This invention relates to the production of semiconductor devices, and in particular to the low cost production of large-area devices, such as silicon wafer-based solar cells, and power semiconductor devices by utilizing extrusion methods to form doped regions in the semiconductor substrate of the semiconductor device.
Modern solar cells typically include a large-area, single layer p-n junction diode that is capable of generating electrical energy from solar light. These cells are typically made using silicon wafers that are doped to include one or more n-type doped regions, and one or more p-type doped regions. Such solar cells (also known as silicon wafer-based solar cells) are currently the dominant technology in the commercial production of solar cells, and are the main focus of the present invention.
A desirable solar cell geometry, commonly referred to as the interdigitated back contact (IBC) cell, consists of a semiconductor wafer, such as silicon, and alternating lines (interdigitated stripes) of p-type and n-type doping. This cell architecture has the advantage that all of the electrical contacts to the p and n regions can be made to one side of the wafer. When the wafers are connected together into a module, the wiring is all done from one side. Device structure and fabrication means for this device have been described previously in co-owned and co-pending U.S. patent application Ser. No. 11/336,714 entitled “Solar Cell Production Using Non-Contact Patterning and Direct-Write Metallization”, which is incorporated herein by reference in its entirety.
One method for foaming the alternately doped line regions in an IBC solar cell is to dispose dopant bearing pastes of alternating dopant type on the wafer, and then to heat the wafer with the appropriate temperature profile to drive in the dopants. Solar cell doping and the patterning of doped regions is typically carried out with costly steps that may include the use of barrier deposition, barrier patterning, laser processing, damage removal, and gas phase furnace diffusion. One could also generate the desired interdigitated doped regions using screen printing techniques. However, a distinct disadvantage of screen printing is that two separate print operations would be needed to write the two dopant bearing materials, and the two prints would need to be exquisitely well registered. Moreover, screen printing requires contact with the wafer, which increases the risk of wafer damage (breakage), thus increasing overall production costs. In addition, the first screen printed layer needs to be dried before a second screen print step is applied.
One commonly used solar cell architecture utilizes the back surface of the cell wafer as a broad area metal pad, typically aluminum, to form a contact to the p-type side of the device. During the metal firing step, the aluminum interacts with the silicon to form a p+ doped layer. In some cases, the back surface is also doped with boron to produce a p+ layer. The role of this layer is to create a so-called back surface field which reduces the recombination of the photocurrent on the back metallization. The broad area metal layer is commonly applied either by screen printing or pad printing, both of which are contact printing methods, and therefore increase the risk of wafer breakage.
What is needed is a low cost method and system for producing doped regions in solar cell substrates that avoids the problems associated with contact printing methods. In particular, what is needed is a simpler and more reliable method for producing self-registered p-type and n-type doped regions in the production of IBC solar cells.
The present invention is directed to a low cost method and system for producing large-area semiconductors that includes extruding a dopant bearing material (dopant ink) onto one or more predetermined surface areas of a semiconductor substrate (e.g., a monocrystalline silicon wafer), and then heating (thermal processing) the semiconductor substrate such that the dopant disposed in the dopant ink diffuses into the substrate to form the desired doped region or regions. In comparison to conventional screen printing techniques, the extrusion of dopant material on the substrate provides superior control of the feature resolution of the doped regions. In addition, by extruding the dopant ink onto the substrate, the dopant ink can be reliably disposed over the desired substrate regions without contacting the substrate, thereby avoiding the wafer breakage problem associated with conventional contact printing methods. By providing superior feature resolution and reduced wafer breakage, the present invention reduces the overall manufacturing costs associated with the production of large area semiconductor devices when compared with conventional production methods.
In accordance with an embodiment of the present invention, a system for producing large area semiconductor devices includes forming desired doped regions in surface of a semiconductor substrate using the extrusion method described above, forming a passivation layer over the substrate surface, utilizing a laser ablation or other non-contact apparatus to form contact openings in the passivation layer, and then utilizing a direct-write metallization apparatus to deposit contact structures in the contact openings and to form metallization lines on the passivation layer. By utilizing each of these non-contact processing methods, the present invention facilitates the reliable production of solar cells with minimal wafer breakage. In one alternative embodiment, residual dopant ink may be removed from the substrate surface before forming the passivation layer.
In accordance with an aspect of the present invention, a system for production of IBC-type solar cells includes an extrusion head that is capable of simultaneously extruding interdigitated dopant ink structures having two different dopant types (e.g., n-type dopant ink and p-type dopant ink) in a self-registered arrangement on a substrate surface. The extrusion head includes multiple nozzles (outlet channels) that respectively communicate at their inlet opening to a selected dopant ink source, and that have respective outlet openings disposed in a self-registered arrangement over the substrate surface. In one embodiment, every other nozzle communicates with a p-type dopant ink source, and the remaining nozzles communicate with an n-type dopant ink source, whereby each p-type extruded structure is disposed between two n-type extruded structures. The system includes an x-y table or other mechanism for moving the substrate relative to the extrusion head during the extrusion process. By utilizing such an extrusion head, both the p-type and n-type dopant ink structures are disposed simultaneously on the substrate surface in a self-registered manner, thus avoiding the delay required to allow a first screen printed dopant ink to dry before depositing a second screen printed ink, and the need to accurately register the second screen printing operation.
In accordance with another embodiment of the present invention, the extrusion head is fabricated by laminating multiple sheets of micro-machined silicon, plastic or other non-ferrous materials. It is important to dispense the dopant ink without the introduction of harmful impurities, and transition metal impurities are in particular to be avoided. This requirement makes the use of ferrous metal-based fluidic systems undesirable. The bonding of micromachined silicon wafers is a well understood and reliable process. The extrusion head can be formed such that the two dopant inks are fed from opposite sides of the nozzle array, or the extrusion head can be formed using a “side shooter” arrangement in which both dopant inks are fed from the same side to the nozzle array.
In accordance with additional alternative embodiment, a third (e.g., relatively light doping or non-doping) ink is extruded together with the two relatively heavy dopant inks such that each adjacent pair of heavy dopant ink structures is separated by a lightly or non-doping ink structure. The non-doping ink may serve as a spacer between dopant ink structures and/or as barrier to prevent doping from the ambient. In an alternative embodiment in which it is desirable for device performance reasons, the heavily n-type and p-type doped structures are separated by lightly doped ink that generates a lightly doped semiconductor region between the two heavily doped regions.
In accordance with yet another embodiment, the narrow lines of heavily doped ink are embedded between wider lines of a second (e.g., non-doping) ink. The narrow lines are generated by forming the extrusion head such that selected nozzle channels converge adjacent to their associated outlet openings. In contrast, the nozzle channels for the non-doping ink diverge prior to reaching the head outlet, which further squeezes the narrow lines and forms a continuous sheet in which the narrow lines are disposed between wide non-doping structures. Full control of the line width is both a function of the extrusion head design as well as the relative flow rates of the materials.
According to another embodiment of the present invention, an extrusion head includes a single plenum that feeds several diverging nozzle channels that terminate before an end facet of the extrusion head, thereby generating a flow merging section that produces a uniform extruded sheet of dopant or metal paste. This extrusion head provides an alternative non-contact method for forming so-called back surface fields that reduce the recombination of the photocurrent on the back metallization, thereby reducing manufacturing costs by avoiding the wafer breakage associated with conventional screen printing or pad printing methods.
According to another embodiment of the present invention, a hybrid doping method uses a combination of solid source doping and gas phase doping. Dopant ink structures are extruded on a wafer in the manner described above, but non-doping structures are also formed on each side of the dopant ink structures, and gaps are intentionally formed such that selected surface areas are intentionally exposed between the extruded structures. A temperature anneal of the substrate is then performed in an ambient containing a gaseous phase dopant. The thermal processing in conjunction with the doping ambient results in both solid source doping in the covered regions, and ambient source doping in the exposed regions.
In accordance with another embodiment, extruded dopant ink structures are capped (entirely covered) by a co-extruded material. A known problem with the solid source doping is that while the dopants are diffusing, they diffuse out of the source and onto other parts of the wafer, creating an undesirable doping effect in the surrounding portions of the wafer. By capping the dopant ink structures, the dopant ink is prevented from contaminating other portions of the wafer. The capping structure is optionally removed after thermal treatment is completed.
These and other features, aspects and advantages of the present invention will become better understood with regard to the following description, appended claims, and accompanying drawings, where:
The present invention relates to an improvement in the production of large area semiconductor devices. The following description is presented to enable one of ordinary skill in the art to make and use the invention as provided in the context of a particular application and its requirements. As used herein, directional terms such as “upper”, “upwards”, “lower”, “downward”, “front”, “rear”, are intended to provide relative positions for purposes of description, and are not intended to designate an absolute frame of reference. In addition, the phrases “integrally connected” and “integrally molded” is used herein to describe the connective relationship between two portions of a single molded or machined structure, and are distinguished from the terms “connected” or “coupled” (without the modifier “integrally”), which indicates two separate structures that are joined by way of, for example, adhesive, fastener, clip, or movable joint. Various modifications to the preferred embodiment will be apparent to those with skill in the art, and the general principles defined herein may be applied to other embodiments. Therefore, the present invention is not intended to be limited to the particular embodiments shown and described, but is to be accorded the widest scope consistent with the principles and novel features herein disclosed.
Extrusion apparatus 110A includes an extrusion head (die) 130 that is operably coupled to a reservoir (dopant ink source) 111 containing a dopant ink 112. Extrusion has been utilized in a wide variety of applications, but is not believed to have been used in the production of large area semiconductor devices, and in particular in the formation of doped regions in a semiconductor substrate. Extrusion is a well-established manufacturing process that is typically used to create relatively long, narrow objects of a fixed cross-sectional profile. Similar to traditional extrusion processes, dopant ink 112 is pushed and/or drawn through outlet orifices 135-1 to 135-4, which are defined in extrusion head 130 using known techniques (e.g., using a suitable pump or auger), thereby generating multiple dopant ink beads 112-1 to 112-4. Outlet orifices 135-1 to 135-4 are formed in a selected shape (e.g., rectangular) such that beads 112-1 to 112-4 have the desired cross-sectional shape. A suitable mechanism (not shown) is utilized to move substrate 101 relative to output orifices 135-1 to 135-4 during the extrusion process, thereby depositing beads 112-1 to 112-4 on surface areas 102-1 to 102-4, respectively, thereby forming extruded structures 120-1 to 120-4 on substrate 101. In one embodiment, extruded structures 120-1 to 120-4 are separated by open (uncovered) regions of surface 102. For example, extruded structures 120-1 and 120-2 are separated by an open surface region 102-31.
In accordance with an embodiment, dopant ink 112 includes a paste-like vehicle material into which a desired n-type or p-type dopant is disbursed. For example, a suitable extrudable phosphorus dopant ink includes one or more of a variety of organometallic phosphorus compounds in which phosphorus containing substituent groups are present in compounds with carbon chains of varying lengths. These compounds must either be liquids at room temperature or completely soluble in the other solvents present in the formulation. The phosphorus dopant ink also includes dilute solutions of phosphoric acid. In addition, a fugitive organic vehicle is used that burns off or evaporates during processing. These vehicles are typically solutions of ethyl cellulose in high boiling solvents (b.p. 150-300 degrees C.) such as 2,2,4-trimethyl-1,3-pentanediol monoisobutyrate (trade name Texanol), terpineol, butyl carbitol and many others known to those skilled in the art. Finally, the phosphorus dopant ink may include rheological additives such as hydrogenated castor oil and plasticizers such as various phthalates (dimethyl phthalate, dibutyl phthalate, dioctyl phthalate, etc). Surfactants and wetting agents may be included as well. Other dopant inks in a paste form that may be suitable for extrusion are disclosed in “Paste Development for Low Cost High Efficiency Silicon Solar Cells,” Jalal Salami, FERRO Corporation, Electronic Material Systems, USA16th Workshop on Crystalline Silicon Solar Cells & Modules: Materials and Processes, Aug. 6-9, 2006, Denver, Colo.
At a subsequent time, i.e., after extruded structures 120-1 to 120-4 are formed on substrate 101, substrate 101 is heated using a thermal processing apparatus 140. In one embodiment, thermal processing apparatus 140 is an oven or kiln maintained at a temperature of 850° C. or higher. This heating process causes the dopant disposed in extruded structures 120-1 to 120-4 to diffuse into substrate 101 through surface areas 102-1 to 102-4, respectively, and to form doped regions 101-1 to 101-4, respectively. In one embodiment, extruded structures 120-1 to 120-4 are separated by a sufficient distance such that each doped region is separated from adjacent doped regions by a region of lightly doped or intrinsic (undoped) silicon. For example, doped regions 101-1 and 101-2 are separated by an intrinsic region 101-31, doped regions 101-2 and 101-3 are separated by an intrinsic region 101-32, and doped regions 101-3 and 101-4 are separated by an intrinsic region 101-33.
As indicated at the top of
Device 201T1 is then subjected to various non-contact processes in order to produce a usable solar cell. First, a laser ablation apparatus 230 is utilized to define contact holes 217 through passivation layer 215 that expose corresponding portions of upper surface 102 of substrate 101 such that the contact holes are arranged in straight parallel rows over the doped diffusion regions. A suitable ablation process is described in additional detail in co-owned and co-pending U.S. patent application Ser. No. 11/562,383, filed Nov. 21, 2006, entitled “MULTIPLE STATION SCAN DISPLACEMENT INVARIANT LASER ABLATION APPARATUS”, which is incorporated herein by reference in its entirety. After contact holes 217 are defined through passivation layer 215, partially processed wafers 201T2 are passed to a direct-write metallization apparatus 250 that is utilized to deposit contact structures 218 into contact holes 217, and to form metal interconnect lines 219 on passivation layer 215 such that each metal interconnect line 219 connects the contact structures 218 disposed over an associated doped diffusion region. Additional details and alternative embodiments related to direct-write metallization device 250 are disclosed in co-owned U.S. patent application Ser. No. 11/336,714, cited above. Finally, metallized device 201T3 is passed from direct-write metallization apparatus 250 to an optional post-metallization processing apparatus 270 for subsequent processing to form the completed solar cell 201T4.
In practical use, extrusion apparatus 110B operates similar to an inkjet printing apparatus to provide for the translation of substrate 101B-T1 with respect to the extrusion head 130B (i.e., either by moving extrusion head 130B in the direction Y1 over stationary substrate 101B, or by moving substrate 101B in the direction Y2 under stationary extrusion head 130B). Dopant inks 112 and 115 are fed into extrusion head 130B under pressure. Both applied fluid pressure and relative head-wafer motion are controlled by an automated system to produce lines 120 of controlled dimensions.
In accordance with an aspect of the present invention, a pitch of the interdigitated dopant ink lines 120 is controlled by the spacing between adjacent outlet orifices 135 that is designed into extrusion head 130B. For example, an exposed surface area 102-31, which is disposed between a first surface region 102-11 covered by extruded structure 120-11 and a second surface region 102-21 covered by extruded structure 120-21, has a width that is determined by a spacing between adjacent edges of outlet orifices 135-11 and 135-21. Because extrusion head 130B can be fabricated with precision machining methods, such as lithographic etching and wafer bonding, very high precision, on the order of microns, is achievable for the spacing between adjacent extruded structures 120. This novel approach to writing registered lines of dissimilar dopant inks exceeds all state of the art screen print methods.
In accordance with an aspect of the present invention, extrusion head 130B-1 is produced using materials that do not introduce unwanted impurities, particularly impurities that would induce carrier recombination. Materials such as polytetrafluoroethylene (PTFE) and other chemically inert polymer materials or glass or silicon are preferred materials for constructing the extrusion head. It is important to dispense dopant ink 112 and 115 without the introduction of harmful impurities. Transition metal and other metal impurities are in particular to be avoided. These include gold, copper, iron etc. This makes the use of ferrous metal-based fluidic systems undesirable. In a preferred embodiment, sheet layers 310 to 350 are fabricated using micromachined silicon. As indicated in
As indicated by the dashed lines in
With additional layers containing feed-thru holes and optional additional plenums, it is possible to provide a means for interdigitated dispense from one side of an extrusion head, and also optionally provide means for dispensing three or more materials in arbitrary or repeating patterns. Providing the inlets on one side of the extrusion head makes it possible to operate the extrusion head over a wider range of angles relative to the substrate, including the so-called “side shooting” mode in which the extruded material stream exits the extrusion head nearly parallel to the substrate.
As indicated by the dashed lines in
In another variation of the present invention, at least one type of dopant ink is dispensed together with a non-doping ink. This non-doping ink may serve as a spacer between dopant ink structures and/or as barrier to prevent doping from the ambient. It may be desirable for device performance reasons to have stripes of heavily n-type and p-type doped material separated by intrinsic or lightly doped semiconductor. This is achievable by providing a poly-extrusion head that simultaneously delivers three types of ink, each one bearing a different composition of dopant, or no dopant at all.
In accordance with another aspect of poly-extrusion head 130C-1, the various nozzles merge the flow of ink into a continuous sheet of interleaved materials, which is depicted in
An application in which extrusion head 130C-2 is particularly useful is the writing of lines of heavily doped semiconductor fingers on to a surface of a solar cell. These semiconductor fingers serve to provide a low resistance path for carriers from the surface of the cell to the gridlines of the cell. Inclusion of these fingers improves cell performance in several ways including enabling a lightly doped emitter layer without a large resistive loss penalty, improving the blue photo-response of the cell, reducing the contact resistance, and allowing gridlines to be spaced farther apart, thereby decreasing light shadowing.
In current practice, the incorporation of semiconductor fingers into the emitter of a solar cell requires additional process steps, and therefore, added cost. Typically, the cells are first processed in a phosphorous diffusion reactor to produce a lightly doped emitter as with conventional cells, and then three steps are added: (1) laser writing of trenches in the silicon (2) a damage etch and (3) an additional phosphorous diffusion step. In a useful improvement on this process, the light and heavy doping sources are applied simultaneously in a single extrusion operation, thereby eliminating the three additional process steps. In a preferred method embodiment, the relatively narrow lines are a heavily doping ink, and the relatively wider lines are a lightly doping ink. Semiconductor fingers may be applied to one or to both sides of the semiconductor wafer. If both sides are patterned, the thermal treatment to drive in the dopant may be performed in a single step.
A known problem with the solid dopant source approach is that while the dopants are diffusing, they diffuse out of the source and onto other parts of the wafer, creating an undesirable doping effect in the surrounding portions of the wafer. In accordance with another embodiment of the present invention depicted in
It is a further desirable feature that the ends of the line of solid dopant source are capped by the capping structure. It is an aspect of this invention that the flows of materials which form the doping source and the capping structure are varied. This variation in flow enables for example the production of a co-extruded line in which ends of the line are capped.
Although the present invention has been described with respect to certain specific embodiments, it will be clear to those skilled in the art that the inventive features of the present invention are applicable to other embodiments as well, all of which are intended to fall within the scope of the present invention. For example, the extruded structures disclosed in
This application is a divisional of U.S. patent application Ser. No. 11/609,825, entitled “Solar Cell Fabrication Using Extruded Dopant-Bearing Materials” filed Dec. 12, 2006.
Number | Name | Date | Kind |
---|---|---|---|
3973994 | Redfield | Aug 1976 | A |
4104091 | Evans, Jr. et al. | Aug 1978 | A |
4153476 | Frosch et al. | May 1979 | A |
4205216 | Douglas | May 1980 | A |
4223202 | Peters et al. | Sep 1980 | A |
4355196 | Chai | Oct 1982 | A |
4479027 | Todorof | Oct 1984 | A |
4514583 | Izu et al. | Apr 1985 | A |
4533814 | Ward | Aug 1985 | A |
4540843 | Gochermann et al. | Sep 1985 | A |
4589191 | Green et al. | May 1986 | A |
4602120 | Wakefield et al. | Jul 1986 | A |
4609037 | Wheeler et al. | Sep 1986 | A |
4796038 | Allen et al. | Jan 1989 | A |
4826777 | Ondris | May 1989 | A |
4896015 | Taboada et al. | Jan 1990 | A |
4933623 | Fox | Jun 1990 | A |
4996405 | Poumey et al. | Feb 1991 | A |
5011565 | Dube et al. | Apr 1991 | A |
5075281 | Testardi | Dec 1991 | A |
5151377 | Hanoka et al. | Sep 1992 | A |
5213628 | Noguchi et al. | May 1993 | A |
5356488 | Hezel | Oct 1994 | A |
5449413 | Beauchamp et al. | Sep 1995 | A |
5538563 | Finkl | Jul 1996 | A |
5543333 | Holdermann | Aug 1996 | A |
5569399 | Penney et al. | Oct 1996 | A |
5665175 | Safir | Sep 1997 | A |
5751436 | Kwon et al. | May 1998 | A |
5916461 | Costin et al. | Jun 1999 | A |
5929530 | Stone | Jul 1999 | A |
5981902 | Arita et al. | Nov 1999 | A |
5986206 | Kambe et al. | Nov 1999 | A |
5990413 | Ortabasi | Nov 1999 | A |
6032997 | Elliott et al. | Mar 2000 | A |
6164633 | Mulligan et al. | Dec 2000 | A |
6180869 | Meier et al. | Jan 2001 | B1 |
6183186 | Howells et al. | Feb 2001 | B1 |
6203621 | Tran et al. | Mar 2001 | B1 |
6232217 | Ang et al. | May 2001 | B1 |
6310281 | Wendt et al. | Oct 2001 | B1 |
6323415 | Uematsu et al. | Nov 2001 | B1 |
RE37512 | Szlufcik et al. | Jan 2002 | E |
6351098 | Kaneko | Feb 2002 | B1 |
6354791 | Wytman et al. | Mar 2002 | B1 |
6410843 | Kishi et al. | Jun 2002 | B1 |
6413113 | Uher et al. | Jul 2002 | B2 |
6429037 | Wenham et al. | Aug 2002 | B1 |
6459418 | Comiskey et al. | Oct 2002 | B1 |
6555739 | Kawam | Apr 2003 | B2 |
6667434 | Morizane et al. | Dec 2003 | B2 |
6924493 | Leung | Aug 2005 | B1 |
6979798 | Gu et al. | Dec 2005 | B2 |
7002675 | MacGibbon et al. | Feb 2006 | B2 |
7129592 | Yetter | Oct 2006 | B1 |
7388147 | Mulligan et al. | Jun 2008 | B2 |
7394016 | Gronet | Jul 2008 | B2 |
20010008230 | Keicher et al. | Jul 2001 | A1 |
20020060208 | Liu et al. | May 2002 | A1 |
20020127953 | Doan et al. | Sep 2002 | A1 |
20020154396 | Overbeck | Oct 2002 | A1 |
20030095175 | Agorio | May 2003 | A1 |
20030129810 | Barth et al. | Jul 2003 | A1 |
20030213429 | Kreuzer | Nov 2003 | A1 |
20040012676 | Weiner | Jan 2004 | A1 |
20040048001 | Kiguchi et al. | Mar 2004 | A1 |
20040200520 | Mulligan et al. | Oct 2004 | A1 |
20050000566 | Posthuma et al. | Jan 2005 | A1 |
20050133084 | Joge et al. | Jun 2005 | A1 |
20050221613 | Ozaki et al. | Oct 2005 | A1 |
20050253308 | Sherwood | Nov 2005 | A1 |
20060046269 | Thompson et al. | Mar 2006 | A1 |
20060076105 | Furui et al. | Apr 2006 | A1 |
20060251796 | Fellingham | Nov 2006 | A1 |
20060266235 | Sandhu et al. | Nov 2006 | A1 |
Number | Date | Country |
---|---|---|
1346517 | Apr 2002 | CN |
0257157 | Mar 1988 | EP |
0851511 | Jul 1998 | EP |
1145797 | Oct 2001 | EP |
1351318 | Oct 2003 | EP |
1763086 | Mar 2007 | EP |
1833099 | Sep 2007 | EP |
02055689 | Feb 1990 | JP |
02-187291 | Jul 1990 | JP |
2002111035 | Apr 2002 | JP |
2004266023 | Sep 2004 | JP |
9108503 | Jun 1991 | WO |
9215845 | Sep 1992 | WO |
9721253 | Jun 1997 | WO |
9748519 | Dec 1997 | WO |
02052250 | Jul 2002 | WO |
03047005 | Jun 2003 | WO |
2006097303 | Sep 2006 | WO |
Number | Date | Country | |
---|---|---|---|
20110111076 A1 | May 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11609825 | Dec 2006 | US |
Child | 13010759 | US |