1. Field of the Invention
The present invention relates to spin injection sources with high spin injection efficiencies and their manufacturing methods.
2. Description of the Background Art
Spintronics is an emerging technology that deals with the intrinsic spin of the electron and aims for creation of new high-functional devices utilizing the spin, and has potential to break the limits of conventional semiconductor devices. For example, the application of spin accumulation devices (devices utilizing the spin accumulation effect) for reading heads on hard disk drives or nonvolatile magnetic memories is expected to realize memory density of 1 Tbit/inch2. However, the output signal of a conventional spin accumulation device is reported to have a value of several μV typically, and of several tens of μV at best. Increasing the weak signal is a key factor for practical application.
In a lateral spin valve, the spin is injected and accumulated in the nonmagnet by passing an electric current through the junction interface between the nonmagnet and ferromagnet. There are two types of junction interfaces in the lateral spin valve: ohmic junction and tunnel junction. The ohmic junction has a ferromagnet and a nonmagnet directly joined together, and its interface resistance is small. Here, since the ferromagnet has a small spin resistance and the nonmagnet has a large spin resistance, there is a spin resistance mismatch. Due to the mismatch, an effective spin injection is difficult, and the spin accumulation resistance change ΔRS is as small as 1 mΩ. The tunnel junction has an insulating layer between the ferromagnet and the nonmagnet, and its interface resistance is large. Since the tunnel junction overcomes the spin resistance mismatch, it may exhibit larger ΔRS. However, since an increase in the applied voltage decreases the spin injection efficiency, the spin valve signal voltage may not become so large.
In Y. Fukuma, et al., “Enhanced spin accumulation obtained by inserting low-resistance MgO interface in metallic lateral spin valves”, Applied Physics Letters, vol. 97, 012597 (2010), the inventors have reported that even if a layer of lower resistance MgO than that in the conventional tunnel junction is used in a spin injection device made of a ferromagnet (NiFe) MgO, a nonmagnet (Ag), the problem of the spin resistance mismatch may be overcome. The electric resistance of the MgO layer is two orders smaller than that used in the conventional tunnel junction. Since the spin accumulation voltage is a product of the spin accumulation resistance change and the current (ΔV=ΔRS×I) and a larger current can be applied to low-resistance MgO, the spin valve signal may become larger.
The object of the present invention is to provide a spin injection source having improved spin injection efficiency.
In order to achieve the above-described object, the spin injection source according to a first aspect of the present invention comprises a nonmagnetic conductor; a low-resistance MgO film formed on the nonmagnetic conductor; and a ferromagnet formed on the nonmagnetic conductor; and the MgO film is annealed at temperature of between 300° C. and 500° C. The annealing is preferably performed for between 30 and 60 minutes.
The spin injection source according to a second aspect of the present invention comprises a nonmagnetic conductor; a low-resistance MgO film formed on the nonmagnetic conductor; and a ferromagnet formed on the nonmagnetic conductor; and the oxygen in the MgO film is decreased by 5% to 17%.
The spin injection source according to a third aspect of the present invention comprises a nonmagnetic conductor; a low-resistance MgO film formed on the nonmagnetic conductor; and a ferromagnet formed on the nonmagnetic conductor; and the interface resistance RI (fΩm2) and the thickness t (nm) of the MgO film satisfy the following relationship.
R1∝eα-1,0.7≦α≦1.2
The spin injection source according to a fourth aspect of the present invention comprises a nonmagnetic conductor; a low-resistance MgO film formed on the nonmagnetic conductor; and a ferromagnet formed on the nonmagnetic conductor; and the MgO film has an interface resistance of 1 to 103 fΩm2 and a thickness of 2 nm or more.
As a fifth aspect of the present invention, a manufacturing method of a spin injection source for injecting spin from a ferromagnet to a nonmagnetic conductor which comprises a nonmagnetic conductor, a low-resistance MgO film formed on the nonmagnetic conductor, and a ferromagnet formed on the nonmagnetic conductor, the method comprising the steps of: forming a multi-layer structure of a nonmagnetic conductor, a MgO film, and a ferromagnet laminated in this order; and annealing the MgO film at between 300° C. and 500° C.
The spin injection source of the present invention improves the spin injection efficiency.
The objects and features of the present invention will become more apparent from consideration of the following detailed description taken in conjunction with the accompanying drawings in which:
<Configuration>
The basic configuration of the spin injection source according to the present invention is, as shown in
The spin injection sources in
The materials adoptable to the ferromagnets 23 and 25 include Ni, Fe, Co, alloys thereof, amorphous materials such as Co—Fe—B, Heusler materials such as Co—Mn—Si and Co—Cr—Fe—Al, oxide materials such as La—Sr—Mn—O, and ferromagnetic semiconductor materials such as GaMnAs. One of the listed materials may be selected to form the ferromagnetic thin film, or also the film may be a multi-layered film consists of two or more materials. Also, the ferromagnets may be doped with a nonmagnetic element such as Ti, V, Cr, Mn, Cu, Zn, B, Al, G, C, Si, Ge, Sn, N, P, Sb, O, S, Mo, Ru, Ag, Hf, Ta, W, Ir, Pt, and Au in order to control the magnetic and chemical characteristics.
Here, the thicknesses of the ferromagnet layer are preferably 2 nm or more, in consideration of the noise and magnetic characteristics at the time of reading. Also, in order to firmly fix the magnetization direction of the ferromagnet in a particular direction, the antiferromagnetic layer such as MnIr, MnPt, and MnRh may preferably be provided on the ferromagnet.
The nonmagnet 21 may be a nonmagnetic conductive metal selected from the group consisting of Cu, Au, Ag, Pt, Al, Pd, Ru, Ir, and Rh, a conductive compound consisting primarily of GaAs, Si, TiN, and TiO, or the like.
The low-resistance MgO layers 22 and 24 are annealed after deposition to increase the oxygen vacancies and decrease the interface resistance. The spin injection source of the present invention is different from that of Fukuma et. al., 2010 (hereafter referred to as “comparative example”) in that it is annealed. The characteristics of the low-resistance MgO layer according to the embodiment will be discussed in detail after an explanation of the manufacturing method of the spin injection source.
<Manufacturing Method>
Here, the manufacturing method of the spin injection source according to the embodiment will be explained. The spin injection source is prepared on a Si substrate, a glass substrate, or a MgO substrate.
When forming by lift-off process, first, the resist is coated on the substrate. Then, the electrode pattern for the spin injection source is fabricated by an electron beam lithography device or a stepper, which pattern may take any form. The pattern of the detection electrode is fabricated at the same time as the injection electrode pattern, for the detection electrode is necessary in practical use. The substrate formed with the fine line pattern is conveyed in the ultra-high vacuum thin film equipment. In order to obtain the configuration shown in
As an alternative method, the spin injection source may be formed by etching process such as ion milling. In order to obtain the configuration shown in
In order to obtain the configuration shown in
In order to obtain the configuration shown in
After the deposition of the MgO layer or production of the device configuration by any of above method, in order to increase the amount of oxygen vacancies, the MgO layer will be annealed in a high-vacuum condition (of about 10−5 Torr) or in a hydrogen atmosphere (nitrogen (97%) hydrogen (3%)). Annealing at 300 to 500° C. for 30 to 60 minutes is preferable in general, but it may depend on the device configuration and material.
A spin accumulation device shown in
Oxygen Vacancies in the MgO Layer:
Interface Resistance in the MgO Layer:
R1(fΩm2)∝e0.76t
The solid line in
Spin Accumulation Amount:
A spin injection experiment is performed. In the spin injection experiment, a current source is connected between the terminal 14 and terminal 18 and a current of 0.2 mA is applied. The spin current is injected into the nonmagnet 33 from the ferromagnet 31 through the MgO layer 32. Then, the spin current diffuses in the nonmagnet thin wire toward the detection electrode 12. Hence, by connecting a voltmeter between the terminal 13 and terminal 15, a signal according to the spin direction of the accumulation and to the magnetization direction of the spin detection ferromagnet electrode 12 can be detected. The result is shown in
By changing the magnetic field, magnetization direction of the spin injector electrode 11 and spin detector electrode 12 is varied. At first, high magnetic field of about 1000 Oe is applied along the ferromagnet thin wire direction. At this time, the magnetization direction of the ferromagnets in the spin injector electrode 11 and spin detector electrode 12 is along the direction of the magnetic field. Decreasing the magnetic field to zero and then applying it in opposite direction, the magnetization of the detector electrode 12 is reversed at −400 Oe. Because of this, it can be seen that, resistance value becomes smaller. Then, further increasing the magnetic field, the magnetization of the injector electrode 11 is reversed to the magnetic field direction at about −500 Oe, and the electrode is returned to high resistance state. After the magnetization of both ferromagnets is reversed, the magnetic field is increased toward positive direction. Then, the magnetization of the detector electrode 12 is reversed at about 400 Oe, and further the magnetization of the injector electrode 11 is reversed at about 600 Oe. The voltage change ΔV due to the relative magnetization configuration of parallel and anti-parallel is proportional to the spin accumulation amount in the nonmagnet. In order to increase ΔV=ΔRs×I, it is preferable to apply large current and to employ a device with large resistance change (spin accumulation resistance change).
As can be seen from
In order to study the MgO film interface resistance dependence of the spin accumulation resistance change ΔRs, the spin accumulation resistance changes are measured for several devices having different MgO film thickness. The result is shown in
Here, RSN is the spin resistance of Ag (nonmagnet), Pi is the spin polarization of the MgO interface, RSI is the spin resistance of the MgO interface, PF is the spin polarization of the NiFe (ferromagnet), RSF is the spin resistance of NiFe, d is the distance between the spin injector electrode and spin detector electrode, and λN is the spin relaxation length of Ag. RSN, RSI and RSF are represented as follows, respectively.
Here, ρN is Ag resistivity, tN is Ag thickness, wN is the width of the Ag thin wire in which spin is accumulated, Ri is MgO interface resistance, w is the width of the NiFe thin wire, ρF is NiFe resistivity, and λF is the spin diffusion length of NiFe. The resistance and thin wire width for each material can be obtained by experiments. PF, λF, Pi, and λN are calculated as fitting parameters for the experiment result of
In
Now, in order to elucidate the decrease of ΔRS with the increase of the applied current, ΔV characteristics of the spin accumulation device having interface resistance of 124 fΩm2 (MgO film thickness 5.5 nm) is examined and is fitted by the theoretical formula. One of the results is shown in
In conclusion, the spin injection source of the present invention has high spin injection efficiency (spin polarization Pi is more than twice larger than conventional tunnel junctions), and the spin injection efficiency is maintained even with a large current (up to 1 mA) applied. Since, as stated before, the spin injection amount (amount of accumulation) is proportional to the product of the applied current and spin polarization, the spin accumulation device using the spin injection source of the present invention has the spin accumulation amount of about 100 μV (spin accumulation resistance change ΔRS is about 100 mΩ, and applied current is 1 mA), and the signal intensity is larger by one or more orders compared to about 10 μV of conventional tunnel junctions.
A device having same shape and material is prepared without annealing (spin injection source described in Fukuma et. al. (2010)). The MgO layer of the device has comparatively small oxygen vacancies, and thus is in comparatively high resistance state. Note here that “high resistance” is in terms of a comparison with the annealed MgO layer, and the MgO layer of the comparative example has lower resistance and more conductivity compared with the MgO layer used in a conventional tunnel junction. The MgO film thickness dependence of the interface resistance in the comparative example is shown in
R1(fΩm2)∝e1.3t
Other spin accumulation device having same shape and material are prepared. The devices have 2 nm thick MgO layer. After the preparation, the devices are annealed in nitrogen (97%)+hydrogen (3%) atmosphere for 30 minutes at 300° C., 400° C., and 500° C., respectively.
A spin injection experiment is conducted for these devices. The annealing temperature dependence of ΔRS at a low temperature of 10 K is shown in
The spin polarization Pi of the interface is determined, as above, by measuring ΔRS for various devices having different distance between detection electrode and spin injection electrode and comparing with one-dimensional spin current circuit model. The result is shown in
As can be seen, annealing the prepared MgO film, increases the spin accumulation resistance change ΔRS. Since ΔRS takes its maximum at 400° C. annealing, the optimum annealing temperature is between 300° C. and 500° C. The reason why ΔRS decreases even though the spin polarization of the MgO interface increases after annealing at 500° C., is that the interface resistance is as small as 5 fΩm2. Needless to say, after the annealing at 500° C., ΔRS exhibits substantially large value, and it can be said that annealing at more than 500° C. achieves a significant effect compared with those without annealing. However, it is preferable that the interface resistance is sufficiently high to achieve desired effect, and the interface resistance is preferably 10 fΩm2 or more in order to realize a large spin accumulation in the spin accumulation device.
Furthermore, when the thickness is made 2 nm in the above-described example, the interface resistance is 8.8 fΩm2 (Eq. 1,
Consequently, the relationship between the interface resistance and spin polarization when the thickness is 2 nm can be summarized as shown in the below table.
In order to achieve the spin polarization of 0.2 or more, which is sufficiently larger than 0.11 the comparative example, the interface resistance needs to be 5 to 90 fΩm2 in low-resistance MgO film with thickness of 2 nm. Here, 2 nm thickness is only an example and the thickness of the low-resistance MgO film is not limited to 2 nm. In general, the relationship between the interface resistance Ri and film thickness t of the low-resistance MgO film can be represented by two parameters such as Ri=b×exp (at). Here, a and b correlate each other, and a tends to decrease as b decreases. When the thickness is 2 nm and the interface resistance is 5 fΩm2, a may be estimated as a=0.7, and when the thickness is 2 nm and the interface resistance is 90 fΩm2, a may be estimated as a=1.2. Thus, by using the low-resistance MgO film in which the interface resistance RI (fΩm2) and thickness t (nm) satisfy the following relationship, the spin polarization of 0.2 or more can be achieved.
R1∝eα-1,0.7≦α≦1.2
Also, composition analysis of MgO in these devices is carried out by EDX. Since it is extremely difficult to exactly measure the composition of Mg and O in the MgO layer, qualitative analysis is performed. The oxygen vacancies exist in the samples before annealing, and the composition of the MgO layer is assumed as MgO1-δ. After annealing at 300° C., 400° C., and 500° C., the composition changes respectively to MgO1-(δ+0.03), MgO1-(δ+0.06), and MgO1-(δ+0.12). Thus, it becomes apparent that oxygen vacancies have significant influence on the decrease of interface resistance by annealing. Also,
It is difficult to measure the amount of oxygen vacancies exactly before annealing, but since MgO crystal lattices can be seen in the TEM image, the oxygen amount does not change substantially. The amount of oxygen vacancies I before annealing is considered to be about 2% to 5% by a broad estimation. Hence, the amounts of oxygen vacancies of the MgO film after annealing are considered to be 5% to 8%, 8% to 11%, and 14% to 17% for annealing temperature of 300° C., 400° C., and 500° C. respectively. In other words, in the spin accumulation device which the efficiency is improved by annealing, the oxygen vacancies of the MgO film is 5% to 17%
<Miscellaneous>
Interposition of the low-resistance MgO film in the spin injection source of the present invention improves the spin injection efficiency, because the MgO film overcomes the spin resistance mismatch between the nonmagnet and ferromagnet. The spin resistance of the MgO film is preferably same as or more than the spin resistance of the nonmagnet to which the spin is injected. Since the spin resistance is represented by Eq.3 to Eq. 5, the interface resistance Ri of the MgO film should be adjusted according to the characteristics (resistivity or spin diffusion length) of the nonmagnet to which the spin is injected in order to obtain proper spin resistance. When the spin injection target is a nonmagnet metal, its characteristics such as the resistivity and spin diffusion length are more or less constant, and as can be seen from
Also, if the thickness of the low-resistance MgO film is too thin, the spin injection efficiency is not expected to improve very much since it cannot properly fulfill the function of a spin filter. In order to properly fulfill the function of a spin filter, the thickness should be 1 nm or more, or more preferably 2 nm or more. There is no upper limit for the thickness in terms of the spin filter functionality, and any thickness is employable as long as the interface resistance of MgO film falls within the above-described range, but in practice the upper limit is preferably about 10 nm.
It should be noted that decreasing the interface resistance of the low-resistance MgO film leads to improvement for the spin injection efficiency. As described above, one of simple and preferable manufacturing methods introduce some oxygen vacancies when preparing the MgO film and then anneal it in hydrogen atmosphere or vacuum to introduce more oxygen vacancies. Here, introducing oxygen vacancies when preparing the MgO film makes it easier to introduce oxygen vacancies by annealing. However, the MgO film may be made by any manufacturing method other than the above method, as long as necessary conductivity can be obtained. For example, one possible way is to adjust preparation condition of the MgO film to obtain MgO film having proper oxygen vacancies (interface resistance), without annealing. Also, oxygen vacancies may not be introduced when preparing the MgO film, and the oxygen vacancies may be introduce by annealing only. Furthermore, the interface resistance of MgO film may be decreased by diffusing metallic atoms in the MgO film.
The spin accumulation device of the example (
Number | Date | Country | Kind |
---|---|---|---|
2010-197047 | Sep 2010 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
8405134 | Yuasa | Mar 2013 | B2 |
20060176735 | Yuasa | Aug 2006 | A1 |
20090052237 | Morise et al. | Feb 2009 | A1 |
20090057654 | Saito et al. | Mar 2009 | A1 |
20090324814 | Parkin | Dec 2009 | A1 |
20100073828 | Wang et al. | Mar 2010 | A1 |
20100078310 | Tsunekawa et al. | Apr 2010 | A1 |
Number | Date | Country |
---|---|---|
2004-186274 | Jul 2004 | JP |
2004-342241 | Dec 2004 | JP |
2005-019561 | Jan 2005 | JP |
2005-135462 | May 2005 | JP |
2006-210391 | Aug 2006 | JP |
2007-155854 | Jun 2007 | JP |
2007-294710 | Nov 2007 | JP |
2009-059807 | Mar 2009 | JP |
2010-074171 | Apr 2010 | JP |
2010-109319 | May 2010 | JP |
Entry |
---|
Fukuma, Y., Want, L., Idzuchi, H., and Y. Otani, App. Phys. Let., 97, 012507, 2010, pp. 012507-1-012507-3. |
Y. Fukuma, et al., “Enhanced spin accumulation obtained by inserting low-resistance MgO interface in metallic lateral spin valves”, Applied Physics Letters, vol. 97, 012507 (2010). |
S. Takahashi and S. Maekawa, “Spin injection and detection in magnetic nanostructures”, Physical Review B, vol. 67, 052409 (2003). |
S.O. Valenzuela and M.Tinkham, “Spin-polarized tunneling in room-temperature mesoscopic spin valves”, Applied Physics Letters, vol. 85, No. 24 (2004). |
Number | Date | Country | |
---|---|---|---|
20120058367 A1 | Mar 2012 | US |