This non-provisional application claims priority under 35 U.S.C. §119(a) on Patent Application No. 2005-047149 filed in Japan on Feb. 23, 2005, the entire contents of which are hereby incorporated by reference.
1. Field of the Invention
The present invention relates to a solid-state imaging device which is suitable as a component of a module for an optical device.
2. Description of Related Art
As a conventional solid-state imaging device, a solid-state imaging device disclosed in Japanese Patent Application Laid-Open No. 2004-296453 is well known.
In this prior art, a solid-state image sensor such as a CCD image sensor or a CMOS image sensor is provided on a wiring substrate in such a manner that a face thereof, which is opposite to a pixel area, is fixed to the wiring substrate. A transparent cover is fixed to an outward face of the pixel area through an adhesive layer so as to oppose the pixel area of the solid-state image sensor. Plural connecting terminals of the wiring substrate are connected with plural connecting terminals of the solid-state image sensor through wirings.
However, the aforementioned conventional solid-state imaging device has the following problems.
That is, since the wirings for connection between the plural connecting terminals of the wiring substrate and the plural connecting terminals of the solid-state image sensor are exposed, there is a possibility that the wirings are disadvantageously brought into contact with something at the time of transporting the solid-state imaging device or at the time of assembling the solid-state imaging device with another component. As a result, there arises a problem that the wirings are readily cut or the wirings are readily disconnected from the connecting terminals.
The present invention has been made in view of the aforementioned circumstances. It is therefore a main object of the present invention to provide a solid-state imaging device in which the wiring in the aforementioned conventional technique falls into a cavity of a wiring substrate, whereby the wiring can be prevented from being cut.
It is another object of the present invention to provide a solid-state imaging device in which connecting terminals of a wiring substrate are positioned at not a bottom face side but an opening side of a cavity, whereby a wiring connecting process can be readily carried out.
It is still another object of the present invention to provide a solid-state imaging device in which at least part of a transparent cover falls into a cavity of a wiring substrate, whereby the transparent cover can be protected.
It is yet another object of the present invention to provide a solid-state imaging device in which wirings can be protected by a sealant.
It is yet another object of the present invention to provide a solid-state imaging device in which an electronic component falls into a cavity of a wiring substrate, whereby the electronic component can be protected.
It is yet another object of the present invention to provide a solid-state imaging device in which wirings and an electronic component can be protected by a sealant.
In order to achieve the aforementioned objects, the present invention employs the following configurations.
A solid-state imaging device according to the present invention comprises: a wiring substrate; a solid-state image sensor fixed to the wiring substrate; and a transparent cover fixed to the solid-state image sensor so as to oppose a pixel area of the solid-state image sensor; and is characterized in that a cavity which is provided with, at an inner face thereof, plural connecting terminals is formed on one face of the wiring substrate, the solid-state image sensor is provided with plural connecting terminals, and is fixed to a bottom face of the cavity in a state where the solid-state image sensor falls into the cavity, and the plural connecting terminals provided in the cavity are connected with the plural connecting terminals provided on the solid-state image sensor, respectively through a wiring which is falls into the cavity.
According to the present invention, wirings fall into a cavity and are protected by a wiring substrate. Thus, it is possible to prevent cutting of the wiring and disconnection of the wiring from a connecting terminal at the time of transporting a solid-state imaging device or at the time of assembling the solid-state imaging device with another component. In addition, since a solid-state image sensor falls into the cavity of the wiring substrate, it is possible to protect the solid-state image sensor by means of the wiring substrate.
A solid-state imaging device according to the present invention is characterized in that a step portion having a flat face which is in parallel with the bottom face of the cavity and is provided with the plural connecting terminals thereon is formed on an inner side face of the cavity.
According to the present invention, connecting terminals are formed on a flat face and, also, connecting terminals of a wiring substrate are positioned at not a bottom face side but an opening side of a cavity. Thus, it is unnecessary to insert a tool for wiring connection so as to reach the bottom face of the cavity; therefore, a wiring connecting process can be readily carried out.
A solid-state imaging device according to the present invention is characterized in that at least part of the transparent cover falls into the cavity.
According to the present invention, at least part of a transparent cover falls into a cavity. Thus, it is possible to protect the transparent cover by means of a wiring substrate within a possible range.
A solid-state imaging device according to the present invention is characterized in that a sealant is filled in a space formed between outer side faces of the solid-state image sensor and the transparent cover and the inner side face of the cavity.
According to the present invention, it is possible to protect a wiring by means of a sealant and, also, to enhance the entire strength of the solid-state imaging device.
A solid-state imaging device according to the present invention is characterized in that an electronic component which is provided with plural connecting terminals is interposed between the bottom face of the cavity and the solid-state image sensor, and the plural connecting terminals provided on the electronic component are connected with the plural connecting terminal provided on the wiring substrate, respectively through a wiring which falls into the cavity.
According to the present invention, an electronic component falls into a cavity of a wiring substrate. Thus, it is possible to protect the electronic component by means of the wiring substrate.
A solid-state imaging device according to the present invention is characterized in that a sealant is filled in a space formed between outer side faces of the electronic component, the solid-state image sensor and the transparent cover and the inner side face of the cavity.
According to the present invention, it is possible to protect wirings by means of a sealant and, also, enhance the entire strength of the solid-state imaging device including an electronic component.
The above and further objects and features of the invention will more fully be apparent from the following detailed description with accompanying drawings.
Hereinafter, description will be given of a solid-state imaging device according to the present invention on the basis of several embodiments thereof.
As illustrated in
Herein, plural connecting terminals 9 are provided on the flat face 6. As illustrated in
A solid-state image sensor 13 such as a CCD image sensor or a CMOS image sensor is fixedly provided on the bottom face 5 of the cavity 3 of the wiring substrate 2 by means of an adhesive (not illustrated). Herein, an outer shape of the solid-state image sensor 13 is rectangular such that four sides thereof are substantially in parallel with the four sides of the outer shape of the bottom face 5 of the cavity 3 when being viewed from above, and a size of the solid-state image sensor 13 is smaller than the outer shape of bottom face 5 when being viewed from above. Further, one face (hereinafter, referred to as “upper face”) of the solid-state image sensor 13 is provided with a pixel area (effective pixel area face) which is rectangular when being viewed from above. Accordingly, in the solid-state image sensor 13 is fixed to the bottom face 5 of the cavity 3 of the wiring substrate 2 at a face on which no pixel area 14 is formed (hereinafter, referred to as “lower face”). Herein, the solid-state image sensor 13 has plural connecting terminals 15 at its circumferential portion. It should be noted that the solid-state image sensor 13 completely falls into the cavity 3.
An outer shape of the pixel area 14 of the solid-state image sensor 13 is rectangular such that four sides thereof are substantially in parallel with the four sides of the solid-state image sensor 13 when being viewed from above, and a size of the pixel area 14 of the solid-state image sensor 13 is smaller than the outer shape of the solid-state image sensor 13 when being viewed from above.
A rectangular transparent cover 17, which is made of, for example, a glass plate and is slightly larger than the pixel area 14 when being viewed from above, is fixed so as to oppose the pixel area 14 of the solid-state image sensor 13. More specifically, the transparent cover 17 is fixed to a rectangular frame-like portion on the outside of the pixel area 14 of the upper face of the solid-state image sensor 13, through an adhesive layer 18 made of, for example, an acrylic adhesive. Herein, the adhesive layer 18 is provided on an entire circumferential portion of the transparent cover 17. Accordingly, the pixel area 14 of the solid-state image sensor 13 is sealed with the transparent cover 17 and the adhesive layer 18 and, therefore, is protected from dust. Herein, the depth of the cavity 3, the thickness of the solid-state image sensor 13, and the thickness of the adhesive layer 18 are determined, respectively, such that at least part of the transparent cover 17 in thickness falls into the cavity 3.
Each of the connecting terminals 9 provided on the flat face 6 of the wiring substrate 2 is connected with each of the connecting terminals 15 provided on the solid-state image sensor 13 through a wiring 20 which falls into the cavity 3, in other words, which does not protrude from the upper face of the wiring substrate 2.
As shown in
The electronic component 22 includes a digital signal processor, a drive circuit for a CCD image sensor, a resistor of a built-on filtering circuit, a capacitor, and the like. The electronic component 22 is provided with plural connecting terminals 23. Each of the connecting terminals 23 is connected with each of the connecting terminals 9 provided on the flat face 6 of the cavity 3 of the wiring substrate 2 through a wiring 24 which falls into the cavity 3, in other words, which does not protrude from the upper face of the wiring substrate 2. Also in Embodiment 2, the depth of the cavity 3, the thickness of the electronic component 22, the thickness of the spacer 25, the thickness of the solid-state image sensor 13, and the thickness of the adhesive layer 18 are determined, respectively, such that at least part of the transparent cover 17 falls into the cavity 3.
It is needless to say that the modification of the wiring substrate 2 illustrated in
As this invention may be embodied in several forms without departing from the spirit of essential characteristics thereof, the present embodiments are therefore illustrative and not restrictive, since the scope of the invention is defined by the appended claims rather than by the description preceding them, and all changes that fall within metes and bounds of the claims, or equivalence of such metes and bounds thereof are therefore intended to be embraced by the claims.
Number | Date | Country | Kind |
---|---|---|---|
2005-047149 | Feb 2005 | JP | national |