Various embodiments of the present invention relate generally to interferometry. More specifically, some embodiments of the present invention relate to spectral and swept-wavelength interferometry for both absolute and relative optical path length measurements.
Frequency-domain interferometry has been widely adopted for performing a variety of measurements in a number of application areas. Examples include swept-source and spectral-domain implementations of optical coherence tomography (OCT) for noninvasive, depth-resolved imaging for a variety of biological and medical applications; optical frequency domain reflectometry (OFDR) for fiber optic sensing and testing of telecommunications networks, modules, and components; and frequency-modulated continuous-wave radar and lidar for remote sensing, detection, and ranging. Many such applications are based upon the ability of frequency domain interferometry to perform optical path length measurements. For both low-coherence and swept-wavelength implementations of frequency-domain interferometry, the resolution of the optical path length measurement is inversely proportional to the frequency bandwidth of the optical source. Axial resolutions on the order of 1 μm have been achieved with low-coherence approaches using extremely broadband supercontinuum sources. For SS-OCT, the axial resolution is typically limited to the order of 10 μm due to the more limited spectral breadth available from swept-wavelength sources.
Axial displacement sensitivities greatly exceeding the axial resolution of frequency-domain interferometry systems have been demonstrated by numerous groups using phase-sensitive techniques based on both low-coherence interferometry using spectrally dispersed detection as well as swept-wavelength interferometry. Both modes detect spectral interference fringes as a function of optical frequency and produce time-domain optical path length data by applying a Fourier transform to the acquired fringe patterns. Small displacements of discrete reflectors can be detected by noting changes in the phase of the complex-valued time-domain data at the location in the data array corresponding to the reflector. These phase measurements provide a relative displacement measurement from scan to scan, and have been applied to surface profiling, phase imaging, and Doppler flow measurements. Heretofore, however, the submicron displacements measured via phase have been relative to an arbitrary zero point within a single depth bin defined by the source-spectral-width-limited axial resolution of the system.
Systems and methods are described for spectral phase analysis for precision ranging. In some embodiments, a method includes receiving a signal (e.g., a voltage, a current, a digitized data set, etc) representing one or more spectral interference fringes. In accordance with various embodiments, the one or more spectral interference fringes may have been observed in a number of different ways. For example, the spectral interference fringes may have been detected using spectral-domain interferometry, swept-wavelength interferometry, optical frequency domain reflectometry, swept-source optical coherence tomography, spectral-domain optical coherence tomography, frequency-modulated continuous-wave radar, or frequency-modulated continuous-wave lidar.
From the signal representing the spectral interference fringes, one or more filtered temporal signals may be generated. For example, in some embodiments, generating the filtered temporal signal includes generating a temporal signal (e.g., using Fourier Transform, a Fast Fourier Transform, or a non-uniform discrete Fourier Transform) from the signal representing the spectral interference fringes and applying one or more temporal filters to the temporal signal to generate the filtered temporal signal. Then, one or more spectral signals may be generated from one or more of the filtered temporal signals. This can be done, for example, using hardware, firmware, or software. In some embodiments, a set of curve-fit parameters that approximate the phase of the one or more of the spectral signals are then identified. Using the set of curve-fit parameters one or more unknown optical path length values (e.g., represent a physical range to a point or region on an object) can be estimated. The one or more unknown optical path lengths may describe or represent the state of one or more transducers (e.g., a cantilever or a torsion bar).
In some embodiments, the method can include inducing a relative translation between the object and a probe beam. For example, the relative translation may provide for range measurements to multiple points on the surface of an object, and when aggregated, these range measurements may provide a three-dimensional surface profile measurement of the object. Alternatively, the relative translation may provide for optical path length measurements for various transmission paths through an object. Still yet, in some embodiments, the method can include generating the signal representing spectral interference fringes using a detector array (e.g., a CCD array or a CMOS camera). For example, each pixel on the camera may provide a unique set of spectral interference fringes representing the range to points on an object or the optical path lengths of paths through an object.
Some embodiments provide for a method that includes observing and recording spectral interference fringes as a function of angle incident onto the object and diffracted angle from the object. Then, the object may be tomographically reconstructed using amplitude and phase of the spectral interference fringes. In some embodiments, the spectral interference fringes can be observed sequentially by moving a detector and/or rotating the object. In other embodiments, a multiplicity of incident and diffracted angles each having unique optical path lengths can be observed and recorded substantially simultaneously. Then, using a temporal filtering, a signal corresponding to each incident and diffracted angle can be distinguished.
Various embodiments of the present invention also include computer-readable storage media containing sets of instructions to cause one or more processors to perform the methods, variations of the methods, and other operations described herein.
Various embodiments can provide for a time-domain multiplexed imaging system. The system can include a source, a first network, a second network, an observing means, and/or a filtering module. The source can be configured to emit multiple frequencies of electromagnetic radiation. These multiple frequencies can change with time in some embodiments. In other embodiments, the electromagnetic radiation could be a broadband electromagnetic radiation containing multiple frequencies. The first network can be coupled to the source to divide the electromagnetic radiation into a reference path and two or more test paths having different optical path lengths. The electromagnetic radiation traversing the two or more test paths can interact with disparate locations on an object. The second network may be configured to recombine the two or more test paths with the reference path. Then, the observing means can be used to observe spectral interference fringes from the second network that recombined the two or more test paths with the reference path. The filtering module may be used to generate spectral signals corresponding to different test paths by filtering the spectral interference fringes.
While multiple embodiments are disclosed, still other embodiments of the present invention will become apparent to those skilled in the art from the following detailed description, which shows and describes illustrative embodiments of the invention. As will be realized, the invention is capable of modifications in various aspects, all without departing from the scope of the present invention. Accordingly, the drawings and detailed description are to be regarded as illustrative in nature and not restrictive.
Embodiments of the present invention will be described and explained through the use of the accompanying drawings in which:
The drawings have not necessarily been drawn to scale. For example, the dimensions of some of the elements in the figures may be expanded or reduced to help improve the understanding of the embodiments of the present invention. Similarly, some components and/or operations may be separated into different blocks or combined into a single block for the purposes of discussion of some of the embodiments of the present invention. Moreover, while the invention is amenable to various modifications and alternative forms, specific embodiments have been shown by way of example in the drawings and are described in detail below. The intention, however, is not to limit the invention to the particular embodiments described. On the contrary, the invention is intended to cover all modifications, equivalents, and alternatives falling within the scope of the invention as defined by the appended claims.
Various embodiments of the present invention relate generally to interferometry. More specifically, embodiments of the present invention relate to spectral and swept-wavelength interferometry for both absolute and relative optical path length measurements. Some embodiments of the present invention provide a novel implementation of phase-sensitive frequency-domain interferometry wherein phase information is used to perform measurements of optical path lengths and thicknesses spanning multiple resolution-limited depth bins to sub-nanometer precision. Some embodiments of the present invention also provide accurate calibration of the time or spatial domain sampling grid, thereby producing highly accurate optical path length measurements.
Frequency-domain interferometry is a technique whereby electromagnetic (EM) radiation emanating from a source is split into two or more components that traverse different paths before being recombined prior to detection. At the detector, interference fringes are observed as a function of the frequency or wavelength of the electromagnetic radiation. Two primary methods for performing frequency domain interferometry exist. The first, called swept-wavelength interferometry, utilizes a coherent source of EM radiation, such as a laser, that emits a narrow spectrum of frequencies at any one instant (narrow enough to be considered monochromatic), but the center or mean output frequency may be changed in time. When such a source is used, interference fringes are observed in time as the frequency output by the source is varied. The second method, called spectral-domain interferometry, utilizes a broadband, incoherent source of EM radiation, such as a lamp, superluminescent diode, or supercontinuum source, that emits a broad range of frequencies simultaneously. When such a source is used, interference fringes may be observed as function of frequency using a spectrometer, which may detect frequencies sequentially, such as with a monochrometer, or simultaneously, such as with a dispersive element coupled with a detector array.
In both swept-wavelength interferometry and spectral domain interferometry, the interference fringes that are observed can be construed to be a variation of detected irradiance as a function of the frequency of the EM radiation. As such, the interference fringes in both methods can be referred to as spectral interference fringes to distinguish them from interference fringes formed in other types of interferometry where the detected irradiance varies as a function of some other variable, such as a spatial coordinate. Furthermore, as swept-wavelength interferometry and spectral-domain interferometry both produce spectral interference fringes, both methods can be classified as frequency-domain interferometry methods. More generally, the term frequency-domain interferometry refers to any method of interferometry capable of producing spectral interference fringes.
Terminology
Brief definitions of terms, abbreviations, and phrases used throughout this application are given below.
The terms “connected” or “coupled” and related terms are used in an operational sense and are not necessarily limited to a direct physical connection or coupling. Thus, for example, two devices may be coupled directly, or via one or more intermediary media or devices. As another example, devices may be coupled in such a way that information can be passed there between, while not sharing any physical connection with one another. Based on the disclosure provided herein, one of ordinary skill in the art will appreciate a variety of ways in which connection or coupling exists in accordance with the aforementioned definition.
The phrases “in some embodiments,” “according to various embodiments,” “in the embodiments shown,” “in one embodiment,” “in other embodiments,” and the like generally mean the particular feature, structure, or characteristic following the phrase is included in at least one embodiment of the present invention, and may be included in more than one embodiment of the present invention. In addition, such phrases do not necessarily refer to the same embodiments or to different embodiments.
If the specification states a component or feature “may”, “can”, “could”, or “might” be included or have a characteristic, that particular component or feature is not required to be included or have the characteristic.
The term “responsive” includes completely and partially responsive.
The term “module” refers broadly to software, hardware, or firmware (or any combination thereof) components. Modules are typically functional components that can generate useful data or other output using specified input(s). A module may or may not be self-contained. An application program (also called an “application”) may include one or more modules, or a module can include one or more application programs.
General Description
Various embodiments of the present invention represent a novel utilization of spectral phase information for improving the precision of optical path length measurements performed using spectral interferometry through the method of spectral phase analysis (SPA).
Transformation operation 120 applies a Fourier transform to the spectral interference fringe data set to produce a temporal (A-scan) data set. Filtering operation 130, applies a filter to the temporal data set. In some embodiments, filtering operation 130 may use a windowing function with one or more pass bands aligned to delays of interest in the temporal data set. In some cases, filtering operation 130 can produce one or more filtered temporal data sets. Inversion operation 140 applies one or more inverse Fourier Transforms to the one or more filtered temporal data sets to produce one or more complex spectral data sets.
Extraction operation 150 extracts the phase of one or more of the complex data sets to produce one or more spectral phase data sets. Then, one or more curve fits are applied to the spectral phase data sets. Estimation operation 160 uses the one or more parameters of the curve fit, for example one or more polynomial coefficients if the curve fit is to a polynomial function, to aid in the estimation of one or more optical path lengths. In some embodiments, an optical path length refers to the product of refractive index and physical length or the product of the square root of the dielectric constant and the physical length. In some embodiments, optical path length may be represented in units of length, whereas in other embodiments optical path length may be represented in units of time, in which case the optical path length is equivalent to group delay. The length and time representations of optical path length are related via a factor equal to the speed of light. In accordance with various embodiments, measurements of optical path length are not limited to the optical portion of the electromagnetic spectrum.
Acquisition operation 230 acquires one or more sets of filtered spectral interference fringes. In some embodiments, the filtered spectral interference fringes are detected and a digital data set representing the filtered spectral interference fringes is recorded producing one or more spectral interference fringe data sets. Determination operation 240 determines the phase of one or more spectral interference fringe data sets. As a result, one or more spectral phase data sets may be created. Examples of methods that can be used in accordance with some embodiments to determine the phase of the spectral interference fringe data sets include Fourier filtering and use of a Hilbert transform. Fitting operation 250 applies one or more curve fits to one or more of the spectral phase data sets. Estimation operation 260 estimates one or more optical path lengths using parameters generated by fitting operation 250. For example, one or more polynomial coefficients could be used if the fitting operation utilizes a polynomial function to estimate the phase.
In various embodiments, phase-sensitive swept-source optical coherent tomography (SS-OCT), an implementation of swept-wavelength interferometry, is used in conjunction with SPA for measurements of optical path lengths associated with optical reflections from reflecting objects and interfaces. As an application of this embodiment, simultaneous measurements of group refractive index and physical thickness of optical samples are performed. In other embodiments, spectral-domain (SD-) OCT, an implementation of spectral-domain interferometry, may be employed in place of SS-OCT. Though others have performed similar measurements using low-coherence interferometry in both the time domain and spectral domain, embodiments of the present invention represent the first swept-wavelength demonstration of simultaneous group index and thickness measurement, as well as the first novel utilization of SPA for improved measurement performance in conjunction with either swept-wavelength interferometry or spectral domain interferometry. The use of phase-sensitive self-referenced frequency domain interferometry provides resolution improvements of up to two orders of magnitude for both group index and thickness measurements over traditional techniques.
In SS-OCT, each A-scan performs an axial reflectivity measurement using swept-wavelength interferometry, also known as optical frequency domain reflectometry (OFDR), which in turn is based on swept-wavelength interferometry. In this technique, the output of a wavelength-tunable source is split into a fixed-length reference path and a sample path, which are then recombined allowing the light traversing each path to interfere prior to detection. As the source optical frequency is swept over a range Δν about a central frequency ν0, a fringe pattern is observed at the interferometer output. The frequency of the fringe pattern indicates the differential group delay between the reference path and the sample path. This differential group delay is a measure of the differential optical path length between the reference path and the sample path. For a sample with M distinct reflectors distributed axially, the oscillating portion of the photodetector voltage at the interferometer output is
where ν is the instantaneous frequency of the laser source, τi is the group delay difference between the ith reflection in the sample path and the reference path, and ξi is a constant phase offset. The factor ri is the effective reflection coefficient of the ith reflection.
In an alternative embodiment, SD-OCT is used to perform A-scans using spectral-domain interferometry. In this case, the spectral interference fringe pattern described by Eq. 1 is not an oscillating photodector signal, but rather the output signal of a spectrometer.
To avoid limitations in the axial resolution of the scan due to nonlinearity of the optical frequency sweep in swept-wavelength embodiments, frequency calibration or frequency monitoring of the source may be employed. In some embodiments, this can be accomplished using an auxiliary interferometer in several ways. One way is to use the auxiliary interferometer output signal to provide instantaneous frequency data throughout the sweep in order to resample the interferogram onto a grid of equal optical frequency increments; a second way is to use the instantaneous frequency data to perform a non-uniformly sampled discrete Fourier transform; a third way is by using the auxiliary interferometer output as a frequency clock to trigger acquisition of the fringe pattern data. In other embodiments, the frequency sweep of the source may be pre-calibrated; in still other embodiments a frequency clock signal may be provided by electronics such as an field programmable gate array (FPGA) coupled to the source; in still other embodiments the frequency sweep may be sufficiently linear such that frequency calibration or monitoring is not required.
In embodiments utilizing spectral-domain interferometry, an auxiliary interferometer may also be used to calibrate the spectrometer, or other means may be used to calibrate the spectrometer. In both types of embodiments, a calibrated frequency sampling allows the sampled frequency-domain fringe pattern data to be converted to the time domain via a Fourier transform. In the case of equal frequency sampling intervals, the Fourier transform may be accomplished using a discrete Fourier transform algorithm such as the fast Fourier transform algorithm (FFT). Alternatively, for unequal frequency sampling intervals, a non-uniformly sampled discrete Fourier transform algorithm may be used. For either frequency sampling case, the result of the Fourier transform may be an equally or unequally sampled time domain data set. In the time domain, the contribution Ũi(τ) due to the ith reflector is
Ui(τ)=U0|ri|Δνsinc [Δν(τ−τi)]e−j(2πν
where ψi=ξi+2πν0τi and sinc (x)=sin(πx)/(πx). Here the sinc function arises due to the assumption of a constant amplitude over the spectral range Δν. Other spectral shapes (or the application of a windowing function prior to the Fourier transform) will change the shape of the time domain response. The width Δτw of this response function determines the axial resolution of an A-scan, and this width will generally be Δτw≈1/Δν for most spectra. Note also that δτ=1/Δν will be the sample spacing of the time domain data when an FFT is used, so that in the best case the axial resolution will be equivalent to one temporal bin. If there are two reflectors spaced by δτ or less, they may not be resolvable. For an isolated reflector, however, the location of the reflector, described by τi, can be determined to within a small fraction of δτ by analyzing the phase of the reflector's contribution to the time domain reflectogram.
Spectral Phase Analysis For Improved Range Precision
A coarse measurement of τi may be accomplished by noting the location τi,q of the ith peak in the time domain data array. A measurement of τi with improved precision may be accomplished using the method of spectral phase analysis (SPA). Data processing steps associated with various embodiments of SPA are illustrated in
The precision of this coarse determination of the reflector position is δτ, or one temporal bin. The true value of τi is likely to lie between sampled points. This offset between the location of the peak value in the time domain data array and the true value of τi can be found by applying the shift theorem of Fourier transforms to a subset of time domain data surrounding the ith peak. The shift theorem states that a translation in the time domain is accompanied by a corresponding linear phase factor in the frequency domain. Thus, determination of the offset between the value of τi and the ith peak location can be accomplished through a linear phase measurement in the frequency domain.
For an isolated reflection peak, the corresponding phase contribution in the frequency domain can be found by windowing out the single peak using a filter and then performing an inverse Fourier transform on the windowed data subset. In some embodiments, the filter may be a digital filter or window applied to a digitized time domain data set. In other embodiments, the filter may be applied via convolution to a digitized frequency domain data set. In still other embodiments, the filter may be applied in hardware prior to observation or recording of the spectral interference fringe pattern, for example by using one or more electronic bandpass filters.
The phase of the resulting frequency domain data set will wrap rapidly between 0 and 2π, which may cause difficulties in applying a curve fit. One way to facilitate curve fitting is to unwrap the phase. The phase may be more easily unwrapped if the time domain subset is rotated such that the amplitude maximum occupies the first (DC) index location in the data array. Performing this rotation prior to the inverse Fourier transform results in a slowly-varying frequency domain phase that can be straightforwardly unwrapped. Fitting a line to the unwrapped phase φ(ν), as shown in
that represents a fine adjustment to the coarse measurement τi,q. In other embodiments of SPA, the preferred function for curve fitting the frequency domain phase may be a function other than a line. For example, if the EM radiation propagates through a medium with significant dispersion, a curve fit to a polynomial of order two or greater may be preferred. For curve fit functions other than a line, a linear component or average slope may be used to aid the optical path length determination, or may aid in the determination of a mean or average optical path length.
Prior to the inverse Fourier transform, a Hanning window can be applied to reduce truncation effects and the peak was shifted to the DC location in the data array. Application of the Hanning window may be useful but is not required, and other window functions may be preferable in other embodiments or applications. The linear fit excluded data points at the extremities due to residual truncation effects. The resulting slope of the linear fit corresponds to a group delay correction of τ0,a=0.00006 ns, which is the precise correction needed to recover the exact value of τ0=0.14 ns as shown in
The precision of the resulting measurement of the reflector position given by τi=τi,q+τi,a as determined by the standard deviation over multiple measurements may be limited by a variety of factors, including the repeatability of the wavelength sweep as well as drift of the interferometer with changes in environmental conditions. Because measurement errors due to sweep-to-sweep variations in the optical source will be correlated for multiple reflections within a single A-scan, measurement precision can be significantly improved by performing a relative group delay measurement using one reflector within the A-scan as a reference. For embodiments incorporating optical fiber systems with a free space probe, the fiber end facet in the sample arm makes a convenient reference reflector. In other embodiments, the reference may take on another form, such as a mirror or a transmissive path.
Sampling Grid Calibration for Accurate Absolute Ranging
The accuracy with which a reflector can be located depends not only on the precision of the group delay measurement, but also the accuracy of the time domain sampling grid that is used to perform the coarse group delay measurement, τi,q. Because of the discrete Fourier transform relationship between the acquired frequency domain fringe pattern and the time domain A-scan, the range of the A-scan is given by the reciprocal of the frequency domain step size, δν. For an N-point A-scan, the time domain step size is therefore δτ=(Nδν)−1. As mentioned above, the fringe pattern may be sampled on a grid of equal frequency increments, either through the use of a frequency clock to trigger data acquisition or by monitoring the instantaneous frequency of the source throughout a sweep and resampling the fringe data in post-processing. Thus, for swept-wavelength embodiments, the uncertainty in the time domain step size depends on the accuracy with which the instantaneous optical frequency can be determined during a wavelength sweep. For embodiments utilizing spectral-domain interferometry, the uncertainty in the time domain step size depends on the calibration accuracy of the spectrometer.
One way to monitor the instantaneous optical frequency of a swept source is through the use of an auxiliary interferometer. Provided that the differential group delay Δτ between the auxiliary interferometer paths and the mean laser sweep rate γ=dν/dt are chosen such that Δτ2γ<<1, then the output spectral interference fringe pattern will be a periodic function of optical frequency with a period of 1/Δτ. If the fringe data is sampled or resampled at this period so that the frequency domain step size δτ is equal to 1/Δτ, then Δτ will be the full range of the dual-sided time domain data set, and the Nyquist-limited measurable group delay will be Δτ/2.
The accuracy of the time and frequency domain sampling grids then depend on the accuracy with which Δτ (or its reciprocal) can be measured. Note that once Δτ has been determined, the uncertainty in the time domain step size δτ=Δτ/N does not follow a normal distribution from point to point throughout the time domain data set. Rather, an error in the measurement of the trigger delay yields a single value of δτ that may be either too small or too large by the same relative magnitude as the error in Δτ. Therefore, an optical path length measurement with a measured delay τi performed by locating a peak at a fractional index k in the time domain data array will have an uncertainty given by
where u(x) is used to denote the uncertainty in the quantity x. Thus, the relative error in the range measurement will equal the relative error in the calibration of the auxiliary interferometer.
One way to precisely calibrate the auxiliary interferometer is by counting the number of fringe periods between well-characterized spectral features, such as molecular absorption lines. Wavelength references based on molecular absorption lines can be accurate to ±0.01 pm, and commercial gas cells with wavelength accuracies as good as ±0.05 pm are available in multiple spectral bands. These specifications yield a known uncertainty between two spectral features that span a frequency range Δνc. For a given auxiliary interferometer with a differential group delay Δτ, the number of periods over the range Δνc will be m=ΔνcΔτ. Using this relationship to determine Δτ, there will be contributions to the uncertainty due to the quality of the wavelength reference u(Δνc), as well an uncertainty in the determination of m to a fraction of a fringe. Therefore, the total uncertainty in Δτ is
When such an interferometer is used to trigger data acquisition during a frequency sweep over a range Δν, the number of samples N will be N=ΔνΔτ, and the uncertainty in the time domain step size will be u(δτ)=u(Δτ)/N.
Experimental Results and Discussion
As illustrated in
In some embodiments, the auxiliary interferometer can be calibrated using the R20 and P20 absorption lines of a 100 Torr H13CN gas cell (dBm Optics model WA-1528-1562). The absorption spectrum of the gas cell was acquired using the auxiliary interferometer to trigger data acquisition. The number of samples between the R20 and P20 absorption lines was determined to a fraction of a sample by curve fitting the absorption lines to precisely locate their minima. In this process, the uncertainty of the absorption line wavelengths (known to ±0.3 pm) dominates the interferometer calibration error. The resulting measurement yielded a group delay difference between the two paths of the auxiliary interferometer of Δτ=63.9413±0.0012 ns.
In this embodiment, the AC-coupled output of this interferometer can be used as an analog clock to trigger data acquisition on the polarization-diverse outputs of the measurement interferometer using a National Instruments PCI-6115 data acquisition card. The tunable laser was an Agilent 81680A with a maximum sweep rate of 40 nm/s. Measurements can be performed by sweeping the laser from 1500 to 1564.17 nm. This sweep range coupled with the frequency domain step size of 1/Δτ=15.6395 MHz yields A-scans comprising 524,288 data points. Other embodiments may employ other optical sources, other methods of frequency monitoring, other means for recording and/or processing the spectral interference fringes, different spectral ranges, and different data set sizes.
An example of a spectral-domain interferometry system 600 used to implement a second exemplary embodiment of the invention is shown in
Once interference fringes are acquired as a function of the radiation frequency, the same processing steps outlined above for improving the precision of optical path length measurements in context of swept-wavelength interferometry may be applied to spectral-domain interferometry data, resulting in extremely precise measurements of optical path length for isolated paths. The choice of a swept-wavelength interferometry or spectral-domain interferometry implementation depends on a variety of factors, and the preferred choice will depend on the specific requirements of particular applications. Because both the resolution of the system and the precision achievable by SPA depend on the total spectral bandwidth of the source, spectral-domain interferometry is currently capable of achieving better resolution and precision because broadband sources are currently available with larger bandwidths than swept-frequency sources.
On the other hand, swept-wavelength systems can achieve much denser sampling in the spectral domain through the use of high speed data acquisition hardware, whereas spectral-domain systems are limited in sampling density by the number of elements in the detector array or the resolution of the monochromator. While swept-wavelength systems routinely achieve a million or more samples across the frequency spectrum of the source, spectral-domain systems are generally limited to a few thousand samples or less. The increase in frequency sampling density with swept-wavelength systems means that the total measurable path length is greater by a factor equal to the ratio of sampling densities. In terms of practical implementation, spectral-domain systems require more careful path matching between the interferometer arms due to the low coherence of the source, whereas the high coherence of many swept-frequency sources greatly relax the path matching requirements.
As an exemplary application of highly precise optical range measurements, simultaneous measurements of group refractive index and physical thickness of an optical sample may be performed. A parallel fused silica plate with a nominal thickness of 3 mm may be used as the sample under test (SUT). A reference mirror may be positioned behind the SUT. To minimize scan-to-scan drift in the position of the reference mirror, the entire system may be enclosed and the test plate may be mounted on a motorized translation stage so it can be inserted into and removed from the measurement path without opening the enclosure.
where c is the speed of light in vacuum and ng is the group index of the SUT, which is found using
Refer to
To illustrate the level of measurement noise in each group delay measurement, plots of 50 repeated measurements of referenced and unreferenced group delays defined in
Using the measurement data shown in
The thickness of the test plate found using Equation (6) was 3.239584 mm±61 nm. This is in good agreement with the value of 3.240±0.001 mm found by measuring the thickness of the test plate using a mechanical micrometer. The uncertainty in the interferometric thickness measurement is dominated by the uncertainty in the calibration of the relative group delay of the auxiliary interferometer, which results in an uncertainty in the time domain step size of u(δτ)=2.3 as. Because t21 is determined by the sum of an integer number of time domain samples and an adjustment of a fraction of a sample determined by the phase slope, the total uncertainty in the absolute determination of t21 is given by
where the function int( ) denotes rounding to the nearest integer. For macroscopic thicknesses, the uncertainty in the time domain step size dominates, and the total uncertainty can be approximated as
If u(Δτ) is independent of the magnitude of Δτ (as it is for the auxiliary interferometer calibration routine presented in the previous section), Equation 9 reveals that the accuracy of relative distance measurements can be improved by increasing the total time domain range of the system beyond simply that which is necessary to measure the distances of interest. The overall limitation on Δτ in swept-wavelength implementations is generally imposed by either the coherence length of the laser or the speed capability of the data acquisition system.
While the absolute accuracy of thickness measurements is determined as described in the previous paragraph, it is worth noting that the sensitivity of the measurement is significantly better than the overall uncertainty in τ21 suggests. This is because the uncertainty in the time domain step size is constant for any given set of measurements. This can be exploited for highly precise relative measurements, such as thickness variations in a single sample. In this case u(δτ) can be ignored, and the uncertainty in the relative thickness measurement now becomes dominated by the determination of the group index. To illustrate this case, taking u(δτ)=0 for the experimental thickness measurement of the fused silica plate, the uncertainty is reduced to ±4.5 nm. Furthermore, for relative measurements on the same sample where the group index doesn't change, or if the group index were known exactly (for example, in a measurement of the variation in thickness of a region of vacuum between reflectors), the uncertainty is further diminished. Neglecting the group index uncertainty for the fused silica test sample results in a thickness uncertainty of ±530 pm. For monocrystalline silicon, the refractive index of 3.481 at 1550 nm would yield a thickness uncertainty of 224 pm, less than half of the crystal lattice spacing of 543 pm and comparable to the Si—Si bond length of 235 pm. Our results therefore open the door to thickness profiling of macroscopic samples with single atomic monolayer resolution.
Another exemplary application of highly precise optical path length measurements is for displacement measurement and sensing. Numerous applications require measurements of distance and displacement, which can be defined as a change in location or a change in distance to a location. In such an application, one path in a frequency-domain interferometry system is a reference path and the other path (the test path) contains a reflector at an unknown distance. The test path may also contain a reference reflector at a known distance that may be used for self-referencing. A single measurement incorporating SPA may be used to determine the unknown distance to the reflector. A second such measurement performed at some time interval following the first may be used to determine a change in the distance to the reflector. The difference between the first and second distance measurements provide a determination of the displacement of the reflector that occurred during the time interval between the first and second precision ranging measurement.
The embodiments shown in
A further exemplary application of the present invention is sensing based on optical path length transduction. Numerous physical quantities may be transduced to yield a displacement value through the use of appropriate sensor modules. Such modules may take the form of a cantilever or torsion bar that flexes or rotates in response to an applied stimulus. Frequency-domain interferometry incorporating SPA can perform precise position or displacement measurements of such sensor modules, and in this way SPA may be employed to sense any physical quantity that can be transduced to a change in optical path length. Many such transducers for sensing a wide variety of physical quantities exist, including: magnetic fields, chemical and biological agents, force or acceleration, air pressure, air speed, temperature, stress or strain, humidity, and particulates.
Because frequency-domain interferometry fundamentally performs a measurement of optical path length, which is the product of refractive index and physical length, the invention may be used to perform sensing based on changes in either quantity. We have described above how frequency-domain reflectometry coupled with SPA may be used to perform sensing based on changes in physical length, or displacement. The invention may also be used for sensing applications in conjunction with transducers that respond to stimuli via a change in refractive index.
In birefringent materials, the refractive index experienced by an electromagnetic wave in the material depends on the polarization of the electromagnetic wave itself. Various embodiments of the present invention may be employed using two orthogonal polarizations in order to precisely determine the birefringence of a medium. These orthogonal polarizations may be launched sequentially using two independent measurements, or they may be launched simultaneously and separated in the time domain using a polarization delay interferometer (PDI) as shown in
A further exemplary application of the present invention is for surface profilometry measurements. In one such embodiment, a frequency-domain interferometry system can be configured to operate in reflection and equipped with a focusing lens and either a scanning translation stage on which to mount a sample under test or a scanning mirror to steer the probe beam. As in other applications of frequency-domain interferometry, SPA may be employed to improve measurement precision. In such a system, the range to each point on the surface of the sample under test is measured as a function of transverse coordinate as either the sample position or the probe beam position is varied.
In a further embodiment of the invention, surface profilometry may be performed without any scanning mechanisms through the use of free space optics and full-field detection using an image sensor such as a CCD array or CMOS camera. A system 1300 implementing this approach is shown in
Because frequency-domain interferometry performs a measurement of optical path length, the same type of spatially resolved measurements described above for surface profilometry can also be used in conjunction with a transmissive interferometry system to perform phase imaging. Such a system performs a measurement of optical path length transmitted through a sample as function of transverse coordinate. One embodiment of such a system 1400 is illustrated in
Optical diffraction tomography (ODT) is a technique for measuring the structure of objects by measuring the amplitude of diffracted light as a function of both incident angle and diffracted angle. These measurements provide a sampled version of the Fourier transform of the complex refractive index distribution present in the sample under test. In general, the Fourier transform of the sample's refractive index distribution will be a complex function with both amplitude and phase values for each incident and diffracted angle. But because direct optical measurements are sensitive to intensity rather than electric field, no phase information is available and successful reconstruction of the sample index distribution then relies on some a priori knowledge about the sample.
For this reason, ODT measurements using direct detection are limited in the types of objects that can be measured. If, on the other hand, a frequency-domain interferometry system is used for ODT measurements using an embodiment such as the one illustrated in
In the embodiment of
In the above descriptions of embodiments of the invention suitable for surface profilometry, phase microscopy, and ODT, spatial variation of the sample under test (either translation or rotation) is accomplished via physical motion of the sample together with sequential interference fringe acquisitions, or through the use of parallel spatial channels enable by a detector array such as a CCD or CMOS camera. Alternatively, spatially resolved measurements may be accomplished using a single frequency-domain interferometry measurement through the use of time domain multiplexing of multiple probe beams and/or multiple signal collection channels. This concept of time domain multiplexing is illustrated in
While applicable to spectral-domain interferometry systems, time-domain multiplexing is particularly well suited to implementation incorporating highly coherent swept-frequency radiation sources. At near infrared wavelengths such as the telecommunications C band, such sources are commercially available with coherence lengths of a kilometer or more. The coherence length of the source provides an upper limit on the full range measurable by a swept-wavelength interferometry system. For profilometry, microscopy, and tomography applications, however, the small size of the sample under test may require only a few millimeters or centimeters of depth range for each measured point. Thus other paths may be built into the interferometer system that have different lengths so that the measured signal from each path is separated in the time domain data set following application of a Fourier transform to the sampled interference fringe signal observed at the detector.
By appropriately choosing the lengths associated with each of one or more source paths and one or more collection paths, the signal associated with each source/collection path pair is readily identifiable and distinguishable in the time domain data set. Furthermore, if each source/collection path pair is arranged to have a specific spatial arrangement relative to the sample under test, the signal received from each pair may be associated with a specific set of sample coordinates. Such coordinates may be chosen to be transverse Cartesian coordinates, as in the profilometry system 1600 of
In addition to spatially resolved measurement applications such as imaging, surface profilometry, and ODT, time domain multiplexing may be used to multiplex multiple transducers to produce a sensing network. The use of SPA in conjunction with time domain multiplexing allows for large networks of extremely precise sensors. An example embodiment of the invention for producing sensor networks is illustrated in
In conclusion, the present invention provides novel systems, methods and arrangements for optical path length measurements using phase sensitive frequency-domain interferometry yielding self-referenced group delay measurements with attosecond-level precision. This corresponds to sub-nanometer sensitivities for relative distance measurements. Various embodiments of the present invention allow the accuracy of absolute range measurements to depend not only on the measurement noise floor, but also on accurate calibration of the time domain sampling interval. For macroscopic distance measurements, the uncertainty in this calibration dominates over the uncertainty due to measurement noise. The contribution to the uncertainty due to the sampling calibration can be reduced by increasing the time domain range of the measurement, or equivalently by sampling on a finer grid in the frequency domain. To experimentally demonstrate an application of the proposed phase-sensitive range measurements, a simultaneous measurement of the group index and thickness of a fused silica plate was used. The uncertainty in the resulting group index measurement was ±2×10−6, and for the thickness measurement the uncertainty was ±61 nm. Alternative embodiments of the invention may be employed to perform distance or displacement measurements, sensing of external physical quantities using appropriate transducer sensor modules, surface profilometry, phase imaging, optical diffraction tomography, or other types of measurement or sensing.
While detailed descriptions of one or more embodiments of the invention have been given above, various alternatives, modifications, and equivalents will be apparent to those skilled in the art without varying from the spirit of the invention. For example, while the embodiments described above refer to particular features, the scope of this invention also includes embodiments having different combinations of features and embodiments that do not include all of the described features. Accordingly, the scope of the present invention is intended to embrace all such alternatives, modifications, and variations as fall within the scope of the claims, together with all equivalents thereof. Therefore, the above description should not be taken as limiting the scope of the invention, which is defined by the appended claims.
This application claims the benefit of U.S. Provisional Application No. 61/437,376, which was filed on Jan. 28, 2011, titled “Phase-Sensitive Swept-Source Interferometry For Absolute Ranging With Application To Measurements Of Group Refractive Index And Thickness,” the entire content of which is hereby incorporated herein by reference for all purposes.
This invention was made with government support under grant number IIP0637355 awarded by the National Science Foundation. The government has certain rights in the invention.
Number | Name | Date | Kind |
---|---|---|---|
5880841 | Marron et al. | Mar 1999 | A |
7488930 | Ajgaonkar et al. | Feb 2009 | B2 |
20050280828 | Fitzgerald de Boer | Dec 2005 | A1 |
20060012802 | Shirley | Jan 2006 | A1 |
20090073456 | Wax et al. | Mar 2009 | A1 |
20090125242 | Choi et al. | May 2009 | A1 |
20100157309 | Tearney et al. | Jun 2010 | A1 |
Entry |
---|
Adler, Desmond C. et al., “Phase-Sensitive Optical Coherence Tomography at Up to 370,000 Lines Per Second Using Buffered Fourier Domain Mode-Locked Lasers,” Optics Letters, vol. 32, No. 6, pp. 626-628, Mar. 15, 2007. |
Ahn, Tae-Jung et al., “Suppression of Nonlinear Frequency Sweep in an Optical Frequency-Domain Reflectometer by Use of Hilbert Transformation,” Applied Optics, vol. 44, No. 35, pp. 7630-7634, Dec. 10, 2005. |
Cheng, Hsu-Chih et al., “Simultaneous Measurement of Group Refractive Index and Thickness of Optical Samples Using Optical Coherence Tomography,” Applied Optics, vol. 49, No. 5, pp. 790-797, Feb. 10, 2010. |
Chinn, S. R. et al., “Optical Coherence Tomography Using a Frequency-Tunable Optical Source,” Optics Letters, vol. 22, No. 5, pp. 340-342, Mar. 1, 1997. |
Choma, Michael A. et al., “Doppler Flow Imaging of Cytoplasmic Streaming Using Spectral Domain Phase Microscopy,” Journal of Biomedical Optics, vol. 11, No. 2, pp. 024014-1-024014-8, Mar./Apr. 2006. |
Choma, Michael A. et al., “Spectral-Domain Phase Microscopy,” Optics Letters, vol. 30, No. 10, pp. 1162-1164, May 15, 2005. |
Ciddor, Philip E., “Refractive Index of Air: New Equations for the Visible and Near Infrared,” Applied Optics, vol. 35, No. 9, pp. 1566-1573, Mar. 20, 1996. |
Ciddor, Philip E. et al., “Refractive Index of Air. 2. Group Index,” Applied Optics, vol. 38, No. 9, pp. 1663-1667, Mar. 20, 1999. |
Fujimoto, James G., “Optical Coherence Tomography for Ultrahigh Resolution In Vivo Imaging,” Nature Biotechnology, vol. 21, No. 11, pp. 1361-1367, Nov. 2003. |
Glombitza, U. et al., “Coherent Frequency-Domain Reflectometry for Characterization of Single-Mode Integrated-Optical Waveguides,” Journal of Lightwave Technology, vol. 11, No. 8, pp. 1377-1384, Aug. 1993. |
Huang, David et al., “Optical Coherence Tomography,” Science, vol. 254, pp. 1178-1181, Nov. 22, 1991. |
International Application No. PCT/US2012/023189, International Search Report & Written Opinion, 8 pages, Aug. 7, 2012. |
Joo, Chulmin et al., “Spectral-Domain Optical Coherence Phase Microscopy for Quantitative Phase-Contrast Imaging,” Optics Letters, vol. 30, No. 16, pp. 2131-2133, Aug. 15, 2005. |
Leviton, Douglas B. et al., “Temperature-Dependent Absolute Refractive Index Measurements of Synthetic Fused Silica,” Proc. SPIE 6273, Optomechanical Technologies for Astronomy, 11 pages, Jul. 6, 2006. |
Moore, Eric D. et al., “Correction of Sampling Errors Due to Laser Tuning Rate Fluctuations in Swept-Wavelength Interferometry,” Optics Express, vol. 16, No. 17, pp. 13139-13149, Aug. 18, 2008. |
Na, Jihoon et al., “Self-Referenced Spectral Interferometry for Simultaneous Measurements of Thickness and Refractive Index,” Applied Optics, vol. 48, No. 13, pp. 2461-2467, May 1, 2009. |
Povazay, B. et al., “Submicrometer Axial Resolution Optical Coherence Tomography,” Optics Letters, vol. 27, No. 20, pp. 1800-1802, Oct. 15, 2002. |
Sarunic, Marinko V. et al., “Full-Field Swept-Source Phase Microscopy,” Optics Letters, vol. 31, No. 10, pp. 1462-1464, May 15, 2006. |
Sorin, W. V. et al., “Simultaneous Thickness and Group Index Measurement Using Optical Low-Coherence Reflectometry,” IEEE Photonics Technology Letters, vol. 4, No. 1, pp. 105-107, Jan. 1992. |
Swann, W.C. et al., “Accuracy Limits for Simple Molecular Absorption Based Wavelength References,” Technical Digest: Symposium on Optical Fiber Measurements, pp. 15-18, 2004. |
Vakoc, B. J. et al., “Phase-Resolved Optical Frequency Domain Imaging,” Optics Express, vol. 13, No. 14, pp. 5483-5493, Jul. 11, 2005. |
Youngquist, Robert C. et al., “Optical Coherence-Domain Reflectometry: A New Optical Evaluation Technique,” Optics Letters, vol. 12, No. 3, pp. 158-160, Mar. 1987. |
Yun, S.H. et al., “High-Speed Optical Frequency-Domain Imaging,” Optics Express, vol. 11, No. 22, pp. 2953-2963, Nov. 3, 2003. |
Number | Date | Country | |
---|---|---|---|
20120194823 A1 | Aug 2012 | US |
Number | Date | Country | |
---|---|---|---|
61437376 | Jan 2011 | US |