGACAGA





1151 GAAGACTCTT GCGTTTCTGA TAGGCACCTA TTGGTCTTAC TGACATCCAC





1201 TTTGCCTTTC TCTCCACAGG TGTCCACTCC CAGTTCAATT ACAGCTCTTA





1251 AGGCTAGAGT ACTTAATACG ACTCACTATA.GAATACGACT CACTATAGGG





1301 AGACGCTAGC GTCGACCTTC TGCCATGGCC CTGTGGATGC GCCTCCTGCC





1351 CCTGCTGGCG CTGCTGGCCC TCTGGGGACC TGACCCAGCC GCAGCCTTTG





1401 TGAACCAACA CCTGTGCGGC TCAGATCTGG TGGAAGCTCT CTACCTAGTG





1451 TGCGGGGAAC GAGGCTTCTT CTACACACCC AGGACCAAGC GGGAGGCAGA





1501 GGACCTGCAG GTGGGGCAGG TGGAGCTGGG CGGGGGCCCT GGTGCAGGCA





1551 GCCTGCAGCC CTTGGCCCTG GAGGGGTCGC GACAGAAGCG TGGCATTGTG





1601 GAACAATGCT GTACCAGCAT CTGCTCCCTC TACCAGCTGG AGAACTACTG





1651 CAACTAGACG CAGCCGTCGA CGGTACCAGC GCTGTCGAGG CCGCTTCGAG





1701 CAGACATGAT AAGATACATT GATGAGTTTG GACAAACCAC AACTAGAATG





1751 CAGTGAAAAA AATGCTTTAT TTGTGAAATT TGTGATGCTA TTGCTTTATT





1801 TGTAACCATT ATAAGCTGCA ATAAACAAGT TAACAACAAC AATTGCATTC





1851 ATTTMATGTT TCAGGTTCAG GGGGAGATGT GGGAGGTTTT TTAAAGCAAG





1901 TAAAACCTCT ACAAATGTGG TAAAATCGAT TAGGATCTTC CTAGAGCATG





1951 GCTACCTAGA CATGGCTCGA CAGATCAGCG CTCATGCTCT GGAAGATCTC





2001 GATTTATCCA TGTTTGACAG CTTATCATCG CAGATCCGTA TGGTGCACTC





2051 TCAGTACAAT CTGCTCTGAT GCCGCATAGT TAAGCCAGTA TCTGCTCCCT





2101 GCTTGTGTGT TGGAGGTCGC TGAGTAGTGC GCGAGCAAAA TTTAAGCTAC





2151 AACAAGGCAA GGCTTGACCG ACAATTGCAT GAAGAATCTG CTTAGGGTTA





2201 GGCGTTTTGC GCTGCTTCGC GATGTACGGG CCAGATATTC GCGTATCTGA





2251 GGGGACTAGG GTGTGTTTAG GCGAAAAGCG GGGCTTCGGT TGTACGCGGT





2301 TAGGAGTCCC CTCAGGATAT AGTAGTTTCG CTTTTGCATA GGGAGGGGGA





2351 AATGTAGTCT TATGCAATAC TCTTGTAGTC TTGCAACATG GTAACGATGA





2401 GTTAGCAACA TGCCTTACAA GGAGAGAAAA AGCACCGTGC ATGCCGATTG





2451 GTGGAAGTAA GGTGGTACGA TCGTGCCTTA TTAGGAAGGC AACAGACGGG





2501 TCTGACATGG ATTGGACGAA CCACTAAATT CCGCATTGCA GAGATATTGT





2551 ATTTAAGTGC CTAGCTCGAT ACAATAAACG CCATTTGACC ATTCACCACA





2601 TTGGTGTGCA CCTCCAAGCT GGGTACCAGC TTCTAGAGAG ATCTGCTTCA





2651 GCTGGAGGCA CTGGGCAGGT AAGTATCAAG GTTACAAGAC AGGTTTAAGG





2701 AGACCAATAG AAACTGGGCT TGTCGAGACA GAGAAGACTC TTGCGTTTCT





2751 GATAGGCACC TATTGGTCTT ACTGACATCC ACTTTGCCTT TCTCTCCACA





2001 GGTGCAGCTG CTGCAGCGGT CTAGAACTCG AGTCGAGACC ATGGCGATGG





2051 ATGTCACAAG GAGCCAGGCC CAGACAGCCT TGACTCTGGT AGAGCAGATC





2901 CTGGCAGAGT TCCAGCTGCA GGAGGAGGAC CTGAAGAAGG TGATGAGACG





2951 GATGCAGAAG GAGATGGACC GCGGCCTGAG GCTGGAGACC CATGAAGAGG





3001 CCAGTGTGAA GATGCTGCCC ACCTACGTGC GCTCCACCCC AGAAGGCTCA





3051 GAAGTCGGGG ACTTCCTCTC CCTGGACCTG GGTGGCACTA ACTTCAGGGT





3101 GATGCTGGTG AAGGTGGGAG AAGGTGAGGA GGGGCAGTGG AGCGTGAAGA





3131 CCAAACACCA GATGTACTCC ATCCCCGAGG ACGCCATGAC CGGCACTGCT





3201 GAGATGCTCT TCGACTACAT CTCTGAGTGC ATCTCCGAQT TCCTGGACAA





3251 GCATCAGATG AAACACAAGA AGCTGCCCCT GGGCTTCACC TTCTCCTTTC





3301 CTGTGAGGCA CGAAGACATC GATAAGGGCA TCCTTCTCAA CTGGACCAAG





3351 GGCTTCAAGG CCTCAGGAGC AGAAGGGAAC AATGTCGTGG GGCTTCTGCG





3401 AGACGCTATC AAACGGAGAG GGGACTTTGA AATGGATGTG GTGGCAATGG





3451 TGAATGACAC GGTGGCCACG ATGATCTCCT GCTACTACGA AGACCATCAG





3501 TGCGAGGTCG GCATGATCGT GGGCACGGGC TGCAATGCCT GCTACATGGA





3551 GGAGATGCAG AATGTGGAGC TGGTGGAGGG GGACGAGGGC CGCATGTGCG





3501 TCAATACCGA GTGGGGCGCC TTCGGGGACT CCGGCGAGCT GGACGAGTTC





3651 CTGCTGGAGT ATGACCGCCT GGTGGACGAG AGCTCTGCAA ACCCCGGTCA





3701 GCAGCTGTAT GAGAAGCTCA TAGGTGGCAA GTACATGGGC GAGQTGGTGC





3751 GGCTTGTGCT GCTCAGGCTC GTGGAdGAAA ACCTGCTCTT CCACGGGGAG





3801 GCCTCCGAGC AGCTGCGCAC ACGCGGAGCC TTCGAGACGC GCTTCGTGTC





3851 GCAGGTGGAG AGCGACACGG GCGACCGCAA GCAGATCTAC AACATCCTGA





3901 GCACGCTGGG GCTGCGACCC TCGACCACCG ACTGCGACAT CGTGCGCCGC





3951 GCCTGCGAGA GCGTGTCTAC GCGCGCTGCG CACATGTGCT CGGCGGGGCT





4001 GGCGGGCGTC ATCAACCGCA TGCGCGAGAG CCGCAGCGAG GACGTAATGC





4051 GCATCACTGT GGGCGTGGAT GGCTCCGTGT ACAAGCTGCA CCCCAGCTTC





4101 AAGGAGCGGT TCCATGCCAG CGTGCGCAGG CTGACGCCCA GCTGCGAGAT





4151 CACCTTCATC GAGTCGGAGG AGGGCAGTGG CCGGGGCGCG GCCCTGGTCT





4201 CGGCGGTGGC CTGTAAGAAG GCCTGTATGC TGGGCCAGTG ACTCGAGCAC





4251 GTGGAGCTCG CTGATCAGCC TCGACTGTGC CTTCTAGTTG CCAGCCATCT





4301 GTTGTTTGCC CCTCCCCCGT GCCTTCCTTG ACCCTGGAAG GTGCCACTCC





4351 CACTGTCCTT TCCTAATAAA ATGAGGAAAT TGCATCGCAT TGTCTGAGTA





4401 GGTGTCATTC TATTCTGGGG GGTGGGGTGG GGCAGGACAG CAAGGGGGAG





4451 GATTGGGAAG ACAATAGCAG GCATGCTGGG GATGCGGTGG GCTCTATGGC





4501 CACGTGATTT AAATGCGGCC GCAGGAACCC CTAGTGATGG AGTTGGCCAC





4551 TCCCTCTCTG CGCGCTCGCT CGCTCACTGA GGCCGGGCGA CCAAAGGTCG





4501 CCCGACGCCC GGGCTTTGCC CGGGCGGCCT CAGTGAGCGA GCGAGCGCGC





4651 AGCTGCCTGC AGGGGCGCCT GATGCGGTAT TTTCTCCTTA CGCATCTGTG





4701 CGGTATTTCA CACCGCATAC GTCAAAGCAA CCATAGTACG CGCCCTGTAG





4751 CGGCGCATTA AGCGCGGCGG GTGTGGTGGT TACGCGCAGC GTGACCGCTA





4001 CACTTGCCAG CGCCCTAGCG CCCGCTCCTT TCGCTTTCTT CCCTTCCTTT





4051 CTCGCCACGT TCGCCGGCTT TCCCCGTCAA GCTCTAAATC GGGGGCTCCC





4901 TTTAGGGTTC CGATTTAGTG CTTTACGGCA CdTCGACCCC AAAAAACTTG





4951 ATTTGGGTGA TGGTTCACGT AGTGGGCCAT CGCCCTGATA GACGGTTTTT





5001 CGCCCTTTGA CGTTGGAGTC CACGTTCTTT AATAGTGGAC TCTTGTTCCA





5051 AACTGGAACA ACACTCAACC CTATCTCGGG CTATTCTTTT GATTTATAAG





5101 GGATTTTGCC GATTTCGGCC TATTGGTTAA AAAATGAGCT GATTTAACAA





5151 AAATTTAACG CGAATTTTAA CAAAATATTA ACGTTTACAA TTTTATGGTG





5201 CACTCTCAGT ACAATCTGCT CTGATGCCGC ATAGTTAAGC CAGCCCCGAC





5251 ACCCGCCAAC ACCCGCTGAC GCGCCCTGAC GGGCTTGTCT GCTCCCGGCA





5301 TCCGCTTACA GACAAGCTGT GACCGTCTCC GGGAGCTGCA TGTGTCAGAG





5351 GTTTTCACCG TCATCACCGA AACGCGCGAG ACGAAAGGGC CTCGTGATAC





5401 GCCTATTTTT ATAGGTTAAT GTCATGATAA TAATGGTTTC TTAGACGTCA





5451 GGTGGCACTT TTCGGGGAAA TGTGCGCGGA ACCCCTATTT GTTTATTTTT





5501 CTAAATACAT TCAAATATGT ATCCGCTCAT GAGACAATAA CCCTGATAAA





5551 TGCTTCAATA ATATTGAAAA AGGAAGAGTA TGAGTATTCA ACATTTCCGT





5501 GTCGCCCTTA TTCCCTTTTT TGCGGCATTT TGCCTTCCTG TTTTTGCTCA





5651 CCCAGAAACG CTGGTGAAAG TAAAAGATGC TGAAGATCAG TTGGGTGCAC





5701 GAGTGGGTTA CATCGAACTG GATCTCAACA GCGGTAAGAT CCTTGAGAGT





5751 TTTCGCCCCG AAGAACGTTT TCCAATGATG AGCACTTTTA AAGTTCTGCT





5801 ATGTGGCGCG GTATTATCCC GTATTGACGC CGGGCAAGAG CAACTCGGTC





5851 GCCGCATACA CTATTCTCAG AATGACTTGG TTGAGTACTC ACCAGTCACA





5901 GAAAAGCATC TTACGGATGG CATGACAGTA AGAGAATTAT GCAGTGCTGC





5951 CATAACCATG AGTGATAACA CTGCGGCCAA CTTACTTCTG ACAACGATCG





6001 GAGGACCGAA GGAGCTAACC GCTTTTTTGC ACAACATGGG GGATCATGTA





6051 ACTCGCCTTG ATCGTTGGGA ACCGGAGCTG AATGAAGCCA TACCAAACGA





6101 CGAGCGTGAC ACCACGATGC CTGTAGCAAT GGCAACAACG TTGCGCAAAC





6151 TATTAACTGG CGAACTACTT ACTCTAGCTT CCCGGCAACA ATTAATAGAC





6201 TGGATGGAGG CGGATAAAGT TGCAGGACCA CTTCTGCGCT CGGCCCTTCC





6251 GGCTGGCTGG TTTATTGCTG ATAAATCTGG AGCCGGTGAG CGTGGGTCTC





6301 GCGGTATCAT TGCAGCACTG GGGCCAGATG GTAAGCCCTC CCGTATCGTA





6351 GTTATCTACA CGACGGGGAG TCAGGCAACT ATGGATGAAC GAAATAGACA





6401 GATCGCTGAG ATAGGTGCCT CACTGATTAA GCATTGGTAA CTGTCAGACC





5451 AAGTTTACTC ATATATACTT TAGATTGATT TAAAACTTCA TTTTTAATTT





6501 AAAAGGATCT AGGTGAAGAT CCTTTTTGAT AATCTCATGA CCAAAATCCC





6551 TTAACGTGAG TTTTCGTTCC ACTGAGCGTC AGACCCCGTA GAAAAGATCA





6601 AAGGATCTTC TTGAGATCCT TTTTTTCTGC GCGTAATCTG CTGCTTGCAA





6651 ACAAAAAAAC CACCGCTACC AGCGGTGGTT TGTTTGCCGG ATCAAGAGCT





6701 ACCAACTCTT TTTCCGAAGG TAACTGGCTT CAGCAGAGCG CAGATACCAA





6751 ATACTGTCCT TCTAGTGTAG CCGTAGTTAG GCCACCACTT CAAGAACTCT





6801 GTAGCACCGC CTACATACCT CGCTCTGCTA ATCCTGTTAC CAGTGGCTGC





6851 TGCCAGTGGC GATAAGTCGT GTCTTACCGG GTTGGACTCA AGACGATAGT





6901 TACCGGATAA GGCGCAGCGG TCGGGCTGAA CGGGGGGTTC GTGCACACAG





6951 CCCAGCTTGG AGCGAACGAC CTACACCGAA CTGAGATACC TACAGCGTGA





7001 GCTATGAGAA AGCGCCACGC TTCCCGAAGG GAGAAAGGCG GACAGGTATC





7051 CGGTAAGCGG CAGGGTCGGA ACAGGAGAGC GCACGAGGGA GCTTCCAGGG





7101 GGAAACGCCT GGTATCTTTA TAGTCCTGTC GGGTTTCGCC ACCTCTGACT





7151 TGAGCGTCGA TTTTTGTGAT GCTCGTCAGG GGGGCGGAGC CTATGGAAAA





7201 ACGCCAGCAA CGCGGCCTTT TTACGGTTCC TGGCCTTTTG CTGGCCTTTT





7251 GCTCACATGT






ITR 5′: 1-141 bp


CMV promoter: 193-1310 bp


hIns: 1318-1664 bp


SV40 polyA: 1678-1976 bp


RSV promoter: 2092-2801 bp


hGck: 2826-4240 bp


bGH polyA: 4248-4506 bp


ITR 3′: 4523-4663 bp


E: RSV-hGck-CMV-hIns (SEQ ID NO:10; FIG. 4)










pAAV-RSV-hGck-CMV-hIns plasmid sequence



   1 CCTGCAGGCA GCTGCGCGCT CGCTCGCTCA CTGAGGCCGC CCGGGCAAAG





  51 CCCGGGCGTC GGGCGACCTT TGGTCGCCCG GCCTCAGTGA GCGAGCGAGC





 101 GCGCAGAGAG GGAGTGGCCA ACTCCATCAC TAGGGGTTCC TGCGGCCGCG





 151 ATATCCATGT TTGACAGCTT ATCATCGCAG ATCCGTATGG TGCACTCTCA





 201 GTACAATCTG CTCTGATGCC GCATAGTTAA GCCAGTATCT GCTCCCTGCT





 251 TGTGTGTTGG AGGTCGCTGA GTAGTGCGCG AGCAAAATTT AAGCTACAAC





 301 AAGGCAAGGC TTGACCGACA ATTGCATGAA GAATCTGCTT AGGGTTAGGC





 351 GTTTTGCGCT GCTTCGCGAT GTACGGGCCA GATATTCGCG TATCTGAGGG





 401 GACTAGGGTG TGTTTAGGCG AAAAGCGGGG CTTCGGTTGT ACGCGGTTAG





 451 GAGTCCCCTC AGGATATAGT AGTTTCGCTT TTGCATAGGG AGGGGGAAAT





 501 GTAGTCTTAT GCAATACTCT TGTAGTCTTG CAACATGGTA ACGATGAGTT





 551 AGCAACATGC CTTACAAGGA GAGAAAAAGC ACCGTGCATG CCGATTGGTG





 601 GAAGTAAGGT GGTACGATCG TGCCTTATTA GGAAGGCAAC AGACGGGTCT





 651 GACATGGATT GGACGAACCA CTAAATTCCG CATTGCAGAG ATATTGTATT





 701 TAAGTGCCTA GCTCGATACA ATAAACGCCA TTTGACCATT CACCACATTG





 751 GTGTGCACCT CCAAGCTGGG TACCAGCTTC TAGAGAGATC TGCTTCAGCT





 801 GGAGGCACTG GGCAGGTAAG TATCAAGGTT ACAAGACAGG TTTAAGGAGA





 851 CCAATAGAAA CTGGGCTTGT CGAGACAGAG AAGACTCTTG CGTTTCTGAT





 901 AGGCACCTAT TGGTCTTACT GACATCCACT TTGCCTTTCT CTCCACAGGT





 951 GCAGCTGCTG CAGCGGTCTA GAACTCGAGT CGAGACCATG GCGATGGATG





1001 TCACAAGGAG CCAGGCCCAG ACAGCCTTGA CTCTGGTAGA GCAGATCCTG





1051 GCAGAGTTCC AGCTGCAGGA GGAGGACCTG AAGAAGGTGA TGAGACGGAT





1101 GCAGAAGGAG ATGGACCGCG GCCTGAGGCT GGAGACCCAT GAAGAGGCCA





1151 GTGTGAAGAT GCTGCCCACC TACGTGCGCT CCACCCCAGA AGGCTCAGAA





1201 GTCGGGGACT TCCTCTCCCT GGACCTGGGT GGCACTAACT TCAGGGTGAT





1251 GCTGGTGAAG GTGGGAGAAG GTGAGGAGGG GCAGTGGAGC GTGAAGACCA





1301 AACACCAGAT GTACTCCATC CCCGAGGACG CCATGACCGG CACTGCTOAG





1351 ATGCTCTTCG ACTACATCTC TGAGTGCATC TCCGACTTCC TGGACAAGCA





1401 TCAGATGAAA CACAAGAAGC TGCCCCTGGG CTTCACCTTC TCCTTTCCTG





1451 TGAGGCACGA AGACATCGAT AAGGGCATCC TTCTCAACTG GACCAAGGGC





1501 TTCAAGGCCT CAGGAGCAGA AGGGAACAAT GTCGTGGGGC TTCTGCGAGA





1551 CGCTATCAAA CGGAGAGGGG ACTTTGAAAT GGATGTGGTG GCAATGGTGA





1601 ATGACACGGT GGCCACGATG ATCTCCTGCT ACTACGAAGA CCATCAGTGC





1651 GAGGTCGGCA TGATCGTGGG CACGGGCTGC AATGCCTGCT ACATGGAGGA





1701 GATGCAGAAT GTGGAGCTGG TGGAGGGGGA CGAGGGCCGC ATGTGCGTCA





1751 ATACCGAGTG GGGCGCCTTC GGGGACTCCG GCGAGCTGGA CGAGTTCCTG





1801 CTGGAGTATG ACCGCCTGGT GGACGAGAGC TCTGCAAACC CCGGTCAGCA





1851 GCTGTATGAG AAGCTCATAG GTGGCAAGTA CATGGGCGAG CTGGTGCGGC





1901 TTGTGCTGCT CAGGCTCGTG GACGAAAACC TGCTCTTCCA CGGGGAGGCC





1951 TCCGAGCAGC TGCGCACACG CGGAGCCTTC GAGACGCGCT TCGTGTCGCA





2001 GGTGGAGAGC GACACGGGCG ACCGCAAGCA GATCTACAAC ATCCTGAGCA





2051 CGCTGGGGCT GCGACCCTCG ACCACCGACT GCGACATCGT GCGCCGCGCC





2101 TGCGAGAGCG TGTCTACGCG CGCTGCGCAC ATGTGCTCGG CGGGGCTGGC





2151 GGGCGTCATC AACCGCATGC GCGAGAGCCG CAGCGAGGAC GTAATGCGCA





2201 TCACTGTGGG CGTGGATGGC TCCGTGTACA AGCTGCACCC CAGCTTCAAG





2251 GAGCGGTTCC ATGCCAGCGT GCGCAGGCTG ACGCCCAGCT GCGAGATCAC





2301 CTTCATCGAG TCGGAGGAGG GCAGTGGCCG GGGCGCGGCC CTGGTCTCGG





2351 CGGTGGCCTG TAAGAAGGCC TGTATGCTGG GCCAGTGACT CGAGCACGTG





2401 GAGCTCGCTG ATCAGCCTCG ACTGTGCCTT CTAGTTGCCA GCCATCTGTT





2451 GTTTGCCCCT CCCCCGTGCC TTCCTTGACC CTGGAAGGTG CCACTCCCAC





2501 TGTCCTTTCC TAATAAAATG AGGAAATTGC ATCGCATTGT CTGAGTAGGT





2551 GTCATTCTAT TCTGGGGGGT GGGGTGGGGC AGGACAGCAA GGGGGAGGAT





2601 TGGGAAGACA ATAGCAGGCA TGCTGGGGAT GCGGTGGGCT CTATGGCCAC





2651 GTGATTTATC TGTAGTTAAT GATTAACCCG CCATGCTACT TATCTACAGA





2701 TCTCAATATT GGCCATTAGC CATATTATTC ATTGGTTATA TAGCATAAAT





2751 CAATATTGGC TATTGGCCAT TGCATACGTT GTATCTATAT CATAATATGT





2801 ACATTTATAT TGGCTCATGT CCAATATGAC CGCCATGTTG GCATTGATTA





2851 TTGACTAGTT ATTAATAGTA ATCAATTACG GGGTCATTAG TTCATAGCCC





2901 ATATATGGAG TTCCGCGTTA CATAACTTAC GGTAAATGGC CCGCCTGGCT





2951 GACCGCCCAA CGACCCCCGC CCATTGACGT CAATAATGAC GTATGTTCCC





3001 ATAGTAACGC CAATAGGGAC TTTCCATTGA CGTCAATGGG TGGAGTATTT





3051 ACGGTAAACT GCCCACTTGG CAGTACATCA AGTGTATCAT ATGCCAAGTC





3101 CGCCCCCTAT TGACGTCAAT GACGGTAAAT GGCCCGCCTG GCATTATGCC





3151 CAGTACATGA CCTTACGGGA CTTTCCTACT TGGCAGTACA TCTACGTATT





3201 AGTCATCGCT ATTACCATGG TGATGCGGTT TTGGCAGTAC ACCAATGGGC





3251 GTGGATAGCG GTTTGACTCA CGGGGATTTC CAAGTCTCCA CCCCATTGAC





3301 GTCAATGGGA GTTTGTTTTG GCACCAAAAT CAACGGGACT TTCCAAAATG





3351 TCGTAACAAC TGCGATCGCC CGCCCCGTTG ACGCAAATGG GCGGTAGGCG





3401 TGTACGGTGG GAGGTCTATA TAAGCAGAGC TCGTTTAGTG AACCGTCAGA





3451 TCACTAGGCT AGCTATTGCG GTAGTTTATC ACAGTTAAAT TGCTAACGCA





3501 GTCAGTGCTT CTGACACAAC AGTCTCGAAC TTAAGCTGCA GTGACTCTCT





3551 TAAGGTAGCC TTGCAGAAGT TGGTCOTGAG GCACTGGGCA GGTAAGTATC





3601 AAGGTTACAA GACAGGTTTA AGGAGACCAA TAGAAACTGG GCTTGTCGAG





3651 ACAGAGAAGA CTCTTGCGTT TCTGATAGGC ACCTATTGGT CTTACTGACA





3701 TCCACTTTGC CTTTCTCTCC ACAGGTGTCC ACTCCCAGTT CAATTACAGC





3751 TCTTAAGGCT AGAGTACTTA ATACGACTCA CTATAGAATA CGACTCACTA





3801 TAGGGAGACG CTAGCGTCGA CCTTCTGCCA TGGCCCTGTG GATGCGCCTC





3851 CTGCCCCTGC TGGCGCTGCT GGCCCTCTGG GGACCTGACC CAGCCGCAGC





3901 CTTTGTGAAC CAACACCTGT GCGGCTCAGA TCTGGTGGAA GCTCTCTACC





3951 TAGTGTGCGG GGAACGAGGC TTCTTCTACA CACC6AGGAC CAAGCGGGAG





4001 GCAGAGGACC TGCAGGTGGG GCAGGTGGAG CTGGGCGOGG GCCCTGGTGC





4051 AGGCAGCCTG CAGCCCTTGG CCCTGGAGGG GTCGCGACAG AAGCGTGGCA





4101 TTGTGGAACA ATGCTGTACC AGCATCTGCT CCCTCTACCA GCTGGAGAAC





4151 TACTGCAACT AGACGCAGCC GTCGACGGTA CCAGCGCTGT CGAGGCCGCT





4201 TCGAGCAGAC ATGATAAGAT ACATTGATGA GTTTGGACAA ACCACAACTA





4251 GAATGCAGTG AAAAAAATGC TTTATTTGTG AAATTTGTGA TGCTATTGCT





4301 TTATTTGTAA CCATTATAAG CTGCAATAAA CAAGTTAACA ACAACAATTG





4351 CATTCATTTT ATGTTTCAGG TTCAGGGGGA GATGTGGGAG GTTTTTTAAA





4401 GCAAGTAAAA CCTCTACAAA TGTGGTAAAA TCGATTAGGA TCTTCCTAGA





4451 GCATGGCTAC CTAGACATGG CTCGACAGAT CAGCGCTCAT GCTCTGGAAG





4501 ATCTCGATTT AAATGCGGCC GCAGGAACCC CTAGTGATGG AGTTGGCCAC





4551 TCCCTCTCTG CGCGCTCGCT CGCTCACTGA GGCCGGGCGA CCAAAGGTCG





4601 CCCGACGCCC GGGCTTTGCC CGGGCGGCCT CAGTGAGCGA GCGAGCGCGC





4651 AGCTGCCTGC AGGGGCGCCT GATGCGGTAT TTTCTCCTTA CGCATCTGTG





4701 CGGTATTTCA CACCGCATAC GTCAAAGCAA CCATAGTACG CGCCCTGTAG





4751 CGGCGCATTA AGCGCGGCGG GTGTGGTGGT TACGCGCAGC GTGACCGCTA





4801 CACTTGCCAG CGCCCTAGCG CCCGCTCCTT TCGCTTTCTT CCCTTCCTTT





4851 CTCGCCACGT TCGCCGGCTT TCCCCGTCAA GCTCTAAATC GGGGGCTCCC





4901 TTTAGGGTTC CGATTTAGTG CTTTACGGCA CCTCGACCCC AAAAAACTTG





4951 ATTTGGGTGA TGGTTCACGT AGTGGGCCAT CGCCCTGATA GACGGTTTTT





5001 CGCCCTTTGA CGTTGGAGTC CACGTTCTTT AATAGTGGAC TCTTGTTCCA





5051 AACTGGAACA ACACTCAACC CTATCTCGGG CTATTCTTTT GATTTATAAG





5101 GGATTTTGCC GATTTCGGCC TATTGGTTAA AAAATGAGCT GATTTAACAA





5151 AAATTTAACG CGAATTTTAA CAAAATATTA ACGTTTACAA TTTTATGGTG





5201 CACTCTCAGT ACAATCTGCT CTGATGCCGC ATAGTTAAGC CAGCCCCGAC





5251 ACCCGCCAAC ACCCGCTGAC GCGCCCTGAC GGGCTTGTCT GCTCCCGGCA





5301 TCCGCTTACA GACAAGCTGT GACCGTCTCC GGGAGCTGCA TGTGTCAGAG





5351 GTTTTCACCG TCATCACCGA AACGCGCGAG ACGAAAGGGC CTCGTGATAC





5401 GCCTATTTTT ATAGGTTAAT GTCATGATAA TAATGGTTTC TTAGACGTCA





5451 GGTGGCACTT TTCGGGGAAA TGTGCGCGGA ACCCCTATTT GTTTATTTTT





5501 CTAAATACAT TCAAATATGT ATCCGCTCAT GAGACAATAA CCCTGATAAA





5551 TGCTTCAATA ATATTGAAAA AGGAAGAGTA TGAGTATTCA ACATTTCCGT





5601 GTCGCCCTTA TTCCCTTTTT TGCGGCATTT TGCCTTCCTG TTTTTGCTCA





5651 CCCAGAAACG CTGGTGAAAG TAAAAGATGC TGAAGATCAG TTGGGTGCAC





5701 GAGTGGGTTA CATCGAACTG GATCTCAACA GCGGTAAGAT CCTTGAGAGT





5751 TTTCGCCCCG AAGAACGTTT TCCAATGATG AGCACTTTTA AAGTTCTGCT





5801 ATGTGGCGCG GTATTATCCC GTATTGACGC CGGGCAAGAG CAACTCGGTC





5851 GCCGCATACA CTATTCTCAG AATGACTTGG TTGAGTACTC ACCAGTCACA





5901 GAAAAGCATC TTACGGATGG CATGACAGTA AGAGAATTAT GCAGTGCTGC





5951 CATAACCATG AGTGATAACA CTGCGGCCAA CTTACTTCTG ACAACGATCG





6001 GAGGACCGAA GGAGCTAACC GCTTTTTTGC ACAACATGGG GGATCATGTA





6051 ACTCGCCTTG ATCGTTGGGA ACCGGAGCTG AATGAAGCCA TACCAAACGA





6101 CGAGCGTGAC ACCACGATGC CTGTAGCAAT GGCAACAACG TTOCGCAAAC





6151 TATTAACTGG CGAACTACTT ACTCTAGCTT CCCGGCAACA ATTAATAGAC





6201 TGGATGGAGG CGGATAAAGT TGCAGGACCA CTTCTGCGCT CGGCCCTTCC





6251 GGCTGGCTGG TTTATTGCTG ATAAATCTGG AGCCGGTGAG CGTGGGTCTC





6301 GCGGTATCAT TGCAGCACTG GGGCCAGATG GTAAGCCCTC CCGTATCGTA





6351 GTTATCTACA CGACGGGGAG TCAGGCAACT ATGGATGAAC GAAATAGACA





6401 GATCGCTGAG ATAGGTGCCT CACTGATTAA GCATTGGTAA CTGTCAGACC





6451 AAGTTTACTC ATATATACTT TAGATTGATT TAAAACTTCA TTTTTAATTT





6501 AAAAGGATCT AGGTGAAGAT CCTTTTTGAT AATCTCATGA CCAAAATCCC





6551 TTAACGTGAG TTTTCGTTCC ACTGAGCGTC AGACCCCGTA GAAAAGATCA





6601 AAGGATCTTC TTGAGATCCT TTTTTTCTGC GCGTAATCTG CTGCTTGCAA





6651 ACAAAAAAAC CACCGCTACC AGCGGTGGTT TGTTTGCCGG ATCAAGAGCT





6701 A6CAACTCTT TTTCCGAAGG TAACTGGCTT CAGCAGAGCG CAGATACCAA





6751 ATACTGTCCT TCTAGTGTAG CCGTAGTTAG GCCACCACTT CAAGAACTCT





6801 GTAGCACCGC CTACATACCT CGCTCTGCTA ATCCTGTTAC CAGTGGCTGC





6651 TGCCAGTGGC GATAAGTCGT GTCTTACCGG GTTGGACTCA AGACGATAGT





6701 TACCGGATAA GGCGCAGCGG TCGGGCTGAA CGGGGGGTTC GTGCACACAG





6951 CCCAGCTTGG AGCGAACGAC CTACACCGAA CTGAGATACC TACAGCGTGA





7001 GCTATGAGAA AGCGCCACGC TTCCCGAAGG GAGAAAGGCG GACAGGTATC





7051 CGGTAAGCGG CAGGGTCGGA ACAGGAGAGC GCACGAGGGA GCTTCCAGGG





7101 GGAAACGCCT GGTATCTTTA TAGTCdTGTC GGGTTTCGCC ACCTCTGACT





7151 TGAGCGTCGA TTTTTGTGAT GCTCGTCAGG GGGGCGGAGC CTATGGAAAA





7201 ACGCCAGCAA CGCGGCCTTT TTACGGTTCC TGGCCTTTTG CTGGCCTTTT





7251 GCTCACATGT






ITR 5′: 1-141 bp


RSV promoter: 239-948 bp


hGck: 973-2387 bp


bGH polyA: 2395-2653 bp


CMV promoter: 2698-3815 bp


hIns: 3823-4169 bp


SV40 polyA: 4183-4481 bp


ITR 3′: 4523-4663 bp


F: CMV-hIns(rev)-RSV-hGck (SEQ ID NO: 11; FIG. 4)










pAAV-CMV-hIns(rev)-RSV-hGck plasmid sequence



   1 CCTGCAGGCA GCTGCGCGCT CGCTCGCTCA CTGAGGCCGC CCGGGCAAAG





  51 CCCGGGCGTC GGGCGACCTT TGGTCGCCCG GCCTCAGTGA GCGAGCGAGC





 101 GCGCAGAGAG GGAGTGGCCA ACTCCATCAC TAGGGGTTCC TGCGGCCGCG





 151 ATAAATCGAG ATCTTCCAGA GCATGAGCGC TGATCTGTCG AGCCATGTCT





 201 AGGTAGCCAT GCTCTAGGAA GATCCTAATC GATTTTACCA CATTTGTAGA





 251 GGTTTTACTT GCTTTAAAAA ACCTCCCACA TCTCCCCCTG AACCTGAAAC





 301 ATAAAATGAA TGCAATTGTT GTTGTTAACT TGTTTATTGC AGCTTATAAT





 351 GGTTACAAAT AAAGCAATAG CATCACAAAT TTCACAAATA AAGCATTTTT





 401 TTCACTGCAT TCTAGTTGTG GTTTGTCCAA ACTCATCAAT GTATCTTATC





 451 ATGTCTGCTC GAAGCGGCCT CGACAGCGCT GGTACCGTCG ACGGCTGCGT





 501 CTAGTTGCAG TAGTTCTCCA GCTGGTAGAG GGAGCAGATG CTGGTACAGC





 551 ATTGTTCCAC AATGCCACGC TTCTGTCGCG ACCCCTCCAG GGCCAAGGGC





 601 TGCAGGCTGC CTGCACCAGG GCCCCCGCCC AGCTCCACCT GCCCCACCTG





 651 CAGGTCCTCT GCCTCCCGCT TGGTCCTGGG TGTGTAGAAG AAGCCTCGTT





 701 CCCCGCACAC TAGGTAGAGA GCTTCCACCA GATCTGAGCC GCACAGGTGT





 751 TGGTTCACAA AGGCTGCGGC TGGGTCAGGT CCCCAGAGGG CCAGCAGCGC





 801 CAGCAGGGGC AGGAGGCGCA TCCACAGGGC CATGGCAGAA GGTCGACGCT





 851 AGCGTCTCCC TATAGTGAGT CGTATTCTAT AGTGAGTCGT ATTAAGTACT





 901 CTAGCCTTAA GAGCTGTAAT TGAACTGGGA GTGGACACCT GTGGAGAGAA





 951 AGGCAAAGTG GATGTCAGTA AGACCAATAG GTGCCTATCA GAAACGCAAG





1001 AGTCTTCTCT GTCTCGACAA GCCCAGTTTC TATTGGTCTC CTTAAACCTG





1051 TCTTGTAACC TTGATACTTA CCTGCCCAGT GCCTCACGAC CAACTTCTGC





1101 AAGGCTACCT TAAGAGAGTC ACTGCAGCTT AAGTTCGAGA CTGTTGTGTC





1151 AGAAGCACTG ACTGCGTTAG CAATTTAACT GTGATAAACT ACCGCAATAG





1201 CTAGCCTAGT GATCTGACGG TTCACTAAAC GAGCTCTGCT TATATAGACC





1251 TCCCACCGTA CACGCCTACC GCCCATTTGC GTCAACGGGG CGGGCGATCG





1301 CAGTTGTTAC GACATTTTGG AAAGTCCCGT TGATTTTGGT GCCAAAACAA





1351 ACTCCCATTG ACGTCAATGG GGTGGAGACT TGGAAATCCC CGTGAGTCAA





1401 ACCGCTATCC ACGCCCATTG GTGTACTGCC AAAACCGCAT CACCATGGTA





1451 ATAGCGATGA CTAATACGTA GATGTACTGC CAAGTAGGAA AGTCCCGTAA





1501 GGTCATGTAC TGGGCATAAT GCCAGGCGGG CCATTTACCG TCATTGACGT





1551 CAATAGGGGG CGGACTTGGC ATATGATACA CTTGATGTAC TGCCAAGTGG





1601 GCAGTTTACC GTAAATACTC CACCCATTGA CGTCAATGGA AAGTCCCTAT





1651 TGGCGTTACT ATGGGAACAT ACGTOATTAT TGACGTCAAT GGGCGGGGGT





1701 CGTTGGGCGG TCAGCCAGGC GGGCCATTTA CCGTAAGTTA TGTAACGCGG





1751 AACTCCATAT ATGGGCTATG AACTAATGAC CCCGTAATTG ATTACTATTA





1801 ATAACTAGTC AATAATCAAT GCCAACATGG CGGTCATATT GGACATGAGC





1861 CAATATAAAT GTACATATTA TGATATAGAT ACAACGTATG CAATGGCCAA





1901 TAGoCAATAT TGATTTATGC TATATAACCA ATGAATAATA TGGCTAATGO





1951 CCAATATTGA GATCTGTAGA TAAGTAGCAT GGCGGGTTAA TCATTAACTA





2001 CAGATATCCA TGTTTGACAG CTTATCATCG CAGATCCGTA TGGTGCACTC





2051 TCAGTACAAT CTGCTCTGAT GCCGCAMAGT TAAGCCAGTA TCTGCTCCCT





2101 GCTTGTGTGT TGGAGGTCGC TGAGTAGTGC GCGAGCAAAA TTTAAGCTAC





2151 AACAAGGCAA GGCTTGACCG ACAATTGCAT GAAGAATCTG CTTAGGGTTA





2201 GGCGTTTTGC GCTGCTTCGC GATGTACGGG CCAGATATTC GCGTATCTGA





2251 GGGGACTAGG GTGTGTTTAG GCGAAAAGCG GGGCTTCGGT TGTACGCGGT





2301 TAGGAGTCCC CTCAGGATAT AGTAGTTTCG CTTTTGCATA GGGAGGGGGA





2351 AATGTAGTCT TATGCAATAC TCTTGTAGTC TTGCAACATG GTAACGATGA





2401 GTMAGCAACA TGCCTTACAA GGAGAGAAAA AGCACCGTGC ATGCCGATTG





2451 GTGGAAGTAA GGTGGTACGA TCGTGCCTTA TTAGGAAGGC AACAGACGGG





2501 TCTGACATGG ATTGGACGAA CCACTAAATT CCGCATTGCA GAGATATTGT





2551 ATTTAAGTGC CTAGCTCGAT ACAATAAACG CCATTTGACC ATTCACCACA





2601 TTGGTGTGCA CCTCCAAGCT GGGTACCAGC TTCTAGAGAG ATCTGCTTCA





2651 GCTGGAGGCA CTGGGCAGGT AAGTATCAAG GTTACAAGAC AGGTTTAAGG





2701 AGACCAATAG AAACTGGGCT TGTCGAGACA GAGAAGACTC TTGCGTTTCT





2751 GATAGGCACC TATTGGTCTT ACTGACATCC ACTTTGCCTT TCTCTCCACA





2801 GGTGCAGCTG CTGCAGCGGT CTAGAACTCG AGTCGAGACC ATGGCGATGG





2e51 ATGTCACAAG GAGCCAGGCC CAGACAGCCT TGACTCTGGT AGAGCAGATC





2901 CTGGCAGAGT TCCAGCTGCA GGAGGAGGAC CTGAAGAAGG TGATGAGACG





2951 GATGCAGAAG GAGATGGACC GCGGCCTGAG GCTGGAGACC CATGAAGAGG





3001 CCAGTGTGAA GATGCTGCCC ACCTACGTGC GCTCCACCCC AGAAGGCTCA





3051 GAAGTCGGGG ACTTCCTCTC CCTGGACCTG GGTGGCACTA ACTTCAGGGT





3101 GATGCTGGTG AAGGTGGGAG AAGGTGAGGA GGGGCAGTGG AGCGTGAAGA





3151 CCAAACACCA GATGTACTCC ATCCCCGAGG ACGCCATGAC CGGCACTGCT





3201 GAGATGCTCT TCGACTACAT CTCTGAGTGC ATCTCCGACT TCCTGGACAA





3251 GCATCAGATG AAACACAAGA AGCTGCCCCT GGGCTTCACC TTCTCCTTTC





3301 CTGTGAGGCA CGAAGACATC GATAAGGGCA TCCTTCTCAA CTGGACCAAG





3351 GGCTTCAAGG CCTCAGGAGC AGAAGGGAAC AATGTCGTGG GGCTTCTGCG





3401 AGACGCTATC AAACGGAGAG GGGACTTTGA AATGGATGTG GTGGCAATGG





3451 TGAATGACAC GGTGGCCACG ATGATCTCCT GCTACTACGA AGACCATCAG





3501 TGCGAGGTCG GCATGATCGT GGGCACGGGC TGCAATGCCT GCTACATGGA





3551 GGAGATGCAG AATGTGGAGC TGGTGGAGGG GGACGAGGGC CGCATGTGCG





3601 TCAATACCGA GTGGGGCGCC TTCGGGGACT CCGGCGAGCT GGACGAGTTC





3651 CTGCTGGAGT ATGACCGCCT GGTGGACGAG AGCTCTGCAA ACCCCGGTCA





3701 GCAGCTGTAT GAGAAGCTCA TAGGTGGCAA GTACATGGGC GAGCTGGTGC





3751 GGCTTGTGCT GCTCAGGCTC GTGGACGAAA ACCTGCTCTT CCACGGGGAG





3801 GCCTCCGAGC AGCTGCGCAC ACGCGGAGCC TTCGAGACGC GCTTCGTGTC





3851 GCAGGTGGAG AGCGACACGG GCGACCGCAA GCAGATCTAC AACATCCTGA





3901 GCACGCTGGG GCTGCGACCC TCGACCACCG ACTGCGACAT CGTGCGCCGC





3951 GCCTGCGAGA GCGTGTCTAC GCGCGCTGCG CACATGTGCT CGGCGGGGCT





4001 GGCGGGCGTC ATCAACCGCA TGCGCGAGAG CCGCAGCGAG GACGTAATGC





4051 GCATCACTGT GGGCGTGGAT GGCTCCGTGT ACAAGCTGCA CCCCAGCTTC





4101 AAGGAGCGGT TCCATGCCAG CGTGCGCAGG CTGACGCCCA GCTGCGAGAT





4151 CACCTTCATC GAGTCGGAGG AGGGCAGTGG CCGGGGCGCG GCCCTGGTCT





4201 CGGCGGTGGC CTGTAAGAAG GCCTGTATGC TGGGCCAGTS ACTCGAGCAC





4251 GTGGAGCTCG CTGATCAGCC TCGACTGTGC CTTCTAGTTG CCAGCCATCT





4301 GTTGTTTGCC CCTCCCCCGT GCCTTCCTTG ACCCTGGAAG GTGCCACTCC





4351 CACTGTCCTT TCCTAATAAA ATGAGGAAAT TGCATCGCAT TGTCTGAGTA





4401 GGTGTCATTC TATTCTGGGG GGTGGdGTGG GGCAGGACAG CAAGGGGGAG





4451 dATTGGGAAG ACAATAGCAG GCATGCTGGG GATGCGGTG6 GCTCTATGGC





4501 CACGTGATTT AAATGCGGCC GCAGGAACCCCTAGTGATGG AGTTGGCCAC





4551 TCCCTCTCTG CGCGCTCGCT CGCTCACTGA GGCCGGGCGA CCAAAGGTCG





4601 CdCGACGCCC GGGCTTTGCC CGGGCGGCCT CAGTGAGCGA GCGAGCGCGC





4651 AGCTGCCTGC AGGGGCGCCT GATGCGGTAT TTTCTCCTTA CGCATCTGTG





4701 CGGTATTTCA CACCGCATAC GTCAAAGCAA CCATAGTACG CGCCCTGTAG





4751 CGGCGCATTA AGCGCGGCGG GTGTGGTGGT TACGCGCAGC GTGACCGCTA





4901 CACTTGCCAG CGCCCTAGCG CCCGCTCCTT TCGCTTTCTT CCCTTCCTTT





4051 CTCGCCACGT TCGCCGGCTT TCCCCGTCAA GCTCTAAATC GGGGGCTCCC





4901 TTTAGGGTTC CGATTTAGTG CTTTACGGCA CCTCGACCCC AAAAAACTTG





4951 ATTTGGGTGA TGGTTCACGT AGTGGGCCAT CGCCCTGATA GACGGTTTTT





5001 CGCCCTTTGA CGTTGGAGTC CACGTTCTTT AATAGTGGAC TCTTGTTCCA





5051 AACTGGAACA ACACTCAACC CTATCTCGGG CTATTCTTTT GATTTATAAG





5101 GGATTTTGCC GATTTCGGCC TATTGGTTAA AAAATGAGCT GATTTAACAA





5151 AAATTTAACG CGAATTTTAA CAAAATATTA ACGTTTACAA TTTTATGGTG





5201 CACTCTCAGT ACAATCTGCT CTGATGCCGC ATAGTTAAGC CAGCCCCGAC





5251 ACCCGCCAAC ACCCGCTGAC GCGCCCTGAC GGGCTTGTCT GCTCCCGGCA





5301 TCCGCTTACA GACAAGCTGT GACCGTCTCC GGGAGCTGCA TGTGTCAGAG





5351 GTTTTCACCG TCATCACCGA AACGCGCGAG ACGAAAGGGC CTCGTGATAC





5401 GTCATGATAA TAATGGTTTC TTAGACGTCA GCCTATTTTT ATAGGTTAAT





5451 GGTGGCACTT TTCGGGGAAA TGTGCGCGGA ACCCCTATTT GT7TATTTTT





5501 CTAAATACAT TCAAATATGT ATCCGCTCAT GAGACAATAA CCCTGATAAA





5551 TGCTTCAATA ATATTGAAAA AGGAAGAGTA TGAGTATTCA ACATTTCCGT





5601 GTCGCCCTTA TTCCCTTTTT TGCGGCATTT TGCCTTCCTG TTTTTGCTCA





5651 CCCAGAAACG CTGGTGAAAG TAAAAGATGC TGAAGATCAG TTGGGTGCAC





5701 GAGTGGGTTA CATCGAACTG GATCTCAACA GCGGTAAGAT CCTTGAGAGT





5751 TTTCGCCCCG AAGAACGTTT TCCAATGATG AGCACTTTTA AAGTTCTGCT





5801 ATGTGGCGCG GTATTATCCC GTATTGACGC CGGGCAAGAG CAACTCGGTC





5851 GCCGCATACA CTATTCTCAG AATGACTTGG TTGAGTACTC ACCAGTCACA





5901 GAAAAGCATC TTACGGATGG CATGACAGTA AGAGAATTAT GCAGTGCTGC





5951 CATAACCATG AGTGATAACA CTGCGGCCAA CTTACTTCTG ACAACGATCG





6001 GAGGACCGAA GGAGCTAACC GCTTTTTTGC ACAACATGGG GGATCATGTA





6051 ACTCGCCTTG ATCGTTGGGA ACCGGAGCTG AATGAAGCCA TACCAAACGA





6101 CGAGCGTGAC ACCACGATGC CTGTAOCAAT GGCAACAACG TTGCGCAAAC





6151 TATTAACTGG CGAACTACTT ACTCTAGCTT CCCGGCAACA ATTAATAGAC





6201 TGGATGGAGG CGGATAAAGT TGCAGGACCA CTTCTGCGCT CGGCCCTTCC





6251 GGCTGGCTQG TTTATTGCTG ATAAATCTGG AGCCGGTGAG CGTGGGTCTC





6301 GCGGTATCAT TGCAGCACTG GGGCCAGATG GTAAGCCCTC CCGTATCGTA





6351 GTTATCTACA CGACGGGGAG TCAGGCAACT ATGGATGAAC GAAATAGACA





6401 GATCGCTGAG ATAGGTGCCT CACTGATTAA GCATTGGTAA CTGTCAGACC





6451 AAGTTTACTC ATATATACTT TAGATTGATT TAAAACTTCA TTTTTAATTT





6501 AAAAGGATCT AGGTGAAGAT CCTTTTTGAT AATCTCATGA CCAAAATCCC





6551 TTAACGTGAG TTTTCGTTCC ACTGAGCGTC AGACCCCGTA GAAAAGATCA





6601 AAGGATCTTC TTGAGATCCT TTTTTTCTGC GCGTAATCTG CTGCTTGCAA





6651 ACAAAAAAAC CACCGCTACC AGCGGTGGTT TGTTTGCCGG ATCAAGAGCT





6701 ACCAACTCTT TTTCCGAAGG TAACTGGCTT CAGCAGAGCG CAGATACCAA





6751 ATACTGTCCT TCTAGTGTAG CCGTAGTTAG GCCACCACTT CAAGAACTCT





6801 GTAGCACCGC CTACATACCT CGCTCTGCTA ATCCTGTTAC CAGTGGCTGC





6851 TGCCAGTGGC GATAAGTCGT GTCTTACCGG GTTGGACTCA AGACGATAGT





6901 TACCGGATAA GGCGCAGCGG TCGGGCTGAA CGGGGGGTTC GTGCACACAG





6951 CCCAGCTTGG AGCGAACGAC CTACACCGAA CTGAGATACC TACAGCGTGA





7001 GCTATGAGAA AGCGCCACGC TTCCCGAAGG GAGAAAGGCG GACAGGTATC





7051 CGGTAAGCGG CAGGGTCGGA ACAGGAGAGC GCACGAGGGA GCTTCCAGGG





7101 GGAAACGCCT GGTATCTTTA TAGTCCTGTC GGGTTTCGCC ACCTCTGACT





7151 TGAGCGTCGA TTTTTGTGAT GCTCGTCAGG GGGGCGGAGC CTATGGAAAA





7201 ACGCCAGCAA CGCGGCCTTT TTACGGTTCC TGGCCTTTTG CTGGCCTTTT





7251 GCTCACATGT






ITR 5′: 1-141 bp


SV40 polyA: 182-480 bp


hIns: 494-840 bp


CMV promoter: 4248-1965 bp


RSV promoter: 2092-2801 bp


hGck: 2826-4240 bp


bGH polyA: 4248-4506 bp


ITR 3′: 4523-4663 bp


G; RSV-hGck-CMV-hIns(rev) (SEQ ID NO:12; FIG. 4)










pAAV-RSV-hGck-CMV-hIns(rev) plasmid sequence



   1 CCTGCAGGCA GCTGCGCGCT CGCTCGCTCA CTGAGGCCGC CCGGGCAAAG





  51 CCCGGGCGTC GGGCGACCTT TGGTCGCCCG GCCTCAGTGA GCGAGCGAGC





 101 GCGCAGAGAG GGAGTGGCCA ACTCCATCAC TAGGGGTTCC TGCGGCCGCG





 151 ATATCCATGT TTGACAGCTT ATCATCGCAG ATCCGTATGG TGCACTCTCA





 201 GTACAATCTG CTCTGATGCC GCATAGTTAA GCCAGTATCT GCTCCCTGCT





 251 TGTGTGTTGG AGGTCGCTGA GTAGTGCGCG AGCAAAATTT AAGCTACAAC





 301 AAGGCAAGGC TTGACCGACA ATTGCATGAA GAATCTGCTT AGGGTTAGGC





 351 GTTTTGCGCT GCTTCGCGAT GTACGGGCCA GATATTCGCG TATCTGAGGG





 401 GACTAGGGTG TGTTTAGGCG AAAAGCGGGG CTTCGGTTGT ACGCGGTTAG





 451 GAGTCCCCTC AGGATATAGT AGTTTCGCTT TTGCATAGGG AGGGGGAAAT





 501 GTAGTCTTAT GCAATACTCT TGTAGTCTTG CAACATGGTA ACGATGAGTT





 551 AGCAACATGC CTTACAAGGA GAGAAAAAGC ACCGTGCATG CCGATTGGTG





 601 GAAGTAAGGT GGTACGATCG TGCCTTATTA GGAAGGCAAC AGACGGGTCT





 651 GACATGGATT GGACGAACCA CTAAATTCCG CATTGCAGAG ATATTGTATT





 701 TAAGTGCCTA GCTCGATACA ATAAACGCCA TTTGACCATT CACCACATTG





 751 GTGTGCACCT CCAAGCTGGG TACCAGCTTC TAGAGAGATC TGCTTCAGCT





 801 GGAGGCACTG GGCAGGTAAG TATCAAGGTT ACAAGACAGG TTTAAGGAGA





 851 CCAATAGAAA CTGGGCTTGT CGAGACAGAG AAGACTCTTG CGTTTCTGAT





 901 AGGCACCTAT TGGTCTTACT GACATCCACT TTGCCTTTCT CTCCACAGGT





 951 GCAGCTGCTG CAGCGGTCTA GAACTCGAGT CGAGACCATG GCGATGGATG





1001 TCACAAGGAG CCAGGCCCAG ACAGCCTTGA CTCTGGTAGA GCAGATCCTG





1051 GCAGAGTTCC AGCTGCAGGA GGAGGACCTG AAGAAGGTGA TGAGACGGAT





1101 GCAGAAGGAG ATGGACCGCG GCCTGAGGCT GGAGACCCAT GAAGAGGCCA





1151 GTGTGAAGAT GCTGCCCACC TACGTGCGCT CCACCCCAGA AGGCTCAGAA





1201 GTCGGGGACT TCCTCTCCCT GGACCTGGGT GGCACTAACT TCAGGGTGAT





1251 GCTGGTGAAG GTGGGAGAAG GTGAGGAGGG GCAGTGGAGC GTGAAGACCA





1301 AACACCAGAT GTACTCCATC CCCGAGGACG CCATGACCGG CACTGCTGAG





1351 ATGCTCTTCG ACTACATCTC TGAGTGCATC TCCGACTTCC TGGACAAGCA





1401 TCAGATGAAA CACAAGAAGC TGCCCCTGGG CTTCACCTTC TCCTTTCCTG





1451 TGAGGCACGA AGACATCGAT AAGGGCATCC TTCTCAACTG GACCAAGGGC





1501 TTCAAGGCCT CAGGAGCAGA AGGGAACAAT GTCGTGGGGC TTCTGCGAGA





1551 CGCTATCAAA CGGAGAGGGG ACTTTGAAAT GGATGTGGTG GCAATGGTGA





1601 ATGACACGGT GGCCACGATG ATCTCCTGCT ACTACGAAGA CCATCAGTGC





1651 GAGGTCGGCA TGATCGTGGG CACGGGCTGC AATGCCTGCT ACATGGAGGA





1701 GATGCAGAAT GTGGAGCTGG TGGAGGGGGA CGAGGGCCGC ATGTGCGTCA





1751 ATACCGAGTG GGGCGCCTTC GGGGACTCCG GCGAGCTGGA CGAGTTCCTG





1801 CTGGAGTATG ACCGCCTGGT GGACGAGAGC TCTGCAAACC CCGGTCAGCA





1851 GCTGTATGAG AAGCTCATAG GTGGCAAGTA CATGGGCGAG CTGGTGCGGC





1901 TTGTGCTGCT CAGGCTCGTG GACGAAAACC TGCTCTTCCA CGGGGAGGCC





1951 TCCGAGCAGC TGCGCACACG CGGAGCCTTC GAGACGCGCT TCGTGTCGCA





2001 GGTGGAGAGC GACACGGGCG ACCGCAAGCA GATCTACAAC ATCCTGAGCA





2051 CGCTGGGGCT GCGACCCTCG ACCACCGACT GCGACATCGT GCGCCGCGCC





2101 TGCGAGAGCG TGTCTACGCG CGCTGCGCAC ATGTGCTCGG CGGGGCTGGC





2151 GGGCGTCATC AACCGCATGC GCGAGAGCCG CAGCGAGGAC GTAATGCGCA





2201 TCACTGTGGG CGTGGATGGC TCCGTGTACA AGCTGCACCC CAGCTTCAAG





2251 GAGCGGTTCC ATGCCAGCGT GCGCAGGCTG ACGCCCAGCT GCGAGATCAC





2301 CTTCATCGAG TCGGAGGAGG GCAGTGGCCG GGGCGCGGCC CTGGTCTCGG





2351 CGGTGGCCTG TAAGAAGGCC TGTATGCTGG GCCAGTGACT CGAGCACGTG





2401 GAGCTCGCTG ATCAGCCTCG ACTGTGCCTT CTAGTTGCCA GCCATCTGTT





2451 GTTTGCCCCT CCCCCGTGCC TTCCTTGACC CTGGAAGGTG CCACTCCCAC





2501 TGTCCTTTCC TAATAAAATG AGGAAATTGC ATCGCATTGT CTGAGTAGGT





2551 GTCATTCTAT TCTGGGGGGT GGGGTGGGGC AGGACAGCAA GGGGGAGGAT





2601 TGGGAAGACA ATAGCAGGCA TGCTGGGGAT GCGGTGGGCT CTATGGCCAC





2651 GTGATTTAAA TCGAGATCTT CCAGAGCATG AGCGCTGATC TGTCGAGCCA





2701 TGTCTAGGTA GCCATGCTCT AGGAAGATCC TAATCGATTT TACCACATTT





2751 GTAGAGGTTT TACTTGCTTT AAAAAACCTC CCACATCTCC CCCTGAACCT





2801 GAAACATAAA ATGAATGCAA TTGTTGTTGT TAACTTGTTT ATTGCAGCTT





2851 ATAATGGTTA CAAATAAAGC AATAGCATCA CAAATTTCAC AAATAAAGCA





2901 TTTTTTTCAC TGCATTCTAG TTGTGGTTTG TCCAAACTCA TCAATGTATC





2951 TTATCATGTC TGCTCGAAGC GGCCTCGACA GCGCTGGTAC CGTCGACGGC





3001 TGCGTCTAGT TGCAGTAGTT CTCCAGCTGG TAGAGGGAGC AGATGCTGGT





3051 ACAGCATTGT TCCACAATGC CACGCTTCTG TCGCGACCCC TCCAGGGCCA





3101 AGGGCTGCAG GCTGCCTGCA CCAGGGCCCC CGCCCAGCTC CACCTGCCCC





3151 ACCTGCAGGT CCTCTGCCTC CCGCTTGGTC CTGGGTGTGT AGAAGAAGCC





3201 TCGTTCCCCG CACACTAGGT AGAGAGCTTC CACCAGATCT GAGCCGCACA





3251 GGTGTTGGTT CACAAAGGCT GCGGCTGGGT CAGGTCCCCA GAGGGCCAGC





3301 AGCGCCAGCA GGGGCAGGAG GCGCATCCAC AGGGCCATGG CAGAAGGTCG





3351 ACGCTAGCGT CTCCCTATAG TGAGTCGTAT TCTATAGTGA GTCGTATTAA





3401 GTACTCTAGC CTTAAGAGCT GTAATTGAAC TGGGAGTGGA CACCTGTGGA





3451 GAGAAAGGCA AAGTGGATGT CAGTAAGACC AATAGGTGCC TATCAGAAAC





3501 GCAAGAGTCT TCTCTGTCTC GACAAGCCCA GTTTCTATTG GTCTCCTTAA





3551 ACCTGTCTTG TAACCTTGAT ACTTACCTGC CCAGTGCCTC ACGACCAACT





3601 TCTGCAAGGC TACCTTAAGA GAGTCACTGC AGCTTAAGTT CGAGACTGTT





3651 GTGTCAGAAG CACTGACTGC GTTAGCAATT TAACTGTGAT AAACTACCGC





3701 AATAGCTAGC CTAGTGATCT GACGGTTCAC TAAACGAGCT CTGCTTATAT





3751 AGACCTCCCA CCGTACACGC CTACCGCCCA TTTGCGTCAA CGGGGCGGGC





3801 GATCGCAGTT GTTACGACAT TTTGGAAAGT CCCGTTGATT TTGGTGCCAA





3851 AACAAACTCC CATTGACGTC AATGGGGTGG AGACTTGGAA ATCCCCGTGA





3901 GTCAAACCGC TATCCACGCC CATTGGTGTA CTGCCAAAAC CGCATCACCA





3951 TGGTAATAGC GATGACTAAT ACGTAGATGT ACTGCCAAGT AGGAAAGTCC





4001 CGTAAGGTCA TGTACTGGGC ATAATGCCAG GCGGGCCATT TACCGTCATT





4051 GACGTCAATA GGGGGCGGAC TTGGCATATG ATACACTTGA TGTACTGCCA





4101 AGTGGGCAGT TTACCGTAAA TACTCCACCC ATTGACGTCA ATGGAAAGTC





4151 CCTATTGGCG TTACTATGGG AACATACGTC ATTATTGACG TCAATGGGCG





4201 GGGGTCGTTG GGCGGTCAGC CAGGCGGGCC ATTTACCGTA AGTTATGTAA





4251 CGCGGAACTC CATATATGGG CTATGAACTA ATGACCCCGT AATTGATTAC





4301 TATTAATAAC TAGTCAATAA TCAATGCCAA CATGGCGGTC ATATTGGACA





4351 TGAGCCAATA TAAATGTACA TATTATGATA TAGATACAAC GTATGCAATG





4401 GCCAATAGCC AATATTGATT TATGCTATAT AACCAATGAA TAATATGGCT





4451 AATGGCCAAT ATTGAGATCT GTAGATAAGT AGCATGGCGG GTTAATCATT





4501 AACTACAGAT AAATGCGGCC GCAGGAACCC CTAGTGATOG AGTTGGCCAC





4551 TCCCTCTCTG CGCGCTCGCT CGCTCACTGA GGCCGGGCGA CCAAAGGTCG





4601 CCCGACGCCC GGGCTTTGCC CGGGCGGCCT CAGTGAGCGA GCGAGCGCGC





4651 AGCTGCCTGC AGGGGCGCCT GATGCGGTAT TTTCTCCTTA CGCATCTGTG





4701 CGGTATTTCA CACCGCATAC GTCAAAGCAA CCATAGTACG CGCCCTGTAG





4751 CGGCGCATTA AGCGCGGCGG GTGTGGTGGT TACGCGCAGC GTGACCGCTA





4801 CACTTGCCAG CGCCCTAGCG CCCGCTCCTT TCGCTTTCTT CCCTTCCTTT





4851 CTCGCCACGT TCGCCGGCTT TCCCCGTCAA GCTCTAAATC GGGGGCTCCC





4901 TTTAGGGTTC CGATTTAGTG CTTTACGGCA CdTCGACCCC AAAAAACTTG





4951 ATTTGGGTGA TGGTTCACGT AGTGGGCCAT CGCCCTGATA GACGGTTTTT





5001 CGCCCTTTGA CGTTGGAGTC CACGTTCTTT AATAGTGGAC TCTTGTTCCA





5051 AACTGGAACA ACACTCAACC CTATCTCGGG CTATTCTTTT GATTTATAAG





5101 GGATTTTGCC GATTTCGGCC TATTGGTTAA AAAATGAGCT GATTTAACAA





5151 AAATTTAACG CGAATTTTAA CAAAATATTA ACGTTTACAA TTTTATGGTG





5201 CACTCTCAGT ACAATCTGCT CTGATGCCGC ATAGTTAAGC CAGCCCCGAC





5251 ACCCGCCAAC ACCCGCTGAC GCGCCCTGAC GGGCTTGTCT GCTCCCGGCA





5301 TCCGCTTACA GACAAGCTGT GACCGTCTCC GGGAGCTGCA TGTGTCAGAG





5351 GTTTTCACCG TCATCACCGA AACGCGCGAG ACGAAAGGGC CTCGTGATAC





5401 GCCTATTTTT ATAGGTTAAT GTCATGATAA TAATGGTTTC TTAGACGTCA





5451 GGTGGCACTT TTCGGGGAAA TGTGCGCGGA ACCCCTATTT GTTTATTTTT





5501 CTAAATACAT TCAAATATGT ATCCGCTCAT GAGACAATAA CCCTGATAAA





5551 TGCTTCAATA ATATTGAAAA AGGAAGAGTA TGAGTATTCA ACATTTCCGT





5601 GTCGCCCTTA TTCCCTTTTT TGCGGCATTT TGCCTTCCTG TTTTTGCTCA





5651 CCCAGAAACG CTGGTGAAAG TAAAAGATGC TGAAGATCAG TTGGGTGCAC





5701 GAGTGGGTTA CATCGAACTG GATCTCAACA GCGGTAAGAT CCTTGAGAGT





5751 TTTCGCCCCG AAGAACGTTT TCCAATGATG AGCACTTTTA AAGTTCTGCT





5801 ATGTGGCGCG GTATTATCCC GTATTGACGC CGGGCAAGAG CAACTCGGTC





5851 GCCGCATACA CTATTCTCAG AATGACTTGG TTGAGTACTC ACCAGTCACA





5901 GAAAAGCATC TTACGGATGG CATGACAGTA AGAGAATTAT GCAGTGCTGC





5951 CATAACCATG AGTGATAACA CTGCGGCCAA CTTACTTCTG ACAACGATCG





6001 GAGGACCGAA GGAGCTAACC GCTTTTTTGC ACAACATGGG GGATCATGTA





6051 ACTCGCCTTG ATCGTTGGGA ACCGGAGCTG AATGAAGCCA TACCAAACGA





6101 CGAGCGTGAC ACCACGATGC CTGTAGCAAT GGCAACAACG TTGCGCAAAC





6151 TATTAACTGG CGAACTACTT ACTCTAGCTT CCCGGCAACA ATTAATAGAC





6201 TGGATGGAGG CGGATAAAGT TGCAGGACCA CTTCTGCGCT CGGCCCTTCC





6251 GGCTGGCTGG TTTATTGCTG ATAAATCTGG AGCCGGTGAG CGTGGGTCTC





6301 GCGGTATCAT TGCAGCACTG GGGCCAGATG GTAAGCCCTC CCGTATCGTA





6351 GTTATCTACA CGACGGGGAG TCAGGCAACT ATGGATGAAC GAAATAGACA





6401 GATCGCTGAG ATAGGTGCCT CACTGATTAA GCATTGGTAA CTGTCAGACC





6451 AAGTTTACTC ATATATACTT TAGATTGATT TAAAACTTCA TTTTTAATTT





6501 AAAAGGATCT AGGTGAAGAT CCTTTTTGAT AATCTCATGA CCAAAATCCC





6551 TTAACGTGAG TTTTCGTTCC ACTGAGCGTC AGACCCCGTA GAAAAGATCA





6601 AAGGATCTTC TTGAGATCCT TTTTTTCTGC GCGTAATCTG CTGCTTGCAA





6651 ACAAAAAAAC CACCGCTACC AGCGGTGGTT TGTTTGCCGG ATCAAGAGCT





6701 ACCAACTCTT TTTCCGAAGG TAACTGGCTT CAGCAGAGCG CAGATACCAA





6751 ATACTGTCCT TCTAGTGTAG CCGTAGTTAG GCCACCACTT CAAGAACTCT





6801 GTAGCACCGC CTACATACCT CGCTCTGCTA ATCCTGTTAC CAGTGGCTGC





6851 TGCCAGTGGC GATAAGTCGT GTCTTACCGG GTTGGACTCA AGACGATAGT





6901 TACCGGATAA GGCGCAGCGG TCGGGCTGAA CGGGGGGTTC GTGCACACAG





6951 CCCAGCTTGG AGCGAACGAC CTACACCGAA CTGAGATACC TACAGCGTGA





7001 GCTATGAGAA AGCGCCACGC TTCCCGAAGG GAGAAAGGCG GACAGGTATC





7051 CGGTAAGCGG CAGGGTCGGA ACAGGAGAGC GCACGAGGGA GCTTCCAGGG





7101 GGAAACGCCT GGTATCTTTA TAGTCCTGTC GGGTTTCGCC ACCTCTGACT





7151 TGAGCGTCGA TTTTTGTGAT GCTCGTCAGG GGGGCGGAGC CTATGGAAAA





7201 ACGCCAGCAA CGCGGCCTTT TTACGGTTCC TGGCCTTTTG CTGGCCTTTT





7251 GCTCACATGT






ITR 5′: 1-141 bp


RSV promoter: 239-948 bp


hGck: 973-2387 bp


bGH polyA: 2395-2653 bp


SV40 polya: 2687-2985 bp hIns: 2999-3345 bp


CMV promoter: 3353-4470 bp


ITR 3′: 4523-4663 bp


H: CMV-hIns (SEQ ID NO: 19; FIG. 5)










pAAV-CMV-hIns plasmid sequence



   1 CCTGCAGGCA GCTGCGCGCT CGCTCGCTCA CTGAGGCCGC CCGGGCAAAG





  51 CCCGGGCGTC GGGCGACCTT TGGTCGCCCG GCCTCAGTGA GCGAGCGAGC





 101 GCGCAGAGAG GGAGTGGCCA ACTCCATCAC TAGGGGTTCC TGCGGCCGCG





 151 ATATCTGTAG TTAATGATTA ACCCGCCATG CTACTTATCT ACAGATCTCA





 201 ATATTGGCCA TTAGCCATAT TATTCATTGG TTATATAGCA TAAATCAATA





 251 TTGGCTATTG GCCATTGCAT ACGTTGTATC TATATCATAA TATGTACATT





 301 TATATTGGCT CATGTCCAAT ATGACCGCCA TGTTGGCATT GATTATTGAC





 351 TAGTTATTAA TAGTAATCAA TTACGGGGTC ATTAGTTCAT AGCCCATATA





 401 TGGAGTTCCG CGTTACATAA CTTACGGTAA ATGGCCCGCC TGGCTGACCG





 451 CCCAACGACC CCCGCCCATT GACGTCAATA ATGACGTATG TTCCCATAGT





 501 AACGCCAATA GGGACTTTCC ATTGACGTCA ATGGGTGGAG TATTTACGGT





 551 AAACTGCCCA CTTGGCAGTA CATCAAGTGT ATCATATGCC AAGTCCGCCC





 601 CCTATTGACG TCAATGACGG TAAATGGCCC GCCTGGCATT ATGCCCAGTA





 651 CATGACCTTA CGGGACTTTC CTACTTGGCA GTACATCTAC GTATTAGTCA





 701 TCGCTATTAC CATGGTGATG CGGTTTTGGC AGTACACCAA TGGGCGTGGA





 751 TAGCGGTTTG ACTCACGGGG ATTTCCAAGT CTCCACCCCA TTGACGTCAA





 801 TGGGAGTTTG TTTTGGCACC AAAATCAACG GGACTTTCCA AAATGTCGTA





 851 ACAACTGCGA TCGCCCGCCC CGTTGACGCA AATGGGCGGT AGGCGTGTAC





 901 GGTGGGAGGT CTATATAAGC AGAGCTCGTT TAGTGAACCG TCAGATCACT





 951 AGGCTAGCTA TTGCGGTAGT TTATCACAGT TAAATTGCTA ACGCAGTCAG





1001 TGCTTCTGAC ACAACAGTCT CGAACTTAAG CTGCAGTGAC TCTCTTAAGG





1051 TAGCCTTGCA GAAGTTGGTC GTGAGGCACT GGGCAGGTAA GTATCAAGGT





1101 TACAAGACAG GTTTAAGGAG ACCAATAGAA ACTGGGCTTG TCGAGACAGA





1151 GAAGACTCTT GCGTTTCTGA TAGGCACCTA TTGGTCTTAC TGACATCCAC





1201 TTTGCCTTTC TCTCCACAGG TGTCCACTCC CAGTTCAATT ACAGCTCTTA





1251 AGGCTAGAGT ACTTAATACG ACTCACTATA GAATACGACT CACTATAGGG





1301 AGACGCTAGC GTCGACCTTC TGCCATGGCC CTGTGGATGC GCCTCCTGCC





1351 CCTGCTGGCG CTGCTGGCCC TCTGGGGACC TGACCCAGCC GCAGCCTTTG





1401 TGAACCAACA CCTGTGCGGC TCAGATCTGG TGGAAGCTCT CTACCTAGTG





1451 TGCGGGGAAC GAGGCTTCTT CTACACACCC AGGACCAAGC GGGAGGCAGA





1501 GGACCTGCAG GTGGGGCAGG TGGAGCTGGG CGGGGGCCCT GGTGCAGGCA





1551 GCCTGCAGCC CTTGGCCCTG GAGGGGTCGC GACAGAAGCG TGGCATTGTG





1601 GAACAATGCT GTACCAGCAT CTGCTCCCTC TACCAGCTGG AGAACTACTG





1651 CAACTAGACG CAGCCGTCGA CGGTACCAGC GCTGTCGAGG CCGCTTCGAG





1701 CAGACATGAT AAGATACATT GATGAGTTTG GACAAACCAC AACTAGAATG





1751 CAGTGAAAAA AATGCTTTAT TTGTGAAATT TGTGATGCTA TTGCTTTATT





1801 TGTAACCATT ATAAGCTGCA ATAAACAAGT TAACAACAAC AATTGCATTC





1851 ATTTTATGTT TCAGGTTCAG GGGGAGATGT GGGAGGTTTT TTAAAGCAAG





1901 TAAAACCTCT ACAAATGTGG TAAAATCGAT TAGGATCTTC CTAGAGCATG





1951 GCTACCTAGA CATGGCTCGA CAGATCAGCG CTCATGCTCT GGAAGATCTC





2001 GATTTAAATG CGGCCGCAGG AACCCCTAGT GATGGAGTTG GCCACTCCCT





2051 CTCTGCGCGC TCGCTCGCTC ACTGAGGCCG GGCGACCAAA GGTCGCCCGA





2101 CGCCCGGGCT TTGCCCGGGC GGCCTCAGTG AGCGAGCGAG CGCGCAGCTG





2152 CCTGCAGGGG CGCCTGATGC GGTATTTTCT CCTTACGCAT CTGTGCGGTA





2201 TTTCACACCG CATACGTCAA AGCAACCATA GTACGCGCCC TGTAGCGGCG





2251 CATTAAGCGC GGCGGGTGTG GTGGTTACGC GCAGCGTGAC CGCTACACTT





2301 GCCAGCGCCC TAGCGCCCGC TCCTTTCGCT TTCTTCCCTT CCTTTCTCGC





2351 CACGTTCGCC GGCTTTCCCC GTCAAGCTCT AAATCGGGGG CTCCCTTTAG





2401 GGTTCCGATT TAGTGCTTTA CGGCACCTCG ACCCCAAAAA ACTTGATTTG





2451 GGTGATGGTT CACGTAGTGG GCCATCGCCC TGATAGACGG TTTTTCGCCC





2501 TTTGACGTTG GAGTCCACGT TCTTTAATAG TGGACTCTTG TTCCAAACTG





2551 GAACAACACT CAACCCTATC TCGGGCTATT CTTTTGATTT ATAAGGGATT





2601 TTGCCGATTT CGGCCTATTG GTTAAAAAAT GAGCTGATTT AACAAAAATT





2651 TAACGCGAAT TTTAACAAAA TATTAACGTT TACAATTTTA TGGTGCACTC





2701 TCAGTACAAT CTGCTCTGAT GCCGCATAGT TAAGCCAGCC CCGACACCCG





2751 CCAACACCCG CTGACGCGCC CTGACGGGCT TGTCTGCTCC CGGCATCCGC





2801 TTACAGACAA GCTGTGACCG TCTCCGGGAG CTGCATGTGT CAGAGGTTTT





2851 CACCGTCATC ACCGAAACGC GCGAGACGAA AGGGCCTCGT GATACGCCTA





2901 TTTTTATAGG TTAATGTCAT GATAATAATG GTTTCTTAGA CGTCAGGTGG





2951 CACTTTTCGG GGAAATGTGC GCGGAACCCC TATTTGTTTA TTTTTCTAAA





3001 TACATTCAAA TATGTATCCG CTCATGAGAC AATAACCCTG ATAAATGCTT





3051 CAATAATATT GAAAAAGGAA GAGTATGAGT ATTCAACATT TCCGTGTCGC





3101 CCTTATTCCC TTTTTTGCGG CATTTTGCCT TCCTGTTTTT GCTCACCCAG





3151 AAACGCTGGT GAAAGTAAAA GATGCTGAAG ATCAGTTGGG TGCACGAGTG





3201 GGTTACATCG AACTGGATCT CAACAGCGGT AAGATCCTTG AGAGTTTTCG





3251 CCCCGAAGAA CGTTTTCCAA TGATGAGCAC TTTTAAAGTT CTGCTATGTG





3301 GCGCGGTATT ATCCCGTATT GACGCCGGGC AAGAGCAACT CGGTCGCCGC





3351 ATACACTATT CTCAGAATGA CTTGGTTGAG TACTCACCAG TCACAGAAAA





3401 GCATCTTACG GATGGCATGA CAGTAAGAGA ATTATGCAGT GCTGCCATAA





3451 CCATGAGTGA TAACACTGCG GCCAACTTAC TTCTGACAAC GATCGGAGGA





3501 CCGAAGGAGC TAACCGCTTT TTTGCACAAC ATGGGGGATC ATGTAACTCG





3551 CCTTGATCGT TGGGAACCGG AGCTGAATGA AGCCATACCA AACGACGAGC





3601 GTGACACCAC GATGCCTGTA GCAATGGCAA CAACGTTGCG CAAACTATTA





3651 ACTGGCGAAC TACTTACTCT AGCTTCCCGG CAACAATTAA TAGACTGGAT





3701 GGAGGCGGAT AAAGTTGCAG GACCACTTCT GCGCTCGGCC CTTCCGGCTG





3751 GCTGGTTTAT TGCTGATAAA TCTGGAGCCG GTGAGCGTGG GTCTCGCGGT





3801 ATCATTGCAG CACTGGGGCC AGATGGTAAG CCCTCCCGTA TCGTAGTTAT





3851 CTACACGACG GGGAGTCAGG CAACTATGGA TGAACGAAAT AGACAGATCG





3901 CTGAGATAGG TGCCTCACTG ATTAAGCATT GGTAACTGTC AGACCAAGTT





3951 TACTCATATA TACTTTAGAT TGATTTAAAA CTTCATTTTT AATTTAAAAG





4001 GATCTAGGTG AAGATCCTTT TTGATAATCT CATGACCAAA ATCCCTTAAC





4051 GTGAGTTTTC GTTCCACTGA GCGTCAGACC CCGTAGAAAA GATCAAAGGA





4101 TCTTCTTGAG ATCCTTTTTT TCTGCGCGTA ATCTGCTGCT TGCAAACAAA





4151 AAAACCACCG CTACCAGCGG TGGTTTGTTT GCCGGATCAA GAGCTACCAA





4201 CTCTTTTTCC GAAGGTAACT GGCTTCAGCA GAGCGCAGAT ACCAAATACT





4251 GTCCTTCTAG TGTAGCCGTA GTTAGGCCAC CACTTCAAGA ACTCTGTAGC





4301 ACCGCCTACA TACCTCGCTC TGCTAATCCT GTTACCAGTG GCTGCTGCCA





4351 GTGGCGATAA GTCGTGTCTT ACCGGGTTGG ACTCAAGACG ATAGTTACCG





4401 GATAAGGCGC AGCGGTCGGG CTGAACGGGG GGTTCGTGCA CACAGCCCAG





4451 CTTGGAGCGA ACGACCTACA CCGAACTGAG ATACCTACAG CGTGAGCTAT





4501 GAGAAAGCGC CACGCTTCCC GAAGGGAGAA AGGCGGACAG GTATCCGGTA





4551 AGCGGCAGGG TCGGAACAGG AGAGCGCACG AGGGAGCTTC CAGGGGGAAA





4601 CGCCTGGTAT CTTTATAGTC CTGTCGGGTT TCGCCACCTC TGACTTGAGC





4651 GTCGATTTTT GTGATGCTCG TCAGGGGGGC GGAGCCTATG GAAAAACGCC





4701 AGCAACGCGG CCTTTTTACG GTTCCTGGCC TTTTGCTGGC CTTTTGCTCA





4751 CATGT






ITR 5′: 1-141 bp


CMV promoter: 193-1310 bp


hIns: 1318-1664 bp


SV40 polyA: 1678-1976 bp


ITR 3′: 2018-2158 bp


I: RSV-hGck (SEQ ID NO: 20; FIGS. 5 and 8)










pAAV-RSV-hGck plasmid sequence



   1 CCTGCAGGCA GCTGCGCGCT CGCTCGCTCA CTGAGGCCGC CCGGGCAAAG





  51 CCCGGGCGTC GGGCGACCTT TGGTCGCCCO GCCTCAGTGA GCGAGCGAGC





 101 GCGCAGAGAG GGAGTGGCCA ACTCCATCAC TAGGGGTTaC TGCGGCCGCG





 151 ATATCCATGT TTGACAGCTT ATCATCGCAG ATCCGTATGG TGCACTCTCA





 201 GTACAATCTG CTCTGATGCC GCATAGTTAA GCCAGTATCT GCTCCCTGCT





 251 TGTGTGTTGG AGGTCGCTGA GTAGTGCGCG AGCAAAATTT AAGCTACAAC





 301 AAGGCAAGGC TTGACCGACA ATTGCATGAA GAATCTGCTT AGGGTTAGGC





 351 GTTTTGCGCT GCTTCGCGAT GTACGGGCCA GATATTCGCG TATCTGAGGG





 401 GACTAGGGTG TGTTTAGGCG AAAAGCGGGG CTTCGGTTGT ACGCGGTTAG





 451 GAGTCCCCTC AGGATATAGT AGTTTCGCTT TTGCATAGGG AGGGGGAAAT





 501 GTAGTCTTAT GCAATACTCT TGTAGTCTTG CAACATGGTA ACGATGAGTT





 551 AGCAACATGC CTTACAAGGA GAGAAAAAGC ACCGTGCATG CCGATTGGTG





 601 GAAGTAAGGT GGTACGATCG TGCCTTATTA GGAAGGCAAC AGACGGGTCT





 651 GACATGGATT GGACGAACCA CTAAATTCCG CATTGCAGAG ATATTGTATT





 701 TAAGTGCCTA GCTCGATACA ATAAACGCCA TTTGACCATT CACCACATTG





 751 GTGTGCACCT CCAAGCTGGG TACCAGCTTC TAGAGAGATC TGCTTCAGCT





 801 GGAGGCACTG GGCAGGTAAG TATCAAGGTT ACAAGACAGG TTTAAGGAGA





 851 CCAATAGAAA CTGGGCTTGT CGAGACAGAG AAGACTCTTG CGTTTCTGAT





 901 AGGCACCTAT TGGTCTTACT GACATCCACT TTGCCTTTCT CTCCACAGGT





 951 GCAGCTGCTG CAGCGGTCTA GAACTCGAGT CGAGACCATG GCGATGGATG





1001 TCACAAGGAG CCAGGCCCAG ACAGCCTTGA CTCTGGTAGA GCAGATCCTG





1051 GCAGAGTTCC AGCTGGAGGA GGAGGACCTG AAGAAGGTGA TGAGACGGAT





1101 GCAGAAGGAG ATGGACCGCG GCCTGAGGCT GGAGACCCAT GAAGAGGCCA





1151 GTGTGAAGAT GCTGCCCACC TACGTGCGCT CCACCCCAGA AGGCTCAGAA





1201 GTCGGGGACT TCCTCTCCCT GGACCTGGGT GGCACTAACT TCAGGGTGAT





1251 GCTGGTGAAG GTGGGAGAAG GTGAGGAGGG GCAGTGGAGC GTGAAGACCA





1301 AACACCAGAT GTACTCCATC CCCGAGGACG CCATGACCGG CACTGCTGAG





1351 ATGCTCTTCG ACTACATCTC TGAGTGCATC TCCGACTTCC TGGACAAGCA





1401 TCAGATGAAA CACAAGAAGC TGCCCCTGGG CTTCACCTTC TCCTTTCCTG





1451 TGAGGCACGA AGACATCGAT AAGGGCATCC TTCTCAACTG GACCAAGGGC





1501 TTCAAGGCCT CAGGAGCAGA AGGGAACAAT GTCGTGGGGC TTCTGCGAGA





1551 CGCTATCAAA CGGAGAGGGG ACTTTGAAAT GGATGTGGTG GCAATGGTGA





1601 ATGACACGGT GGCCACGATG ATCTCCTGCT ACTACGAAGA CCATCAGTGC





1651 GAGGTCGGCA TGATCGTGGG CACGGGCTGC AATGCCTGCT ACATGGAGGA





1701 GATGCAGAAT GTGGAGCTGG TGGAGGGGGA CGAGGGCCGC ATGTGCGTCA





1751 ATACCGAGTG GGGCGCCTTC GGGGACTCCG GCGAGCTGGA CGAGTTCCTG





1801 CTGGAGTATG ACCGCCTGGT GGACGAGAGC TCTGCAAACC CCGGTCAGCA





1851 GCTGTATGAG AAGCTCATAG GTGGCAAGTA CATGGGCOAG CTGGTGCGGC





1901 TTGTGCTGCT CAGGCTCGTG GACGAAAACC TGCTCTTCCA CGGGGAGGCC





1951 TCCGAGCAGC TGCGCACACG CGGAGCCTTC GAGACGCGCT TCGTGTCGCA





2001 GGTGGAGAGC GACACGGGCG ACCGCAAGCA GATCTACAAC ATCCTGAGCA





2051 CGCTGGGGCT GCGACCCTCG ACCACCGACT GCGACATCGT GCGCCGCGCC





2101 TGCGAGAGCG TGTCTACGCG CGCTGCGCAC ATGTGCTCGG CGGGGCTGGC





2151 GGGCGTCATC AACCGCATGC GCGAGAGCCG CAGCGAGGAC GTAATGCGCA





2201 TCACTGTGGG CGTGGATGGC TCCGTGTACA AGCTGCACCC CAGCTTCAAG





2251 GAGCGGTTCC ATGCCAGCGT GCGCAGGCTG ACGCCCAGCT GCGAGATCAC





2301 CTTCATCGAG TCGGAGGAGG GCAGTGGCCG GGGCGCGOCC CTGGTCTCGG





2351 CGGTGGCCTG TAAGAAGGCC TGTATGCTGG GCCAGTGACT CGAGCACGTG





2401 GAGCTCGCTG ATCAGCCTCG ACTGTGCCTT CTAGTTGCCA GCCATCTGTT





2451 GTTTGCCCCT CCCCCGTGCC TTCCTTGACC CTGGAAGGTG CCACTCCCAC





2501 TGTCCTTTCC TAATAAAATG AGGAAATTGC ATCGCATTGT CTGAGTAGGT





2551 GTCATTCTAT TCTGGGGGGT GGGGTGGGGC AGGACAGCAA GGGGGAGGAT





2601 TGGGAAGACA ATAGCAGGCA TGCTGGGGAT GCGGTGGGCT CTATGGCCAC





2651 GTGATTTAAA TGCGGCCGCA GGAACCCCTA GTGATGGAGT TGGCCACTCC





2701 CTCTCTGCGC GCTCGCTCGC TCACTGAGGC CGGGCGACCA AAGGTCGCCC





2751 GACGCCCGGG CTTTGCCCGG GCGGCCTCAG TGAGCGAGCG AGCGCGCAGC





2801 TGCCTGCAGG GGCGCCTGAT GCGGTATTTT CTCCTTACGC ATCTGTOCGG





2851 TATTTCACAC CGCATACGTC AAAGCAACCA TAGTACGCGC CCTGTAGCGG





2901 CGCATTAAGC GCGGCGGGTG TGGTGGTTAC GCGCAGCGTG ACCGCTACAC





2951 TTGCCAGCGC CCTAGCGCCC GCTCCTTTCG CTTTCTTCCC TTCCTTTCTC





3001 GCCACGTTCG CCGGCTTTCC CCGTCAAGCT CTAAATCGGG GGCTCCCTTT





3051 AGGGTTCCGA TTTAGTGCTT TACGGCACCT CGACCCCAAA AAACTTGATT





3101 TGGGTGATGG TTCACGTAGT GGGOCATCGC CCTGATAGAC GGTTTTTCGC





3151 CCTTTGACGT TGGAGTCCAC GTTCTTTAAT AGTGGACTCT TGTTCCAAAC





3201 TGGAACAACA CTCAACCCTA TCTCGGGCTA TTCTTTTGAT TTATAAGGGA





3251 TTTTGCCGAT TTCGGCCTAT TGGTTAAAAA ATGAGCTGAT TTAACAAAAA





3301 TTTAACGCGA ATTTTAACAA AATATTAACG TTTACAATTT TATGGTGCAC





3351 TCTCAGTACA ATCTGCTCTG ATGCCGCATA GTTAAGCCAG CCCCGACACC





3401 CGCCAACACC CGCTGACGCG CCCTGACGGG CTTGTCTGCT CCCGGCATCC





3451 GCTTACAGAC AAGCTGTGAC CGTCTCCGGG AGCTGCATGT GTCAGAGGTT





3501 TTCACCGTCA TCACCGAAAC GCGCGAGACG AAAGGGCCTC GTGATACGCC





3551 TATTTTTATA GGTTAATGTC ATGATAATAA TGGTTTCTTA GACGTCAGGT





3601 GGCACTTTTC GGGGAAATGT GCGCGGAACC CCTATTTGTT TATTTTTCTA





3651 AATACATTCA AATATGTATC CGCTCATGAG ACAATAACCC TGATAAATGC





3701 TTCAATAATA TTGAAAAAGG AAGAGTATGA GTATTCAACA TTTCCGTGTC





3751 GCCCTTATTC CCTTTTTTGC GGCATTTTGC CTTCCTGTTT TTGCTCACCC





3801 AGAAACGCTG GTGAAAGTAA AAGATGCTGA AGATCAGTTG GGTGCACGAG





3851 TGGGTTACAT CGAACTGGAT CTCAACAGCG GTAAGATCCT TGAGAGTTTT





3901 CGCCCCGAAG AACGTTTTCC AATGATGAGC ACTTTTAAAG TTCTGCTATG





3951 TGGCGCGGTA TTATCCCGTA TTGACGCCGG GCAAGAGCAA CTCGGTCGCC





4001 GCATACACTA TTCTCAGAAT GACTTGGTTG AGTACTCACC AGTCACAGAA





4051 AAGCATCTTA CGGATGGCAT GACAGTAAGA GAATTATGCA GTGCTGCCAT





4101 AACCATGAGT GATAACACTG CGGCCAACTT ACTTCTGACA ACGATCGGAG





4151 GACCGAAGGA GCTAACCGCT TTTTTGCACA ACATGGGGGA TCATGTAACT





4201 CGCCTTGATC GTTGGGAACC GGAGCTGAAT GAAGCCATAC CAAACGACGA





4251 GCGTGACACC ACGATGCCTG TAGCAATGGC AACAACGTTG CGCAAACTAT





4301 TAACTGGCGA ACTACTTACT CTAGCTTCCC GGCAACAATT AATAGACTGG





4351 ATGGAGGCGG ATAAAGTTGC AGGACCACTT CTGCGCTCGG CCCTTCCGGC





4401 TGGCTGGTTT ATTGCTGATA AATCTGGAGC CGGTGAGCGT GGGTCTCGCG





4451 GTATCATTGC AGCACTGGGG CCAGATGGTA AGCCCTCCCG TATCGTAGTT





4501 ATCTACACGA CGGGGAGTCA GGCAACTATG GATGAACGAA ATAGACAGAT





4551 CGCTGAGATA GGTGCCTCAC TGATTAAGCA TTGGTAACTG TCAGACCAAG





4601 TTTACTCATA TATACTTTAG ATTGATTTAA AACTTCATTT TTAATTTAAA





4651 AGGATCTAGG TGAAGATCCT TTTTGATAAT CTCATGACCA AAATCCCTTA





4701 ACGTGAGTTT TCGTTCCACT GAGCGTCAGA CCCCGTAGAA AAGATCAAAG





4751 GATCTTCTTG AGATCCTTTT TTTCTGCGCG TAATCTGCTG CTTGCAAACA





4801 AAAAAACCAC CGCTACCAGC GGTGGTTTGT TTGCCGGATC AAGAGCTACC





4851 AACTCTTTTT CCGAAGGTAA CTGGCTTCAG CAGAGCGCAG ATACCAAATA





4901 CTGTCCTTCT AGTGTAGCCG TAGTTAGGCC ACCACTTCAA GAACTCTGTA





4951 GCACCGCCTA CATACCTCGC TCTGCTAATC CTGTTACCAG TGGCTGCTGC





5001 CAGTGGCGAT AAGTCGTGTC TTACCGGGTT GGACTCAAGA CGATAGTTAC





5051 CGGATAAGGC GCAGCGGTCG GGCTGAACGG GGGGTTCGTG CACACAGCCC





5101 AGCTTGGAGC GAACGACCTA CACCGAACTG AGATACCTAC AGCGTGAGCT





5151 ATGAGAAAGC GCCACGCTTC CCGAAGGGAG AAAGGCGGAC AGGTATCCGG





5201 TAAGCGGCAG GGTCGGAACA GGAGAGCGCA CGAGGGAGCT TCCAGGGGGA





5251 AACGCCTGGT ATCTTTATAG TCCTGTCGGG TTTCGCCACC TCTGACTTGA





5301 GCGTCGATTT TTGTGATGCT CGTCAGGGGG GCGGAGCCTA TGGAAAAACG





5351 CCAGCAACGC GGCCTTTTTA CGGTTCCTGG CCTTTTGCTG GCCTTTTGCT





5401 CACATGT






ITR 5′: 1-141 bp


RSV promoter: 239-948 bp


hGck: 973-2387 bp


bGH polyA: 2395-2653 bp


ITR 3′: 2670-2810 bp


J: miniCMV-hIns-RSV-hGck (SEQ ID NO: 13; FIG. 7)










pAAV-miniCMV-hIns-RSV-hGck plasmid sequence



   1 CCTGCAGGCA GCTGCGCGCT CGCTCGCTCA CTGAGGCCGC CCGGGCAAAG





  51 CCCGGGCGTC GGGCGACCTT TGGTCGCCCG GCCTCAGTGA GCGAGCGAGC





 101 GCGCAGAGAG GGAGTGGCCA ACTCCATCAC TAGGGGTTCC TGCGGCCGCG





 151 ATATCTATGC CAAGTACGCC CCCTATTGAC GTCAATGACG GTAAATGGCC





 201 CGCCTGGCAT TATGCCCAGT ACATGACCTT ATGGGACTTT CCTACTTGGC





 251 AGTACATCTA CGTATTAGTC ATCGCTATTA CCATGGTGAT GCGGTTTTGG





 301 CAGTACATCA ATGGGCGTGG ATAGCGGTTT GACTCACGGG GATTTCCAAG





 351 TCTCCACCCC ATTGACGTCA ATGGGAGTTT GTTTTGGCAC CAAAATCAAC





 401 GGGACTTTCC AAAATGTCGT AACAACTCCG CCCCATTGAC GCAAATGGGC





 451 GGTAGGCGTG TACGGTGGGA GGTCTATATA AGCAGAGCTC TCTGGCTAAC





 501 TAGAGAACCC ACTGCTTAAC TGGCTTATCG AAATTAATAC GACTCACTAT





 551 AGGGAGACCC AAGCTTGCTA GCGTCGACCT TCTGCCATGG CCCTGTGGAT





 601 GCGCCTCCTG CCCCTGCTGG CGCTGCTGGC CCTCTGGGGA CCTGACCCAG





 651 CCGCAGCCTT TGTGAACCAA CACCTGTGCG GCTCAGATCT GGTGGAAGCT





 701 CTCTACCTAG TGTGCGGGGA ACGAGGCTTC TTCTACACAC CCAGGACCAA





 751 GCGGGAGGCA GAGGACCTGC AGGTGGGGCA GGTGGAGCTG GGCGGGGGCC





 801 CTGGTGCAGG CAGCCTGCAG CCCTTGGCCC TGGAGGGGTC GCGACAGAAG





 851 CGTGGCATTG TGGAACAATG CTGTACCAGC ATCTGCTCCC TCTACCAGCT





 901 GGAGAACTAC TGCAACTAGA CGCAGCCGTC GACGGTACCA GCGCTGTCGA





 951 GGCCGCTTCG AGCAGACATG ATAAGATACA TTGATGAGTT TGGACAAACC





1001 ACAACTAGAA TGCAGTGAAA AAAATGCTTT ATTTGTGAAA TTTGTGATGC





1051 TATTGCTTTA TTTGTAACCA TTATAAGCTG CAATAAACAA GTTAACAACA





1101 ACAATTGCAT TCATTTTATG TTTCAGGTTC AGGGGGAGAT GTGGGAGGTT





1151 TTTTAAAGCA AGTAAAACCT CTACAAATGT GGTAAAATCG ATTAGGATCT





1201 TCCTAGAGCA TGGCTACCTA GACATGGCTC GACAGATCAG CGCTCATGCT





1261 CTGGAAGATC TCGATTTATC CATGTTTGAC AGCTTATCAT CGCAGATCCG





1301 TATGGTGCAC TCTCAGTACA ATCTGCTCTG ATGCCGCATA GTTAAGCCAG





1391 TATCTGCTCC CTGCTTGTGT GTTGGAGGTC GCTGAGTAGT GCGCGAGCAA





1401 AATTTAAGCT ACAACAAGGC AAGGCTTGAC CGACAATTGC ATGAAGAATC





1451 TGCTTAGGGT TAGGCGTTTT GCGCTGCTTC GCGATGTACG GGCCAGATAT





1501 TCGCGTATCT GAGGGGACTA GGGTGTGTTT AGGCGAAAAG CGGGGCTTCG





1551 GTTGTACGCG GTTAGGAGTC CCCTCAGGAT ATAGTAGTTT CGCTTTTGCA





1601 TAGGGAGGGG GAAATGTAGT CTTATGCAAT ACTCTTGTAG TCTTGCAACA





1651 TGGTAACGAT GAGTTAGCAA CATGCCTTAC AAGGAGAGAA AAAGCACCGT





1701 GCATGCCGAT TGGTGGAAGT AAGGTGGTAC GATCGTGCCT TATTAGGAAG





1751 GCAACAGACG GGTCTGACAT GGATTGGACG AACCACTAAA TTQCGCATTG





1801 CAGAGATATT GTATTTAAGT GCCTAGCTCG ATAQAATAAA CGCCATTTGA





1851 CCATTCACCA CATTGGTGTG CACCTCCAAG CTGGGTACCA GCTTCTAGAG





1901 AGATCTGCTT CAGCTGGAGG CACTGGGCAG GTAAGTATCA AGGTTACAAG





1951 ACAGGTTTAA GGAGACCAAT AGAAACTGGG CTTGTCGAGA CAGAGAAGAC





2001 TCTTGCGTTT CTGATAGGCA CCTATTGGTC TTACTGACAT CCACTTTGCC





2051 TTTCTCTCCA CAGGTGCAGC TGCTGCAGCG GTCTAGAACT CGAGTCGAGA





2101 CCATGGCGAT GGATGTCACA AGGAGCCAGG CCCAGACAGC CTTGACTCTG





2151 GTAGAGCAGA TCCTGGCAGA GTTCCAGCTG CAGGAGGAGG ACCTGAAGAA





2201 GGTGATGAGA CGGATGCAGA AGGAGATGGA CCGCGGCCTG AGGCTGGAGA





2251 CCCATGAAGA GGCCAGTGTG AAGATGCTGC CCACCTACGT GCGCTCCACC





2301 CCAGAAGGCT CAGAAGTCGG GGACTTCCTC TCCCTGGACC TGGGTGGCAC





2351 TAACTTCAGG GTGATGCTGG TGAAGGTGGG AGAAGGTGAG GAGGGGCAGT





2401 GGAGCGTGAA GACCAAACAC CAGATGTACT CCATCCCCGA GGACGCCATG





2451 ACCGGCACTG CTGAGATGCT CTTCGACTAC ATCTCTGAGT GCATCTCCGA





2501 CTTCCTGGAC AAGCATCAGA TGAAACACAA GAAGCTGCCC CTGGGCTTCA





2551 CCTTCTCCTT TCCTGTGAGG CACGAAGACA TCGATAAGGG CATCCTTCTC





2601 AACTGGACCA AGGGCTTCAA GGCCTCAGGA GCAGAAGGGA ACAATGTCGT





2651 GGGGCTTCTG CGAGACGCTA TCAAACGGAG AGGGGACTTT GAAATGGATG





2701 TGGTGGCAAT GGTGAATGAC AdGGTGGCCA CGATGATCTC CTGCTACTAC





2751 GAAGACCATC AGTGCGAGGT CGGCATGATC GTGGGCACGG GCTGCAATGC





2801 CTGCTACATG GAGGAGATGC AGAATGTGGA OCTGGTGGAG GGGGACGAGG





2851 GCCGCATGTG CGTCAATACC GAGTGGGGCG CCTTCGGGGA CTCCGGCGAG





2901 CTGGACGAGT TCCTGCTGGA GTATGACCGC CTGGTGGACG AGAGCTCTGC





2951 AAACCCCGGT CAGCAGCTGT ATGAGAAGCT CATAGGTGGC AAGTACATGG





3001 GCGAGCTGGT GCGGCTTGTG CTGCTCAGGC TCGTGGACGA AAACCTGCTC





3051 TTCCACGGGG AGGCCTCCGA GCAGCTGCGC ACACGCGGAG CCTTCGAGAC





3101 GCGCTTCGTG TCGCAGGTGG AGAGCGACAC GGGCGACCGC AAGCAGATCT





3151 ACAACATCCT GAGCACGCTG GGGCTGCGAC CCTCGACCAC CGACTGCGAC





3201 ATCGTGCGCC GCGCCTGCGA GAGCGTGTCT ACGCGCGCTG CGCACATGTG





3251 CTCGGCGGGG CTGGCGGGCG TCATCAACCG CATGCGCGAG AGCCGCAGCG





3301 AGGACGTAAT GCGCATCACT GTGGGCGTGG ATGGCTCCGT GTACAAGCTG





3351 CACCCCAGCT TCAAGGAGCG GTTCCATGCC AGCGTGCGCA GGCTGACGCC





3401 CAGCTGCGAG ATCACCTTCA TCGAGTCGGA GGAGGGCAGT GGCCGGGGCG





3451 CGGCCCTGGT CTCGGCGGTG GCCTGTAAGA AGGCCTGTAT GCTGGGCCAG





3501 TGACTCGAGC ACGTGGAGCT CGCTGATCAG CCTCGACTGT GCCTTCTAGT





3551 TGCCAGCCAT CTGTTGTTTG CCCCTCCCCC GTGCCTTCCT TGACCCTGGA





3601 AGGTGCCACT CCCACTGTCC TTTCCTAATA AAATGAGGAA ATTGCATCGC





3651 ATTGTCTGAG TAGGTGTCAT TCTATTCTGG GGGGTGGGGT GGGGCAGGAC





3701 AGCAAGGGGG AGGATTGGGA AGACAATAGC AGGCATGCTG GGGATGCGGT





3751 GGGCTCTATG GCCACGTGAT TTAAATGCGG CCGCAGGAAC CCCTAGTGAT





3801 GGAGTTGGCC ACTCCCTCTC TGCGCGCTCG CTCGCTCACT GAGGCCGGGC





3851 GACCAAAGGT CGCCCGACGC CCGGGCTTTG CCQGGGCGGC CTCAGTGAGC





3901 GAGCGAGCGC GCAGCTGCCT GCAGGGGCGC CTGATGCGOT ATTTTCTCCT





3951 TACGCATCTG TGCGGTATTT CACACCGCAT ACGTCAAAGC AACCATAGMA





4001 CGCGCCCTGT AGCGGCGCAT TAAGCGCGGC GGGTGTGGTG GTTACGCGCA





4051 GCGTGACCGC TACACTTGCC AGCGCCCTAG CGCCCGCTCC TTTCGCTTTC





4101 TTCCCTTCCT TTCTCGCCAC GTTCGCCGGC TTTCCCCGTC AAGCTCTAAA





4151 TCGGGGGCTC CCTTTAGGGT TCCGATTTAG TGCTTTACGG CACCTCGACC





4201 CCAAAAAACT TGATTTGGGT GATGGTTCAC GTAGTGGGCC ATCGCCCTGA





4251 TAGACGGTTT TTCGCCCTTT GACGTTGGAG TCCACGTTCT TTAAMAGTGG





4301 ACTCTTGTTC CAAACTGGAA CAACACTCAA CCCTATCTCG GGCTATTCTT





4351 TTGATTTATA AGGGATTTTG CCGATTTCGG CCTATTGGTM AAAAAATGAG





4401 CTGATTTAAC AAAAATTTAA CGCGAATTTT AACAAAATAT TAACGTTTAC





4451 AATTTTATGG TGCACTCTCA GTACAATCTG CTCTGATGCC GCATAGTTAA





4501 GCCAGCCCCG ACACCCGCCA ACACCCGCTG ACGCGCCCTG ACGGGCTTGT





4551 CTGCTCCCGG CATCCGCTTA CAGACAAGCT GTGACCGTCT CCGGGAGCTG





4601 CATGTGTCAG AGGTTTTCAC CGTCATCACC GAAACGCGCG AGACGAAAGG





4651 GCCTCGTGAT ACGCCTATTT TTATAGGTTA ATGTCATGAT AATAATGGTT





4701 TCTTAGACGT CAGGTGGCAC TTTTCGGGGA AATGTGCGCG GAACCCCTAT





4751 TTGTTTATTT TTCTAAATAC ATTCAAATAT GTATCCGCTC ATGAGACAAT





4801 AACCCTGATA AATGCTTCAA TAATATTGAA AAAGGAAGAG TATGAGTATT





4851 CAACATTTCC GTGTCGCCCT TATTCCCTTT TTTGCGGCAT TTTGCCTTCC





4901 TGTTTTTGCT CACCCAGAAA CGCTGGTGAA AGTAAAAGAT GCTGAAGATC





4951 AGTTGGGTGC ACGAGTGGGT TACATCGAAC TGGATCTCAA CAGCGGTAAG





5001 ATCCTTGAGA GTTTTCGCCC CGAAGAACGT TTTCCAATGA TGAGCACTTT





5051 TAAAGTTCTG CTATGTGGCG CGGTATTATC CCGTATTGAC GCCGGGCAAG





5101 AGCAACTCGG TCGCCGCATA CACTATTCTC AGAATGACTT GGTTGAGTAC





5151 TCACCAGTCA CAGAAAAGCA TCTTACGGAT GGCATGACAG TAAGAGAATT





5201 ATGCAGTGCT GCCATAACCA TGAGTGATAA CACTGCGGCC AACTTACTTC





5251 TGACAACGAT CGGAGGACCG AAGGAGCTAA CCGCTTTTTT GCACAACATG





5301 GGGGATCATG TAACTCGCCT TGATCGTTGG GAACCGGAGC TGAATGAAGC





5351 CATACCAAAC GACGAGCGTG ACACCACGAT GCCTGTAGCA ATGGCAACAA





5401 CGTTGCGCAA ACTATTAACT GGCGAACTAC TTACTCTAGC TTCCCGGCAA





5451 CAATTAATAG ACTGGATGGA GGCGGATAAA GTTGCAGGAC CACTTCTGCG





5501 CTCGGCCCTT CCGGCTGGCT GGTTTATTGC TGATAAATCT GGAGCCGGTG





5551 AGCGTGGGTC TCGCGGTATC ATTGCAGCAC TGGGGCCAGA TGGTAAGCCC





5601 TCCCGTATCG TAGTTATCTA CACGACGGGG AGTCAGGCAA CTATGGATGA





5651 ACGAAATAGA CAGATCGCTG AGATAGGTGC CTCACTGATT AAGCATTGGT





5701 AACTGTCAGA CCAAGTTTAC TCATATATAC TTTAGATTGA TTTAAAACTT





5751 CATTTTTAAT TTAAAAGGAT CTAGGTGAAG ATCCTTTTTG ATAATCTCAT





5801 GACCAAAATC CCTTAACGTG AGTTTTCGTT CCACTGAGCG TCAGACCCCG





5851 TAGAAAAGAT CAAAGGATCT TCTTGAGATC CTTTTTTTCT GCGCGTAATC





5901 TGCTGCTTGC AAACAAAAAA ACCACCGCTA CCAGCGGTGG TTTGTTTGCC





5951 GGATCAAGAG CTACCAACTC TTTTTCCGAA GGTAACTGGC TTCAGCAGAG





6001 CGCAGATACC AAATACTGTC CTTCTAGTGT AGCCGTAGTT AGGCCACCAC





6051 TTCAAGAACT CTGTAPCACC GCCTACATAC CTCGCTCTGC TAATCCTGTT





6101 ACCAGTGGCT GCTGCCAGTG GCGATAAGTC GTGTCTTACC GGGTTGGACT





6151 CAAGACGATA GTTACCGGAT AAGGCGCAGC GGTCGGGCTG AACGGGGGGT





6201 TCGTGCACAC AGCCCAGCTT GGAGCGAACG ACCTACACCG AACTGAGATA





6251 CCTACAGCGT GAGCTATGAG AAAGCGCCAC GCTTCCCGAA GGGAGAAAGG





6301 CGGACAGGTA TCCGGTAAGC GGCAGGGTCG GAACAGGAGA GCGCACGAGG





6351 GAGCTTCCAG GGGGAAACGC CTGGTATCTT TATAGTCCTG TCGGGTTTCG





6401 CCACCTCTGA CTTGAGCGTC GATTTTTGTG ATGCTCGTCA GGGGGGCGGA





6451 GCCTATGGAA AAACGCCAGC AACGCGGCCT TTTTACGGTT CCTGGCCTTT





6501 TGCTGGCCTT TTGCTCACAT GT


ITR 5′: 1-141 bp


miniCMV promoter: 156-566 bp


hIns: 580-926 bp


SV40 polyA: 940-1238 bp


RSV promoter: 1354-2063 bp


hGck: 2088-3502 bp


bGH polyA: 3510-3768 bp


ITR 3′: 3785-3925 bp






K: RSV-hGck-miniCMV-hIns (SEQ ID NO: 14; FIG. 7)












pAAV-RSV-hGck-miniCMV-hIns plasmid sequence
















1
CCTGCAGGCA GCTGCGCGCT CGCTCGCTCA CTGAGGCCGC CCGGGCAAAG





51
CCCGGGCGTC GGGCGACCTT TGGTCGCCCG GCCTCAGTGA GCGAGCGAGC





101
GCGCAGAGAG GGAGTGGCCA ACTCCATCAC TAGGGGTTCC TGCGGCCGCG





151
ATATCCATGT TTGACAGCTT ATCATCGCAG ATCCGTATGG TGCACTCTCA





201
GTACAATCTG CTCTGATGCC GCATAGTTAA GCCAGTATCT GCTCCCTGCT





251
TGTGTGTTGG AGGTCGCTGA GTAGTGCGCG AGCAAAATTT AAGCTACAAC





301
AAGGCAAGGC TTGACCGACA ATTGCATGAA GAATCTGCTT AGGGTTAGGC





351
GTTTTGCGCT GCTTCGCGAT GTACGGGCCA GATATTCGCG TATCTGAGGG





401
GACTAGGGTG TGTTTAGGCG AAAAGCGGGG CTTCGGTTGT ACGCGGTTAG





451
GAGTCCCCTC AGGATATAGT AGTTTCGCTT TTGCATAGGG AGGGGGAAAT





501
GTAGTCTTAT GCAATACTCT TGTAGTCTTG CAACATGGTA ACGATGAGTT





551
AGCAACATGC CTTACAAGGA GAGAAAAAGC ACCGTGCATG CCGATTGGTG





601
GAAGTAAGGT GGTACGATCG TGCCTTATTA GGAAGGCAAC AGACGGGTCT





651
GACATGGATT GGACGAACCA CTAAATTCCG CATTGCAGAG ATATTGTATT





701
TAAGTGCCTA GCTCGATACA ATAAACGCCA TTTGACCATT CACCACATTG





751
GTGTGCACCT CCAAGCTGGG TACCAGCTTC TAGAGAGATC TGCTTCAGCT





801
GGAGGCACTG GGCAGGTAAG TATCAAGGTT ACAAGACAGG TTTAAGGAGA





851
CCAATAGAAA CTGGGCTTGT CGAGACAGAG AAGACTCTTG CGTTTCTGAT





901
AGGCACCTAT TGGTCTTACT GACATCCACT TTGCCTTTCT CTCCACAGGT





951
GCAGCTGCTG CAGCGGTCTA GAACTCGAGT CGAGACCATG GCGATGGATG





1001
TCACAAGGAG CCAGGCCCAG ACAGCCTTGA CTCTGGTAGA GCAGATCCTG





1051
GCAGAGTTCC AGCTGCAGGA GGAGGACCTG AAGAAGGTGA TGAGACGGAT





1101
GCAGAAGGAG ATGGACCGCG GCCTGAGGCT GGAGACCCAT GAAGAGGCCA





1151
GTGTGAAGAT GCTGCCCACC TACGTGCGCT CCACCCCAGA AGGCTCAGAA





1201
GTCGGGGACT TCCTCTCCCT GGACCTGGGT GGCACTAACT TCAGGGTGAT





1251
GCTGGTGAAG GTGGGAGAAG GTGAGGAGGG GCAGTGGAGC GTGAAGACCA





1301
AACACCAGAT GTACTCCATC CCCGAGGACG CCATGACCGG CACTGCTGAG





1351
ATGCTCTTCG ACTACATCTC TGAGTGCATC TCCGACTTCC TGGACAAGCA





1401
TCAGATGAAA CACAAGAAGC TGCCCCTGGG CTTCACCTTC TCCTTTCCTG





1451
TGAGGCACGA AGACATCGAT AAGGGCATCC TTCTCAACTG GACCAAGGGC





1501
TTCAAGGCCT CAGGAGCAGA AGGGAACAAT GTCGTGGGGC TTCTGCGAGA





1551
CGCTATCAAA CGGAGAGGGG ACTTTGAAAT GGATGTGGTG GCAATGGTGA





1601
ATGACACGGT GGCCACGATG ATCTCCTGCT ACTACGAAGA CCATCAGTGC





1651
GAGGTCGGCA TGATCGTGGG CACGGGCTGC AATGCCTGCT ACATGGAGGA





1701
GATGCAGAAT GTGGAGCTGG TGGAGGGGGA CGAGGGCCGC ATGTGCGTCA





1751
ATACCGAGTG GGGCGCCTTC GGGGACTCCG GCGAGCTGGA CGAGTTCCTG





1801
CTGGAGTATG ACCGCCTGGT GGACGAGAGC TCTGCAAACC CCGGTCAGCA





1851
GCTGTATGAG AAGCTCATAG GTGGCAAGTA CATGGGCGAG CTGGTGCGGC





1901
TTGTGCTGCT CAGGCTCGTG GACGAAAACC TGCTCTTCCA CGGGGAGGCC





1951
TCCGAGCAGC TGCGCACACG CGGAGCCTTC GAGACGCGCT TCGTGTCGCA





2001
GGTGGAGAGC GACACGGGCG ACCGCAAGCA GATCTACAAC ATCCTGAGCA





2051
CGCTGGGGCT GCGACCCTCG ACCACCGACT GCGACATCGT GCGCCGCGCC





2101
TGCGAGAGCG TGTCTACGCG CGCTGCGCAC ATGTGCTCGG CGGGGCTGGC





2151
GGGCGTCATC AACCGCATGC GCGAGAGCCG CAGCGAGGAC GTAATGCGCA





2201
TCACTGTGGG CGTGGATGGC TCCGTGTACA AGCTGCACCC CAGCTTCAAG





2251
GAGCGGTTCC ATGCCAGCGT GCGCAGGCTG ACGCCCAGCT GCGAGATCAC





2301
CTTCATCGAG TCGGAGGAGG GCAGTGGCCG GGGCGCGGCC CTGGTCTCGG





2351
CGGTGGCCTG TAAGAAGGCC TGTATGCTGG GCCAGTGACT CGAGCACGTG





2401
GAGCTCGCTG ATCAGCCTCG ACTGTGCCTT CTAGTTGCCA GCCATCTGTT





2451
GTTTGCCCCT CCCCCGTGCC TTCCTTGACC CTGGAAGGTG CCACTCCCAC





2501
TGTCCTTTCC TAATAAAATG AGGAAATTGC ATCGCATTGT CTGAGTAGGT





2551
GTCATTCTAT TCTGGGGGGT GGGGTGGGGC AGGACAGCAA GGGGGAGGAT





2601
TGGGAAGACA ATAGCAGGCA TGCTGGGGAT GCGGTGGGCT CTATGGCCAC





2651
GTGATTTATC TATGCCAAGT ACGCCCCCTA TTGACGTCAA TGACGGTAAA





2701
TGGCCCGCCT GGCATTATGC CCAGTACATG ACCTTATGGG ACTTTCCTAC





2751
TTGGCAGTAC ATCTACGTAT TAGTCATCGC TATTACCATG GTGATGCGGT





2801
TTTGGCAGTA CATCAATGGG CGTGGATAGC GGTTTGACTC ACGGGGATTT





2851
CCAAGTCTCC ACCCCATTGA CGTCAATGGG AGTTTGTTTT GGCACCAAAA





2901
TCAACGGGAC TTTCCAAAAT GTCGTAACAA CTCCGCCCCA TTGACGCAAA





2951
TGGGCGGTAG GCGTGTACGG TGGGAGGTCT ATATAAGCAG AGCTCTCTGG





3001
CTAACTAGAG AACCCACTGC TTAACTGGCT TATCGAAATT AATACGACTC





3051
ACTATAGGGA GACCCAAGCT TGCTAGCGTC GACCTTCTGC CATGGCCCTG





3101
TGGATGCGCC TCCTGCCCCT GCTGGCGCTG CTGGCCCTCT GGGGACCTGA





3151
CCCAGCCGCA GCCTTTGTGA ACCAACACCT GTGCGGCTCA GATCTGGTGG





3201
AAGCTCTCTA CCTAGTGTGC GGGGAACGAG GCTTCTTCTA CACACCCAGG





3251
ACCAAGCGGG AGGCAGAGGA CCTGCAGGTG GGGCAGGTGG AGCTGGGCGG





3301
GGGCCCTGGT GCAGGCAGCC TGCAGCCCTT GGCCCTGGAG GGGTCGCGAC





3351
AGAAGCGTGG CATTGTGGAA CAATGCTGTA CCAGCATCTG CTCCCTCTAC





3401
CAGCTGGAGA ACTACTGCAA CTAGACGCAG CCGTCGACGG TACCAGCGCT





3451
GTCGAGGCCG CTTCGAGCAG ACATGATAAG ATACATTGAT GAGTTTGGAC





3501
AAACCACAAC TAGAATGCAG TGAAAAAAAT GCTTTATTTG TGAAATTTGT





3551
GATGCTATTG CTTTATTTGT AACCATTATA AGCTGCAATA AACAAGTTAA





3601
CAACAACAAT TGCATTCATT TTATGTTTCA GGTTCAGGGG GAGATGTGGG





3651
AGGTTTTTTA AAGCAAGTAA AACCTCTACA AATGTGGTAA AATCGATTAG





3701
GATCTTCCTA GAGCATGGCT ACCTAGACAT GGCTCGACAG ATCAGCGCTC





3751
ATGCTCTGGA AGATCTCGAT TTAAATGCGG CCGCAGGAAC CCCTAGTGAT





3801
GGAGTTGGCC ACTCCCTCTC TGCGCGCTCG CTCGCTCACT GAGGCCGGGC





3851
GACCAAAGGT CGCCCGACGC CCGGGCTTTG CCCGGGCGGC CTCAGTGAGC





3901
GAGCGAGCGC GCAGCTGCCT GCAGGGGCGC CTGATGCGGT ATTTTCTCCT





3951
TACGCATCTG TGCGGTATTT CACACCGCAT ACGTCAAAGC AACCATAGTA





4001
CGCGCCCTGT AGCGGCGCAT TAAGCGCGGC GGGTGTGGTG GTTACGCGCA





4051
GCGTGACCGC TACACTTGCC AGCGCCCTAG CGCCCGCTCC TTTCGCTTTC





4101
TTCCCTTCCT TTCTCGCCAC GTTCGCCGGC TTTCCCCGTC AAGCTCTAAA





4151
TCGGGGGCTC CCTTTAGGGT TCCGATTTAG TGCTTTACGG CACCTCGACC





4201
CCAAAAAACT TGATTTGGGT GATGGTTCAC GTAGTGGGCC ATCGCCCTGA





4251
TAGACGGTTT TTCGCCCTTT GACGTTGGAG TCCACGTTCT TTAATAGTGG





4301
ACTCTTGTTC CAAACTGGAA CAACACTCAA CCCTATCTCG GGCTATTCTT





4351
TTGATTTATA AGGGATTTTG CCGATTTCGG CCTATTGGTT AAAAAATGAG





4401
CTGATTTAAC AAAAATTTAA CGCGAATTTT AACAAAATAT TAACGTTTAC





4451
AATTTTATGG TGCACTCTCA GTACAATCTG CTCTGATGCC GCATAGTTAA





4501
GCCAGCCCCG ACACCCGCCA ACACCCGCTG ACGCGCCCTG ACGGGCTTGT





4551
CTGCTCCCGG CATCCGCTTA CAGACAAGCT GTGACCGTCT CCGGGAGCTG





4601
CATGTGTCAG AGGTTTTCAC CGTCATCACC GAAACGCGCG AGACGAAAGG





4651
GCCTCGTGAT ACGCCTATTT TTATAGGTTA ATGTCATGAT AATAATGGTT





4701
TCTTAGACGT CAGGTGGCAC TTTTCGGGGA AATGTGCGCG GAACCCCTAT





4751
TTGTTTATTT TTCTAAATAC ATTCAAATAT GTATCCGCTC ATGAGACAAT





4801
AACCCTGATA AATGCTTCAA TAATATTGAA AAAGGAAGAG TATGAGTATT





4851
CAACATTTCC GTGTCGCCCT TATTCCCTTT TTTGCGGCAT TTTGCCTTCC





4901
TGTTTTTGCT CACCCAGAAA CGCTGGTGAA AGTAAAAGAT GCTGAAGATC





4951
AGTTGGGTGC ACGAGTGGGT TACATCGAAC TGGATCTCAA CAGCGGTAAG





5001
ATCCTTGAGA GTTTTCGCCC CGAAGAACGT TTTCCAATGA TGAGCACTTT





5051
TAAAGTTCTG CTATGTGGCG CGGTATTATC CCGTATTGAC GCCGGGCAAG





5101
AGCAACTCGG TCGCCGCATA CACTATTCTC AGAATGACTT GGTTGAGTAC





5151
TCACCAGTCA CAGAAAAGCA TCTTACGGAT GGCATGACAG TAAGAGAATT





5201
ATGCAGTGCT GCCATAACCA TGAGTGATAA CACTGCGGCC AACTTACTCC





5251
TGACAACGAT CGGAGGACCG AAGGAGCTAA CCGCTTTTTT GCACAACATG





5301
GGGGATCATG TAACTCGCCT TGATCGTTGG GAACCGGAGC TGAATGAAGC





5351
CATACCAAAC GACGAGCGTG ACACCACGAT GCCTGTAGCA ATGGCAACAA





5401
CGTTGCGCAA ACTATTAACT GGCGAACTAC TTACTCTAGC TTCCCGGCAA





5451
CAATTAATAG ACTGGATGAA GGCGGATAAA GTTGCAGGAC CACTTCTGCG





5501
CTCGGCCCTT CCGGCTGGCT GGTTTATTGC TGATAAATCT GGAGCCGGTG





5551
AGCGTGGGTC TCGCGGTATC ATTGCAGCAC TGGGGCCAGA TGGTAAGCCC





5301
TCCCGTATCG TAGTTATCTA CACGACGGGG AGTCAGGCAA CTATGGATGA





5651
ACGAAATAGA CAGATCGCTG AGATAGGTGC CTCACTGATT AAGCATTGGT





5701
AACTGTCAGA CCAAGTTTAC TCATATATAC TTTAGATTGA TTTAAAACTT





5751
CATTTTTAAT TTAAAAGGAT CTAGGTGAAG ATCCTTTTTG ATAATCTCAT





5801
GACCAAAATC CCTTAACGTG AGTTTTCGTT CCACTGAGCG TCAGACCCCG





5851
TAGAAAAGAT CAAAGGATCT TCTTGAGATC CTTTTTTTCT GCGCGTAATC





5901
TGCTGCTTGC AAACAAAAAA ACCACCGCTA CCAGCGGTGG TTTGTTTGCC





5951
GGATCAAGAG CTACCAACTC TTTTTCCGAA GGTAACTGGC TTCAGCAGAG





6001
CGCAGATACC AAATACTGTC CTTCTAGTGT AGCCGTAGTT AGGCCACCAC





6051
TTCAAGAACT CTGTAGCACC GCCTACATAC CTCGCTGTGC TAATCCTGTT





6101
ACCAGTGGCT GCTGCCAGTG GCGATAAGTC GTGTCTTACC GGGTTGGACT





6151
CAAGACGATA GTTACCGGAT AAGGCGCAGC GGTCGGGCTG AACGGGGGGT





6201
TCGTGCACAC AGCCCAGCTT GGAGCGAACG AdCTACACCG AACTGAGATA





6251
CCTACAGCGT GAGCTATGAG AAAGCGCCAC GCTTCCCGAA GGGAGAAAGG





6301
CGGACAGGTA TCCGGTAAGC GGCAGGGTCG GAACAGGAGA GCGCACGAGG





6351
GAGCTTCCAG GGGGAAACGC CTGGTATCTT TATAGTCCTG TCGGGTTTCG





6401
CCACCTCTGA CTTGAGCGTC GATTTTTGTG ATGCTCGTCA GGGGGGCGGA





6451
GCCTATGGAA AAACGCCAGC AACGCGGCCT TTTTACGGTT CCTGGCCTTT





6501
TGCTGGCCTT TTGCTCACAT GT









ITR 5′: 1-141 bp


RSV promoter: 239-948 bp


hGck: 973-2387 bp


bGH polyA: 2395-2653 bp


miniCMV promoter: 2661-3071 bp


hIns: 3085-3431 bp


SV40 polyA: 3445-3743 bp


ITR 3′: 3785-3925 bp


L: miniCMV-hIns(rev)-RSV-hGck (SEQ ID NO: 15; FIG. 7)












pAAV-miniCMV-hIns(rev)-RSV-hGCk plasmid sequence
















1
CCTGCAGGCA GCTGCGCGCT CGCTCGCTCA CTGAGGCCGC CCGGGCAAAG





51
CCCGGGCGTC GGGCGACCTT TGGTCGCCCG GCCTCAGTGA GCGAGCGAGC





101
GCGCAGAGAG GGAGTGGCCA ACTCCATCAC TAGGGGTTCC TGCGGCCGCG





151
ATAAATCGAG ATCTTCCAGA GCATGAGCGC TGATCTGTCG AGCCATGTCT





201
AGGTAGCCAT GCTCTAGGAA GATCCTAATC GATTTTACCA CATTTGTAGA





251
GGTTTTACTT GCTTTAAAAA ACCTCCCACA TCTCCCCCTG AACCTGAAAC





301
ATAAAATGAA TGCAATTGTT GTTGTTAACT TGTTTATTGC AGCTTATAAT





351
GGTTACAAAT AAAGCAATAG CATCACAAAT TTCACAAATA AAGCATTTTT





401
TTCACTGCAT TCTAGTTGTG GTTTGTCCAA ACTCATCAAT GTATCTTATC





451
ATGTCTGCTC GAAGCGGCCT CGACAGCGCT GGTACCGTCG ACGGCTGCGT





501
CTAGTTGCAG TAGTTCTCCA GCTGGTAGAG GGAGCAGATG CTGGTACAGC





551
ATTGTTCCAC AATGCCACGC TTCTGTCGCG ACCCCTCCAG GGCCAAGGGC





601
TGCAGGCTGC CTGCACCAGG GCCCCCGCCC AGCTCCACCT GCCCCACCTG





651
CAGGTCCTCT GCCTCCCGCT TGGTCCTGGG TGTGTAGAAG AAGCCTCGTT





701
CCCCGCACAC TAGGTAGAGA GCTTCCACCA GATCTGAGCC GCACAGGTGT





751
TGGTTCACAA AGGCTGCGGC TGGGTCAGGT CCCCAGAGGG CCAGCAGCGC





801
CAGCAGGGGC AGGAGGCGCA TCCACAGGGC CATGGCAGAA GGTCGACGCT





851
AGCAAGCTTG GGTCTCCCTA TAGTGAGTCG TATTAATTTC GATAAGCCAG





901
TTAAGCAGTG GGTTCTCTAG TTAGCCAGAG AGCTCTGCTT ATATAGACCT





951
CCCACCGTAC ACGCCTACCG CCCATTTGCG TCAATGGGGC GGAGTTGTTA





1001
CGACATTTTG GAAAGTCCCG TTGATTTTGG TGCCAAAACA AACTCCCATT





1051
GACGTCAATG GGGTGGAGAC TTGGAAATCC CCGTGAGTCA AACCGCTATC





1101
CACGCCCATT GATGTACTGC CAAAACCGCA TCACCATGGT AATAGCGATG





1151
ACTAATACGT AGATGTACTG CCAAGTAGGA AAGTCCCATA AGGTCATGTA





1201
CTGGGCATAA TGCCAGGCGG GCCATTTACC GTCATTGACG TCAATAGGGG





1251
GCGTACTTGG CATAGATATC CATGTTTGAC AGCTTATCAT CGCAGATCCG





1301
TATGGTGCAC TCTCAGTACA ATCTGCTCTG ATGCCGCATA GTTAAGCCAG





1351
TATCTGCTCC CTGCTTGTGT GTTGGAGGTC GCTGAGTAGT GCGCGAGCAA





1401
AATTTAAGCT ACAACAAGGC AAGGCTTGAC CGACAATTGC ATGAAGAATC





1451
TGCTTAGGGT TAGGCGTTTT GCGCTGCTTC GCGATGTACG GGCCAGATAT





1501
TCGCGTATCT GAGGGGACTA GGGTGTGTTT AGGCGAAAAG CGGGGCTTCG





1551
GTTGTACGCG GTTAGGAGTC CCCTCAGGAT ATAGTAGTTT CGCTTTTGCA





1601
TAGGGAGGGG GAAATGTAGT CTTATGCAAT ACTCTTGTAG TCTTGCAACA





1651
TGGTAACGAT GAGTTAGCAA CATGCCTTAC AAGGAGAGAA AAAGCACCGT





1701
GCATGCCGAT TGGTGGAAGT AAGGTGGTAC GATCGTGCCT TATTAGGAAG





1751
GCAACAGACG GGTCTGACAT GGATTGGACG AACCACTAAA TTCCGCATTG





1801
CAGAGATATT GTATTTAAGT GCCTAGCTCG ATACAATAAA CGCCATTTGA





1851
CCATTCACCA CATTGGTGTG CACCTCCAAG CTGGGTACCA GCTTCTAGAG





1901
AGATCTGCTT CAGCTGGAGG CACTGGGCAG GTAAGTATCA AGGTTACAAG





1951
ACAGGTTTAA GGAGACCAAT AGAAACTGGG CTTGTCGAGA CAGAGAAGAC





2001
TCTTGCGTTT CTGATAGGCA CCTATTGGTC TTACTGACAT CCACTTTGCC





2051
TTTCTCTCCA CAGGTGCAGC TGCTGCAGCG GTCTAGAACT CGAGTCGAGA





2101
CCATGGCGAT GGATGTCACA AGGAGCCAGG CCCAGACAGC CTTGACTCTG





2151
GTAGAGCAGA TCCTGGCAGA GTTCCAGCTG CAGGAGGAGG ACCTGAAGAA





2201
GGTGATGAGA CGGATGCAGA AGGAGATGGA CCGCGGCCTG AGGCTGGAGA





2251
CCCATGAAGA GGCCAGTGTG AAGATGCTGC CCACCTACGT GCGCTCCACC





2301
CCAGAAGGCT CAGAAGTCGG GGACTTCCTC TCCCTGGACC TGGGTGGCAC





2351
TAACTTCAGG GTGATGCTGG TGAAGGTGGG AGAAGGTGAG GAGGGGCAGT





2401
GGAGCGTGAA GACCAAACAC CAGATGTACT CCATCCCCGA GGACGCCATG





2451
ACCGGCACTG CTGAGATGCT CTTCGACTAC ATCTCTGAGT GCATCTCCGA





2501
CTTCCTGGAC AAGCATCAGA TGAAACACAA GAAGCTGCCC CTGGGCTTCA





2551
CCTTCTCCTT TCCTGTGAGG CACGAAGACA TCGATAAGGG CATCCTTCTC





2601
AACTGGACCA AGGGCTTCAA GGCCTCAGGA GCAGAAGGGA ACAATGTCGT





2651
GGGGCTTCTG CGAGACGCTA TCAAACGGAG AGGGGACTTT GAAATGGATG





2701
TGGTGGCAAT GGTGAATGAC ACGGTGGCCA CGATGATCTC CTGCTACTAC





2751
GAAGACCATC AGTGCGAGGT CGGCATGATC GTGGGCACGG GCTGCAATGC





2801
CTGCTACATG GAGGAGATGC AGAATGTGGA GCTGGTOGAG GGGGACGAGG





2851
GCCGCATGTG CGTCAATACC GAGTGGGGCG CCTTCGGGGA CTCCGGCGAG





2901
CTGGACGAGT TCCTGCTGGA GTATGACCGC CTGGTGGACG AGAGCTCTGC





2951
AAACCCCGGT CAGCAGCTGT ATGAGAAGCT CATAGGTGGC AAGTACATOG





3001
GCGAGCTGGT GCGGCTTGTG CTGCTCAGGC TCGTGGACGA AAACCTGCTC





3051
TTCCACGGGG AGGCCTCCGA GCAGCTGCGC ACACGCGGAG CCTTCGAGAC





3101
GCGCTTCGTG TCGCAGGTGG AGAGCGACAC GGGCGACCGC AAGCAGATCT





3151
ACAACATCCT GAGCACGCTG GGGCTGCGAC CCTCGACCAC CGACTGCGAC





3201
ATCGTGCGCC GCGCCTGCGA GAGCGTGTCT ACGCGCGCTG CGCACATGTG





3251
CTCGGCGGGG CTGGCGGGCG TCATCAACCG CATGCGCGAG AGCCGCAGCG





3301
AGGACGTAAT GCGCATCACT GTGGGCGTGG ATGGCTCCGT GTACAAGCTG





3351
CACCCCAGCT TCAAGGAGCG GTTCCATGCC AGCGTGCGCA GGCTGACGCC





3401
CAGCTGCGAG ATCACCTTCA TCGAGTCGGA GGAGGGCAGT GGCCGGGGCG





3451
CGGCCCTGGT CTCGGCGGTG GCCTGTAAGA AGGCCTGTAT GCTGGGCCAG





3501
TGACTCGAGC ACGTGGAGCT CGCTGATCAG CCTCGACTGT GCCTTCTAGT





3551
TGCCAGCCAT CTGTTGTTTG CCCCTCCCCC GTGCCTTCCT TGACCCTGGA





3601
AGGTGCCACT CCCACTGTCC TTTCCTAATA AAATGAGGAA ATTGCATCGC





3651
ATTGTCTGAG TAGGTGTCAT TCTATTCTGG GGGGTGGGGT GGGGCAGGAC





3701
AGCAAGGGGG AGGATTGGGA AGACAATAGC AGGCATGCTG GGGATGCGGT





3751
GGGCTCTATG GCCACGTGAT TTAAATGCGG CCGCAGGAAC CCCTAGTGAT





3801
GGAGTTGGCC ACTCCCTCTC TGCGCOCTCG CTCGCTCACT GAGGCCGGGC





3851
GACCAAAGGT CGCCCGACGC CCGGGCTTTG CCCGGGCGGC CTCAGTGAGC





3901
GAGCGAGCGC GCAGCTGCCT GCAGGGGCGC CTGATGCGGT ATTTTCTCCT





3951
TACGCATCTG TGCGGTATTT CACACCGCAT ACGTCAAAGC AACCATAGTA





4001
CGCGCCCTGT AGCGGCGCAT TAAGCGCGGC GGGTGTGGTG GTTACGCGCA





4051
GCGTGACCGC TACACTTGCC AGCGCCCTAG CGCCCGCTCC TTTCGCTTTC





4101
TTCCCTTCCT TTCTCGCCAC GTTCGCCGGC TTTCCCCGTC AAGCTCTAAA





4151
TCGGGGGCTC CCTTTAGGGT TCCGATTTAG TGCTTTACGG CACCTCGACC





4201
CCAAAAAACT TGATTTGGGT GATGGTTCAC GTAGTGGGCC ATCGCCCTGA





4251
TAGACGGTTT TTCGCCCTTT GACGTTGGAG TCCACGTTCT TTAATAGTGG





4301
ACTCTTGTTC CAAACTGGAA CAACACTCAA CCCTATCTCG GGCTATTCTT





4351
TTGATTTATA AGGGATTTTG CCGATTTCGG CCTATTGGTT AAAAAATGAG





4401
CTGATTTAAC AAAAATTTAA CGCGAATTTT AACAAAATAT TAACGTTTAC





4451
AATTTTATGG TGCACTCTCA GTACAATCTG CTCTGATGCC GCATAGTTAA





4501
GCCAGCCCCG ACACCCGCCA ACACCCGCTG ACGCGCCCTG ACGGGCTTdT





4551
CTGCTCCCGG CATCCGCTTA CAGACAAGCT GTGACCGTCT CCGGGAGCTG





4601
CATGTGTCAG AGGTTTTCAC CGTCATCACC GAAACGCGCG AGACGAAAGG





4651
GCCTCGTGAT ACGCCTATTT TTATAGGTTA ATGTCATGAT AATAATGGTT





4701
TCTTAGACGT CAGGTGGCAC TTTTCGGGGA AATGTGCGCG GAACCCCTAT





4751
TTGTTTATTT TTCTAAATAC ATTCAAATAT GTATCCGCTC ATGAGACAAT





4801
AACCCTGATA AATGCTTCAA TAATATTGAA AAAGGAAGAG TATGAGTATT





4851
CAACATTTCC GTGTCGCCCT TATTCCCTTT TTTGCGGCAT TTTGCCTTCC





4901
TGTTTTTGCT CACCCAGAAA CGCTGGTGAA AGTAAAAGAT GCTGAAGATC





4951
AGTTGGGTGC ACGAGTGGGT TACATCGAAC TGGATCTCAA CAGCGGTAAG





5001
ATCCTTGAGA GTTTTCGCCC CGAAGAACGT TTTCCAATGA TGAGCACTTT





5051
TAAAGTTCTG CTATGTGGCG CGGTATTATC CCGTATTGAC GCCGGGCAAG





5101
AGCAACTCGG TCGCCGCATA CACTATTCTC AGAATGACTT GGTTGAGTAC





5151
TCACCAGTCA CAGAAAAGCA TCTTACGGAT GGCATGACAG TAAGAGAATT





5201
ATGCAGTGCT GCCATAACCA TGAGTGATAA CACTGCGGCC AACTTACTTC





5251
TGACAACGAT CGGAGGACCG AAGGAGCTAA CCGCTTTTTT GCACAACATG





5301
GGGGATCATG TAACTCGCCT TGATCGTTGG GAACCGGAGC TGAATGAAGC





5351
CATACCAAAC GACGAGCGTG ACACCACGAT GCCTGTAGCA ATGGCAACAA





5401
CGTTGCGCAA ACTATTAACT GGCGAACTAC TTACTCTAGC TTCCCGGCAA





5451
CAATTAATAG ACTGGATGGA GGCGGATAAA GTTGCAGGAC CACTTCTGCG





5501
CTCGGCCCTT CCGGCTGGCT GGTTTATTGC TGATAAATCT GGAGCCGGTG





5551
AGCGTGGGTC TCGCGGTATC ATTGCAGCAC TGGGGCCAGA TGGTAAGCCC





5601
TCCCGTATCG TAGTTATCTA CACGACGGGG AGTCAGGCAA CTATGGATGA





5651
ACGAAATAGA CAGATCGCTG AGATAGGTGC CTCACTGATT AAGCATTGGT





5701
AACTGTCAGA CCAAGTTTAC TCATATATAC TTTAGATTGA TTTAAAACTT





5751
CATTTTTAAT TTAAAAGGAT CTAGGTGAAG ATCCTTTTTG ATAATCTCAT





5801
GACCAAAATC CCTTAACGTG AGTTTTCGTT CCACTGAGCG TCAGACCCCG





5851
TAGAAAAGAT CAAAGGATCT TCTTGAGATC CTTTTTTTCT GCGCGTAATC





5901
TGCTGCTTGC AAACAAAAAA ACCACCGCTA CCAGCGGTGG TTTGTTTGCC





5951
GGATCAAGAG CTACCAACTC TTTTTCCGAA GGTAACTGGC TTCAGCAGAG





6001
CGCAGATACC AAATACTGTC CTTCTAGTGT AGCCGTAGTT AGGCCACCAC





6051
TTCAAGAACT CTGTAGCACC GCCTACATAC CTCGCTCTGC TAATCCTGTT





6101
ACCAGTGGCT GCTGCCAGTG GCGATAAGTC GTGTCTTACC GGGTTGGACT





6151
CAAGACGATA GTTACCGGAT AAGGCGCAGC GGTCGGGCTG AACGGGGGGT





6201
TCGTGCACAC AGCCCAGCTT GGAGCGAACG ACCTACACCG AACTGAGATA





6231
CCTACAGCGT GAGCTATGAG AAAGCGCCAC GCTTCCCGAA GGGAGAAAGG





6301
CGGACAGGTA TCCGGTAAGC GGCAGGGTCG GAACAGGAGA GCGCACGAGG





6351
GAGCTTCCAG GGGGAAACGC CTGGTATCTT TATAGTCCTG TCGGGTTTCG





6401
CCACCTCTGA CTTGAGCGTC GATTTTTGTG ATGCTCGTCA GGGGGGCGGA





6451
GCCTATGGAA AAACGCCAGC AACGCOGCCT TTTTACGGTT CCTGGCCTTT





6501
TGCTGGCCTT TTGCTCACAT GT









ITR 5′: 1-141 bp


SV40 polyA: 182-480 bp


hIns: 494-840 bp


miniCMV promoter: 854-1264 bp


RSV promoter: 1354-2063 bp


hGck: 2088-3502 bp


bGH polyA: 3510-3768 bp


ITR 3′: 3785-3925 bp


M: RSV-hGck-miniCMV-hIns(rev) (SEQ ID NO: 16; FIG. 7)












pAAV-RSV-hGck-miniCMV-hIns(rev) plasmid sequence
















1
CCTGCAGGCA GCTGCGCGCT CGCTCGCTCA CTGAGGCCGC CCGGGCAAAG





51
CCCGGGCGTC GGGCGACCTT TGGTCGCCCG GCCTCAGTGA GCGAGCGAGC





101
GCGCAGAGAG GGAGTGGCCA ACTCCATCAC TAGGGGTTCC TGCGGCCGCG





151
ATATCCATGT TTGACAGCTT ATCATCGCAG ATCCGTATGG TGCACTCTCA





201
GTACAATCTG CTCTGATGCC GCATAGTTAA GCCAGTATCT GCTCCCTGCT





251
TGTGTGTTGG AGGTCGCTGA GTAGTGCGCG AGCAAAATTT AAGCTACAAC





301
AAGGCAAGGC TTGACCGACA ATTGCATGAA GAATCTGCTT AGGGTTAGGC





351
GTTTTGCGCT GCTTCGCGAT GTACGGGCCA GATATTCGCG TATCTGAGGG





401
GACTAGGGTG TGTTTAGGCG AAAAGCGGGG CTTCGGTTGT ACGCGGTTAG





451
GAGTCCCCTC AGGATATAGT AGTTTCGCTT TTGCATAGGG AGGGGGAAAT





501
GTAGTCTTAT GCAATACTCT TGTAGTCTTG CAACATGGTA ACGATGAGTT





551
AGCAACATGC CTTACAAGGA GAGAAAAAGC ACCGTGCATG CCGATTGGTG





601
GAAGTAAGGT GGTACGATCG TGCCTTATTA GGAAGGCAAC AGACGGGTCT





651
GACATGGATT GGACGAACCA CTAAATTCCG CATTGCAGAG ATATTGTATT





701
TAAGTGCCTA GCTCGATACA ATAAACGCCA TTTGACCATT CACCACATTG





751
GTGTGCACCT CCAAGCTGGG TACCAGCTTC TAGAGAGATC TGCTTCAGCT





801
GGAGGCACTG GGCAGGTAAG TATCAAGGTT ACAAGACAGG TTTAAGGAGA





851
CCAATAGAAA CTGGGCTTGT CGAGACAGAG AAGACTCTTG CGTTTCTGAT





901
AGGCACCTAT TGGTCTTACT GACATCCACT TTGCCTTTCT CTCCACAGGT





951
GCAGCTGCTG CAGCGGTCTA GAACTCGAGT CGAGACCATG GCGATGGATG





1001
TCACAAGGAG CCAGGCCCAG ACAGCCTTGA CTCTGGTAGA GCAGATCCTG





1051
GCAGAGTTCC AGCTGCAGGA GGAGGACCTG AAGAAGGTGA TGAGACGGAT





1101
GCAGAAGGAG ATGGACCGCG GCCTGAGGCT GGAGACCCAT GAAGAGGCCA





1151
GTGTGAAGAT GCTGCCCACC TACGTGCGCT CCACCCCAGA AGGCTCAGAA





1201
GTCGGGGACT TCCTCTCCCT GGACCTGGGT GGCACTAACT TCAGGGTGAT





1251
GCTGGTGAAG GTGGGAGAAG GTGAGGAGGG GCAGTGGAGC GTGAAGACCA





1301
AACACCAGAT GTACTCCATC CCCGAGGACG CCATGACCGG CACTGCTGAG





1351
ATGCTCTTCG ACTACATCTC TGAGTGCATC TCCGACTTCC TGGACAAGCA





1401
TCAGATGAAA CACAAGAAGC TGCCCCTGGG CTTCACCTTC TCCTTTCCTG





1451
TGAGGCACGA AGACATCGAT AAGGGCATCC TTCTCAACTG GACCAAGGGC





1501
TTCAAGGCCT CAGGAGCAGA AGGGAACAAT GTCGTGGGGC TTCTGCGAGA





1551
CGCTATCAAA CGGAGAGGGG ACTTTGAAAT GGATGTGGTG GCAATGGTGA





1601
ATGACACGGT GGCCACGATG ATCTCCTGCT ACTACGAAGA CCATCAGTGC





1651
GAGGTCGGCA TGATCGTGGG CACGGGCTGC AATGCCTGCT ACATGGAGGA





1701
GATGCAGAAT GTGGAGCTGG TGGAGGGGGA CGAGGGCCGC ATGTGCGTCA





1751
ATACCGAGTG GGGCGCCTTC GGGGACTCCG GCGAGCTGGA CGAGTTCCTG





1801
CTGGAGTATG ACCGCCTGGT GGACGAGAGC TCTGCAAACC CCGGTCAGCA





1851
GCTGTATGAG AAGCTCATAG GTGGCAAGTA CATGGGCGAG CTGGTGCGGC





1901
TTGTGCTGCT CAGGCTCGTG GACGAAAACC TGCTCTTCCA CGGGGAGGCC





1951
TCCGAGCAGC TGCGCACACG CGGAGCCTTC GAGACGCGCT TCGTGTCGCA





2001
GGTGGAGAGC GACACGGGCG ACCGCAAGCA GATCTACAAC ATCCTGAGCA





2051
CGCTGGGGCT GCGACCCTCG ACCACCGACT GCGACATCGT GCGCCGCGCC





2101
TGCGAGAGCG TGTCTACGCG CGCTGCGCAC ATGTGCTCGG CGGGGCTGGC





2151
GGGCGTCATC AACCGCATGC GCGAGAGCCG CAGCGAGGAC GTAATGCGCA





2201
TCACTGTGGG CGTGGATGGC TCCGTGTACA AGCTGCACCC CAGCTTCAAG





2251
GAGCGGTTCC ATGCCAGCGT GCGCAGGCTG ACGCCCAGCT GCGAGATCAC





2301
CTTCATCGAG TCGGAGGAGG GCAGTGGCCG GGGCGCGGCC CTGGTCTCGG





2351
CGGTGGCCTG TAAGAAGGCC TGTATGCTGG GCCAGTGACT CGAGCACGTG





2401
GAGCTCGCTG ATCAGCCTCG ACTGTGCCTT CTAGTTGCCA GCCATCTGTT





2451
GTTTGCCCCT CCCCCGTGCC TTCCTTGACC CTGGAAGGTG CCACTCCCAC





2501
TGTCCTTTCC TAATAAAATG AGGAAATTGC ATCGCATTGT CTGAGTAGGT





2551
GTCATTCTAT TCTGGGGGGT GGGGTGGGGC AGGACAGCAA GGGGGAGGAT





2601
TGGGAAGACA ATAGCAGGCA TGCTGGGGAT GCGGTGGGCT CTATGGCCAC





2651
GTGATTTAAA TCGAGATCTT CCAGAGCATG AGCGCTGATC TGTCGAGCCA





2701
TGTCTAGGTA GCCATGQTCT AGGAAGATCC TAATCGATTT TACCACATTT





2751
GTAGAGGTTT TACTTGCTTT AAAAAACCTC CCACATCTCC CCCTGAACCT





2801
GAAACATAAA ATGAATGCAA TTGTTGTTGT TAACTTGTTT ATTGCAGCTT





2851
ATAATGGTTA CAAATAAAGC AATAGCATCA CAAATTTCAC AAATAAAGCA





2901
TTTTTTTCAC TGCATTCTAG TTGTGGTTTG TCCAAACTCA TCAATGTATC





2951
TTATCATGTC TGCTCGAAGC GGCCTCGACA GCGCTGGTAC CGTCGACGGC





3001
TGCGTCTAGT TGCAGTAGTT CTCCAGCTGG TAGAGGGAGC AGATGCTGGT





3051
ACAGCATTGT TCCACAATGC CACGCTTCTG TCGCGACCCC TCCAGGGCCA





3101
AGGGCTGCAG GCTGCCTGCA CCAGGGCCCC CGCCCAGCTC CACCTGCCCC





3151
ACCTGCAGGT CCTCTGCCTC CCGCTTGGTC CTGGGTGTGT AGAAGAAGCC





3201
TCGTTCCCCG CACACTAGGT AGAGAGCTTC CACCAGATCT GAGCCGCACA





3251
GGTGTTGGTT CACAAAGGCT GCGGCTGGGT CAGGTCCCCA GAGGGCCAGC





3301
AGCGCCAGCA GGGGCAGGAG GCGCATCCAC AGGGCCATGG CAGAAGGTCG





3351
ACGCTAGCAA GCTTGGGTCT CCCTATAGTG AGTCGTATTA ATTTCGATAA





3401
GCCAGTTAAG CAGTGGGTTC TCTAGTTAGC CAGAGAGCTC TGCTTATATA





3451
GACCTCCCAC CGTACACGCC TACCGCCCAT TTGCGTCAAT GGGGCGGAGT





3501
TGTTACGACA TTTTGGAAAG TCCCGTTGAT TTTGGTGCCA AAACAAACTC





3551
CCATTGACGT CAATGGGGTG GAGACTTGGA AATCCCCGTG AGTCAAACCG





3601
CTATCCACGC CCATTGATGT ACTGCCAAAA CCGCATCACC ATGGTAATAG





3651
CGATGACTAA TACGTAGATG TACTGCCAAG TAGGAAAGTC CCATAAGGTC





3701
ATGTACTGGG CATAATGCCA GGCGGGCCAT TTACCGTCAT TGACGTCAAT





3751
AGGGGGCGTA CTTGGCATAG ATAAATGCGG CCGCAGGAAC CCCTAGTGAT





3801
GGAGTTGGCC ACTCCCTCTC TGCGCGCTCG CTCGCTCACT GAGGCCGGGC





3851
GACCAAAGGT CGCCCGACGC CCGGGCTTTG CCCGGGCGGC CTCAGTGAGC





3901
GAGCGAGCGC GCAGCTGCCT GCAGGGGCGC CTGATGCGGT ATTTTCTCCT





3951
TACGCATCTG TGCGGTATTT CACACCGCAT ACGTCAAAGC AACCATAGTA





4001
CGCGCCCTGT AGCGGCGCAT TAAGCGCGGC GGGTGTGGTG GTTACGCGCA





4051
GCGTGACCGC TACACTTGCC AGCGCCCTAG CGCCCGCTCC TTTCGCTTTC





4101
TTCCCTTCCT TTCTCGCCAC GTTCGCCGGC TTTCCCCGTC AAGCTCTAAA





4151
TCGGGGGCTC CCTTTAGGGT TCCGATTTAG TGCTTTACGG CACCTCGACC





4201
CCAAAAAACT TGATTTGGGT GATGGTTCAC GTAGTGGGCC ATCGCCCTGA





4251
TAGACGGTTT TTCGCCCTTT GACGTTGGAG TCCACGTTCT TTAATAGTGG





4301
ACTCTTGTTC CAAACTGGAA CAACACTCAA CCCTATCTCG GGCTATTCTT





4351
TTGATTTATA AGGGATTTTG CCGATTTCGG CCTATTGGTT AAAAAATGAG





4401
CTGATTTAAC AAAAATTTAA CGCGAATTTT AACAAAATAT TAACGTTTAC





4451
AATTTTATGG TGCACTCTCA GTACAATCTG CTCTGATGCC GCATAGTTAA





4501
GCCAGCCCCG ACACCCGCCA ACACCCGCTG ACGCGCCCTG ACGGGCTTGT





4551
CTGCTCCCGG CATCCGCTTA CAGACAAGCT GTGACCGTCT CCGGGAGCTG





4601
CATGTGTCAG AGGTTTTCAC CGTCATCACC GAAACGCGCG AGACGAAAGG





4651
GCCTCGTGAT ACGCCTATTT TTATAGGTTA ATGTCATGAT AATAATGGTT





4701
TCTTAGACGT CAGGTGGCAC TTTTCGGGGA AATGTGCGCG GAACCCCTAT





4751
TTGTTTATTT TTCTAAATAC ATTCAAATAT GTATCCGCTC ATGAGACAAT





4801
AACCCTGATA AATGCTTCAA TAATATTGAA AAAGGAAGAG TATGAGTATT





4851
CAACATTTCC GTGTCGCCCT TATTCCCTTT TTTGCGGCAT TTTGCCTTCC





4901
TGTTTTTGCT CACCCAGAAA CGCTGGTGAA AGTAAAAGAT GCTGAAGATC





4951
AGTTGGGTGC ACGAGTGGGT TACATCGAAC TGGATCTCAA CAGCGGTAAG





5001
ATCCTTGAGA GTTTTCGCCC CGAAGAACGT TTTCCAATGA TGAGCACTTT





5051
TAAAGTTCTG CTATGTGGCG CGGTATTATC CCGTATTGAC GCCGGGCAAG





5101
AGCAACTCGG TCGCCGCATA CACTATTCTC AGAATGACTT GGTTGAGTAC





5151
TCACCAGTCA CAGAAAAGCA TCTTACGGAT GGCATGACAG TAAGAGAATT





5201
ATGCAGTGCT GCCATAACCA TGAGTGATAA CACTGCGGCC AACTTACTTC





5251
TGACAACGAT CGGAGGACCG AAGGAGCTAA CCGCTTTTTT GCACAACATG





5301
GGGGATCATG TAACTCGCCT TGATCGTTGG GAACCGGAGC TGAATGAAGC





5351
CATACCAAAC GACGAGCGTG ACACCACGAT GCCTGTAGCA ATGGCAACAA





5401
CGTTGCGCAA ACTATTAACT GGCGAACTAC TTACTCTAGC TTCCCOGCAA





5451
CAATTAATAG ACTGGATGGA GGCGGATAAA GTTGCAGGAC CACTTCTGCG





5501
CTCGGCCCTT CCGGCTGGCT GGTTTATTGC TGATAAATCT GGAGCCGGTG





5551
AGCGTGGGTC TCGCGGTATC ATTGCAGCAC TGGGGCCAGA TGGTAAGCCC





5601
TCCCGTATCG TAGTTATCTA CACGACGGGG AGTCAGGCAN CTATGGATGA





5651
ACGAAATAGA CAGATCGCTG AGATAGGTGC CTCACTGATT AAGCATTGGT





5701
AACTGTCAGA CCAAGTTTAC TCATATATAC TTTAGATTGA TTTAAAACTT





5751
CATTTTTAAT TTAAAAGGAT CTAGGTGAAG ATCCTTTTTG ATAATCTCAT





5801
GACCAAAATC CCTTAACGTG AGTTTTCGTT CCACTGAGCG TCAGACCCCG





5851
TAGAAAAGAT CAAAGGATCT TCTTGAGATC CTTTTTTTCT GCGCGTAATC





5901
TGCTGCTTGC AAACAAAAAA ACCACCGCTA CCAGCGGTGG TTTGTTTGCC





5951
GGATCAAGAG CTACCAACTC TTTTTCCGAA GGTAACTGGC TTCAGCAGAG





6001
CGCAGATACC AAATACTGTC CTTCTAGTGT AGCCGTAGTT AGGCCACCAC





6051
TTCAAGAACT CTGTAGCACC GCCTACATAC CTCGCTCTGC TAATCCTGTT





6101
ACCAGTGGCT GCTGCCAGTG GCGATAAGTC GTGTCTTACC GGGTTGGACT





6151
CAAGACGATA GTTACCGGAT AAGGCGCAGC GGTCGGGCTG AACGGGGGGT





6201
TCGTGCACAC AGCCCAGCTT GGAGCGAACG ACCTACACCG AACTGAGATA





6251
CCTACAGCGT GAGCTATGAG AAAGCGCCAC GCTTCCCGAA GGGAGAAAGG





6301
CGGACAGGTA TCCGGTAAGC GGCAGGGTCG GAACAGGAGA GCGCACGAGG





6351
GAGCTTCCAG GGGGAAACGC CTGGTATCTT TATAGTCCTG TCGGGTTTCG





6401
CCACCTCTGA CTTGAGCGTC GATTTTTGTG ATGCTCGTCA GGGGGGCGGA





6451
GCCTATGGAA AAACGCCAGC AACGCGGCCT TTTTACGGTT CCTGGCCTTT





6501
TGCTGGCCTT TTGCTCACAT GT 









ITR 5′: 1-141 bp


RSV promoter: 239-948 bp


hGck: 973-2387 bp


bGH polyA: 2395-2653 bp


SV40 polyA: 2687-2985 bp


hIns: 2999-3345 bp


miniCMV promoter: 3359-3769 pb


ITR 3′: 3785-3925 bp


N: miniCMV-hIns (SEQ ID NO: 21; FIG. 8)












pAAV-miniCMV-hIns plasmid sequence
















1
CCTGCAGGCA GCTGCGCGCT CGCTCGCTCA CTGAGGCCGC CCGGGCAAAG





51
CCCGGGCGTC GGGCGACCTT TGGTCGCCCG GCCTCAGTGA GCGAGCGAGC





101
GCGCAGAGAG GGAGTGGCCA ACTCCATCAC TAGGGGTTCC TGCGGCCGCG





151
ATATCTATGC CAAGTACGCC CCCTATTGAC GTCAATGACG GTAAATGGCC





201
CGCCTGGCAT TATGCCCAGT ACATGACCTT ATGGGACTTT CCTACTTGGC





251
AGTACATCTA CGTATTAGTC ATCGCTATTA CCATGGTGAT GCGGTTTTGG





301
CAGTACATCA ATGGGCGTGG ATAGCGGTTT GACTCACGGG GATTTCCAAG





351
TCTCCACCCC ATTGACGTCA ATGGGAGTTT GTTTTGGCAC CAAAATCAAC





401
GGGACTTTCC AAAATGTCGT AACAACTCCG CCCCATTGAC GCAAATGGGC





451
GGTAGGCGTG TACGGTGGGA GGTCTATATA AGCAGAGCTC TCTGGCTAAC





501
TAGAGAACCC ACTGCTTAAC TGGCTTATCG AAATTAATAC GACTCACTAT





551
AGGGAGACCC AAGCTTGCTA GCGTCGACCT TCTGCCATGG CCCTGTGGAT





601
GCGCCTCCTG CCCCTGCTGG CGCTGCTGGC CCTCTGGGGA CCTGACCCAG





651
CCGCAGCCTT TGTGAACCAA CACCTGTGCG GCTCAGATCT GGTGGAAGCT





701
CTCTACCTAG TGTGCGGGGA ACGAGGCTTC TTCTACACAC CCAGGACCAA





751
GCGGGAGGCA GAGGACCTGC AGGTGGGGCA GGTGGAGCTG GGCGGGGGCC





801
CTGGTGCAGG CAGCCTGCAG CCCTTGGCCC TGGAGGGGTC GCGACAGAAG





851
CGTGGCATTG TGGAACAATG CTGTACCAGC ATCTGCTCCC TCTACCAGCT





901
GGAGAACTAC TGCAACTAGA CGCAGdCGTC GACGGTACCA GCGCTGTCGA





951
GGCCGCTTCG AGCAGACATG ATAAGATACA TTGATGAGTT TGGACAAACC





1001
ACAACTAGAA TGCAGTGAAA AAAATGCTTT ATTTGTGAAA TTTGTGATGC





1051
TATTGCTTTA TTTGTAACCA TTATAAGCTG CAATAAACAA GTTAACAACA





1101
ACAATTGCAT TCATTTTATG TTTCAGGTTC AGGGGGAGAT GTGGGAGGTT





1151
TTTTAAAGCA AGTAAAACCT CTACAAATGT GGTAAAATCG ATTAGGATCT





1201
TCCTAGAGCA TGGCTACCTA GACATGGCTC GACAGATCAG CGCTCATGCT





1251
CTGGAAGATC TCGATTTAAA TGCGGCCGCA GGAACCCCTA GTGATGGAGT





1301
TGGCCACTCC CTCTCTGCGC GCTCGCTCGC TCACTGAGGC CGGGCGACCA





1351
AAGGTCGCCC GACGCCCGGG CTTTGCCCGG GCGGCCTCAG TGAGCGAGCG





1401
AGCGCGCAGC TGCCTGCAGG GGCGCCTGAT GCGGTATTTT CTCCTTACGC





1451
ATCTGTGCGG TATTTCACAC CGCATACGTC AAAGCAACCA TAGTACGCGC





1501
CCTGTAGCGG CGCATTAAGC GCGGCGGGTG TGGTGGTTAC GCGCAGCGTG





1551
ACCGCTACAC TTGCCAGCGC CCTAGCGCCC GCTCCTTTCG CTTTCTTCCC





1601
TTCCTTTCTC GCCACGTTCG CCGGCITTCC CCGTCAAGCT CTAAATCGGG





1651
GGCTCCCTTT AGGGTTCCGA TTTAGTGCTT TACGGCACCT CGACCCCAAA





1701
AAACTTGATT TGGGTGATGG TTCACGTAGT GGGCCATCGC CCTGATAGAC





1751
GGTTTTTCGC CCTTTGACGT TGGAGTCCAC GTTCTTTAAT AGTGGACTCT





1801
TGTTCCAAAC TGGAACAACA CTCAACCCTA TCTCGGGCTA TTCTTTTGAT





1851
TTATAAGGGA TTTTGCCGAT TTCGGCCTAT TGGTTAAAAA ATGAGCTGAT





1901
TTAACAAAAA TTTAACGCGA ATTTTAACAA AATATTAACG TTTACAATTT





1951
TATGGTGCAC TCTCAGTACA ATCTGCTCTG ATGCCGCATA GTTAAGCCAG





2001
CCCCGACACC CGCCAACACC CGCTGACGCG CCCTGACGGG CTTGTCTGCT





2051
CCCGGCATCC GCTTACAGAC AAGCTGTGAC CGTCTCCGGG AGCTGCATGT





2101
GTCAGAGGTT TTCACCGTCA TCACCGAAAC GCGCGAGACG AAAGGGCCTC





2151
GTGATACGCC TATTTTTATA GGTTAATGTC ATGATAATAA TGGTTTCTTA





2201
GACGTCAGGT GGCACTTTTC GGGGAAATGT GCGCGGAACC CCTATTTGTT





2251
TATTTTTCTA AATACATTCA AATATGTATC CGCTCATGAG ACAATAACCC





2301
TGATAAATGC TTCAATAATA TTGAAAAAGG AAGAGTATGA GTATTCAACA





2351
TTTCCGTGTC GCCCTTATTC CCTTTTTTGC GGCATTTTGC CTTCCTGTTT





2401
TTGCTCACCC AGAAACGCTG GTGAAAGTAA AAGATGCTGA AGATCAGTTG





2451
GGTGCACGAG TGGGTTACAT CGAACTGGAT CTCAACAGCG GTAAGATCCT





2501
TGAGAGTTTT CGCCCCGAAG AACGTTTTCC AATGATGAGC ACTTTTAAAG





2551
TTCTGCTATG TGGCGCGGTA TTATCCCGTA TTGACGCCGG GCAAGAGCAA





2601
CTCGGTCGCC GCATACACTA TTCTCAGAAT GACTTGGTTG AGTACTCACC





2651
AGTCACAGAA AAGCATCTTA COGATGGCAT GACAGTAAGA GAATTATGCA





2701
GTGCTGCCAT AACCATGAGT GATAACACTG CGGCCAACTT ACTTCTGACA





2751
ACGATCGGAG GACCGAAGGA GCTAACCGCT TTTTTGCACA ACATGGGGGA





2801
TCATGTAACT CGCCTTGATC GTTGGGAACC GGAGCTGAAT GAAGCCATAC





2851
CAAACGACGA GCGTGACACC ACGATGCCTG TAGCAATGGC AACAACGTTG





2901
CGCAAACTAT TAACTGGCGA ACTACTTACT CTAGCTTCCC GGCAACAATT





2951
AATAGACTGG ATGGAGGCGG ATAAAGTTGC AGGACCACTT CTGCGCTCGG





3001
CCCTTCCGGC TGGCTGGTTT ATTGCTGATA AATCTGGAGC CGGTGAGCGT





3051
GGGTCTCGCG GTATCATTGC AGCACTGGGG CCAGATGGTA AGCCCTCCCG





3101
TATCGTAGTT ATCTACACGA CGGGGAGTCA GGCAACTATG GATGAACGAA





3151
ATAGACAGAT CGCTGAGATA GGTGCCTCAC TGATTAAGCA TTGGTAACTG





3201
TCAGACCAAG TTTACTCATA TATACTTTAG ATTGATTTAA AACTTCATTT





3251
TTAATTTAAA AGGATCTAGG TGAAGATCCT TTTTGATAAT CTCATGACCA





3301
AAATCCCTTA ACGTGAGTTT TCGTTCCACT GAGCGTCAGA CCCCGTAGAA





3351
AAGATCAAAG GATCTTCTTG AGATCCTTTT TTTCTGCGCG TAATCTGCTG





3401
CTTGCAAACA AAAAAACCAC CGCTACCAGC GGTGGTTTGT TTGCQGGATC





3451
AAGAGCTACC AACTCTTTTT CCGAAGGTAA CTGGCTTCAG CAGAGCGCAG





3501
ATACCAAATA CTGTCCTTCT AGTGTAGCCG TAGTTAGGCC ACCACTTCAA





3551
GAACTCTGTA GCACCGCCTA CATACCTCGC TCTGCTAATC CTGTTACCAG





3601
TGGCTGCTGC CAGTGGCGAT AAGTCGTGTC TTACCGGGTT GGACTCAAGA





3651
CGATAGTTAC CGGATAAGGC GCAGCGGTCG GGCTGAACGG GGGGTTCGTG





3701
CACACAGCCC AGCTTGGAGC GAACGACCTA CACCGAACTG AGATACCTAC





3751
AGCGTGAGCT ATGAGAAAGC GCCACGCTTC CCGAAGGGAG AAAGGCGGAC





3801
AGGTATCCGG TAAGCGGCAG GGTCGGAACA GGAGAGCGCA CGAGGGAGCT





3851
TCCAGGGGGA AACGCCTGGT ATCTTTATAG TCCTGTCGGG TTTCGCCACC





3901
TCTGACTTGA GCGTCGATTT TTGTGATGCT CGTCAGGGGG GCGGAGCCTA





3951
TGGAAAAACG CCAGCAACGC GGCCTTTTTA CGGTTCCTGG CCTTTTGCTG





4001
GCCTTTTGCT CACATGT









ITR 5′: 1-141 bp


miniCMV promoter: 156-566 bp


hIns: 580-926 bp


SV40 polyA: 940-1238 bp


ITR 3′: 1280-1420 bp










Equivalent mini CMV promoter
SEQ ID NO: 24 







TAGGCGTGTACGGTGGGAGGTCTATATAAGCAGAGCTCTCTGGCTAACTA





GAGAACCCACTGCTTAACTGGCTTATCGAAATTAATACGACTCA






O: miniCMV-hIns-bGH (SEQ ID NO: 25; FIG. 13)












pAAV-miniCMV-hIns-bGH plasmid sequence
















1
GCTCATGCTC TGGAAGATCT CGATTTAAAT GCGGCCGCAG GAACCCCTAG





51
TGATGGAGTT GGCCACTCCC TCTCTGCGCG CTCGCTCGCT CACTGAGGCC





101
GGGCGACCAA AGGTCGCCCG ACGCCCGGGC TTTGCCCGGG CGGCCTCAGT





151
GAGCGAGCGA GCGCGCAGCT GCCTGCAGGG GCGCCTGATG CGGTATTTTC





201
TCCTTACGCA TCTGTGCGGT ATTTCACACC GCATACGTCA AAGCAACCAT





251
AGTACGCGCC CTGTAGCGGC GCATTAAGCG CGGCGGGTGT GGTGGTTACG





301
CGCAGCGTGA CCGCTACACT TGCCAGCGCC CTAGCGCCCG CTCCTTTCGC





351
TTTCTTCCCT TCCTTTCTCG CCACGTTCGC CGGCTTTCCC CGTCAAGCTC





401
TAAATCGGGG GCTCCCTTTA GGGTTCCGAT TTAGTGCTTT ACGGCACCTC





451
GACCCCAAAA AACTTGATTT GGGTGATGGT TCACGTAGTG GGCCATCGCC





501
CTGATAGACG GTTTTTCGCC CTTTGACGTT GGAGTCCACG TTCTTTAATA





551
GTGGACTCTT GTTCCAAACT GGAACAACAC TCAACCCMAT CTCGGGCTAT





601
TCTTTTGATT TATAAGGGAT TTTGCCGATT TCGGCCTATT GGTTAAAAAA





651
TGAGCTGATT TAACAAAAAT TTAACGCGAA TTTTAACAAA ATATTAACGT





701
TTACAATTTT ATGGTGCACT CTCAGTACAA TCTGCTCTGA TGCCGCATAG





751
TTAAGCCAGC CCCGACACCC GCCAACACCC GCTGACGCGC CCTGACGGGC





801
TTGTCTGCTC CCGGCATCCG CTTACAGACA AGCTGTGACC GTCTCCGGGA





851
GCTGCATGTG TCAGAGGTTT TCACCGTCAT CACCGAAACG CGCGAGACGA





901
AAGGGCCTCG TGATACGCCT ATTTTTATAG GTTAATGTCA TGATAATAAT





951
GGTTTCTTAG ACGTCAGGTG GCACTTTTCG GGGAAATGTG CGCGGAACCC





1001
CTATTTGTTT ATTTTTCTAA ATACATTCAA ATATGTATCC GCTCATGAGA





1051
CAATAACCCT GATAAATGCT TCAATAATAT TGAAAAAGGA AGAGTATGAG





1101
TATTCAACAT TTCCGTGTCG CCCTTATTCC CTTTTTTGCG GCATTTTGCC





1151
TTCCTGTTTT TGCTCACCCA GAAACGCTGG TGAAAGTAAA AGATGCTGAA





1201
GATCAGTTGG GTGCACGAGT GGGTTACATC GAACTGGATC TCAACAGCGG





1251
TAAGATCCTT GAGAGTTTTC GCCCCGAAGA ACGTTTTCCA ATGATGAGCA





1301
CTTTTAAAGT TCTGCTATGT GGCGCGGTAT TATCCCGTAT TGACGCCGGG





1351
CAAGAGCAAC TCGGTCGCCG CATACACTAT TCTCAGAATG ACTTGGTTGA





1401
GTACTCACCA GTCACAGAAA AGCATCTTAC GGATGGCATG ACAGTAAGAG





1451
AATTATGCAG TGCTGCCATA ACCATGAGTG ATAACACTGC GGCCAACTTA





1501
CTTCTGACAA CGATCGGAGG ACCGAAGGAG CTAACCGCTT TTTTGCACAA





1551
CATGGGGGAT CATGTAACTC GCCTTGATCG TTGGGAACCG GAGCTGAATG





1601
AAGCCATACC AAACGACGAG CGTGACACCA CGATGCCTGT AGCAATGGCA





1651
ACAACGTTGC GCAAACTATT AACTGGCGAA CTACTTACTC TAGCTTCCCG





1701
GCAACAATTA ATAGACTGGA TGGAGGCGGA TAAAGTTGCA GGACCACTMC





1751
TGCGCTCGGC CCTTCCGGCT GGCTGGTTTA TTGCTGATAA ATCTGGAGCC





1801
GGTGAGCGTG GGTCTCGCGG TATCATTGCA GCACTGGGGC CAGATGGTAA





1851
GCCCTCCCGT ATCGTAGTTA TCTACACGAC GGGGAGTCAG GCAACTATGG





1901
ATGAACGAAA TAGACAGATC GCTGAGATAG GTGCCTCACT GATTAAGCAT





1951
TGGTAACTGT CAGACCAAGT TTACTCATAT ATACTTTAGA TTGATTTAAA





2001
ACTTCATTTT TAATTTAAAA GGATCTAGGT GAAGATCCTT TTTGATAATC





2051
TCATGACCAA AATCCCTTAA CGTGAGTTTT CGTTCCACTG AGCGTCAGAC





2101
CCCGTAGAAA AGATCAAAGG ATCTTCTTGA GATCCTTTTT TTCTGCGCGT





2151
AATCTGCTGC TTGCAAACAA AAAAACCACC GCTACCAGCG GTGGTTTGTT





2201
TGCCGGATCA AGAGCTACCA ACTCTTTTTC CGAAGGTAAC TGGCTTCAGC





2251
AGAGCGCAGA TACCAAATAC TGTCCTTCTA GTGTAGCCGT AGTTAGGCCA





2301
CCACTTCAAG AACTCTGTAG CACCGCCTAC ATACCTCGCT CTGCTAATCq





2351
TGTTACCAGT GGCTGCTGCC AGTGGCGATA AGTCGTGTCT TACCGGGTTG





2401
GACTCAAGAC GATAGTTACC GGATAAGGCG CAGCGGTCGG GCTGAACGGG





2451
GGGTTCGTGC ACACAGCCCA GCTTGGAGCG AACGACCTAC ACCGAACTGA





2501
GATACCTACA GCGTGAGCTA TGAGAAAGCG CCACGCTTCC CGAAGGGAGA





2551
AAGGCGGACA GGTATCCGGT AAGCGGCAGG GTCGGAACAG GAGAGCGCAC





2501
GAGGGAGCTT CCAGGGGGAA ACGCCTGGTA TCTTTATAGT CCTGTCGGGT





2651
TTCGCCACCT CTGACTTGAG CGTCGATTTT TGTGATGCTC GTCAGGGGGG





2701
CGGAGCCTAT GGAAAAACGC CAGCAACGCG GCCTTTTTAC GGTTCCTGGC





2751
CTTTTGCTGG CCTTTTGCTC ACATGTCCTG CAGGCAGCTG CGCGCTCGCT





2801
CGCTCACTGA GGCCGCCCGG GCAAAGCCCG GGCGTCGGGC GACCTTTGGT





2851
CGCCCGGCCT CAGTGAGCGA GCGAGCGCGC AGAGAGGGAG TGGCCAACTC





2901
CATCACTAGG GGTTCCTGCG GCCGCGATAT CTATGCCAAG TACGCCCCCT





2951
ATTGACGTCA ATGACGGTAA ATGGCCCGCC TGGCATTATG CCCAGTACAT





3001
GACCTTATGG GACTTTCCTA CTTGGCAGTA CATCTACGTA TTAGTCATCG





3051
CTATTACCAT GGTGATGCGG TTTTGGCAGT ACATCAATGG GCGTGGATAG





3101
CGGTTTGACT CACGGGGATT TCCAAGTCTC CACCCCATTG ACGTCAATGG





3151
GAGTTTGTTT TGGCACCAAA ATCAACGGGA CTTTCCAAAA TGTCGTAACA





3201
ACTCCGCCCC ATTGACGCAA ATGGGCGGTA GGCGTGTACG GTGGGAGGTC





3251
TATATAAGCA GAGCTCTCTG GCTAACTAGA GAACCCACTG CTTAACTGGC





3301
TTATCGAAAT TAATACGACT CACTATAGGG AGACCCAAGC TTGCTAGCGT





3351
CGACCTTCTG CCATGGCCCT GTGGATGCGC CTCCTGCCCC TGCTGGCGCT





3401
GCTGGCCCTC TGGGGACCTG ACCCAGCCGC AGCCTTTGTG AACCAACACC





3451
TGTGCGGCTC AGATCTGGTG GAAGCTCTCT ACCTAGTGTG CGGGGAACGA





3501
GGCTTCTTCT ACACACCCAG GACCAAGCGG GAGGCAGAGG ACCTGCAGGT





3551
GGGGCAGGTG GAGCTGGGCG GGGGCCCTGG TGCAGGCAGC CTGCAGCCCT





3601
TGGCCCTGGA GGGGTCGCGA CAGAAGCGTG GCATTGTGGA ACAATGCTGT





3651
ACCAGCATCT GCTCCCTCTA CCAGCTGGAG AACTACTGCA ACTAGACGCA





3701
GCCGTCGACG GTACCAGCGT GGAGCTCGCT GATCAGCCTC GACTGTGCCT





3751
TCTAGTTGCC AGCCATCTGT TGTTTGCCCC TCCCCCGTGC CTTCCTTGAC





3801
CCTGGAAGGT GCCACTCCCA CTGTCCTTTC CTAAMAAAAT GAGGAAATTG





3851
CATCGCATTG TCTGAGMAGG TGTCATTCTA TTCTGGGGGG TGGGGTGGGG





3901
CAGGACAGCA AGGGGGAGGA TTGGGAAGAC AATAGCAGGC ATGCTGGGGA





3951
TGCGGTGGGC TCTATGGCCA C









ITR 5′: 2777-2917 bp


miniCMV promoter: 2932-3342 bp


hIns: 3356-3702 bp


bGH polyA: 3719-3971 bp


ITR 3′: 39-179 bp


P: RSV-hGck-SV40 (SEQ ID NO: 26; FIG. 13)












pAAV-RS-hGck-SV40 plasmid sequence
















1
GTGATTTAAA TGCGGCCGCA GGAACCCCTA GTGATGGAGT TGGCCACTCC





51
CTCTCTGCGC GCTCGCTCGC TCACTGAGGC CGGGCGACCA AAGGTCGCCC





101
GACGCCCGGG CTTTGCCCGG GCGGCCTCAG TGAGCGAGCG AGCGCGCAGC





151
TGCCTGCAGG GGCGCCTGAT GCGGTATTTT CTCCTTACGC ATCTGTGCGG





201
TATTTCACAC CGCATACGTC AAAGCAACCA TAGTACGCGC CCTGTAGCGG





251
CGCATTAAGC GCGGCGGGTG TGGTGGTTAC GCGCAGCGTG ACCGCTACAC





301
TTGCCAGCGC CCTAGCGCCC GCTCCTTTCG CTTTCTTCCC TTCCTTTCTC





351
GCCACGTTCG CCGGCTTTCC CCGTCAAGCT CTAAATCGGG GGCTCCCTTT





401
AGGGTTCCGA TTTAGTGCTT TACGGCACCT CGACCCCAAA AAACTTGATT





451
TGGGTGATGG TTCACGTAGT GGGCCATCGC CCTGATAGAC GGTTTTTCGC





501
CCTTTGACGT TGGAGTCCAC GTTCTTTAAT AGTGGACTCT TGTTCCAAAC





551
TGGAACAACA CTCAACCCTA TCTCGGGCTA TTCTTTTGAT TTATAAGGGA





601
TTTTGCCGAT TTCGGCCTAT TGGTTAAAAA ATGAGCTGAT TTAACAAAAA





651
TTTAACGCGA ATTTTAACAA AATATTAACG TTTACAATTT TATGGTGCAC





701
TCTCAGTACA ATCTGCTCTG ATGCCGCATA GTTAAGCCAG CCCCGACACC





751
CGCCAACACC CGCTGACGCG CCCTGACGGG CTTGTCTGCT CCCGGCATCC





801
GCTTACAGAC AAGCTGTGAC CGTCTCCGGG AGCTGCATGT GTCAGAGGTT





851
TTCACCGTCA TCACCGAAAC GCGCGAGACG AAAGGGCCTC GTGATACGCC





901
TATTTTTATA GGTTAATGTC ATGATAATAA TGGTTTCTTA GACGTCAGGT





951
GGCACTTTTC GGGGAAATGT GCGCGGAACC CCTATTTGTT TATTTTTCTA





1001
AATACATTCA AATATGTATC CGCTCATGAG ACAATAACCC TGATAAATGC





1051
TTCAATAATA TTGAAAAAGG AAGAGTATGA GTATTCAACA TTTCCGTGTC





1101
GCCCTTATTC CCTTTTTTGC GGCATTTTGC CTTCCTGTTT TTGCTCACCC





1151
AGAAACGCTG GTGAAAGTAA AAGATGCTGA AGATCAGTTG GGTGCACGAG





1201
TGGGTTACAT CGAACTGGAT CTCAACAGCG GTAAGATCCT TGAGAGTTTT





1251
CGCCCCGAAG AACGTTTTCC AATGATGAGC ACTTTTAAAG TTCTGCTATG





1301
TGGCGCGGTA TTATCCCGTA TTGACGCCGG GCAAGAGCAA CTCGGTCGCC





1351
GCATACACTA TTCTCAGAAT GACTTGGTTG AGTACTCACC AGTCACAGAA





1401
AAGCATCTTA CGGATGGCAT GACAGTAAGA GAATTATGCA GTGCTGCCAT





1451
AACCATGAGT GATAACACTG CGGCCAACTT ACTTCTGACA ACGATCGGAG





1501
GACCGAAGGA GCTAACCGCT TTTTTGCACA ACATGGGGGA TCATGTAACT





1551
CGCCTTGATC GTTGGGAACC GGAGCTGAAT GAAGCCATAC CAAACGACGA





1601
GCGTGACACC ACGATGCCTG TAGCAATGGC AACAACGTTG CGCAAACTAT





1651
TAACTGGCGA ACTACTTACT CTAGCTTCCC GGCAACAATT AATAGACTGG





1701
ATGGAGGCGG ATAAAGTTGC AGGACCACTT CTGCGCTCGG CCCTTCCGGC





1751
TGGCTGGTTT ATTGCTGATA AATCTGGAGC CGGTGAGCGT GGGTCTCGCG





1801
GTATCATTGC AGCACTGGGG CCAGATGGTA AGCCCTCCCG TATCGTAGTT





1851
ATCTACACGA CGGGGAGTCA GGCAACTATG GATGAACGAA ATAGACAGAT





1901
CGCTGAGATA GGTGCCTCAC TGATTAAGCA TTGGTAACTG TCAGACCAAG





1951
TTTACTCATA TATACTTTAG ATTGATTTAA AACTTCATTT TTAATTTAAA





2001
AGGATCTAGG TGAAGATCCT TTTTGATAAT CTCATGACCA AAATCCCTTA





2051
ACGTGAGTTT TCGTTCCACT GAGCGTCAGA CCCCGTAGAA AAGATCAAAG





2101
GATCTTCTTG AGATCCTTTT TTTCTGCGCG TAATCTGCTG CTTGCAAACA





2151
AAAAAACCAC CGCTACCAGC GGTGGTTTGT TTGCCGGATC AAGAGCTACC





2201
AACTCTTTTT CCGAAGGTAA CTGGCTTCAG CAGAGCGCAG ATACCAAATA





2251
CTGTCCTTCT AGTGTAGCCG TAGTTAGGCC ACCACTTCAA GAACTCTGTA





2301
GCACCGCCTA CATACCTCGC TCTGCTAATC CTGTTACCAG TGGCTGCTGC





2351
CAGTGGCGAT AAGTCGTGTC TTACCGGGTT GGACTCAAGA CGATAGTTAC





2401
CGGATAAGGC GCAGCGGTCG GGCTGAACGG GGGGTTCGTG CACACAGCCC





2451
AGCTTGGAGC GAACGACCTA CACCGAACTG AGATACCTAC AGCGTGAGCT





2501
ATGAGAAAGC GCCACGCTTC CCGAAGGGAG AAAGGCGGAC AGGTATCCGG





2551
TAAGCGGCAG GGTCGGAACA GGAGAGCGCA CGAGGGAGCT TCCAGGGGGA





2601
AACGCCTGGT ATCTTTATAG TCCTGTCGGG TTTCGCCACC TCTGACTTGA





2651
GCGTCGATTT TTGTGATGCT CGTCAGGGGG GCGGAGCCTA TGGAAAAACG





2701
CCAGCAACGC GGCCTTTTTA CGGTTCCTGG CCTTTTGCTG GCCTTTTGCT





2751
CACATGTCCT GCAGGCAGCT GCGCGCTCGC TCGCTCACTG AGGCCGCCCG





2801
GGCAAAGCCC GGGCGTCGGG CGACCTTTGG TCGCCCGGCC TCAGTGAGCG





2851
AGCGAGCGCG CAGAGAGGGA GTGGCCAACT CCATCACTAG GGGTTCCTGC





2901
GGCCGCGATA TCCATGTTTG ACAGCTTATC ATCGCAGATC CGTATGGTGC





2951
ACTCTCAGTA CAATCTGCTC TGATGCCGCA TAGTTAAGCC AGTATCTGCT





3001
CCCTGCTTGT GTGTTGGAGG TCGCTGAGTA GTGCGCGAGC AAAATTTAAG





3051
CTACAACAAG GCAAGGCTTG ACCGACAATT GCATGAAGAA TCTGCTTAGG





3101
GTTAGGCGTT TTGCGCTGCT TCGCGATGTA CGGGCCAGAT ATTCGCGTAT





3131
CTGAGGGGAC TAGGGTGTGT TTAGGCGAAA AGCGGGGCTT CGGTTGTACG





3201
CGGTTAGGAG TCCCCTCAGG ATATAGTAGT TTCGCTTTTG CATAGGGAGG





3251
GGGAAATGTA GTCTTATGCA ATACTCTTGT AGTCTTGCAA CATGGTAACG





3301
ATGAGTTAGC AACATGCCTT ACAAGGAGAG AAAAAGCACC GTGCATGCCG





3351
ATTGGTGGAA GTAAGGTGGT ACGATCGTGC CTTATTAGGA AGGCAACAGA





3401
CGGGTCTGAC ATGGATTGGA CGAACCACTA AATTCCGCAT TGCAGAGATA





3451
TTGTATTTAA GTGCCTAGCT CGATACAATA AACGCCATTT GACCATTCAC





3501
CACATTGGTG TGCACCTCCA AGCTGGGTAC CAGCTTCTAG AGAGATCTGC





3551
TTCAGCTGGA GGCACTGGGC AGGTAAGTAT CAAGGTTACA AGACAGGTTT





3601
AAGGAGACCA ATAGAAACTG GGCTTGTCGA GACAGAGAAG ACTCTTGCGT





3651
TTCTGATAGG CACCTATTGG TCTTACTGAC ATCCACTTTG CCTTTCTCTC





3701
CACAGGTGCA GCTGCTGCAG CGGTCTAGAA CTCGAGTCGA GACCATGGCG





3751
ATGGATGTCA CAAGGAGCCA GGCCCAGACA GCCTTGACTC TGGTAGAGCA





3801
GATCCTGGCA GAGTTCCAGC TGCAGGAGGA GGACCTGAAG AAGGTGATGA





3851
GACGGATGCA GAAGGAGATG GACCGCGGCC TGAGGCTGGA GACCCATGAA





3901
GAGGCCAGTG TGAAGATGCT GCCCACCTAC GTGCGCTCCA CCCCAGAAGG





3951
CTCAGAAGTC GGGGACTTCC TCTCCCTGGA CCTGGGTGGC ACTAACTTCA





4001
GGGTGATGCT GGTGAAGGTG GGAGAAGGTG AGGAGGGGCA GTGGAGCGTG





4051
AAGACCAAAC ACCAGATGTA CTCCATCCCC GAGGACGCCA TGACCGGCAC





4101
TGCTGAGATG CTCTTCGACT ACATCTCTGA GTGCATCTCC GACTTCCTGG





4151
ACAAGCATCA GATGAAACAC AAGAAGCTGC CCCTGGGCTT CACCTTCTCC





4201
TTTCCTGTGA GGCACGAAGA CATCGATAAG GGCATCCTTC TCAACTGGAC





4251
CAAGGGCTTC AAGGCCTCAG GAGCAGAAGG GAACAATGTC GTGGGGCTTC





4301
TGCGAGACGC TATCAAACGG AGAGGGGACT TTGAAATGGA TGTGGTGGCA





4351
ATGGTGAATG ACACGGTGGC CACGATGATC TCCTGCTACT ACGAAGACCA





4401
TCAGTGCGAG GTCGGCATGA TCGTGGGCAC GGGCTGCAAT GCCTGCTACA





4451
TGGAGGAGAT GCAGAATGTG GAGCTGGTGG AGGGGGACGA GGGCCGCATG





4501
TGCGTCAATA CCGAGTGGGG CGCCTTCGGG GACTCCGGCG AGCTGGACGA





4551
GTTCCTGCTG GAGTATGACC GCCTGGTGGA CGAGAGCTCT GCAAACCCCG





4601
GTCAGCAGCT GTATGAGAAG CTCATAGGTG GCAAGTACAT GGGCGAGCTG





4651
GTGCGGCTTG TGCTGCTCAG GCTCGTGGAC GAAAACCTGC TCTTCCACGG





4701
GGAGGCCTCC GAGCAGCTGC GCACACGCGG AGCCTTCGAG ACGCGCTTCG





4751
TGTCGCAGGT GGAGAGCGAC ACGGGCGACC GCAAGCAGAT CTACAACATC





4801
CTGAGCACGC TGGGGCTGCG ACCCTCGACC ACCGAQTGCG ACATCGTGCG





4851
CCGCGCCTGC GAGAGCGTGT CTACGCGCGC TGCGCACATG TGCTCGGCGG





4901
GGCTGGCGGG CGTCATCAAC CGCATGCGCG AGAGCCGCAG CGAGGACGTA





4951
ATGCGCATCA CTGTGGGCGT GGATGGCTCC GTGTACAAGC TGCACCCCAG





5001
CTTCAAGGAG CGGTTCCATG CCAGCGTGCG CAGGCTGACG CCCAGCTGCG





5051
AGATCACCTT CATCGAGTCG GAGGAGGGCA GTGGCCGGGO CGCGGCCCTG





5101
GTCTCGGCGG TGGCCTGTAA GAAGGCCTGT ATGCTGGGCC AGTGACTCGA





5151
GCACGCTGTC GAGGCCGCTT CGAGCAGACA TGATAAGATA CATTGATGAG





5201
TTTGGACAAA CCACAACTAG AATGCAGTGA AAAAAATGCT TTATTTGTGA





5251
AATTTGTGAT GCTATTGCTT TATTTGTAAC CATTATAAGC TGCAATAAAC





5301
AAGTTAACAA CAACAATTGC ATTCATTTTA TGTTTCAGGT TCAGGGGGAG





5351
ATGTGGGAGG TTTTTTAAAG CAAGTAAAAC CTCTACAAAT GTGGTAAAAT





5401
CGATTAGGAT CTTCCTAGAG CATGGCTACC TAGACATGGC TCGACAGATC





5451
AGC









ITR 5′: 2758-2898 bp


RSV promoter: 2996-3705 bp


hGck: 3730-5144 bp


SV40 polyA: 5155-5450 bp


ITR 3′: 20-160 bp


Q: miniCMV-hIns-bGH(rev)-RSV-hGck-SV40 (SEQ ID NO: 27; FIG. 13)












AAV-miniCMV-hIns-bGH(rev)-RSV-hGck-SV40 plasmid sequence
















1
ATCCATGTTT GACAGCTTAT CATCGCAGAT CCGTATGGTG CACTCTCAGT





51
ACAATCTGCT CTGATGCCGC ATAGTTAAGC CAGTATCTGC TCCCTGCTTG





101
TGTGTTGGAG GTCGCTGAGT AGTGCGCGAG CAAAATTTAA GCTACAACAA





151
GGCAAGGCTT GACCGACAAT TGCATGAAGA ATCTGCTTAG GGTTAGGCGT





201
TTTGCGCTGC TTCGCGATGT ACGGGCCAGA TATTCGCGTA TCTGAGGGGA





251
CTAGGGTGTG TTTAGGCGAA AAGCGGGGCT TCGGTTGTAC GCGGTTAGGA





301
GTCCCCTCAG GATATAGTAG TTTCGCTTTT GCATAGGGAG GGGGAAATGT





351
AGTCTTATGC AATACTCTTG TAGTCTTGCA ACATGGTAAC GATGAGTTAG





401
CAACATGCCT TACAAGGAGA GAAAAAGCAC CGTGCATGCC GATTGGTGGA





451
AGTAAGGTGG TACGATCGTG CCTTATTAGG AAGGCAACAG ACGGGTCTGA





501
CATGGATTGG ACGAACCACT AAATTCCGCA TTGCAGAGAT ATTGTATTTA





551
AGTGCCTAGC TCGATACAAT AAACGCCATT TGACCATTCA CCACATTGGT





601
GTGCACCTCC AAGCTGGGTA CCAGCTTCTA GAGAGATCTG CTTCAGCTGG





651
AGGCACTGGG CAGGTAAGTA TCAAGGTTAC AAGACAGGTT TAAGGAGACC





701
AATAGAAACT GGGCTTGTCG AGACAGAGAA GACTCTTGCG TTTCTGATAG





751
GCACCTATTG GTCTTACTGA CATCCACTTT GCCTTTCTCT CCACAGGTGC





801
AGCTGCTGCA GCGGTCTAGA ACTCGAGTCG AGACCATGGC GATGGATGTC





851
ACAAGGAGCC AGGCCCAGAC AGCCTTGACT CTGGTAGAGC AGATCCTGGC





901
AGAGTTCCAG CTGCAGGAGG AGGACCTGAA GAAGGTGATG AGACGGATGC





951
AGAAGGAGAT GGACCGCGGC CTGAGGCTGG AGACCCATGA AGAGGCCAGT





1001
GTGAAGATGC TGCCCACCTA CGTGCGCTCC ACCCCAGAAG GCTCAGAAGT





1051
CGGGGACTTC CTCTCCCTGG ACCTGGGTGG CACTAACTTC AGGGTGATGC





1101
TGGTGAAGGT GGGAGAAGGT GAGGAGGGGC AGTGGAGCGT GAAGACCAAA





1151
CACCAGATGT ACTCCATCCC CGAGGACGCC ATGACCGGCA CTGCTGAGAT





1201
GCTCTTCGAC TACATCTCTG AGTGCATCTC CGACTTCCTG GACAAGCATC





1251
AGATGAAACA CAAGAAGCTG CCCCTGGGCT TCACCTTCTC CTTTCCTGTG





1301
AGGCACGAAG ACATCGATAA GGGCATCCTT CTCAACTGGA CCAAGGGCTT





1351
CAAGGCCTCA GGAGCAGAAG GGAACAATGT CGTGGGGCTT CTGCGAGACG





1401
CTATCAAACG GAGAGGGGAC TTTGAAATGG ATGTGGTGGC AATGGTGAAT





1451
GACACGGTGG CCACGATGAT CTCCTGCTAC TACGAAGACC ATCAGTGCGA





1501
GGTCGGCATG ATCGTGGGCA CGGGCTGCAA TGCCTGCTAC ATGGAGGAGA





1551
TGCAGAATGT GGAGCTGGTG GAGGGGGACG AGGGCCGCAT GTGCGTCAAT





1601
ACCGAGTGGG GCGCCTTCGG GGACTCCGGC GAGCTGGACG AGTTCCTGCT





1651
GGAGTATGAC CGCCTGGTGG ACGAGAGCTC TGCAAACCCC GGTCAGCAGC





1701
TGTATGAGAA GCTCATAGGT GGCAAGTACA TGGGCGAGCT GGTGCGGCTT





1751
GTGCTGCTCA GGCTCGTGGA CGAAAACCTG CTCTTCCACG GGGAGGCCTC





1801
CGAGCAGCTG CGCACACGCG GAGCCTTCGA GACGCGCTTC GTGTCGCAGG





1851
TGGAGAGCGA CACGGGCGAC CGCAAGCAGA TCTACAACAT CCTGAGCACG





1901
CTGGGGCTGC GACCCTCGAC CACCGACTGC GACATCGTGC GCCGCGCCTG





1951
CGAGAGCGTG TCTACGCGCG CTGCGCACAT GTGCTCGGCG GGGCTGGCGG





2001
GCGTCATCAA CCGCATGCGC GAGAGCCGCA GCGAGGACGT AATGCGCATC





2051
ACTGTGGGCG TGGATGGCTC CGTGTACAAG CTGCACCCCA GCTTCAAGGA





2101
GCGGTTCCAT GCCAGCGTGC GCAGGCTGAC GCCCAGCTGC GAGATCACCT





2151
TCATCGAGTC GGAGGAGGGC AGTGGCCGGG GCGCGGCCCT GGTCTCGGCG





2201
GTGGCCTGTA AGAAGGCCTG TATGCTGGGC CAGTGACTCG AGCACGCTGT





2251
CGAGGCCGCT TCGAGCAGAC ATGATAAGAT ACATTGATGA GTTTGGACAA





2301
ACCACAACTA GAATGCAGTG AAAAAAATGC TTTATTTGTG AAATTTGTGA





2351
TGCTATTGCZ TTATTTGTAA CCATTATAAG CTGCAATAAA CAAGTTAACA





2401
ACAACAATTG CATTCATTTT ATGTTTCAGG TTCAGGGGGA GATGTGGGAG





2451
GTTTTTTAAA GCAAGTAAAA CCTCTACAAA TGTGGTAAAA TCGATTAGGA





2501
TCTTCCTAGA GCATGGCTAC CTAGACATGG CTCGACAGAT CAGCGTGATT





2551
TAAATGCGGC CGCAGGAACC CCTAGTGATG GAGTTGGCCA CTCCCTCTCT





2601
GCGCGCTCGC TCGCTCACTG AGGCCGGGCG ACCAAAGGTC GCCCGACGCC





2651
CGGGCTTTGC CCGGGCGGCC TCAGTGAGCG AGCGAGCGCG CAGCTGCCTG





2701
CAGGGGCGCC TGATGCGGTA TTTTCTCCTT ACGCATCTGT GCGGTATTTC





2751
ACACCGCATA CGTCAAAGCA ACCATAGTAC GCGCCCTGTA GCGGCGCATT





2801
AAGCGCGGCG GGTGTGGTGG TTACGCGCAG CGTGACCGCT ACACTTGCCA





2851
GCGCCCTAGC GCCCGCTCCT TTCGCTTTCT TCCCTTCCTT TCTCGCCACG





2901
TTCGCCGGCT TTCCCCGTCA AGCTCTAAAT CGGGGGCTCC CTTTAGGGTT





2951
CCGATTTAGT GCTTTACGGC ACCTCGACCC CAAAAAACTT GATTTGGGTG





3001
ATGGTTCACG TAGTGGGCCA TCGCCCTGAT AGACGGTTTT TCGCCCTTTG





3051
ACGTTGGAGT CCACGTTCTT TAATAGTGGA CTCTTGTTCC AAACTGGAAC





3101
AACACTCAAC CCTATCTCGG GCTATTCTTT TGATTTATAA GGGATTTTGC





3151
CGATTTCGGC CTATTGGTTA AAAAATGAGC TGATTTAACA AAAATTTAAC





3201
GCGAATTTTA ACAAAATATT AACGTTTACA ATTTTATGGT GCACTCTCAG





3251
TACAATCTGC TCTGATGCCG CATAGTTAAG CCAGCCCCGA CACCCGCCAA





3301
CACCCGCTGA CGCGCCCTGA CGGGCTTGTC TGCTCCCGGC ATCCGCTTAC





3351
AGACAAGCTG TGACCGTCTC CGGGAGCTGC ATGTGTCAGA GGTTTTCACC





3401
GTCATCACCG AAACGCGCGA GACGAAAGGG CCTCGTGATA CGCCTATTTT





3451
TATAGGTTAA TGTCATGATA ATAATGGTTT CTTAGACGTC AGGTGGCACT





3501
TTTCGGGGAA ATGTGCGCGG AACCCCTATT TGTTTATTTT TCTAAATACA





3551
TTCAAATATG TATCCGCTCA TGAGACAATA ACCCTGATAA ATGCTTCAAT





3601
AATATTGAAA AAGGAAGAGT ATGAGTATTC AACATTTCCG TGTCGCCCTT





3651
ATTCCCTTTT TTGCGGCATT TTGCCTTCCT GTTTTTGCTC ACCCAGAAAC





3701
GCTGGTGAAA GTAAAAGATG CTGAAGATCA GTTGGGTGCA CGAGTGGGTT





3751
ACATCGAACT GGATCTCAAC AGCGGTAAGA TCCTTGAGAG TTTTCGCCCC





3801
GAAGAACGTT TTCCAATGAT GAGCACTTTT AAAGTTCTGC TATGTGGCGC





3851
GGTATTATCC CGTATTGACG CCGGGCAAGA GCAACTCGGT CGCCGCATAC





3901
ACTATTCTCA GAATGACTTG GTTGAGTACT CACCAGTCAC AGAAAAGCAT





3951
CTTACGGATG GCATGACAGT AAGAGAATTA TGCAGTGCTG CCATAACCAT





4001
GAGTGATAAC ACTGCGGCCA ACTTACTTCT GACAACGATC GGAGGACCGA





4051
AGGAGCTAAC CGCTTTTTTG CACAACATGG GGGATCATGT AACTCGCCTT





4101
GATCGTTGGG AACCGGAGCT GAATGAAGCC ATACCAAACG ACGAGCGTGA





4151
CACCACGATG CCTGTAGCAA TGGCAACAAC GTTGCGCAAA CTATTAACTG





4201
GCGAACTACT TACTCTAGCT TCCCGGCAAC AATTAATAGA CTGGATGGAG





4251
GCGGATAAAG TTGCAGGACC ACTTCTGCGC TCGGCCCTTC CGGCTGGCTG





4301
GTTTATTGCT GATAAATCTG GAGCCGGTGA GCGTGGGTCT CGCGGTATCA





4351
TTGCAGCACT GGGGCCAGAT GGTAAGCCCT CCCGTATCGT AGTTATCTAC





4401
ACGACGGGGA GTCAGGCAAC TATGGATGAA CGAAATAGAC AGATCGCTGA





4451
GATAGGTGCC TCACTGATTA AGCATTGGTA ACTGTCAGAC CAAGTTTACT





4501
CATATATACT TTAGATTGAT TTAAAACTTC ATTTTTAATT TAAAAGGATC





4551
TAGGTGAAGA TCCTTTTTGA TAATCTCATG ACCAAAATCC CTTAACGTGA





4601
GTTTTCGTTC CACTGAGCGT CAGACCCCGT AGAAAAGATC AAAGGATCTT





4651
CTTGAGATCC TTTTTTTCTG CGCGTAATCT GCTGCTTGCA AACAAAAAAA





4701
CCACCGCTAC CAGCGGTGGT TTGTTTGCCG GATCAAGAGC TACCAACTCT





4751
TTTTCCGAAG GTAACTGGCT TCAGCAGAGC GCAGATACCA AATACTGTCC





4801
TTCTAGTGTA GCCGTAGTTA GGCCACCACT TCAAGAACTC TGTAGCACCG





4851
CCTACATACC TCGCTCTGCT AATCCTGTTA CCAGTGGCTG CTGCCAGTGG





4901
CGATAAGTCG TGTCTTACCG GGTTGGACTC AAGACGATAG TTACCGGATA





4951
AGGCGCAGCG GTCGGGCTGA ACGGGGGGTT CGTGCACACA GCCCAGCTTG





5001
GAGCGAACGA CCTACACCGA ACTGAGATAC CTACAGCGTG AGCTATGAGA





5051
AAGCGCCACG CTTCCCGAAG GGAGAAAGGC GGACAGGTAT CCGGTAAGCG





5101
GCAGGGTCGG AACAGGAGAG CGCACGAGGG AGCTTCCAGG GGGAAACGCC





5151
TGGTATCTTT ATAGTCCTGT CGGGTTTCGC CACCTCTGAC TTGAGCGTCG





5201
ATTTTTGTGA TGCTCGTCAG GGGGGCGGAG CCTATGGAAA AACGCCAGCA





5251
ACGQGGCCTT TTTACGGTTC CTGGCCTTTT GCTGGCCTTT TGCTCACATG





5301
TCCTGCAGGC AGCTGCGCGC TCGCTCGCTC ACTGAGGCCG CCCGGGCAAA





5351
GCCCGGGCGT CGGGCGACCT TTGGTCGCCC GGCCTCAGTG AGCGAGCGAG





5401
CGCGCAGAGA GGGAGTGGCC AACTCCATCA CTAGGGGTTC CTGCGGCCGC





5451
GATAAATCGA GATCTTCCAG AGCATGAGCG TGGCCATAGA GCCCACCGCA





5501
TCCCCAGCAT GCCTGCTATT GTCTTCCCAA TCCTCCCCCT TGCTGTCCTG





5551
CCCCACCCCA CCCCCCAGAA TAGAATGACA CCTACTCAGA CAATGCGATG





5601
CAATTTCCTC ATTTTATTAG GAAAGGACAG TGGGAGTGGC ACCTTCCAGG





5651
GTCAAGGAAG GCACGGGGGA GGGGCAAACA ACAGATGGCT GGCAACTAGA





5701
AGGCACAGTC GAGGCTGATC AGCGAGCTCC ACGCTGGTAC CGTCGACGGC





5751
TGCGTCTAGT TGCAGTAGTT CTCCAGCTGG TAGAGGGAGC AGATGCTGGT





5801
ACAGCATTGT TCCACAATGC CACGCTTCTG TCGCGACCCC TCCAGGGCCA





5851
AGGGCTGCAG GCTGCCTGCA CCAGGGCCCC CGCCCAGCTC CACCTGCCCC





5901
ACCTGCAGGT CCTCTGCCTC CCGCTTGGTC CTGGGTGTGT AGAAGAAGCC





5951
TCGTTCCCCG CACACTAGGT AGAGAGCTTC CACCAGATCT GAGCCGCACA





6001
GGTGTTGGTT CACAAAGGCT GCGGCTGGGT CAGGTCCCCA GAGGGCCAGC





6051
AGCGCCAGCA GGGGCAGGAG GCGCATCCAC AGGGCCATGG CAGAAGGTCG





6101
ACGCTAGCAA GCTTGGGTCT CCCTATAGTG AGTCGTATTA ATTTCGATAA





6151
GCCAGTTAAG CAGTGGGTTC TCTAGTTAGC CAGAGAGCTC TGCTTATATA





6201
GACCTCCCAC CGTACACGCC TACCGCCCAT TTGCGTCAAT GGGGCGGAGT





6251
TGTTACGACA TTTTGGAAAG TCCCGTTGAT TTTGGTGCCA AAACAAACTC





6301
CCATTGACGT CAATGGGGTG GAGACTTGGA AATCCCCGTG AGTCAAACCG





6351
CTATCCACGC CCATTGATGT ACTGCCAAAA CCGCATCACC ATGGTAATAG





6401
CGATGACTAA TACGTAGATG TACTGCCAAG TAGGAAAGTC CCATAAGGTC





6451
ATGTACTGGG CATAATGCCA GGCGGGCCAT TTACCGTCAT TGACGTCAAT





6501
AGGGGGCGTA CTTGGCATAG AT









ITR 5′: 5302-5442 bp


miniCMV promoter: 6109-6519 bp


hIns: 5749-6095 bp


bGH polyA: 5480-5732 bp


RSV promoter: 87-796 bp


hGck: 821-2235 bp


SV40 polyA: 2246-2541 bp


ITR 3′: 2564-2704 bp


R: miniCMV-hIns-SV40enhancer (SEQ ID NO: 28; FIG. 16)












pAAV-miniCMV-hIns-SV40enhancer plasmid sequence
















1
GCTCATGCTC TGGAAGATCT CGATTTAAAT GCGGCCGCAG GAACCCCTAG





51
TGATGGAGTT GGCCACTCCC TCTCTGCGCG CTCGCTCGCT CACTGAGGCC





101
GGGCGACCAA AGGTCGCCCG ACGCCCGGGC TTTGCCCGGG CGGCCTCAGT





151
GAGCGAGCGA GCGCGCAGCT GCCTGCAGGG GCGCCTGATG CGGTATTTTC





201
TCCTTACGCA TCTGTGCGGT ATTTCACACC GCATACGTCA AAGCAACCAT





251
AGTACGCGCC CTGTAGCGGC GCATTAAGCG CGGCGGGTGT GGTGGTTACG





301
CGCAGCGTGA CCGCTACACT TGCCAGCGCC CTAGCGCCCG CTCCTTTCGC





351
TTTCTTCCCT TCCTTTCTCG CCACGTTCGC CGGCTTTCCC CGTCAAGCTC





401
TAAATCGGGG GCTCCCTTTA GGGTTCCGAT TTAGTGCTTT ACGGCACCTC





451
GACCCCAAAA AACTTGATTT GGGTGATGGT TCACGTAGTG GGCCATCGCC





501
CTGATAGACG GTTTTTCGCC CTTTGACGTT GGAGTCCACG TTCTTTAATA





551
GTGGACTCTT GTTCCAAACT GGAACAACAC TCAACCCTAT CTCGGGCTAT





601
TCTTTTGATT TATAAGGGAT TTTGCCGATT TCGGCCTATT GGTTAAAAAA





651
TGAGCTGATT TAACAAAAAT TTAACGCGAA TTTTAACAAA ATATTAACGT





701
TTACAATTTT ATGGTGCACT CTCAGTACAA TCTGCTCTGA TGCCGCATAG





751
TTAAGCCAGC CCCGACACCC GCCAACACCC GCTGACGCGC CCTGACGGGC





801
TTGTCTGCTC CCGGCATCCG CTTACAGACA AGCTGTGACC GTCTCCGGGA





851
GCTGCATGTG TCAGAGGTTT TCACCGTCAT CACCGAAACG CGCGAGACGA





901
AAGGGCCTCG TGATACGCCT ATTTTTATAG GTTAATGTCA TGATAATAAT





951
GGTTTCTTAG ACGTCAGGTG GCACTTTTCG GGGAAATGTG CGCGGAACCC





1001
CTATTTGTTT ATTTTTCTAA ATACATTCAA ATATGTATCC GCTCATGAGA





1051
CAATAACCCT GATAAATGCT TCAATAATAT TGAAAAAGGA AGAGTATGAG





1101
TATTCAACAT TTCCGTGTCG CCCTTATTCC CTTTTTTGCG GCATTTTGCC





1151
TTCCTGTTTT TGCTCACCCA GAAACGCTGG TGAAAGTAAA AGATGCTGAA





1201
GATCAGTTGG GTGCACGAGT GGGTTACATC GAACTGGATC TCAACAGCGG





1251
TAAGATCCTT GAGAGTTTTC GCCCCGAAGA ACGTTTTCCA ATGATGAGCA





1301
CTTTTAAAGT TCTGCTATGT GGCGCGGTAT TATCCCGTAT TGACGCCGGG





1351
CAAGAGCAAC TCGGTCGCCG CATACACTAT TCTCAGAATG ACTTGGTTGA





1401
GTACTCACCA GTCACAGAAA AGCATCTTAC GGATGGCATG ACAGTAAGAG





1451
AATTATGCAG TGCTGCCATA ACCATGAGTG ATAACACTGC GGCCAACTTA





1501
CTTCTGACAA CGATCGGAGG ACCGAAGGAG CTAACCGCTT TTTTGCACAA





1551
CATGGGGGAT CATGTAACTC GCCTTGATCG TTGGGAACCG GAGCTGAATG





1601
AAGCCATACC AAACGACGAG CGTGACACCA CGATGCCTGT AGCAATGGCA





1651
ACAACGTTGC GCAAACTATT AACTGGCGAA CTACTTACTC TAGCTTCCCG





1701
GCAACAATTA ATAGACTGGA TGGAGGCGGA TAAAGTTGCA GGACCACTTC





1751
TGCGCTCGGC CCTTCCGGCT GGCTGGTTTA TTGCTGATAA ATCTGGAGCC





1801
GGTGAGCGTG GGTCTCGCGG TATCATTGCA GCACTGGGGC CAGATGGTAA





1851
GCCCTCCCGT ATCGTAGTTA TCTACACGAC GGGGAGTCAG GCAACTATGG





1901
ATGAACGAAA TAGACAGATC GCTGAGATAG GTGCCTCACT GATTAAGCAT





1951
TGGTAACTGT CAGACCAAGT TTACTCATAT ATACTTTAGA TTGATTTAAA





2001
ACTTCATTTT TAATTTAAAA GGATCTAGGT GAAGATCCTT TTTGATAATC





2051
TCATGACCAA AATCCCTTAA CGTGAGTTTT CGTTCCACTG AGCGTCAGAC





2101
CCCGTAGAAA AGATCAAAGG ATCTTCTTGA GATCCTTTTT TTCTGCGCGT





2151
AATCTGCTGC TTGCAAACAA AAAAACCACC GCTACCAGCG GTGGTTTGTT





2201
TGCCGGATCA AGAGCTACCA ACTCTTTTTC CGAAGGTAAC TGGCTTCAGC





2251
AGAGCGCAGA TACCAAATAC TGTCCTTCTA GTGTAGCCGT AGTTAGGCCA





2301
CCACTTCAAG AACTCTGTAG CACCGCCTAC ATACCTCGCT CTGCTAATCC





2351
TGTTACCAGT GGCTGCTGCC AGTGGCGATA AGTCGTGTCT TACCGGGTTG





2401
GACTCAAGAC GATAGTTACC GGATAAGGCG CAGCGGTCGG GCTGAACGGG





2451
GGGTTCGTGC ACACAGCCCA GCTTGGAGCG AACGACCTAC ACCGAACTGA





2501
GATACCTACA GCGTGAGCTA TGAGAAAGCG CCACGCTTCC CGAAGGGAGA





2551
AAGGCGGACA GGTATCCGGT AAGCGGCAGG GTCGGAACAG GAGAGCGCAC





2601
GAGGGAGCTT CCAGGGGGAA ACGCCTGGTA TCTTTATAGT CCTGTCGGGT





2651
TTCGCCACCT CTGACTTGAG CGTCGATTTT TGTGATGCTC GTCAGGGGGG





2701
CGGAGCCTAT GGAAAAACGC CAGCAACGCG GCCTTTTTAC GGTTCCTGGC





2751
CTTTTGCTGG CCTTTTGCTC ACATGTCCTG CAGGCAGCTG CGCGCTCGCT





2801
CGCTCACTGA GGCCGCCCGG GCAAAGCCCG GGCGTCGGGC GACCTTTGGT





2851
CGCCCGGCCT CAGTGAGCGA GCGAGCGCGC AGAGAGGGAG TGGCCAACTC





2901
CATCACTAGG GGTTCCTGCG GCCGCGATAT CTATGCCAAG TACGCCCCCT





2951
ATTGACGTCA ATGACGGTAA ATGGCCCGCC TGGCATTATG CCCAGTACAT





3001
GACCTTATGG GACTTTCCTA CTTGGCAGTA CATCTACGTA TTAGTCATCG





3051
CTATTACCAT GGTGATGCGG TTTTGGCAGT ACATCAATGG GCGTGGATAG





3101
CGGTTTGACT CACGGGGATT TCCAAGTCTC CACCCCATTG ACGTCAATGG





3151
GAGTTTGTTT TGGCACCAAA ATCAACGGGA CTTTCCAAAA TGTCGTAACA





3201
ACTCCGCCCC ATTGACGCAA ATGGGCGGTA GGCGTGTACG GTGGGAGGTC





3251
TATATAAGCA GAGCTCTCTG GCTAACTAGA GAACCCACTG CTTAACTGGC





3301
TTATCGAAAT TAATACGACT CACTATAGGG AGACCCAAGC TTGCTAGCGT





3351
CGACCTTCTG CCATGGCCCT GTGGATGCGC CTCCTGCCCC TGCTGGCGCT





3401
GCTGGCCCTC TGGGGACCTG ACCCAGCCGC AGCCTTTGTG AACCAACACC





3451
TGTGCGGCTC AGATCTGGTG GAAGCTCTCT ACCTAGTGTG CGGGGAACGA





3501
GGCTTCTTCT ACACACCCAG GACCAAGCGG GAGGCAGAGG ACCTGCAGGT





3551
GGGGCAGGTG GAGCTGGGCG GGGGCCCTGG TGCAGGCAGC CTGCAGCCCT





3601
TGGCCCTGGA GGGGTCGCGA CAGAAGCGTG GCATTGTGGA ACAATGCTGT





3651
ACCAGCATCT GCTCCCTCTA CCAGCTGGAG AACTACTGCA ACTAGACGCA





3701
GCCGTCGACG GTACCAGCGC TGAGTCGGGG CGGCCGGCCG CTTCGAGCAG





3751
ACATGATAAG ATACATTGAT GAGTTTGGAC AAACCACAAC TAGAATGCAG





3801
TGAAAAAAAT GCTTTATTTG TGAAATTTGT GATGCTATTG CTTTATTTGT





3851
AACCATTATA AGCTGCAATA AACAAGTTAA CAACAACAAT TGCATTCATT





3901
TTATGTTTCA GGTTCAGGGG GAGGTGTGGG AGGTTTTTTA AAGCAAGTAA





3951
AACCTCTACA AATTTGGTAA AATCGATAAG GATCTGAACG ATGGAGCGGA





4001
GAATGGGCGG AACTGGGCGG AGTTAGGGGC GGGATGGGCG GAGTTAGGGG





4051
CGGGACTATG GTTGCTGACT AATTGAGATG CATGCTTTGC ATACTTCTGC





4101
CTGCTGGGGA GCCTGGGGAC TTTCCACACC TGGTTGCTGA CTAATTGAGA





4151
TGCATGCTTT GCATACTTCT GCCTGCTGGG GAGCCTGGGG ACTTTCCACA





4201
CCCTAACTGA CACACATTCC ACAGCGGCAA ATTTGAGC









ITR 5′: 2777-2917 bp


miniCMV promoter: 2932-3342 bp


hIns: 3356-3702 bp


SV40 enhancer and SV40 polyA: 3719-4238 bp


ITR 3′: 39-179 bp


S: miniCMV-hIns-SV40enhancer(rev)-RSV-hGck-bGH (SEQ ID NO: 29; FIG. 16)


pAAV-miniCMV-hIns-SV40enhancer(rev)-RSV-hGck-bGH Plasmid Sequence


ITR 5′: 5256-5396 bp


miniCMV promoter: 6330-6740 bp


hIns: 5970-6316 bp


SV40 enhancer and SV40 polyA: 5434-5953 bp


RSV promoter: 87-796 bp


hGck: 821-2235 bp


bGH polyA: 2243-2501 bp


ITR 3′: 2518-2658 bp











1
ATCCATGTTT GACAGCTTAT CATCGCAGAT CCGTATGGTG CACTCTCAGT






51
ACAATCTGCT CTGATGCCGC ATAGTTAAGC CAGTATCTGC TCCCTGCTTG





101
TGTGTTGGAG GTCGCTGAGT AGTGCGCGAG CAAAATTTAA GCTACAACAA





151
GGCAAGGCTT GACCGACAAT TGCATGAAGA ATCTGCTTAG GGTTAGGCGT





201
TTTGCGCTGC TTCGCGATGT ACGGGCCAGA TATTCGCGTA TCTGAGGGGA





251
CTAGGGTGTG TTTAGGCGAA AAGCGGGGCT TCGGTTGTAC GCGGTTAGGA





301
GTCCCCTCAG GATATAGTAG TTTCGCTTTT GCATAGGGAG GGGGAAATGT





351
AGTCTTATGC AATACTCTTG TAGTCTTGCA ACATGGTAAC GATGAGTTAG





401
CAACATGCCT TACAAGGAGA GAAAAAGCAC CGTGCATGCC GATTGGTGGA





451
AGTAAGGTGG TACGATCGTG CCTTATTAGG AAGGCAACAG ACGGGTCTGA





501
CATGGATTGG ACGAACCACT AAATTCCGCA TTGCAGAGAT ATTGTATTTA





551
AGTGCCTAGC TCGATACAAT AAACGCCATT TGACCATTCA CCACATTGGT





601
GTGCACCTCC AAGCTGGGTA CCAGCTTCTA GAGAGATCTG CTTCAGCTGG





651
AGGCACTGGG CAGGTAAGTA TCAAGGTTAC AAGACAGGTT TAAGGAGACC





701
AATAGAAACT GGGCTTGTCG AGACAGAGAA GACTCTTGCG TTTCTGATAG





751
GCACCTATTG GTCTTACTGA CATCCACTTT GCCTTTCTCT CCACAGGTGC





801
AGCTGCTGCA GCGGTCTAGA ACTCGAGTCG AGACCATGGC GATGGATGTC





851
ACAAGGAGCC AGGCCCAGAC AGCCTTGACT CTGGTAGAGC AGATCCTGGC





901
AGAGTTCCAG CTGCAGGAGG AGGACCTGAA GAAGGTGATG AGACGGATGC





951
AGAAGGAGAT GGACCGCGGC CTGAGGCTGG AGACCCATGA AGAGGCCAGT





1001
GTGAAGATGC TGCCCACCTA CGTGCGCTCC ACCCCAGAAG GCTCAGAAGT





1051
CGGGGACTTC CTCTCCCTGG ACCTGGGTGG CACTAACTTC AGGGTGATGC





1101
TGGTGAAGGT GGGAGAAGGT GAGGAGGGGC AGTGGAGCGT GAAGACCAAA





1151
CACCAGATGT ACTCCATCCC CGAGGACGCC ATGACCGGCA CTGCTGAGAT





1201
GCTCTTCGAC TACATCTCTG AGTOCATCTC CGACTTCCTG GACAAGCATC





1251
AGATGAAACA CAAGAAGCTG CCCCTGGGCT TCACCTTCTC CTTTCCTGTG





1301
AGGCACGAAG ACATCGATAA GGGCATCCTT CTCAACTGGA CCAAGGGCTT





1351
CAAGGCCTCA GGAGCAGAAG GGAACAATGT CGTGGGGCTT CTGCGAGACG





1401
CTATCAAACG GAGAGGGGAC TTTGAAATGG ATGTGGTGGC AATGGTGAAT





1451
GACACGGTGG CCACGATGAT CTCCTGCTAC TACGAAGACC ATCAGTGCGA





1501
GGTCGGCATG ATCGTGGGCA CGGGCTGCAA TGCCTGCTAC ATGGAGGAGA





1551
TGCAGAATGT GGAGCTGGTG GAGGGGGACG AGGGCCGCAT GTGCGTCAAT





1601
ACCGAGTGGG GCGCCTTCGG GGACTCCGGC GAGCTGGACG AGTTCCTGCT





1651
GGAGTATGAC CGCCTGGTGG ACGAGAGCTC TGCAAACCCC GGTCAGCAGC





1701
TGTATGAGAA GCTCAMAGGT GGCAAGTACA TGGGCGAGCT GGTGCGGCTT





1751
GTGCTGCTCA GGCTCGTGGA CGAAAACCTG CTCTTCCACG GGGAGGCCTC





1801
CGAGCAGCTG CGCACACGCG GAGCCTTCGA GACGCGCTTC GTGTCGCAGG





1851
TGGAGAGCGA CACGGGCGAC CGCAAGCAGA TCTACAACAT CQTGAGCACG





1901
CTGGGGCTGC GACCCTCGAC CACCGACTGC GACATCGTGC GCCGCGCCTG





1951
CGAGAGCGTG TCTACGCGCG CTGCGCACAT GTGCTCGGCG GGGCTGGCGG





2001
GCGTCATCAA CCGCATGCGC GAGAGCCGCA GCGAGGACGT AATGCGCATC





2051
ACTGTGGGCG TGGATGGCTC CGTGTACAAG CTGCACCCCA GCTTCAAGGA





2101
GCGGTTCCAT GCCAGCGTGC GCAGGCTGAC GCCCAGCTGC GAGATCACCT





2151
TCATCGAGTC GGAGGAGGGC AGTGGCCGGG GCGCGGCCCT GGTCTCGGCG





2201
GTGGCCTGTA AGAAGGCCTG TATGCTGGGC CAGTGACTCG AGCACGTGGA





2251
GCTCGCTGAT CAOCCTCGAC TGTGCCTTCT AGTTGCCAGC CATCTGTTGT





2301
TTGCCCCTCC CCCGTGCCTT CCTTGACCCT GGAAGOTGCC ACTCCCACTG





2351
TCCTTTCCTA ATAAAATGAG GAAATTGCAT CGCATTGTCT GAGTAGGTGT





2401
CATTCTATTC TGGGGGGTGG GGTGGGGCAG GACAGCAAGG GGGAGGATTG





2451
GGAAGACAAT AGCAGGCATG CTGGGGATGC GGTGGGCTCT ATGGCCACGT





2501
GATTTAAATG CGGCCGCAGG AACCCCTAGT GATGGAGTTG GCCACTCCCT





2551
CTCTGCGCGC TCGCTCGCTC ACTGAGGCCG GGCGACCAAA GGTCGCCCGA





2601
CGCCCGGGCT TTGCCCGGGC GGCCTCAGTG AGCGAGCGAG CGCGCAGCTG





2651
CCTGCAGGGG CGCCTGATGC GGTATTTTCT CCTTACGCAT CTGTGCGGTA





2701
TTTCACACCG CATACGTCAA AGCAACCATA GTACGCGCCC TGTAGCGGCG





2751
CATTAAGCGC GGCGGGTGTG GTGGTTACGC GCAGCGTGAC CGCTACACTT





2801
GCCAGCGCCC TAGCGCCCGC TCCTTTCGCT TTCTTCCCTT CCTTTCTCGC





2851
CACGTTCGCC GGCTTTCCCC GTCAAGCTCT AAATCGGGGG CTCCCTTTAG





2901
GGTTCCGATT TAGTGCTTTA CGGCACCTCG ACCCCAAAAA ACTTGATTTG





2951
GGTGATGGTT CACGTAGTGG GCCATCGCCC TGATAGACGG TTTTTCGCCC





3001
TTTGACGTTG GAGTCCACGT TCTTTAATAG TGGACTCTTG TTCCAAACTG





3051
GAACAACACT CAACCCTATC TCGGGCTATT CTTTTGATTT ATAAGGGATT





3101
TTGCCGATTT CGGCCTATTG GTTAAAAAAT GAGCTGATTT AACAAAAATT





3151
TAACGCGAAT TTTAACAAAA TATTAACGTT TACAATTTTA TGGTGCACTC





3201
TCAGTACAAT CTGCTCTGAT GCCGCATAGT TAAGCCAGCC CCGACACCCG





3251
CCAACACCCG CTGACGCGCC CTGACGGGCT TGTCTGCTCC CGGCATCCGC





3301
TTACAGACAA GCTGTGACCG TCTCCGGGAG CTGCATGTGT CAGAGGTTTT





3351
CACCGTCATC ACCGAAACGC GCGAGACGAA AGGGCCTCGT GATACGCCTA





3401
TTTTTATAGG TTAATGTCAT GATAATAATG GTTTCTTAGA CGTCAGGTGG





3451
CACTTTTCGG GGAAATGTGC GCGGAACCCC TATTTGTTTA TTTTTCTAAA





3501
TACATTCAAA TATGTATCCG CTCATGAGAC AATAACCCTG ATAAATGCTT





3551
CAATAATATT GAAAAAGGAA GAGTATGAGT ATTCAACATT TCCGTGTCGC





3601
CCTTATTCCC TTTTTTGCGG CATTTTGCCT TCCTGTTTTT GCTCACCCAG





3651
AAACGCTGGT GAAAGTAAAA GATGCTGAAG ATCAGTTGGG TGCACGAGTG





3701
GGTTACATCG AACTGGATCT CAACAGCGGT AAGATCCTTG AGAGTTTTCG





3751
CCCCGAAGAA CGTTTTCCAA TGATGAGCAC TTTTAAAGTT CTGCTATGTG





3801
GCGCGGTATT ATCCCGTATT GACGCCGGGC AAGAGCAACT CGGTCGCCGC





3851
ATACACTATT CTCAGAATGA CTTGGTTGAG TACTCACCAG TCACAGAAAA





3901
GCATCTTACG GATGGCATGA CAGTAAGAGA ATTATGCAGT GCTGCCATAA





3951
CCATGAGTGA TAACACTGCG GCCAACTTAC TTCTGACAAC GATCGGAGGA





4001
CCGAAGGAGC TAACCGCTTT TTTGCACAAC ATGGGGGATC ATGTAACTCG





4051
CCTTGATCGT TGGGAACCGG AGCTGAATGA AGCCATACCA AACGACGAGC





4101
GTGACACCAC GATGCCTGTA GCAATGGCAA CAACGTTGCG CAAACTATTA





4151
ACTGGCGAAC TACTTACTCT AGCTTCCCGG CAACAATTAA TAGACTGGAT





4201
GGAGGCGGAT AAAGTTGCAG GACCACTTCT GCGCTCGGCC CTTCCGGCTG





4251
GCTGGTTTAT TGCTGATAAA TCTGGAGCCG GTGAGCGTGG GTCTCGCGGT





4301
ATCATTGCAG CACTGGGGCC AGATGGTAAG CCCTCCCGTA TCGTAGTTAT





4351
CTACACGACG GGGAGTCAGG CAACTATGGA TGAACGAAAT AGACAGATCG





4401
CTGAGATAGG TGCCTCACTG ATTAAGCATT GGTAACTGTC AGACCAAGTT





4451
TACTCATATA TACTTTAGAT TGATTTAAAA CTTCATTTTT AATTTAAAAG





4501
GATCTAGGTG AAGATCCTTT TTGATAATCT CATGACCAAA ATCCCTTAAC





4551
GTGAGTTTTC GTTCCACTGA GCGTCAGACC CCGTAGAAAA GATCAAAGGA





4601
TCTTCTTGAG ATCCTTTTTT TCTGCGCGTA ATCTGCTGCT TGCAAACAAA





4651
AAAACCACCG CTACCAGCGG TGGTTTGTTT GCCGGATCAA GAGCTACCAA





4701
CTCTTTTTCC GAAGGTAACT GGCTTCAGCA GAGCGCAGAT ACCAAATACT





4751
GTCCTTCTAG TGTAGCCGTA GTTAGGCCAC CACTTCAAGA ACTCTGTAGC





4801
ACCGCCTACA TACCTCGCTC TGCTAATCCT GTTACCAGTG GCTGCTGCCA





4851
GTGGCGATAA GTCGTGTCTT ACCGGGTTGG ACTCAAGACG ATAGTTACCG





4901
GATAAGGCGC AGCGGTCGGG CTGAACGGGG GGTTCGTGCA CACAGCCCAG





4951
CTTGGAGCGA ACGACCTACA CCGAACTGAG ATACCTACAG CGTGAGCTAT





5001
GAGAAAGCGC CACGCTTCCC GAAGGGAGAA AGGCGGACAG GTATCCGGTA





5051
AGCGGCAGGG TCGGAACAGG AGAGCGCACG AGGGAGCTTC CAGGGGGAAA





5101
CGCCTGGTAT CTTTATAGTC CTGTCGGGTT TCGCCACCTC TGACTTGAGC





5151
GTCGATTTTT GTGATGCTCG TCAGGGGGGC GGAGCCTATG GAAAAACGCC





5201
AGCAACGCGG CCTTTTTACG GTTCCTGGCC TTTTGCTGGC CTTTTGCTCA





5251
CATGTCCTGC AGGCAGCTGC GCGCTCGCTC GCTCACTGAG GCCGCCCGGG





5301
CAAAGCCCGG GCGTCGGGCG ACCTTTGGTC GCCCGGCCTC AGTGAGCGAG





5351
CGAGCGCGCA GAGAGGGAGT GGCCAACTCC ATCACTAGGG GTTCCTGCGG





5401
CCGCGATAAA TCGAGATCTT CCAGAGCATG AGCGCTCAAA TTTGCCGCTG





5451
TGGAATGTGT GTCAGTTAGG GTGTGGAAAG TCCCCAGGCT CCCCAGCAGG





5501
CAGAAGTATG CAAAGCATGC ATCTCAATTA GTCAGCAACC AGGTGTGGAA





5551
AGTCCCCAGG CTCCCCAGCA GGCAGAAGTA TGCAAAGCAT GCATCTCAAT





5601
TAGTCAGCAA CCATAGTCCC GCCCCTAACT CCGCCCATCC CGCCCCTAAC





5651
TCCGCCCAGT TCCGCCCATT CTCCGCTCCA TCGTTCAGAT CCTTATCGAT





5701
TTTACCAAAT TTGTAGAGGT TTTACTTGCT TTAAAAAACC TCCCACACCT





5751
CCCCCTGAAC CTGAAACATA AAATGAATGC AATTGTTGTT GTTAACTTGT





5801
TTATTGCAGC TTATAATGGT TACAAATAAA GCAATAGCAT CACAAATTTC





5861
ACAAATAAAG CATTTTTTTC ACTGCATTCT AGTTGTGGTT TGTCCAAACT





5901
CATCAATGTA TCTTATCATG TCTGCTCGAA GCGGCCGGCC GCCCCGACTC





5951
AGCGCTGGTA CCGTCGACGG CTGCGTCTAG TTGCAGTAGT TCTCCAGCTG





6001
GTAGAGGGAG CAGATGCTGG TACAGCATTG TTCCACAATG CCACGCTTCT





6051
GTCGCGACCC CTCCAGGGCC AAGGGCTGCA GGCTGCCTGC ACCAGGGCCC





6101
CCGCCCAGCT CCACCTGCCC CACCTGCAGG TCCTCTGCCT CCCGCTTGGT





6151
CCTGGGTGTG TAGAAGAAGC CTCGTTCCCC GCACACTAGG TAGAGAGCTT





6201
CCACCAGATC TGAGCCGCAC AGGTGTTGGT TCACAAAGGC TGCGGCTGGG





6251
TCAGGTCCCC AGAGGGCCAG CAGCGCCAGC AGGGGCAGGA GGCGCATCCA





6301
CAGGGCCATG GCAGAAGGTC GACGCTAGCA AGCTTGGGTC TCCCTATAGT





6351
GAGTCGTATT AATTTCGATA AGCCAGTTAA GCAGTGGGTT CTCTAGTTAG





6401
CCAGAGAGCT CTGCTTATAT AGACCTCCCA CCGTACACGC CTACCGCCCA





6451
TTTGCGTCAA TGGGGCGGAG TTGTTACGAC ATTTTGGAAA GTCCCGTTGA





6501
TTTTGGTGCC AAAACAAACT CCCATTGACG TCAATGGGGT GGAGACTTGG





6551
AAATCCCCGT GAGTCAAACC GCTATCCACG CCCATTGATG TACTGCCAAA





6601
ACCGCATCAC CATGGTAATA GCGATGACTA ATACGTAGAT GTACTGCCAA





6651
GTAGGAAAGT CCCATAAGGT CATGTACTGG GCATAATGCC AGGCGGGCCA





6701
TTTACCGTCA TTGACGTCAA TAGGGGGCGT ACTTGGCATA GAT








Claims
  • 1. A viral expression construct comprising the following elements: a) a nucleotide sequence at least 80% identical to the sequence set forth as SEQ ID NO:1 encoding an insulin, operably linked to a cytomegalovirus (CMV) promoter,b) a nucleotide sequence at least 80% identical to the sequence set forth as SEQ ID NO:2 encoding a glucokinase, operably linked to a Rous Sarcoma Virus (RSV) promoter,c) elements selected from any one of: i) a SV40 polyadenylation signal or a SV40 polyadenylation signal and enhancer sequence at the 3′ of the nucleotide sequence encoding an insulin, and a bovine growth hormone (bGH) polyadenylation signal at the 3′ of the nucleotide sequence encoding a glucokinase; orii) a bGH polyadenylation signal at the 3′ of the nucleotide sequence encoding an insulin, and a SV40 polyadenylation signal or a SV40 polyadenylation signal and enhancer sequence at the 3′ of the nucleotide sequence encoding a glucokinase,d) the CMV promoter and the RSV promoter are positioned in reverse orientation within the expression construct and are located adjacent to each other, ande) inverted terminal repeats (ITRs) flanking the expression cassette formed by elements a) to d), wherein the construct comprises a nucleotide sequence having at least 95% identity with the viral expression construct sequence of SEQ ID NO: 11, 15, 27 or 29.
  • 2. A viral vector comprising the viral expression construct as defined in claim 1, wherein said viral vector is a recombinant adeno-associated virus vector.
  • 3. A composition comprising the viral expression construct according to claim 1 or the viral vector according to claim 2.
  • 4. The composition according to claim 3, wherein the composition is a pharmaceutical composition.
  • 5. The viral vector according to claim 2, which is an AAV1 vector.
Priority Claims (1)
Number Date Country Kind
15150376 Jan 2015 EP regional
PCT Information
Filing Document Filing Date Country Kind
PCT/EP2016/050147 1/7/2016 WO 00
Publishing Document Publishing Date Country Kind
WO2016/110518 7/14/2016 WO A
US Referenced Citations (70)
Number Name Date Kind
5139941 Muzyczka et al. Aug 1992 A
5436146 Shenk et al. Jul 1995 A
5446143 Simpson et al. Aug 1995 A
5464758 Gossen et al. Nov 1995 A
5478745 Samulski et al. Dec 1995 A
5741683 Zhou et al. Apr 1998 A
5858351 Podsakoff et al. Jan 1999 A
5891717 Newgard Apr 1999 A
6001650 Colosi Dec 1999 A
6057152 Samulski et al. May 2000 A
6136597 Hope et al. Oct 2000 A
6156303 Russell et al. Dec 2000 A
6165782 Naldini et al. Dec 2000 A
6204059 Samulski et al. Mar 2001 B1
6207455 Chang Mar 2001 B1
6211163 Podsakoff et al. Apr 2001 B1
6218181 Verma et al. Apr 2001 B1
6258595 Gao et al. Jul 2001 B1
6268213 Samulski et al. Jul 2001 B1
6277633 Olsen Aug 2001 B1
6323031 Cichutek Nov 2001 B1
6325998 Podsakoff et al. Dec 2001 B1
6358732 Sedlacek et al. Mar 2002 B1
6391858 Podsakoff et al. May 2002 B2
6432705 Yee et al. Aug 2002 B1
6491907 Rabinowitz et al. Dec 2002 B1
6531456 Kurtzman et al. Mar 2003 B1
6596535 Carter Jul 2003 B1
6642051 Lynch et al. Nov 2003 B1
6660514 Zolotukhin et al. Dec 2003 B1
6893867 Webster May 2005 B1
6951753 Shenk et al. Oct 2005 B2
7056202 Pein Jun 2006 B2
7056502 Hildinger et al. Jun 2006 B2
7091029 Hwang Aug 2006 B2
7094604 Snyder et al. Aug 2006 B2
7125717 Carter Oct 2006 B2
7172893 Rabinowitz et al. Feb 2007 B2
7198951 Gao et al. Apr 2007 B2
7201898 Monahan et al. Apr 2007 B2
7220577 Zolotukhin May 2007 B2
7229823 Samulski et al. Jun 2007 B2
7235393 Gao et al. Jun 2007 B2
7238674 Podsakoff et al. Jul 2007 B2
7250406 Tang et al. Jul 2007 B2
7282199 Gao et al. Oct 2007 B2
7319002 Wilson et al. Jan 2008 B2
7425443 Alam et al. Sep 2008 B2
7439065 Ferrari et al. Oct 2008 B2
7456683 Takano et al. Nov 2008 B2
7790449 Gao et al. Sep 2010 B2
8556842 Bridges et al. Oct 2013 B2
8865881 Balazs et al. Oct 2014 B2
9309534 Bosch Tubert et al. Apr 2016 B2
9365829 Simpson Jun 2016 B2
9527904 Balazs et al. Dec 2016 B2
9732329 Simpson et al. Aug 2017 B2
10426845 Nathwani et al. Oct 2019 B2
20020065239 Caplan et al. May 2002 A1
20030138772 Gao et al. Jul 2003 A1
20030148506 Kotin et al. Aug 2003 A1
20030219409 Coffin et al. Nov 2003 A1
20040055023 Bosch Tubert et al. Mar 2004 A1
20050187154 Kahn et al. Aug 2005 A1
20080075740 Gao et al. Mar 2008 A1
20100216709 Scheule et al. Aug 2010 A1
20100240029 Guarente et al. Sep 2010 A1
20110166210 Felber et al. Jul 2011 A1
20120040401 Ellis Feb 2012 A1
20140194352 Ling et al. Jul 2014 A1
Foreign Referenced Citations (42)
Number Date Country
2394667 Dec 2011 EP
2492347 Aug 2012 EP
2692868 Feb 2014 EP
3101125 Dec 2016 EP
1998009524 Mar 1998 WO
1998011244 Mar 1998 WO
WO-199832869 Jul 1998 WO
1999061601 Dec 1999 WO
2000028004 May 2000 WO
2000028061 May 2000 WO
2010010887 Jan 2001 WO
2001083692 Nov 2001 WO
2001094605 Dec 2001 WO
2002024234 Mar 2002 WO
2002049423 Jun 2002 WO
WO-200249423 Jun 2002 WO
2003042397 May 2003 WO
2003052051 Jun 2003 WO
2003052052 Jun 2003 WO
2005033321 Apr 2005 WO
WO-2006110689 Oct 2006 WO
WO-2008027084 Mar 2008 WO
2008071959 Jun 2008 WO
WO-2009151172 Dec 2009 WO
WO 2009151172 Dec 2009 WO
WO-2011004051 Jan 2011 WO
WO2011154520 Dec 2011 WO
2012007458 Jan 2012 WO
2012007458 Jan 2012 WO
2013033452 Mar 2013 WO
2014020149 Feb 2014 WO
WO-2014020149 Feb 2014 WO
2015044292 Apr 2015 WO
2015060722 Apr 2015 WO
2015173308 May 2015 WO
WO2015173308 Nov 2015 WO
2016041588 Mar 2016 WO
2016087678 Jun 2016 WO
2016110518 Jul 2016 WO
WO2016193431 Dec 2016 WO
WO2018060097 Apr 2018 WO
WO-2018060097 Apr 2018 WO
Non-Patent Literature Citations (103)
Entry
Li et al. A small regulatory elemnt from chromosome 19 enhances liver-specific gene expression. Gene Therapy 16:43-51, 2009.
Zarrin et al. Comparison of CMV, RSV, SV40 viral and Vlambda1 cellular promoters in B and T lymphoid and non-lymphoid cell lines. Biochimica et Biophysica Acta 1446:135-139, (Year: 1999).
Boulos et al. Assessment of CMV, RSV and SYN1 promoters and the woodchuck post-transcriptional regulatory element in adenovirus vectors for transgene expression in cortical neuronal cultures. Brain Research 1102:27-38, (Year: 2006).
Liu et al. Promoter effects of adeno-associated viral vector for transgene expression in the cochlea in vivo. Experimental and Molecular Medicine 39:170-175, (Year: 2007).
Tian J et al. Independent and high-level dual-gene expression in adult stem-progenitor cells from a single lentiviral vector. Gene Therapy 16:874-884, (Year: 2009).
Fagoe ND et al. A compact dual promoter adeno-assoicated viral vector for efficient delivery of two genes to dorsal root ganglion neurons. Gene Therapy 21:242-252, (Year: 2014).
Callejas, D., et al., “Treatment of Diabetes and Long-Term Survival After Insulin and Glucokinase Gene Therapy,” Diabetes, vol. 62, No. 5, pp. 1718-1729 (May 1, 2013).
Tae Keun Oh, et al., “Gene Therapy for Diabetes Mellitus in Rats by Intramuscular Injection of Lentivirus Containing Insulin Gene,” Diabetes Research and Clinical Practice, vol. 71, No. 3, pp. 233-240 (Mar. 1, 2006).
Kamata, K., et al., “Structural Basis for Allosteric Regulation of the Monomeric Allosteric Enzyme Human Glucokinase,” Structure, vol. 12, pp. 429-438 (Mar. 2004).
Smith, G. David., et al., “The Structure of T6 Human Insulin at 1.0 A Resolution,” Acta Crystallographica Section D, Biological Crystallography, Research Papers, D59, pp. 474-482 (2003).
Monahan P et al, AAV vectors: is clinical success on the horizon?, Gene Therapy, vol. 7, pp. 24-30, Jan. 17, 2000.
Chao et al, Several log increase in therapeutic transgene delivery by distinct adeno-associated viral serotype vectors. Molecular Therapy vol. 2(6):619-623, 2000.
Ahi et al, Adenoviral Vector Immunity: Its implications and circumvention strategies. Curr. Gene Ther. vol. 11(4), pp. 307-320, 08.2011.
Azzoni AR, The impact of polyadenylation signals on plasmid nuclease-resistance and transgene expression. J Gene Med, vol. 9(5), pp. 392-402, 2007.
Ai-Dossari Mohammad et al, Evaluation of viral and mammalian promoters for driving transgene expression in mouse liver. Biochemical and Biophysical Research Communications vol. 339(2), pp. 673-678, Jan. 13, 2006.
Alexopoulou et al, The CMV earlyenhancer/chicken beta actin (CAG) promoter can be used to drive transgene expressionduring the differentiation of murine embryonic stem cells into vascular progenitors. Bmc Cell Biol. vol. 9(2), pp., Jan. 11, 2008.
Bish L, et aL, Adeno-Associated Virus (AAV) Serotype 9 Provides Global Cardiac Gene Transfer Superior to AAV1, AAV6, AAV7, and AAV8 in the Mouse and Rat. Hum. Gene Ther. vol. 19(12), pp. 1359-1368, 2008.
Boshart M, et al., Cell, 1985, A very strong enhancer is located upstream of an immediate early gene of human aytomegalovirus, vol. 41, pp. 521-530, Jun. 1, 1985.
Boulos et al, Assessment of CMV, RSV and SYN1 promoters and the woodchuck post-transcriptional regulatory element in adenovirus vectors for transgene expression in cortical neuronal cultures. Brain Research vol. 1102, pp. 27-38, 2006.
Callejas et al, Gene Therapy for Type I Diabetes by Engineering Skeletal Muscle to Express Insulin and Glucokinase (GK): Pre-clinical studies in Diabetic Dogs. Poster presentation, 2007.
Callejas et al, Gene Therapy for Type I Diabetes by Engineering Skeletal Muscle to Express Insulin and Glucokinase (GK): Pre-clinical studies in Diabetic Dogs. Poster presentation, 2008.
Carter and Samulski, Adeno-associated viral vectors as gene delivery vehicles. Int. J. Mol. Med. vol. 6, pp. 17-27, 2000.
Chiorini et al., Cloning and characterization of adeno-associated virus type 5., J . of Virology, vol. 73(2), pp. 1309-1319, Feb. 1, 1999.
Croyle M, et al., Development of Novel Formulations That Enhance Adenoviral-Mediated Gene Expression in the Lung in Vitro and in Vivo. Mol. Ther. vol. 4, pp. 22-28, 2001.
Donello J, et al., Woodchuck hepatitis virus contains a tripartite posttranscriptional regulatory element, J. Virol. 1998, vol. 72(6), pp. 5085-5092 ,Jun. 1998.
F-L Zhang et al, Celastrol enhances AAV1-mediated gene expression in mice adipose tissues. Gene Therapy vol. 18 (2), pp. 128-134, Jan. 2, 2011.
Gao et al, Clades of Adeno-associated viruses are widely disseminated in human tissues. J. Virol. vol. 78, pp. 3381-6388, 2004.
Gao et al, Novel adeno-associated viruses from rhesus monkeys as vectors for human gene therapy. PNAS vol. 99, pp. 11854-11859, 2002.
Jimenez et al, in vivo genetic engineering of murine pancreatic beta cells mediated by single-stranded adeno-associated viral vectors of serotypes 6, 8 and 9. Diabetologia ; Clinical and Experimental, Diabetes and Metabolism, Springer, Berlin, DE, vol. 54(5), pp. 1075-1086, Nov. 2, 2011.
Kapturczak et al., Transduction of Human and Mouse Pancreatic Islet Cells Using a Bicistronic Recombinant Adeno-associated Viral Vector. Molecular Therapy vol. 5(2), pp. 154-160, Feb. 2002.
Kitajima et al, Persistent liver expression of murine apoA-I using vectors based on adeno-associated viral vectors serotypes 5 and 1. Atherosclerosis vol. 186, pp. 65-73, 2006.
Larose M, et al., Essential cis-Acting Elements in Rat Uncoupling Protein Gene Are in an Enhancer Containing a complex Retinoic Acid Response Domain. J. Biol. Chem. 1996; 271(49):31533-31542, 1996.
Lebherz C, et al.,Novel Aav serotypes for improved ocular gene transfer. J. Gene Med. vol. 10, pp. 375-382, 2008.
Lee et al, Optimizing regulatable gene expression using adenoviral vectors. Experimental Physiology vol. 90, pp. 33-37, 2004.
Li et al, a small regulatory element from chromosome 19 enhances liver-specific gene expression. Gene Therapy 16, pp. 43-51, 2009.
Liu et al, Promoter effects of adeno-associated viral vector for transgene expression in the cochlea in vivo. Experimental and Molecular Medicine vol. 39, pp. 170-75, 2007.
Lock et al, Characterization of a recombinant adeno-associated virus type 2 Reference Standard Material. Hum. Gene Ther. vol. 21, pp. 1273-1285, 2010.
Loiler et al, Localized gene expression following administration of adeno-associated viral vectors via pancreatic lucts. Mot Ther. vol. 12, pp. 519-527, 2005.
Moris et al, Two novel adeno-associated viruses from cynomolgus monkey: pseudotyping characterization of capsid protein. Virology vol. 330, pp. 375-383, 2004.
Nakai H, et al., Unrestricted Hepatocyte Transduction with Adeno-Associated VirusSerotype 8 Vectors in Mice. J. Virol. vol. 79, pp. 214-224, 2005.
Okada T et al, Scalable purification of adeno-associated virus serotype 1 (AAV1) and AAV8 vectors, using dual ion-exchange adsorptive membranes., Hum. Gene Ther., vol. 20, pp. :1013-1021, Aug. 5, 2009.
Otaegui et al, Prevention of obesity and insulin resistance by glucokinase expression in skeletal muscle of transgenic mice. The FASEB Journal express article. Online 10.1096M.03-0081fje,18.09.2003.
Pacak C, et al.,Recombinant Adeno-Associated Virus Serotype 9 Leads to Preferential Cardiac Transduction in Vivo. Circ. Res. vol. 99:e3-e9, 2006.
Qiao C et al, Liver-specific microRNA-122 target sequences incorporated in AAV vectors efficiently inhibits transgene expression in the liver, Gene Therapy vol. 18(4), pp. 403-410, Jan. 4, 2011.
Rabinowitz J et al, Cross-Packaging of a Single Adeno-Associated Virus (AAV) Type 2 Vector Genome into Multiple AAV Serotypes Enables Transduction with Broad Specificity, vol. 76(2), pp. 791-801, Jan. 2002.
Rehman et al, Efficient gene delivery to human and rodent islets with doublestranded (ds) AAV-based vectors. Gene Therapy, vol. 12(17), pp. 1313-23, 2005.
Smith T.J, Insulin-like growth factor-I regulation of immune function: a potential therapeutic target in autoimmune Diseases? Pharmacol. Rev. vol. 62, pp. 199-236, 2010.
Taymans J, et al., Comparative analysis of adeno-associated viral vector serotypes 1, 2, 5, 7, and 8 in mouse brain. Hum. Gene Ther. vol. 18, pp. 195-206, 2007.
Tian et al, Independent and high-level dual-gene expression in adult stem-progenitor cells from a single lentiviral vector. Gene Therapy vol. 16, pp. 874-884, 2009.
Urabe et al, a novel dicistronic AAV vector using a short Ires segment derived from hepatitis C virus genome. Gene vol. 200, pp. 157-62, 1997.
Vila GBP et al, 237: AAV8-mediated Sirt1 overexpression in the liver prevents high-carbohydrate diet induced NAFLD. Diabetologia, 49th Annual Meeting of the European Association for the Study of Diabetes, Springer, Berlin, DE; Barcelona, Spain, vol. 56, Suppl. 1, p. S105, 27.09.2013.
Wang et al, Improved neuronal transgene expression from an AAV-2 vector with a hybrid Cmv enhancer/PDGF-βpromoter, J Gene Med., vol. 7, pp. 945-955, Mar. 9, 2005.
Mao et al, Gene therapy vectors based on adeno-associated virus type 1. J. Virology vol. 73:3994, 1999.
Yan et al, Inverted Terminal Repeat Sequences are Important for Intermolecular Recombination and Circularization of Adeno-Associated Virus Genomes. Journal of Virology, vol. 79, pp. 364-379, 2005.
Zarrin et al, Comparison of CMV, RSV, SV40 viral and Vlambda1 cellular promoters in B and T lymphoid and non-lymphoid cell lines. Biochimica and Physica Acta vol. 1446, pp. 135-139, 1999.
Zincarelli et al, Analysis of AAV serotypes 1-9 mediated gene expression and tropism in mice after systemic Injection. Mol Ther vol. 16(6), pp. 1073-80, 2008.
Zufferey R, et al.,Woodchuck hepatitis virus post transcriptional regulatory element enhances expression of transgenes delivered by retroviral vectors. J. Virol. vol. 73, pp. 2886-2892, 1999.
Chlorini et al, Cloning of adeno-associated virus type 4 (AAV4) and generation of recombinant AAV4 particles. J. Vir. vol. 71, pp. 6823-33, 1998.
Mann et al, Gene therapy for type 1 diabetes by engineering skeletal muscle to express insulin and glucokinase (GK):Pre-clinical studies in diabetic. Diabetes (online), pp. A125-A126, 01.06.2008.
Dressman D., AAV-Mediated Gene Transfer to Models of Muscular Dystrophy: Insights into Assembly of Multi-Subunit Membrane Proteins. University of Pittsburgh, Graduate Faculty of the School of Medicine, Dept. Of Biochemistry and Molecular Genetics in partial fulfillment of the requirements for the degree of Doctor of Philosophy. 183 pp.,1997.
Mas et al., Reversal of type 1 diabetes by engineering a glucose sensor in skeletal muscle. Diabetes vol. 55(6), pp. 1546-53, Jun. 2006.
Jimenez-Chillaron et al., Increased glucose disposal induced by adenovirus-mediated transfer of glucokinase to skeletal muscle in vivo. Faseb J vol. 13, pp. 2153-2160, 1999.
Otaegui et al., Glucose-regulated glucose uptake by transplanted muscle cells expressing glucokinase counteracts liabetic hyperglycemia. Hum Gene Ther vol. 13, pp. 2125-2133, 2002.
Tae Keun Oh et al, Gene therapy for diabetes mellitus in rats by intramuscular injection of lentivirus containing insulin gene. Diabetes Research and Clinical Practice vol. 71(3), pp. 233-40 Jan. 3, 2006.
Lukashev et al. Viral Vectors for Gene Therapy: Current State and Clinical Perspectives. Bioschemistry (Mosc) vol. 31(7), pp. 700-708, 2016.
Mas, A., et al., “Reversal of type 1 diabetes by engineering a glucose sensor in skeletal muscle,” Diabetes 55(6):1546-53, American Diabetes Association Inc., United States (2006).
Otaegui, P.J., et al., “Glucose-regulated glucose uptake by transplanted muscle cells expressing glucokinase counteracts diabetic hyperglycemia,” Hum Gene Ther 13(18):2125-2133, Mary Ann Liebert Inc., United States (2002).
Fagoe, N.D., et al., “A compact dural promoter adeno-associated viral vector for efficient delivery of two genes to dorsal root ganglion neurons,” Gene Ther. 21:242-252, Nature Publishing Group, United Kingdom (2014).
American Diabetes Association, “Diagnosis and Classification of Diabetes Mellitus,” Diabetes Care 33(Suppl 1):S62-69, American Diabetes Association, United States (2010).
Bergerot, I., et al., “Effects of insulin like growth factor-1 and insulin on effector T cells generating autoimmunie diabetes,” Diabetes Metab. 22(4):235-239, Elsevier Masson, France (1996).
Daya, S., et al., “Gene therapy using adeno-associated virus vectors,” Clinical Microbiology Reviews 21(4):583-593, American Society of Microbiology, United States (2008).
Gros, L., et al., “Insulin Production By Engineered Muscle Cells,” Human Gene Therapy 10(7):1207-1217, Mary Ann Liebert, Inc., United States (1999).
Gros L., et al., “Regulated Production of Mature Insulin by Non-beta Cells,” Human Gene Therapy 8(18):2249-2259, Mary Ann Liebert Inc., United States (1997).
Hafenrichter, D.G., et al., “Quantitative evaluation of liver-specific promoters from retroviral vectors after in vivo transduction of hepatocytes,” Blood 84:3394-3404, American Society of Hematology, United States (1994).
Haurigot, V., et al., “Future Directions: Gene Therapy For Diabetes,” Part 13, Ch. 70, in Textbook of Diabetes, 5th Edition, Holt, R., et al., eds., pp. 1029-1037, Wiley-Blackwell, United States (2017).
Jaen, M.L., et al., “Long-Term Efficacy And Safety Of Insulin And Glucokinase Gene Therapy For Diabetes: 8-Year Follow-Up In Dogs,” Molecular Therapy—Methods & Clinical Development 6:1-7, Elsevier, Netherlands (2017).
Kapturczak, M., et al., “Transduction of human and mouse pancreatic islet cells using a bicistronic recombinant adeno-associated viral vector,” Molecular Therapy 5(2):154-160, Cell Press, United States (2002).
Lee, H.C., et al., “Remission in models of type 1 diabetes by gene therapy using a single-chain insulin analogue,” Nature 408:483-488, Nature Publishing Group, United Kingdon (2000).
Mann, C.J., et al., “Gene therapy for type 1 diabetes by expressing insulin and glucokinase (GK) in skeletal muscle; pre-clinical studies in diabetic dogs,” Molecular Therapy /6(Supplement_1):5367, Cell Press, United States (2008).
Mann, C.J., et al., “Molecular Signature of the Immune and Tissue Response to Non-Coding Plasmid Dna in Skeletal Muscle After Electrotransfer,” Gene Therapy /9(12):1177-1186, Macmillan Publishers Limited, United States (2012).
Mann, C.J., et al., “Skeletal Muscle Metabolism in the Pathology and Treatment of Type 1 Diabetes,” Current Pharmaceutical Design 16(8):1002-1020, Bentham Science Publishers Ltd., Netherlands (2010).
Mann, C.J., et al., “Gene therapy for type 1 diabetes by engineering skeletal muscle to express insulin and glucokinase (GK): Pre-clinical studies in diabetic dogs,” Diabetes — American Diabetes Association 68' Scientific Sessions: Abstract 420-P, pp. A125-A126, United States (Jun. 2008). Accessed at http://diabetes.diabetesjournals.org.
Matschinsky, M.F., “Banting Lecture 1995. A lesson in metabolic regulation inspired by the glucokinase glucose sensor paradigm,” Diabetes 45(2):223-241, American Diabetes Association, Inc., United States (1996).
O'Brien, T., “Gene Therapy for Type 1 Diabetes Moves a Step Closer to Reality,” Diabetes 62(5):1396-1397, American Diabetes Association, United States (2013).
Oh, T.K., et al., “Gene therapy for diabetes mellitus in rats by intramuscular injection of lentivirus containing insulin gene,” Diabetes Research and Clinical Practice 71(3):233- 240, Elsevier Ireland Ltd., Ireland (2006).
Otaegui, P., et al., “Expression of Glucokinase in Skeletal Muscle: a New Approach to Counteract Diabetic Hyperglycemia,” Human Gene Therapy 11(11):1543-1552, Mary Ann Liebert, Inc., United States (2000).
Printz, R.L., et al., “Mammalian glucokinase,” Annu Rev Nutr 13:463-496, Annual Reviews Inc., United States (1993).
Sharp, P.M., and Li, W-H., “The codon adaptation index - a measure of directional synonymous codon usage bias, and its potential applications,” Nucleic Acids Res. 15(3):1281-1295, Oxford University Press, United Kingdom (1987).
Zarrin, A.A., et al., “Comparison of CMV, RSV, SV40 viral and Vlambda1 cellular promoters in B and T lymphoid and non-lymphoid cell lines,” Biochim Biophys Acta 1446(1-2):135-139, Elsevier, Netherlands (1999).
Anguela, X.M. et al., “Nonviral-Mediated Hepatic Expression of IGF-I Increases Treg Levels and Suppresses Autoimmune Diabetes in Mice,” Diabetes, 62(2): 551-560, The American Diabetes Association, United States (2013).
Ayuso, E., and Bosch, F., “Highlights On AAV Mediated Gene Transfer: Introduction,” in The Clinibook: Clinical Gene Transfer State Of The Art, Cohen-Haguenauer, O., ed., pp. 31-34, Éditions EDK, Paris (2012).
Ayuso, E., et al., “AAV Gene Therapy For Diabetes Mellitus,” in The Clinibook: Clinical Gene Transfer State of the Art, Cohen-Haguenauer, O., ed., pp. 62-70, Éditions EDK, Paris (2012).
Ayuso, E., et al., “Reference Materials for the Characterization of Adeno-Associated Viral Vectors,” in The Clinibook: Clinical Gene Transfer State of the Art, Cohen-Haguenauer, O., ed., pp. 83-90, Éditions EDK, Paris (2012).
Ayuso, E., et al., “High AAV vector purity results in serotype- and tissue- independent enhancement of transduction effiiency,” Gene Therapy, 17(4):503-10, Macmillan Publishers Limited, United States (2010).
Ayuso, E., et al., “Production, Purification and Characterization of Adeno-Associated Vectors,” Current Gene Therapy, 10(6): 423-426, Bentham Science Publishers Ltd., Netherlands (2010).
Fagoe, ND., “A compact dual promoter adeno-associated viral vector for effiient delivery of two genes to dorsal root ganglion neurons,” Gene Therapy, 21: 242-252, Macmillan Publishers Limited, United States (2014).
Garcia, M., et al., “Phosphofructo-1-Kinase Deficiency Leads To A Severe Cardiac And Hematological Disorder In Addition To Skeletal Muscle Glycogenosis,” PLoS Genetics, 5(8): e1000615, pp. 1-12, Public Library of Science, United States (2009).
Gros, L., et al., “Insulin Production By Engineered Muscle Cells,” Human Gene Therapy. 10:1207-1217, Mary Ann Liebert, Inc., United States (1999).
Haurigot, V., et al., “Future Directions: Gene Therapy For Diabetes,” Part 13, Ch. 70, in Textbook of Diabetes, 5th Edition, Holt, R., et al., edds., pp. 1029-1037, Wiley-Blackwell, United States (2017).
Mann, C.J., et al., “Molecular Signature Of The Immune And Tissue Response To Non-Coding Plasmid DNA In Skeletal Muscle After Electrotransfer,” Gene Therapy 19(12):1177-1186, Macmillan Publishers Limited, United States (2012).
Otaegui, P., et al., “Expression Of Glucokinase In Skeletal Muscle: A New Approach To Counteract Diabetic Hyperglycemia,” Human Gene Therapy, 11: 1543-1552, Mary Ann Liebert, Inc., United States (2000).
Riu, E., et al., “Counteraction Of Type 1 Diabetic Alterations By Engineering Skeletal Muscle to Produce Insulin, Insights From Transgenic Mice,” Diabetes, 51:704-711, American Diabetes Association (2002).
Vilà, L. et al., Aav-mediated Sirt1 Overexpression In Skeletal Muscle Activates Oxidative Capacity But Does Not Prevent Insulin Resistance. Molecular Therapy-Methods & Clinical Development, 5:16072, eCollection (Nov. 2016).
Related Publications (1)
Number Date Country
20180000967 A1 Jan 2018 US