The present invention relates to a print technology for applying solder onto a substrate through a mask of which lower surface is put on the top of the substrate, by pressing a solder pool staying on the surface of the mask using a squeegee while sliding the squeegee on the surface of the mask in order to apply solder, and, more particularly, relates to a technology for replenishing the solder pool with solder.
There has been generally known a conventional printer in which a mask is put on the top of a substrate. A solder pool staying on the surface of the mask is pressed and moved on the surface of the mask by a squeegee, whereby solder is applied (printed) onto a predetermined position on the substrate through an opening part formed on the mask. In this printer, the solder pool is formed by accumulating solder that is substantially greater in amount than solder used on a single substrate. When printing using this solder pool, the solder is consumed by repeated printing, and consequently the solder residue in the solder pool decreases gradually. There has been proposed a technology for using a sensor to detect the solder residue in the solder pool and automatically replenishing the solder pool with solder based on the detection result (see Patent Document 1, for example).
Patent Document 1: Japanese Patent Application Publication H6-23945 (Paragraph 0018,
In the printer described in Patent Document 1, a pair of squeegees with different directions of tilt is alternately used for pressing a solder pool, by reciprocally moving the pair of squeegees along the surface of a mask. Specifically, one of the pair of squeegees is moved in a forward direction while pressing the solder pool during the forward movement of the pair of squeegees, whereas the other squeegee is moved in a returning direction while pressing the solder pool during the backward movement of the pair of squeegees. This means that the solder pool constantly moves back and forth between the pair of squeegees. A sensor is disposed in the vicinity of the forward-moving squeegee to detect the solder pool. Solder replenishment is performed based on the result of the detection. Therefore, the moving range of the pair of squeegees needs to be set in consideration of the following situation. In other words, in order to detect the solder residue in the solder pool after performing a backward print process in which the backward-moving squeegee is moved in the returning direction, both the forward-moving squeegee and the backward-moving squeegee need to be directed in the forward direction again, to bring the sensor close to the solder pool.
Here, if the pair of squeegees is directed in the opposite direction immediately after the backward print process, the abovementioned other squeegee moves toward an opening part of a mask. When the solder drips from this other squeegee during or after the movement of the squeegees then, the dripping solder adheres to the substrate through the opening part of the mask. In this case, if the position of the substrate is not accurately positioned to the mask, the dripping solder might adhere to an inappropriate section of the substrate (a section where the solder is not supposed to be applied). In order to avoid such a problem, the execution of solder detection and solder replenishment after positioning the substrate is considered. However, employing such an operation sequence causes delay in start of the subsequent printing due to the solder detection and replenishment, resulting in cycle loss.
In order to avoid the problem described above, it is also considered to remain the movement of the pair of squeegees by a constant distance in the returning direction even after the backward print process so as to move the solder pool toward a non-opening part of the mask, and then directing the pair of squeegees in the opposite direction again to bring the sensor close to the solder pool. However, it is necessary to set a region in the mask for ensuring the pair of squeegees to overrun in the returning direction so that the solder pool is moved toward the non-opening part. This narrows down a region to be provided with the opening part. In other words, a limit needs to be set on the size of the substrate, causing a reduction in the versatility of the device.
The present invention is contrived in view of the problems described above, and an object thereof is to provide a solder feeder capable of regulating the solder residue in a solder pool used in solder printing, without limiting the size of a substrate or causing cycle loss. The present invention also aims to provide a printer and printing method as well.
A solder feeder according to the present invention is a solder feeder which replenishes a solder pool with solder, the solder feeder is equipped with a printer, the printer executes, alternately, a forward print process in which a squeegee, supported on a head, presses a solder pool staying on a surface of a mask from the upstream side in a forward direction while moving the head relatively along the surface of the mask in the forward direction, in order to apply solder onto a substrate through the opening part of the mask of which lower surface is put on the top of the substrate, and a backward print process in which the squeegee presses the solder pool from the upstream side in a returning direction while moving the head relatively along the surface of the mask, in order to apply solder onto a substrate through the opening part of the mask. The solder feeder is provided with: solder feeding means for feeding the solder; solder amount measuring means, attached to the head, for measuring an amount of solder in the solder pool when the squeegee passes through the solder pool on the downstream side in a moving direction before switching in a process where switching is made from any one of the forward print process and backward print process to the other; solder replenishment necessity determination means for determining whether solder replenishment is required, based on the amount of solder measured by the solder amount measuring means; and replenishment control means for controlling the solder feeding means to replenish the solder pool with the solder, based on a result of the determination made by the solder replenishment necessity determination means.
A printer according to the present invention is provided with: printing means for executing alternately a forward print process in which a squeegee supported on a head presses a solder pool staying on a surface of the mask from the upstream side in a forward direction while moving the head relatively along the surface of the mask in the forward direction, in order to apply solder onto a substrate through the opening part of the mask of which lower surface is put on the top of the substrate, and a backward print process in which the squeegee presses the solder pool from the upstream side in a returning direction while moving the head relatively along the surface of the mask, in order to apply solder onto a substrate through the opening part of the mask; solder feeding means for feeding the solder; solder amount measuring means, attached to the head, for measuring an amount of solder in the solder pool when the squeegee passes through the solder pool on the downstream side in a moving direction before switching in a process where switching is made from any one of the forward print process and backward print process to the other; solder replenishment necessity determination means for determining whether the solder pool needs to be replenished with solder, based on a result of the measurement performed by the solder amount measuring means; and replenishment control means for controlling the solder feeding means to replenish the solder pool with the solder, based on a result of the determination made by the solder replenishment necessity determination means.
A printing method according to the present invention is provided with steps of: a forward print process in which a squeegee supported on a head presses a solder pool staying on the surface of the mask from the upstream side in a forward direction while moving the head relatively along the surface of the mask in the forward direction, in order to apply solder onto a substrate through the opening part of the mask of which lower surface is put on the top of the substrate; a backward print process in which the squeegee presses the solder pool from the upstream side in a returning direction while moving the head relatively along the surface of the mask in the returning direction, in order to apply solder onto a substrate through the opening part of the mask; a switching process of switching a position of the squeegee in relation to the solder pool when alternately switching between the forward print process and the backward print process; a solder amount measuring process of measuring an amount of solder in the solder pool when the squeegee passes through the solder pool on the downstream side in a moving direction before switching in a process where switching is made from any one of the forward print process and backward print process to the other; a solder replenishment necessity determination process of determining whether solder replenishment is required, based on a result of the measurement performed in the solder amount measuring process; and a replenishing process of replenishing the solder pool with the solder, based on a result of the determination made in the solder replenishment necessity determination process.
According to the present inventions (the solder feeder, the printer, and the printing method) configured as above, the forward print process and the backward print process are performed by a single squeegee, and the squeegee is switched and moved at a timing of switching between the forward print process and the backward print process. When the squeegee passes through the solder pool at the downstream in the moving direction prior to the switching in the course of switching from any one of the forward print process and the backward print process to the other, the amount of solder in the solder pool is measured. Based on the measured amount of solder, it is determined as to whether replenishment of the solder is necessary or not. Thus, even if the solder adhered to the squeegee drips during the solder amount measurement, the drop of the solder adheres to a non-opening part of the mask. For this reason, the amount of solder in the solder pool can be measured without employing the operation sequence that causes cycle loss. Moreover, it is no longer necessary to cause the squeegee to overrun excessively at the non-opening part of the mask. Accordingly, the amount of solder in the solder pool can be measured in a short period of time during the solder printing processes regardless the masks having an opening part not only with a comparatively small region, but also with a comparatively large region. Judgment as to whether solder replenishment is required is determined based on the amount of solder that is measured as described above, and the solder pool is replenished with the solder as needed, whereby the solder pool is regulated.
As described above, according to the present invention, the amount of solder in the solder pool can be measured when the squeegee passes through the solder pool at the non-opening part of the mask at the time of switching. Therefore, the solder adhering to the squeegee during the measurement of the solder pool can be prevented from dripping on the opening part of the mask. Consequently, the amount of solder in the solder pool can be measured without employing the operation sequence causing cycle loss, whereby the occurrence of cycle loss can be prevented. Furthermore, the amount of solder in the solder pool can be measured during the operation of switching the position of the squeegee in relation to the solder pool, and the limit that is set on the size of the substrate in the prior art can be eliminated, enhancing the versatility. Based on the amount of solder measured as described above, the solder pool can be regulated by replenishing the solder pool with the solder as necessary.
[
[
[
[
[
[
[
[
[
[
[
As shown in
The substrate delivery mechanism 20 has a movable board 21 that is in a rectangular shape in a planar view. This movable board 21 is driven by a group of drive units, not shown, to be able to move horizontally along the Y-axis direction as well as up and down along the Z-axis direction, and to be able to rotate about the Z-axis. The conveyor unit 25, a substrate clamp unit 26 (see
The main conveyors 251a, 251b of the conveyor unit 25 are distanced from each other in the Y-axis direction and extend in parallel in the X-axis direction to each other. The front conveyor 251a is supported by a front supporting member attached to the movable board 21, while the rear conveyor 251b is supported by a rear supporting member attached to the movable board 21.
Plate-like clamping pieces 26a, 26b (see
As shown in
Moreover, in this substrate delivery mechanism 20, the movements of the movable board 21, by the substrate delivery mechanism controller 43, in the X-axis direction, Y-axis direction, and a direction of rotating about the Z-axis, causes the substrate 1 that is backed up by the backup pins 272 and held by the clamping pieces as described above to be positioned in relation to a mask 51 of a mask clamp unit 50.
The carrying-in conveyors 31 are disposed in order to support and deliver, in the X-axis direction, the unprocessed substrate 1 onto which solder is to be printed. When the carrying-in conveyors 31, 31 are driven while the conveyors 251a, 251b on the substrate delivery mechanism 20 are positioned between the carrying-in conveyors 31, 31 and the carrying-out conveyors 32, 32, the unprinted substrate 1 will be sent to the conveyors 251a, 251b on which the substrate delivery mechanism 20 is disposed. When the conveyors 251a, 251b receive the unprocessed substrate 1 that is sent from the carrying-in conveyors 31, 31, the height of the movable board 21 is adjusted to position the pair of conveyors 251a, 251b at the same level as the carrying-in conveyors 31, 31 and the carrying-out conveyors 32, 32 so as to align the conveyors 251a, 251b in the X-axis direction. Then, the conveyors 251a, 251b will be driven along with the carrying-in conveyors 31, 31.
The carrying-out conveyors 32 are disposed in order to carry-out, in the X-axis direction, the processed substrate 1 onto which the solder is printed while supporting the substrate 1. To deliver the processed substrate 1 on which the solder is printed to the carrying-out conveyors 32, 32, the conveyors 251a, 251b are driven together with the carrying-out conveyors 32, 32 after the substrate 1 is processed. Note that a Y-axis direction interval between the carrying-in conveyors 31 and 31, a Y-axis direction interval between the conveyors 251a and 251b, and a Y-axis direction interval between the carrying-out conveyors 32 and 32 can be changed by independent conveyor width adjusting devices respectively, which are not shown, and are adjusted in accordance with the width of the substrate 1 in a setup process prior to the start of printing.
The mask clamp unit 50 is for detachably fixing the mask 51 to frame members 11 that are fixed to the base 10. The mask 51 is formed by an operator's manipulation by pasting a thin stencil up on lower surfaces of mask frames (mask WAKU) 52. The mask frames 52 are fixed to the frame members 11 above the substrate delivery mechanism 20 by the mask clamp unit 50. As a result, the mask 51 is held above the substrate delivery mechanism 20. Opening parts though which solder passes are formed in the middle of the mask 51. Non-opening parts DM1, DM2 on which a solder pool SP can be placed are formed on at least both front and rear sides of the mask 51.
Solder feeding unit 60 and squeegee unit 70 are disposed above an upper position of the mask 51. In the solder feeding unit 60, each part of the solder feeding unit 60 is activated in response to a control command issued by a solder feed controller 44 of the control unit 40, whereby the solder is fed to the mask 51 and a solder pool is formed thereon or the solder is replenished to the solder pool. The squeegee unit 70 spreads the solder out on the mask 51 in response to a drive command sent by a squeegee controller 45 (see
Subsequent to the printing, the substrate delivery mechanism 20 is moved and positioned again between the carrying-in conveyors 31, 31 and the carrying-out conveyors 32, 32. After the processed substrate 1 is returned to the conveyors 251a, 251b by a reverse operation with respect to the abovementioned backup and substrate clamping operations, the conveyors 251a, 251b of the substrate delivery mechanism 20 are driven by the substrate delivery mechanism controller 43. The processed substrate 1 on which the printing is performed is then delivered to the carrying-out conveyors 32, 32. Thereafter, the carrying-out conveyors 32, 32 are driven to carry the processed substrate 1 out of the printer.
In the first embodiment, a substrate camera 81 for capturing images of a plurality of fiducial marks or the like on the substrate 1 is disposed movably in the X-axis direction along a beam 12 fixed to the frame members 11. The substrate delivery mechanism 20 also has a mask camera 82. The mask camera 82 moves in the X-axis direction in order to capture images of a plurality of fiducial marks (not shown) on a lower surface of the mask 51 and identify the position and type of the mask 51. Because the substrate delivery mechanism 20 is movable in the Y-axis direction, the substrate camera 81 and mask camera 82 can capture images of the plurality of fiducial marks that are separated from one another in the X-axis direction and the Y-axis direction, to recognize the positions thereof.
In addition, a cleaner 90 is attached to the front side of the substrate delivery mechanism 20 in the Y-axis direction. The cleaner 90 moves in the Y-axis direction when the substrate delivery mechanism 20 which moves in the Y-axis direction. This cleaner 90 is a device for cleaning and removing the solder etc. adhering to the mask 51 due to the solder printing performed on the substrate 1.
As shown in
The configuration and operations of the squeegee unit 70 are described next.
As shown in
As shown in
The sub frame 722 is provided with a unit assembling part 728 rotatably and a drive mechanism that drives the unit assembling part 728. The unit assembling part 728, which is a rectangular plate-like member stretched out in the X-axis direction, is supported rotatably on the sub frame 722 via a pair of unit supporting parts 730 formed at the intermediate of a longitudinal direction of the unit assembling part 728 in a protruding manner. Specifically, a second support shaft 734 extending in the X-axis direction is supported rotatably on the sub frame 722 by a bearing or the like, and the unit supporting parts 730 of the unit assembling part 728 are fixed to both end sections of the second support shaft 734. In this manner, the unit assembling part 728 is supported on the sub frame 722 so as to be able to swing freely around the X-axis.
A gear box 732 is integrally incorporated in the sub frame 722, wherein one end of the second support shaft 734 (the end part on the left-hand side of
A transmission gear (not shown) is fixed to the part of the second support shaft 734 that is inserted within the gear box 732. This transmission gear meshes with an idle gear (not shown) supported within the gear box 732. A squeegee turning motor 736 as a drive source is disposed at a rear section of the sub frame 722 and fixed to a side surface of the gear box 732. An output shaft of the squeegee turning motor 736 is inserted into the gear box 732. The inserted part of the output shaft supports a drive gear (not shown) meshing with the idle gear. When the squeegee turning motor 736 is activated, the generated drive force is transmitted to the second support shaft 734 via each of the gears. As a result, the unit assembling part 728 is turned and driven around the second support shaft 734. In other words, the drive mechanism of the unit assembling part 728 described above is configured by the squeegee turning motor 736, each of the gears, the second support shaft 734, and the like.
A squeegee assembly 738 is incorporated detachably in the unit assembling part 728. This squeegee assembly 738 is configured by the squeegee 702 and a squeegee holder 740 holding the squeegee 702. To fix the squeegee assembly 738 to the unit assembling part 728, a pair of screw shafts (not shown in figures) provided with the squeegee holder 740 passes through a guide groove formed in the unit assembling part 728, the squeegee holder 740 is put on the top of the unit assembling part 728, and, in this state, a nut member 742 with a knob is threadably mounted in each of the screw shafts.
The squeeze 702 is an elastically moderated polymeric material such as urethane rubber, polyacetal, polyethylene, or polyester (urethane rubber is employed in the present embodiment), which is formed into a plate-like member stretched out in the X-axis direction. One side of the squeegee 702 is placed and fixed on the squeegee holder 740, which is also stretched out in the X-axis direction. The other side of the squeegee 702A forms thereon a flat working surface 702a for scrapping off the solder. The activation of the squeegee turning motor 736 in response to a control command issued by the squeegee controller 45 can alternatively direct the working surface of the squeegee 702 to either the upstream side of the Y-axis direction or the downstream side of the Y-axis direction. Consequently, the same working surface 702a can be used to scrape off the solder in a forward print process and backward print process, which will be described hereinafter. In order to match a load detected by the load sensor 720 with a target printing load (the load obtained by the squeegee 702 pressing the substrate 1 or clamping pieces 26a, 26b by means of the mask 51), the squeegee controller 45 performs, during the forward print process and the backward print process, feedback-control on the head Z-axis drive motor 712.
Sideward leakage baffles 744 are pivotably attached to both end parts of the squeegee holder 740. The sideward leakage baffles 744 are held by the squeegee holder 740, such that, when the print head 704 is in a lifted-up position, the centerlines of the sideward leakage baffles 744 intersect perpendicularly with the working surface 702a due to the urging force of a twisted spring, which is not shown. In a state in which the print head 704 is lifted down and the squeegee 702 is pressed against the substrate 1 or clamping pieces 26a, 26b by means of the mask 51 at a predetermined attack angle, the sideward leakage baffles 744 are turned against the elastic repulsive force of the unshown twisted spring by the reactive force applied from the substrate 1 or clamping pieces 26a, 26b via the mask 51. As a result, an end surface 744a or 744b comes into contact with the mask 51. Therefore, the sideward leakage baffles 744 prevent the solder from leaking sideward to the outside of the squeegee 702 in the X-axis direction while printing. Note that the reactive force applying to the sideward leakage baffles 744 against the elastic repulsive force of the twisted spring is considerably smaller than the reactive force that applies directly from the substrate or clamping pieces 26a, 26b onto the squeegee 702. Therefore, when the feedback control is performed to obtain the printing load as the target load, the load detected by the load sensor 720 is considered as the printing load.
The configuration and operations of the solder feeding unit 60 are described next.
As shown in
As shown in
The container with adopter 614 is a unit in which an upper end part 612 of a discharge adopter 610 is fit into and assembled with a solder container 608. The solder container 608 is a cylindrical container with an opening at its lower end, and has a cavity formed therein with a substantially circular cross section. Solder is already filled in this internal space when the printer is supplied by the manufacturer.
The upper end part 612 of the discharge adopter 610 is finished into an annular piston, which is narrower than the inner diameter of the solder container 608, and can be fit into the solder container 608. The solder container 608 and the discharge adopter 610 can be moved relative to each other while the upper end part 612 is positioned along an inner wall surface of the solder container 608.
Moreover, in order to clear the gap, or ensure the sealability between the upper end part 612 and the solder container 608 when the upper end part 612 of the discharge adopter 610 is fit inside the solder container 608, two annular grooves (not shown) are formed in the upper end part 612, and sealing parts 620, 622 are mounted into the annular grooves respectively in this first embodiment. When the upper end part 612 of the discharge adopter 610 having the sealing parts 620, 622 mounted thereon is fit into the solder container 608, the upper end part 612 enters into the solder container 608 along the inner wall surface thereof, in the beginning The sealing part 620 then comes into sliding-contact with the inner wall surface of the solder container 608. When the upper end part 612 goes inside further, the sealing part 622 then comes into sliding-contact with the inner wall surface of the solder container 608, as well as the sealing part 620. As a result, these sealing parts 620, 622 ensure the sealability between the discharge adopter 610 and the solder container 608.
The container with adopter 614 is also set in the solder feeding unit 60 as follows. As shown in
According to the first embodiment, the container supporting member 606 is capable of moving up and down. In order to drive the container supporting member 606 up and down, a solder discharge motor 632 is attached to the unit main body 602, and a ball screw shaft 634 that is rotated in response to rotary drive force of the solder discharge motor 632 is provided vertically. A lower end of the ball screw shaft 634 is rotatably supported by the unit main body 602, while an upper end of the same is coupled to the container supporting member 606 via a bracket 636. Therefore, when the solder discharge motor 632 is activated in response to an operation command issued by the solder feed controller 44, the container supporting member 606 is moved in the vertical direction, and the solder container 608 is lifted up or down relative to the discharge adopter 610. In this manner, in the first embodiment, the discharge adopter 610 is relatively moved along the inner wall surface of the solder container 608 by lifting up the solder container 608, remaining the discharge adopter 610 fixed to the unit main body 602. Thus, when the distance between an inner bottom surface of the solder container 608 and a tip end surface of the discharge adopter 610 decreases as the solder container 608 is lifted down, the solder is extruded downwardly from the solder container 608 via a discharge hole 638 of the discharge adopter 610 by the amount corresponding to this moving distance.
A guide block member 642 formed with a guide flow path 640 is attached to the outlet side of the discharge hole 638 (the lower side of
A shutter member 646 is disposed in a position near the feed port 644. This shutter member 646 moves freely between a closing position where the feed port 644 is closed and an opening position where the feed port 644 is opened, and is capable of moving between these positions by means of a solder cut cylinder 648. The solder cut cylinder 648 is controlled such that a drive command is issued from the solder feed controller 44 to a cut valve (not shown) and thereby activating a piston (not shown) of the solder cut cylinder 648 in a predetermined direction. When the solder is not fed, the solder feed controller 44 prevents solder from being fed from the feed port 644 by placing the shutter member 646 in the closing position and the. When, on the other hand, the solder needs to be fed, the solder feed controller 44 control the shutter member 646 to move to the opening position to start feeding the solder. Note that, when the feeding of the solder is to be stopped, the solder feed controller 44 controls the solder cut cylinder 648 to move the shutter member 646 to the closing position. This shutter movement cuts the continuous discharge of the solder from the feed port 644, and consequently the feeding of the solder from the feed port 644 is stopped.
According to the printer configured as described above, in the setup process prior to the start of printing, the Y-axis direction interval between the carrying-in conveyors 31, 31, the Y-axis direction interval between the conveyors 251a, 251b, and the Y-axis direction interval between carrying-out conveyors 32, 32 are adjusted in accordance with the width of the substrate 1. Furthermore, the mask frames 52 on which a new mask 51 is pasted up by the operator are disposed in a fixed manner in the frame members 11 by the mask clamp unit 50. Moreover, the squeegee holder 740 incorporated with the desired squeegee 702 is incorporated into the unit assembling part 728. In addition, the solder pool SP is formed on the surface of the mask 51 by feeding the solder from the solder feeding unit 60, based on the initial solder discharge amount stored in the data storage unit 48.
Once the print preparation process is completed as above, the arithmetic processor 41 controls each part of the printer in accordance with the print program that is stored in the program storage unit 42 beforehand, and executes the forward print process and the backward print process by alternately switching therebetween. In addition, in the first embodiment, the substrate 1 is replaced when switching between the printing processes, and at the same time the “solder amount measuring” process, “solder replenishment necessity determination” process, and “solder replenishing” process are executed each time the printing processes are switched. Therefore, the control unit 40 functions as the “solder amount measuring means,” “determination means,” and “replenishment control means” of the present invention, as will be described later. The printing operations and the operations associated with the solder according to the first embodiment are described hereinafter with reference to
As shown in process (a) in
Once the forward print process is completed, the control unit 40 replaces the substrate as shown in “the first embodiment” column in
Once the process of “measuring the amount of solder on the front side” is completed, the arithmetic processor 41 determines whether solder needs to be replenished or not. When the reduction amount of the width W of the solder pool SP is less than a predetermined value and there remains a sufficient amount of solder in the solder pool SP, the arithmetic processor 41 moves the squeegee 702 to a position for starting the backward print process, without executing the process of “replenishing solder on the front side” (process (c) in
When “replenishing solder on the front side,” the squeegee 702 is further rotated in the clockwise direction on the page of
Once the squeegee 702 is moved completely to the position for starting the backward printing, the backward print process is executed (process (e) in
Once the backward print process is completed, the control unit 40 executes the substrate replacement as in the forward print process. Simultaneously with the substrate replacement, the control unit 40 executes the process of “measuring the amount of solder on the rear side” and the process of “determining the necessity of replenishing solder on the rear side” (process (f) in
Once the process of “measuring the amount of solder on the rear side” is completed in the manner described above, the arithmetic processor 41 determines whether solder needs to be replenished or not. When the reduction amount of the width W of the solder pool SP is less than a predetermined value and there remains a sufficient amount of solder in the solder pool SP, the arithmetic processor 41 moves the squeegee 702 to a position for starting the forward print process, without executing the process of “replenishing solder on the rear side” (process (h) in
As described above, according to the first embodiment, the forward print process and the backward print process are performed by a single squeegee 702, and the amount of solder is measured while switching from the forward print process to the backward print process and while switching from the backward print process to the forward print process. When switching from the forward print process to the backward print process, the amount of solder in the solder pool SP is measured while the squeegee 702 is located on the downstream side of the forward direction (the squeegee 702 is positioned on the side opposite to the opening parts of the mask 51), which is the direction of the movement of the squeegee 702 before the printing processes are switched. When switching from the backward print process to the forward print process, the amount of solder in the solder pool SP is measured while the squeegee 702 is positioned on the downstream side of the returning direction (the squeegee 702 is positioned on the side opposite to the opening parts of the mask 51), which is the direction of the movement of the squeegee 702 before the printing processes are switched. Thus, even when the solder adhering to the squeegee 702 drips during the solder amount measurement, this solder adheres to the non-opening parts DM1, DM2 of the mask 51. For this reason, the amount of solder in the solder pool SP can be measured without employing the operation sequence that causes cycle loss.
Moreover, as described above, it is no longer necessary to cause solder pool SP to overrun excessively at the non-opening parts DM1, DM2 of the mask 51. Accordingly, the amount of solder in the solder pool SP can be measured in a short period of time, even when performing solder printing by means of not only a mask 51 with a comparatively small region provided with the opening part (at the center of the mask), but also a mask 51 with a comparatively large region provide with the opening part. Based on the amount of solder that is measured as described above, the solder pool SP is replenished with solder fed from the solder feeding unit 60 according to need. Thus, the solder residue in the solder pool SP is constantly regulated. As a result, automatic solder printing can be continuously carried out well.
According to the present embodiment, the solder amount measuring means has a plurality of sensors attached to the head, and the solder replenishment necessity determination means determines the necessity of replenishing the solder, based on a result of measurement performed by one of the plurality of sensors that is most remote from the squeegee.
The solder amount measuring means measures the width of the solder pool in a relative displacement direction, and the solder replenishment necessity determination means determines the necessity of replenishing the solder by obtaining the width of the solder pool.
Note that the present invention is not limited to the first embodiment illustrated above, and various modifications other than those mentioned above can be made without departing from the scope of the invention. For example, in the first embodiment, “solder amount measurement” is performed every time when switching between the forward print process and the backward print process, and at the same time “solder replenishment” is performed appropriately based on the result of the “solder amount measurement,” as shown in
For example, as shown in “the second embodiment” column in
Furthermore, according to the first embodiment, the “solder amount measuring” process is executed, and, according to need, the “solder replenishing” process is executed immediately thereafter based on the measurement result. However, the measurement result of the “solder amount measuring” process may be stored in a memory (not shown), the printing operation may be executed once or more without carrying out the “solder replenishing” process, and thereafter the “solder replenishing” process may be performed when switching the printing operation to the subsequent printing operation. For example, as shown in “the third embodiment” column in
As shown in “the fourth embodiment” column in
In addition, according to the first embodiment, the amount of solder in the solder pool SP is measured by the single sensor SC that is attached to the side surface of the sub frame 722, which is located on the side opposite to the gear box 732, as shown in
In this embodiment, in the process of “measuring the amount of solder on the front side,” the squeegee 702 is positioned on the downstream side of the forward direction (the front side of the Y-axis direction) with respect to the solder pool SP, as shown in process (b) in
Moreover, in the embodiment, although the solder residue in the solder pool SP is calculated based on the width W of the solder pool SP in the Y-axis direction, the method of calculating the solder residue is not limited thereto. For example, when solder sensors SC, SC1, SC2 are used for detecting the height from each of sensors to a detection section, not only the width W of the solder pool SP in the Y-axis direction but also the cross section of the solder pool SP on a YZ planar surface can be measured. Here, when such sensors are used as the “solder amount measuring means” of the present invention, the solder residue may be obtained based on the cross-sectional area of the solder pool SP.
The embodiment described above merely illustrates the preferred specific examples of the present embodiment, and the present invention is not limited to the embodiment illustrated above. It goes without saying that various modifications can be made within the scope of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
2009-027310 | Feb 2009 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2010/051116 | 1/28/2010 | WO | 00 | 6/17/2011 |