This invention relates to spectroscopic apparatus and methods. It is particularly useful in Raman spectroscopy, though it can equally be used in other forms of spectroscopy, e.g. using fluorescence, narrow-line photoluminescence or cathodoluminescence.
An example of Raman spectroscopic apparatus is shown in U.S. Pat. No. 5,442,438 (Batchelder et al). Light from a laser source is focussed to a spot on a sample. Interaction between the light and the molecules of the sample causes Raman scattering into a spectrum having frequencies and wavenumbers which are shifted relative to the exciting laser frequency. After filtering out the laser frequency, a dispersive device such as a diffraction grating disperses this scattered Raman spectrum across a two-dimensional photodetector array, e.g. in the form of a charge-coupled device (CCD). Different molecular species have different characteristic Raman spectra, and so the effect can be used to analyse the molecular species present. The Raman spectrum can also give other information, such as the local stresses or strains in the sample. The photodetector array may for example take the form of a charge-coupled device (CCD) having an array of pixels in which charge accumulates in proportion with the. light received.
If it is desired to map an area of the sample, rather than just a single point, then it is known to mount the sample on a stage which can be moved in orthogonal directions X,Y. Alternatively, movable mirrors may deflect the light beam across the surface of the sample in X and Y directions. Thus, a raster scan of the sample can take place, giving Raman spectra at each point in the scan.
At each point in such a raster scan, the laser beam should illuminate the sample for a sufficient length of time to allow a Raman spectrum to be acquired. Obtaining a map over a large area of the sample can therefore be time consuming.
It is therefore known to illuminate the sample not with a point focus, but with a line focus. This enables the acquisition of spectra from multiple points within the line simultaneously. On the CCD detector, it is arranged that an image of the line extends orthogonally to the direction of spectral dispersion. This enables efficient use of the two-dimensional nature of the detector to acquire the multiple spectra simultaneously. The multiple spectra are formed simultaneously in multiple rows or columns of the CCD array.
One problem with such a line focus arrangement is that inevitably the illuminating laser light will have different intensities at different positions along the line. The resulting spectra from the different positions within the line are therefore not normalised relative to each other and are difficult to compare directly.
Where a large area of the sample is to be mapped, it is also quite likely that the length of the line will be only a fraction of the width or depth of the area to be mapped. Consequently, even such a line focus must undertake a raster scan, in a series of successive stripes. When assembling the resulting stripes into a two-dimensional map of the area, there are difficulties in seamlessly stitching together the data at the ends of the line focus.
These difficulties in stitching the data together have several different causes. One cause is the above difference in intensity at different positions along the line focus. Indeed, it is necessary to remove the data produced near the ends of the lines, since the intensity drops markedly near the ends and this results in discontinuities. Another cause is that ambient conditions are likely to change between the scan of one stripe and the next, producing a mismatch. Also, a phenomenon known as “bleaching” comes into play: the fluorescence background of the spectrum can burn off or bleach as a function of time or laser power, if the sample is left exposed to the laser beam.
When using a line focus illumination, as described above, the scattered light is usually collected from the sample using a microscope objective lens which has as high a magnification as possible. This maximises the optical collection efficiency. If a sample is to be mapped quickly at a lower resolution, e.g. 50 μm, the data is averaged along the length of the line focus as it is acquired, to get the required resolution. No such averaging takes place in the lateral direction (orthogonal to the line focus). Instead, to quickly obtain a spectral map of the sample the line scan may be repeated in strips, spaced apart by 50 μm in this example. This has the limitation that no data is acquired from the sample between these strips.
A first aspect of the present invention provides spectroscopic apparatus comprising:
The data may be shifted within the detector in a direction corresponding to the first direction, such that said data from a given region of the sample is accumulated in synchronism with the relative movement. Alternatively, the data may be read out of the detector and then combined subsequently such that said data from a given region of the sample is accumulated in synchronism with the relative movement.
In a preferred embodiment, the focus on the sample is a line focus. The line focus and the at least one row or column may be aligned such that light scattered from different portions of the line focus is directed to respective different detector elements within the at least one row or column. The data may pass sequentially along the at least one row or column from one element to the next.
The line focus may be arranged to move, relative to the sample, at least in a longitudinal direction of the line focus. Preferably the line focus extends in said first direction. Synchronously with the relative movement of the line focus over the sample, data may be shifted within the detector so that data from a given point or region of the sample accumulates during the relative movement.
The detector may have multiple detector elements arranged in a two-dimensional array. The detector may comprise, for example, a charge-coupled device.
A spectrum from a point in the focus may be dispersed across the detector in a direction orthogonal to the first direction. A spectrum from any given point in the line focus may be dispersed across the detector in a direction orthogonal to the first direction. An analyser may disperse the spectrum from any given point or region in the line focus across the detector in a direction orthogonal to said at least one row or column. Thus, data representing multiple wavenumbers spread across the spectrum can be acquired simultaneously, in respective rows or columns of the two-dimensional array, while moving the data for each wavenumber along the respective rows or columns, synchronously with the relative movement of the line focus on the sample.
The spectrum may be, for example, a spectrum of Raman scattered light.
Data may be read sequentially from one end of the at least one row or column of detector elements. In one preferred embodiment, data from each element passes sequentially along the at least one row or column from one element to the next. However, that may not always be quite so, for example if the relative movement between the line focus and the sample is more complex and includes a component in a direction transverse to the longitudinal direction, as well as the movement in the longitudinal direction.
The focus may also be arranged to move relative to the sample in a second direction transverse to the first direction, such that the given region from which data accumulates includes points which are spaced from each other in the transverse direction. The line focus may sweep an area of the sample during the relative movement in the second direction. The line focus may sweep said area of the sample bidirectionally. The line focus may move in a zigzag fashion relative to the sample.
The line focus may sweep an entire area of the sample between two boundary lines parallel to the line focus, without omitting any areas between the boundary lines.
A second aspect of the present invention provides spectroscopic apparatus comprising:
In another preferred embodiment, the detector may be rotatable through 90°. The detector may then be rotated, when desired, so that the stepping of the data is instead performed in the direction of the dispersion, as described in the above-mentioned U.S. Pat. No. 5,442,438.
A third aspect of the present invention provides spectroscopic apparatus comprising:
Preferred embodiments of the invention will now be described by way of example, with reference to the accompanying drawings, wherein:
Referring to
The illumination by the exciting laser beam generates scattered light, e.g. Raman scattered light at different frequencies/wavenumbers. This is collected by the microscope objective 24 and directed towards a two-dimensional photodetector array 34. It passes via the mirror 18, filter 20, a slit 35 (which may act confocally to control the depth resolution of the instrument), mirrors 36, a diffraction grating 39 and a focussing lens 37.
The preferred two-dimensional photodetector 34 is a CCD detector. However, other detectors are possible, such as a two-dimensional CMOS photodetector array. The diffraction grating 39 disperses the spectrum of scattered light across the surface of the CCD 34, in a direction X′.
The filter 20 serves a dual purpose. Firstly, it reflects the exciting laser illumination from the laser 10, so as to inject it into the optical path towards the microscope 22 and sample 26. Secondly, it rejects Rayleigh scattered light having the same frequency as the illuminating laser beam and passes only the Raman spectrum of interest towards the CCD detector 34. A variety of different types of dielectric filter having such properties may be used, including for example a holographic filter (which may be placed .at a low angle of incidence to the optical path as shown). If desired, more than one such filter may be provided in series, to improve the rejection of Rayleigh scattered light.
Many of the features of the arrangement described so far are to be found in U.S. Pat. No. 5,442,438, which is incorporated herein by reference for further details.
Rather than merely illuminating one single point at a time on the sample 26 with the laser beam, the cylindrical lens 13 is configured so that a line focus is produced. This then illuminates and excites Raman scattering from multiple points on the sample simultaneously.
As shown in
In a conventional system, the line focus would first move in the direction X relative to the sample, as indicated by arrow 41, so as to scan a stripe 40. It would then be indexed in the direction Y, as indicated by arrow 42, so as to repeat such scans for successive stripes 40.
However, in the present embodiment, the following method is adopted. Instead of first moving the illuminating line in the X direction orthogonal to its length, it is instead first moved continuously in the Y direction, parallel to its length (i.e. longitudinally). As an alternative to continuous movement, it can instead be moved stepwise, dwelling at each step for a desired exposure period. After each full scan in the Y direction (arrow 42) the line focus is stepped in the X direction (arrow 41) to an adjacent position on the sample, and another scan in the Y direction takes place. This process is repeated until the whole area 37 to be studied has been scanned. This all takes place under the control of the computer 32. It will be appreciated that there are then no stripes 40.
The method used will be further described with reference to
The exposure of a CCD to light results in the accumulation of charge in each detector element (pixel). This charge represents data and is in proportion to the amount of light it has received during the exposure. Normally, this charge is read out sequentially, after the exposure, by passing it from one detector element to the next. At each of these charge shifting steps, the charge from the pixels at the edge of the array is read into a shift register, from where it is read out and transferred to a computer.
In the present embodiment in
The shifting of the charge as indicated by arrow 50 takes place simultaneously and synchronously with the scanning of the line 38 in the direction Y as indicated by arrow 48, under the control of the computer 32. The exposure of the CCD to the light continues during this scanning, and charge continues to accumulate as it is shifted from one detector element of the CCD array to the next. Because the charge is shifted synchronously with the relative motion of the sample and the line focus 38, and in the same direction, the light from a given point in the sample 26 continues to accumulate as a spectrum for that point, as shown in
Reference has been made to the accumulation of charge (data) from a point in the sample 26. However, in a lower resolution system, charge may be accumulated from a small area or region of the sample, as described below with reference to
There are several advantages to the technique described above. A first advantage will be explained with reference to
With the present technique, however, any given point on the sample 26 is illuminated successively by light from each position within the length of the line focus 38. Thus, each point on the sample experiences illumination from each of the differing intensities shown by the curve 44 in
A second advantage is that there is a smooth transition of the illuminating line 38 throughout the Y direction of the area 37, so that no differences are perceived between different stripes 40 as in the prior technique described. The data is acquired seamlessly and there is no need to try to stitch together data at the edges of strips 40.
A third advantage is that should there be any differences between the responses of different detector elements of the CCD array 34, or variations in instrument transfer function between different pixels, then these too are integrated over the whole area of the sample. So this has no effect on the resulting output as it would in the prior art, and facilitates accurate analysis of the results. Indeed, even a defective detector element which gave no signal output could be tolerated.
A fourth advantage is that scanning a line focus results in faster mapping of the sample area, compared to point-by-point scanning. In cases where a large sample area is to be mapped with only a short exposure time at each point, then it can be shown that the present method is even faster than the previously known method of line focus scanning.
It will be noted that the direction 50 of the charge shift in
The computer 32 is programmed to control the shifting of the charge synchronously with the movement of the motors 30. It also controls the readout 54 from the shift register 52 and the resulting data acquisition. If it is desired to produce the relative motion of the line focus 38 and the sample by scanning the light beam across a stationary sample, the computer 32 may control the scanning mirrors which cause the scanning of the illuminating beam and which collect the scattered light from a sample.
If it is desired to have the ability to provide the synchronous scanning described in the embodiment above, as well as the synchronous scanning in the spectral dimension as described in U.S. Pat. No. 5,442,438, then there are several possibilities.
One such possibility is to utilise a CCD detector array which has the ability to shift charges in both the X′ and Y′ directions, to respective shift registers on orthogonal edges of the array. The charges can then be shifted in the Y′ direction as described above, or in the X′ direction if it is desired to perform the method according to the prior patent.
Alternatively, as shown in
Alternatively, as shown in
A further technique according to the present invention will now be described with reference to
This zigzag motion is repeated between the boundary lines 60 over the entire length in the Y direction of the area 37 to be scanned (arrow 42 in
As previously, the spectra from the various points in the line 38 are dispersed in the X′ direction across the CCD 34. The charges accumulating in the CCD 34, representing these spectra, are shifted in the Y′ direction simultaneously and synchronously with the Y movement of the stage 28, and are read out to the computer 32 via the output shift register 52.
Because of the lateral zigzag movement of the line focus relative to the sample, the data of each collected spectrum is averaged over the lateral resolution distance R. If no binning (combination of the charges from adjacent pixels) is performed as the data is read out via the register 52, then the resulting data would be the equivalent of a wide spot (one pixel in the Y direction and n pixels in the X direction, where n is the number of pixels in the distance R). However, binning may be applied, under the control of the computer 32, to vary the resolution in the Y direction. The data from these wide spots is then added together, to give resolutions of varying aspect ratios, up to and beyond square.
As shown in
The advantage of this technique is that data can be obtained representing the entire area of the sample, at any desired resolution, without omitting any areas between the boundary lines of the scan. Thus, a small particle of a substance will influence the averaged results, whereas if scanning were to proceed in sparse narrow strips corresponding to the resolution R, it could be missed.
Rather than the CCD 34, other detectors are possible, such as a two-dimensional CMOS photodetector array. In this case, transfer of charge within the detector chip itself is not possible, so the data for multiple exposures is read out of the detector, and then combined and manipulated subsequently within the computer 32. The computer is programmed to combine the data in the same manner as if it had been accumulated within the detector chip as described above. That is, the data concerning light from a given region in the sample 26 is accumulated in synchronism with the scan as data for that region, even though collected from different pixels of the detector as the scan progresses. A high-speed detector chip should be used for best results, and a higher level of read-out noise may be suffered.
Number | Date | Country | Kind |
---|---|---|---|
0701477.2 | Jan 2007 | GB | national |
0803798.8 | Feb 2008 | GB | national |
Number | Name | Date | Kind |
---|---|---|---|
3625613 | Abell et al. | Dec 1971 | A |
3733131 | Mould | May 1973 | A |
3853404 | Barrett | Dec 1974 | A |
3914055 | Wolga et al. | Oct 1975 | A |
3999854 | Barrett | Dec 1976 | A |
4030827 | Delhaye et al. | Jun 1977 | A |
4081215 | Penney et al. | Mar 1978 | A |
4195930 | Delhaye et al. | Apr 1980 | A |
4397556 | Müller | Aug 1983 | A |
4586819 | Tochigi et al. | May 1986 | A |
4648714 | Benner et al. | Mar 1987 | A |
5011284 | Tedesco et al. | Apr 1991 | A |
5112127 | Carrabba et al. | May 1992 | A |
5153670 | Jannson et al. | Oct 1992 | A |
5164786 | Delhaye et al. | Nov 1992 | A |
5166813 | Metz | Nov 1992 | A |
5173748 | Bilhorn | Dec 1992 | A |
5442438 | Batchelder et al. | Aug 1995 | A |
5689333 | Batchelder et al. | Nov 1997 | A |
5754291 | Kain | May 1998 | A |
7265828 | Levine | Sep 2007 | B2 |
20020039186 | Rosenberg | Apr 2002 | A1 |
20030048933 | Brown et al. | Mar 2003 | A1 |
20050006595 | Goodwin et al. | Jan 2005 | A1 |
20100097603 | Smith | Apr 2010 | A1 |
Number | Date | Country |
---|---|---|
29 35 812 | Mar 1981 | DE |
40 17 317 | Dec 1991 | DE |
0 324 583 | Jul 1989 | EP |
0 407 773 | Jan 1991 | EP |
0 442 206 | Aug 1991 | EP |
0 465 350 | Jan 1992 | EP |
0 502 752 | Sep 1992 | EP |
2130269 | Nov 1972 | FR |
1 345 642 | Jan 1974 | GB |
1 577 198 | Oct 1980 | GB |
2 241 350 | Aug 1991 | GB |
A 53-47892 | Apr 1978 | JP |
A 60-53834 | Mar 1985 | JP |
A 60-174934 | Sep 1985 | JP |
A 62-269048 | Nov 1987 | JP |
A 3-116004 | May 1991 | JP |
WO 9007108 | Jun 1990 | WO |
WO 9111703 | Aug 1991 | WO |
WO 9217806 | Oct 1992 | WO |
WO 2008090350 | Jul 2008 | WO |
WO 2008135766 | Nov 2008 | WO |
Number | Date | Country | |
---|---|---|---|
20090310132 A1 | Dec 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/GB2009/000214 | Jan 2009 | US |
Child | 12458815 | US | |
Parent | PCT/GB2008/000252 | Jan 2008 | US |
Child | PCT/GB2009/000214 | US |