Spray devices for the application of liquids onto human skin and hair are well known. Sprays are used for many types of medicines, skin treatments, hair treatments, deodorants, lotions, and cosmetic agents. Specialized hand-held and automated spray systems have recently been introduced in tanning salons and spa treatment centers to apply sunless tanning compounds and skin care formulas, such as moisturizers, anti-aging treatments, and exfoliants. The spray solution used for sunless tanning is generally a water-based mixture of DHA (dihydroxyacetone) and/or erythrulose and various other skin care ingredients such as aloe vera. Often a cosmetic bronzer is added along with pleasant scents and ingredients to enhance tanning performance, such as formulations to balance skin ph.
The skin treatment spray process has inherently been a cold, uncomfortable experience for the recipient as nozzle expansion significantly cools the air and liquid in the spray cloud during application to the skin. Furthermore, cold skin is known to inhibit optimum absorption of the skin care ingredients. Temperatures of the spray cloud can be over 30 degrees (F.) lower than human body temperature due to nozzle cooling. Heating of the spray liquid or the atomization air has a negligible effect on increasing spray cloud temperature due to the rapid cooling produced as the spray jet expands when exiting the nozzle. This phenomenon is magnified when using air-atomizing nozzles; the type most desirable for producing a finely atomized spray.
In salons, customers disrobe for the spray treatment which lasts from 30 seconds to 5 minutes. Some treatments involve sequential spray regimens of alternate ingredients so the experience can be significantly longer. Thus, the length of time the customer is exposed to cold can be significant and may discourage the customer from obtaining the treatment in the first place or returning for additional treatments at later dates.
After the spray treatment customers often use a towel to dry their skin. The action of toweling-off removes a significant quantity of the sprayed ingredients from the skin. The remaining ingredients may be redistributed, which can produce a splotchy appearance in the case of sunless tanning or other cosmetic treatments. If the customer opts not to use a towel, and instead simply dry off in the ambient air or from the cool air of air-atomizing nozzles, the surface of the skin can become sticky.
Many tanning salons providing the new sunless spray tanning service also have conventional UV lamp tanning beds. Customers have observed that using the automated sunless tanning spray booths quickly after they use a UV tanning bed can result in a deeper and darker DHA tan. It is important to move from the UV tanning bed to the spray booth as quickly as possible. It is also essential to remove all perspiration resulting from the UV treatment or the tan result can be uneven. The benefits of UV tanning coupled with a sunless tanning spray may be due to opening the pores of the skin and from more thoroughly and more deeply drying out of the top skin layer by the hot UV lamps. However, due to skin health concerns, many customers do not wish to use the UV beds and therefore cannot take advantage of this practice to enhance their sunless tan.
DHA tans the skin by reacting with proteins in the stratum corneum, the top protective skin layer composed of dead skin cells. It is known that only the uppermost dry layers of the stratum corneum will tan effectively with DHA or erythrulose. Very dry skin will pigment the darkest and layers containing moisture will not tan nearly as well. Skin care specialists suggest using a warm towel on the skin before application of spray treatments since warm skin may better absorb some ingredients. However, a skin surface that is too hot will perspire, thus reducing the effectiveness of the sprayed ingredients.
A need exists in the art to address the foregoing issues in connection with providing a better sunless tanning experience and result for the consumer.
Reference is further made to Venuto, U.S. Pat. No. 6,554,208 (the disclosure of which is hereby incorporated by reference) which teaches a tanning spray booth implementation operable to both spray tanning solution and deliver drying air when not spraying.
Reference is also made to Safara, U.S. Pat. No. 5,991,937 (the disclosure of which is hereby incorporated by reference) which teaches a bidet sprayer implementation operable to both spray cleaning water and deliver drying air when not spraying.
Embodiments disclosed herein propose the controlled application of warm dry air over the skin before, during and after applications of sunless tanning sprays in an automated gantry application. This controlled application enhances efficacy of the tanning compounds and results in a deeper tan color and a longer lasting tan. In addition, the mixing of heated dry air into the spray cloud reduces the discomfort caused by the inherently cold spray stream. Furthermore, warm dry air, applied during and after short spray sequences enhances the spray uniformity result and produces a softer characteristic feel of the spray ingredients on the skin, while reducing complaints of “stickiness” or “tackiness” by the consumer. Deposition efficiency and uniformity of the tan result is improved since the towel dry step after the spray session is no longer necessary.
A spray nozzle system is presented for applying topical skin treatments, such as sunless tanning formulations, medicines, and lotions. Specifically, liquids or suspensions are applied to human skin in an automated treatment spray booth where a microcontroller sequences operation of moving spray nozzles, a heated air system and liquid dispensing systems.
A spray nozzle system includes auxiliary air outlets positioned near the liquid spray outlet to deliver one or more streams of heated air (supplementing air supplied for atomization and pattern shaping) for the purpose of drying the skin surface and improving the comfort of the spraying experience. The drying air from the auxiliary ports may be applied while spray is emitted from the nozzle to increase the spray cloud temperature, or may be applied before or after the spray application, with the spray turned off, to warm or dry the skin.
A heating source is provided to heat air that is directed through one or more heated air outlets. In a preferred embodiment, a heating element is incorporated into the system. The heating element may be positioned at the air outlet or in the air hose to the air outlets or at the air pump. In the case of air atomizing nozzles, the heated air is delivered through low pressure outlets separate from (i.e., supplemental to) the air emitted through the nozzle's higher pressure atomizing and pattern shaping orifices to minimize the expansion cooling effect inherent with the spray nozzle ports. The heated air may be delivered through low pressure ports which move with the spray nozzle, are stationary with respect to the spay nozzle, or move independently of spray nozzle movement.
In another embodiment, the heated airflow is redirected from use at the nozzle jets (for atomization and/or pattern shaping) to one or more of the low pressure heated air outlets. In this embodiment, a control valve may be used to proportion the amount of airflow directed to the main high pressure atomizer air jets, the high pressure pattern shaping air jets and the low pressure air outlets for drying the skin.
The method of applying warm dry air between layered applications of spray has been found to make the experience of skin spray treatments much more comfortable as well as improve coating uniformity. In addition, this method provides an improved tack-free feel of the spray deposit on the skin both during and after the spray session. In the case of sunless tanning with active ingredients such as Erythrulose or DHA (dihydroxyacetone), the system provides for an improved tanning color and increased longevity of the tan.
In an embodiment, a system comprises: a gantry including a movable mount; a spray nozzle mounted to the movable mount for movement in at least one direction, the spray nozzle including a spray jet outlet adapted to spray a skin treatment liquid from the spray nozzle in a spray stream, the spray nozzle further including an air outlet adapted to deliver air from the spray nozzle in an air stream separate from the spray stream; a heating unit adapted to heat and deliver the air to the spray nozzle for the air stream; and a control system adapted to control movement of the spray nozzle along the movable track and operation of the spray nozzle.
In another embodiment, a system comprises: a support structure; a spray nozzle mounted to the support structure, the spray nozzle including a spray jet outlet adapted to spray a skin treatment liquid from the spray nozzle in a spray stream, the spray nozzle further adapted to provide for movement of the spray nozzle and direction of the spray stream; an air outlet mounted to the support structure, the air outlet adapted to deliver air in an air stream separate from the spray stream, the air outlet further adapted to provide for movement of the air outlet and direction of the air stream in a manner generally corresponding to the direction of the spray stream; a heating unit adapted to heat and deliver the air to the air outlet for the air stream; and a control system adapted to control operation of the spray nozzle spray jet outlet and air outlet as well as movement of the directions of the air stream and spray stream.
In another embodiment, a spray system comprises: a spray nozzle adapted to spray liquid on a skin surface; one or more auxiliary air outlets positioned near a liquid spray outlet of the spray nozzle which are adapted to deliver one or more streams of supplemental warming air; and a controller operable in a first mode to cause delivery of the one or more streams of supplemental warming air from the one or more auxiliary air outlets simultaneously with delivery of the spray liquid from the spray nozzle for the purpose of warming the spray liquid, and further operable in a second mode to cause delivery of the one or more streams of supplemental warming air from the one or more auxiliary air outlets alternately with delivery of the spray liquid from the spray nozzle for the purpose of drying a target surface.
A more complete understanding of the invention may be obtained by reference to the following drawings:
In a preferred embodiment the spray jet from spray jet outlet 20 of the nozzle 12 is controlled separately from the air flow from heated air outlet 22 to allow a sequence of operations to be performed in connection with the spraying skin treatment, such as pre-warming of the skin, followed by separate spraying and drying cycles. The heated air flow from the air outlets 22 positioned above and below the spray outlet 20 is provided in a controlled manner for a number of purposes: to pre-warm the skin, to warm both the leading and trailing edges of the spray jet (i.e., the spray cloud) as the jet is naturally bent due to movement of the nozzle 12 along the guide track 16, and to provide a drying air stream after the spray cloud passes (or independent of spray cloud application).
In operation, the system 10 is controlled to move among and between various operating modes as described herein. The control system controls delivery of liquid spray from the nozzle spray jet outlet 20 and/or the delivery of heated air from the air outlet 22 before, during or after the liquid spray is applied. In essence, the control system functions to control the application of the liquid spray and low pressure heated air (for example, simultaneously or sequentially/alternatively). Additionally, the heating element may be controlled by the control system 18 to adjust an amount of heat provided and thus control the temperature of the heated air flow delivered from the air outlet 22. The control system further controls a valve (reference 60,
The movement among and between modes is designed to enhance the consumer's spray tanning experience and improve the tanning result. Warm air from the air drying outlet serves to prepare the skin for treatment, warm the skin for customer comfort, and dry the skin evenly after application. Alternating between spray application and warm air application improves the tanning result. Furthermore, the mixing relatively low pressure warm air application in with liquid spraying (i.e., mixing into the spray cloud) reduces the discomfort experienced by the consumer due temperature drop of the spray liquid resulting from high pressure nozzle expansion effects.
It will further be recognized that the heated air could be supplied from low pressure air outlets 22′ positioned on the gantry tower separate from the spray nozzles 12. Furthermore, these air outlets 22′ could themselves be selectively movable (for example, on a separate track system, robotic control system, pivoting mechanism, or through oscillation of direction of application) under the control of the control system in order to better circulate the heated air or better direct and move the air across the customer's body.
Reference is now made to
The booth 30 includes a base 32 supporting, at one end thereof, the gantry 14 (as shown in
Examples of booth 30 implementations for spraying human targets are well known to those skilled in the art.
Reference is now made to
The low pressure heated air stream 52 and the spray nozzle jet stream 54 are both directed towards the target surface 50. In a preferred embodiment, the heated air stream 52 intersects 55 the spray steam 54 (or more particularly the cloud of spray fluid produced by the nozzle 12 spray jet outlet 20) so as to mix heated air into the spray cloud. Ambient air through a fan, blower or compressor 56 may be used as a source of the air stream 52. Additionally, as discussed above, a heating element 58 may be incorporated at a suitable place in the line of this air flow to receive the air from the fan, blower or compressor. The heating element 58 may be placed either at the air outlet 22/22′ or positioned remotely there from. The air source (blower, etc. 56) for the air may be located at the nozzle 12 or positioned remotely there from. Additionally, if an air atomizer is used for the nozzle 12 it may be desired to use a common compressor (source 56) for sourcing air to the air atomizing nozzle 12 (for use in a high pressure configuration) and sourcing air to the supplemental air output 22 (as shown with dotted line 57 for use in a low pressure configuration), rather than have a separate source of air for each. The compressor of source 56 may be any air moving device suitable for operation, such as a fan, blower, turbine, or piston, rotary or diaphragm compressor, or other air pump. The system accordingly provides for one or more moving point sources of heated air to be mixed into the spray cloud. Advantages of this implementation (for example, in comparison to a large dispersed area heating source) include: reduced power requirements; localized delivery of heated air both to the spray cloud and towards the target; and the moving air provides a massaging effect on the target and dries the target skin more quickly and efficiently.
The control panel 18 is coupled to a control system 42 which controls actuation of the spray nozzle 12 for delivery of the spray nozzle jet stream 54 from outlet 20 as well as controls the application of the heated air stream 52 from outlet 22 before, during or after the spray is applied. The control system 42 may comprise, for example, a microcontroller and the control panel may comprise, for example, a touchscreen display. The control system 42 functions to control the application of spray and heated air in a number of operating modes including, for example, simultaneously application and/or sequential/alternative application. Additionally, if a heating element 58 is used, the control system 42 may also adjust the amount of heat (i.e., the temperature of the heated air stream 52). The control system 42 is further connected to the air source 56 to control the amount of air flow in the heated air stream 52 delivered from the air outlet 22. The control system 42 is further connected to a valve 60 which controls passing of liquid skin products from a tank 62 (or selects from more than one tank) to the nozzle 12 for spraying.
It will be understood that the spray nozzle 12 can comprise an electrostatic nozzle (inductive, ionizing or contact charged) as known to those skilled in the art.
Although an air atomizing nozzle is shown in
Reference is now made to
Reference is now made to
Reference is now made to
In any of the implementations described herein, the heated air may additionally be ionized using an appropriate ionizing apparatus (reference 120,
The spraying systems described herein may be implemented using a fully or partially enclosing spray booth (
With respect to an automatic spraying and drying system for skin coating applications, the system is preferably implemented with a moving spray nozzle. In a preferred implementation, that movement is provided through the gantry and vertical movement of the nozzle in a direction (such as provided in a vertical linear direction along the gantry guide track). Alternatively, or additionally, the movement may be provided by oscillating the spray angle of the nozzle. Such oscillation may be horizontal, in the context of a gantry implementation with a vertical translation, or may be vertical (or vertical and horizontal) in the context of an implementation where the nozzles are fixed in position.
It will be noted that, regardless of nozzle movement implementation, warm air outlets (for example, outlets 22′) will be provided and positioned so as to direct air towards the customer target, and preferably move with any movement (translation and/or oscillation) of the moving spray nozzle so that heated air delivery intersects with the spray cloud. In one implementation, one or more point sources of heated air are provided about the spray exit (see, for example,
Although
The control system 42 which is provided for the system will control the operation of the heated air flow, heat levels, nozzle operation, liquid selection, and nozzle movement in accordance with a programmed sequence of operations. An exemplary sequence of operations comprises: pre-heating of the spray area with heated air; application of a first spray solution (with or without heated air); a drying cycle using heated air application; application of a second spray solution (with or without heated air); a drying cycle using heated air application; application of a third spray solution (with or without heated air); and a final drying cycle using heated air application. Another exemplary sequence of operations comprises: pre-heating of spray are with heated air; first pass application of a first spray solution (with or without heated air); a drying cycle using heated air application; second pass application of the same first spray solution (with or without heated air); a drying cycle using heated air application; first pass application of a second spray solution (with or without heated air); a drying cycle using heated air application; second pass application of the same second spray solution (with or without heated air); and a final drying cycle using heated air application.
Improved results using the apparatus and process described herein, with a trial using DHA (dihydroxyacetone) based sunless tanning compounds, include:
Although preferred embodiments of the method and apparatus of the present invention have been illustrated in the accompanying Drawings and described in the foregoing Detailed Description, it will be understood that the invention is not limited to the embodiments disclosed, but is capable of numerous rearrangements, modifications and substitutions without departing from the spirit of the invention as set forth and defined by the following claims.
This application claims priority from U.S. Provisional Application for Patent No. 61/266,810, filed Dec. 4, 2009, the disclosure of which is hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
61266810 | Dec 2009 | US |