Claims
- 1. A spin valve magnetoresistive sensor, comprising:
a free layer having a magnetization which changes in the presence of a magnetic field; a synthetic antiferromagnetic layer, comprising:
a first ferromagnetic layer comprising a layer of CoFe; a second ferromagnetic layer comprising a layer of CoFe; and a first spacer layer of nonmagnetic material positioned between and directly in contact with the first and second ferromagnetic layers, the first spacer layer comprising a layer of Ru; a second spacer layer positioned between and directly in contact with the first ferromagnetic layer of the synthetic antiferromagnetic layer and the free layer; and an antiferromagnetic layer positioned in contact with the second ferromagnetic layer of the synthetic antiferromagnetic layer and comprising an Mn-alloy layer.
- 2. The spin valve magnetoresistive sensor of claim 1, wherein the Mn-alloy layer of the antiferromagnetic layer comprises a NiMn.
- 3. The spin valve magnetoresistive sensor of claim 2, wherein the antiferromagnetic layer further comprises a NiFe buffer layer positioned between the NiMn and the second ferromagnetic layer of the artificial antiferromagnetic layer.
- 4. The spin valve of claim 3, wherein the free layer comprises:
a third ferromagnetic layer positioned in contact with the second spacer layer; and a fourth ferromagnetic layer positioned in contact with the third ferromagnetic layer.
- 5. The spin valve of claim 4, wherein the fourth ferromagnetic layer comprises NiFe.
- 6. The spin valve of claim 5, wherein the third ferromagnetic layer comprises CoFe.
- 7. The spin valve of claim 5, wherein the third ferromagnetic layer comprises Co.
- 8. The spin valve of claim 1, wherein the Mn-alloy layer of the antiferromagnetic layer comprises CrPtMn.
- 9. The spin valve of claim 1, wherein the Mn-alloy layer of the antiferromagnetic layer comprises PtMn.
- 10. The spin valve of claim 1, wherein the Mn-alloy layer of the antiferromagnetic layer comprises PdPtMn.
- 11. The spin valve of claim 1, wherein the Mn-alloy layer of the antiferromagnetic layer comprises IrMn.
- 12. A method of fabricating a spin valve sensor comprising:
sequentially depositing, without breaking vacuum, a seed layer and an antiferromagnetic layer, wherein sequentially depositing the seed layer and the antiferromagnetic layer further comprises:
depositing a seed layer on a substrate; depositing a Mn-alloy layer of the antiferromagnetic layer directly on top of the seed layer; and depositing a buffer layer of the antiferromagnetic layer directly on top of the Mn-alloy layer; annealing the seed layer, the Mn-alloy layer and the buffer layer; etching a portion of the buffer layer; depositing a synthetic antiferromagnetic layer on top of the buffer layer of the antiferromagnetic layer, wherein depositing the synthetic antiferromagnetic layer further comprises:
depositing a first CoFe layer directly on top of the buffer layer; depositing an Ru layer directly on top of the first CoFe layer; and depositing a second CoFe layer directly on top of the Ru spacer layer; depositing a spacer layer directly on top of the second CoFe layer; and depositing a free layer directly on top of the spacer layer.
- 13. The method of claim 12, wherein depositing the Mn-alloy layer of the antiferromagnetic layer further comprises depositing a layer of NiMn directly on top of the seed layer.
- 14. The method of claim 13, wherein depositing the buffer layer of the antiferromagnetic layer further comprises depositing a first layer of NiFe directly on top of the layer of NiMn.
- 15. The method of claim 14, wherein depositing the free layer further comprises depositing a third layer of CoFe directly on top of the spacer layer.
- 16. The method of claim 15, wherein depositing the free layer further comprises depositing a second layer of NiFe directly on top of the third layer of CoFe.
- 17. The method of claim 14, wherein annealing the seed layer, the Mn-alloy layer and the buffer layer further comprises annealing the seed layer, the layer of NiMn, and the first layer of NiFe at a temperature between about 250° C. and about 300° C.
- 18. The method of claim 17, wherein annealing further comprises annealing the seed layer, the layer of NiMn, and the first layer of NiFe at a temperature between about 250° C. and about 300° C. in the presence of a magnetic field of at least about 100 Gauss.
- 19. The method of claim 17, wherein annealing further comprises annealing the seed layer, the layer of NiMn, and the first layer of NiFe for between about 2 hours and about 10 hours.
- 20. A storage system for storing information, comprising:
a storage medium; means for reading information from the storage medium.
Parent Case Info
[0001] The present invention claims priority to Provisional Application Ser. No. 60/084,626, filed May 7, 1998 and entitled NIMN-BIASED SPIN VALVE/GMR WITH CO/RU/CO ARTIFICIAL ANTIFERROMAGNETIC PINNED LAYER.
Divisions (1)
|
Number |
Date |
Country |
Parent |
09306484 |
May 1999 |
US |
Child |
09907219 |
Jul 2001 |
US |