This application claims the priority benefit of Japanese Patent Application No. 2007-022948 filed on Feb. 1, 2007 and Japanese Patent Application No. 2007-081558, filed Mar. 27, 2007, the entire disclosures of which are incorporated herein by reference.
1. Field of the Invention
The invention relates to a semiconductor device including SOI-CMOS devices using SOI (Silicon On Insulator) substrate, specifically relates to a semiconductor device including a protection circuit, which protects the SOI-CMOS devices from ESD (Electro Static Damage).
2. Description of the Related Art
A semiconductor device having a protection circuit is disclosed in the following References.
Japanese Patent Reference 3,415,401
Japanese Patent Publication Reference H6-318702 A
Japanese Patent Publication Reference H8-125030 A
Japanese Patent Publication Reference 2002-313024 A
In the Japanese Patent Reference 3,415,401, it is disclosed that diodes are formed in a protection circuit area at the same time when CMOS transistors are formed in an internal circuit area. According to the Japanese Patent Reference 3,415,401, electrodes of the diodes in a protection circuit area are formed at the same time when gate electrodes of the CMOS transistors are formed, and diffusion layers of the diodes in the protection circuit area are formed by diffusing impurities at the same time when sources and drains of the CMOS transistors are formed.
In the Japanese Patent Publication Reference H6-318702 A, it is disclosed that an SOI layer formed in a protection circuit area is formed thicker than that an SOI layer formed in an area that internal circuit for requiring the high speed operation is formed, and in such an area, the fully-depletion is required. Further, the Japanese Patent Publication Reference H8-125030 A, it is disclosed that silicon material at a P/N junction in a protection device is amorphousized. Moreover, the Japanese Patent Publication Reference 2002-313024 A, it is disclosed that an ESD protection device is directly formed on a silicon substrate, which is acted as a supporting substrate.
Under a bulk-CMOS device, a P-type MOS transistor is electrically isolated from an N-type MOS transistor by a well-layer. To the contrary, under a SOI-CMOS device, a P-type MOS transistor is electrically and physically isolated from an N-type MOS transistor by a buried oxide layer formed on a silicon substrate and a LOCOS (LOCal Oxidation of Silicon) layer. Thus, the SOI (Silicon On Insulator) layer, which is a device operable region, is completely isolated by insulators. There are two types of the SIO layer. One is an FD (Fully depleted) SOI, and other is a PD (Partially depleted) SOI. The FD SOI includes a relatively thin SOI layer, which is generally less than 50 nm, and its body region under the channel in the thin SOI layer is fully depleted. On the other hand, the PD SOI includes a relatively thick SOI layer, which is generally more than 100 nm, and its body region under the channel in the thick SOI layer is partially depleted. Thus, the body region at its bottom under the channel in the thick SOI is not depleted. Compared with the PD SOI, since carriers generated under the operation of the devices are hard to be stored in the body region, the substrate floating effect is hard to be occurred, the operation under the low voltage and the low power consumption can be expected in the FD SOI.
However, when the internal circuit is formed with the transistors having the FD SOI structure, the protection circuit for protecting the internal circuit from the ESD is also generally formed with the transistors having the FD SOI structure because of the difficulty of manufacturing processes and some restrictions on its processes.
For example, a protection transistor used in the protection circuit is required to protect the internal circuit from the envisaged maximum surge current by flowing it to the conductive line connected to the ground terminal or the power supply terminal promptly. Thus, such a protection transistor should have functions of a current drive performance and of a responsive characteristic for flowing the envisaged maximum surge completely as a protection transistor performance, and thus, the width of the gate of the protection transistor should be formed for matching up to such requirements.
Specifically, a parasitic transistor is formed as a result of forming the protection transistor in a SOI wafer. The existence of the parasitic transistor holds the key to the performance of the protection transistor. The parasitic transistor is formed at the bottom of the protection transistor, and the parasitic transistor turned on locally in advance to the operation of the protection circuit on which the parasitic transistor is parasitic, by depending on the amount of the remaining carrier in the channel of the protection circuit. The surge current may be concentrated in the parasitic transistor so that the protection circuit can not flow the concentrated surge current completely to the conductive line connected to the ground terminal or the power supply terminal. As a result, the internal circuit may not be perfected from the ESD.
On the other hand, in the case that the protection transistor having a large gate width is formed, no parasitic transistors are formed at the bottom at all, theoretically. However, some parasitic transistors are actually formed locally in the protection circuit, and the surge current may be concentrated in the accidentally formed parasitic transistor. As a result, the protection circuit on which the parasitic transistor is parasitic is destroyed. Thus, it is desired to eliminate of forming parasitic transistors completely or control the formation of the parasitic transistors.
An objective of the invention is to solve the above-described problem and to provide a semiconductor device having a protection circuit for protecting the internal circuit from the electro static damage.
The objective is achieved by an SOI type semiconductor device having a silicon substrate and a buried oxide layer formed on the silicon substrate including an internal circuit formed in a first region having at least one FD type transistor having a SOI structure, the internal circuit performing a function of the semiconductor device and a protection circuit formed in a second region having at least one PD type transistor having a SOI structure, the protection circuit protecting the internal circuit from electro static damage.
The invention will be more particularly described with reference to the accompanying drawings, in which:
The preferred embodiment of the invention is explained together with drawings as follows. In each drawing, the same reference numbers designate the same or similar components.
The semiconductor device 100 includes an SOI (Silicon-On-Insulator) structure. According to the semiconductor device 100, a Buried OXidation layer (BOX layer) 12 is formed on a silicon substrate 11, which is acted as a supporting substrate, and an active silicon layer (SIO layer) is formed on the Box layer 12. Source regions and drain regions 21, 31, 23, 33 are formed in the SOI layer. According to such a structure, since a parasitic capacitance formed between source/drain regions and the silicon substrate 11 becomes smaller, a high speed operation with low power consumption can be expected. Further, since each device is electrically isolated completely by the BOX layer, a latch-up phenomenon may not be occurred. On the other hand, since the insulating layer exists underneath the thin silicon layer in semiconductor device having the SOI structure, when high voltage is induced by static electricity at the thin silicon layer, the internal circuit is easily destroyed by the ESD (Electro Static Damage).
The protection circuit 20 protects the internal circuit 30 from such ESD. Although the Internal circuit 30 includes a plurality of transistors having CMOS structures and other desired circuit elements based on the functions of the internal circuit 30, one internal transistor 30a in the internal circuit 30 is illustrated in
The internal transistor 30a in the internal circuit 30 includes a source region 31 and a drain region 33, which are formed by ion-implantation into the SOI layer being formed on the silicon substrate 11, a body region 35, which is sandwiched by the source and drain regions 31 and 33, in the SOI layer, and a gate region 32, which is formed of Poly-silicon and is formed on a gate oxide layer 34 being formed on the body region 35. Thus, the internal transistor 30a illustrated in
The protection transistor 20a in the internal circuit 20 includes a source region 21 and a drain region 23, which are formed by ion-implantation into the SOI layer being formed on the silicon substrate 11, a body region 25, which is sandwiched by the source and drain regions 21 and 23, in the SOI layer, and a gate region 22, which is formed of Poly-silicon and is formed on a gate oxide layer 24 being formed on the body region 25. Thus, the protection transistor 20a illustrated in
Since the SOI layer is formed to have an uniform thickness through the protection and internal circuits 20 and 30 in the first embodiment, the thickness D1 of the SOI layer in the protection circuit 20 is 0.05 μm, which is the same as that in the internal circuit 30. Field oxide layers 13, which isolate each transistor, are formed at the side of each of the source/drain regions 21 and 23. The field oxide layers 13 are formed by a thermal treatment to the SOI layer. The gate, source and drain regions 22, 21, and 23 are connected to the power supply voltage or the ground GND through contact metal layers, respectively as show in
In the protection transistor, a highly doped region 251, which is one of the characteristics of the invention, is formed in the body region 25. According to forming the highly doped region 251, the protection transistor 20a in the protection circuit 20 is formed with the PD SOI while the internal transistor 30a in the internal circuit 30 is formed with the FD SOI. According to the structure described above, the body region 25 having a high channel impurity concentration, which is a highly doped region 251, is formed at the bottom of the SOI layer of the protection transistor 20a that is the location closer to the BOX layer than the middle location in the depth direction. Thus, since the depletion layer formed in the body region 25 is hard to be extended, the protection transistor 20a is formed with the PD SOI. Both of the protection transistor 20a and the internal transistor 30a may include an LDD (Lightly Doped Drain) region for suppressing the short channel effect. The LDD structure increases the current drive performance of the protection circuit 20 when the surge current is applied.
A connection node N1 between the drain of the NMOS protection transistors 20a and the source of the NMOS protection transistors 20b is connected to the input terminal PAD and one end of the protection resistor 40. As described above, since the other end of the protection resistor 40 is connected to the internal circuit 30, the connection node N1 is connected to the internal circuit 30 via the protection resistor 40. For example, when the negative surge current is applied from the ground terminal GND, the negative surge current is flowed to the conductive line connected to the power supply terminal VDD by turning the NMOS protection transistors 20a and 20b on in order to avoid flowing the negative surge current into the internal circuit 30. Under this state, the NMOS protection transistors 20a and 20b are required to flow the negative surge current speedy and promptly, the NMOS protection transistors 20a and 20b should not only have a function of a current drive performance for flowing the envisaged maximum negative surge current completely, but also have a function of withstanding the envisaged maximum negative surge current.
The process of the semiconductor device 100 shown in
As shown in
Then, as shown in
Then, a poly silicon layer is formed on the gate oxide film 15 by the well known low pressure CVD (Chemical Vapor Deposition) method, and the gate electrodes 22 and 32, each of which has a 0.15 μm gate length, are formed by etching the poly silicon. Then, the self-aligned source regions 21 and 31 and the self-aligned drain regions 23 and 33 are formed by using gate oxide layer 24 and resist layer as a mask in the body regions 25 and 35 by implanting ions whose conductivity type is different from that of the impurity ions 18. As a result, the semiconductor device 100 shown in
As described above, by adding two methods, which are the photolithographic method and the highly concentrated impurity ion implantation method, on the process of forming the FD type transistors in the internal circuit 30, the PF type transistors can be easily formed in the protection circuit 20 only. Here, the ion implantation with the highly concentrated impurity ions to the bottom of the body region 25 may be performed before forming the gate oxide film 15.
It is clear from
S=Vg/log(Ids)
For example, where S=60 mV/dec, the drain current Ids is increased with one digit by increasing the gate voltage Vg with 60 mV
According to the semiconductor device 100 of the first embodiment, holes exist in the he highly doped region 251, which is not the depletion layer, because the highly concentrated impurity ions is doped at the bottom of the body region 25. Thus, when the surge current is applied to the silicon substrate 11, the parasitic transistor, which is formed at the bottom of the protection transistor 20a or 20b, cannot be turned on if the holes in the body region are not moved to the source region. It is known that it takes few m.sec to move the holes to the source region. The channel of the protection transistor 20a or 20b performs an appropriate operation within that time period. Thus, the semiconductor device shown in
Furthermore, the semiconductor device of the first embodiment, two types of the transistors that are the FD type and the PD types formed in the internal circuit 30 and the protection circuit 20 are not formed in the quit different processes. In other words, by adding two methods, which are the photolithography and the highly concentrated impurity ion implantation, on the process of forming FD type transistors in the internal circuit 30, the PF type transistors can be easily formed in the protection circuit 20 only. Thus, the semiconductor device having two types of the transistors can be manufactured without increasing large numbers of the process steps and increasing process difficulties.
Since the protection circuit 20 is only operable in the occasion that the surge current is flowed, the protection transistor having the PD SOI will not influence to the entire operation of the semiconductor device 100.
The semiconductor device 200 includes at least one protection circuit 20 and at least one internal circuit 30. The semiconductor device 200 includes an SOI structure. According to the semiconductor device 200, a Box layer 12 is formed on a silicon substrate 11, which is acted as a supporting substrate, and an active silicon layer (the SIO layer) is formed on the Box layer 12. Source regions and Drain regions 21, 31, 23, 33 are formed in the SOI layer.
The protection circuit 20 protects the internal circuit 30 from such ESD. Although the Internal circuit 30 includes a plurality of transistors having CMOS structures and other desired circuit elements based on the functions of the internal circuit 30, one internal transistor 30a in the internal circuit 30 is illustrated in
The internal transistor 30a in the internal circuit 30 includes a source region 31 and a drain region 33, which are formed by ion-implantation into the SOI layer being formed on the silicon substrate 11, a body region 35, which is sandwiched by the source and drain regions 31 and 33, in the SOI layer, and a gate region 32, which is formed of Poly-silicon and is formed on a gate oxide layer 34 being formed on the body region 35. Thus, the internal transistor 30a illustrated in
One of the most important characteristics is the thickness of the SOI layer. As shown in
The process of the semiconductor device 200 shown in
According to the semiconductor device 200 of the second embodiment, the regions, which are not the depletion layers, remain in the SOI layer at its bottom because of the thickness of the body region 25 so that the holes exist in these regions.
According to the semiconductor device 200 in the second embodiment, Wile the internal circuit 30 is formed with the transistors with the FD SOI structure, the protection circuit 20 for protecting the internal circuit 30 from the ESD is formed with the transistors with the FD SOI structure. Thus, the functions of the internal circuit 30 are not limited to have the specific characteristics so that the internal circuit can be used for general-purpose CPUs or mobile devices.
The internal circuit 30 is connected to the power supply terminal VDD and the ground terminal GND, and the gates of internal CMOS transistors in an internal circuit 30 are commonly connected to an input terminal PAD via a protection resistor 44 wherein the input voltage Vin is applied to the input terminal PAD.
The protection circuit 20 includes two NMOS protection transistors 20a and 20b whose gates are commonly connected to the ground terminal GND. The source of the NMOS protection transistors 20a is connected to the power supply terminal VDD and its drain is connected to the source of the NMOS protection transistors 20b whose drain is connected to the ground terminal GND.
A connection node N1 between the drain of the NMOS protection transistors 20a and the source of the NMOS protection transistors 20b is connected to the input terminal PAD and one end of the protection resistor 40. As described above, since the other end of the protection resistor 40 is connected to the internal circuit 30, the connection node N1 is connected to the internal circuit 30 via the protection resistor 40. For example, when the negative surge current is applied from the ground terminal GND, the negative surge current is flowed to the conductive line connected to the power supply terminal VDD by turning the NMOS protection transistors 20a and 20b on in order to avoid flowing the negative surge current into the internal circuit 30.
The semiconductor device 300 further includes a substrate line SUB, which is connected to the ground terminal GND electrically. The ground terminal GND is commonly connected to the gate and the source of the protection transistor 20b and to the gate of the protection transistor 20a. The electrical connection between the silicon substrate and the substrate line SUB is made by a metal wiring via a substrate contact, which penetrates a buried oxide layer. The processes of forming the substrate line SUB and its electrical contact are explained below with reference to
As shown in
As shown in
As shown in
As shown in
Finally, as shown in
According to the semiconductor device of the third embodiment, it is possible to contact the source of the protection transistor 20b having the SOI structure to the silicon substrate 11 without any additional thermal treatments to the general CMOS process. Thus, since the characteristics of the protection transistor will not be influenced by forming the above described structure, which connect the source of the protection transistor 20b the substrate line SUB, the protection circuit 20 having a desired protection performance that only a parasitic transistors do not turn on can be obtained.
While the invention has been described with reference to illustrative embodiments, this description is not intended to be construed in a limiting sense. Thus, shapes, size and physical relationship of each component are roughly illustrated so the scope of the invention should not be construed to be limited to them. Further, to clarify the components of the invention, hatching is partially omitted in the cross-sectional views. Moreover, the numerical description in the embodiment described above is one of the preferred examples in the preferred embodiment so that the scope of the invention should not be construed to limit to them.
Various other modifications of the illustrated embodiment will be apparent to those skilled in the art on reference to this description. Therefore, the appended claims are intended to cover any such modifications or embodiments as fall within the true scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
2007-022948 | Feb 2007 | JP | national |
2007-081558 | Mar 2007 | JP | national |