The present invention relates, in part, to fragment crystallizable region (Fc)-based chimeric protein complexes and their use as therapeutic agents.
The contents of the computer readable Sequence Listing in XML format (“XML Document”) submitted electronically herewith are incorporated herein by reference in their entirety. A computer readable format copy of the Sequence Listing (filename: ORN-084PC.xml, date produced: Sep. 29, 2022; size: 2,037,407 bytes) is submitted per 37 C.F.R. §§ 1.831-1.835.
Effector function-encoding biologics represent a class of biologics with many potential therapeutic applications. In order for such agents to be useful for the treatment of disease, maximizing their tolerability and therapeutic index is of critical importance, in particular when encoding potent effector functions (e.g., cytokines, many of which are systemically toxic if administered to humans as such). Thus, there is a need for engineering such agents with high inherent safety profile, which requires targeted delivery of an effector function to select target site(s) (e.g. antigen on a cell type of interest) with high precision, and in a regulated fashion.
An example of such agents, is a chimeric protein having a signaling agent, connected to a targeting element, in which the signaling agent is wild type or modified (e.g. by mutation) to cause an attenuation of the signaling agent's activity (e.g., substantially reducing its ability to interact with/engage its receptor) in a manner such that its effector function can be recovered upon binding of the targeting element to its target (e.g., antigen on target cell).
However, if the signaling agent or the targeting agent is multimeric then it can be difficult to achieve proper binding to its receptor/ligand without first assembling/reconstituting the agent into its proper multimeric state. Monomers of the multimeric agent (signaling agent or targeting element) may be chemically linked to each other or expressed as a single chain or concatenated chain in an attempt to achieve proper conformation for binding. Such methods, however, may affect function of the agent and have undesirable consequences (e.g. in regard to manufacturing). Thus, there is a need in the art where such desirable multimeric state of the biologic/agent can be achieved while maintaining the efficacy, tolerability, and therapeutic index of the biologic. Further, there is a need for effector function-encoding biologics that are amenable to production and use as a therapy to the treatment or prevention of disease.
The present technology provides fragment crystallizable region (Fc)-based chimeric protein complexes that include one or more multimeric wild type or modified human IFNγ or human TNFα signaling agents or multimeric targeting moieties. These Fc based chimeric protein complexes include two Fc chains and each Fc chain includes, e.g., one or more monomers of the multimeric wild type or modified human IFNγ or human TNFα signaling agent or targeting moiety such that when the Fc chains assemble they lead to reconstitution of the multimeric wild type or modified human IFNγ or human TNFα signaling agent or targeting moiety that is functional upon reconstitution. Accordingly, the present technology allows for the assembly of a functional wild type or modified human IFNγ or human TNFα signaling agent or targeting moiety from a “split” cytokine. These complexes include biological therapeutic agents whose effector function can be delivered in a highly precise fashion to a target of choice and without, or with a mitigated amount of systemic adverse events, thereby limiting systemic cross-reactivities and associated adverse events, while also providing features that impart pharmaceutical properties enabling the production of therapeutic agents with, for example, desired in vivo exposure time (e.g. half-life), size (e.g. for biodistribution and clearance characteristics), as well as large scale production and/or purification for commercial production (e.g. having adequate solubility, purity, stability and storage properties).
In some aspects, the present technology relates to a Fc-based chimeric protein complex including (a) a wild type or modified human IFNγ or human TNFα signaling agent that is functional as a multimer of monomers, (b) an Fc domain comprising two Fc chains, the two Fc chains each comprising one or more wild type or modified human IFNγ or human TNFα signaling agent monomers such that the functional multimer of monomers is reconstituted upon association of the two Fc chains, wherein the Fc domain optionally has one or more mutations that reduce or eliminate one or more effector functions of the Fc domain, promotes Fc chain pairing of the Fc domain, and/or stabilizes a hinge region in the Fc domain; and (c) a targeting moiety comprising a recognition domain that recognizes and/or binds to a target. The signaling agent can be a wild-type human IFNγ or human TNFα signaling agent or a modified human IFNγ or human TNFα signaling agent that has one or more mutations that confer improved safety relative to the wild type human IFNγ or human TNFα signaling agent. The modified human IFNγ or human TNFα signaling agent is, in some embodiments, a mutant of the human IFNγ or human TNFα signaling agent.
In other aspects, the Fc-based chimeric protein complex includes (a) a targeting moiety comprising a recognition domain that recognizes or binds to a target, wherein the targeting moiety is functional as a multimer of monomers; (b) an Fc domain comprising two Fc chains, the two Fc chains each comprising one or more targeting moiety's monomers such that the functional multimer of monomers is reconstituted upon association of the two Fc chains, wherein the Fc domain optionally has one or more mutations that reduce or eliminate one or more effector functions of the Fc domain, promotes Fc chain pairing of the Fc domain, and/or stabilizes a hinge region in the Fc domain; and (c) a human IFNγ or human TNFα signaling agent wherein human IFNγ or human TNFα signaling agent is a wild-type human IFNγ or human TNFα signaling agent or a modified human IFNγ or human TNFα signaling agent that has one or more mutations that confer improved safety relative to the wild type human IFNγ or human TNFα signaling agent.
In some embodiments, the Fc-based chimeric protein complex includes one or more linkers. In some embodiments, the Fc-based chimeric protein complex includes a dimeric human IFNγ or human TNFα signaling agent and each of its monomer is linked to a different Fc chain. In some embodiments, the Fc-based chimeric protein complex includes a trimeric human IFNγ or human TNFα signaling agent and two of its monomers are linked to the first Fc chain and one of its monomer is linked to a first Fc chain.
In some embodiments, the Fc domain has one or more mutations that reduce or eliminate an effector function of the Fc domain, promote Fc chain pairing of the Fc domain, and/or stabilize a hinge region in the Fc domain. In some embodiments, the one or more Fc chains of the Fc domain have one or more mutations that reduce or eliminate an effector function of the Fc domain, promote Fc chain pairing of the Fc domain, and/or stabilize a hinge region in the Fc domain.
In some embodiments, such Fc-based chimeric protein complexes are heterodimeric. In some embodiments, the Fc-based chimeric protein complexes are heterodimeric and the targeting moiety and the human IFNγ or human TNFα signaling agent are oriented in trans. In some embodiments, the Fc-based chimeric protein complexes are heterodimeric and pairing is via Ridgway knob-in-hole construction (as described herein). In some embodiments, the Fc-based chimeric protein complexes are heterodimeric and pairing is via Merchant knob-in-hole construction (as described herein).
In some embodiments, such Fc-based chimeric protein complexes are homodimeric.
In some embodiments, the one or more mutations in the modified human IFNγ or human TNFα signaling agent reduces the affinity or activity at the human IFNγ or human TNFα signaling agent's receptor relative to a wild type human IFNγ or human TNFα signaling agent. In some embodiments, the targeting moiety restores the affinity or activity of the modified human IFNγ or human TNFα signaling agent. In some embodiments, the targeting moiety restores the activity or affinity of at least one monomer of the multimeric human IFNγ or human TNFα signaling agent at the human IFNγ or human TNFα signaling agent's receptor. In some embodiments, the targeting moiety restores the activity or affinity of all monomers of the multimeric human IFNγ or human TNFα signaling agent.
In some embodiments, the agonistic or antagonistic activity of the human IFNγ or human TNFα signaling agent is attenuated. In some embodiments, at least one of the monomers of the multimeric targeting moiety or the human IFNγ or human TNFα signaling agent is modified. In other embodiments, all of the monomers of the multimeric targeting moiety or the human IFNγ or human TNFα signaling agent are modified.
In some embodiments, the Fc-based chimeric protein complexes comprise one or more additional targeting moieties and/or wild type or modified human IFNγ or human TNFα signaling agents. In some embodiments, the additional targeting moiety is multimeric, and in other embodiments, the additional human IFNγ or human TNFα signaling agent is multimeric. In some embodiments, the additional multimeric targeting moiety's monomers are such that a functional multimer of monomers is reconstituted upon association of the two Fc chains. In some embodiments, the additional multimeric human IFNγ or human TNFα signaling agent's monomers are such that a functional multimer of monomers is reconstituted upon association of the two Fc chains.
In some embodiments, the Fc-based chimeric protein complexes are multispecific. In some embodiments, the targeting moieties are a single domain antibody (VHH) or a natural ligand for a receptor.
In another aspect, the present technology relates to the use of Fc-based chimeric protein complexes to treat or prevent various diseases and disorders. In some embodiments, the Fc-based chimeric protein complexes are used to treat cancer, infections, metabolic diseases, (neuro)degenerative diseases, and cardiovascular diseases and immune disorders.
The present technology is based, in part, on the discovery of an approach to generating a multimeric human IFNγ or human TNFα signaling agent, that are optionally modified to have reduced affinity or activity for one or more of its receptors, and/or targeting moieties that recognize and bind to a specific target by reconstitution of monomer and/or dimers via Fc-based coupling. Accordingly, in various embodiments, the present technology permits the formation of a multimeric state of a cytokine that is functional, from momoner or dimer subunits of the cytokine.
In some aspects, the present invention is related to an Fc-based chimeric protein complex that includes (a) a human IFNγ or human TNFα signaling agent which is functional as a multimer of monomers, wherein the human IFNγ or human TNFα signaling agent is a wild-type human IFNγ or human TNFα signaling agent or a modified human IFNγ or human TNFα signaling agent that has one or more mutations that confer improved safety relative to the wild type human IFNγ or human TNFα signaling agent; (b) an Fc domain comprising two Fc chains, the two Fc chains each comprising one or more human IFNγ or human TNFα signaling agent monomers such that the functional multimer of monomers is reconstituted upon association of the two Fc chains, wherein the Fc domain optionally has one or more mutations that reduce or eliminate one or more effector functions of the Fc domain, promotes Fc chain pairing of the Fc domain, and/or stabilizes a hinge region in the Fc domain; and (c) a targeting moiety comprising a recognition domain that recognizes and/or binds to a target.
In other aspects, the present invention is related to an Fc-based chimeric protein complex that includes (a) a targeting moiety comprising a recognition domain that recognizes or binds to a target, wherein the targeting moiety is functional as a multimer of monomers; (b) an Fc domain comprising two Fc chains, the two Fc chains each comprising one or more targeting moiety's monomers such that the functional multimer of monomers is reconstituted upon association of the two Fc chains, wherein the Fc domain optionally has one or more mutations that reduce or eliminate one or more effector functions of the Fc domain, promotes Fc chain pairing of the Fc domain, and/or stabilizes a hinge region in the Fc domain; and (c) a human IFNγ or human TNFα signaling agent wherein the human IFNγ or human TNFα signaling agent is a wild-type human IFNγ or human TNFα signaling agent or a modified human IFNγ or human TNFα signaling agent that has one or more mutations that confer improved safety relative to the wild type human IFNγ or human TNFα signaling agent.
In some embodiments, such Fc-based chimeric protein complexes, surprisingly, have dramatically improved half-lives in vivo, as compared to chimeras lacking an Fc and, especially in the heterodimer configuration as described herein, are particularly amendable to production, purification, and pharmaceutical formulation due to enhanced solubility, stability and other drug-like properties. Accordingly, the present Fc-based chimeric protein complex engineering approach yields agents that are particularly suited for use as therapies.
In some embodiments, these Fc-based chimeric protein complexes may bind and directly or indirectly recruit immune cells to sites in need of therapeutic action (e.g. a tumor or tumor microenvironment). In some embodiments, the Fc-based chimeric protein complexes enhance tumor antigen presentation for elicitation of effective antitumor immune response. In some embodiments these Fc-based chimeric protein complexes may bind tumor cells, tumor microenvironment-associated cells or stromal targets. In some embodiments. These Fc-based chimeric protein complexes may bind to tissue-specific and/or cell-specific specific markers (e.g. antigens, targets) associated with disease-affected or disease-associated organs, tissues and cells. In some embodiments these Fc-based chimeric protein complexes may bind to more than one target/protein marker/antigen present on the same or different cells. In some embodiments these Fc-based chimeric protein complexes may bind to two or more cell types. In some embodiments these Fc-based chimeric protein complexes may bind to more than one cell type and promote formation of a cell complex (e.g. an immune cell and a tumor cell).
In some embodiments, the Fc-based chimeric protein complexes modulate antigen presentation. In some embodiments, the Fc-based chimeric protein complexes temper the immune response to avoid or reduce autoimmunity. In some embodiments, the Fc-based chimeric protein complexes provide immunosuppression. In some embodiments, the Fc-based chimeric protein complexes cause an increase a ratio of Tregs to CD8+ T cells and/or CD4+ T cells in a patient. In some embodiments, the present methods relate to reduction of auto-reactive T cells in a patient.
In some embodiments, the Fc-based chimeric protein complexes are a complex of proteins formed, for example, by disulfide bonding and/or ionic pairing. In embodiments, the complex of proteins includes one or more fusion proteins. In some embodiments, the Fc-based chimeric protein complex has a configuration and/or orientation/configuration as shown in any one of
The present technology provides pharmaceutical compositions comprising the Fc-based chimeric protein complexes and their use in the treatment of various diseases, including, e.g., cancer, autoimmune, neurodegenerative diseases, metabolic diseases, cardiovascular diseases and degenerative diseases.
The fragment crystallizable domain (Fc domain) is the tail region of an antibody that interacts with Fc receptors located on the cell surface of cells that are involved in the immune system, e.g., B lymphocytes, dendritic cells, natural killer cells, macrophages, neutrophils, eosinophils, basophils, and mast cells. In embodiments, the Fc domain includes two Fc chains, at least one of which comprises a monomer of the multimeric human IFNγ or human TNFα signaling agents or multimeric targeting moiety of the present invention. In some embodiments, the Fc domain includes two Fc chains where each comprises one or more of targeting moiety's monomers such that the multimeric targeting moiety (which includes the monomers) is reconstituted upon association of the two Fc chains. In other embodiments, the Fc domain includes two Fc chains where each comprises one or more of human IFNγ or human TNFα signaling agent's monomers such that the multimeric human IFNγ or human TNFα signaling agent (which includes the monomers) is reconstituted upon association of the two Fc chains. In one embodiment, the Fc domain includes two Fc chain where the first Fc chain includes a first monomer of the human IFNγ or human TNFα signaling agent or the targeting moiety and the second Fc chain includes a second monomer of the human IFNγ or human TNFα signaling agent or the targeting moiety and the first and the second Fc chain—upon association—cause reconstitution of the multimeric human IFNγ or human TNFα signaling agent or the targeting moiety. Such reconstitution of the multimeric human IFNγ or human TNFα signaling agent or the targeting moiety, in some embodiments, causes the human IFNγ or human TNFα signaling agent or the targeting moiety to function.
The present invention also includes Fc domains where the Fc chain includes multiple multimeric human IFNγ or human TNFα signaling agents or multiple multimeric targeting moieties or any combination thereof. For instance, in one embodiment, the Fc domain includes two multimeric human IFNγ or human TNFα signaling agent and one targeting agent where the Fc chains are configured such that, upon association, the Fc chains cause reconstitution of the two functional multimeric human IFNγ or human TNFα signaling agents. In another example, the Fc domain includes two multimeric targeting moieties and one human IFNγ or human TNFα signaling agent, where the Fc chains are configured such that, upon association, the Fc chains cause reconstitution of the two functional multimeric targeting moieties. In some embodiments, the Fc domain is configured such that the multimeric human IFNγ or human TNFα signaling agent or the multimeric targeting moiety is not functional or exhibits reduced function unless the Fc chains are associated can cause reconstitution of the multimeric human IFNγ or human TNFα signaling agent or the multimeric targeting moiety.
In IgG, IgA and IgD antibody isotypes, the Fc domain is composed of two identical protein chains, derived from the second and third constant domains of the antibody's two heavy chains. In IgM and IgE antibody isotypes, the Fc domain contains three heavy chain constant domains (CH domains 2-4) in each polypeptide chain.
In some embodiments, the Fc-based chimeric protein complex of the present technology include(s) chimeric proteins with Fc domains that promotes formation of such protein complexes. In some embodiments, the Fc domains are from selected from IgG, IgA, IgD, IgM, or IgE. In some embodiments, the Fc domains are from selected from IgG1, IgG2, IgG3, or IgG4.
In some embodiments, the Fc domains are from selected from human IgG, IgA, IgD, IgM, or IgE. In some embodiments, the Fc domains are from selected from human IgG1, IgG2, IgG3, or IgG4.
In some embodiments, the Fc domains of the Fc-based chimeric protein complex comprise the CH2 and CH3 regions of IgG. In some embodiments, the IgG is human IgG. In some embodiments, the human IgG is selected from IgG1, IgG2, IgG3, or IgG4.
In some embodiments, the Fc domains comprise one or more mutations. In some embodiments, the mutation(s) to the Fc domains reduces or eliminates the effector function the Fc domains. In some embodiments, the mutated Fc domain has reduced affinity or binding to a target receptor. By way of example, in some embodiments, the mutation to the Fc domains reduces or eliminates the binding of the Fc domains to FcγR. In some embodiments, the FcγR is selected from FcγRI; FcγRIIa, 131 R/R; FcγRIIa, 131 H/H, FcγRIIb; and FcγRIII. In some embodiments, the mutation to the Fc domains reduces or eliminated binding to complement proteins, such as, e.g., C1q. In some embodiments, the mutation to the Fc domains reduces or eliminated binding to both FcγR and complement proteins, such as, e.g., C1q.
In some embodiments, the Fc domains comprise the LALA mutation to reduce or eliminate the effector function of the Fc domains. By way of example, in some embodiments, the LALA mutation comprises L234A and L235A substitutions in human IgG (e.g., IgG1) (wherein the numbering is based on the commonly used numbering of the CH2 residues for human IgG1 according to EU convention (PNAS, Edelman et al., 1969; 63 (1) 78-85)).
In some embodiments, the Fc domains of human IgG comprise a mutation at one or more of L234, L235, K322, D265, P329, and P331 to reduce or eliminate the effector function of the Fc domains. By way of example, in some embodiments, the mutations are selected from L234A, L234F, L235A, L235E, L235Q, K322A, K322Q, D265A, P329G, P329A, P331G, and P331S.
In some embodiments, the Fc domains comprise the FALA mutation to reduce or eliminate the effector function of the Fc domains. By way of example, in some embodiments, the FALA mutation comprises F234A and L235A substitutions in human IgG4.
In some embodiments, the Fc domains of human IgG4 comprise a mutation at one or more of F234, L235, K322, D265, and P329 to reduce or eliminate the effector function of the Fc domains. By way of example, in some embodiments, the mutations are selected from F234A, L235A, 1L235E, L235Q, K322A, K322Q, D265A, P329G, and P329A.
In some embodiments, the mutation(s) to the Fc domain stabilize a hinge region in the Fc domain. By way of example, in some embodiments, the Fc domain comprises a mutation at S228 of human IgG to stabilize a hinge region. In some embodiments, the mutation is S228P.
In some embodiments, the mutation(s) to the Fc domain promote chain pairing in the Fc domain. In some embodiments, chain pairing is promoted by ionic pairing (a/k/a charged pairs, ionic bond, or charged residue pair).
In some embodiments, the Fc domain comprises a mutation at one more of the following amino acid residues of IgG to promote of ionic pairing: D356, E357, L368, K370, K392, D399, and K409.
By way of example, in some embodiments, the human IgG Fc domain comprise one of the mutation combinations in Table 1 to promote of ionic pairing.
In some embodiments, chain pairing of the individual Fc-domains in a chimeric protein complex is promoted by knob-in-hole mutations. In some embodiments, the Fc domain comprises one or more mutations to allow for a knob-in-hole interaction in the Fc domain. In some embodiments, a first Fc chain is engineered to express the “knob” and a second Fc chain is engineered to express the complementary “hole.” By way of example, in some embodiments, human IgG Fc domain comprises the mutations of Table 2 to allow for a knob-in-hole interaction.
In some embodiments, the Fc domains in the Fc-based chimeric protein complexes of the present technology comprise any combination of the above-disclosed mutations. By way of example, in some embodiments, the Fc domain comprises mutations that promote ionic pairing and/or a knob-in-hole interaction. By way of example, in some embodiments, the Fc domain comprises mutations that have one or more of the following properties: promote ionic pairing, induce a knob-in-hole interaction, reduce or eliminate the effector function of the Fc domain, and cause Fc stabilization (e.g. at hinge).
By way of example, in some embodiments, a human IgG Fc domain comprise mutations disclosed in Table 3, which promote ionic pairing and/or promote a knob-in-hole interaction in the Fc domain.
By way of example, in some embodiments, human IgG Fc domains comprise mutations disclosed in Table 4, which promote ionic pairing, promote a knob-in-hole interaction, or a combination thereof ofs the Fc domains. In embodiments, the “Chain 1” and “Chain 2” of Table 4 can be interchanged (e.g. Chain 1 can have Y407T and Chain 2 can have T366Y).
By way of example, in some embodiments, a human IgG Fc domains comprise mutations disclosed in Table 5, which reduce or eliminate FcγR and/or complement binding in the Fc domain. In embodiments, the table 5 mutations are in both chains.
In some embodiments, the Fc domains in the Fc-based chimeric protein complexes of the present technology are homodimeric, i.e., the Fc domain in the chimeric protein complex comprises two identical protein chains.
In some embodiments, the Fc domains in the Fc-based chimeric protein complexes of the present technology are heterodimeric, i.e., the Fc domain in the chimeric protein complex comprises two non-identical protein chains.
In some embodiments, heterodimeric Fc domains are engineered using ionic pairing and/or knob-in-hole mutations described herein. In some embodiments, the heterodimeric Fc-based chimeric protein complexes have a trans orientation/configuration. In a trans orientation/configuration, the targeting moiety and human IFNγ or human TNFα signaling agent are, in embodiments, not found on the same polypeptide chain in the present Fc-based chimeric protein complexes. In some embodiments, the human IFNγ or human TNFα signaling agent and targeting moiety are on the same end (N-terminus or C-terminus) of the Fc domain. In some embodiments, the human IFNγ or human TNFα signaling agent and targeting moiety are on different ends (N-terminus or C-terminus) of the Fc domain.
In some embodiments, heterodimeric Fc domains are engineered using ionic pairing and/or knob-in-hole mutations described herein. In some embodiments, the heterodimeric Fc-based chimeric protein complexes have a trans orientation.
In a trans orientation, the targeting moiety and human IFNγ or human TNFα signaling agent are, in embodiments, not found on the same polypeptide chain in the present Fc-based chimeric protein complexes. In a trans orientation, the targeting moiety and human IFNγ or human TNFα signaling agent are, in embodiments, found on separate polypeptide chains in the Fc-based chimeric protein complexes. In a cis orientation, the targeting moiety and human IFNγ or human TNFα signaling agent are, in embodiments, found on the same polypeptide chain in the Fc-based chimeric protein complexes.
In some embodiments, where more than one targeting moiety is present in the heterodimeric protein complexes described herein, one targeting moiety may be in trans orientation (relative to the human IFNγ or human TNFα signaling agent), whereas another targeting moiety may be in cis orientation (relative to the human IFNγ or human TNFα signaling agent). In some embodiments, the human IFNγ or human TNFα signaling agent and target moiety are on the same ends/sides (N-terminal or C-terminal ends) of an Fc domain. In some embodiments, the human IFNγ or human TNFα signaling agent and targeting moiety are on different sides/ends of an Fc domain (N-terminal and C-terminal ends).
In some embodiments, where more than one targeting moiety is present in the heterodimeric protein complexes described herein, the targeting moieties may be found on the same Fc chain or on two different Fc chains in the heterodimeric protein complex (in the latter case the targeting moieties would be in trans relative to each other, as they are on different Fc chains). In some embodiments, where more than one targeting moiety is present on the same Fc chain, the targeting moieties may be on the same or different sides/ends of an Fc chain (N-terminal or/and C-terminal ends).
In some embodiments, where more than one human IFNγ or human TNFα signaling agent is present in the heterodimeric protein complexes described herein, the human IFNγ or human TNFα signaling agents may be found on the same Fc chain or on two different Fc chains in the heterodimeric protein complex (in the latter case the human IFNγ or human TNFα signaling agents would be in trans relative to each other, as they are on different Fc chains). In some embodiments, where more than one human IFNγ or human TNFα signaling agent is present on the same Fc chain, the human IFNγ or human TNFα signaling agents may be on the same or different sides/ends of an Fc chain (N-terminal or/and C-terminal ends).
In some embodiments, where more than one human IFNγ or human TNFα signaling agent is present in the heterodimeric protein complexes described herein, one human IFNγ or human TNFα signaling agent may be in trans orientation (as relates to the targeting moiety), whereas another human IFNγ or human TNFα signaling agent may be in cis orientation (as relates to the targeting moiety).
In some embodiments, the Fc domains include or start with the core hinge region of wild-type human IgG1, which contains the sequence Cys-Pro-Pro-Cys (SEQ ID NO: 1341). In some embodiments, the Fc domains also include the upper hinge, or parts thereof (e.g., DKTHTCPPC (SEQ ID NO: 1342; see WO2009053368), EPKSCDKTHTCPPC (SEQ ID NO: 1343), or EPKSSDKTHTCPPC (SEQ ID NO: 1344; see Lo et al., Protein Engineering vol. 11 no. 6 pp. 495-500, 1998)).
In some embodiments, the Fc-based chimeric protein complexes of the present technology include one or more human IFNγ or human TNFα signaling agents (SA). In some embodiments, the Fc-based chimeric protein complexes disclosed herein include one human IFNγ or human TNFα signaling agent wherein the human IFNγ or human TNFα signaling agent is a multimeric human IFNγ or human TNFα signaling agent. In some embodiments, the Fc-based chimeric protein complexes disclosed herein include at least one monomeric human IFNγ or human TNFα signaling agent and at least one multimeric human IFNγ or human TNFα signaling agent. For example, the Fc-based chimeric protein complexes can include a first monomeric human IFNγ or human TNFα signaling agent attached to a first Fc chain and a first monomer of a second multimeric human IFNγ or human TNFα signaling agent attached to the first Fc chain and a second monomer of the second multimeric human IFNγ or human TNFα signaling agent attached to the second Fc chain wherein assembly of the Fc chains to form an Fc domain causes reconstitution of the multimeric human IFNγ or human TNFα signaling agent that is functional upon such reconstitution.
The human IFNγ or human TNFα signaling agents, as disclosed herein, are cytokines which are functional as a multimer of monomers. In some embodiments, the human IFNγ or human TNFα signaling agents are wild type or modified. In embodiments, the human IFNγ or human TNFα signaling agents are cytokines which are in solution as a dimer or trimer and typically need to be produced as a multimer to avoid aggregation or monomer exchange. In other embodiments, the human IFNγ or human TNFα signaling agents are cytokines which multimerize only when bound by the receptor and become functional multimers as of receptor interaction.
The human IFNγ or human TNFα signaling agents, as disclosed herein, can be a wild type human IFNγ or human TNFα signaling agent or a modified human IFNγ or human TNFα signaling agent. In some embodiments, the human IFNγ or human TNFα signaling agent is functional as a multimer of monomers. A human IFNγ or human TNFα signaling agent of the present invention is multimeric when it includes one or more chains of protein. In such instances, where the human IFNγ or human TNFα signaling agent includes multiple chains of protein, each chain of protein present in the human IFNγ or human TNFα signaling agent is referred to as a monomer. For example, the human IFNγ or human TNFα signaling agent can be a monomer, a dimer, a trimer, a tetramer, a pentamer, a hexamer, heptamer and so on depending on the number of protein chains present in the human IFNγ or human TNFα signaling agent. In some embodiments, the human IFNγ or human TNFα signaling agent is a homomeric multimer (where all monomers are the same) or a heteromeric multimer (where two or more different monomers are present in the signaling agent).
In some embodiments, the human IFNγ or human TNFα signaling agent is a dimer and each monomer of the signaling agent is linked to one Fc chain of the Fc domain. For instance, a first monomer of the dimeric human IFNγ or human TNFα signaling agent is attached to the first Fc chain and a second monomer of the dimeric human IFNγ or human TNFα signaling agent is attached to the second Fc chain. In some embodiments, the dimeric human IFNγ or human TNFα signaling agent is reconstituted upon association of the first and the second Fc chains and upon reconstitution the dimeric human IFNγ or human TNFα signaling agent becomes functional.
In some embodiments, the human IFNγ or human TNFα signaling agent is a trimer where the first monomer of the human IFNγ or human TNFα signaling agent is linked to a first Fc chain and the second and the third monomer of the human IFNγ or human TNFα signaling agent are linked to the second Fc chain. In some embodiments, the trimeric human IFNγ or human TNFα signaling agent is reconstituted upon association of the first and the second Fc chains and upon reconstitution the trimeric human IFNγ or human TNFα signaling agent becomes functional.
In some embodiments, the multimeric human IFNγ or human TNFα signaling agents disclosed herein are such that all of the monomers of the human IFNγ or human TNFα signaling agent are modified (e.g., are mutants of the human IFNγ or human TNFα signaling agent). In other embodiments, at least one monomer of the multimeric human IFNγ or human TNFα signaling agent is modified. In some embodiments, all monomers of the multimeric human IFNγ or human TNFα signaling agent have the same modification (or mutation) and in other embodiments, each monomer of the multimeric human IFNγ or human TNFα signaling agent is modified with different mutations. In embodiments, a reconstituted dimer human IFNγ or human TNFα signaling agent comprises one mutation or two mutations. In embodiments, a reconstituted trimer human IFNγ or human TNFα signaling agent comprises one mutation or two mutations or three mutations.
In various embodiments, the Fc-based chimeric protein complex comprises a wild type human IFNγ or human TNFα signaling agent that has improved target selectivity and safety relative to a human IFNγ or human TNFα signaling agent which is not fused to an Fc, or a human IFNγ or human TNFα signaling agent which is not in the context of a complex, e.g., without limitation, a heterodimeric complex. In various embodiments, the Fc-based chimeric protein complex comprises a wild type human IFNγ or human TNFα signaling agent that has improved target selective activity relative to a human IFNγ or human TNFα signaling agent which is not fused to an Fc, or a human IFNγ or human TNFα signaling agent which is not in the context of a complex, e.g., without limitation, a heterodimeric complex. In various embodiments, the Fc-based chimeric protein complex allows for conditional activity.
In various embodiments, the Fc-based chimeric protein complex comprises a human IFNγ or human TNFα wild type signaling agent that has one or more of attenuated activity such as one or more of reduced binding affinity, reduced endogenous activity, and reduced specific bioactivity as compared to the human IFNγ or human TNFα signaling agent which is not fused to an Fc, or a human IFNγ or human TNFα signaling agent which is not in the context of a complex, e.g., without limitation, a heterodimeric complex.
In various embodiments, the Fc-based chimeric protein complex comprises a wild type human IFNγ or human TNFα signaling agent that has improved safety, e.g. reduced systemic toxicity, reduced side effects, and reduced off-target effects relative to a human IFNγ or human TNFα signaling agent which is not fused to an Fc, or a human IFNγ or human TNFα signaling agent which is not in the context of a complex, e.g., without limitation, a heterodimeric complex. In various embodiments, improved safety means that the present Fc-based chimeric protein provides lower toxicity (e.g. systemic toxicity and/or tissue/organ-associated toxicities); and/or lessened or substantially eliminated side effects; and/or increased tolerability, lessened or substantially eliminated adverse events; and/or reduced or substantially eliminated off-target effects; and/or an increased therapeutic window of the wild type human IFNγ or human TNFα signaling agent as compared to the human IFNγ or human TNFα signaling agent which is not fused to an Fc, or a human IFNγ or human TNFα signaling agent which is not in the context of a complex, e.g., without limitation, a heterodimeric complex.
In some embodiments, the reduced affinity or activity at the receptor is restorable by inclusion in the present complex having one or more of the targeting moieties as described herein.
In various embodiments, the Fc-based chimeric protein complex comprises a wild type human IFNγ or human TNFα signaling agent that has reduced, substantially reduced, or ablated affinity, e.g. binding (e.g. KD) and/or activation (for instance, when the modified human IFNγ or human TNFα signaling agent is an agonist of its receptor, measurable as, for example, KA and/or EC50) and/or inhibition (for instance, when the modified human IFNγ or human TNFα signaling agent is an antagonist of its receptor, measurable as, for example, KI and/or IC50), for one or more of its receptors. In various embodiments, the reduced affinity at the human IFNγ or human TNFα signaling agent's receptor allows for attenuation of activity. In such embodiments, the modified human IFNγ or human TNFα signaling agent has about 1%, or about 3%, about 5%, about 10%, about 15%, about 20%, about 25%, about 30%, about 35%, about 40%, about 45%, about 50%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, about 95%, or about 10%-20%, about 20%-40%, about 50%, about 40%-60%, about 60%-80%, about 80%-100% of the affinity for the receptor as compared to the human IFNγ or human TNFα signaling agent which is not fused to an Fc, or a human IFNγ or human TNFα signaling agent which is not in the context of a complex, e.g., without limitation, a heterodimeric complex. In some embodiments, the binding affinity is at least about 2-fold lower, about 3-fold lower, about 4-fold lower, about 5-fold lower, about 6-fold lower, about 7-fold lower, about 8-fold lower, about 9-fold lower, at least about 10-fold lower, at least about 15-fold lower, at least about 20-fold lower, at least about 25-fold lower, at least about 30-fold lower, at least about 35-fold lower, at least about 40-fold lower, at least about 45-fold lower, at least about 50-fold lower, at least about 100-fold lower, at least about 150-fold lower, or about 10-50-fold lower, about 50-100-fold lower, about 100-150-fold lower, about 150-200-fold lower, or more than 200-fold lower as compared to the human IFNγ or human TNFα signaling agent which is not fused to an Fc, or a human IFNγ or human TNFα signaling agent which is not in the context of a complex, e.g., without limitation, a heterodimeric complex.
In various embodiments, the Fc-based chimeric protein complex comprises a wild type human IFNγ or human TNFα signaling agent that has reduced endogenous activity of the human IFNγ or human TNFα signaling agent to about 75%, or about 70%, or about 60%, or about 50%, or about 40%, or about 30%, or about 25%, or about 20%, or about 10%, or about 5%, or about 3%, or about 1%, e.g., as compared to the human IFNγ or human TNFα signaling agent which is not fused to an Fc, or a human IFNγ or human TNFα signaling agent which is not in the context of a complex, e.g., without limitation, a heterodimeric complex.
In various embodiments, the human IFNγ or human TNFα signaling agent has one or more mutations that confer improved target selectivity and safety relative to a wild type human IFNγ or human TNFα signaling agent. In various embodiments, the human IFNγ or human TNFα signaling agent has one or more mutations that confer improved target selective activity relative to a wild type human IFNγ or human TNFα signaling agent. In various embodiments, the human IFNγ or human TNFα signaling agent has one or more mutations that allow for conditional activity.
In various embodiments, the human IFNγ or human TNFα signaling agent is modified to have reduced affinity or activity for one or more of its receptors, which allows for attenuation of activity (inclusive of agonism or antagonism) and/or prevents non-specific signaling or undesirable sequestration of the Fc-based chimeric protein complex.
In various embodiments, the human IFNγ or human TNFα signaling agent is agonistic in its wild type form and bears one or more mutations that attenuate its agonistic activity.
In various embodiments, the human IFNγ or human TNFα signaling agent is antagonistic in its wild type form and bears one or more mutations that attenuate its antagonistic activity. In various embodiments, the human IFNγ or human TNFα signaling agent is antagonistic due to one or more mutations, e.g. an agonistic signaling agent is converted to an antagonistic human IFNγ or human TNFα signaling agent and, such a converted human IFNγ or human TNFα signaling agent, optionally, also bears one or more mutations that attenuate its antagonistic activity (e.g. as described in WO 2015/007520, the entire contents of which are hereby incorporated by reference).
Accordingly, in various embodiments, the human IFNγ or human TNFα signaling agent is a modified (e.g. mutant) form (e.g., having one or more mutations) of a wild type human IFNγ or human TNFα signaling agent. In various embodiments, the modifications (e.g. mutations) allow for the modified human IFNγ or human TNFα signaling agent to have one or more of attenuated activity such as one or more of reduced binding affinity, reduced endogenous activity, and reduced specific bioactivity as compared to the unmodified or unmutated human IFNγ or human TNFα signaling agent, i.e. the wild type form of the human IFNγ or human TNFα signaling agent (e.g. comparing the same signaling agent in a wild type form versus a modified or mutant form). In some embodiments, the mutations which attenuate or reduce binding or affinity include those mutations which substantially reduce or ablate binding or activity. In some embodiments, the mutations which attenuate or reduce binding or affinity are different from those mutations which substantially reduce or ablate binding or activity. Consequentially, in various embodiments, the mutations allow for the human IFNγ or human TNFα signaling agent to have improved safety, e.g. reduced systemic toxicity, reduced side effects, and reduced off-target effects relative to unmutated, i.e. wild type, human IFNγ or human TNFα signaling agent (e.g. comparing the same signaling agent in a wild type form versus a modified (e.g. mutant) form).
As described herein, the human IFNγ or human TNFα signaling agent may have improved safety due to one of more modifications, e.g. mutations. In various embodiments, improved safety means that the present Fc-based chimeric protein provides lower toxicity (e.g. systemic toxicity and/or tissue/organ-associated toxicities); and/or lessened or substantially eliminated side effects; and/or increased tolerability, lessened or substantially eliminated adverse events; and/or reduced or substantially eliminated off-target effects; and/or an increased therapeutic window.
In various embodiments, the human IFNγ or human TNFα signaling agent is modified to have one or more mutations that reduce its binding affinity or activity for one or more of its receptors. In some embodiments, the human IFNγ or human TNFα signaling agent is modified to have one or more mutations that substantially reduce or ablate binding affinity or activity for the receptors. In some embodiments, the activity provided by the wild type human IFNγ or human TNFα signaling agent is agonism at the receptor (e.g. activation of a cellular effect at a site of therapy). For example, the wild type human IFNγ or human TNFα signaling agent may activate its receptor. In such embodiments, the mutations result in the modified human IFNγ or human TNFα signaling agent to have reduced or ablated activating activity at the receptor. For example, the mutations may result in the modified human IFNγ or human TNFα signaling agent to deliver a reduced activating signal to a target cell or the activating signal could be ablated. In some embodiments, the activity provided by the wild type human IFNγ or human TNFα signaling agent is antagonism at the receptor (e.g. blocking or dampening of a cellular effect at a site of therapy). For example, the wild type human IFNγ or human TNFα signaling agent may antagonize or inhibit the receptor. In these embodiments, the mutations result in the modified human IFNγ or human TNFα signaling agent to have a reduced or ablated antagonizing activity at the receptor. For example, the mutations may result in the modified human IFNγ or human TNFα signaling agent to deliver a reduced inhibitory signal to a target cell or the inhibitory signal could be ablated. In various embodiments, the human IFNγ or human TNFα signaling agent is antagonistic due to one or more mutations, e.g. an agonistic signaling agent is converted to an antagonistic human IFNγ or human TNFα signaling agent (e.g. as described in WO 2015/007520, the entire contents of which are hereby incorporated by reference) and, such a converted human IFNγ or human TNFα signaling agent, optionally, also bears one or more mutations that reduce its binding affinity or activity for one or more of its receptors or that substantially reduce or ablate binding affinity or activity for one or more of its receptors.
In some embodiments, the reduced affinity or activity at the receptor is restorable by inclusion in the present complex having one or more of the targeting moieties as described herein. In other embodiments, the reduced affinity or activity at the receptor is not substantially restorable by the activity of one or more of the targeting moieties.
In various embodiments, the Fc-based chimeric protein complex of the present technology reduces off-target effects because the human IFNγ or human TNFα signaling agents have mutations that weaken or ablate binding affinity or activity at a receptor. In various embodiments, this reduction in side effects is observed relative with, for example, the wild type human IFNγ or human TNFα signaling agents. In various embodiments, the human IFNγ or human TNFα signaling agent is active on target cells because the targeting moiety(ies) compensates for the missing/insufficient binding (e.g., without limitation and/or avidity) required for substantial activation. In various embodiments, the wild type or modified human IFNγ or human TNFα signaling agent is substantially inactive en route to the site of therapeutic activity and has its effect substantially on specifically targeted cell types which greatly reduces cross-reactivities and/or potentially associated side effects.
In some embodiments, the human IFNγ or human TNFα signaling agent includes one or more mutations that attenuate or reduce binding or affinity for one receptor (i.e., a therapeutic receptor) and one or more mutations that substantially reduce or ablate binding or activity at a second receptor. In such embodiments, these mutations may be at the same or at different positions (i.e., the same mutation or multiple mutations). In some embodiments, the mutation(s) that reduce binding and/or activity at one receptor is different from the mutation(s) that substantially reduce or ablate at another receptor. In some embodiments, the mutation(s) that reduce binding and/or activity at one receptor is the same as the mutation(s) that substantially reduce or ablate at another receptor. In some embodiments, the present Fc-based chimeric protein complexes have a modified human IFNγ or human TNFα signaling agent that has both mutations that attenuate binding and/or activity at a therapeutic receptor and therefore allow for a more controlled, on-target therapeutic effect (e.g. relative to wild type human IFNγ or human TNFα) and mutations that substantially reduce or ablate binding and/or activity at another receptor and therefore reduce side effects (e.g. relative to wild type human IFNγ or human TNFα).
In some embodiments, the substantial reduction or ablation of binding or activity is not substantially restorable with a targeting moiety described herein. In some embodiments, the substantial reduction or ablation of binding or activity is restorable with a targeting moiety. In various embodiments, substantially reducing or ablating binding or activity at a second receptor also may prevent deleterious effects that are mediated by the other receptor. Alternatively, or in addition, substantially reducing or ablating binding or activity at the other receptor causes the therapeutic effect to improve as there is a reduced or eliminated sequestration of the therapeutic Fc-based chimeric protein complexes away from the site of therapeutic action. For instance, in some embodiments, this obviates the need of high doses of the present Fc-based chimeric protein complexes that compensate for loss at the other receptor. Such ability to reduce dose further provides a lower likelihood of side effects.
In various embodiments, the modified human IFNγ or human TNFα signaling agent comprises one or more mutations that cause the human IFNγ or human TNFα signaling agent to have reduced, substantially reduced, or ablated affinity, e.g. binding (e.g. KD) and/or activation (for instance, when the modified human IFNγ or human TNFα signaling agent is an agonist of its receptor, measurable as, for example, KA and/or EC50) and/or inhibition (for instance, when the modified human IFNγ or human TNFα signaling agent is an antagonist of its receptor, measurable as, for example, KI and/or IC50), for one or more of its receptors. In various embodiments, the reduced affinity at the human IFNγ or human TNFα signaling agent's receptor allows for attenuation of activity (inclusive of agonism or antagonism). In such embodiments, the modified human IFNγ or human TNFα signaling agent has about 1%, or about 3%, about 5%, about 10%, about 15%, about 20%, about 25%, about 30%, about 35%, about 40%, about 45%, about 50%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, about 95%, or about 10%-20%, about 20%-40%, about 50%, about 40%-60%, about 60%-80%, about 80%-100% of the affinity for the receptor relative to the wild type human IFNγ or human TNFα signaling agent. In some embodiments, the binding affinity is at least about 2-fold lower, about 3-fold lower, about 4-fold lower, about 5-fold lower, about 6-fold lower, about 7-fold lower, about 8-fold lower, about 9-fold lower, at least about 10-fold lower, at least about 15-fold lower, at least about 20-fold lower, at least about 25-fold lower, at least about 30-fold lower, at least about 35-fold lower, at least about 40-fold lower, at least about 45-fold lower, at least about 50-fold lower, at least about 100-fold lower, at least about 150-fold lower, or about 10-50-fold lower, about 50-100-fold lower, about 100-150-fold lower, about 150-200-fold lower, or more than 200-fold lower relative to the wild type human IFNγ or human TNFα signaling agent.
In embodiments wherein the Fc-based chimeric protein complex comprises a modified human IFNγ or human TNFα signaling agent having mutations that reduce binding at one receptor and substantially reduce or ablate binding at a second receptor, the attenuation or reduction in binding affinity of the modified human IFNγ or human TNFα signaling agent for one receptor is less than the substantial reduction or ablation in affinity for the other receptor. In some embodiments, the attenuation or reduction in binding affinity of the modified human IFNγ or human TNFα signaling agent for one receptor is less than the substantial reduction or ablation in affinity for the other receptor by about 1%, or about 3%, about 5%, about 10%, about 15%, about 20%, about 25%, about 30%, about 35%, about 40%, about 45%, about 50%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, or about 95%. In various embodiments, substantial reduction or ablation refers to a greater reduction in binding affinity and/or activity than attenuation or reduction.
In various embodiments, the modified human IFNγ or human TNFα signaling agent comprises one or more mutations that reduce the endogenous activity of the human IFNγ or human TNFα signaling agent to about 75%, or about 70%, or about 60%, or about 50%, or about 40%, or about 30%, or about 25%, or about 20%, or about 10%, or about 5%, or about 3%, or about 1%, e.g., relative to the wild type human IFNγ or human TNFα signaling agent.
In some embodiments, the modified human IFNγ or human TNFα signaling agent comprises one or more mutations that cause the human IFNγ or human TNFα signaling agent to have reduced affinity for its receptor that is lower than the binding affinity of the targeting moiety(ies) for its(their) receptor(s). In some embodiments, this binding affinity differential is between signaling agent/receptor and targeting moiety/receptor on the same cell. In some embodiments, this binding affinity differential allows for the human IFNγ or human TNFα signaling agent, e.g. mutated human IFNγ or human TNFα signaling agent, to have localized, on-target effects and to minimize off-target effects that underlie side effects that are observed with wild type human IFNγ or human TNFα signaling agent. In some embodiments, this binding affinity is at least about 2-fold, or at least about 5-fold, or at least about 10-fold, or at least about 15-fold lower, or at least about 25-fold, or at least about 50-fold lower, or at least about 100-fold, or at least about 150-fold.
Receptor binding activity may be measured using methods known in the art. For example, affinity and/or binding activity may be assessed by Scatchard plot analysis and computer-fitting of binding data (e.g. Scatchard, The attractions of proteins for small molecules and ions. Ann NY Acad Sci 51: 660-672, 1949) or by reflectometric interference spectroscopy under flow through conditions, as described by Brecht et al. Biosens Bioelectron 1993; 8:387-392, the entire contents of all of which are hereby incorporated by reference.
The amino acid sequences of the wild type human IFNγ or human TNFα signaling agents described herein are well known in the art. Accordingly, in various embodiments the modified human IFNγ or human TNFα signaling agent comprises an amino acid sequence that has at least about 60%, or at least about 61%, or at least about 62%, or at least about 63%, or at least about 64%, or at least about 65%, or at least about 66%, or at least about 67%, or at least about 68%, or at least about 69%, or at least about 70%, or at least about 71%, or at least about 72%, or at least about 73%, or at least about 74%, or at least about 75%, or at least about 76%, or at least about 77%, or at least about 78%, or at least about 79%, or at least about 80%, or at least about 81%, or at least about 82%, or at least about 83%, or at least about 84%, or at least about 85%, or at least about 86%, or at least about 87%, or at least about 88%, or at least about 89%, or at least about 90%, or at least about 91%, or at least about 92%, or at least about 93%, or at least about 94%, or at least about 95%, or at least about 96%, or at least about 97%, or at least about 98%, or at least about 99% sequence identity with the known wild type amino acid sequences of the human IFNγ or human TNFα signaling agents described herein (e.g. about 60%, or about 61%, or about 62%, or about 63%, or about 64%, or about 65%, or about 66%, or about 67%, or about 68%, or about 69%, or about 70%, or about 71%, or about 72%, or about 73%, or about 74%, or about 75%, or about 76%, or about 77%, or about 78%, or about 79%, or about 80%, or about 81%, or about 82%, or about 83%, or about 84%, or about 85%, or about 86%, or about 87%, or about 88%, or about 89%, or about 90%, or about 91%, or about 92%, or about 93%, or about 94%, or about 95%, or about 96%, or about 97%, or about 98%, or about 99% sequence identity).
In various embodiments the modified human IFNγ or human TNFα signaling agent comprises an amino acid sequence that has at least about 60%, or at least about 61%, or at least about 62%, or at least about 63%, or at least about 64%, or at least about 65%, or at least about 66%, or at least about 67%, or at least about 68%, or at least about 69%, or at least about 70%, or at least about 71%, or at least about 72%, or at least about 73%, or at least about 74%, or at least about 75%, or at least about 76%, or at least about 77%, or at least about 78%, or at least about 79%, or at least about 80%, or at least about 81%, or at least about 82%, or at least about 83%, or at least about 84%, or at least about 85%, or at least about 86%, or at least about 87%, or at least about 88%, or at least about 89%, or at least about 90%, or at least about 91%, or at least about 92%, or at least about 93%, or at least about 94%, or at least about 95%, or at least about 96%, or at least about 97%, or at least about 98%, or at least about 99% sequence identity with any amino acid sequences of the human IFNγ or human TNFα signaling agents described herein (e.g. about 60%, or about 61%, or about 62%, or about 63%, or about 64%, or about 65%, or about 66%, or about 67%, or about 68%, or about 69%, or about 70%, or about 71%, or about 72%, or about 73%, or about 74%, or about 75%, or about 76%, or about 77%, or about 78%, or about 79%, or about 80%, or about 81%, or about 82%, or about 83%, or about 84%, or about 85%, or about 86%, or about 87%, or about 88%, or about 89%, or about 90%, or about 91%, or about 92%, or about 93%, or about 94%, or about 95%, or about 96%, or about 97%, or about 98%, or about 99% sequence identity).
In various embodiments, the modified human IFNγ or human TNFα signaling comprises an amino acid sequence having one or more amino acid mutations. In some embodiments, the one or more amino acid mutations may be independently selected from substitutions, insertions, deletions, and truncations. In some embodiments, the amino acid mutations are amino acid substitutions, and may include conservative and/or non-conservative substitutions, as described elsewhere herein.
In various embodiments, the modified human IFNγ or human TNFα signaling agent comprises a truncation of one or more amino acids, e.g. an N-terminal truncation and/or a C-terminal truncation.
In various embodiments, the substitutions may also include non-classical amino acids as described elsewhere herein.
As described herein, the modified human IFNγ or human TNFα signaling agents bear mutations that affect affinity and/or activity at one or more receptors. In various embodiments, there is reduced affinity and/or activity at a therapeutic receptor, e.g. a receptor through which a desired therapeutic effect is mediated (e.g. agonism or antagonism). In various embodiments, the modified human IFNγ or human TNFα signaling agents bear mutations that substantially reduce or ablate affinity and/or activity at a receptor, e.g. a receptor through which a desired therapeutic effect is not mediated (e.g. as the result of promiscuity of binding). The receptors of the human IFNγ or human TNFα signaling agents, as described herein, are known in the art.
Illustrative mutations which provide reduced affinity and/or activity (e.g. agonistic) at a receptor are found in WO 2013/107791 and PCT/EP2017/061544 (e.g. with regard to interferons), WO 2015/007542 (e.g. with regard to interleukins), and WO 2015/007903 (e.g. with regard to TNF), the entire contents of each of which are hereby incorporated by reference. Illustrative mutations which provide reduced affinity and/or activity (e.g. antagonistic) at a therapeutic receptor are found in WO 2015/007520, the entire contents of which are hereby incorporated by reference.
In some embodiments, the modified human IFNγ or human TNFα signaling agent comprises one or more mutations that cause the human IFNγ or human TNFα signaling agent to have reduced affinity and/or activity for a a type II cytokine receptor or a receptor in the Tumor Necrosis Factor Receptor (TNFR) superfamily.
In various embodiments, the receptor for the human IFNγ signaling agent is a Type II cytokine receptor. Type II cytokine receptors are multimeric receptors composed of heterologous subunits, and are receptors mainly for interferons. Illustrative type II cytokine receptors include, but are not limited to, IFN-γ receptor (e.g. IFNGR1 and IFNGR2).
In various embodiments, the receptor for the human TNFα signaling agent is a TNFR family member. Tumor necrosis factor receptor (TNFR) family members share a cysteine-rich domain (CRD) formed of three disulfide bonds surrounding a core motif of CXXCXXC creating an elongated molecule. Exemplary tumor necrosis factor receptor family members include: CDI 20a (TNFRSFIA), CD 120b (TNFRSFIB), Lymphotoxin beta receptor (LTBR, TNFRSF3), CD 134 (TNFRSF4), CD40 (CD40, TNFRSF5), FAS (FAS, TNFRSF6), TNFRSF6B (TNFRSF6B), CD27 (CD27, TNFRSF7), CD30 (TNFRSF8), CD137 (TNFRSF9), TNFRSFIOA (TNFRSFIOA), TNFRSFIOB, (TNFRSFIOB), TNFRSFIOC (TNFRSFIOC), TNFRSFIOD (TNFRSFIOD), RANK (TNFRSFI IA), Osteoprotegerin (TNFRSFI IB), TNFRSF12A (TNFRSF12A), TNFRSF13B (TNFRSF13B), TNFRSF13C (TNFRSF13C), TNFRSF14 (TNFRSF14), Nerve growth factor receptor (NGFR, TNFRSF16), TNFRSF17 (TNFRSF17), TNFRSF18 (TNFRSF18), TNFRSF19 (TNFRSF19), TNFRSF21 (TNFRSF21), and TNFRSF25 (TNFRSF25). In an embodiment, the TNFR family member is CD120a (TNFRSF1A) or TNF-R1. In another embodiment, the TNFR family member is CD 120b (TNFRSFIB) or TNF-R2.
In embodiments, the signaling agent is a wild type or modified interferon γ. The IFN-γ monomer consists of a core of six α-helices and an extended unfolded sequence in the C-terminal region. Interferon γ is biological active as a dimer. In some embodiments, the Fc domain of the present invention includes two Fc chains where one Fc chain includes a first monomer of IFN-γ and the second Fc chain includes a second monomer of IFN-γ. The Fc chains assemble to form the Fc domain and this association of the Fc chains cause reconstitution of the IFN-γ monomers into a functional dimer.
In some embodiments, the modified interferon γ agent has reduced affinity and/or activity for the interferon-gamma receptor (IFNGR), i.e., IFNGR1 and IFNGR2 chains. In some embodiments, the modified interferon γ agent has substantially reduced or ablated affinity and/or activity for the interferon-gamma receptor (IFNGR), i.e., IFNGR1 and/or IFNGR2 chains.
For example, the mutant IFN-γ can include a mutation, by way of non-limiting example, a truncation. In embodiments, the mutant IFN-γ has a truncation at the C-terminus, e.g. of about 5 to about 20 amino acid residues, or of about 19 amino acid residues, or of about 18 amino acid residues, or of about 17 amino acid residues, or of about 16 amino acid residues, or of about 15 amino acid residues, or of about 14 amino acid residues, or of about 13 amino acid residues, or of about 12 amino acid residues, or of about 11 amino acid residues, or of about 10 amino acid residues, or of about 9 amino acid residues, or of about 8 amino acid residues, or of about 7 amino acid residues, or of about 6 amino acid residues, or of about 5 amino acid residues. In embodiments, the mutant IFN-γ has one or more mutations at positions Q1, V5, E9, K12, H19, S20, V22, A23, D24, N25, G26, T27, L30, K108, H111, E112, I114, Q115, A118, E119, and K125. In embodiments, the mutant IFN-γ has one or more mutations are substitutions selected from V5E, S20E, V22A, A23G, A23F, D24G, G26Q, H111A, H111D, I114A, Q115A, and A118G. In embodiments, the mutant IFN-γ comprises the V22A mutation. In embodiments, the mutant IFN-γ comprises the A23G mutation. In embodiments, the mutant IFN-γ comprises the D24G mutation. In embodiments, the mutant IFN-γ comprises the H111A mutation or the H111D mutation. In embodiments, the mutant IFN-γ comprises the I114A mutation. In embodiments, the mutant IFN-γ comprises the Q115A mutation. In embodiments, the mutant IFN-γ comprises the A118G mutation. In embodiments, the mutant IFN-γ comprises the A23G mutation and the D24G mutation. In embodiments, the mutant IFN-γ comprises the I114A mutation and the A118G mutation. IFN-γ is shown in SEQ ID NO: 1563 below and all mutations are relative to SEQ ID NO: 1563:
In some embodiments, the Fc based chimeric proteins of the present invention include a modified IFNγ as the signaling moiety and a targeting moiety that binds to Clec9A.
In some embodiments, the reduced affinity or activity at the therapeutic receptor is restorable by inclusion in the present complex having one or more of the targeting moieties as described herein. In other embodiments, the reduced affinity or activity at the therapeutic receptor is not substantially restorable by inclusion in the present complex having one or more of the targeting moieties as described herein. In various embodiments, the therapeutic Fc-based chimeric protein complexes of the present invention reduce off-target effects because the consensus interferon variant has mutations that weaken binding affinity or activity at a therapeutic receptor. In various embodiments, this reduces side effects observed with, for example, the wild type consensus interferon. In various embodiments, the consensus interferon variant is substantially inactive en route to the site of therapeutic activity and has its effect substantially on specifically targeted cell types which greatly reduces undesired side effects.
In some embodiments, the wild type or modified signaling agent is TNFα. TNFα is a pleiotropic cytokine with many diverse functions, including regulation of cell growth, differentiation, apoptosis, tumorigenesis, viral replication, autoimmunity, immune cell functions and trafficking, inflammation, and septic shock. It binds to two distinct membrane receptors on target cells: TNFR1 (p55) and TNFR2 (p75). TNFR1 exhibits a very broad expression pattern whereas TNFR2 is expressed preferentially on certain populations of lymphocytes, Tregs, endothelial cells, certain neurons, microglia, cardiac myocytes and mesenchymal stem cells. Very distinct biological pathways are activated in response to receptor activation, although there is also some overlap. As a general rule, without wishing to be bound by theory, TNFR1 signaling is associated with induction of apoptosis (cell death) and TNFR2 signaling is associated with activation of cell survival signals (e.g. activation of NFkB pathway). Administration of TNF is systemically toxic, and this is largely due to TNFR1 engagement. However, it should be noted that activation of TNFR2 is also associated with a broad range of activities and, as with TNFR1, in the context of developing TNFα based therapeutics, control over TNFα targeting and activity is important.
In some embodiments, the Fc domain of the present invention includes two Fc chains where one Fc chain includes a first monomer of TNFα and the second Fc chain includes a second and a third monomer of TNFα. The Fc chains assemble to form the Fc domain and this association of the Fc chains cause reconstitution of the TNFα monomers into a functional TNFα. In some embodiments, the Fc based chimeric proteins of the present invention include TNFα as the signaling agent and a targeting moiety that binds to CD20.
In some embodiments, the modified human TNFα signaling agent has reduced affinity and/or activity for TNFR1 and/or TNFR2. In some embodiments, the modified human TNFα signaling agent has substantially reduced or ablated affinity and/or activity for TNFR1 and/or TNFR2. TNFR1 is expressed in most tissues, and is involved in cell death signaling while, by contrast, TNFR2 is involved in cell survival signaling. Accordingly, in embodiments directed to methods of treating cancer, the modified human TNFα signaling agent has reduced affinity and/or activity for TNFR1 and/or substantially reduced or ablated affinity and/or activity for TNFR2. In these embodiments, the Fc-based chimeric protein complexes may be targeted to a cell for which apoptosis is desired, e.g. a tumor cell or a tumor vasculature endothelial cell. In embodiments directed to methods of promoting cell survival, for example, in neurogenesis for the treatment of neurodegenerative disorders, the modified human TNFα signaling agent has reduced affinity and/or activity for TNFR2 and/or substantially reduced or ablated affinity and/or activity for TNFR1. Stated another way, the present Fc-based chimeric protein complexes, in some embodiments, comprise modified TNFα agent that allows of favoring either death or survival signals.
In some embodiments, the Fc-based chimeric protein complex has a modified TNFα having reduced affinity and/or activity for TNFR1 and/or substantially reduced or ablated affinity and/or activity for TNFR2. Such an Fc-based chimeric protein complex, in some embodiments, is a more potent inducer of apoptosis as compared to a wild type TNFα and/or an Fc-based chimeric protein complex bearing only mutation(s) causing reduced affinity and/or activity for TNFR1. Such an Fc-based chimeric protein complex, in some embodiments, finds use in inducing tumor cell death or a tumor vasculature endothelial cell death (e.g. in the treatment of cancers). Also, in some embodiments, these Fc-based chimeric protein complexes avoid or reduce activation of Treg cells via TNFR2, for example, thus further supporting TNFR1-mediated antitumor activity in vivo.
In some embodiments, the Fc-based chimeric protein complex has a modified TNFα having reduced affinity and/or activity for TNFR2 and/or substantially reduced or ablated affinity and/or activity for TNFR1. Such an Fc-based chimeric protein complex, in some embodiments, is a more potent activator of cell survival in some cell types, which may be a specific therapeutic objective in various disease settings, including without limitation, stimulation of neurogenesis. In addition, such a TNFR2-favoring Fc-based chimeric protein complexes also are useful in the treatment of autoimmune diseases (e.g. Crohn's, diabetes, MS, colitis etc. and many others described herein). In some embodiments, the Fc-based chimeric protein complex is targeted to auto-reactive T cells. In some embodiments, the Fc-based chimeric protein complex promotes Treg cell activation and indirect suppression of cytotoxic T cells.
In some embodiments, the Fc-based chimeric protein complex causes the death of auto-reactive T cells, e.g. by activation of TNFR2 and/or avoidance TNFR1 (e.g. a modified TNFα having reduced affinity and/or activity for TNFR2 and/or substantially reduced or ablated affinity and/or activity for TNFR1). Without wishing to be bound by theory these auto-reactive T cells, have their apoptosis/survival signals altered e.g. by NFkB pathway activity/signaling alterations. In some embodiments, the Fc-based chimeric protein complex causes the death of autoreactive T cells having lesions or modifications in the NFκB pathway, which underlie an imbalance of their cell death (apoptosis)/survival signaling properties and, optionally, altered susceptibility to certain death-inducing signals (e.g., TNFR2 activation).
In some embodiments, a TNFR-2 based Fc-based chimeric protein complex has additional therapeutic applications in diseases, including autoimmune disease, various heart disease, de-myelinating and neurodegenerative disorders, and infectious disease, among others.
In an embodiment, the wild type TNFα has the amino acid sequence of:
In such embodiments, the modified TNFα agent has mutations at one or more amino acid positions 29, 31, 32, 84, 85, 86, 87, 88, 89, 145, 146 and 147 which produces a modified TNFα with reduced receptor binding affinity. See, for example, U.S. Pat. No. 7,993,636, the entire contents of which are hereby incorporated by reference.
In some embodiments, the modified human TNFα signaling agent has mutations at one or more amino acid positions R32, N34, Q67, H73, L75, T77, S86, Y87, V91, 197, T105, P106, A109, P113, Y115, E127, N137, D143, A145, and E146 as described, for example, in WO/2015/007903, the entire contents of which is hereby incorporated by reference (numbering according to the human TNFα sequence, Genbank accession number BAG70306, version BAG70306.1 GI: 197692685). In some embodiments, the modified human TNFα signaling agent has substitution mutations selected from L29S, R32G, R32W, N34G, Q67G, H73G, L75G, L75A, L75S, T77A, S86G, S86T, Y87Q, Y87L, Y87A, Y87F, Y87H, V91G, V91A, I97A, I97Q, 197S, T105G, P106G, A109Y, P113G, Y115G, Y115A, E127G, N137G, D143N, A145G, A145R, A145T, E146D, E146K, and S147D. In some embodiments, the human TNFα signaling agent has a mutation selected from Y87Q, Y87L, Y87A, Y87F, and Y87H. In another embodiment, the human TNFα signaling agent has a mutation selected from I97A, I97Q, and 197S. In a further embodiment, the human TNFα signaling agent has a mutation selected from Y115A and Y115G. In some embodiments, the human TNFα signaling agent has an E146K mutation. In some embodiments, the human TNFα signaling agent has an Y87H and an E146K mutation. In some embodiments, the human TNFα signaling agent has an Y87H and an A145R mutation. In some embodiments, the human TNFα signaling agent has a R32W and a S86T mutation. In some embodiments, the human TNFα signaling agent has a R32W and an E146K mutation. In some embodiments, the human TNFα signaling agent has a L29S and a R32W mutation. In some embodiments, the human TNFα signaling agent has a D143N and an A145R mutation. In some embodiments, the human TNFα signaling agent has a D143N and an A145R mutation. In some embodiments, the human TNFα signaling agent has an A145T, an E146D, and a S147D mutation. In some embodiments, the human TNFα signaling agent has an A145T and a S147D mutation.
In some embodiments, the modified TNFα signaling agent has one or more mutations selected from N39Y, S147Y, and Y87H, as described in WO2008/124086, the entire contents of which is hereby incorporated by reference.
In some embodiments, the modified human TNFα signaling agent has mutations that provide receptor selectivity as described in PCT/IB2016/001668, the entire contents of which are hereby incorporated by reference. In some embodiments, the mutations to TNFα are TNF-R1 selective. In some embodiments, the mutations to TNFα which are TNF-R1 selective are at one or more of positions R32, S86, and E146. In some embodiments, the mutations to TNFα which are TNF-R1 selective are one or more of R32W, S86T, and E146K. In some embodiments, the mutations to TNFα which are TNF-R1 selective are one or more of R32W, R32W/S86T, R32W/E146K and E146K. In some embodiments, the mutations to TNFα are TNF-R2 selective. In some embodiments, the mutations to TNFα which are TNF-R2 selective are at one or more of positions A145, E146, and S147. In some embodiments, the mutations to TNFα which are TNF-R2 selective are one or more of A145T, A145R, E146D, and S147D. In some embodiments, the mutations to TNFα which are TNF-R2 selective are one or more of A145R, A145T/S147D, and A145T/E146D/S147D.
In some embodiments, the TNFα signaling agent of the present invention has the same mutation/modification at all of its monomers or has a monomer having a different mutation than other monomers or has all monomers having different mutations.
In some embodiments, the Fc-based chimeric proteins of the present invention include a targeting moiety comprising a recognition domain that recognizes and/or binds to a target. The Fc-based chimeric proteins can include one or more targeting moieties. For example, in some embodiments, the Fc-based chimeric protein include one targeting moiety and one human IFNγ or human TNFα signaling agent. In other embodiments, the Fc-based chimeric protein includes two or more targeting moieties and one human IFNγ or human TNFα signaling agent. In other embodiments, the Fc-based chimeric protein includes two or more targeting moieties and two or more human IFNγ or human TNFα signaling agents.
In some embodiments, the Fc-based chimeric proteins disclosed herein include a multimeric targeting moiety wherein the Fc chain of the Fc domain includes at least one monomer of the multimeric targeting moiety and the other Fc chain of the Fc domain includes other monomer(s) of the multimeric targeting moiety. These Fc chains assemble to form the Fc domain such that the multimeric targeting moiety is reconstituted upon the assembly and the targeting moiety becomes functional. The reconstitution of the multimeric targeting moiety allows for it to bind to its target.
In some embodiments, the Fc-based chimeric proteins disclosed herein include a first momomeric targeting moiety and a second multimeric targeting moiety wherein a first Fc chain includes at least one monomer of the second multimeric targeting moiety and the first monomeric targeting moiety and the second Fc chain includes other monomer(s) of the second multimeric targeting moiety. These Fc chains assemble to form the Fc domain such that the second multimeric targeting moiety is reconstituted upon the assembly and the targeting moiety becomes functional. The reconstitution of the multimeric targeting moiety allows for it to bind to its target.
In some embodiments, the Fc-based chimeric proteins disclosed herein include a multimeric targeting moiety and a multimeric human IFNγ or human TNFα signaling agent. These chimeric protein include a first Fc chain that includes at least one monomer of the multimeric targeting moiety and at least one monomer of the multimeric human IFNγ or human TNFα signaling agent and a second Fc chain that includes other monomer(s) of the multimeric targeting moiety and the human IFNγ or human TNFα signaling agent. These Fc chains assemble to form the Fc domain such that the multimeric targeting moiety as well as the multimeric human IFNγ or human TNFα signaling agent is reconstituted upon the assembly of the Fc domain and the targeting moiety and the human IFNγ or human TNFα signaling agent becomes functional. Such reconstitution of the multimeric targeting moiety allows for it to bind to its target and the human IFNγ or human TNFα signaling agent to function.
In some embodiments, the Fc-based chimeric proteins disclosed herein include a targeting moiety and a human IFNγ or human TNFα signaling agent that is functional as a multimer of monomers and the two Fc chains each comprises one or more of human IFNγ or human TNFα signaling agent's monomers such that the functional multimer of monomers of the human IFNγ or human TNFα signaling agent is reconstituted upon association of the two Fc chains.
In some embodiments, the Fc-based chimeric protein complex disclosed herein includes a targeting moiety that is a dimeric targeting moiety and each monomer is linked to different Fc-chains. In other embodiments, the Fc-based chimeric protein complex of the present invention includes a targeting moiety that is a trimeric targeting moiety and two monomers of the targeting moiety are linked to a first Fc-chain and one monomer is linked to a second Fc-chain.
In some embodiments, the targeting moiety is a protein-based agent capable of specific binding, such as an antibody or derivatives thereof.
In some embodiments, the targeting moiety comprises antibody derivatives or formats. In some embodiments, the targeting moiety of the present Fc-based chimeric protein complex is a single-domain antibody, a recombinant heavy-chain-only antibody (VHH), a single-chain antibody (scFv), a shark heavy-chain-only antibody (VNAR), a microprotein (cysteine knot protein, knottin), a DARPin; a Tetranectin; an Affibody; a Transbody; an Anticalin; an AdNectin; an Affilin; a Microbody; a peptide aptamer; an alterases; a plastic antibodies; a phylomer; a stradobodies; a maxibodies; an evibody; a fynomer, an armadillo repeat protein, a Kunitz domain, an avimer, an atrimer, a probody, an immunobody, a triomab, a troybody; a pepbody; a vaccibody, a UniBody; affimers, a DuoBody, a Fv, a Fab, a Fab′, a F(ab′)2, a peptide mimetic molecule, or a small (e.g. synthetic or natural) molecule, e.g. without limitation, as described in US patent Nos. or Patent Publication Nos. U.S. Pat. No. 7,417,130, US 2004/132094, U.S. Pat. No. 5,831,012, US 2004/023334, U.S. Pat. Nos. 7,250,297, 6,818,418, US 2004/209243, U.S. Pat. Nos. 7,838,629, 7,186,524, 6,004,746, 5,475,096, US 2004/146938, US 2004/157209, U.S. Pat. Nos. 6,994,982, 6,794,144, US 2010/239633, U.S. Pat. No. 7,803,907, US 2010/119446, and/or U.S. Pat. No. 7,166,697, the contents of which are hereby incorporated by reference in their entireties. See also, Storz MAbs. 2011 May-June; 3(3): 310-317.
In one embodiment, the targeting moiety comprises a single-domain antibody, such as VHH from, for example, an organism that produces VHH antibody such as a camelid, a shark, or a designed VHH. VHHs are antibody-derived therapeutic proteins that contain the unique structural and functional properties of naturally-occurring heavy-chain antibodies. VHH technology is based on fully functional antibodies from camelids that lack light chains. These heavy-chain antibodies contain a single variable domain (VHH) and two constant domains (CH2 and CH3).
In an embodiment, the targeting moiety comprises a VHH. In some embodiments, the VHH is a humanized VHH or camelized VHH.
In some embodiments, the VHH comprises a fully human VH domain, e.g. a HUMABODY (Crescendo Biologics, Cambridge, UK). In some embodiments, fully human VH domain, e.g. a HUMABODY is monovalent, bivalent, or trivalent. In some embodiments, the fully human VH domain, e.g. a HUMABODY is mono- or multi-specific such as monospecific, bispecific, or trispecific. Illustrative fully human VH domains, e.g. HUMABODIES are described in, for example, WO 2016/113555 and WO2016/113557, the entire disclosure of which is incorporated by reference.
In various embodiments, the target (e.g. antigen, receptor) of interest can be found on one or more immune cells, which can include, without limitation, T cells, cytotoxic T lymphocytes, T helper cells, natural killer (NK) cells, natural killer T (NKT) cells, anti-tumor macrophages (e.g. M1 macrophages), B cells, dendritic cells, or subsets thereof. In some embodiments, the recognition domains specifically bind to a target (e.g. antigen, receptor) of interest and effectively, directly or indirectly, recruit one of more immune cells. In some embodiments, the target (e.g. antigen, receptor) of interest can be found on one or more tumor cells. In some embodiments, the present Fc-based chimeric protein complexes may directly or indirectly recruit an immune cell, e.g., in some embodiments, to a therapeutic site (e.g. a locus with one or more disease cell or cell to be modulated for a therapeutic effect). In some embodiments, the present Fc-based chimeric protein complexes may directly or indirectly recruit an immune cell, e.g. an immune cell that can kill and/or suppress a tumor cell, to a site of action (such as, by way of non-limiting example, the tumor microenvironment).
In various embodiments, the targeting moieties can directly or indirectly recruit cells, such as disease cells and/or effector cells. In some embodiments, the present Fc-based chimeric protein complexes are capable of, or find use in methods involving, shifting the balance of immune cells in favor of immune attack of a tumor. For instance, the present Fc-based chimeric protein complexes can shift the ratio of immune cells at a site of clinical importance in favor of cells that can kill and/or suppress a tumor (e.g. T cells, cytotoxic T lymphocytes, T helper cells, natural killer (NK) cells, natural killer T (NKT) cells, anti-tumor macrophages (e.g. M1 macrophages), B cells, dendritic cells, or subsets thereof) and in opposition to cells that protect tumors (e.g. myeloid-derived suppressor cells (MDSCs), regulatory T cells (Tregs); tumor associated neutrophils (TANs), M2 macrophages, tumor associated macrophages (TAMs), or subsets thereof). In some embodiments, the present Fc-based chimeric protein complex is capable of increasing a ratio of effector T cells to regulatory T cells.
For example, in some embodiments, the recognition domains specifically bind to a target (e.g. antigen, receptor) associated with T cells. In some embodiments, the recognition domains directly or indirectly recruit T cells. In an embodiment, the recognition domains specifically bind to effector T cells. In some embodiments, the recognition domain directly or indirectly recruits effector T cells, e.g., in some embodiments, to a therapeutic site (e.g. a locus with one or more disease cell or cell to be modulated for a therapeutic effect). Illustrative effector T cells include cytotoxic T cells (e.g. αβ TCR, CD3+, CD8+, CD45RO+); CD4+ effector T cells (e.g. αβ TCR, CD3+, CD4+, CCR7+, CD62Lhi, IL-7R/CD127+); CD8+ effector T cells (e.g. αβ TCR, CD3+, CD8+, CCR7+, CD62Lhi, IL-7R/CD127+); effector memory T cells (e.g. CD62Llow, CD44+, TCR, CD3+, IL-7R/CD127+, IL-15R+, CCR7low); central memory T cells (e.g. CCR7+, CD62L+, CD27+; or CCR7hi, CD44+, CD62Lhi, TCR, CD3+, IL-7R/CD127+, IL-15R+); CD62L+ effector T cells; CD8+ effector memory T cells (TEM) including early effector memory T cells (CD27+CD62L−) and late effector memory T cells (CD27− CD62L−) (TemE and TemL, respectively); CD127(+)CD25(low/−) effector T cells; CD127(−)CD25(−) effector T cells; CD8+ stem cell memory effector cells (TSCM) (e.g. CD44(low)CD62L(high)CD122(high)sca(+)); TH1 effector T-cells (e.g. CXCR3+, CXCR6+ and CCR5+; or αβ TCR, CD3+, CD4+, IL-12R+, IFNγR+, CXCR3+), TH2 effector T cells (e.g. CCR3+, CCR4+ and CCR8+; or αβ TCR, CD3+, CD4+, IL-4R+, IL-33R+, CCR4+, IL-17RB+, CRTH2+); TH9 effector T cells (e.g. αβ TCR, CD3+, CD4+); TH17 effector T cells (e.g. αβ TCR, CD3+, CD4+, IL-23R+, CCR6+, IL-1R+); CD4+CD45RO+CCR7+ effector T cells, ICOS+ effector T cells; CD4+CD45RO+CCR7(−) effector T cells; and effector T cells secreting IL-2, IL-4 and/or IFN-γ.
Illustrative T cell antigens of interest include, for example (and inclusive of the extracellular domains, where applicable): CD8, CD3, SLAMF4, IL-2Rα, 4-1BB/TNFRSF9, IL-2 R β, ALCAM, B7-1, IL-4 R, B7-H3, BLAME/SLAMFS, CEACAM1, IL-6 R, CCR3, IL-7 Ra, CCR4, CXCRI/IL-S RA, CCR5, CCR6, IL-10R α, CCR 7, IL-1 0 R β, CCRS, IL-12 R β1, CCR9, IL-12 R β2, CD2, IL-13 R α 1, IL-13, CD3, CD4, ILT2/CDS5j, ILT3/CDS5k, ILT4/CDS5d, ILT5/CDS5a, lutegrin α 4/CD49d, CDS, Integrin α E/CD103, CD6, Integrin α M/CD 11 b, CDS, Integrin α X/CD11c, Integrin β 2/CDIS, KIR/CD15S, CD27/TNFRSF7, KIR2DL1, CD2S, KIR2DL3, CD30/TNFRSFS, KIR2DL4/CD15Sd, CD31/PECAM-1, KIR2DS4, CD40 Ligand/TNFSF5, LAG-3, CD43, LAIR1, CD45, LAIR2, CDS3, Leukotriene B4-R1, CDS4/SLAMF5, NCAM-L1, CD94, NKG2A, CD97, NKG2C, CD229/SLAMF3, NKG2D, CD2F-10/SLAMF9, NT-4, CD69, NTB-A/SLAMF6, Common γ Chain/IL-2 R γ, Osteopontin, CRACC/SLAMF7, PD-1, CRTAM, PSGL-1, CTLA-4, RANK/TNFRSF11A, CX3CR1, CX3CL1, L-Selectin, CXCR3, SIRP β 1, CXCR4, SLAM, CXCR6, TCCR/WSX-1, DNAM-1, Thymopoietin, EMMPRIN/CD147, TIM-1, EphB6, TIM-2, Fas/TNFRSF6, TIM-3, Fas Ligand/TNFSF6, TIM-4, Fcγ RIII/CD16, TIM-6, TNFR1/TNFRSF1A, Granulysin, TNF RIII/TNFRSF1B, TRAIL RI/TNFRSFIOA, ICAM-1/CD54, TRAIL R2/TNFRSF10B, ICAM-2/CD102, TRAILR3/TNFRSF10C, IFN-γ R1, TRAILR4/TNFRSF10D, IFN-γ R2, TSLP, IL-1 R1 and TSLP R. In various embodiments, a targeting moiety of the Fc-based chimeric protein complex binds one or more of these illustrative T cell antigens.
In various embodiments, the targeting moiety of the present Fc-based chimeric protein complex is a protein-based agent capable of specific binding to a cell receptor, such as a natural ligand for the cell receptor. In various embodiments, the cell receptor is found on one or more immune cells, which can include, without limitation, T cells, cytotoxic T lymphocytes, T helper cells, natural killer (NK) cells, natural killer T (NKT) cells, anti-tumor macrophages (e.g. M1 macrophages), B cells, dendritic cells, or subsets thereof. In some embodiments, the cell receptor is found on megakaryocytes, thrombocytes, erythrocytes, mast cells, basophils, neutrophils, eosinophils, or subsets thereof.
In some embodiments, the targeting moiety is a natural ligand such as a chemokine. Exemplary chemokines that may be included in the Fc-based chimeric protein complex of the invention include, but are not limited to, CCL1, CCL2, CCL4, CCL5, CCL6, CCL7, CCL8, CCL9, CCL10, CCL1, CCL12, CCL13, CCL14, CCL15, CCL16, CL17, CCL18, CCL19, CCL20, CCL21, CCL22, CCL23, CCL24, CLL25, CCL26, CCL27, CXCL1, CXCL2, CXCL3, CXCL4, CXCL5, CXCL6, CXCL7, CXCL8, CXCL9, CXCL10, CXCL11, CXCL12, CXCL13, CXCL14, CXCL15, CXCL16, CXCL17, XCL1, XCL2, CX3CL1, HCC-4, and LDGF-PBP. In an illustrative embodiment, the targeting moiety may be XCL1 OR XCL2 which is a chemokine that recognizes and binds to the dendritic cell receptor XCR1. In another illustrative embodiment, the targeting moiety is CCL1, which is a chemokine that recognizes and binds to CCR8. In another illustrative embodiment, the targeting moiety is CCL2, which is a chemokine that recognizes and binds to CCR2 or CCR9. In another illustrative embodiment, the targeting moiety is CCL3, which is a chemokine that recognizes and binds to CCR1, CCR5, or CCR9. In another illustrative embodiment, the targeting moiety is CCL4, which is a chemokine that recognizes and binds to CCR1 or CCR5 or CCR9. In another illustrative embodiment, the targeting moiety is CCL5, which is a chemokine that recognizes and binds to CCR1 or CCR3 or CCR4 or CCR5. In another illustrative embodiment, the targeting moiety is CCL6, which is a chemokine that recognizes and binds to CCR1. In another illustrative embodiment, the targeting moiety is CCL7, which is a chemokine that recognizes and binds to CCR2 or CCR9. In another illustrative embodiment, the targeting moiety is CCL8, which is a chemokine that recognizes and binds to CCR1 or CCR2 or CCR2B or CCR5 or CCR9. In another illustrative embodiment, the targeting moiety is CCL9, which is a chemokine that recognizes and binds to CCR1. In another illustrative embodiment, the targeting moiety is CCL10, which is a chemokine that recognizes and binds to CCR1. In another illustrative embodiment, the targeting moiety is CCL 1, which is a chemokine that recognizes and binds to CCR2 or CCR3 or CCR5 or CCR9. In another illustrative embodiment, the targeting moiety is CCL13, which is a chemokine that recognizes and binds to CCR2 or CCR3 or CCR5 or CCR9. In another illustrative embodiment, the targeting moiety is CCL14, which is a chemokine that recognizes and binds to CCR1 or CCR9. In another illustrative embodiment, the targeting moiety is CCL15, which is a chemokine that recognizes and binds to CCR1 or CCR3. In another illustrative embodiment, the targeting moiety is CCL16, which is a chemokine that recognizes and binds to CCR1, CCR2, CCR5, or CCR8. In another illustrative embodiment, the targeting moiety is CCL17, which is a chemokine that recognizes and binds to CCR4. In another illustrative embodiment, the targeting moiety is CCL19, which is a chemokine that recognizes and binds to CCR7. In another illustrative embodiment, the targeting moiety is CCL20, which is a chemokine that recognizes and binds to CCR6. In another illustrative embodiment, the targeting moiety is CCL21, which is a chemokine that recognizes and binds to CCR7. In another illustrative embodiment, the targeting moiety is CCL22, which is a chemokine that recognizes and binds to CCR4. In another illustrative embodiment, the targeting moiety is CCL23, which is a chemokine that recognizes and binds to CCR1. In another illustrative embodiment, the targeting moiety is CCL24, which is a chemokine that recognizes and binds to CCR3. In another illustrative embodiment, the targeting moiety is CCL25, which is a chemokine that recognizes and binds to CCR9. In another illustrative embodiment, the targeting moiety is CCL26, which is a chemokine that recognizes and binds to CCR3. In another illustrative embodiment, the targeting moiety is CCL27, which is a chemokine that recognizes and binds to CCR10. In another illustrative embodiment, the targeting moiety is CCL28, which is a chemokine that recognizes and binds to CCR3 or CCR10. In another illustrative embodiment, the targeting moiety is CXCL1, which is a chemokine that recognizes and binds to CXCR1 or CXCR2. In another illustrative embodiment, the targeting moiety is CXCL2, which is a chemokine that recognizes and binds to CXCR2. In another illustrative embodiment, the targeting moiety is CXCL3, which is a chemokine that recognizes and binds to CXCR2. In another illustrative embodiment, the targeting moiety is CXCL4, which is a chemokine that recognizes and binds to CXCR3B. In another illustrative embodiment, the targeting moiety is CXCL5, which is a chemokine that recognizes and binds to CXCR2. In another illustrative embodiment, the targeting moiety is CXCL6, which is a chemokine that recognizes and binds to CXCR1 or CXCR2.
In another illustrative embodiment, the targeting moiety is CXCL8, which is a chemokine that recognizes and binds to CXCR1 or CXCR2. In another illustrative embodiment, the targeting moiety is CXCL9, which is a chemokine that recognizes and binds to CXCR3. In another illustrative embodiment, the targeting moiety is CXCL10, which is a chemokine that recognizes and binds to CXCR3. In another illustrative embodiment, the targeting moiety is CXCL11, which is a chemokine that recognizes and binds to CXCR3 or CXCR7. In another illustrative embodiment, the targeting moiety is CXCL12, which is a chemokine that recognizes and binds to CXCR4 or CXCR7. In another illustrative embodiment, the targeting moiety is CXCL13, which is a chemokine that recognizes and binds to CXCR5. In another illustrative embodiment, the targeting moiety is CXCL16, which is a chemokine that recognizes and binds to CXCR6. In another illustrative embodiment, the targeting moiety is LDGF-PBP, which is a chemokine that recognizes and binds to CXCR2. In another illustrative embodiment, the targeting moiety is XCL2, which is a chemokine that recognizes and binds to XCR1. In another illustrative embodiment, the targeting moiety is CX3CL1, which is a chemokine that recognizes and binds to CX3CR1.
In some embodiments, the targeting moiety is a natural ligand such as Flt3 or a truncated region thereof. In some embodiments, the targeting moiety is an extracellular domain of Flt3, or a functional portion thereof (e.g. one that is still able to bind the cognate ligand or receptor).
Functional equivalent of extracellular domains of natural ligands encompass N-terminal and/or C-terminally shortened versions that retain the binding capacitiy of the full-length extracellular domains.
In some embodiments, the targeting moiety is a NGR peptide or a truncated region thereof.
By way of non-limiting example, in various embodiments, the present Fc-based chimeric protein complex has a targeting moiety directed against a checkpoint marker expressed on a T cell, e.g. one or more of PD-1, CD28, CTLA4, ICOS, BTLA, KIR, LAG3, CD137, OX40, CD27, CD40L, TIM3, and A2aR.
In some embodiments, the targeting moiety is an extracellular domain of PD-1, PD-L1, or PD-L2, or a functional portion thereof (e.g. one that is still able to bind the cognate ligand or receptor).
For example, in some embodiments, the recognition domains specifically bind to a target (e.g. antigen, receptor) associated with B cells. In some embodiments, the recognition domains directly or indirectly recruit B cells, e.g., in some embodiments, to a therapeutic site (e.g. a locus with one or more disease cell or cell to be modulated for a therapeutic effect). Illustrative B cell antigens of interest include, for example, CD10, CD19, CD20, CD21, CD22, CD23, CD24, CD37, CD38, CD39, CD40, CD70, CD72, CD73, CD74, CDw75, CDw76, CD77, CD78, CD79a/b, CD80, CD81, CD82, CD83, CD84, CD85, CD86, CD89, CD98, CD126, CD127, CDw130, CD138, CDw150, and B-cell maturation antigen (BCMA). In various embodiments, a targeting moiety of the Fc-based chimeric protein complex binds one or more of these illustrative B cell antigens.
By way of further example, in some embodiments, the recognition domains specifically bind to a target (e.g. antigen, receptor) associated with Natural Killer cells. In some embodiments, the recognition domains directly or indirectly recruit Natural Killer cells, e.g., in some embodiments, to a therapeutic site (e.g. a locus with one or more disease cell or cell to be modulated for a therapeutic effect). Illustrative Natural Killer cell antigens of interest include, for example TIGIT, 2B4/SLAMF4, KIR2DS4, CD155/PVR, KIR3DL1, CD94, LMIR1/CD300A, CD69, LMIR2/CD300c, CRACC/SLAMF7, LMIR3/CD300LF, DNAM-1, LMIR5/CD300LB, Fc-epsilon RII, LMIR6/CD300LE, Fc-γ RI/CD64, MICA, Fc-γ RIIB/CD32b, MICB, Fc-γ RIIC/CD32c, MULT-1, Fc-γ RIIA/CD32a, Nectin-2/CD112, Fc-γ RIII/CD16, NKG2A, FcRH1/IRTA5, NKG2C, FcRH2/IRTA4, NKG2D, FcRH4/IRTA1, NKp30, FcRH5/IRTA2, NKp44, Fc-Receptor-like 3/CD16-2, NKp46/NCR1, NKp80/KLRF1, NTB-A/SLAMF6, Rae-1, Rae-1 α, Rae-1 β, Rae-1 delta, H60, Rae-1 epsilon, ILT2/CD85j, Rae-1 γ, ILT3/CD85k, TREM-1, ILT4/CD85d, TREM-2, ILT5/CD85a, TREM-3, KIR/CD158, TREML1/TLT-1, KIR2DL1, ULBP-1, KIR2DL3, ULBP-2, KIR2DL4/CD158d and ULBP-3. In various embodiments, a targeting moiety of the Fc-based chimeric protein complex binds one or more of these illustrative NK cell antigens.
Also, in some embodiments, the recognition domains specifically bind to a target (e.g. antigen, receptor) associated with macrophages/monocytes. In some embodiments, the recognition domains directly or indirectly recruit macrophages/monocytes, e.g., in some embodiments, to a therapeutic site (e.g. a locus with one or more disease cell or cell to be modulated for a therapeutic effect). Illustrative macrophages/monocyte antigens of interest include, for example SIRP1a, B7-1/CD80, ILT4/CD85d, B7-H1, ILT5/CD85a, Common β Chain, Integrin α 4/CD49d, BLAME/SLAMF8, Integrin α X/CDIIc, CCL6/C10, Integrin β 2/CD18, CD155/PVR, Integrin β 3/CD61, CD31/PECAM-1, Latexin, CD36/SR-B3, Leukotriene B4 R1, CD40/TNFRSF5, LIMPIIISR-B2, CD43, LMIR1/CD300A, CD45, LMIR2/CD300c, CD68, LMIR3/CD300LF, CD84/SLAMF5, LMIR5/CD300LB, CD97, LMIR6/CD300LE, CD163, LRP-1, CD2F-10/SLAMF9, MARCO, CRACC/SLAMF7, MD-1, ECF-L, MD-2, EMMPRIN/CD147, MGL2, Endoglin/CD105, Osteoactivin/GPNMB, Fc-γ RI/CD64, Osteopontin, Fc-γ RIIB/CD32b, PD-L2, Fc-γ RIIC/CD32c, Siglec-3/CD33, Fc-γ RIIA/CD32a, SIGNR1/CD209, Fc-γ RIII/CD16, SLAM, GM-CSF R α, TCCR/WSX-1, ICAM-2/CD102, TLR3, IFN-γ RI, TLR4, IFN-γ R2, TREM-1, IL-I RII, TREM-2, ILT2/CD85j, TREM-3, ILT3/CD85k, TREML1/TLT-1, 2B4/SLAMF 4, IL-10 R α, ALCAM, IL-10 R β, AminopeptidaseN/ANPEP, ILT2/CD85j, Common β Chain, ILT3/CD85k, C1q R1/CD93, ILT4/CD85d, CCR1, ILT5/CD85a, CCR2, Integrin α 4/CD49d, CCR5, Integrin α M/CDII b, CCR8, Integrin α X/CDIIc, CD155/PVR, Integrin β 2/CD18, CD14, Integrin β 3/CD61, CD36/SR-B3, LAIR1, CD43, LAIR2, CD45, Leukotriene B4-R1, CD68, LIMPIIISR-B2, CD84/SLAMF5, LMIR1/CD300A, CD97, LMIR2/CD300c, LMIR3/CD300LF, Coagulation Factor Ill/Tissue Factor, LMIR5/CD300LB, CX3CR1, CX3CL1, LMIR6/CD300LE, CXCR4, LRP-1, CXCR6, M-CSF R, DEP-1/CD148, MD-1, DNAM-1, MD-2, EMMPRIN/CD147, MMR, Endoglin/CD105, NCAM-L1, Fc-γ RI/CD64, PSGL-1, Fc-γ RIIIICD16, RP105, G-CSF R, L-Selectin, GM-CSF R α, Siglec-3/CD33, HVEM/TNFRSF14, SLAM, ICAM-1/CD54, TCCR/WSX-1, ICAM-2/CD102, TREM-I, IL-6 R, TREM-2, CXCRI/IL-8 RA, TREM-3 and TREMLI/TLT-1. In various embodiments, a targeting moiety of the Fc-based chimeric protein complex binds one or more of these illustrative macrophage/monocyte antigens.
Also, in some embodiments, the recognition domains specifically bind to a target (e.g. antigen, receptor) associated with dendritic cells. In some embodiments, the recognition domains directly or indirectly recruit dendritic cells, e.g., in some embodiments, to a therapeutic site (e.g. a locus with one or more disease cell or cell to be modulated for a therapeutic effect). Illustrative dendritic cell antigens of interest include, for example, CLEC9A, XCR1, RANK, CD36/SRB3, LOX-1/SR-E1, CD68, MARCO, CD163, SR-A1/MSR, CD5L, SREC-1, CL-PI/COLEC12, SREC-II, LIMPIIISRB2, RP105, TLR4, TLR1, TLR5, TLR2, TLR6, TLR3, TLR9, 4-IBB Ligand/TNFSF9, IL-12/IL-23 p40, 4-Amino-1,8-naphthalimide, ILT2/CD85j, CCL21/6Ckine, ILT3/CD85k, 8-oxo-dG, ILT4/CD85d, 8D6A, ILT5/CD85a, A2B5, lutegrin α 4/CD49d, Aag, Integrin β 2/CD18, AMICA, Langerin, B7-2/CD86, Leukotriene B4 RI, B7-H3, LMIR1/CD300A, BLAME/SLAMF8, LMIR2/CD300c, C1q R1/CD93, LMIR3/CD300LF, CCR6, LMIR5/CD300LB CCR7, LMIR6/CD300LE, CD40/TNFRSF5, MAG/Siglec-4-a, CD43, MCAM, CD45, MD-1, CD68, MD-2, CD83, MDL-1/CLEC5A, CD84/SLAMF5, MMR, CD97, NCAMLI, CD2F-10/SLAMF9, Osteoactivin GPNMB, Chern 23, PD-L2, CLEC-1, RP105, CLEC-2, CLEC-8, Siglec-2/CD22, CRACC/SLAMF7, Siglec-3/CD33, DC-SIGN, Siglec-5, DC-SIGNR/CD299, Siglec-6, DCAR, Siglec-7, DCIR/CLEC4A, Siglec-9, DEC-205, Siglec-10, Dectin-1/CLEC7A, Siglec-F, Dectin-2/CLEC6A, SIGNR1/CD209, DEP-1/CD148, SIGNR4, DLEC, SLAM, EMMPRIN/CD147, TCCR/WSX-1, Fc-γ R1/CD64, TLR3, Fc-γ RIIB/CD32b, TREM-1, Fc-γ RIIC/CD32c, TREM-2, Fc-γ RIIA/CD32a, TREM-3, Fc-γ RIII/CD16, TREML1/TLT-1, ICAM-2/CD102 and Vanilloid R1. In various embodiments, a targeting moiety of the Fc-based chimeric protein complex binds one or more of these illustrative DC antigens.
In some embodiments, the recognition domains specifically bind to a target (e.g. antigen, receptor) on immune cells selected from, but not limited to, megakaryocytes, thrombocytes, erythrocytes, mast cells, basophils, neutrophils, eosinophils, or subsets thereof. In some embodiments, the recognition domains directly or indirectly recruit megakaryocytes, thrombocytes, erythrocytes, mast cells, basophils, neutrophils, eosinophils, or subsets thereof, e.g., in some embodiments, to a therapeutic site (e.g. a locus with one or more disease cell or cell to be modulated for a therapeutic effect).
In some embodiments, the recognition domains specifically bind to a target (e.g. antigen, receptor) associated with megakaryocytes and/or thrombocytes. Illustrative megakaryocyte and/or thrombocyte antigens of interest include, for example, GP IIb/IIIa, GPIb, vWF, PF4, and TSP. In various embodiments, a targeting moiety of the Fc-based chimeric protein complex binds one or more of these illustrative megakaryocyte and/or thrombocyte antigens.
In some embodiments, the recognition domains specifically bind to a target (e.g. antigen, receptor) associated with erythrocytes. Illustrative erythrocyte antigens of interest include, for example, CD34, CD36, CD38, CD41a (platelet glycoprotein IIb/IIIa), CD41b (GPIIb), CD71 (transferrin receptor), CD105, glycophorin A, glycophorin C, c-kit, HLA-DR, H2 (MHC-II), and Rhesus antigens. In various embodiments, a targeting moiety of the Fc-based chimeric protein complex binds one or more of these illustrative erythrocyte antigens.
In some embodiments, the recognition domains specifically bind to a target (e.g. antigen, receptor) associated with mast cells. Illustrative mast cells antigens of interest include, for example, SCFR/CD117, FcεRI, CD2, CD25, CD35, CD88, CD203c, C5R1, CMAI, FCERIA, FCER2, TPSABI. In various embodiments, a targeting moiety of the Fc-based chimeric protein complex binds one or more of these mast cell antigens.
In some embodiments, the recognition domains specifically bind to a target (e.g. antigen, receptor) associated with basophils. Illustrative basophils antigens of interest include, for example, FcεRI, CD203c, CD123, CD13, CD107a, CD107b, and CD164. In various embodiments, a targeting moiety of the Fc-based chimeric protein complex binds one or more of these basophil antigens.
In some embodiments, the recognition domains specifically bind to a target (e.g. antigen, receptor) associated with neutrophils. Illustrative neutrophils antigens of interest include, for example, 7D5, CD10/CALLA, CD13, CD16 (FcRIII), CD18 proteins (LFA-1, CR3, and p150, 95), CD45, CD67, and CD177. In various embodiments, a targeting moiety of the Fc-based chimeric protein complex binds one or more of these neutrophil antigens.
In some embodiments, the recognition domains specifically bind to a target (e.g. antigen, receptor) associated with eosinophils. Illustrative eosinophils antigens of interest include, for example, CD35, CD44 and CD69. In various embodiments, a targeting moiety of the Fc-based chimeric protein complex binds one or more of these eosinophil antigens.
In various embodiments, the recognition domain may bind to any appropriate target, antigen, receptor, or cell surface markers known by the skilled artisan. In some embodiments, the antigen or cell surface marker is a tissue-specific marker. Illustrative tissue-specific markers include, but are not limited to, endothelial cell surface markers such as ACE, CD14, CD34, CDH5, ENG, ICAM2, MCAM, NOS3, PECAMI, PROCR, SELE, SELP, TEK, THBD, VCAMI, VWF; smooth muscle cell surface markers such as ACTA2, MYHIO, MYHI 1, MYH9, MYOCD; fibroblast (stromal) cell surface markers such as ALCAM, CD34, COLIAI, COL1A2, COL3A1, FAP, PH-4; epithelial cell surface markers such as CDID, K6IRS2, KRTIO, KRT13, KRT17, KRT18, KRT19, KRT4, KRT5, KRT8, MUCI, TACSTDI; neovasculature markers such as CD13, TFNA, Alpha-v beta-3 (av33), E-selectin; and adipocyte surface markers such as ADIPOQ, FABP4, and RETN. In various embodiments, a targeting moiety of the Fc-based chimeric protein complex binds one or more of these antigens. In various embodiments, a targeting moiety of the Fc-based chimeric protein complex binds one or more of cells having these antigens.
In some embodiments, the recognition domains specifically bind to a target (e.g. antigen, receptor) associated with tumor cells. In some embodiments, the recognition domains directly or indirectly recruit tumor cells. For instance, in some embodiments, the direct or indirect recruitment of the tumor cell is to one or more effector cell (e.g. an immune cell as described herein) that can kill and/or suppress the tumor cell.
Tumor cells or cancer cells refer to an uncontrolled growth of cells or tissues and/or an abnormal increase in cell survival and/or inhibition of apoptosis which interferes with the normal functioning of bodily organs and systems. For example, tumor cells include benign and malignant cancers, polyps, hyperplasia, as well as dormant tumors or micrometastases. Illustrative tumor cells include, but are not limited to cells of: basal cell carcinoma, biliary tract cancer; bladder cancer; bone cancer; brain and central nervous system cancer; breast cancer; cancer of the peritoneum; cervical cancer; choriocarcinoma; colon and rectum cancer; connective tissue cancer; cancer of the digestive system; endometrial cancer; esophageal cancer; eye cancer; cancer of the head and neck; gastric cancer (including gastrointestinal cancer); glioblastoma; hepatic carcinoma; hepatoma; intra-epithelial neoplasm; kidney or renal cancer; larynx cancer; leukemia; liver cancer; lung cancer (e.g., small-cell lung cancer, non-small cell lung cancer, adenocarcinoma of the lung, and squamous carcinoma of the lung); melanoma; myeloma; neuroblastoma; oral cavity cancer (lip, tongue, mouth, and pharynx); ovarian cancer; pancreatic cancer; prostate cancer; retinoblastoma; rhabdomyosarcoma; rectal cancer; cancer of the respiratory system; salivary gland carcinoma; sarcoma; skin cancer; squamous cell cancer; stomach cancer; testicular cancer; thyroid cancer; uterine or endometrial cancer; cancer of the urinary system; vulval cancer; lymphoma including Hodgkin's and non-Hodgkin's lymphoma, as well as B-cell lymphoma (including low grade/follicular non-Hodgkin's lymphoma (NHL); small lymphocytic (SL) NHL; intermediate grade/follicular NHL; intermediate grade diffuse NHL; high grade immunoblastic NHL; high grade lymphoblastic NHL; high grade small non-cleaved cell NHL; bulky disease NHL; mantle cell lymphoma; AIDS-related lymphoma; and Waldenstrom's Macroglobulinemia; chronic lymphocytic leukemia (CLL); acute lymphoblastic leukemia (ALL); Hairy cell leukemia; chronic myeloblastic leukemia; as well as other carcinomas and sarcomas; and post-transplant lymphoproliferative disorder (PTLD), as well as abnormal vascular proliferation associated with phakomatoses, edema (e.g. that associated with brain tumors), and Meigs' syndrome.
Tumor cells, or cancer cells also include, but are not limited to, carcinomas, e.g. various subtypes, including, for example, adenocarcinoma, basal cell carcinoma, squamous cell carcinoma, and transitional cell carcinoma), sarcomas (including, for example, bone and soft tissue), leukemias (including, for example, acute myeloid, acute lymphoblastic, chronic myeloid, chronic lymphocytic, and hairy cell), lymphomas and myelomas (including, for example, Hodgkin and non-Hodgkin lymphomas, light chain, non-secretory, MGUS, and plasmacytomas), and central nervous system cancers (including, for example, brain (e.g. gliomas (e.g. astrocytoma, oligodendroglioma, and ependymoma), meningioma, pituitary adenoma, and neuromas, and spinal cord tumors (e.g. meningiomas and neurofibroma).
Illustrative tumor antigens include, but are not limited to, MART-1/Melan-A, gp100, Dipeptidyl peptidase IV (DPPIV), adenosine deaminase-binding protein (ADAbp), cyclophilin b, Colorectal associated antigen (CRC)-0017-1A/GA733, Carcinoembryonic Antigen (CEA) and its immunogenic epitopes CAP-1 and CAP-2, etv6, aml1, Prostate Specific Antigen (PSA) and its immunogenic epitopes PSA-1, PSA-2, and PSA-3, prostate-specific membrane antigen (PSMA), T-cell receptor/CD3-zeta chain, MAGE-family of tumor antigens (e.g., MAGE-A1, MAGE-A2, MAGE-A3, MAGE-A4, MAGE-A5, MAGE-A6, MAGE-A7, MAGE-A8, MAGE-A9, MAGE-A10, MAGE-A11, MAGE-A12, MAGE-Xp2 (MAGE-B2), MAGE-Xp3 (MAGE-B3), MAGE-Xp4 (MAGE-B4), MAGE-C1, MAGE-C2, MAGE-C3, MAGE-C4, MAGE-C5), GAGE-family of tumor antigens (e.g., GAGE-1, GAGE-2, GAGE-3, GAGE-4, GAGE-5, GAGE-6, GAGE-7, GAGE-8, GAGE-9), BAGE, RAGE, LAGE-1, NAG, GnT-V, MUM-1, CDK4, tyrosinase, p53, MUC family, HER2/neu, p21ras, RCAS1, α-fetoprotein, E-cadherin, α-catenin, β-catenin and γ-catenin, p120ctn, gp100 Pme117, PRAME, NY-ESO-1, cdc27, adenomatous polyposis coli protein (APC), fodrin, Connexin 37, Ig-idiotype, p15, gp75, GM2 and GD2 gangliosides, viral products such as human papilloma virus proteins, Smad family of tumor antigens, Imp-1, NA, EBV-encoded nuclear antigen (EBNA)-1, brain glycogen phosphorylase, SSX-1, SSX-2 (HOM-MEL-40), SSX-1, SSX-4, SSX-5, SCP-1 CT-7, c-erbB-2, CD19, CD20, CD22, CD30, CD33, CD37, CD56, CD70, CD74, CD138, AGS16, MUC1, GPNMB, Ep-CAM, PD-L1, PD-L2, PMSA, and BCMA (TNFRSF17). In various embodiments, a targeting moiety of the Fc-based chimeric protein complex binds one or more of these tumor antigens. In an embodiment, the Fc-based chimeric protein complex binds to HER2. In another embodiment, the Fc-based chimeric protein complex binds to PD-L2.
In various embodiments, the recognition domain of the present Fc-based chimeric protein complex binds but does not functionally modulate the target (e.g. antigen, receptor) of interest, e.g. the recognition domain is, or is akin to, a binding antibody. For instance, in various embodiments, the recognition domain simply targets the antigen or receptor but does not substantially inhibit, reduce or functionally modulate a biological effect that the antigen or receptor has. For example, some of the smaller antibody formats described above (e.g. as compared to, for example, full antibodies) have the ability to target hard to access epitopes and provide a larger spectrum of specific binding locales. In various embodiments, the recognition domain binds an epitope that is physically separate from an antigen or receptor site that is important for its biological activity (e.g. the antigen's active site).
Such non-neutralizing binding finds use in various embodiments of the present invention, including methods in which the present Fc-based chimeric protein complex is used to directly or indirectly recruit active immune cells to a site of need via an effector antigen, such as any of those described herein. For example, in various embodiments, the present Fc-based chimeric protein complex may be used to directly or indirectly recruit cytotoxic T cells via CD8 to a tumor cell in a method of reducing or eliminating a tumor (e.g. the Fc-based chimeric protein complex may comprise an anti-CD8 recognition domain and a recognition domain directed against a tumor antigen). In such embodiments, it is desirable to directly or indirectly recruit CD8-expressing cytotoxic T cells but not to functionally modulate the CD8 activity. On the contrary, in these embodiments, CD8 signaling is an important piece of the tumor reducing or eliminating effect. By way of further example, in various methods of reducing or eliminating tumors, the present Fc-based chimeric protein complex is used to directly or indirectly recruit dendritic cells (DCs) via CLEC9A (e.g. the Fc-based chimeric protein complex may comprise an anti-CLEC9A recognition domain and a recognition domain directed against a tumor antigen). In such embodiments, it is desirable to directly or indirectly recruit CLEC9A-expressing DCs but not to functionally modulate the CLEC9A activity. On the contrary, in these embodiments, CLEC9A signaling is an important piece of the tumor reducing or eliminating effect.
In various embodiments, the recognition domain of the present Fc-based chimeric protein complex binds to an immune modulatory antigen (e.g. immune stimulatory or immune inhibitory). In various embodiments, the immune modulatory antigen is one or more of 4-1BB, OX-40, HVEM, GITR, CD27, CD28, CD30, CD40, ICOS ligand; OX-40 ligand, LIGHT (CD258), GITR ligand, CD70, B7-1, B7-2, CD30 ligand, CD40 ligand, ICOS, ICOS ligand, CD137 ligand and TL1A. In various embodiments, such immune stimulatory antigens are expressed on a tumor cell. In various embodiments, the recognition domain of the present Fc-based chimeric protein complex binds but does not functionally modulate such immune stimulatory antigens and therefore allows recruitment of cells expressing these antigens without the reduction or loss of their potential tumor reducing or eliminating capacity.
In various embodiments, the recognition domain of the present Fc-based chimeric protein complex may be in the context of Fc-based chimeric protein complex that comprises two recognition domains that have neutralizing activity, or comprises two recognition domains that have non-neutralizing (e.g. binding) activity, or comprises one recognition domain that has neutralizing activity and one recognition domain that has non-neutralizing (e.g. binding) activity.
In some embodiments, the Fc-based chimeric protein complex of the present invention include a human IFNγ or human TNFα signaling agent or a targeting moiety that is homomeric or heteromeric. In some embodiments, the human IFNγ or human TNFα signaling agent or the targeting moiety is a homomeric dimer, a homomeric trimer, a heteromeric dimer, or a heteromeric trimer.
In some embodiments, the targeting moiety is a Clec9A targeting moiety that is a protein-based agent capable of specific binding to Clec9A. In some embodiments, the Clec9A targeting moiety is a protein-based agent capable of specific binding to Clec9A without functional modulation (e.g., partial or full neutralization) of Clec9A. Clec9A is a group V C-type lectin-like receptor (CTLR) expressed on the surface of a subset of dendritic cells (i.e., BDCA3+ dendritic cells) specialized for the uptake and processing of materials from dead cells. Clec9A recognizes a conserved component within nucleated and nonnucleated cells, exposed when cell membranes are damaged. Clec9A is expressed at the cell surface as a glycosylated dimer and can mediate endocytosis, but not phagocytosis. Clec9A possesses a cytoplasmic immunoreceptor tyrosine-based activation-like motif that can recruit Syk kinase and induce proinflammatory cytokine production (see Huysamen et al. (2008), JBC, 283:16693-701).
In various embodiments, the Clec9A targeting moiety comprises an antigen recognition domain that recognizes an epitope present on Clec9A. In an embodiment, the antigen-recognition domain recognizes one or more linear epitopes present on Clec9A. In some embodiments, a linear epitope refers to any continuous sequence of amino acids present on Clec9A. In another embodiment, the antigen-recognition domain recognizes one or more conformational epitopes present on Clec9A. As used herein, a conformation epitope refers to one or more sections of amino acids (which may be discontinuous) which form a three-dimensional surface with features and/or shapes and/or tertiary structures capable of being recognized by an antigen recognition domain.
In various embodiments, the Clec9A targeting moiety can bind to the full-length and/or mature forms and/or isoforms and/or splice variants and/or fragments and/or any other naturally occurring or synthetic analogs, variants, or mutants of human Clec9A. In various embodiments, the Clec9A targeting moiety can bind to any forms of the human Clec9A, including monomeric, dimeric, heterodimeric, multimeric and associated forms. In an embodiment, the Clec9A binding agent binds to the monomeric form of Clec9A. In another embodiment, the Clec9A targeting moiety binds to a dimeric form of Clec9A. In a further embodiment, the Clec9A targeting moiety binds to glycosylated form of Clec9A, which may be either monomeric or dimeric.
In an embodiment, the Clec9A targeting moiety an antigen recognition domain that recognizes one or more epitopes present on human Clec9A. In an embodiment, the human Clec9A comprises the amino acid sequence of:
In various embodiments, the Clec9A targeting moiety is capable of specific binding. In various embodiments, the Clec9A targeting moiety comprises an antigen recognition domain such as an antibody or derivatives thereof.
In some embodiments, the Clec9A targeting moiety comprises an antibody derivative or format. In some embodiments, the Clec9A targeting moiety comprises a targeting moiety which is a single-domain antibody, a recombinant heavy-chain-only antibody (VHH), a single-chain antibody (scFv), a shark heavy-chain-only antibody (VNAR), a microprotein (cysteine knot protein, knottin), a DARPin; a Tetranectin; an Affibody; a Transbody; an alphabody; a bicyclic peptide; an Anticalin; an AdNectin; an Affilin; an Affimer, a Microbody; an aptamer; an alterase; a plastic antibody; a phylomer; a stradobody; a maxibody; an evibody; a fynomer, an armadillo repeat protein, a Kunitz domain, an avimer, an atrimer, a probody, an immunobody, a triomab, a troybody; a pepbody; a vaccibody, a UniBody; a DuoBody, a Fv, a Fab, a Fab′, a F(ab′)2, a peptide mimetic molecule, or a small (e.g. synthetic or natural) molecule, e.g. without limitation, as described in US Patent Nos. or Patent Publication Nos. U.S. Pat. No. 7,417,130, US 2004/132094, U.S. Pat. No. 5,831,012, US 2004/023334, U.S. Pat. Nos. 7,250,297, 6,818,418, US 2004/209243, U.S. Pat. Nos. 7,838,629, 7,186,524, 6,004,746, 5,475,096, US 2004/146938, US 2004/157209, U.S. Pat. Nos. 6,994,982, 6,794,144, US 2010/239633, U.S. Pat. No. 7,803,907, US 2010/119446, and/or U.S. Pat. No. 7,166,697, the contents of which are hereby incorporated by reference in their entireties. See also, Storz MAbs. 2011 May-June; 3(3): 310-317.
In some embodiments, the Clec9A targeting moiety is a single-domain antibody, such as a VHH. The VHH may be derived from, for example, an organism that produces VHH antibody such as a camelid, a shark, or the VHH may be a designed VHH. VHHs are antibody-derived therapeutic proteins that contain the unique structural and functional properties of naturally-occurring heavy-chain antibodies. VHH technology is based on fully functional antibodies from camelids that lack light chains. These heavy-chain antibodies contain a single variable domain (VHH) and two constant domains (CH2 and CH3).
In an embodiment, the Clec9A targeting moiety comprises a VHH. In some embodiments, the VHH is a humanized VHH or camelized VHH.
In some embodiments, the VHH comprises a fully human VH domain, e.g. a HUMABODY (Crescendo Biologics, Cambridge, UK). In some embodiments, fully human VH domain, e.g. a HUMABODY is monovalent, bivalent, or trivalent. In some embodiments, the fully human VH domain, e.g. a HUMABODY is mono- or multi-specific such as monospecific, bispecific, or trispecific. Illustrative fully human VH domains, e.g. HUMABODIES are described in, for example, WO2016/113555 and WO2016/113557, the entire disclosure of which is incorporated by reference.
In some embodiments, the Clec9A targeting moiety is a VHH comprising a single amino acid chain having four “framework regions” or FRs and three “complementary determining regions” or CDRs. As used herein, “framework region” or “FR” refers to a region in the variable domain which is located between the CDRs. As used herein, “complementary determining region” or “CDR” refers to variable regions in VHHs that contains the amino acid sequences capable of specifically binding to antigenic targets.
In various embodiments, the Clec9A targeting moiety comprises a VHH having a variable domain comprising at least one CDR1, CDR2, and/or CDR3 sequences. In various embodiments, the Clec9A targeting moiety comprises a VHH having a variable region comprising at least one FR1, FR2, FR3, and FR4 sequences.
In some embodiments, the CDR1 sequence is selected from SEQ ID Nos.: 27-112.
In some embodiments, the CDR2 sequence is selected from SEQ ID Nos.: 113-200.
In some embodiments, the CDR3 sequence is selected from SEQ ID Nos: 201-287, LGR, and VIK.
In an exemplary embodiment, the Clec9A targeting moiety comprises SEQ ID NO: 27, SEQ ID NO: 113, and SEQ ID NO: 201.
In an exemplary embodiment, the Clec9A targeting moiety comprises SEQ ID NO: 28, SEQ ID NO: 114, and SEQ ID NO: 202.
In an exemplary embodiment, the Clec9A targeting moiety comprises SEQ ID NO: 29, SEQ ID NO: 115, and SEQ ID NO: 202.
In an exemplary embodiment, the Clec9A targeting moiety comprises SEQ ID NO: 27, SEQ ID NO: 116, and SEQ ID NO: 203.
In an exemplary embodiment, the Clec9A targeting moiety comprises SEQ ID NO: 30, SEQ ID NO: 117, and SEQ ID NO: 205.
In an exemplary embodiment, the Clec9A targeting moiety comprises SEQ ID NO: 31, SEQ ID NO: 118, and SEQ ID NO: 205.
In an exemplary embodiment, the Clec9A targeting moiety comprises SEQ ID NO: 32, SEQ ID NO: 119, and SEQ ID NO: 206.
In an exemplary embodiment, the Clec9A targeting moiety comprises SEQ ID NO: 33, SEQ ID NO: 120, and SEQ ID NO: 207.
In an exemplary embodiment, the Clec9A targeting moiety comprises SEQ ID NO: 33, SEQ ID NO: 120, and SEQ ID NO: 208.
In an exemplary embodiment, the Clec9A targeting moiety comprises SEQ ID NO: 33, SEQ ID NO: 120, and SEQ ID NO: 209.
In an exemplary embodiment, the Clec9A targeting moiety comprises SEQ ID NO: 34, SEQ ID NO: 121, and SEQ ID NO: 210.
In an exemplary embodiment, the Clec9A targeting moiety comprises SEQ ID NO: 35, SEQ ID NO: 122, and SEQ ID NO: 211.
In an exemplary embodiment, the Clec9A targeting moiety comprises SEQ ID NO:35, SEQ ID NO: 122, and SEQ ID NO: 212.
In an exemplary embodiment, the Clec9A targeting moiety comprises SEQ ID NO: 36, SEQ ID NO: 123, and SEQ ID NO: 213.
In an exemplary embodiment, the Clec9A targeting moiety comprises SEQ ID NO: 37, SEQ ID NO: 124, and SEQ ID NO: 214.
In an exemplary embodiment, the Clec9A targeting moiety comprises SEQ ID NO: 38, SEQ ID NO: 125, and SEQ ID NO: 214.
In an exemplary embodiment, the Clec9A targeting moiety comprises SEQ ID NO: 39, SEQ ID NO: 126, and SEQ ID NO: 214.
In an exemplary embodiment, the Clec9A targeting moiety comprises SEQ ID NO: 40, SEQ ID NO: 127, and SEQ ID NO: 214.
In an exemplary embodiment, the Clec9A targeting moiety comprises SEQ ID NO: 41, SEQ ID NO: 128, and SEQ ID NO: 214.
In an exemplary embodiment, the Clec9A targeting moiety comprises SEQ ID NO: 42, SEQ ID NO: 128, and SEQ ID NO: 214.
In an exemplary embodiment, the Clec9A targeting moiety comprises SEQ ID NO: 43, SEQ ID NO: 129, and SEQ ID NO: 215.
In an exemplary embodiment, the Clec9A targeting moiety comprises SEQ ID NO: 44, SEQ ID NO: 130, and LGR.
In an exemplary embodiment, the Clec9A targeting moiety comprises SEQ ID NO: 44, SEQ ID NO: 131, and LGR.
In an exemplary embodiment, the Clec9A targeting moiety comprises SEQ ID NO: 44, SEQ ID NO: 132, and LGR.
In an exemplary embodiment, the Clec9A targeting moiety comprises SEQ ID NO: 45, SEQ ID NO: 133, and LGR.
In an exemplary embodiment, the Clec9A targeting moiety comprises SEQ ID NO: 46, SEQ ID NO: 134, and VIK.
By way of example, in some embodiments, the Clec9A targeting moiety comprises an amino acid sequence selected from the following sequences:
By way of example, in some embodiments, the Clec9A targeting moiety comprises an amino acid sequence selected from the following sequences:
In some embodiments, the Clec9A targeting moiety comprises an amino acid sequence selected from SEQ ID Nos: 315-320 and 333-392 (provided above) without the terminal histidine tag sequence (i.e., HHHHHH; SEQ ID NO: 393).
In some embodiments, the Clec9A targeting moiety comprises an amino acid sequence selected from SEQ ID Nos: 315-320 and 333-392 (provided above) without the HA tag (i.e., YPYDVPDYGS; SEQ ID NO: 394).
In some embodiments, the Clec9A targeting moiety comprises an amino acid sequence selected from SEQ ID Nos: 315-320 and 333-392 (provided above) without the AAA linker (i.e., AAA).
In some embodiments, the Clec9A targeting moiety comprises an amino acid sequence selected from SEQ ID Nos: 315-320 and 333-392 (provided above) without the AAA linker, HA tag, and terminal histidine tag sequence (i.e., AAAYPYDVPDYGSHHHHHH; SEQ ID NO: 395).
In an embodiment, the Clec9A targeting moiety comprises the anti-Clec9A antibody as disclosed in Tullett et al., JCI Insight. 2016; 1(7):e87102, the entire disclosures of which are hereby incorporated by reference.
In some embodiments, the present technology contemplates the use of any natural or synthetic analogs, mutants, variants, alleles, homologs and orthologs (herein collectively referred to as “analogs”) of the Clec9A targeting moieties described herein. In various embodiments, the amino acid sequence of the Clec9A targeting moiety further includes an amino acid analog, an amino acid derivative, or other non-classical amino acids.
In various embodiments, the Clec9A targeting moiety comprising a sequence that is at least 60% identical to any one of the sequences disclosed herein. For example, the Clec9A targeting moiety may comprise a sequence that is at least about 60%, at least about 61%, at least about 62%, at least about 63%, at least about 64%, at least about 65%, at least about 66%, at least about 67%, at least about 68%, at least about 69%, at least about 70%, at least about 71%, at least about 72%, at least about 73%, at least about 74%, at least about 75%, at least about 76%, at least about 77%, at least about 78%, at least about 79%, at least about 80%, at least about 81%, at least about 82%, at least about 83%, at least about 84%, at least about 85%, at least about 86%, at least about 87%, at least about 88%, at least about 89%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% identical to any of the Clec9A sequences disclosed herein (e.g. about 60%, or about 61%, or about 62%, or about 63%, or about 64%, or about 65%, or about 66%, or about 67%, or about 68%, or about 69%, or about 70%, or about 71%, or about 72%, or about 73%, or about 74%, or about 75%, or about 76%, or about 77%, or about 78%, or about 79%, or about 80%, or about 81%, or about 82%, or about 83%, or about 84%, or about 85%, or about 86%, or about 87%, or about 88%, or about 89%, or about 90%, or about 91%, or about 92%, or about 93%, or about 94%, or about 95%, or about 96%, or about 97%, or about 98%, about 99% or about 100% sequence identity to any one of the Clec9A sequences disclosed herein).
In various embodiments, the Clec9A targeting moiety comprising an amino acid sequence having one or more amino acid mutations with respect to any one of the sequences disclosed herein. In various embodiments, the Clec9A targeting moiety comprises an amino acid sequence having one, or two, or three, or four, or five, or six, or seen, or eight, or nine, or ten, or fifteen, or twenty amino acid mutations with respect to any one of the sequences disclosed herein. In some embodiments, the one or more amino acid mutations may be independently selected from substitutions, insertions, deletions, and truncations.
In some embodiments, the amino acid mutations are amino acid substitutions, and may include conservative and/or non-conservative substitutions.
“Conservative substitutions” may be made, for instance, on the basis of similarity in polarity, charge, size, solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the amino acid residues involved. The 20 naturally occurring amino acids can be grouped into the following six standard amino acid groups: (1) hydrophobic: Met, Ala, Val, Leu, Ile; (2) neutral hydrophilic: Cys, Ser, Thr; Asn, Gln; (3) acidic: Asp, Glu; (4) basic: His, Lys, Arg; (5) residues that influence chain orientation: Gly, Pro; and (6) aromatic: Trp, Tyr, Phe.
As used herein, “conservative substitutions” are defined as exchanges of an amino acid by another amino acid listed within the same group of the six standard amino acid groups shown above. For example, the exchange of Asp by Glu retains one negative charge in the so modified polypeptide. In addition, glycine and proline may be substituted for one another based on their ability to disrupt α-helices.
As used herein, “non-conservative substitutions” are defined as exchanges of an amino acid by another amino acid listed in a different group of the six standard amino acid groups (1) to (6) shown above.
In various embodiments, the substitutions may also include non-classical amino acids. Exemplary non-classical amino acids include, but are not limited to, selenocysteine, pyrrolysine, N-formylmethionine β-alanine, GABA and δ-Aminolevulinic acid, 4-aminobenzoic acid (PABA), D-isomers of the common amino acids, 2,4-diaminobutyric acid, α-amino isobutyric acid, 4-aminobutyric acid, Abu, 2-amino butyric acid, γ-Abu, ε-Ahx, 6-amino hexanoic acid, Aib, 2-amino isobutyric acid, 3-amino propionic acid, ornithine, norleucine, norvaline, hydroxyproline, sarcosme, citrulline, homocitrulline, cysteic acid, t-butylglycine, t-butylalanine, phenylglycine, cyclohexylalanine, β-alanine, fluoro-amino acids, designer amino acids such as p methyl amino acids, C α-methyl amino acids, N α-methyl amino acids, and amino acid analogs in general.
In various embodiments, the amino acid mutation may be in the CDRs of the targeting moiety (e.g., the CDR1, CDR2 or CDR3 regions). In another embodiment, amino acid alteration may be in the framework regions (FRs) of the targeting moiety (e.g., the FR1, FR2, FR3, or FR4 regions).
Modification of the amino acid sequences may be achieved using any known technique in the art e.g., site-directed mutagenesis or PCR based mutagenesis. Such techniques are described, for example, in Sambrook et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Press, Plainview, N.Y., 1989 and Ausubel et al., Current Protocols in Molecular Biology, John Wiley & Sons, New York, N.Y., 1989.
In various embodiments, the mutations do not substantially reduce the present Clec9A binding agent's capability to specifically bind to Clec9A. In various embodiments, the mutations do not substantially reduce the present Clec9A binding agent's capability to specifically bind to Clec9A and without functionally modulating (e.g., partially or fully neutralizing) Clec9A.
In various embodiments, the binding affinity of the Clec9A targeting moiety for the full-length and/or mature forms and/or isoforms and/or splice variants and/or fragments and/or monomeric and/or dimeric forms and/or any other naturally occurring or synthetic analogs, variants, or mutants (including monomeric and/or dimeric forms) of human Clec9A may be described by the equilibrium dissociation constant (KD). In various embodiments, the Clec9A targeting moiety binds to the full-length and/or mature forms and/or isoforms and/or splice variants and/or fragments and/or any other naturally occurring or synthetic analogs, variants, or mutants (including monomeric and/or dimeric forms) of human Clec9A with a KD of less than about 1 uM, about 900 nM, about 800 nM, about 700 nM, about 600 nM, about 500 nM, about 400 nM, about 300 nM, about 200 nM, about 100 nM, about 90 nM, about 80 nM, about 70 nM, about 60 nM, about 50 nM, about 40 nM, about 30 nM, about 20 nM, about 10 nM, or about 5 nM, or about 1 nM.
In various embodiments, the Clec9A targeting moiety binds but does not functionally modulate (e.g., partially or fully neutralize) the antigen of interest, i.e., Clec9A. For instance, in various embodiments, the Clec9A targeting moiety simply targets the antigen but does not substantially functionally modulate (e.g. partially or fully inhibit, reduce or neutralize) a biological effect that the antigen has. In various embodiments, the Clec9A targeting moiety binds an epitope that is physically separate from an antigen site that is important for its biological activity (e.g. an antigen's active site).
Such binding without significant function modulation finds use in various embodiments of the present invention, including methods in which the Clec9A targeting moiety is used to directly or indirectly recruit active immune cells to a site of need via an effector antigen. For example, in various embodiments, the Clec9A targeting moiety may be used to directly or indirectly recruit dendritic cells via Clec9A to a tumor cell in a method of reducing or eliminating a tumor (e.g. the Clec9A binding agent may comprise a targeting moiety having an anti-Clec9A antigen recognition domain and a targeting moiety having a recognition domain (e.g. antigen recognition domain) directed against a tumor antigen or receptor). In such embodiments, it is desirable to directly or indirectly recruit dendritic cells but not to functionally modulate or neutralize the Clec9A activity. In these embodiments, Clec9A signaling is an important piece of the tumor reducing or eliminating effect.
In some embodiments, the Clec9A targeting moiety enhances antigen-presentation by dendritic cells. For example, in various embodiments, the Clec9A targeting moiety can directly or indirectly recruit dendritic cells via Clec9A to a tumor cell, where tumor antigens are subsequently endocytosed and presented on the dendritic cell for induction of potent humoral and cytotoxic T cell responses.
In other embodiments (for example, related to treating autoimmune or neurodegenerative disease), the Clec9A targeting moiety binds and neutralizes the antigen of interest, i.e., Clec9A. For instance, in various embodiments, the present methods may inhibit or reduce Clec9A signaling or expression, e.g. to cause a reduction in an immune response.
In various embodiments, the targeting moiety is a CD8 targeting moiety that is a protein-based agent capable of specific binding to CD8. In various embodiments, the CD8 targeting moiety is a protein-based agent capable of specific binding to CD8 without functionally modulating (e.g. partial or complete neutralization) CD8.
CD8 is a heterodimeric type I transmembrane glycoprotein, whose α and β chains are both comprised of an immunoglobulin (Ig)-like extracellular domain connected by an extended O-glycosylated stalk to a single-pass transmembrane domain and a short cytoplasmic tail. The cytoplasmic region of the CD8 α-chain contains two cysteine motifs that serve as a docking site for src tyrosine kinase p56lck (Lck). In contrast, this Lck binding domain appears to be absent from the CD8 β chain, suggesting that the β chain is not involved in downstream signaling. CD8 functions as a co-receptor for the T-cell receptor with its principle role being the recruitment of Lck to the TCR-pMHC complex following co-receptor binding to MHC. The increase in the local concentration of this kinase activates a signaling cascade that recruits and activates ζ-chain-associated protein kinase 70 (ZAP-70), subsequently leading to the amplification of T-cell activation signals.
In some embodiments, the CD8 targeting moiety comprises an antigen recognition domain that recognizes an epitope present on the CD8 α and/or β chains. In an embodiment, the antigen-recognition domain recognizes one or more linear epitopes on the CD8 α and/or β chains. In some embodiment, a linear epitope refers to any continuous sequence of amino acids present on the CD8 α and/or β chains. In another embodiment, the antigen-recognition domain recognizes one or more conformational epitopes present on the CD8 α and/or β chains. As used herein, a conformation epitope refers to one or more sections of amino acids (which may be discontinuous) which form a three-dimensional surface with features and/or shapes and/or tertiary structures capable of being recognized by an antigen recognition domain.
In various embodiments, the CD8 targeting moiety may bind to the full-length and/or mature forms and/or isoforms and/or splice variants and/or fragments and/or any other naturally occurring or synthetic analogs, variants, or mutants of human CD8 α and/or β chains. In various embodiments, the CD8 targeting moiety may bind to any forms of the human CD8 α and/or β chains, including monomeric, dimeric, heterodimeric, multimeric and associated forms. In an embodiment, the CD8 binding agent binds to the monomeric form of CD8 α chain or CD8 β chain. In another embodiment, the CD8 targeting moiety binds to a homodimeric form comprised of two CD8 α chains or two CD8 β chains. In a further embodiment, the CD8 binding agent binds to a heterodimeric form comprised of one CD8 α chain and one CD8 β chain.
In an embodiment, the CD8 targeting moiety comprises an antigen recognition domain that recognizes one or more epitopes present on the human CD8 α chain. In an embodiment, the human CD8 α chain comprises the amino acid sequence of Isoform 1 (SEQ ID NO: 396).
In an embodiment, the human CD8 α chain comprises the amino acid sequence of Isoform 2 (SEQ ID NO: 397).
In an embodiment, the human CD8 α chain comprises the amino acid sequence of Isoform 3 (SEQ ID NO: 398).
In an embodiment, the CD8 targeting moiety comprises an antigen recognition domain that recognizes one or more epitopes present on the human CD8 β chain. In an embodiment, the human CD8 β chain comprises the amino acid sequence of Isoform 1 (SEQ ID NO: 399).
In an embodiment, the human CD8 β chain comprises the amino acid sequence of Isoform 2 (SEQ ID NO: 400).
In an embodiment, the human CD8 β chain comprises the amino acid sequence of Isoform 3 (SEQ ID NO: 401).
In an embodiment, the human CD8 β chain comprises the amino acid sequence of Isoform 4 (SEQ ID NO: 402).
In an embodiment, the human CD8 β chain comprises the amino acid sequence of Isoform 5 (SEQ ID NO: 403).
In an embodiment, the human CD8 β chain comprises the amino acid sequence of Isoform 6 (SEQ ID NO: 404).
In an embodiment, the human CD8 β chain comprises the amino acid sequence of Isoform 7 (SEQ ID NO: 405).
In an embodiment, the human CD8 β chain comprises the amino acid sequence of Isoform 8 (SEQ ID NO: 406).
In some embodiments, the CD8 targeting moiety is capable of specific binding. In various embodiments, the CD8 targeting moiety comprises an antigen recognition domain such as an antibody or derivatives thereof.
In some embodiments, the CD8 targeting moiety comprise an antibody derivative or format. In some embodiments, the CD8 targeting moiety comprises a single-domain antibody, a recombinant heavy-chain-only antibody (VHH), a single-chain antibody (scFv), a shark heavy-chain-only antibody (VNAR), a microprotein (cysteine knot protein, knottin), a DARPin; a Tetranectin; an Affibody; a Transbody; an Anticalin; an AdNectin; an alphabody; a bicyclic peptide; an Affilin; an Affimer, a Microbody; an aptamer; an alterase; a plastic antibody; a phylomer; a stradobody; a maxibody; an evibody; a fynomer, an armadillo repeat protein, a Kunitz domain, an avimer, an atrimer, a probody, an immunobody, a triomab, a troybody; a pepbody; a vaccibody, a UniBody; a DuoBody, a Fv, a Fab, a Fab′, a F(ab′)2, a peptide mimetic molecule, or a small (e.g. synthetic or natural) molecule, e.g. without limitation, as described in US Patent Nos. or Patent Publication Nos. U.S. Pat. No. 7,417,130, US 2004/132094, U.S. Pat. No. 5,831,012, US 2004/023334, U.S. Pat. Nos. 7,250,297, 6,818,418, US 2004/209243, U.S. Pat. Nos. 7,838,629, 7,186,524, 6,004,746, 5,475,096, US 2004/146938, US 2004/157209, U.S. Pat. Nos. 6,994,982, 6,794,144, US 2010/239633, U.S. Pat. No. 7,803,907, US 2010/119446, and/or U.S. Pat. No. 7,166,697, the contents of which are hereby incorporated by reference in their entireties. See also, Storz MAbs. 2011 May-June; 3(3): 310-317.
In some embodiments, the CD8 targeting moiety comprises a single-domain antibody, such as a VHH. The VHH may be derived from, for example, an organism that produces VHH antibody such as a camelid, a shark, or the VHH may be a designed VHH. VHHs are antibody-derived therapeutic proteins that contain the unique structural and functional properties of naturally-occurring heavy-chain antibodies. VHH technology is based on fully functional antibodies from camelids that lack light chains. These heavy-chain antibodies contain a single variable domain (VHH) and two constant domains (CH2 and CH3).
In an embodiment, the CD8 targeting moiety comprises a VHH. In some embodiments, the VHH is a humanized VHH or camelized VHH.
In some embodiments, the VHH comprises a fully human VH domain, e.g. a HUMABODY (Crescendo Biologics, Cambridge, UK). In some embodiments, fully human VH domain, e.g. a HUMABODY is monovalent, bivalent, or trivalent. In some embodiments, the fully human VH domain, e.g. a HUMABODY is mono- or multi-specific such as monospecific, bispecific, or trispecific. Illustrative fully human VH domains, e.g. a HUMABODIES are described in, for example, WO2016/113555 and WO2016/113557, the entire disclosure of which is incorporated by reference.
In some embodiments, the CD8 targeting moiety comprises a VHH comprising a single amino acid chain having four “framework regions” or FRs and three “complementary determining regions” or CDRs. As used herein, “framework region” or “FR” refers to a region in the variable domain that is located between the CDRs. As used herein, “complementary determining region” or “CDR” refers to variable regions in VHHs that contains the amino acid sequences capable of specifically binding to antigenic targets.
In various embodiments, the CD8 targeting moiety comprises a VHH having a variable domain comprising at least one CDR1, CDR2, and/or CDR3 sequences.
In some embodiments, the CDR1 sequence is selected from SEQ ID Nos: 407-477.
In some embodiments, the CDR2 sequence is selected from SEQ ID Nos: 478-548.
In some embodiments, the CDR3 sequence is selected from SEQ ID Nos: 549-620.
In various embodiments, the CD8 targeting moiety comprises SEQ ID NO: 407, SEQ ID NO: 478, and SEQ ID NO: 549.
In various embodiments, the CD8 targeting moiety comprises SEQ ID NO: 407, SEQ ID NO: 478, and SEQ ID NO: 550.
In various embodiments, the CD8 targeting moiety comprises SEQ ID NO: 407, SEQ ID NO: 478, and SEQ ID NO: 551.
In various embodiments, the CD8 targeting moiety comprises SEQ ID NO: 407, SEQ ID NO: 479, and SEQ ID NO: 549.
In various embodiments, the CD8 targeting moiety comprises SEQ ID NO: 407, SEQ ID NO: 479, and SEQ ID NO: 550.
In various embodiments, the CD8 targeting moiety comprises SEQ ID NO: 407, SEQ ID NO: 479, and SEQ ID NO: 551.
In various embodiments, the CD8 targeting moiety comprises SEQ ID NO: 408, SEQ ID NO: 478, and SEQ ID NO: 549.
In various embodiments, the CD8 targeting moiety comprises SEQ ID NO: 408, SEQ ID NO: 478, and SEQ ID NO: 550.
In various embodiments, the CD8 targeting moiety comprises SEQ ID NO: 408, SEQ ID NO: 478, and SEQ ID NO: 551.
In various embodiments, the CD8 targeting moiety comprises SEQ ID NO: 408, SEQ ID NO: 479, and SEQ ID NO: 549.
In various embodiments, the CD8 targeting moiety comprises SEQ ID NO: 408, SEQ ID NO: 479, and SEQ ID NO: 550.
In various embodiments, the CD8 targeting moiety comprises SEQ ID NO: 408, SEQ ID NO: 479, and SEQ ID NO: 551.
By way of example, in some embodiments, the CD8 targeting moiety comprises an amino acid sequence selected from the following sequences: R3HCD27 (SEQ ID NO: 621); R3HCD129 (SEQ ID NO: 622); or R2HCD26 (SEQ ID NO: 623).
In various embodiments, the CD8 targeting moiety comprises an amino acid sequence selected from the following sequences: 1CDA 7 (SEQ ID NO: 624); 1CDA 12 (SEQ ID NO: 625); 1CDA 14 (SEQ ID NO: 626); 1CDA 15 (SEQ ID NO: 627); 1CDA 17 (SEQ ID NO: 628); 1CDA 18 (SEQ ID NO: 629); 1CDA 19 (SEQ ID NO: 630); 1CDA 24 (SEQ ID NO: 631); 1CDA 26 (SEQ ID NO: 632); 1CDA 28 (SEQ ID NO: 633); 1CDA 37 (SEQ ID NO: 634); 1CDA 43 (SEQ ID NO: 635); 1CDA 45 (SEQ ID NO: 636); 1CDA 47 (SEQ ID NO: 637); 1CDA 48 (SEQ ID NO: 638); 1CDA 58 (SEQ ID NO: 639); 1CDA 65 (SEQ ID NO: 640); 1CDA 68 (SEQ ID NO: 641); 1CDA 73 (SEQ ID NO: 642); 1CDA 75 (SEQ ID NO: 643); 1CDA 86 (SEQ ID NO: 644); 1CDA 87 (SEQ ID NO: 645); 1CDA 88 (SEQ ID NO: 646); 1CDA 89 (SEQ ID NO: 647); 1CDA 92 (SEQ ID NO: 648); 1CDA 93 (SEQ ID NO: 649); 2CDA 1 (SEQ ID NO: 650); 2CDA 5 (SEQ ID NO: 651); 2CDA 22 (SEQ ID NO: 652); 2CDA 28 (SEQ ID NO: 653); 2CDA 62 (SEQ ID NO: 654); 2CDA 68 (SEQ ID NO: 655); 2CDA 73 (SEQ ID NO: 656); 2CDA 74 (SEQ ID NO: 657); 2CDA 75 (SEQ ID NO: 658); 2CDA 77 (SEQ ID NO: 659); 2CDA 81 (SEQ ID NO: 660); 2CDA 87 (SEQ ID NO: 661); 2CDA 88 (SEQ ID NO: 662); 2CDA 89 (SEQ ID NO: 663); 2CDA 91 (SEQ ID NO: 664); 2CDA 92 (SEQ ID NO: 665); 2CDA 93 (SEQ ID NO: 666); 2CDA 94 (SEQ ID NO: 667); 2CDA 95 (SEQ ID NO: 668); 3CDA 3 (SEQ ID NO: 669); 3CDA 8 (SEQ ID NO: 670); 3CDA 11 (SEQ ID NO: 671); 3CDA 18 (SEQ ID NO: 672); 3CDA 19 (SEQ ID NO: 673); 3CDA 21 (SEQ ID NO: 674); 3CDA 24 (SEQ ID NO: 675); 3CDA 28 (SEQ ID NO: 676); 3CDA 29 (SEQ ID NO: 677); 3CDA 31 (SEQ ID NO: 678); 3CDA 32 (SEQ ID NO: 679); 3CDA 33 (SEQ ID NO: 680); 3CDA 37 (SEQ ID NO: 681); 3CDA 40 (SEQ ID NO: 682); 3CDA 41 (SEQ ID NO:683); 3CDA 48 (SEQ ID NO: 684); 3CDA 57 (SEQ ID NO: 685); 3CDA 65 (SEQ ID NO: 686); 3CDA 70 (SEQ ID NO: 687); 3CDA 73 (SEQ ID NO: 688); 3CDA 83 (SEQ ID NO: 689); 3CDA 86 (SEQ ID NO: 690); 3CDA 88 (SEQ ID NO: 691); or 3CDA 90 (SEQ ID NO: 692).
In some embodiments, the CD8 targeting moiety comprises an amino acid sequence selected from SEQ ID NOs: 624-692 (provided above) without the terminal histidine tag sequence (i.e., HHHHHH; SEQ ID NO: 393).
In some embodiments, the CD8 targeting moiety comprises an amino acid sequence selected from SEQ ID NOs: 621-692 (provided above) without the HA tag (i.e., YPYDVPDYGS; SEQ ID NO: 394).
In some embodiments, the CD8 targeting moiety comprises an amino acid sequence selected from SEQ ID NOs: 621-692 (provided above) without the AAA linker (i.e., AAA).
In some embodiments, the CD8 targeting moiety comprises an amino acid sequence selected from SEQ ID NOs: 621-623 (provided above) without the AAA linker and HA tag.
In some embodiments, the CD8 targeting moiety comprises an amino acid sequence selected from SEQ ID NOs: 624-692 (provided above) without the AAA linker, HA tag, and terminal histidine tag sequence (i.e., AAAYPYDVPDYGSHHHHHH; SEQ ID NO: 395).
In some embodiments, the CD8 targeting moiety comprises an amino acid sequence described in US Patent Publication No. 2014/0271462, the entire contents of which are incorporated by reference. In various embodiments, the CD8 binding agent comprises an amino acid sequence described in Table 0.1, Table 0.2, Table 0.3, and/or FIGS. 1A-12I of US Patent Publication No. 2014/0271462, the entire contents of which are incorporated by reference. In various embodiments, the CD8 binding agent comprises a HCDR1 of SEQ ID NO: 693 or 694 and/or a HCDR2 of SEQ ID NO: 693 or 694 and/or a HCDR3 of SEQ ID NO: 693 or 694 and/or a LCDR1 of SEQ ID NO: 695 and/or a LCDR2 of SEQ ID NO: 695 and/or a LCDR3 of SEQ ID NO: 695.
In some embodiments, the present technology contemplates the use of any natural or synthetic analogs, mutants, variants, alleles, homologs and orthologs (herein collectively referred to as “analogs”) of the CD8 targeting moiety described herein. In some embodiments, the amino acid sequence of the CD8 targeting moiety further includes an amino acid analog, an amino acid derivative, or other non-classical amino acids.
In some embodiments, the CD8 targeting moiety comprises a targeting moiety comprising a sequence that is at least 60% identical to any one of the CD8 sequences disclosed herein. For example, the CD8 targeting moiety may comprise a targeting moiety comprising a sequence that is at least about 60%, at least about 61%, at least about 62%, at least about 63%, at least about 64%, at least about 65%, at least about 66%, at least about 67%, at least about 68%, at least about 69%, at least about 70%, at least about 71%, at least about 72%, at least about 73%, at least about 74%, at least about 75%, at least about 76%, at least about 77%, at least about 78%, at least about 79%, at least about 80%, at least about 81%, at least about 82%, at least about 83%, at least about 84%, at least about 85%, at least about 86%, at least about 87%, at least about 88%, at least about 89%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% identical to any one of the CD8 sequences disclosed herein (e.g. about 60%, or about 61%, or about 62%, or about 63%, or about 64%, or about 65%, or about 66%, or about 67%, or about 68%, or about 69%, or about 70%, or about 71%, or about 72%, or about 73%, or about 74%, or about 75%, or about 76%, or about 77%, or about 78%, or about 79%, or about 80%, or about 81%, or about 82%, or about 83%, or about 84%, or about 85%, or about 86%, or about 87%, or about 88%, or about 89%, or about 90%, or about 91%, or about 92%, or about 93%, or about 94%, or about 95%, or about 96%, or about 97%, or about 98%, about 99% or about 100% sequence identity to any one of the CD8 sequences disclosed herein).
In various embodiments, the CD8 targeting moiety comprises an amino acid sequence having one or more amino acid mutations with respect to any one of the CD8 sequences disclosed herein. In various embodiments, the CD8 binding agent comprises a targeting moiety comprising an amino acid sequence having one, or two, or three, or four, or five, or six, or seen, or eight, or nine, or ten, or fifteen, or twenty amino acid mutations with respect to any one of the CD8 sequences disclosed herein. In some embodiments, the one or more amino acid mutations may be independently selected from substitutions, insertions, deletions, and truncations.
In some embodiments, the amino acid mutations are amino acid substitutions, and may include conservative and/or non-conservative substitutions.
“Conservative substitutions” may be made, for instance, on the basis of similarity in polarity, charge, size, solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the amino acid residues involved. The 20 naturally occurring amino acids can be grouped into the following six standard amino acid groups: (1) hydrophobic: Met, Ala, Val, Leu, Ile; (2) neutral hydrophilic: Cys, Ser, Thr; Asn, Gln; (3) acidic: Asp, Glu; (4) basic: His, Lys, Arg; (5) residues that influence chain orientation: Gly, Pro; and (6) aromatic: Trp, Tyr, Phe.
As used herein, “conservative substitutions” are defined as exchanges of an amino acid by another amino acid listed within the same group of the six standard amino acid groups shown above. For example, the exchange of Asp by Glu retains one negative charge in the so modified polypeptide. In addition, glycine and proline may be substituted for one another based on their ability to disrupt α-helices.
As used herein, “non-conservative substitutions” are defined as exchanges of an amino acid by another amino acid listed in a different group of the six standard amino acid groups (1) to (6) shown above.
In various embodiments, the substitutions may also include non-classical amino acids (e.g. selenocysteine, pyrrolysine, N-formylmethionine β-alanine, GABA and 5-Aminolevulinic acid, 4-aminobenzoic acid (PABA), D-isomers of the common amino acids, 2,4-diaminobutyric acid, α-amino isobutyric acid, 4-aminobutyric acid, Abu, 2-amino butyric acid, γ-Abu, ε-Ahx, 6-amino hexanoic acid, Aib, 2-amino isobutyric acid, 3-amino propionic acid, ornithine, norleucine, norvaline, hydroxyproline, sarcosme, citrulline, homocitrulline, cysteic acid, t-butylglycine, t-butylalanine, phenylglycine, cyclohexylalanine, β-alanine, fluoro-amino acids, designer amino acids such as p methyl amino acids, C α-methyl amino acids, N α-methyl amino acids, and amino acid analogs in general).
In various embodiments, the amino acid mutation may be in the CDRs of the targeting moiety (e.g., the CDR1, CDR2 or CDR3 regions). In another embodiment, amino acid alteration may be in the framework regions (FRs) of the targeting moiety (e.g., the FR1, FR2, FR3, or FR4 regions).
Modification of the amino acid sequences may be achieved using any known technique in the art e.g., site-directed mutagenesis or PCR based mutagenesis. Such techniques are described, for example, in Sambrook et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Press, Plainview, N.Y., 1989 and Ausubel et al., Current Protocols in Molecular Biology, John Wiley & Sons, New York, N.Y., 1989.
In various embodiments, the mutations do not substantially reduce the CD8 targeting moiety's capability to specifically bind to CD8. In various embodiments, the mutations do not substantially reduce the CD8 targeting moiety's capability to specifically bind to CD8 without functionally modulating CD8.
In various embodiments, the binding affinity of the CD8 targeting moiety for the full-length and/or mature forms and/or isoforms and/or splice variants and/or fragments and/or any other naturally occurring or synthetic analogs, variants, or mutants (including monomeric, dimeric, heterodimeric, multimeric and/or associated forms) of human CD8 α and/or β chains may be described by the equilibrium dissociation constant (KD). In various embodiments, the CD8 targeting moiety binds to the full-length and/or mature forms and/or isoforms and/or splice variants and/or fragments and/or any other naturally occurring or synthetic analogs, variants, or mutants (including monomeric, dimeric, heterodimeric, multimeric and/or associated forms) of human CD8 α and/or β chains with a KD of less than about 1 uM, about 900 nM, about 800 nM, about 700 nM, about 600 nM, about 500 nM, about 400 nM, about 300 nM, about 200 nM, about 100 nM, about 90 nM, about 80 nM, about 70 nM, about 60 nM, about 50 nM, about 40 nM, about 30 nM, about 20 nM, about 10 nM, or about 5 nM, or about 1 nM.
In various embodiments, the CD8 targeting moiety binds but does not functionally modulate the antigen of interest, i.e., CD8. For instance, in various embodiments, the CD8 targeting moiety simply targets the antigen but does not substantially functionally modulate the antigen, e.g. it does not substantially inhibit, reduce or neutralize a biological effect that the antigen has. In various embodiments, the CD8 targeting moiety binds an epitope that is physically separate from an antigen site that is important for its biological activity (e.g. an antigen's active site).
Such non-functionally modulating (e.g. non-neutralizing) binding finds use in various embodiments of the present invention, including methods in which the CD8 targeting moiety is used to directly or indirectly recruit active immune cells to a site of need via an effector antigen. For example, in various embodiments, the CD8 targeting moiety may be used to directly or indirectly recruit cytotoxic T cells via CD8 to a tumor cell in a method of reducing or eliminating a tumor (e.g. the CD8 binding agent may comprise a targeting moiety having an anti-CD8 antigen recognition domain and a targeting moiety having a recognition domain (e.g. an antigen recognition domain) directed against a tumor antigen or receptor). In such embodiments, it is desirable to directly or indirectly recruit CD8-expressing cytotoxic T cells but not to neutralize the CD8 activity. In these embodiments, CD8 signaling is an important piece of the tumor reducing or eliminating effect.
In some embodiments, the targeting moiety is a PD-1, PD-L1, or PD-L2 targeting moiety that is a protein-based agent capable of specific binding to PD-1, PD-L1, or PD-L2. In some embodiments, the PD-1, PD-L1, or PD-L2 targeting moiety binds but does not functionally modulate (e.g., partially or fully neutralize) the antigen of interest, i.e., PD-1, PD-L1, or PD-L2. For instance, in various embodiments, the PD-1, PD-L1, or PD-L2 targeting moiety simply targets the antigen but does not substantially functionally modulate (e.g. partially or fully inhibit, reduce or neutralize) a biological effect that the antigen has. In various embodiments, the PD-1, PD-L1, or PD-L2 targeting moiety binds an epitope that is physically separate from an antigen site that is important for its biological activity (e.g. an antigen's active site).
Programmed cell death protein 1, also known as PD-1 and cluster of differentiation 279 (CD279), is a cell surface receptor that is primarily expressed on activated T cells, B cells, and macrophages. PD-1 has been shown to negatively regulate antigen receptor signaling upon engagement of its ligands (i.e., PD-L1 and/or PD-L2). PD-1 plays an important role in down-regulating the immune system and promoting self tolerance by suppressing T cell inflammatory activity. PD-1 is a type I transmembrane glycoprotein containing an Ig Variable-type (V-type) domain responsible for ligand binding and a cytoplasmic tail that is responsible for the binding of signaling molecules. The cytoplasmic tail of PD-1 contains two tyrosine-based signaling motifs, an ITIM (immunoreceptor tyrosine-based inhibition motif) and an ITSM (immunoreceptor tyrosine-based switch motif).
In some embodiments, the PD-1 targeting moiety comprises an antigen recognition domain that recognizes an epitope present on PD-1. In an embodiment, the antigen-recognition domain recognizes one or more linear epitopes present on PD-1. In some embodiments, a linear epitope refers to any continuous sequence of amino acids present on PD-1. In another embodiment, the antigen-recognition domain recognizes one or more conformational epitopes present on PD-1. As used herein, a conformation epitope refers to one or more sections of amino acids (which may be discontinuous) which form a three-dimensional surface with features and/or shapes and/or tertiary structures capable of being recognized by an antigen recognition domain.
In some embodiments, the PD-1 targeting moiety may bind to the full-length and/or mature forms and/or isoforms and/or splice variants and/or fragments and/or any other naturally occurring or synthetic analogs, variants, or mutants of human PD-1. In various embodiments, the PD-1 targeting moiety may bind to any forms of the human PD-1. In an embodiment, the PD-1 targeting moiety binds to a phosphorylated form of PD-1.
In an embodiment, the PD-1 targeting moiety comprises an antigen recognition domain that recognizes one or more epitopes present on human PD-1. In an embodiment, the human PD-1 comprises the amino acid sequence of (signal peptide underlined):
MQIPQAPWPVVWAVLQLGWRPGWFLDSPDRPWNPPTFSPALLVVTEGDNA
In another embodiment, the human PD-1 comprises the amino acid sequence of SEQ ID NO: 696 without the amino-terminal signal peptide.
In some embodiments, the PD-1 targeting moiety is capable of specific binding. In various embodiments, the PD-1 targeting moiety comprises an antigen recognition domain such as an antibody or derivatives thereof.
In some embodiments, the PD-1 targeting moiety comprises an antibody derivative or format. In some embodiments, the PD-1 targeting moiety comprises a single-domain antibody, a recombinant heavy-chain-only antibody (VHH), a single-chain antibody (scFv), a shark heavy-chain-only antibody (VNAR), a microprotein (cysteine knot protein, knottin), a DARPin; a Tetranectin; an Affibody; a Transbody; an Anticalin; an AdNectin; an Affilin; an alphabody; a bicyclic peptide; an Affimer, a Microbody; an aptamer; an alterase; a plastic antibody; a phylomer; a stradobody; a maxibody; an evibody; a fynomer, an armadillo repeat protein, a Kunitz domain, an avimer, an atrimer, a probody, an immunobody, a triomab, a troybody; a pepbody; a vaccibody, a UniBody; a DuoBody, a Fv, a Fab, a Fab′, a F(ab′)2, a peptide mimetic molecule, or a small (e.g. synthetic or natural) molecule, e.g. without limitation, as described in US Patent Nos. or Patent Publication Nos. U.S. Pat. No. 7,417,130, US 2004/132094, U.S. Pat. No. 5,831,012, US 2004/023334, U.S. Pat. Nos. 7,250,297, 6,818,418, US 2004/209243, U.S. Pat. Nos. 7,838,629, 7,186,524, 6,004,746, 5,475,096, US 2004/146938, US 2004/157209, U.S. Pat. Nos. 6,994,982, 6,794,144, US 2010/239633, U.S. Pat. No. 7,803,907, US 2010/119446, and/or U.S. Pat. No. 7,166,697, the contents of which are hereby incorporated by reference in their entireties. See also, Storz MAbs. 2011 May-June; 3(3): 310-317.
In some embodiments, the PD-1 targeting moiety comprises a single-domain antibody, such as a VHH. The VHH may be derived from, for example, an organism that produces VHH antibody such as a camelid, a shark, or the VHH may be a designed VHH. VHHs are antibody-derived therapeutic proteins that contain the unique structural and functional properties of naturally-occurring heavy-chain antibodies. VHH technology is based on fully functional antibodies from camelids that lack light chains. These heavy-chain antibodies contain a single variable domain (VHH) and two constant domains (CH2 and CH3).
In an embodiment, the PD-1 targeting moiety comprises a VHH. In some embodiments, the VHH is a humanized VHH or camelized VHH.
In some embodiments, the VHH comprises a fully human VH domain, e.g. a HUMABODY (Crescendo Biologics, Cambridge, UK). In some embodiments, fully human VH domain, e.g. a HUMABODY is monovalent, bivalent, or trivalent. In some embodiments, the fully human VH domain, e.g. a HUMABODY is mono- or multi-specific such as monospecific, bispecific, or trispecific. Illustrative fully human VH domains, e.g. HUMABODIES are described in, for example, WO2016/113555 and WO2016/113557, the entire disclosure of which is incorporated by reference.
In some embodiments, the PD-1 targeting moiety comprises a VHH comprising a single amino acid chain having four “framework regions” or FRs and three “complementary determining regions” or CDRs. As used herein, “framework region” or “FR” refers to a region in the variable domain which is located between the CDRs. As used herein, “complementary determining region” or “CDR” refers to variable regions in VHHs that contains the amino acid sequences capable of specifically binding to antigenic targets.
In various embodiments, the PD-1 targeting moiety comprises a VHH having a variable domain comprising at least one CDR1, CDR2, and/or CDR3 sequences. In various embodiments, the PD-1 binding agent comprises a VHH having a variable region comprising at least one FR1, FR2, FR3, and FR4 sequences.
In some embodiments, the CDR1 sequence is selected from SEQ ID Nos.: 697-710.
In some embodiments, the CDR2 sequence is selected from SEQ ID Nos.: 711-724.
In some embodiments, the CDR3 sequence is selected from SEQ ID Nos.: 725-738.
In various exemplary embodiments, the PD-1 targeting moiety comprises an amino acid sequence selected from the following sequences:
In some embodiments, the PD-1 targeting moiety comprises an amino acid sequence selected from SEQ ID NOs: 739-752 (provided above) without the terminal histidine tag sequence (i.e., HHHHHH; SEQ ID NO: 393).
In some embodiments, the PD-1 targeting moiety comprises an amino acid sequence selected from SEQ ID NOs: 739-752 (provided above) without the HA tag (i.e., YPYDVPDYGS; SEQ ID NO: 394).
In some embodiments, the PD-1 targeting moiety comprises an amino acid sequence selected from SEQ ID NOs: 739-752 (provided above) without the AAA linker (i.e., AAA).
In some embodiments, the PD-1 targeting moiety comprises an amino acid sequence selected from SEQ ID NOs: 739-752 (provided above) without the AAA linker, HA tag, and terminal histidine tag sequence (i.e., AAAYPYDVPDYGSHHHHHH; SEQ ID NO: 395).
In some embodiments, the present technology contemplates the use of any natural or synthetic analogs, mutants, variants, alleles, homologs and orthologs (herein collectively referred to as “analogs”) of the PD-1 targeting moiety described herein. In some embodiments, the amino acid sequence of the PD1 targeting moiety further includes an amino acid analog, an amino acid derivative, or other non-classical amino acids.
In some embodiments, the PD-1 targeting moiety comprises the anti-PD-1 antibody pembrolizumab (aka MK-3475, KEYTRUDA), or fragments thereof. Pembrolizumab and other humanized anti-PD-1 antibodies are disclosed in Hamid, et al. (2013) New England Journal of Medicine 369 (2): 134-44, U.S. Pat. No. 8,354,509, and WO 2009/114335, the entire disclosures of which are hereby incorporated by reference. In illustrative embodiments, pembrolizumab or an antigen-binding fragment thereof for use in the methods provided herein comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 753; and/or a light chain comprising the amino acid sequence of (SEQ ID NO: 754).
In an embodiment, the PD-1 targeting moiety comprises the anti-PD-1 antibody, nivolumab (aka BMS-936558, MDX-1106, ONO-4538, OPDIVO), or fragments thereof. Nivolumab (clone 5C4) and other human monoclonal antibodies that specifically bind to PD-1 are disclosed in U.S. Pat. No. 8,008,449 and WO 2006/121168, the entire disclosures of which are hereby incorporated by reference. In illustrative embodiments, nivolumab or an antigen-binding fragment thereof comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 755; and/or a light chain comprising the amino acid sequence of (SEQ ID NO: 756).
In an embodiment, the PD-1 targeting moiety comprises the anti-PD-1 antibody pidilizumab (aka CT-011, hBAT or hBAT-1), or fragments thereof. Pidilizumab and other humanized anti-PD-I monoclonal antibodies are disclosed in US 2008/0025980 and WO 2009/101611, the entire disclosures of which are hereby incorporated by reference. In illustrative embodiments, the anti-PD-1 antibody or an antigen-binding fragment thereof for use in the methods provided herein comprises a light chain variable regions comprising an amino acid sequence selected from SEQ ID NOS: 15-18 of US 2008/0025980 (SEQ ID Nos: 757-760 of this application); and/or a heavy chain comprising an amino acid sequence selected from SEQ ID NOS: 20-24 of US 2008/0025980 (SEQ ID Nos: 761-765 of this application).
In an embodiment, the targeting moiety comprises a light chain comprising SEQ ID NO: 18 of US 2008/0025980 (SEQ ID NO: 760) and a heavy chain comprising SEQ ID NO: 22 of US 2008/0025980 (SEQ ID NO: 763).
In an embodiment, the PD-1 targeting moiety comprises AMP-514 (aka MEDI-0680).
In an embodiment, the PD-1 targeting moiety comprises the PD-L2-Fc fusion protein AMP-224, which is disclosed in WO2010/027827 and WO 2011/066342, the entire disclosures of which are hereby incorporated by reference. In such an embodiment, the targeting moiety may include a targeting domain which comprises SEQ ID NO: 4 of WO2010/027827 (SEQ ID NO: 766 of this application) and/or the B7-DC fusion protein which comprises SEQ ID NO:83 of WO2010/027827 (SEQ ID NO: 767 of this application).
In an embodiment, the PD-1 targeting moiety comprises the peptide AUNP 12 or any of the other peptides disclosed in US 2011/0318373 or 8,907,053. For example, the targeting moiety may comprise AUNP 12 (i.e., Compound 8 or SEQ ID NO:49 of US 2011/0318373) which has the sequence of:
In an embodiment, the PD-1 targeting moiety comprises the anti-PD-1 antibody 1E3, or fragments thereof, as disclosed in US 2014/0044738, the entire disclosures of which are hereby incorporated by reference. In illustrative embodiments, 1E3 or an antigen-binding fragment thereof for use in the methods provided herein comprises a heavy chain variable region comprising the amino acid sequence of SEQ ID NO: 768; and/or a light chain variable region comprising the amino acid sequence of SEQ ID NO: 769.
In an embodiment, the PD-1 targeting moiety comprises the anti-PD-1 antibody 1E8, or fragments thereof, as disclosed in US 2014/0044738, the entire disclosures of which are hereby incorporated by reference. In illustrative embodiments, 1E8 or an antigen-binding fragment thereof for use in the methods provided herein comprises a heavy chain variable region comprising the amino acid sequence of SEQ ID NO: 770; and/or a light chain variable region comprising the amino acid sequence of SEQ ID NO: 771.
In an embodiment, the PD-1 targeting moiety comprises the anti-PD-1 antibody 1H3, or fragments thereof, as disclosed in US 2014/0044738, the entire disclosures of which are hereby incorporated by reference. In illustrative embodiments, 1H3 or an antigen-binding fragment thereof for use in the methods provided herein comprises a heavy chain variable region comprising the amino acid sequence of SEQ ID NO: 772; and/or light chain variable region comprising the amino acid sequence of SEQ ID NO: 773.
In an embodiment, the PD-1 targeting moiety comprises a VHH directed against PD-1 as disclosed, for example, in U.S. Pat. No. 8,907,065 and WO 2008/071447, the entire disclosures of which are hereby incorporated by reference. In illustrative embodiments, the VHHs against PD-1 comprise SEQ ID NOS: 347-351 of U.S. Pat. No. 8,907,065 (SEQ ID Nos: 774-778).
In an embodiment, the PD-1 targeting moiety comprises any one of the anti-PD-1 antibodies, or fragments thereof, as disclosed in US2011/0271358 and WO2010/036959, the entire contents of which are hereby incorporated by reference. In illustrative embodiments, the antibody or an antigen-binding fragment thereof for use in the methods provided herein comprises a heavy chain comprising an amino acid sequence selected from SEQ ID NOS: 25-29 of US2011/0271358 (SEQ ID Nos: 779-783 of this application); and/or a light chain comprising an amino acid sequence selected from SEQ ID NOS: 30-33 of US2011/0271358 (SEQ ID Nos: 784-787 of this application).
In some embodiments, the PD-1 targeting moiety is an antibody directed against PD-1, or an antibody fragment thereof, selected from TSR-042 (Tesaro, Inc.), REGN2810 (Regeneron Pharmaceuticals, Inc.), PDR001 (Novartis Pharmaceuticals), and BGB-A317 (BeiGene Ltd.)
In some embodiments, the targeting moiety is a PD-L1 targeting moiety. Programmed death-ligand 1 (PD-L1) also known as cluster of differentiation 274 (CD274) or B7 homolog 1 (B7-H1) is a type 1 transmembrane protein that has been speculated to play a major role in suppressing the immune system. PD-L1 is upregulated on macrophages and dendritic cells (DC) in response to LPS and GM-CSF treatment, and on T cells and B cells upon TCR and B cell receptor signaling.
In various embodiments, the PD-L1 targeting moiety comprises an antigen recognition domain that recognizes an epitope present on PD-L1. In an embodiment, the antigen-recognition domain recognizes one or more linear epitopes present on PD-L1. In some embodiment, a linear epitope refers to any continuous sequence of amino acids present on PD-L1. In another embodiment, the antigen-recognition domain recognizes one or more conformational epitopes present on PD-L1. As used herein, a conformation epitope refers to one or more sections of amino acids (which may be discontinuous) which form a three-dimensional surface with features and/or shapes and/or tertiary structures capable of being recognized by an antigen recognition domain.
In various embodiments, the PD-L1 targeting moiety may bind to the full-length and/or mature forms and/or isoforms and/or splice variants and/or fragments and/or any other naturally occurring or synthetic analogs, variants, or mutants of human PD-L1. In various embodiments, the PD-L1 targeting moiety may bind to any forms of the human PD-L1. In an embodiment, the PD-L1 targeting moiety binds to a phosphorylated form of PD-L1. In an embodiment, the PD-L1 targeting moiety binds to an acetylated form of PD-L1.
In an embodiment, the PD-L1 targeting moiety comprises an antigen recognition domain that recognizes one or more epitopes present on human PD-L1. In an embodiment, the human PD-L1 comprises the amino acid sequence of (signal peptide underlined):
MRIFAVFIFMTYWHLLNAFTVTVPKDLYVVEYGSNMTIECKFPVEKQLDL
MRIFAVFIFMTYWHLLNAPYNKINQRILVVDPVTSEHELTCQAEGYPKAE
MRIFAVFIFMTYWHLLNAFTVTVPKDLYVVEYGSNMTIECKFPVEKQLDL
In various embodiments, the PD-L1 targeting moiety is capable of specific binding. In various embodiments, the PD-L1 targeting moiety comprises an antigen recognition domain such as an antibody or derivatives thereof. In an embodiment, the PD-L1 targeting moiety comprises an antibody.
In some embodiments, the PD-L1 targeting moiety comprises an antibody derivative or format. In some embodiments, the PD-L1 targeting moiety comprises a single-domain antibody, a recombinant heavy-chain-only antibody (VHH), a single-chain antibody (scFv), a shark heavy-chain-only antibody (VNAR), a microprotein (cysteine knot protein, knottin), a DARPin; a Tetranectin; an Affibody; a Transbody; an Anticalin; an AdNectin; an alphabody; a bicyclic peptide; an Affilin; an Affimer, a Microbody; an aptamer; an alterase; a plastic antibody; a phylomer; a stradobody; a maxibody; an evibody; a fynomer, an armadillo repeat protein, a Kunitz domain, an avimer, an atrimer, a probody, an immunobody, a triomab, a troybody; a pepbody; a vaccibody, a UniBody; a DuoBody, a Fv, a Fab, a Fab′, a F(ab′)2, a peptide mimetic molecule, or a small (e.g. synthetic or natural) molecule, e.g. without limitation, as described in US Patent Nos. or Patent Publication Nos. U.S. Pat. No. 7,417,130, US 2004/132094, U.S. Pat. No. 5,831,012, US 2004/023334, U.S. Pat. Nos. 7,250,297, 6,818,418, US 2004/209243, U.S. Pat. Nos. 7,838,629, 7,186,524, 6,004,746, 5,475,096, US 2004/146938, US 2004/157209, U.S. Pat. Nos. 6,994,982, 6,794,144, US 2010/239633, U.S. Pat. No. 7,803,907, US 2010/119446, and/or U.S. Pat. No. 7,166,697, the contents of which are hereby incorporated by reference in their entireties. See also, Storz MAbs. 2011 May-June; 3(3): 310-317.
In some embodiments, the PD-L1 targeting moiety comprises a single-domain antibody, such as a VHH. The VHH may be derived from, for example, an organism that produces VHH antibody such as a camelid, a shark, or the VHH may be a designed VHH. VHHs are antibody-derived therapeutic proteins that contain the unique structural and functional properties of naturally-occurring heavy-chain antibodies. VHH technology is based on fully functional antibodies from camelids that lack light chains. These heavy-chain antibodies contain a single variable domain (VHH) and two constant domains (CH2 and CH3).
In an embodiment, the PD-L1 targeting moiety comprises a VHH. In some embodiments, the VHH is a humanized VHH or camelized VHH.
In some embodiments, the VHH comprises a fully human VH domain, e.g. a HUMABODY (Crescendo Biologics, Cambridge, UK). In some embodiments, fully human VH domain, e.g. a HUMABODY is monovalent, bivalent, or trivalent. In some embodiments, the fully human VH domain, e.g. a HUMABODY is mono- or multi-specific such as monospecific, bispecific, or trispecific. Illustrative fully human VH domains, e.g. HUMABODIES are described in, for example, WO2016/113555 and WO2016/113557, the entire disclosure of which is incorporated by reference.
In some embodiments, the PD-L1 targeting moiety comprises a VHH comprising a single amino acid chain having four “framework regions” or FRs and three “complementary determining regions” or CDRs. As used herein, “framework region” or “FR” refers to a region in the variable domain which is located between the CDRs. As used herein, “complementary determining region” or “CDR” refers to variable regions in VHHs that contains the amino acid sequences capable of specifically binding to antigenic targets.
In various embodiments, the PD-L1 targeting moiety comprises a VHH having a variable domain comprising at least one CDR1, CDR2, and/or CDR3 sequences. In various embodiments, the PD-L1 targeting moiety comprises a VHH having a variable region comprising at least one FR1, FR2, FR3, and FR4 sequences.
In some embodiments, the CDR1 sequence is selected from SEQ ID Nos.: 791-821.
In some embodiments, the CDR2 sequence is selected from SEQ ID Nos.: 822-852.
In some embodiments, the CDR3 sequence is selected from SEQ ID Nos.: 853-883.
In various exemplary embodiments, the PD-L1 targeting moiety comprises an amino acid sequence selected from the following sequences: 2LIG2 (SEQ ID NO: 884); 2LIG3 (SEQ ID NO: 885); 2LIG16 (SEQ ID NO: 886); 2LIG22 (SEQ ID NO: 887); 2LIG27 (SEQ ID NO: 888); 2LIG29 (SEQ ID NO: 889); 2LIG30 (SEQ ID NO: 890); 2LIG34 (SEQ ID NO: 891); 2LIG35 (SEQ ID NO: 892); 2LIG48 (SEQ ID NO: 893); 2LIG65 (SEQ ID NO: 894); 2LIG85 (SEQ ID NO: 895); 2LIG86 (SEQ ID NO: 896); 2LIG89 (SEQ ID NO: 897); 2LIG97 (SEQ ID NO: 898); 2LIG99 (SEQ ID NO: 899); 2LIG109 (SEQ ID NO: 900); 2LIG127 (SEQ ID NO: 901); 2LIG139 (SEQ ID NO: 902); 2LIG176 (SEQ ID NO: 903); 2LIG189 (SEQ ID NO: 904); 3LIG3 (SEQ ID NO: 905); 3LIG7 (SEQ ID NO: 906); 3LIG8 (SEQ ID NO: 907); 3LIG9 (SEQ ID NO: 908); 3LIG18 (SEQ ID NO: 909); 3LIG20 (SEQ ID NO: 910); 3LIG28 (SEQ ID NO: 911); 3LIG29 (SEQ ID NO: 912); 3LIG30 (SEQ ID NO: 913); or 3LIG33 (SEQ ID NO: 914).
In some embodiments, the PD-L1 targeting moiety comprises an amino acid sequence selected from SEQ ID NOs: 884-914 (provided above) without the terminal histidine tag sequence (i.e., HHHHHH; SEQ ID NO: 393).
In some embodiments, the PD-L1 targeting moiety comprises an amino acid sequence selected from SEQ ID NOs: 884-914 (provided above) without the HA tag (i.e., YPYDVPDYGS; SEQ ID NO: 394).
In some embodiments, the PD-L1 targeting moiety comprises an amino acid sequence selected from SEQ ID NOs: 884-914 (provided above) without the AAA linker (i.e., AAA).
In some embodiments, the PD-L1 targeting moiety comprises an amino acid sequence selected from SEQ ID NOs: 884-914 (provided above) without the AAA linker, HA tag, and terminal histidine tag sequence (i.e., AAAYPYDVPDYGSHHHHHH; SEQ ID NO: 395).
In an embodiment, the PD-L1 targeting moiety comprises the anti-PD-L1 antibody MEDI4736 (aka durvalumab), or fragments thereof. MEDI4736 is selective for PD-L1 and blocks the binding of PD-L1 to the PD-1 and CD80 receptors. MEDI4736 and antigen-binding fragments thereof for use in the methods provided herein comprises a heavy chain and a light chain or a heavy chain variable region and a light chain variable region. The sequence of MEDI4736 is disclosed in WO/2016/06272, the entire contents of which are hereby incorporated by reference. In illustrative embodiments, MEDI4736 or an antigen-binding fragment thereof for use in the methods provided herein comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 915; and/or a light chain comprising the amino acid sequence of SEQ ID NO: 916.
In illustrative embodiments, the MEDI4736 or an antigen-binding fragment thereof for use in the methods provided herein comprises a heavy chain variable region comprising the amino acid sequence of SEQ ID NO: 4 of WO/2016/06272 (SEQ ID NO: 917); and/or a light chain variable region comprising the amino acid sequence of SEQ ID NO: 3 of WO/2016/06272 (SEQ ID NO: 918).
In an embodiment, the PD-L1 targeting moiety comprises the anti-PD-L1 antibody atezolizumab (aka MPDL3280A, RG7446), or fragments thereof. In illustrative embodiments, atezolizumab or an antigen-binding fragment thereof for use in the methods provided herein comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 919; and/or a light chain comprising the amino acid sequence of SEQ ID NO: 920.
In an embodiment, the PD-L1 targeting moiety comprises the anti-PD-L1 antibody avelumab (aka MSB0010718C), or fragments thereof. In illustrative embodiments, avelumab or an antigen-binding fragment thereof for use in the methods provided herein comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 921; and/or a light chain comprising the amino acid sequence of SEQ ID NO: 922.
In an embodiment, the PD-L1 targeting moiety comprises the anti-PD-L1 antibody BMS-936559 (aka 12A4, MDX-1105), or fragments thereof, as disclosed in US 2013/0309250 and WO2007/005874, the entire disclosures of which are hereby incorporated by reference. In illustrative embodiments, BMS-936559 or an antigen-binding fragment thereof for use in the methods provided herein comprises a heavy chain variable region comprising the amino acid sequence of SEQ ID NO: 923; and/or a light chain variable region comprising the amino acid sequence of SEQ ID NO: 924.
In an embodiment, the PD-L1 targeting moiety comprises the anti-PD-L1 antibody 3G10, or fragments thereof, as disclosed in US 2013/0309250 and WO2007/005874, the entire disclosures of which are hereby incorporated by reference. In illustrative embodiments, 3G10 or an antigen-binding fragment thereof for use in the methods provided herein comprises a heavy chain variable region comprising the amino acid sequence of SEQ ID NO: 925; and/or a light chain variable region comprising the amino acid sequence of SEQ ID NO: 926.
In an embodiment, the PD-L1 targeting moiety comprises the anti-PD-L1 antibody 10A5, or fragments thereof, as disclosed in US 2013/0309250 and WO2007/005874, the entire disclosures of which are hereby incorporated by reference. In illustrative embodiments, 10A5 or an antigen-binding fragment thereof for use in the methods provided herein comprises a heavy chain variable region comprising the amino acid sequence of SEQ ID NO: 927; and/or a light chain variable region comprising the amino acid sequence of SEQ ID NO: 928.
In an embodiment, the PD-L1 targeting moiety comprises the anti-PD-L1 antibody 5F8, or fragments thereof, as disclosed in US 2013/0309250 and WO2007/005874, the entire disclosures of which are hereby incorporated by reference. In illustrative embodiments, 5F8 or an antigen-binding fragment thereof for use in the methods provided herein comprises a heavy chain variable region comprising the amino acid sequence of SEQ ID NO: 929; and/or a light chain variable region comprising the amino acid sequence of SEQ ID NO: 930.
In an embodiment, the PD-L1 targeting moiety comprises the anti-PD-L1 antibody 10H10, or fragments thereof, as disclosed in US 2013/0309250 and WO2007/005874, the entire disclosures of which are hereby incorporated by reference. In illustrative embodiments, 10H10 or an antigen-binding fragment thereof for use in the methods provided herein comprises a heavy chain variable region comprising the amino acid sequence of SEQ ID NO: 931; and/or a light chain variable region comprising the amino acid sequence of SEQ ID NO: 932.
In an embodiment, PD-L1 the targeting moiety comprises the anti-PD-L1 antibody 1B12, or fragments thereof, as disclosed in US 2013/0309250 and WO2007/005874, the entire disclosures of which are hereby incorporated by reference. In illustrative embodiments, 1B12 or an antigen-binding fragment thereof for use in the methods provided herein comprises a heavy chain variable region comprising the amino acid sequence of SEQ ID NO: 933; and/or a light chain variable region comprising the amino acid sequence of SEQ ID NO: 934.
In an embodiment, the PD-L1 targeting moiety comprises the anti-PD-L1 antibody 7H1, or fragments thereof, as disclosed in US 2013/0309250 and WO2007/005874, the entire disclosures of which are hereby incorporated by reference. In illustrative embodiments, 7H1 or an antigen-binding fragment thereof for use in the methods provided herein comprises a heavy chain variable region comprising the amino acid sequence of SEQ ID NO: 935; and/or a light chain variable region comprising the amino acid sequence of SEQ ID NO: 936.
In an embodiment, the PD-L1 targeting moiety comprises the anti-PD-L1 antibody 11E6, or fragments thereof, as disclosed in US 2013/0309250 and WO2007/005874, the entire disclosures of which are hereby incorporated by reference. In illustrative embodiments, 11E6 or an antigen-binding fragment thereof for use in the methods provided herein comprises a heavy chain variable region comprising the amino acid sequence of SEQ ID NO: 937; and/or a light chain variable region comprising the amino acid sequence of SEQ ID NO: 938.
In an embodiment, the PD-L1 targeting moiety comprises the anti-PD-L1 antibody 12B7, or fragments thereof, as disclosed in US 2013/0309250 and WO2007/005874, the entire disclosures of which are hereby incorporated by reference. In illustrative embodiments, 12B7 or an antigen-binding fragment thereof for use in the methods provided herein comprises a heavy chain variable region comprising the amino acid sequence of SEQ ID NO: 939; and/or a light chain variable region comprising the amino acid sequence of SEQ ID NO: 940.
In an embodiment, the PD-L1 targeting moiety comprises the anti-PD-L1 antibody 13G4, or fragments thereof, as disclosed in US 2013/0309250 and WO2007/005874, the entire disclosures of which are hereby incorporated by reference. In illustrative embodiments, 13G4 or an antigen-binding fragment thereof for use in the methods provided herein comprises a heavy chain variable region comprising the amino acid sequence of SEQ ID NO: 941; and/or a light chain variable region comprising the amino acid sequence of SEQ ID NO: 942.
In an embodiment, the PD-L1 targeting moiety comprises the anti-PD-L1 antibody 1E12, or fragments thereof, as disclosed in US 2014/0044738, the entire disclosures of which are hereby incorporated by reference. In illustrative embodiments, 1E12 or an antigen-binding fragment thereof for use in the methods provided herein comprises a heavy chain variable region comprising the amino acid sequence of SEQ ID NO: 943; and/or a light chain variable region comprising the amino acid sequence of SEQ ID NO: 944.
In an embodiment, the PD-L1 targeting moiety comprises the anti-PD-L1 antibody 1F4, or fragments thereof, as disclosed in US 2014/0044738, the entire disclosures of which are hereby incorporated by reference. In illustrative embodiments, 1F4 or an antigen-binding fragment thereof for use in the methods provided herein comprises a heavy chain variable region comprising the amino acid sequence of SEQ ID NO: 945; and/or a light chain variable region comprising the amino acid sequence of SEQ ID NO: 946.
In an embodiment, the PD-L1 targeting moiety comprises the anti-PD-L1 antibody 2G11, or fragments thereof, as disclosed in US 2014/0044738, the entire disclosures of which are hereby incorporated by reference. In illustrative embodiments, 2G11 or an antigen-binding fragment thereof for use in the methods provided herein comprises a heavy chain variable region comprising the amino acid sequence of SEQ ID NO: 947; and/or a light chain variable region comprising the amino acid sequence of SEQ ID NO: 948.
In an embodiment, the PD-L1 targeting moiety comprises the anti-PD-L1 antibody 3B6, or fragments thereof, as disclosed in US 2014/0044738, the entire disclosures of which are hereby incorporated by reference. In illustrative embodiments, 3B6 or an antigen-binding fragment thereof for use in the methods provided herein comprises a heavy chain variable region comprising the amino acid sequence of SEQ ID NO: 949; and/or a light chain variable region comprising the amino acid sequence of SEQ ID NO: 950.
In an embodiment, the PD-L1 targeting moiety comprises the anti-PD-L1 antibody 3D10, or fragments thereof, as disclosed in US 2014/0044738 and WO2012/145493, the entire disclosures of which are hereby incorporated by reference. In illustrative embodiments, 3D10 or an antigen-binding fragment thereof for use in the methods provided herein comprises a heavy chain variable region comprising the amino acid sequence of SEQ ID NO: 951; and/or a light chain variable region comprising the amino acid sequence of SEQ ID NO: 952.
In an embodiment, the PD-L1 targeting moiety comprises any one of the anti-PD-L1 antibodies disclosed in US2011/0271358 and WO2010/036959, the entire contents of which are hereby incorporated by reference. In illustrative embodiments, the antibody or an antigen-binding fragment thereof for use in the methods provided herein comprises a heavy chain comprising an amino acid sequence selected from SEQ ID Nos: 34-38 of US2011/0271358 (SEQ ID Nos.: 953-957) and/or a light chain comprising an amino acid sequence selected from SEQ ID Nos: 39-42 of US2011/0271358 (SEQ ID Nos.: 958-961).
In an embodiment, the PD-L1 targeting moiety comprises the anti-PD-L1 antibody 2.7A4, or fragments thereof, as disclosed in WO 2011/066389, U.S. Pat. No. 8,779,108, and US2014/0356353, the entire disclosures of which are hereby incorporated by reference. In illustrative embodiments, 2.7A4 or an antigen-binding fragment thereof for use in the methods provided herein comprises a heavy chain variable region comprising the amino acid sequence of SEQ ID No: 2 of WO 2011/066389 (SEQ ID NO: 962); and/or a light chain variable region comprising the amino acid sequence of SEQ ID No: 7 of WO 2011/066389 (SEQ ID NO: 963).
In an embodiment, the PD-L1 targeting moiety comprises the anti-PD-L1 antibody 2.9D10, or fragments thereof, as disclosed in WO 2011/066389, U.S. Pat. No. 8,779,108, and US2014/0356353, the entire disclosures of which are hereby incorporated by reference. In illustrative embodiments, 2.9D10 or an antigen-binding fragment thereof for use in the methods provided herein comprises a heavy chain variable region comprising the amino acid sequence of SEQ ID No: 12 of WO 2011/066389 (SEQ ID NO: 964); and/or a light chain variable region comprising the amino acid sequence of SEQ ID No: 17 of WO 2011/066389 (SEQ ID NO: 965).
In an embodiment, the PD-L1 targeting moiety comprises the anti-PD-L1 antibody 2.14H9, or fragments thereof, as disclosed in WO 2011/066389, U.S. Pat. No. 8,779,108, and US2014/0356353, the entire disclosures of which are hereby incorporated by reference. In illustrative embodiments, 2.14H9 or an antigen-binding fragment thereof for use in the methods provided herein comprises a heavy chain variable region comprising the amino acid sequence of SEQ ID No: 22 of WO 2011/066389 (SEQ ID NO: 966); and/or a light chain variable region comprising the amino acid sequence of SEQ ID No: 27 of WO 2011/066389 (SEQ ID NO: 967).
In an embodiment, the PD-L1 targeting moiety comprises the anti-PD-L1 antibody 2.20A8, or fragments thereof, as disclosed in WO 2011/066389, U.S. Pat. No. 8,779,108, and US2014/0356353, the entire disclosures of which are hereby incorporated by reference. In illustrative embodiments, 2.20A8 or an antigen-binding fragment thereof for use in the methods provided herein comprises a heavy chain variable region comprising the amino acid sequence of SEQ ID No: 32 of WO 2011/066389 (SEQ ID NO: 968); and/or a light chain variable region comprising the amino acid sequence of SEQ ID No: 37 of WO 2011/066389 (SEQ ID NO: 969).
In an embodiment, the PD-L1 targeting moiety comprises the anti-PD-L1 antibody 3.15G8, or fragments thereof, as disclosed in WO 2011/066389, U.S. Pat. No. 8,779,108, and US2014/0356353, the entire disclosures of which are hereby incorporated by reference. In illustrative embodiments, 3.15G8 or an antigen-binding fragment thereof for use in the methods provided herein comprises a heavy chain variable region comprising the amino acid sequence of SEQ ID No: 42 of WO 2011/066389 (SEQ ID NO: 970); and/or a light chain variable region comprising the amino acid sequence of SEQ ID No: 47 of WO 2011/066389 (SEQ ID NO: 971).
In an embodiment, the PD-L1 targeting moiety comprises the anti-PD-L1 antibody 3.18G1, or fragments thereof, as disclosed in WO 2011/066389, U.S. Pat. No. 8,779,108, and US2014/0356353, the entire disclosures of which are hereby incorporated by reference. In illustrative embodiments, 3.18G1 or an antigen-binding fragment thereof for use in the methods provided herein comprises a heavy chain variable region comprising the amino acid sequence of SEQ ID No: 52 of WO 2011/066389 (SEQ ID NO: 972); and/or a light chain variable region comprising the amino acid sequence of SEQ ID No: 57 of WO 2011/066389 (SEQ ID NO: 973).
In an embodiment, the PD-L1 targeting moiety comprises the anti-PD-L1 antibody 2.7A40PT, or fragments thereof, as disclosed in WO 2011/066389, U.S. Pat. No. 8,779,108, and US2014/0356353, and US2014/0356353, the entire disclosures of which are hereby incorporated by reference. In illustrative embodiments, 2.7A4OPT or an antigen-binding fragment thereof for use in the methods provided herein comprises a heavy chain variable region comprising the amino acid sequence of SEQ ID No: 62 of WO 2011/066389 (SEQ ID NO: 974); and/or a light chain variable region comprising the amino acid sequence of SEQ ID No: 67 of WO 2011/066389 (SEQ ID NO: 975).
In an embodiment, the PD-L1 targeting moiety comprises the anti-PD-L1 antibody 2.14H90PT, or fragments thereof, as disclosed in WO 2011/066389, U.S. Pat. No. 8,779,108, and US2014/0356353, the entire disclosures of which are hereby incorporated by reference. In illustrative embodiments, 2.14H90PT or an antigen-binding fragment thereof for use in the methods provided herein comprises a heavy chain variable region comprising the amino acid sequence of SEQ ID No: 72 of WO 2011/066389 (SEQ ID NO: 976); and/or alight chain variable region comprising the amino acid sequence of SEQ ID No: 77 of WO 2011/066389 (SEQ ID NO: 977).
In an embodiment, the PD-L1 targeting moiety comprises any one of the anti-PD-L1 antibodies disclosed in WO2016/061142, the entire contents of which are hereby incorporated by reference. In illustrative embodiments, the antibody or an antigen-binding fragment thereof for use in the methods provided herein comprises a heavy chain comprising an amino acid sequence selected from SEQ ID Nos: 18, 30, 38, 46, 50, 54, 62, 70, and 78 of WO2016/061142 (SEQ ID Nos.: 978, 979, 980, 981, 982, 983, 984, 985, and 986, respectively); and/or a light chain comprising an amino acid sequence selected from SEQ ID Nos: 22, 26, 34, 42, 58, 66, 74, 82, and 86 of WO2016/061142 (SEQ ID Nos.: 987, 988, 989, 990, 991, 992, 993, 994, and 995, respectively).
In an embodiment, the PD-L1 targeting moiety comprises any one of the anti-PD-L1 antibodies disclosed in WO2016/022630, the entire contents of which are hereby incorporated by reference. In illustrative embodiments, the antibody or an antigen-binding fragment thereof for use in the methods provided herein comprises a heavy chain comprising an amino acid sequence selected from SEQ ID Nos: 2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, and 46 of WO2016/022630 (SEQ ID Nos.: 996, 997, 998, 999, 1000, 1001, 1002, 1003, 1004, 1005, 1006, and 1007, respectively); and/or a light chain comprising an amino acid sequence selected from SEQ ID Nos: 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, and 48 of WO2016/022630 (SEQ ID Nos.: 1008, 1009, 1010, 1011, 1012, 1013, 1014, 1015, 1016, 1017, 1018, and 1019, respectively).
In an embodiment, the PD-L1 targeting moiety comprises any one of the anti-PD-L1 antibodies disclosed in WO2015/112900, the entire contents of which are hereby incorporated by reference. In illustrative embodiments, the antibody or an antigen-binding fragment thereof for use in the methods provided herein comprises a heavy chain comprising an amino acid sequence selected from SEQ ID Nos: 38, 50, 82, and 86 of WO 2015/112900 (SEQ ID Nos.: 1020, 1021, 1022, and 1023, respectively); and/or alight chain comprising an amino acid sequence selected from SEQ ID Nos: 42, 46, 54, 58, 62, 66, 70, 74, and 78 of WO 2015/112900 (SEQ ID Nos.: 1024, 1025, 1026, 1027, 1028, 1029, 1030, 1031, and 1032, respectively).
In an embodiment, the PD-L1 targeting moiety comprises any one of the anti-PD-L1 antibodies disclosed in WO 2010/077634 and U.S. Pat. No. 8,217,149, the entire disclosures of which are hereby incorporated by reference. In illustrative embodiments, the anti-PD-L1 antibody or an antigen-binding fragment thereof for use in the methods provided herein comprises a heavy chain region comprising the amino acid sequence of SEQ ID No: 20 of WO 2010/077634 (SEQ ID NO: 1033); and/or a light chain variable region comprising the amino acid sequence of SEQ ID No: 21 of WO 2010/077634 (SEQ ID NO: 1034). In an embodiment, the PD-L1 targeting moiety comprises any one of the anti-PD-L1 antibodies obtainable from the hybridoma accessible under CNCM deposit numbers CNCM I-4122, CNCM I-4080 and CNCM I-4081 as disclosed in US 20120039906, the entire disclosures of which are hereby incorporated by reference.
In an embodiment, the PD-L1 targeting moiety comprises a VHH directed against PD-L1 as disclosed, for example, in U.S. Pat. No. 8,907,065 and WO 2008/071447, the entire disclosures of which are hereby incorporated by reference. In illustrative embodiments, the VHHs against PD-L1 comprise SEQ ID NOS: 394-399 of U.S. Pat. No. 8,907,065 (SEQ ID NOS: 1035-1040, respectively).
In some embodiments, the targeting moiety is directed against PD-L2. In some embodiments, the targeting moiety selectively binds a PD-L2 polypeptide. In some embodiments, the PD-L2 targeting moiety comprises an antibody, an antibody derivative or format, a peptide or polypeptide, or a fusion protein that selectively binds a PD-L2 polypeptide.
In an embodiment, the PD-L2 targeting moiety comprises a VHH directed against PD-L2 as disclosed, for example, in U.S. Pat. No. 8,907,065 and WO 2008/071447, the entire disclosures of which are hereby incorporated by reference. In illustrative embodiments, the VHHs against PD-L2 comprise SEQ ID Nos: 449-455 of U.S. Pat. No. 8,907,065 (SEQ ID Nos: 1041-1047, respectively).
In an embodiment, the PD-L2 targeting moiety comprises any one of the anti-PD-L2 antibodies disclosed in US2011/0271358 and WO2010/036959, the entire contents of which are hereby incorporated by reference. In illustrative embodiments, the antibody or an antigen-binding fragment thereof for use in the methods provided herein comprises a heavy chain comprising an amino acid sequence selected from SEQ ID Nos: 43-47 of US2011/0271358 (SEQ ID Nos.: 1048-1052, respectively); and/or alight chain comprising an amino acid sequence selected from SEQ ID Nos: 48-51 of US2011/0271358 (SEQ ID Nos.: 1053-1056, respectively).
In some embodiments, the present technology contemplates the use of any natural or synthetic analogs, mutants, variants, alleles, homologs and orthologs (herein collectively referred to as “analogs”) of the PD-1, PD-L1, or PD-L2 targeting moieties described herein. In some embodiments, the amino acid sequence of the PD-1, PD-L1, or PD-L2 targeting moiety further includes an amino acid analog, an amino acid derivative, or other non-classical amino acids.
In various embodiments, the PD-1, PD-L1, or PD-L2 targeting moieties disclosed herein comprise a sequence that targets PD-1, PD-L1, or PD-L2 which is at least about 60%, at least about 61%, at least about 62%, at least about 63%, at least about 64%, at least about 65%, at least about 66%, at least about 67%, at least about 68%, at least about 69%, at least about 70%, at least about 71%, at least about 72%, at least about 73%, at least about 74%, at least about 75%, at least about 76%, at least about 77%, at least about 78%, at least about 79%, at least about 80%, at least about 81%, at least about 82%, at least about 83%, at least about 84%, at least about 85%, at least about 86%, at least about 87%, at least about 88%, at least about 89%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% identical to any of the PD-1, PD-L1, and/or PD-L2 sequences disclosed herein (e.g. about 60%, or about 61%, or about 62%, or about 63%, or about 64%, or about 65%, or about 66%, or about 67%, or about 68%, or about 69%, or about 70%, or about 71%, or about 72%, or about 73%, or about 74%, or about 75%, or about 76%, or about 77%, or about 78%, or about 79%, or about 80%, or about 81%, or about 82%, or about 83%, or about 84%, or about 85%, or about 86%, or about 87%, or about 88%, or about 89%, or about 90%, or about 91%, or about 92%, or about 93%, or about 94%, or about 95%, or about 96%, or about 97%, or about 98%, about 99% or about 100% sequence identity with any of the PD-1, PD-L1, and/or PD-L2 sequences disclosed herein).
In various embodiments, the PD-1, PD-L1, or PD-L2 targeting moiety comprises a binding agent comprising an amino acid sequence having one or more amino acid mutations with respect to any one of the PD-1, PD-L1, or PD-L2 sequences disclosed herein. In various embodiments, the PD-1, PD-L1, or PD-L2 targeting moiety comprises a binding agent comprising an amino acid sequence having one, or two, or three, or four, or five, or six, or seen, or eight, or nine, or ten, or fifteen, or twenty amino acid mutations with respect to any one of the sequences disclosed herein. In some embodiments, the one or more amino acid mutations may be independently selected from substitutions, insertions, deletions, and truncations.
In some embodiments, the amino acid mutations are amino acid substitutions, and may include conservative and/or non-conservative substitutions.
“Conservative substitutions” may be made, for instance, on the basis of similarity in polarity, charge, size, solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the amino acid residues involved. The 20 naturally occurring amino acids can be grouped into the following six standard amino acid groups: (1) hydrophobic: Met, Ala, Val, Leu, Ile; (2) neutral hydrophilic: Cys, Ser, Thr; Asn, Gln; (3) acidic: Asp, Glu; (4) basic: His, Lys, Arg; (5) residues that influence chain orientation: Gly, Pro; and (6) aromatic: Trp, Tyr, Phe.
As used herein, “conservative substitutions” are defined as exchanges of an amino acid by another amino acid listed within the same group of the six standard amino acid groups shown above. For example, the exchange of Asp by Glu retains one negative charge in the so modified polypeptide. In addition, glycine and proline may be substituted for one another based on their ability to disrupt α-helices.
As used herein, “non-conservative substitutions” are defined as exchanges of an amino acid by another amino acid listed in a different group of the six standard amino acid groups (1) to (6) shown above.
In various embodiments, the substitutions may also include non-classical amino acids. Exemplary non-classical amino acids include, but are not limited to, selenocysteine, pyrrolysine, N-formylmethionine β-alanine, GABA and δ-Aminolevulinic acid, 4-aminobenzoic acid (PABA), D-isomers of the common amino acids, 2,4-diaminobutyric acid, α-amino isobutyric acid, 4-aminobutyric acid, Abu, 2-amino butyric acid, γ-Abu, ε-Ahx, 6-amino hexanoic acid, Aib, 2-amino isobutyric acid, 3-amino propionic acid, ornithine, norleucine, norvaline, hydroxyproline, sarcosme, citrulline, homocitrulline, cysteic acid, t-butylglycine, t-butylalanine, phenylglycine, cyclohexylalanine, β-alanine, fluoro-amino acids, designer amino acids such as p methyl amino acids, C α-methyl amino acids, N α-methyl amino acids, and amino acid analogs in general.
In various embodiments, the amino acid mutation may be in the CDRs of the targeting moiety (e.g., the CDR1, CDR2 or CDR3 regions). In another embodiment, amino acid alteration may be in the framework regions (FRs) of the targeting moiety (e.g., the FR1, FR2, FR3, or FR4 regions).
Modification of the amino acid sequences may be achieved using any known technique in the art e.g., site-directed mutagenesis or PCR based mutagenesis. Such techniques are described, for example, in Sambrook et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Press, Plainview, N.Y., 1989 and Ausubel et al., Current Protocols in Molecular Biology, John Wiley & Sons, New York, N.Y., 1989.
In various embodiments, the mutations do not substantially reduce the present PD-1, PD-L1, or PD-L2 targeting moiety's capability to specifically bind to PD-1, PD-L1, or PD-L2. In various embodiments, the mutations do not substantially reduce the PD-1, PD-L1, or PD-L2 targeting moiety's capability to specifically bind to PD-1, PD-L1, or PD-L2 and without functionally modulating (e.g., partially or fully neutralizing) PD-1, PD-L1, or PD-L2.
In various embodiments, the binding affinity of the PD-1, PD-L1, or PD-L2 targeting moiety for the full-length and/or mature forms and/or isoforms and/or splice variants and/or fragments and/or monomeric and/or dimeric forms and/or any other naturally occurring or synthetic analogs, variants, or mutants (including monomeric and/or dimeric forms) of human PD-1, PD-L1, or PD-L2 may be described by the equilibrium dissociation constant (KD). In various embodiments, the PD-1, PD-L1, or PD-L2 targeting moiety binds to the full-length and/or mature forms and/or isoforms and/or splice variants and/or fragments and/or any other naturally occurring or synthetic analogs, variants, or mutants (including monomeric and/or dimeric forms) of human PD-1, PD-L1, or PD-L2 with a KD of less than about 1 uM, about 900 nM, about 800 nM, about 700 nM, about 600 nM, about 500 nM, about 400 nM, about 300 nM, about 200 nM, about 100 nM, about 90 nM, about 80 nM, about 70 nM, about 60 nM, about 50 nM, about 40 nM, about 30 nM, about 20 nM, about 10 nM, or about 5 nM, or about 1 nM.
In some embodiments, the PD-1, PD-L1, and/or PD-L2 targeting moieties disclosed herein may comprise any combination of heavy chain, light chain, heavy chain variable region, light chain variable region, complementarity determining region (CDR), and framework region sequences that target PD-1, PD-L1, and/or PD-L2 as disclosed herein.
Additional antibodies, antibody derivatives or formats, peptides or polypeptides, or fusion proteins that selectively bind or target PD-1, PD-L1 and/or PD-L2 are disclosed in WO 2011/066389, US 2008/0025980, US 2013/0034559, U.S. Pat. No. 8,779,108, US 2014/0356353, U.S. Pat. No. 8,609,089, US 2010/028330, US 2012/0114649, WO 2010/027827, WO 2011/066342, U.S. Pat. No. 8,907,065, WO 2016/062722, WO 2009/101611, WO2010/027827, WO 2011/066342, WO 2007/005874, WO 2001/014556, US2011/0271358, WO 2010/036959, WO 2010/077634, U.S. Pat. No. 8,217,149, US 2012/0039906, WO 2012/145493, US 2011/0318373, U.S. Pat. No. 8,779,108, US 20140044738, WO 2009/089149, WO 2007/00587, WO 2016061142, WO 2016,02263, WO 2010/077634, and WO 2015/112900, the entire disclosures of which are hereby incorporated by reference.
In some embodiments, the targeting moiety binds a signal regulatory protein α-1 (SIRP1α). SIRP1α (also known as SIRPα) belongs to a family of cell immune receptors encompassing inhibitory (SIRPα), activating (SIRPβ), nonsignaling (SIRPγ) and soluble (SIRPδ) members. SIRP1α is expressed primarily on myeloid cells, including macrophages, granulocytes, myeloid dendritic cells (DCs), mast cells, and their precursors, including hematopoietic stem cells. SIRP1α acts as an inhibitory receptor that interacts with a broadly expressed transmembrane glycoprotein CD47 to regulate phagocytosis. In particular, the binding of SIRP1α on macrophages by CD47 expressed on target cells, generates an inhibitory signal that negatively regulates phagocytosis of the target cell.
In some embodiments, the SIRP1α targeting moiety specifically recognizes and binds SIRP1α on macrophages.
In some embodiments, the SIRP1α targeting moiety specifically recognizes and binds SIRP1α on monocytes.
In some embodiments, the SIRP1α targeting moiety specifically recognizes and binds SIRP1α on TAMs (Tumor Associated Macrophages).
In some embodiments, the SIRP1α targeting moiety specifically recognizes and binds SIRP1α on dendritic cells, including without limitation cDC2 and pDC
In some embodiments, the SIRP1α targeting moiety recognizes one or more linear epitopes present on SIRP1α. In some embodiments, a linear epitope refers to any continuous sequence of amino acids present on SIRP1α. In another embodiment, the recognition domain recognizes one or more conformational epitopes present on SIRP1α. As used herein, a conformation epitope refers to one or more sections of amino acids (which may be discontinuous) which form a three-dimensional surface with features and/or shapes and/or tertiary structures capable of being recognized by an antigen recognition domain.
In some embodiments, the SIRP1α targeting moiety binds to the full-length and/or mature forms and/or isoforms and/or splice variants and/or fragments and/or any other naturally occurring or synthetic analogs, variants, or mutants of SIRP1α. In an embodiment, the SIRP1α is human SIRP1α. In various embodiments, the SIRP1α targeting moiety may bind to any forms of the human SIRP1α, including monomeric, dimeric, heterodimeric, multimeric and associated forms. In an embodiment, the SIRP1α targeting moiety binds to the monomeric form of SIRP1α. In another embodiment, the SIRP1α targeting moiety binds to a dimeric form of SIRP1α.
In some embodiments, the SIRP1α targeting moiety comprises a recognition domain that recognizes one or more epitopes present on human SIRP1α. In an embodiment, the SIRP1α targeting moiety comprises a recognition domain that recognizes human SIRP1α with a signal peptide sequence. An exemplary human SIRP1α polypeptide with a signal peptide sequence is SEQ ID NO:1057.
In some embodiments, the SIRP1α targeting moiety comprises a recognition domain that recognizes human SIRP1α without a signal peptide sequence. An exemplary human SIRP1α polypeptide without a signal peptide sequence is SEQ ID NO: 1058.
In some embodiments, the SIRP1α targeting moiety comprises a recognition domain that recognizes a polypeptide encoding human SIRP1α isoform 2 (SEQ ID NO: 1059).
In some embodiment, the SIRP1α targeting moiety comprises a recognition domain that recognizes a polypeptide encoding human SIRP1α isoform 4 (SEQ ID NO:1060).
In some embodiments, the SIRP1α targeting moiety may be any protein-based agent capable of specific binding, such as an antibody or derivatives thereof.
In some embodiments, the SIRP1α targeting moiety comprises antibody derivatives or formats. In some embodiments, the SIRP1α targeting moiety comprises a single-domain antibody, a recombinant heavy-chain-only antibody (VHH), a single-chain antibody (scFv), a shark heavy-chain-only antibody (VNAR), a microprotein (cysteine knot protein, knottin), a DARPin; a Tetranectin; an Affibody; a Transbody; an Anticalin; an AdNectin; an alphabody; a bicyclic peptide; an Affilin; a Microbody; a peptide aptamer; an alterase; a plastic antibodies; a phylomer; a stradobody; a maxibody; an evibody; a fynomer, an armadillo repeat protein, a Kunitz domain, an avimer, an atrimer, a probody, an immunobody, a triomab, a troybody; a pepbody; a vaccibody, a UniBody; Affimers, a DuoBody, a Fv, a Fab, a Fab′, a F(ab′)2, a peptide mimetic molecule, or a small (e.g. synthetic or natural) molecule, e.g. without limitation, as described in US Patent Nos. or Patent Publication Nos. U.S. Pat. No. 7,417,130, US 2004/132094, U.S. Pat. No. 5,831,012, US 2004/023334, U.S. Pat. Nos. 7,250,297, 6,818,418, US 2004/209243, U.S. Pat. Nos. 7,838,629, 7,186,524, 6,004,746, 5,475,096, US 2004/146938, US 2004/157209, U.S. Pat. Nos. 6,994,982, 6,794,144, US 2010/239633, U.S. Pat. No. 7,803,907, US 2010/119446, and/or U.S. Pat. No. 7,166,697, the contents of which are hereby incorporated by reference in their entireties. See also, Storz MAbs. 2011 May-June; 3(3): 310-317.
In some embodiments, the SIRP1α targeting moiety comprises a single-domain antibody, such as VHH from, for example, an organism that produces VHH antibody such as a camelid, a shark, or a designed VHH. VHHs are antibody-derived therapeutic proteins that contain the unique structural and functional properties of naturally-occurring heavy-chain antibodies. VHH technology is based on fully functional antibodies from camelids that lack light chains. These heavy-chain antibodies contain a single variable domain (VHH) and two constant domains (CH2 and CH3).
In some embodiments, the SIRP1α targeting moiety comprises a VHH. In some embodiments, the VHH is a humanized VHH or camelized VHH.
In some embodiments, the VHH comprises a fully human VH domain, e.g. a HUMABODY (Crescendo Biologics, Cambridge, UK). In some embodiments, fully human VH domain, e.g. a HUMABODY is monovalent, bivalent, or trivalent. In some embodiments, the fully human VH domain, e.g. a HUMABODY is mono- or multi-specific such as monospecific, bispecific, or trispecific. Illustrative fully human VH domains, e.g. HUMABODIES are described in, for example, WO 2016/113555 and WO2016/113557, the entire disclosure of which is incorporated by reference.
For example, in some embodiments, the SIRP1α targeting moiety comprises one or more antibodies, antibody derivatives or formats, peptides or polypeptides, VHHs, or fusion proteins that selectively bind SIRP1α. In some embodiments, the SIRP1α targeting moiety comprises an antibody or derivative thereof that specifically binds to SIRP1α. In some embodiments, the SIRP1α targeting moiety comprises a camelid heavy chain antibody (VHH) that specifically binds to SIRP1α.
In some embodiments, the SIRP1α targeting moiety is a VHH comprising a single amino acid chain having four “framework regions” or FRs and three “complementary determining regions” or CDRs. As used herein, “framework region” or “FR” refers to a region in the variable domain which is located between the CDRs. As used herein, “complementary determining region” or “CDR” refers to variable regions in VHHs that contains the amino acid sequences capable of specifically binding to antigenic targets. In various embodiments, the present Fc-based chimeric protein complex comprises a VHH having a variable domain comprising at least one CDR1, CDR2, and/or CDR3 sequences.
In some embodiments, the SIRP1α targeting moiety may comprise any combination of heavy chain, light chain, heavy chain variable region, light chain variable region, complementarity determining region (CDR), and framework region sequences that is known to recognize and bind to SIRP1α.
In some embodiments, the present technology contemplates the use of any natural or synthetic analogs, mutants, variants, alleles, homologs and orthologs (herein collectively referred to as “analogs”) of the SIRP1α targeting moieties described herein. In various embodiments, the amino acid sequence of the SIRP1α targeting moiety further includes an amino acid analog, an amino acid derivative, or other non-classical amino acids.
In some embodiments, the SIRP1α targeting moiety comprises a sequence that is at least 60% identical to any one of the SIRP1α sequences disclosed herein. For example, in some embodiments, the SIRP1α targeting moiety comprises a sequence that is at least about 60%, at least about 61%, at least about 62%, at least about 63%, at least about 64%, at least about 65%, at least about 66%, at least about 67%, at least about 68%, at least about 69%, at least about 70%, at least about 71%, at least about 72%, at least about 73%, at least about 74%, at least about 75%, at least about 76%, at least about 77%, at least about 78%, at least about 79%, at least about 80%, at least about 81%, at least about 82%, at least about 83%, at least about 84%, at least about 85%, at least about 86%, at least about 87%, at least about 88%, at least about 89%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% identical to any of the SIRP1α sequences disclosed herein (e.g. about 60%, or about 61%, or about 62%, or about 63%, or about 64%, or about 65%, or about 66%, or about 67%, or about 68%, or about 69%, or about 70%, or about 71%, or about 72%, or about 73%, or about 74%, or about 75%, or about 76%, or about 77%, or about 78%, or about 79%, or about 80%, or about 81%, or about 82%, or about 83%, or about 84%, or about 85%, or about 86%, or about 87%, or about 88%, or about 89%, or about 90%, or about 91%, or about 92%, or about 93%, or about 94%, or about 95%, or about 96%, or about 97%, or about 98%, about 99% or about 100% sequence identity to any one of the SIRP1α sequences disclosed herein).
In some embodiments, the SIRP1α targeting moiety comprises an amino acid sequence having one or more amino acid mutations with respect to any targeting moiety sequence that is known to recognize and bind to SIRP1α. In various embodiments, the SIRP1α targeting moiety comprises an amino acid sequence having one, or two, or three, or four, or five, or six, or seen, or eight, or nine, or ten, or fifteen, twenty, thirty, forty, or fifty amino acid mutations with respect to any targeting moiety sequence that is known to recognize and bind to SIRP1α. In some embodiments, the one or more amino acid mutations may be independently selected from substitutions, insertions, deletions, and truncations.
In some embodiments, the amino acid mutations are amino acid substitutions, and may include conservative and/or non-conservative substitutions.
“Conservative substitutions” may be made, for instance, on the basis of similarity in polarity, charge, size, solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the amino acid residues involved. The 20 naturally occurring amino acids can be grouped into the following six standard amino acid groups: (1) hydrophobic: Met, Ala, Val, Leu, Ile; (2) neutral hydrophilic: Cys, Ser, Thr; Asn, Gln; (3) acidic: Asp, Glu; (4) basic: His, Lys, Arg; (5) residues that influence chain orientation: Gly, Pro; and (6) aromatic: Trp, Tyr, Phe.
As used herein, “conservative substitutions” are defined as exchanges of an amino acid by another amino acid listed within the same group of the six standard amino acid groups shown above. For example, the exchange of Asp by Glu retains one negative charge in the so modified polypeptide. In addition, glycine and proline may be substituted for one another based on their ability to disrupt α-helices.
As used herein, “non-conservative substitutions” are defined as exchanges of an amino acid by another amino acid listed in a different group of the six standard amino acid groups (1) to (6) shown above.
In various embodiments, the substitutions may also include non-classical amino acids. Exemplary non-classical amino acids include, but are not limited to, selenocysteine, pyrrolysine, N-formylmethionine β-alanine, GABA and δ-Aminolevulinic acid, 4-aminobenzoic acid (PABA), D-isomers of the common amino acids, 2,4-diaminobutyric acid, α-amino isobutyric acid, 4-aminobutyric acid, Abu, 2-amino butyric acid, γ-Abu, ε-Ahx, 6-amino hexanoic acid, Aib, 2-amino isobutyric acid, 3-amino propionic acid, ornithine, norleucine, norvaline, hydroxyproline, sarcosme, citrulline, homocitrulline, cysteic acid, t-butylglycine, t-butylalanine, phenylglycine, cyclohexylalanine, β-alanine, fluoro-amino acids, designer amino acids such as p methyl amino acids, C α-methyl amino acids, N α-methyl amino acids, and amino acid analogs in general.
In various embodiments, the amino acid mutation may be in the CDRs of the targeting moiety (e.g., the CDR1, CDR2 or CDR3 regions). In another embodiment, amino acid alteration may be in the framework regions (FRs) of the targeting moiety (e.g., the FR1, FR2, FR3, or FR4 regions).
Modification of the amino acid sequences may be achieved using any known technique in the art e.g., site-directed mutagenesis or PCR based mutagenesis. Such techniques are described, for example, in Sambrook et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Press, Plainview, N.Y., 1989 and Ausubel et al., Current Protocols in Molecular Biology, John Wiley & Sons, New York, N.Y., 1989.
In various embodiments, the mutations do not substantially reduce the SIRP1α targeting moiety's capability to specifically recognize and bind to SIRP1α. In various embodiments, the mutations do not substantially reduce the SIRP1α targeting moiety's ability to bind specifically to SIRP1α and without functionally modulating (e.g., partially or fully neutralizing) SIRP1α.
In various embodiments, the binding affinity of the SIRP1α targeting moiety for the full-length and/or mature forms and/or isoforms and/or splice variants and/or fragments and/or monomeric and/or dimeric forms and/or any other naturally occurring or synthetic analogs, variants, or mutants of SIRP1α may be described by the equilibrium dissociation constant (KD). In various embodiments, the SIRP1α targeting moiety that binds to the full-length and/or mature forms and/or isoforms and/or splice variants and/or fragments and/or any other naturally occurring or synthetic analogs, variants, or mutants (including monomeric and/or dimeric forms) of SIRP1α with a KD of less than about 1 uM, about 900 nM, about 800 nM, about 700 nM, about 600 nM, about 500 nM, about 400 nM, about 300 nM, about 200 nM, about 100 nM, about 90 nM, about 80 nM, about 70 nM, about 60 nM, about 50 nM, about 40 nM, about 30 nM, about 20 nM, about 10 nM, or about 5 nM, or about 1 nM.
In various embodiments, the SIRP1α targeting moiety binds but does not functionally modulate the antigen of interest, i.e., SIRP1α. For example, in some embodiments, the SIRP1α targeting moiety simply targets the antigen but does not substantially functionally modulate (e.g. substantially inhibit, reduce or neutralize) a biological effect that the antigen has. In various embodiments, the targeting moiety of the present Fc-based chimeric protein complex binds an epitope that is physically separate from an antigen site that is important for its biological activity (e.g. an antigen's active site).
In some embodiments, the SIRP1α targeting moiety binds but functionally modulates the antigen of interest, i.e., SIRP1α. For example, in some embodiments, the SIRP1α targeting moiety targets the antigen, i.e., SIRP1α, and functionally modulates (e.g. inhibit, reduce or neutralize) a biological effect that the antigen has. Such binding along with functional modulation may find use in various embodiments of the present invention including methods in which the present Fc-based chimeric protein complex is used to directly or indirectly recruit active immune cells to a site of need via an effector antigen.
In some embodiments, the SIRP1α targeting moiety may be used to directly or indirectly recruit macrophages via SIRP1α to a tumor cell in a method of reducing or eliminating a tumor (e.g. the present Fc-based chimeric protein complex may comprise a targeting moiety having an anti-SIRP1α antigen recognition domain and a targeting moiety having a recognition domain (e.g. antigen recognition domain) directed against a tumor antigen or receptor). Evidence indicates that tumor cells frequently upregulate CD47 which engages SIRP1α so as to evade phagocytosis. Accordingly, in various embodiments, it may be desirable to directly or indirectly recruit macrophages to tumor cells and functionally inhibit, reduce, or neutralize the inhibitory activity of SIRP1α thereby resulting in phagocytosis of the tumor cells by the macrophages. In various embodiments, the present Fc-based chimeric protein complex enhances phagocytosis of tumor cells or any other undesirable cells by macrophages.
SIRP alpha targeting moieties may comprise CDRs of antibodies as described in WO200140307A1, WO2013056352A1, WO2015138600A2, WO2017178653A2, WO2018057669A1, WO2018107058A1, WO2018190719A2, WO2019023347A1, the contents of which are hereby incorporated by reference in their entireties.
Fibroblast activation protein (FAP) is a 170 kDa melanoma membrane-bound gelatinase that belongs to the serine protease family. FAP is selectively expressed in reactive stromal fibroblasts of epithelial cancers, granulation tissue of healing wounds, and malignant cells of bone and soft tissue sarcomas. FAP is believed to be involved in the control of fibroblast growth or epithelial-mesenchymal interactions during development, tissue repair, and epithelial carcinogenesis.
In some embodiments, the targeting moiety is a FAP targeting moiety that is a protein-based agent capable of specific binding to FAP. In some embodiments, the FAP targeting moiety is a protein-based agent capable of specific binding to FAP without functional modulation (e.g., partial or full neutralization) of FAP.
In some embodiments, the fibroblast targeting moiety targets F2 fibroblasts. In some embodiments, the fibroblast targeting moiety directly or indirectly alters the microenvironment of the F2 fibroblasts. In some embodiments, the fibroblast binding agent directly or indirectly polarizes the F2 fibroblast into F1 fibroblast.
F2 fibroblast(s) refers to pro-tumorigenic (or tumor promoting) cancer-associated fibroblasts (CAFs) (a/k/a Type II-CAF). F1 fibroblast(s) refers to tumor suppressive CAFs (a/k/a Type I-CAF). Polarization refers to changing the phenotype of cell, e.g. changing a tumorigenic F2 fibroblast to a tumor suppressive F1 fibroblast.
In some embodiments, the FAP targeting moiety targets a FAP marker.
In some embodiments, the FAP targeting moiety comprises a binding agent having an antigen recognition domain that recognizes an epitope present on FAP. In some embodiments, the antigen-recognition domain recognizes one or more linear epitopes present on FAP. In some embodiments, a linear epitope refers to any continuous sequence of amino acids present on FAP. In another embodiment, the antigen-recognition domain recognizes one or more conformational epitopes present on FAP. As used herein, a conformation epitope refers to one or more sections of amino acids (which may be discontinuous), which form a three-dimensional surface with features and/or shapes and/or tertiary structures capable of being recognized by an antigen recognition domain.
In some embodiments, the FAP targeting moiety can bind to the full-length and/or mature forms and/or isoforms and/or splice variants and/or fragments and/or any other naturally occurring or synthetic analogs, variants, or mutants of human FAP. In some embodiments, the FAP targeting moiety can bind to any forms of the human FAP, including monomeric, dimeric, heterodimeric, multimeric and associated forms. In an embodiment, the FAP targeting moiety binds to the monomeric form of FAP. In another embodiment, the FAP targeting moiety binds to a dimeric form of FAP. In a further embodiment, the FAP targeting moiety binds to glycosylated form of FAP, which may be either monomeric or dimeric.
In an embodiment, the FAP targeting moiety comprises an antigen recognition domain that recognizes one or more epitopes present on human FAP. In some embodiments, the human FAP comprises the amino acid sequence of SEQ ID NO: 1061.
In some embodiments, the FAP targeting moiety is capable of specific binding. In some embodiments, the FAP targeting moiety comprises an antigen recognition domain such as an antibody or derivatives thereof.
In some embodiments, the FAP targeting moiety comprises an antibody derivative or format. In some embodiments, the FAP targeting moiety comprises a single-domain antibody, a recombinant heavy-chain-only antibody (VHH), a single-chain antibody (scFv), a shark heavy-chain-only antibody (VNAR), a microprotein (cysteine knot protein, knottin), a DARPin; a Tetranectin; an Affibody; a Transbody; an Anticalin; an AdNectin; an alphabody; a bicyclic peptide; an Affilin; an Affimer, a Microbody; an aptamer; an alterase; a plastic antibody; a phylomer; a stradobody; a maxibody; an evibody; a fynomer, an armadillo repeat protein, a Kunitz domain, an avimer, an atrimer, a probody, an immunobody, a triomab, a troybody; a pepbody; a vaccibody, a UniBody; a DuoBody, a Fv, a Fab, a Fab′, a F(ab′)2, a peptide mimetic molecule, or a small (e.g. synthetic or natural) molecule, e.g. without limitation, as described in US Patent Nos. or Patent Publication Nos. U.S. Pat. No. 7,417,130, US 2004/132094, U.S. Pat. No. 5,831,012, US 2004/023334, U.S. Pat. Nos. 7,250,297, 6,818,418, US 2004/209243, U.S. Pat. Nos. 7,838,629, 7,186,524, 6,004,746, 5,475,096, US 2004/146938, US 2004/157209, U.S. Pat. Nos. 6,994,982, 6,794,144, US 2010/239633, U.S. Pat. No. 7,803,907, US 2010/119446, and/or U.S. Pat. No. 7,166,697, the contents of which are hereby incorporated by reference in their entireties. See also, Storz MAbs. 2011 May-June; 3(3): 310-317.
In some embodiments, the FAP targeting moiety comprises a single-domain antibody, such as a VHH. The VHH may be derived from, for example, an organism that produces VHH antibody such as a camelid, a shark, or the VHH may be a designed VHH. VHHs are antibody-derived therapeutic proteins that contain the unique structural and functional properties of naturally-occurring heavy-chain antibodies. VHH technology is based on fully functional antibodies from camelids that lack light chains. These heavy-chain antibodies contain a single variable domain (VHH) and two constant domains (CH2 and CH3).
In an embodiment, the FAP targeting moiety comprises a VHH. In some embodiments, the VHH is a humanized VHH or camelized VHH.
In some embodiments, the VHH comprises a fully human VH domain, e.g. a HUMABODY (Crescendo Biologics, Cambridge, UK). In some embodiments, fully human VH domain, e.g. a HUMABODY is monovalent, bivalent, or trivalent. In some embodiments, the fully human VH domain, e.g. a HUMABODY is mono- or multi-specific such as monospecific, bispecific, or trispecific. Illustrative fully human VH domains, e.g. HUMABODIES are described in, for example, WO 2016/113555 and WO 2016/113557, the entire disclosures of which are incorporated by reference.
By way of example, but not by way of limitation, in some embodiments, a human VHH FAP targeting moiety comprises an amino acid sequence selected from the following sequences: 2HFA44 (SEQ ID NO: 1062); 2HFA52 (SEQ ID NO: 1063); 2HFA11 (SEQ ID NO: 1064); 2HFA4 (SEQ ID NO: 1065); 2HFA46 (SEQ ID NO: 1066); 2HFA10 (SEQ ID NO: 1067); 2HFA38 (SEQ ID NO: 1068); 2HFA20 (SEQ ID NO: 1069); 2HFA5 (SEQ ID NO: 1070); 2HFA19 (SEQ ID NO: 1071); 2HFA2 (SEQ ID NO: 1072); 2HFA41 (SEQ ID NO: 1073); 2HFA42 (SEQ ID NO: 1074); 2HFA12 (SEQ ID NO: 1075); 2HFA24 (SEQ ID NO: 1076); 2HFA67 (SEQ ID NO: 1077); 2HFA29 (SEQ ID NO: 1078); 2HFA51 (SEQ ID NO: 1079); 2HFA63 (SEQ ID NO: 1080); 2HFA62 (SEQ ID NO: 1081); 2HFA26 (SEQ ID NO: 1082); 2HFA25 (SEQ ID NO: 1083); 2HFA1 (SEQ ID NO: 1084); 2HFA3 (SEQ ID NO: 1085); 2HFA7 (SEQ ID NO: 1086); 2HFA31 (SEQ ID NO: 1087); 2HFA6 (SEQ ID NO: 1088); 2HFA53 (SEQ ID NO: 1089); 2HFA9 (SEQ ID NO: 1090); 2HFA73 (SEQ ID NO: 1091); 2HFA55 (SEQ ID NO: 1092); 2HFA71 (SEQ ID NO: 1093); 2HFA60 (SEQ ID NO: 1094); 2HFA65 (SEQ ID NO: 1095); 2HFA49 (SEQ ID NO: 1096); 2HFA57 (SEQ ID NO: 1097); 2HFA23 (SEQ ID NO: 1098); 2HFA36 (SEQ ID NO: 1099); 2HFA14 (SEQ ID NO: 1100); 2HFA43 (SEQ ID NO: 1101); and 2HFA50 (SEQ ID NO: 1102).
In some embodiments, the FAP targeting moiety comprises an amino acid sequence selected from SEQ ID NOs: 1062-1102 (provided above) without the terminal histidine tag sequence (i.e., HHHHHH; SEQ ID NO: 393).
In some embodiments, the FAP targeting moiety comprises an amino acid sequence selected from SEQ ID NOs: 1062-1102 (provided above) without the HA tag (i.e., YPYDVPDYGS; SEQ ID NO: 394).
In some embodiments, the FAP targeting moiety comprises an amino acid sequence selected from SEQ ID NOs: 1062-1102 (provided above) without the AAA linker (i.e., AAA).
In some embodiments, the FAP targeting moiety comprises an amino acid sequence selected from SEQ ID NOs: 1062-1102 (provided above) without the AAA linker, HA tag, and terminal histidine tag sequence (i.e., AAAYPYDVPDYGSHHHHHH; SEQ ID NO: 395).
By way of example, but not by way of limitation, in some embodiments, a human VHH FAP targeting moiety comprises an amino acid sequence selected from the following sequences: 2HFA44 (SEQ ID NO: 1103); 2HFA52 (SEQ ID NO: 1104); 2HFA11 (SEQ ID NO: 1105); 2HFA4 (SEQ ID NO: 1106); 2HFA46 (SEQ ID NO: 1107); 2HFA10 (SEQ ID NO: 1108); 2HFA38 (SEQ ID NO: 1109); 2HFA20 (SEQ ID NO: 1110); 2HFA5 (SEQ ID NO: 1111); 2HFA19 (SEQ ID NO: 1112); 2HFA2 (SEQ ID NO: 1113); 2HFA41 (SEQ ID NO: 1114); 2HFA42 (SEQ ID NO: 1115); 2HFA12 (SEQ ID NO: 1116); 2HFA24 (SEQ ID NO: 1117); 2HFA67 (SEQ ID NO: 1118); 2HFA29 (SEQ ID NO: 1119); 2HFA51 (SEQ ID NO: 1120); 2HFA63 (SEQ ID NO: 1121); 2HFA62 (SEQ ID NO: 1122); 2HFA26 (SEQ ID NO: 1123); 2HFA25 (SEQ ID NO: 1124); 2HFA1 (SEQ ID NO: 1125); 2HFA3 (SEQ ID NO: 1126); 2HFA7 (SEQ ID NO: 1127); 2HFA31 (SEQ ID NO: 1128); 2HFA6 (SEQ ID NO: 1129); 2HFA53 (SEQ ID NO: 1130); 2HFA9 (SEQ ID NO: 1131); 2HFA73 (SEQ ID NO: 1132); 2HFA55 (SEQ ID NO: 1133); 2HFA71 (SEQ ID NO: 1134); 2HFA60 (SEQ ID NO: 1135); 2HFA65 (SEQ ID NO: 1136); 2HFA49 (SEQ ID NO: 1137); 2HFA57 (SEQ ID NO: 1138); 2HFA23 (SEQ ID NO: 1139); 2HFA36 (SEQ ID NO: 1140); 2HFA14 (SEQ ID NO: 1141); 2HFA43 (SEQ ID NO: 1142); and 2HFA50 (SEQ ID NO: 1143).
In some embodiments, the FAP targeting moiety comprises a binding agent that is a VHH comprising a single amino acid chain having four “framework regions” or FRs and three “complementary determining regions” or CDRs. As used herein, “framework region” or “FR” refers to a region in the variable domain which is located between the CDRs. As used herein, “complementary determining region” or “CDR” refers to variable regions in VHHs that contains the amino acid sequences capable of specifically binding to antigenic targets.
In some embodiments, the FAP targeting moiety comprises a VHH having a variable domain comprising at least one CDR1, CDR2, and/or CDR3 sequences. In some embodiments, the FAP targeting moiety comprises a VHH having a variable region comprising at least one FR1, FR2, FR3, and FR4 sequences.
In some embodiments, a human FAP targeting moiety comprises a CDR1 sequence selected from SEQ ID Nos.: 1144-1172. In some embodiments, a human FAP targeting moiety comprises a CDR2 sequence selected from SEQ ID Nos.: 1173-1201. In some embodiments, a human FAP targeting moiety comprises a CDR3 sequence selected from SEQ ID Nos.: 1202-1232.
In some embodiments, the FAP targeting moiety has at least 90% identity with any FAP amino acid sequence selected disclosed herein. In some embodiments, the FAP targeting moiety has about 90%, about 91%, about 92%, about 93%, about 94%, about 95%, about 96%, about 97%, about 98%, about 99% identity with any FAP amino acid sequence selected disclosed herein.
In various illustrative embodiments, the murine FAP targeting moiety has at least 90% identity with the amino acid sequence of sibrotuzumab.
In some embodiments, the present technology contemplates the use of any natural or synthetic analogs, mutants, variants, alleles, homologs and orthologs (herein collectively referred to as “analogs”) of the FAP targeting moieties as described herein. In some embodiments, the amino acid sequence of the FAP targeting moiety further includes an amino acid analog, an amino acid derivative, or other non-classical amino acids.
In some embodiments, the FAP targeting moiety comprises a sequence that is at least 60% identical to any one of the FAP sequences disclosed herein. For example, the FAP targeting moiety may comprise a sequence that is at least about 60%, at least about 61%, at least about 62%, at least about 63%, at least about 64%, at least about 65%, at least about 66%, at least about 67%, at least about 68%, at least about 69%, at least about 70%, at least about 71%, at least about 72%, at least about 73%, at least about 74%, at least about 75%, at least about 76%, at least about 77%, at least about 78%, at least about 79%, at least about 80%, at least about 81%, at least about 82%, at least about 83%, at least about 84%, at least about 85%, at least about 86%, at least about 87%, at least about 88%, at least about 89%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% identical to any of the FAP sequences disclosed herein (e.g. about 60%, or about 61%, or about 62%, or about 63%, or about 64%, or about 65%, or about 66%, or about 67%, or about 68%, or about 69%, or about 70%, or about 71%, or about 72%, or about 73%, or about 74%, or about 75%, or about 76%, or about 77%, or about 78%, or about 79%, or about 80%, or about 81%, or about 82%, or about 83%, or about 84%, or about 85%, or about 86%, or about 87%, or about 88%, or about 89%, or about 90%, or about 91%, or about 92%, or about 93%, or about 94%, or about 95%, or about 96%, or about 97%, or about 98%, about 99% or about 100% sequence identity to any one of the FAP sequences disclosed herein).
In some embodiments, the FAP targeting moiety comprises an amino acid sequence having one or more amino acid mutations with respect to any one of the sequences disclosed herein. In some embodiments, the FAP targeting moiety comprises an amino acid sequence having one, or two, or three, or four, or five, or six, or seen, or eight, or nine, or ten, or fifteen, or twenty amino acid mutations with respect to any one of the sequences disclosed herein. In some embodiments, the one or more amino acid mutations may be independently selected from substitutions, insertions, deletions, and truncations.
In some embodiments, the amino acid mutations are amino acid substitutions, and may include conservative and/or non-conservative substitutions.
“Conservative substitutions” may be made, for instance, on the basis of similarity in polarity, charge, size, solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the amino acid residues involved. The 20 naturally occurring amino acids can be grouped into the following six standard amino acid groups: (1) hydrophobic: Met, Ala, Val, Leu, Ile; (2) neutral hydrophilic: Cys, Ser, Thr; Asn, Gln; (3) acidic: Asp, Glu; (4) basic: His, Lys, Arg; (5) residues that influence chain orientation: Gly, Pro; and (6) aromatic: Trp, Tyr, Phe.
As used herein, “conservative substitutions” are defined as exchanges of an amino acid by another amino acid listed within the same group of the six standard amino acid groups shown above. For example, the exchange of Asp by Glu retains one negative charge in the so modified polypeptide. In addition, glycine and proline may be substituted for one another based on their ability to disrupt α-helices.
As used herein, “non-conservative substitutions” are defined as exchanges of an amino acid by another amino acid listed in a different group of the six standard amino acid groups (1) to (6) shown above.
In some embodiments, the substitutions include non-classical amino acids. Illustrative non-classical amino acids include, but are not limited to, selenocysteine, pyrrolysine, N-formylmethionine β-alanine, GABA and 6-Aminolevulinic acid, 4-aminobenzoic acid (PABA), D-isomers of the common amino acids, 2,4-diaminobutyric acid, α-amino isobutyric acid, 4-aminobutyric acid, Abu, 2-amino butyric acid, γ-Abu, ε-Ahx, 6-amino hexanoic acid, Aib, 2-amino isobutyric acid, 3-amino propionic acid, ornithine, norleucine, norvaline, hydroxyproline, sarcosme, citrulline, homocitrulline, cysteic acid, t-butylglycine, t-butylalanine, phenylglycine, cyclohexylalanine, β-alanine, fluoro-amino acids, designer amino acids such as p methyl amino acids, C α-methyl amino acids, N α-methyl amino acids, and amino acid analogs in general.
In some embodiments, one or more amino acid mutations are in the CDRs of the FAP targeting moiety (e.g., the CDR1, CDR2 or CDR3 regions). In another embodiment, one or more amino acid mutations are in the framework regions (FRs) of the targeting moiety (e.g., the FR1, FR2, FR3, or FR4 regions).
Modification of the amino acid sequences may be achieved using any known technique in the art e.g., site-directed mutagenesis or PCR based mutagenesis. Such techniques are described, for example, in Sambrook et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Press, Plainview, N.Y., 1989 and Ausubel et al., Current Protocols in Molecular Biology, John Wiley & Sons, New York, N.Y., 1989.
In some embodiments, the mutations do not substantially reduce the FAP targeting moiety's capability to specifically bind to FAP. In some embodiments, the mutations do not substantially reduce the present FAP targeting moiety's capability to specifically bind to FAP and without functionally modulating (e.g., partially or fully neutralizing) FAP.
In some embodiments, the binding affinity of the FAP targeting moiety for the full-length and/or mature forms and/or isoforms and/or splice variants and/or fragments and/or monomeric and/or dimeric forms and/or any other naturally occurring or synthetic analogs, variants, or mutants (including monomeric and/or dimeric forms) of human FAP may be described by the equilibrium dissociation constant (KD). In some embodiments, the FAP targeting moiety binds to the full-length and/or mature forms and/or isoforms and/or splice variants and/or fragments and/or any other naturally occurring or synthetic analogs, variants, or mutants (including monomeric and/or dimeric forms) of human FAP with a KD of less than about 1 μM, about 900 nM, about 800 nM, about 700 nM, about 600 nM, about 500 nM, about 400 nM, about 300 nM, about 200 nM, about 100 nM, about 90 nM, about 80 nM, about 70 nM, about 60 nM, about 50 nM, about 40 nM, about 30 nM, about 20 nM, about 10 nM, or about 5 nM, or about 1 nM.
In some embodiments, the FAP targeting moiety binds but does not functionally modulate (e.g., partially or fully neutralize) the antigen of interest, i.e., FAP. For instance, in some embodiments, the FAP targeting moiety simply targets the antigen but does not substantially functionally modulate (e.g. partially or fully inhibit, reduce or neutralize) a biological effect that the antigen has. In some embodiments, the FAP targeting moiety binds an epitope that is physically separate from an antigen site that is important for its biological activity (e.g. an antigen's active site).
Such binding without significant function modulation finds use in some embodiments of the present technology, including methods in which the FAP targeting moiety is used to directly or indirectly recruit active immune cells to a site of need via an effector antigen. For example, in some embodiments, the FAP targeting moiety can be used to directly or indirectly recruit dendritic cells via FAP to a tumor cell in a method of reducing or eliminating a tumor (e.g. the FAP targeting moiety may comprise a binding agent having an anti-FAP antigen recognition domain and a targeting moiety having a recognition domain (e.g. antigen recognition domain) directed against a tumor antigen or receptor). In such embodiments, it is desirable to directly or indirectly recruit dendritic cells but not to functionally modulate or neutralize the FAP activity. In these embodiments, FAP signaling is an important piece of the tumor reducing or eliminating effect.
In some embodiments, the FAP targeting moiety enhances antigen-presentation by dendritic cells. For example, in some embodiments, the FAP targeting moiety directly or indirectly recruits dendritic cells via FAP to a tumor cell, where tumor antigens are subsequently endocytosed and presented on the dendritic cell for induction of potent humoral and cytotoxic T cell responses.
In other embodiments (for example, related to treating cancer, autoimmune, or neurodegenerative disease), the FAP targeting moiety comprises a binding agent that binds and neutralizes the antigen of interest, i.e., FAP. For instance, in some embodiments, the present methods may inhibit or reduce FAP signaling or expression, e.g. to cause a reduction in an immune response.
In some embodiments, the targeting moiety is an XCR1 targeting moiety that is capable of specific binding to XCR1. In various embodiments, the XCR1 targeting moiety is a protein-based agent capable of specific binding to XCR1 without functional modulation (e.g., partial or full neutralization) of XCR1. XCR1 is a chemokine receptor belonging to the G protein-coupled receptor superfamily. The family members are characterized by the presence of 7 transmembrane domains and numerous conserved amino acids. XCR1 is most closely related to RBS11 and the MIP1-alpha/RANTES receptor. XCR1 transduces a signal by increasing the intracellular calcium ions level. XCR1 is the receptor for XCL1 and XCL2 (or lymphotactin-1 and -2).
In some embodiments, the targeting moiety of the present invention is XCL1 or XCL2 wherein the targeting moiety can be monomeric or multimeric. XCL1 or XCL2 is an NK cell/CD8+ T cell product that chemoattracts neutrophils. It exists as both a monomer and homodimer, with the monomer serving as a ligand for XCR1 and the dimer as a “ligand” for HSPG.
In some embodiments, the Fc-based chimeric proteins of the present invention include a first Fc chain that includes a first monomer of XCL1 or XCL2 and a second Fc chain that includes a second monomer of XCL1 or XCL2 wherein upon association of the Fc chains, the XCL1 or XCL2 monomers reconstitute to form a functional XCL1 or XCL2.
In some embodiments, the XCR1 targeting moiety comprises an antigen recognition domain that recognizes an epitope present on XCR1. In some embodiments, the antigen-recognition domain recognizes one or more linear epitopes present on XCR1. In some embodiment, a linear epitope refers to any continuous sequence of amino acids present on XCR1. In another embodiment, the antigen-recognition domain recognizes one or more conformational epitopes present on XCR1. As used herein, a conformation epitope refers to one or more sections of amino acids (which may be discontinuous) which form a three-dimensional surface with features and/or shapes and/or tertiary structures capable of being recognized by an antigen recognition domain.
In some embodiments, the XCR1 targeting moiety can bind to the full-length and/or mature forms and/or isoforms and/or splice variants and/or fragments and/or any other naturally occurring or synthetic analogs, variants, or mutants of human XCR1. In various embodiments, the XCR1 targeting moiety can bind to any forms of the human XCR1, including monomeric, dimeric, heterodimeric, multimeric and associated forms. In an embodiment, the Fc-based chimeric protein complex binds to the monomeric form of XCR1. In another embodiment, the XCR1 targeting moiety binds to a dimeric form of XCR1. In a further embodiment, the XCR1 targeting moiety binds to glycosylated form of XCR1, which may be either monomeric or dimeric.
In an embodiment, the XCR1 targeting moiety comprises an antigen recognition domain that recognizes one or more epitopes present on human XCR1. In an embodiment, the human XCR1 comprises the amino acid sequence of SEQ ID NO: 1233.
In various embodiments, the XCR1 targeting moiety is capable of specific binding. In various embodiments, the XCR1 targeting moiety comprises an antigen recognition domain such as an antibody or derivatives thereof.
In some embodiments, the XCR1 targeting moiety comprises an antibody derivative or format. In some embodiments, the XCR1 targeting moiety comprises a single-domain antibody, a recombinant heavy-chain-only antibody (VHH), a single-chain antibody (scFv), a shark heavy-chain-only antibody (VNAR), a microprotein (cysteine knot protein, knottin), a DARPin; a Tetranectin; an Affibody; an Affimer, a Transbody; an Anticalin; an AdNectin; an alphabody; a bicyclic peptide; an Affilin; a Microbody; a peptide aptamer; an alterase; a plastic antibody; a phylomer; a stradobody; a maxibody; an evibody; a fynomer, an armadillo repeat protein, a Kunitz domain, an avimer, an atrimer, a probody, an immunobody, a triomab, a troybody; a pepbody; a vaccibody, a UniBody; a DuoBody, a Fv, a Fab, a Fab′, a F(ab′)2, a peptide mimetic molecule, or a small (e.g. synthetic or natural) molecule, e.g. without limitation, as described in US Patent Nos. or Patent Publication Nos. U.S. Pat. No. 7,417,130, US 2004/132094, U.S. Pat. No. 5,831,012, US 2004/023334, U.S. Pat. Nos. 7,250,297, 6,818,418, US 2004/209243, U.S. Pat. Nos. 7,838,629, 7,186,524, 6,004,746, 5,475,096, US 2004/146938, US 2004/157209, U.S. Pat. Nos. 6,994,982, 6,794,144, US 2010/239633, U.S. Pat. No. 7,803,907, US 2010/119446, and/or U.S. Pat. No. 7,166,697, the contents of which are hereby incorporated by reference in their entireties. See also, Storz MAbs. 2011 May-June; 3(3): 310-317.
In some embodiments, the XCR1 targeting moiety comprises a single-domain antibody, such as a VHH. The VHH may be derived from, for example, an organism that produces VHH antibody such as a camelid, a shark, or the VHH may be a designed VHH. VHHs are antibody-derived therapeutic proteins that contain the unique structural and functional properties of naturally-occurring heavy-chain antibodies. VHH technology is based on fully functional antibodies from camelids that lack light chains. These heavy-chain antibodies contain a single variable domain (VHH) and two constant domains (CH2 and CH3). In an embodiment, the Fc-based chimeric protein complex comprises a VHH.
In some embodiments, the XCR1 targeting moiety comprises a VHH comprising a single amino acid chain having four “framework regions” or FRs and three “complementary determining regions” or CDRs. As used herein, “framework region” or “FR” refers to a region in the variable domain which is located between the CDRs. As used herein, “complementary determining region” or “CDR” refers to variable regions in VHHs that contains the amino acid sequences capable of specifically binding to antigenic targets.
In some embodiments, the XCR1 targeting moiety comprises a VHH having a variable domain comprising at least one CDR1, CDR2, and/or CDR3 sequences. In various embodiments, the XCR1 targeting moiety comprises a VHH having a variable region comprising at least one FR1, FR2, FR3, and FR4 sequences.
In some embodiments, the present invention contemplates the use of any natural or synthetic analogs, mutants, variants, alleles, homologs and orthologs (herein collectively referred to as “analogs”) of the XCR1 targeting moieties described herein. In various embodiments, the amino acid sequence of the XCR1 targeting moiety further includes an amino acid analog, an amino acid derivative, or other non-classical amino acids.
In some embodiments, the XCR1 targeting moiety comprises a sequence that is at least 60% identical to any one of the XCR1sequences disclosed herein. For example, the XCR1 targeting moiety may comprise a sequence that is at least about 60%, at least about 61%, at least about 62%, at least about 63%, at least about 64%, at least about 65%, at least about 66%, at least about 67%, at least about 68%, at least about 69%, at least about 70%, at least about 71%, at least about 72%, at least about 73%, at least about 74%, at least about 75%, at least about 76%, at least about 77%, at least about 78%, at least about 79%, at least about 80%, at least about 81%, at least about 82%, at least about 83%, at least about 84%, at least about 85%, at least about 86%, at least about 87%, at least about 88%, at least about 89%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% identical to any of the XCR1 sequences disclosed herein (e.g. about 60%, or about 61%, or about 62%, or about 63%, or about 64%, or about 65%, or about 66%, or about 67%, or about 68%, or about 69%, or about 70%, or about 71%, or about 72%, or about 73%, or about 74%, or about 75%, or about 76%, or about 77%, or about 78%, or about 79%, or about 80%, or about 81%, or about 82%, or about 83%, or about 84%, or about 85%, or about 86%, or about 87%, or about 88%, or about 89%, or about 90%, or about 91%, or about 92%, or about 93%, or about 94%, or about 95%, or about 96%, or about 97%, or about 98%, about 99% or about 100% sequence identity to any one of the XCR1 sequences disclosed herein).
In some embodiments, the XCR1 targeting moiety comprises an amino acid sequence having one or more amino acid mutations with respect to any one of the sequences disclosed herein. In various embodiments, the XCR1 targeting moiety comprises an amino acid sequence having one, or two, or three, or four, or five, or six, or seen, or eight, or nine, or ten, or fifteen, or twenty amino acid mutations with respect to any one of the sequences disclosed herein. In some embodiments, the one or more amino acid mutations may be independently selected from substitutions, insertions, deletions, and truncations.
In some embodiments, the amino acid mutations are amino acid substitutions, and may include conservative and/or non-conservative substitutions.
“Conservative substitutions” may be made, for instance, on the basis of similarity in polarity, charge, size, solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the amino acid residues involved. The 20 naturally occurring amino acids can be grouped into the following six standard amino acid groups: (1) hydrophobic: Met, Ala, Val, Leu, Ile; (2) neutral hydrophilic: Cys, Ser, Thr; Asn, Gln; (3) acidic: Asp, Glu; (4) basic: His, Lys, Arg; (5) residues that influence chain orientation: Gly, Pro; and (6) aromatic: Trp, Tyr, Phe.
As used herein, “conservative substitutions” are defined as exchanges of an amino acid by another amino acid listed within the same group of the six standard amino acid groups shown above. For example, the exchange of Asp by Glu retains one negative charge in the so modified polypeptide. In addition, glycine and proline may be substituted for one another based on their ability to disrupt α-helices.
As used herein, “non-conservative substitutions” are defined as exchanges of an amino acid by another amino acid listed in a different group of the six standard amino acid groups (1) to (6) shown above.
In various embodiments, the substitutions may also include non-classical amino acids. Exemplary non-classical amino acids include, but are not limited to, selenocysteine, pyrrolysine, N-formylmethionine β-alanine, GABA and 6-Aminolevulinic acid, 4-aminobenzoic acid (PABA), D-isomers of the common amino acids, 2,4-diaminobutyric acid, α-amino isobutyric acid, 4-aminobutyric acid, Abu, 2-amino butyric acid, γ-Abu, ε-Ahx, 6-amino hexanoic acid, Aib, 2-amino isobutyric acid, 3-amino propionic acid, ornithine, norleucine, norvaline, hydroxyproline, sarcosme, citrulline, homocitrulline, cysteic acid, t-butylglycine, t-butylalanine, phenylglycine, cyclohexylalanine, β-alanine, fluoro-amino acids, designer amino acids such as p methyl amino acids, C α-methyl amino acids, N α-methyl amino acids, and amino acid analogs in general.
In various embodiments, the amino acid mutation may be in the CDRs of the targeting moiety (e.g., the CDR1, CDR2 or CDR3 regions). In another embodiment, amino acid alteration may be in the framework regions (FRs) of the targeting moiety (e.g., the FR1, FR2, FR3, or FR4 regions).
Modification of the amino acid sequences may be achieved using any known technique in the art e.g., site-directed mutagenesis or PCR based mutagenesis. Such techniques are described, for example, in Sambrook et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Press, Plainview, N.Y., 1989 and Ausubel et al., Current Protocols in Molecular Biology, John Wiley & Sons, New York, N.Y., 1989.
In various embodiments, the mutations do not substantially reduce the XCR1 targeting moiety's capability to specifically bind to XCR1. In various embodiments, the mutations do not substantially reduce the XCR1 targeting moiety's capability to specifically bind to XCR1 and without functionally modulating (e.g., partially or fully neutralizing) XCR1.
In various embodiments, the binding affinity of the XCR1 targeting moiety for the full-length and/or mature forms and/or isoforms and/or splice variants and/or fragments and/or monomeric and/or dimeric forms and/or any other naturally occurring or synthetic analogs, variants, or mutants (including monomeric and/or dimeric forms) of human XCR1 may be described by the equilibrium dissociation constant (KD). In various embodiments, the Fc-based chimeric protein complex comprises a targeting moiety that binds to the full-length and/or mature forms and/or isoforms and/or splice variants and/or fragments and/or any other naturally occurring or synthetic analogs, variants, or mutants (including monomeric and/or dimeric forms) of human XCR1 with a KD of less than about 1 uM, about 900 nM, about 800 nM, about 700 nM, about 600 nM, about 500 nM, about 400 nM, about 300 nM, about 200 nM, about 100 nM, about 90 nM, about 80 nM, about 70 nM, about 60 nM, about 50 nM, about 40 nM, about 30 nM, about 20 nM, about 10 nM, or about 5 nM, or about 1 nM.
In various embodiments, the XCR1 targeting moiety binds but does not functionally modulate (e.g., partially or fully neutralize) the antigen of interest, i.e., XCR1. For instance, in various embodiments, the XCR1 targeting moiety simply targets the antigen but does not substantially functionally modulate (e.g. partially or fully inhibit, reduce or neutralize) a biological effect that the antigen has. In various embodiments, the XCR1 targeting moiety binds an epitope that is physically separate from an antigen site that is important for its biological activity (e.g. an antigen's active site).
Such binding without significant function modulation finds use in various embodiments of the present invention, including methods in which the XCR1 targeting moiety is used to directly or indirectly recruit active immune cells to a site of need via an effector antigen. For example, in various embodiments, the XCR1 targeting moiety can be used to directly or indirectly recruit dendritic cells via XCR1 to a tumor cell in a method of reducing or eliminating a tumor (e.g. the XCR1 targeting moiety can comprise a binding agent having an anti-XCR1 antigen recognition domain and a targeting moiety having a recognition domain (e.g. antigen recognition domain) directed against a tumor antigen or receptor). In such embodiments, it is desirable to directly or indirectly recruit dendritic cells but not to functionally modulate or neutralize the XCR1 activity. In these embodiments, XCR1 signaling is an important piece of the tumor reducing or eliminating effect.
In some embodiments, the XCR1 targeting moiety enhances antigen-presentation by dendritic cells. For example, in various embodiments, the XCR1 targeting moiety directly or indirectly recruits dendritic cells via XCR1 to a tumor cell, where tumor antigens are subsequently endocytosed and presented on the dendritic cell for induction of potent humoral and cytotoxic T cell responses.
In other embodiments (for example, related to treating autoimmune or neurodegenerative disease), the XCR1 targeting moiety comprises a binding agent that binds and neutralizes the antigen of interest, i.e., XCR1. For instance, in various embodiments, the present methods may inhibit or reduce XCR1 signaling or expression, e.g. to cause a reduction in an immune response.
In some embodiments, the targeting moiety of the present invention targets FMS-like tyrosine kinase 3 (FLT3). FMS-like tyrosine kinase 3 (FLT3) is expressed on the surface of many hematopoietic progenitor cells. Signaling of FLT3 is important for the normal development of hematopoietic stem cells and progenitor cells. The FLT3 gene is one of the most frequently mutated genes in acute myeloid leukemia (AML). Further, FMS-like tyrosine kinase 3 ligand (FLT3L) agents find use in priming the immune system, e.g., altering the number of dendritic cells.
In some embodiments, the present invention relates to an Fc-based chimeric protein complex comprising a targeting moiety that comprises a recognition domain which specifically binds to antigen or receptor of interest, such as FMS-like tyrosine kinase 3 (FLT3).
In some embodiments, the targeting moiety comprises FLT3L or a portion thereof. In other embodiments, the targeting moiety comprises the extracellular domain of FLT3L, or a portion thereof.
In some embodiments, the Fc-based chimeric proteins of the present invention include a first Fc chain that includes a first monomer of FLT3L and a second Fc chain that includes a second monomer of FLT3L wherein upon association of the Fc chains, the FLT3L monomers reconstitute to form a functional FLT3L.
In some embodiments, the targeting moiety comprises an amino acid sequence having at least 90% identity with SEQ ID NO: 1571, or an amino acid sequence having at least 95% identity with SEQ ID NO: 1572.
MTVLAPAWSPTTYLLLLLLLSSGLSGTQDCSFQHSPISSDFAVKIRELSD
AAWCLHWQRTRRRTPRPGEQVPPVPSPQDLLLVEH
In some embodiments, the targeting moiety comprises an amino acid sequence having at least 90% identity with any one of SEQ ID NOs: 1572-1575, or an amino acid sequence having at least 95% identity with any one of SEQ ID NOs: 1572-1575.
In some embodiments, the targeting moiety's target (e.g. antigen or receptor) is part of a non-cellular structure. In some embodiments, the antigen or receptor is not an integral component of an intact cell or cellular structure. In some embodiments, the antigen or receptor is an extracellular antigen or receptor. In some embodiments, the target is a non-proteinaceous, non-cellular marker, including, without limitation, nucleic acids, inclusive of DNA or RNA, such as, for example, DNA released from necrotic tumor cells or extracellular deposits such as cholesterol.
In some embodiments, the target of interest (e.g. antigen, receptor) is part of the non-cellular component of the stroma or the extracellular matrix (ECM) or the markers associated therewith. As used herein, stroma refers to the connective and supportive framework of a tissue or organ. Stroma may include a compilation of cells such as fibroblasts/myofibroblasts, glial, epithelia, fat, immune, vascular, smooth muscle, and immune cells along with the extracellular matrix (ECM) and extracellular molecules. In various embodiments, the target (e.g. antigen, receptor) of interest is part of the non-cellular component of the stroma such as the extracellular matrix and extracellular molecules. As used herein, the ECM refers to the non-cellular components present within all tissues and organs. The ECM is composed of a large collection of biochemically distinct components including, without limitation, proteins, glycoproteins, proteoglycans, and polysaccharides. These components of the ECM are usually produced by adjacent cells and secreted into the ECM via exocytosis. Once secreted, the ECM components often aggregate to form a complex network of macromolecules. In various embodiments, the Fc-based chimeric protein complex of the invention comprises a targeting moiety that recognizes a target (e.g., an antigen or receptor or non-proteinaceous molecule) located on any component of the ECM. Illustrative components of the ECM include, without limitation, the proteoglycans, the non-proteoglycan polysaccharides, fibers, and other ECM proteins or ECM non-proteins, e.g. polysaccharides and/or lipids, or ECM associated molecules (e.g. proteins or non-proteins, e.g. polysaccharides, nucleic acids and/or lipids).
In some embodiments, the targeting moiety recognizes a target (e.g. antigen, receptor) on ECM proteoglycans. Proteoglycans are glycosylated proteins. The basic proteoglycan unit includes a core protein with one or more covalently attached glycosaminoglycan (GAG) chains. Proteoglycans have a net negative charge that attracts positively charged sodium ions (Na+), which attracts water molecules via osmosis, keeping the ECM and resident cells hydrated. Proteoglycans may also help to trap and store growth factors within the ECM. Illustrative proteoglycans that may be targeted by the Fc-based chimeric protein complexes of the invention include, but are not limited to, heparan sulfate, chondroitin sulfate, and keratan sulfate. In an embodiment, the targeting moiety recognizes a target (e.g. antigen, receptor) on non-proteoglycan polysaccharides such as hyaluronic acid.
In some embodiments, the targeting moiety recognizes a target (e.g. antigen, receptor) on ECM fibers. ECM fibers include collagen fibers and elastin fibers. In some embodiments, the targeting moiety recognizes one or more epitopes on collagens or collagen fibers. Collagens are the most abundant proteins in the ECM. Collagens are present in the ECM as fibrillar proteins and provide structural support to resident cells. In one or more embodiments, the targeting moiety recognizes and binds to various types of collagens present within the ECM including, without limitation, fibrillar collagens (types I, II, III, V, XI), facit collagens (types IX, XII, XIV), short chain collagens (types VIII, X), basement membrane collagens (type IV), and/or collagen types VI, VII, or XIII. Elastin fibers provide elasticity to tissues, allowing them to stretch when needed and then return to their original state. In some embodiments, the target moiety recognizes one or more epitopes on elastins or elastin fibers.
In some embodiments, the targeting moiety recognizes one or more ECM proteins including, but not limited to, a tenascin, a fibronectin, a fibrin, a laminin, or a nidogen/entactin.
In an embodiment, the targeting moiety recognizes and binds to tenascin. The tenascin (TN) family of glycoproteins includes at least four members, tenascin-C, tenascin-R, tenascin-X, and tenascin W. The primary structures of tenascin proteins include several common motifs ordered in the same consecutive sequence: amino-terminal heptad repeats, epidermal growth factor (EGF)-like repeats, fibronectin type Ill domain repeats, and a carboxyl-terminal fibrinogen-like globular domain. Each protein member is associated with typical variations in the number and nature of EGF-like and fibronectin type Ill repeats. Isoform variants also exist particularly with respect to tenascin-C. Over 27 splice variants and/or isoforms of tenascin-C are known. In a particular embodiment, the targeting moiety recognizes and binds to tenascin-CA1. Similarly, tenascin-R also has various splice variants and isoforms. Tenascin-R usually exists as dimers or trimers. Tenascin-X is the largest member of the tenascin family and is known to exist as trimers. Tenascin-W exists as trimers. In some embodiments, the targeting moiety recognizes one or more epitopes on a tenascin protein. In some embodiments, the targeting moiety recognizes the monomeric and/or the dimeric and/or the trimeric and/or the hexameric forms of a tenascin protein.
In some embodiments, the targeting moiety recognizes tenascin-CA1.
In some embodiments, the targeting moieties recognize and bind to fibronectin. Fibronectins are glycoproteins that connect cells with collagen fibers in the ECM, allowing cells to move through the ECM. Upon binding to integrins, fibronectins unfolds to form functional dimers. In some embodiments, the targeting moiety recognizes the monomeric and/or the dimeric forms of fibronectin. In some embodiments, the targeting moiety recognizes one or more epitopes on fibronectin. In illustrative embodiments, the targeting moiety recognizes fibronectin extracellular domain A (EDA) or fibronectin extracellular domain B (EDB). Elevated levels of EDA are associated with various diseases and disorders including psoriasis, rheumatoid arthritis, diabetes, and cancer. In some embodiments, the targeting moiety recognizes fibronectin that contains the EDA isoform and may be utilized to target the Fc-based chimeric protein complex to diseased cells including cancer cells. In some embodiments, the targeting moiety recognizes fibronectin that contains the EDB isoform. In various embodiments, such targeting moieties may be utilized to target the Fc-based chimeric protein complex to tumor cells including the tumor neovasculature.
In an embodiment, the targeting moiety recognizes and binds to fibrin. Fibrin is another protein substance often found in the matrix network of the ECM. Fibrin is formed by the action of the protease thrombin on fibrinogen which causes the fibrin to polymerize. In some embodiments, the targeting moiety recognizes one or more epitopes on fibrin. In some embodiments, the targeting moiety recognizes the monomeric as well as the polymerized forms of fibrin.
In an embodiment, the targeting moiety recognizes and binds to laminin. Laminin is a major component of the basal lamina, which is a protein network foundation for cells and organs. Laminins are heterotrimeric proteins that contain an α-chain, a μ-chain, and a γ-chain. In some embodiments, the targeting moiety recognizes one or more epitopes on laminin. In some embodiments, the targeting moiety recognizes the monomeric, the dimeric as well as the trimeric forms of laminin.
In an embodiment, the targeting moiety recognizes and binds to a nidogen or entactin. Nidogens/entactins are a family of highly conserved, sulfated glycoproteins. They make up the major structural component of the basement membranes and function to link laminin and collagen IV networks in basement membranes. Members of this family include nidogen-1 and nidogen-2. In various embodiments, the targeting moiety recognizes an epitope on nidogen-1 and/or nidogen-2.
In various embodiments, the targeting moiety comprises an antigen recognition domain that recognizes an epitope present on any of the targets described herein. In an embodiment, the antigen-recognition domain recognizes one or more linear epitopes present on the protein. As used herein, a linear epitope refers to any continuous sequence of amino acids present on the protein. In another embodiment, the antigen-recognition domain recognizes one or more conformational epitopes present on the protein. As used herein, a conformation epitope refers to one or more sections of amino acids (which may be discontinuous) which form a three-dimensional surface with features and/or shapes and/or tertiary structures capable of being recognized by an antigen recognition domain.
In various embodiments, the targeting moiety may bind to the full-length and/or mature forms and/or isoforms and/or splice variants and/or fragments and/or any other naturally occurring or synthetic analogs, variants, or mutants of any of the targets described herein. In various embodiments, the targeting moiety may bind to any forms of the proteins described herein, including monomeric, dimeric, trimeric, tetrameric, heterodimeric, multimeric and associated forms. In various embodiments, the targeting moiety may bind to any post-translationally modified forms of the proteins described herein, such as glycosylated and/or phosphorylated forms.
In various embodiments, the targeting moiety comprises an antigen recognition domain that recognizes extracellular molecules such as DNA. In some embodiments, the targeting moiety comprises an antigen recognition domain that recognizes DNA. In an embodiment, the DNA is shed into the extracellular space from necrotic or apoptotic tumor cells or other diseased cells.
In some embodiments, the targeting moiety comprises an antigen recognition domain that recognizes one or more non-cellular structures associated with atherosclerotic plaques. Two types of atherosclerotic plaques are known. The fibro-lipid (fibro-fatty) plaque is characterized by an accumulation of lipid-laden cells underneath the intima of the arteries. Beneath the endothelium there is a fibrous cap covering the atheromatous core of the plaque. The core includes lipid-laden cells (macrophages and smooth muscle cells) with elevated tissue cholesterol and cholesterol ester content, fibrin, proteoglycans, collagen, elastin, and cellular debris. In advanced plaques, the central core of the plaque usually contains extracellular cholesterol deposits (released from dead cells), which form areas of cholesterol crystals with empty, needle-like clefts. At the periphery of the plaque are younger foamy cells and capillaries. A fibrous plaque is also localized under the intima, within the wall of the artery resulting in thickening and expansion of the wall and, sometimes, spotty localized narrowing of the lumen with some atrophy of the muscular layer. The fibrous plaque contains collagen fibers (eosinophilic), precipitates of calcium (hematoxylinophilic) and lipid-laden cells. In some embodiments, the targeting moiety recognizes and binds to one or more of the non-cellular components of these plaques such as the fibrin, proteoglycans, collagen, elastin, cellular debris, and calcium or other mineral deposits or precipitates. In some embodiments, the cellular debris is a nucleic acid, e.g. DNA or RNA, released from dead cells.
In various embodiments, the targeting moiety comprises an antigen recognition domain that recognizes one or more non-cellular structures found in the brain plaques associated with neurodegenerative diseases. In some embodiments, the targeting moiety recognizes and binds to one or more non-cellular structures located in the amyloid plaques found in the brains of patients with Alzheimer's disease. For example, the targeting moiety may recognize and bind to the peptide amyloid beta, which is a major component of the amyloid plaques. In some embodiments, the targeting moiety recognizes and binds to one or more non-cellular structures located in the brains plaques found in patients with Huntington's disease. In various embodiments, the targeting moiety recognizes and binds to one or more non-cellular structures found in plaques associated with other neurodegenerative or musculoskeletal diseases such as Lewy body dementia and inclusion body myositis
In some embodiments, the targeting moiety is a protein-based agent capable of specific binding, such as an antibody or derivatives thereof.
In some embodiments, the present Fc-based chimeric protein complex has one or more targeting moieties directed against CD3 expressed on T cells. In some embodiments, the Fc-based chimeric protein complex has one or more targeting moieties which selectively bind a CD3 polypeptide. In some embodiments, the Fc-based chimeric protein complex comprises one or more antibodies, antibody derivatives or formats, peptides or polypeptides, or fusion proteins that selectively bind a CD3 polypeptide.
In some embodiments, the targeting moiety comprises the anti-CD3 antibody muromonab-CD3 (aka Orthoclone OKT3), or fragments thereof. Muromonab-CD3 is disclosed in U.S. Pat. No. 4,361,549 and Wilde et al. (1996) 51:865-894, the entire disclosures of which are hereby incorporated by reference. In illustrative embodiments, muromonab-CD3 or an antigen-binding fragment thereof for use in the methods provided herein comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 1234; and/or a light chain comprising the amino acid sequence of SEQ ID NO: 1235.
In some embodiments, the targeting moiety comprises the anti-CD3 antibody otelixizumab, or fragments thereof. Otelixizumab is disclosed in U.S. Patent Publication No. 20160000916 and Chatenoud et al. (2012) 9:372-381, the entire disclosures of which are hereby incorporated by reference. In illustrative embodiments, otelixizumab or an antigen-binding fragment thereof for use in the methods provided herein comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 1236; and/or a light chain comprising the amino acid sequence of SEQ ID NO: 1237.
In some embodiments, the targeting moiety comprises the anti-CD3 antibody teplizumab (AKA MGA031 and hOKT3γ1(Ala-Ala)), or fragments thereof. Teplizumab is disclosed in Chatenoud et al. (2012) 9:372-381, the entire disclosures of which are hereby incorporated by reference. In illustrative embodiments, teplizumab or an antigen-binding fragment thereof for use in the methods provided herein comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 1238; and/or a light chain comprising the amino acid sequence of SEQ ID NO: 1239.
In some embodiments, the targeting moiety comprises the anti-CD3 antibody visilizumab (AKA Nuvion®; HuM291), or fragments thereof. Visilizumab is disclosed in U.S. Pat. No. 5,834,597 and WO2004052397, and Cole et al., Transplantation (1999) 68:563-571, the entire disclosures of which are hereby incorporated by reference. In illustrative embodiments, visilizumab or an antigen-binding fragment thereof for use in the methods provided herein comprises a heavy chain variable region comprising the amino acid sequence of SEQ ID NO: 1240; and/or a light chain variable region comprising the amino acid sequence of SEQ ID NO: 1241.
In some embodiments, the targeting moiety comprises the anti-CD3 antibody foralumab (aka NI-0401), or fragments thereof. In various embodiments, the targeting moiety comprises any one of the anti-CD3 antibodies disclosed in US20140193399, U.S. Pat. No. 7,728,114, US20100183554, and U.S. Pat. No. 8,551,478, the entire disclosures of which are hereby incorporated by reference.
In illustrative embodiments, the anti-CD3 antibody or an antigen-binding fragment thereof for use in the methods provided herein comprises a heavy chain variable region comprising the amino acid sequence of SEQ ID Nos: 2 and 6 of U.S. Pat. No. 7,728,114 (SEQ ID NO: 1242 and 1243, respectively) and/or a light chain variable region comprising the amino acid sequence of SEQ ID NOs 4 and 8 of U.S. Pat. No. 7,728,114 (SEQ ID NO: 1244 and 1245).
In an embodiment, the targeting moiety comprises a heavy chain variable region comprising the amino acid sequence of SEQ ID NO:2 of U.S. Pat. No. 7,728,114 and a light chain variable region comprising the amino acid sequence of SEQ ID NO:4 of U.S. Pat. No. 7,728,114. In an embodiment, the targeting moiety comprises any one of the anti-CD3 antibodies disclosed in US2016/0168247, the entire contents of which are hereby incorporated by reference. In illustrative embodiments, the antibody or an antigen-binding fragment thereof for use in the methods provided herein comprises a heavy chain comprising an amino acid sequence selected from SEQ ID Nos: 6-9 of US2016/0168247 (SEQ ID Nos.: 1246-1249, respectively) and/or a light chain comprising an amino acid sequence selected from SEQ ID Nos: 10-12 of US2016/0168247 (SEQ ID Nos.: 1250-1252, respectively).
In an embodiment, the targeting moiety comprises any one of the anti-CD3 antibodies disclosed in US2015/0175699, the entire contents of which are hereby incorporated by reference. In illustrative embodiments, the antibody or an antigen-binding fragment thereof for use in the methods provided herein comprises a heavy chain comprising an amino acid sequence selected from SEQ ID No: 9 of US2015/0175699 (SEQ ID NO: 1253); and/or a light chain comprising an amino acid sequence selected from SEQ ID No: 10 of US2015/0175699 (SEQ ID NO: 1254).
In an embodiment, the targeting moiety comprises any one of the anti-CD3 antibodies disclosed in U.S. Pat. No. 8,784,821, the entire contents of which are hereby incorporated by reference. In illustrative embodiments, the antibody or an antigen-binding fragment thereof for use in the methods provided herein comprises a heavy chain comprising an amino acid sequence selected from SEQ ID Nos: 2, 18, 34, 50, 66, 82, 98 and 114 of U.S. Pat. No. 8,784,821 (SEQ ID Nos.: 1255, 1256, 1257, 1258, 1259, 1260, 1261, and 1262, respectively); and/or alight chain comprising an amino acid sequence selected from SEQ ID Nos: 10, 26, 42, 58, 74, 90, 106 and 122 of U.S. Pat. No. 8,784,821 (SEQ ID No.: 1263, 1264, 1265, 1266, 1267, 1268, 1269, and 1270, respectively).
In an embodiment, the targeting moiety comprises any one of the anti-CD3 binding constructs disclosed in US20150118252, the entire contents of which are hereby incorporated by reference. In illustrative embodiments, the antibody or an antigen-binding fragment thereof for use in the methods provided herein comprises a heavy chain comprising an amino acid sequence selected from SEQ ID Nos: 6 and 86 of US20150118252 (SEQ ID NO: 1271 and 1272, respectively); and/or a light chain comprising an amino acid sequence selected from SEQ ID No: 3 of US2015/0175699 (SEQ ID NO: 1273).
In an embodiment, the targeting moiety comprises any one of the anti-CD3 binding proteins disclosed in US2016/0039934, the entire contents of which are hereby incorporated by reference. In illustrative embodiments, the antibody or an antigen-binding fragment thereof for use in the methods provided herein comprises a heavy chain comprising an amino acid sequence selected from SEQ ID Nos: 6-9 of US2016/0039934 (SEQ ID Nos.: 1274-1277); and/or a light chain comprising an amino acid sequence selected from SEQ ID Nos: 1-4 of US2016/0039934 (SEQ ID Nos.: 1278-1281).
In various embodiments, the targeting moieties of the invention may comprise a sequence that targets CD3 which is at least about 60%, at least about 61%, at least about 62%, at least about 63%, at least about 64%, at least about 65%, at least about 66%, at least about 67%, at least about 68%, at least about 69%, at least about 70%, at least about 71%, at least about 72%, at least about 73%, at least about 74%, at least about 75%, at least about 76%, at least about 77%, at least about 78%, at least about 79%, at least about 80%, at least about 81%, at least about 82%, at least about 83%, at least about 84%, at least about 85%, at least about 86%, at least about 87%, at least about 88%, at least about 89%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% identical to any of the sequences disclosed herein (e.g. about 60%, or about 61%, or about 62%, or about 63%, or about 64%, or about 65%, or about 66%, or about 67%, or about 68%, or about 69%, or about 70%, or about 71%, or about 72%, or about 73%, or about 74%, or about 75%, or about 76%, or about 77%, or about 78%, or about 79%, or about 80%, or about 81%, or about 82%, or about 83%, or about 84%, or about 85%, or about 86%, or about 87%, or about 88%, or about 89%, or about 90%, or about 91%, or about 92%, or about 93%, or about 94%, or about 95%, or about 96%, or about 97%, or about 98%, about 99% or about 100% sequence identity with any of the sequences disclosed herein).
In various embodiments, the targeting moieties of the invention may comprise any combination of heavy chain, light chain, heavy chain variable region, light chain variable region, complementarity determining region (CDR), and framework region sequences that target CD3 as disclosed herein. In various embodiments, the targeting moieties of the invention may comprise any heavy chain, light chain, heavy chain variable region, light chain variable region, complementarity determining region (CDR), and framework region sequences of the CD3-specific antibodies including, but not limited to, X35-3, VIT3, BMA030 (BW264/56), CLB-T3/3, CRIS7, YTH12.5, FI 11-409, CLB-T3.4.2, TR-66, WT32, SPv-T3b, 11D8, XIII-141, XIII-46, XIII-87, 12F6, T3/RW2-8C8, T3/RW2-4B6, OKT3D, M-T301, SMC2, WT31 and F101.01. These CD3-specific antibodies are well known in the art and, inter alia, described in Tunnacliffe (1989), Int. Immunol. 1, 546-550, the entire disclosures of which are hereby incorporated by reference.
Additional antibodies, antibody derivatives or formats, peptides or polypeptides, or fusion proteins that selectively bind or target CD3 are disclosed in US Patent Publication No. 2016/0000916, U.S. Pat. Nos. 4,361,549, 5,834,597, 6,491,916, 6,406,696, 6,143,297, 6,750,325 and International Publication No. WO 2004/052397, the entire disclosures of which are hereby incorporated by reference.
In various embodiments, the CD20 targeting moiety is a protein-based agent capable of specific binding to CD20. In various embodiments, the CD20 targeting moiety is a protein-based agent capable of specific binding to CD20 without neutralization of CD20. CD20 is a non-glycosylated member of the membrane-spanning 4-A (MS4A) family. It functions as a B cell specific differentiation antigen in both mouse and human. In particular, human CD20 cDNA encodes a transmembrane protein consisting of four hydrophobic membrane-spanning domains, two extracellular loops and intracellular N- and C-terminal regions.
In various embodiments, the CD20 targeting moiety comprises a targeting moiety having an antigen recognition domain that recognizes an epitope present on CD20. In an embodiment, the antigen-recognition domain recognizes one or more linear epitopes present on CD20. In some embodiments, a linear epitope refers to any continuous sequence of amino acids present on CD20. In another embodiment, the antigen-recognition domain recognizes one or more conformational epitopes present on CD20. As used herein, a conformation epitope refers to one or more sections of amino acids (which may be discontinuous) which form a three-dimensional surface with features and/or shapes and/or tertiary structures capable of being recognized by an antigen recognition domain.
In various embodiments, the CD20 targeting moiety may bind to the full-length and/or mature forms and/or isoforms and/or splice variants and/or fragments and/or any other naturally occurring or synthetic analogs, variants, or mutants of CD20 (e.g., human CD20). In various embodiments, the CD20 targeting moiety may bind to any forms of CD20 (e.g., human CD20), including monomeric, dimeric, trimeric, tetrameric, heterodimeric, multimeric and associated forms. In an embodiment, the CD20 targeting moiety binds to the monomeric form of CD20. In another embodiment, the CD20 targeting moiety binds to a dimeric form of CD20. In another embodiment, the CD20 targeting moiety binds to a tetrameric form of CD20. In a further embodiment, the CD20 targeting moiety to phosphorylated form of CD20, which may be either monomeric, dimeric, or tetrameric.
In an embodiment, the CD20 targeting moiety comprises a targeting moiety with an antigen recognition domain that recognizes one or more epitopes present on human CD20. In an embodiment, the human CD20 comprises the amino acid sequence of SEQ ID NO: 1346.
In various embodiments, the CD20 targeting moiety comprises a targeting moiety capable of specific binding. In various embodiments, the CD20 targeting moiety comprises a targeting moiety having an antigen recognition domain such as an antibody or derivatives thereof.
In some embodiments, the CD20 targeting moiety comprises a targeting moiety which is an antibody derivative or format. In some embodiments, the CD20 targeting moiety comprises a targeting moiety that is a single-domain antibody, a recombinant heavy-chain-only antibody (VHH), a single-chain antibody (scFv), a shark heavy-chain-only antibody (VNAR), a microprotein (cysteine knot protein, knottin), a DARPin; a Tetranectin; an Affibody; an Affimer, a Transbody; an Anticalin; an AdNectin; an Affilin; a Microbody; a peptide aptamer; an alterases; a plastic antibodies; a phylomer; a stradobodies; a maxibodies; an evibody; a fynomer, an armadillo repeat protein, a Kunitz domain, an avimer, an atrimer, a probody, an immunobody, a triomab, a troybody; a pepbody; a vaccibody, a UniBody; a DuoBody, a Fv, a Fab, a Fab′, a F(ab′)2, a peptide mimetic molecule, or a small (e.g. synthetic or natural) molecule, e.g. without limitation, as described in US Patent Nos. or Patent Publication Nos. U.S. Pat. No. 7,417,130, US 2004/132094, U.S. Pat. No. 5,831,012, US 2004/023334, U.S. Pat. Nos. 7,250,297, 6,818,418, US 2004/209243, U.S. Pat. Nos. 7,838,629, 7,186,524, 6,004,746, 5,475,096, US 2004/146938, US 2004/157209, U.S. Pat. Nos. 6,994,982, 6,794,144, US 2010/239633, U.S. Pat. No. 7,803,907, US 2010/119446, and/or U.S. Pat. No. 7,166,697, the contents of which are hereby incorporated by reference in their entireties. See also, Storz MAbs. 2011 May-June; 3(3): 310-317.
In some embodiments, the CD20 targeting moiety comprises a targeting moiety that is a single-domain antibody, such as a VHH. The VHH may be derived from, for example, an organism that produces VHH antibody such as a camelid, a shark, or the VHH may be a designed VHH. VHHs are antibody-derived therapeutic proteins that contain the unique structural and functional properties of naturally-occurring heavy-chain antibodies. VHH technology is based on fully functional antibodies from camelids that lack light chains. These heavy-chain antibodies contain a single variable domain (VHH) and two constant domains (CH2 and CH3). VHHs are commercially available under the trademark of NANOBODIES. In an embodiment, the CD20 targeting moiety comprises a Nanobody. In some embodiments, the single domain antibody as described herein is an immunoglobulin single variable domain or ISVD.
In some embodiments, the CD20 targeting moiety comprises a targeting moiety which is a VHH comprising a single amino acid chain having four “framework regions” or FRs and three “complementary determining regions” or CDRs. As used herein, “framework region” or “FR” refers to a region in the variable domain which is located between the CDRs. As used herein, “complementary determining region” or “CDR” refers to variable regions in VHHs that contains the amino acid sequences capable of specifically binding to antigenic targets.
In various embodiments, the CD20 targeting moiety comprises a VHH having a variable domain comprising at least one CDR1, CDR2, and/or CDR3 sequences.
In some embodiments, the CDR1 sequence is selected from SEQ ID Nos.: 1347-1366. In some embodiments, the CDR2 sequence is selected from SEQ ID Nos.: 1367-1383. In some embodiments, the CDR3 sequence is selected from SEQ ID Nos.: 1384-1396.
In various embodiments, the CD20 targeting moiety comprises a CDR1 comprising the amino acid sequence of SEQ ID NO: 1347, a CDR2 comprising the amino acid sequence of SEQ ID NO: 1367, and a CDR3 comprising the amino acid sequence of SEQ ID NO: 1384.
In various embodiments, the CD20 targeting moiety comprises a CDR1 comprising the amino acid sequence of SEQ ID NO: 1347, a CDR2 comprising the amino acid sequence of SEQ ID NO: 1368, and a CDR3 comprising the amino acid sequence of SEQ ID NO: 1384.
In various embodiments, the CD20 targeting moiety comprises a CDR1 comprising the amino acid sequence of SEQ ID NO: 1348, a CDR2 comprising the amino acid sequence of SEQ ID NO: 1367, and a CDR3 comprising the amino acid sequence of SEQ ID NO: 1384.
In various embodiments, the CD20 targeting moiety comprises a CDR1 comprising the amino acid sequence of SEQ ID NO: 1349, a CDR2 comprising the amino acid sequence of SEQ ID NO: 1367, and a CDR3 comprising the amino acid sequence of SEQ ID NO: 1384.
In various embodiments, the CD20 targeting moiety comprises a CDR1 comprising the amino acid sequence of SEQ ID NO: 1350, a CDR2 comprising the amino acid sequence of SEQ ID NO: 1369, and a CDR3 comprising the amino acid sequence of SEQ ID NO: 1385.
In various embodiments, the CD20 targeting moiety comprises a CDR1 comprising the amino acid sequence of SEQ ID NO: 1351, a CDR2 comprising the amino acid sequence of SEQ ID NO: 1370, and a CDR3 comprising the amino acid sequence of SEQ ID NO: 1386.
In various embodiments, the CD20 targeting moiety comprises a CDR1 comprising the amino acid sequence of SEQ ID NO: 1352, a CDR2 comprising the amino acid sequence of SEQ ID NO: 1371, and a CDR3 comprising the amino acid sequence of SEQ ID NO: 1387.
In various embodiments, the CD20 targeting moiety comprises a CDR1 comprising the amino acid sequence of SEQ ID NO: 1353, a CDR2 comprising the amino acid sequence of SEQ ID NO: 1371, and a CDR3 comprising the amino acid sequence of SEQ ID NO: 1388.
In various embodiments, the CD20 targeting moiety comprises a CDR1 comprising the amino acid sequence of SEQ ID NO: 1354, a CDR2 comprising the amino acid sequence of SEQ ID NO: 1372, and a CDR3 comprising the amino acid sequence of SEQ ID NO: 1389.
In various embodiments, the CD20 targeting moiety comprises a CDR1 comprising the amino acid sequence of SEQ ID NO: 1355, a CDR2 comprising the amino acid sequence of SEQ ID NO: 1373, and a CDR3 comprising the amino acid sequence of SEQ ID NO: 1390.
In various embodiments, the CD20 targeting moiety comprises a CDR1 comprising the amino acid sequence of SEQ ID NO: 1355, a CDR2 comprising the amino acid sequence of SEQ ID NO: 1374, and a CDR3 comprising the amino acid sequence of SEQ ID NO: 1390.
In various embodiments, the CD20 targeting moiety comprises a CDR1 comprising the amino acid sequence of SEQ ID NO: 1355, a CDR2 comprising the amino acid sequence of SEQ ID NO: 1375, and a CDR3 comprising the amino acid sequence of SEQ ID NO: 1390.
In various embodiments, the CD20 targeting moiety comprises a CDR1 comprising the amino acid sequence of SEQ ID NO: 1356, a CDR2 comprising the amino acid sequence of SEQ ID NO: 1374, and a CDR3 comprising the amino acid sequence of SEQ ID NO: 1390.
In various embodiments, the CD20 targeting moiety comprises a CDR1 comprising the amino acid sequence of SEQ ID NO: 1357, a CDR2 comprising the amino acid sequence of SEQ ID NO: 1376, and a CDR3 comprising the amino acid sequence of SEQ ID NO: 1391.
In various embodiments, the CD20 targeting moiety comprises a CDR1 comprising the amino acid sequence of SEQ ID NO: 1358, a CDR2 comprising the amino acid sequence of SEQ ID NO: 1377, and a CDR3 comprising the amino acid sequence of SEQ ID NO: 1392.
In various embodiments, the CD20 targeting moiety comprises a CDR1 comprising the amino acid sequence of SEQ ID NO: 1359, a CDR2 comprising the amino acid sequence of SEQ ID NO: 1377, and a CDR3 comprising the amino acid sequence of SEQ ID NO: 1392.
In various embodiments, the CD20 targeting moiety comprises a CDR1 comprising the amino acid sequence of SEQ ID NO: 1360, a CDR2 comprising the amino acid sequence of SEQ ID NO: 1377, and a CDR3 comprising the amino acid sequence of SEQ ID NO: 1392.
In various embodiments, the CD20 targeting moiety comprises a CDR1 comprising the amino acid sequence of SEQ ID NO: 1361, a CDR2 comprising the amino acid sequence of SEQ ID NO: 1378, and a CDR3 comprising the amino acid sequence of SEQ ID NO: 1392.
In various embodiments, the CD20 targeting moiety comprises a CDR1 comprising the amino acid sequence of SEQ ID NO: 1362, a CDR2 comprising the amino acid sequence of SEQ ID NO: 1379, and a CDR3 comprising the amino acid sequence of SEQ ID NO: 1392.
In various embodiments, the CD20 targeting moiety comprises a CDR1 comprising the amino acid sequence of SEQ ID NO: 1363, a CDR2 comprising the amino acid sequence of SEQ ID NO: 1377, and a CDR3 comprising the amino acid sequence of SEQ ID NO: 1392.
In various embodiments, the CD20 targeting moiety comprises a CDR1 comprising the amino acid sequence of SEQ ID NO: 1364, a CDR2 comprising the amino acid sequence of SEQ ID NO: 1380, and a CDR3 comprising the amino acid sequence of SEQ ID NO: 1393.
In various embodiments, the CD20 targeting moiety comprises a CDR1 comprising the amino acid sequence of SEQ ID NO: 1365, a CDR2 comprising the amino acid sequence of SEQ ID NO: 1381, and a CDR3 comprising the amino acid sequence of SEQ ID NO: 1394.
In various embodiments, the CD20 targeting moiety comprises a CDR1 comprising the amino acid sequence of SEQ ID NO: 1366, a CDR2 comprising the amino acid sequence of SEQ ID NO: 1382, and a CDR3 comprising the amino acid sequence of SEQ ID NO: 1395.
In various embodiments, the CD20 targeting moiety comprises a CDR1 comprising the amino acid sequence of SEQ ID NO: 1366, a CDR2 comprising the amino acid sequence of SEQ ID NO: 1383, and a CDR3 comprising the amino acid sequence of SEQ ID NO: 1396.
In various embodiments, the CD20 targeting moiety comprises an amino acid sequence selected from the following sequences: 2HCD16 (SEQ ID NO: 1397); 2HCD22 (SEQ ID NO: 1398); 2HCD35 (SEQ ID NO: 1399); 2HCD42 (SEQ ID NO: 1400); 2HCD73 (SEQ ID NO: 1401); 2HCD81 (SEQ ID NO: 1402); R3CD105 (SEQ ID NO: 1403); R3CD18 (SEQ ID NO: 1404); R3CD7 (SEQ ID NO: 1405); 2HCD25 (SEQ ID NO: 1406); 2HCD78 (SEQ ID NO: 1407); 2HCD17 (SEQ ID NO: 1408); 2HCD40 (SEQ ID NO: 1409); 2HCD88 (SEQ ID NO: 1410); 2HCD59 (SEQ ID NO: 1411); 2HCD68 (SEQ ID NO: 1412); 2HCD43 (SEQ ID NO: 1413); 2MC57 (SEQ ID NO: 1414); R2MUC70 (SEQ ID NO: 1415); R3MUC17 (SEQ ID NO: 1416); R3MUC56 (SEQ ID NO: 1417); R3MUC57 (SEQ ID NO: 1418); R3MUC58 (SEQ ID NO: 1419); R2MUC85 (SEQ ID NO: 1420); R3MUC66 (SEQ ID NO: 1421); R2MUC21 (SEQ ID NO: 1422); 2MC52 (SEQ ID NO: 1423); R3MUC22 (SEQ ID NO: 1424); R3MUC75 (SEQ ID NO: 1425); 2MC39 (SEQ ID NO: 1426); 2MC51 (SEQ ID NO: 1427); 2MC38 (SEQ ID NO: 1428); 2MC82 (SEQ ID NO: 1429); 2MC20 (SEQ ID NO: 1430); 2MC42 (SEQ ID NO:1431); R2MUC36 (SEQ ID NO: 1432); R3MCD137 (SEQ ID NO: 1433); or R3MCD22 (SEQ ID NO: 1434).
In some embodiments, the CD20 targeting moiety comprises an amino acid sequence selected from SEQ ID NOs: 1397-1434 (provided above) without the terminal histidine tag sequence (i.e., HHHHHH; SEQ ID NO: 393).
In some embodiments, the CD20 targeting moiety comprises an amino acid sequence selected from SEQ ID NOs: 1397-1434 (provided above) without the HA tag (i.e., YPYDVPDYGS; SEQ ID NO: 394).
In some embodiments, the CD20 targeting moiety comprises an amino acid sequence selected from SEQ ID NOs: 1397-1434 (provided above) without the AAA linker (i.e., AAA).
In some embodiments, the CD20 targeting moiety comprises an amino acid sequence selected from SEQ ID NOs: 1397-1434 (provided above) without the AAA linker and HA tag.
In some embodiments, the CD20 targeting moiety comprises an amino acid sequence selected from SEQ ID NOs: 1397-1434 (provided above) without the AAA linker, HA tag, and terminal histidine tag sequence (i.e., AAAYPYDVPDYGSHHHHHH; SEQ ID NO: 395).
In various embodiments, the present technology contemplates the use of any natural or synthetic analogs, mutants, variants, alleles, homologs and orthologs (herein collectively referred to as “analogs”) of the CD20 targeting moiety as described herein. In various embodiments, the amino acid sequence of the CD20 targeting moiety further includes an amino acid analog, an amino acid derivative, or other non-classical amino acids.
In various embodiments, the CD20 targeting moiety comprises a targeting moiety comprising a sequence that is at least 60% identical to any one of the CD20 sequences disclosed above. In various embodiments, the CD20 targeting moiety comprises a sequence that is at least 60% identical to any one of the CD20 sequences disclosed above minus the linker sequence, the HA tag and/or the HIS6 tag. For example, the CD20 targeting moiety may comprise a sequence that is at least about 60%, at least about 61%, at least about 62%, at least about 63%, at least about 64%, at least about 65%, at least about 66%, at least about 67%, at least about 68%, at least about 69%, at least about 70%, at least about 71%, at least about 72%, at least about 73%, at least about 74%, at least about 75%, at least about 76%, at least about 77%, at least about 78%, at least about 79%, at least about 80%, at least about 81%, at least about 82%, at least about 83%, at least about 84%, at least about 85%, at least about 86%, at least about 87%, at least about 88%, at least about 89%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% identical to any one of the CD20 sequences disclosed herein (e.g. about 60%, or about 61%, or about 62%, or about 63%, or about 64%, or about 65%, or about 66%, or about 67%, or about 68%, or about 69%, or about 70%, or about 71%, or about 72%, or about 73%, or about 74%, or about 75%, or about 76%, or about 77%, or about 78%, or about 79%, or about 80%, or about 81%, or about 82%, or about 83%, or about 84%, or about 85%, or about 86%, or about 87%, or about 88%, or about 89%, or about 90%, or about 91%, or about 92%, or about 93%, or about 94%, or about 95%, or about 96%, or about 97%, or about 98%, about 99% or about 100% sequence identity to any one of the CD20 sequences disclosed herein).
In various embodiments, the CD20 targeting moiety comprises an amino acid sequence having one or more amino acid mutations. In various embodiments, the CD20 targeting moiety comprises an amino acid sequence having one, or two, or three, or four, or five, or six, or seen, or eight, or nine, or ten, or fifteen, or twenty amino acid mutations with respect to any one of the CD20 sequences disclosed above. In some embodiments, the one or more amino acid mutations may be independently selected from substitutions, insertions, deletions, and truncations.
In some embodiments, the amino acid mutations are amino acid substitutions, and may include conservative and/or non-conservative substitutions.
“Conservative substitutions” may be made, for instance, on the basis of similarity in polarity, charge, size, solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the amino acid residues involved. The 20 naturally occurring amino acids can be grouped into the following six standard amino acid groups: (1) hydrophobic: Met, Ala, Val, Leu, Ile; (2) neutral hydrophilic: Cys, Ser, Thr; Asn, Gln; (3) acidic: Asp, Glu; (4) basic: His, Lys, Arg; (5) residues that influence chain orientation: Gly, Pro; and (6) aromatic: Trp, Tyr, Phe.
As used herein, “conservative substitutions” are defined as exchanges of an amino acid by another amino acid listed within the same group of the six standard amino acid groups shown above. For example, the exchange of Asp by Glu retains one negative charge in the so modified polypeptide. In addition, glycine and proline may be substituted for one another based on their ability to disrupt α-helices.
As used herein, “non-conservative substitutions” are defined as exchanges of an amino acid by another amino acid listed in a different group of the six standard amino acid groups (1) to (6) shown above.
In various embodiments, the substitutions may also include non-classical amino acids (e.g. selenocysteine, pyrrolysine, N-formylmethionine β-alanine, GABA and δ-Aminolevulinic acid, 4-aminobenzoic acid (PABA), D-isomers of the common amino acids, 2,4-diaminobutyric acid, α-amino isobutyric acid, 4-aminobutyric acid, Abu, 2-amino butyric acid, γ-Abu, ε-Ahx, 6-amino hexanoic acid, Aib, 2-amino isobutyric acid, 3-amino propionic acid, ornithine, norleucine, norvaline, hydroxyproline, sarcosme, citrulline, homocitrulline, cysteic acid, t-butylglycine, t-butylalanine, phenylglycine, cyclohexylalanine, β-alanine, fluoro-amino acids, designer amino acids such as p methyl amino acids, C α-methyl amino acids, N α-methyl amino acids, and amino acid analogs in general).
In various embodiments, the amino acid mutation may be in the CDRs of the targeting moiety (e.g., the CDR1, CDR2 or CDR3 regions). In another embodiment, amino acid alteration may be in the framework regions (FRs) of the targeting moiety (e.g., the FR1, FR2, FR3, or FR4 regions).
Modification of the amino acid sequences may be achieved using any known technique in the art e.g., site-directed mutagenesis or PCR based mutagenesis. Such techniques are described, for example, in Sambrook et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Press, Plainview, N.Y., 1989 and Ausubel et al., Current Protocols in Molecular Biology, John Wiley & Sons, New York, N.Y., 1989.
In various embodiments, the mutations do not substantially reduce the CD20 targeting moiety's capability to specifically bind to CD20. In various embodiments, the mutations do not substantially reduce the CD20 targeting moiety's capability to specifically bind to CD20 without neutralizing CD20.
In various embodiments, the binding affinity of the CD20 targeting moiety for the full-length and/or mature forms and/or isoforms and/or splice variants and/or fragments and/or monomeric and/or dimeric and/or tetrameric forms and/or any other naturally occurring or synthetic analogs, variants, or mutants (including monomeric and/or dimeric and/or tetrameric forms) of human CD20 may be described by the equilibrium dissociation constant (KD). In various embodiments, the CD20 targeting moiety comprises a targeting moiety that binds to the full-length and/or mature forms and/or isoforms and/or splice variants and/or fragments and/or any other naturally occurring or synthetic analogs, variants, or mutants (including monomeric and/or dimeric and/or tetrameric forms) of human CD20 with a KD of less than about 1 μM, about 900 nM, about 800 nM, about 700 nM, about 600 nM, about 500 nM, about 400 nM, about 300 nM, about 200 nM, about 100 nM, about 90 nM, about 80 nM, about 70 nM, about 60 nM, about 50 nM, about 40 nM, about 30 nM, about 20 nM, about 10 nM, or about 5 nM, or about 4.5 nM, or about 1 nM.
In various embodiments, the CD20 targeting moiety comprises a targeting moiety that binds but does not functionally modulate the antigen of interest, i.e., CD20. For instance, in various embodiments, the targeting moiety of the CD20 targeting moiety simply targets the antigen but does not substantially functionally modulate (e.g. substantially inhibit, reduce or neutralize) a biological effect that the antigen has. In various embodiments, the CD20 targeting moiety binds an epitope that is physically separate from an antigen site that is important for its biological activity (e.g. an antigen's active site).
Such binding without significant function modulation finds use in various embodiments of the present application. In various embodiments, the CD20 targeting moiety binds to CD20 positive cells and induces the death of such cells. In some embodiments, the CD20 targeting moiety induces cell death as mediated by one or more of apoptosis or direct cell death, complement-dependent cytotoxicity (CDC), antibody-dependent cellular cytotoxicity (ADCC), and/or or antibody-dependent cellular phagocytosis (ADCP). In some embodiments, the present CD20 targeting moiety induces translocation of CD20 into large lipid microdomains or ‘lipid rafts’ within the plasma membrane upon binding. This clustering process enhances the activation of complement and exerts strong complement-dependent cytotoxicity (CDC). In other embodiments, the CD20 targeting moiety induces direct cell death. In alternative embodiments, the therapeutic efficacy of the CD20 targeting moiety is not dependent on B cell depletion.
In various embodiments, the CD20 targeting moiety may be used to directly or indirectly recruit active immune cells to a site of need via an effector antigen. For example, in various embodiments, the CD20 targeting moiety may be used to directly or indirectly recruit an immune cell to a cancer or tumor cell in a method of reducing or eliminating a cancer or tumor (e.g. the CD20 targeting moiety may comprise an anti-CD20 antigen recognition domain and a targeting moiety having a recognition domain (e.g. antigen recognition domain) directed against Clec9A, which is an antigen expressed on dendritic cells). In these embodiments, CD20 signaling is an important piece of the cancer reducing or eliminating effect. In various embodiments, the CD20 targeting moiety may recruit a T cell, a B cell, a dendritic cell, a macrophage, and a natural killer (NK) cell.
In some embodiments, the Fc-based chimeric protein complexes of the present technology comprise one or more targeting moieties disclosed herein. In various embodiments, the Fc-based chimeric protein complexes have targeting moieties that target two different cells (e.g. to make a synapse) or the same cell (e.g. to get a more concentrated human IFNγ or human TNFα signaling agent effect). In various embodiments, the Fc-based chimeric protein complexes have two or more copies of the same targeting moiety (multivalency), e.g. to increase the affinity of target binding.
In various embodiments, the Fc-based chimeric protein complexes of the present technology are multi-specific, i.e., the Fc-based chimeric protein complex comprises two or more targeting moieties having recognition domains (e.g. antigen recognition domains) that recognize and bind two or more targets (e.g. antigens, or receptors, or epitopes). In such embodiments, the Fc-based chimeric protein complexes may comprise two more targeting moieties having recognition domains that recognize and bind two or more epitopes on the same antigen or on different antigens or on different receptors. In various embodiments, such multi-specific Fc-based chimeric protein complexes exhibit advantageous properties such as increased avidity and/or improved selectivity. In some embodiments, the Fc-based chimeric protein complex comprises two targeting moieties and is bispecific, i.e., binds and recognizes two epitopes on the same antigen or on different antigens or different receptors. Accordingly, in various embodiments, the Fc-based chimeric protein complex encompasses such multi-specific Fc-based chimeric protein complexes comprising two or more targeting moieties.
In various embodiments, the multi-specific Fc-based chimeric protein complexes comprises two or more targeting moieties with each targeting moiety being an antibody or an antibody derivative as described herein. In an embodiment, the multi-specific Fc-based chimeric protein complex comprises at least one VHH comprising an antigen recognition domain against one target and one antibody or antibody derivative comprising a recognition domain against a tumor antigen and/or an immune cell marker.
In various embodiments, the present multi-specific Fc-based chimeric protein complexes have two or more targeting moieties that target different antigens or receptors, and one targeting moiety may be attenuated for its antigen or receptor, e.g. the targeting moiety binds its antigen or receptor with a low affinity or avidity (including, for example, at an affinity or avidity that is less than the affinity or avidity the other targeting moiety has for its for its antigen or receptor, for instance the difference between the binding affinities may be about 10-fold, or 25-fold, or 50-fold, or 100-fold, or 300-fold, or 500-fold, or 1000-fold, or 5000-fold; for instance the lower affinity or avidity targeting moiety may bind its antigen or receptor at a KD in the mid- to high-nM or low- to mid-μM range while the higher affinity or avidity targeting moiety may bind its antigen or receptor at a KD in the mid- to high-μM or low- to mid-nM range). For instance, in some embodiments, the present multi-specific Fc-based chimeric protein complex comprises an attenuated targeting moiety that is directed against a promiscuous antigen or receptor, which may improve targeting to a cell of interest (e.g. via the other targeting moiety) and prevent effects across multiple types of cells, including those not being targeted for therapy (e.g. by binding promiscuous antigen or receptor at a higher affinity than what is provided in these embodiments).
The multi-specific Fc-based chimeric protein complexes may be constructed using methods known in the art, see for example, U.S. Pat. No. 9,067,991, U.S. Patent Publication No. 20110262348 and WO 2004/041862, the entire contents of which are hereby incorporated by reference. In an illustrative embodiment, the multi-specific Fc-based chimeric protein complex comprising two or more targeting moieties may be constructed by chemical crosslinking, for example, by reacting amino acid residues with an organic derivatizing agent as described by Blattler et al., Biochemistry 24, 1517-1524 and EP294703, the entire contents of which are hereby incorporated by reference. In another illustrative embodiment, the multi-specific Fc-based chimeric protein complex comprising two or more targeting moieties is constructed by genetic fusion, i.e., constructing a single polypeptide which includes the polypeptides of the individual targeting moieties. For example, a single polypeptide construct may be formed which encodes a first VHH with an antigen recognition domain against a first target and a second antibody or antibody derivative with an antigen recognition domain against e.g., a tumor antigen or a checkpoint inhibitor. A method for producing bivalent or multivalent VHH polypeptide constructs is disclosed in PCT patent application WO 96/34103, the entire contents of which is hereby incorporated by reference. In a further illustrative embodiment, the multi-specific Fc-based chimeric protein complex may be constructed by using linkers. For example, the carboxy-terminus of a first VHH with an antigen recognition domain against a first target may be linked to the amino-terminus of a second antibody or antibody derivative with an antigen recognition domain against e.g., a tumor antigen or a checkpoint inhibitor (or vice versa). Illustrative linkers that may be used are described herein. In some embodiments, the components of the multi-specific Fc-based chimeric protein complex are directly linked to each other without the use of linkers.
In various embodiments, the multi-specific Fc-based chimeric protein complex recognizes and binds to a target (e.g., XCR1, Clec9A, FAP, PD-1, PD-L1, PD-L2, SIRP1α, or CD8) and one or more antigens found on one or more immune cells, which can include, without limitation, megakaryocytes, thrombocytes, erythrocytes, mast cells, basophils, neutrophils, eosinophils, monocytes, macrophages, natural killer cells, T lymphocytes (e.g., cytotoxic T lymphocytes, T helper cells, natural killer T cells), B lymphocytes, plasma cells, dendritic cells, or subsets thereof. In some embodiments, the Fc-based chimeric protein complex specifically binds to an antigen of interest and effectively directly or indirectly recruits one of more immune cells.
In various embodiments, the multi-specific Fc-based chimeric protein complex recognizes and binds to target (e.g., XCR1, Clec9A, FAP, PD-1, PD-L1, PD-L2, SIRP1α, or CD8) and one or more antigens found on tumor cells. In these embodiments, the present Fc-based chimeric protein complex may directly or indirectly recruit an immune cell to a tumor cell or the tumor microenvironment. In some embodiments, the present Fc-based chimeric protein complex may directly or indirectly recruit an immune cell, e.g. an immune cell that can kill and/or suppress a tumor cell (e.g., a CTL), to a site of action (such as, by way of non-limiting example, the tumor microenvironment). In some embodiments, the present Fc-based chimeric protein complex enhances antigen presentation (e.g. tumor antigen presentation) by dendritic cells for the induction of a potent humoral and cytotoxic T cell response.
In some embodiments, the Fc-based chimeric protein complex may have two or more targeting moieties that bind to non-cellular structures. In some embodiments, there are two targeting moieties and one targets a cell while the other targets a non-cellular structure.
In some embodiments, the present Fc-based chimeric protein complex has (i) one or more of the targeting moieties which is directed against an immune cell selected from a T cell, a B cell, a dendritic cell, a macrophage, a NK cell, or subsets thereof and (ii) one or more of the targeting moieties which is directed against a tumor cell, along with the human IFNγ or human TNFα signaling agents described herein. In one embodiment, the Fc-based chimeric protein complex has (i) a targeting moiety directed against a T cell (including, without limitation an effector T cell) and (ii) a targeting moiety is directed against a tumor cell, along with the human IFNγ or human TNFα signaling agents described herein. In one embodiment, the present Fc-based chimeric protein complex has (i) a targeting moiety directed against a B cell and (ii) a targeting moiety is directed against a tumor cell, along with the human IFNγ or human TNFα signaling agents described herein. In one embodiment, the present Fc-based chimeric protein complex has (i) a targeting moiety directed against a dendritic cell and (ii) a targeting moiety is directed against a tumor cell, along with the human IFNγ or human TNFα signaling agents described herein. In one embodiment, the present Fc-based chimeric protein complex has (i) a targeting moiety directed against a macrophage and (ii) a targeting moiety is directed against a tumor cell, along with the human IFNγ or human TNFα signaling agents described herein. In one embodiment, the present Fc-based chimeric protein complex has (i) a targeting moiety directed against a NK cell and (ii) a targeting moiety is directed against a tumor cell, along with the human IFNγ or human TNFα signaling agents described herein.
By way of non-limiting example, in various embodiments, the present Fc-based chimeric protein complex has (i) a targeting moiety directed against a T cell, for example, mediated by targeting to CD8, SLAMF4, IL-2 R α, 4-1BB/TNFRSF9, IL-2 R β, ALCAM, B7-1, IL-4 R, B7-H3, BLAME/SLAMFS, CEACAM1, IL-6 R, CCR3, IL-7 Ra, CCR4, CXCRI/IL-S RA, CCR5, CCR6, IL-10R α, CCR 7, IL-I 0 R β, CCRS, IL-12 R β1, CCR9, IL-12 R β2, CD2, IL-13 R α 1, IL-13, CD3, CD4, ILT2/CDS5j, ILT3/CDS5k, ILT4/CDS5d, ILT5/CDS5a, lutegrin α 4/CD49d, CDS, Integrin α E/CD103, CD6, Integrin α M/CD 11 b, CDS, Integrin α X/CD11c, Integrin β 2/CDIS, KIR/CD15S, CD27/TNFRSF7, KIR2DL1, CD2S, KIR2DL3, CD30/TNFRSFS, KIR2DL4/CD15Sd, CD31/PECAM-1, KIR2DS4, CD40 Ligand/TNFSF5, LAG-3, CD43, LAIR1, CD45, LAIR2, CDS3, Leukotriene B4-R1, CDS4/SLAMF5, NCAM-L1, CD94, NKG2A, CD97, NKG2C, CD229/SLAMF3, NKG2D, CD2F-10/SLAMF9, NT-4, CD69, NTB-A/SLAMF6, Common γ Chain/IL-2 Ry, Osteopontin, CRACC/SLAMF7, PD-1, CRTAM, PSGL-1, CTLA-4, RANK/TNFRSF11A, CX3CR1, CX3CL1, L-Selectin, CXCR3, SIRP β 1, CXCR4, SLAM, CXCR6, TCCR/WSX-1, DNAM-1, Thymopoietin, EMMPRIN/CD147, TIM-1, EphB6, TIM-2, Fas/TNFRSF6, TIM-3, Fas Ligand/TNFSF6, TIM-4, Fcγ RIII/CD16, TIM-6, TNFR1/TNFRSF1A, Granulysin, TNF RIII/TNFRSF1B, TRAIL RI/TNFRSFIOA, ICAM-1/CD54, TRAIL R2/TNFRSF10B, ICAM-2/CD102, TRAILR3/TNFRSF10C, IFN-γR1, TRAILR4/TNFRSF10D, IFN-γ R2, TSLP, IL-1 R1, or TSLP R; and (ii) a targeting moiety is directed against a tumor cell, along with a human IFNγ or human TNFα signaling agent described herein.
By way of non-limiting example, in various embodiments, the present Fc-based chimeric protein complex has a targeting moiety directed against (i) a checkpoint marker expressed on a T cell, e.g. one or more of PD-1, CD28, CTLA4, ICOS, BTLA, KIR, LAG3, CD137, OX40, CD27, CD40L, TIM3, and A2aR and (ii) a targeting moiety is directed against a tumor cell, along with the human IFNγ or human TNFα signaling agents described herein.
In one embodiment, the present Fc-based chimeric protein complex has (i) a targeting moiety directed against a T cell, for example, mediated by targeting to CD8 and (ii) a targeting moiety is directed against a tumor cell, along with the human IFNγ or human TNFα signaling agents described herein. In an embodiment, the present Fc-based chimeric protein complex has a targeting moiety directed against CD8 on T cells and a second targeting moiety directed against PD-L1 or PD-L2 on tumor cells.
In one embodiment, the present Fc-based chimeric protein complex has (i) a targeting moiety directed against a T cell, for example, mediated by targeting to CD4 and (ii) a targeting moiety is directed against a tumor cell, along with the human IFNγ or human TNFα signaling agents described herein. In an embodiment, the present Fc-based chimeric protein complex has a targeting moiety directed against CD4 on T cells and a second targeting moiety directed against PD-L1 or PD-L2 on tumor cells.
In one embodiment, the present Fc-based chimeric protein complex has (i) a targeting moiety directed against a T cell, for example, mediated by targeting to CD3, CXCR3, CCR4, CCR9, CD70, CD103, or one or more immune checkpoint markers and (ii) a targeting moiety is directed against a tumor cell, along with the human IFNγ or human TNFα signaling agents described herein. In an embodiment, the present Fc-based chimeric protein complex has a targeting moiety directed against CD3 on T cells and a second targeting moiety directed against PD-L1 or PD-L2 on tumor cells.
In one embodiment, the present Fc-based chimeric protein complex has (i) a targeting moiety directed against a T cell, for example, mediated by targeting to PD-1 and (ii) a targeting moiety is directed against a tumor cell, along with the human IFNγ or human TNFα signaling agents described herein.
By way of non-limiting example, in various embodiments, the present Fc-based chimeric protein complex has (i) a targeting moiety directed against a B cell, for example, mediated by targeting to CD10, CD19, CD20, CD21, CD22, CD23, CD24, CD37, CD38, CD39, CD40, CD70, CD72, CD73, CD74, CDw75, CDw76, CD77, CD78, CD79a/b, CD80, CD81, CD82, CD83, CD84, CD85, CD86, CD89, CD98, CD126, CD127, CDw130, CD138, or CDw150; and (ii) a targeting moiety is directed against a tumor cell, along with the human IFNγ or human TNFα signaling agents described herein. In an embodiment, the present Fc-based chimeric protein complex has a targeting moiety directed against CD20.
In one embodiment, the present Fc-based chimeric protein complex has (i) a targeting moiety directed against a B cell, for example, mediated by targeting to CD19, CD20 or CD70 and (ii) a targeting moiety is directed against a tumor cell, along with the human IFNγ or human TNFα signaling agents described herein.
In one embodiment, the present Fc-based chimeric protein complex has (i) a targeting moiety directed against a B cell, for example, mediated by targeting to CD20 and (ii) a targeting moiety is directed against a tumor cell, along with the human IFNγ or human TNFα signaling agents described herein. In an embodiment, the present has a targeting moiety directed against CD20 on B cells and a second targeting moiety directed against PD-L1 or PD-L2 on tumor cells.
By way of non-limiting example, in various embodiments, the present Fc-based chimeric protein complex has (i) a targeting moiety directed against a NK cell, for example, mediated by targeting to 2B4/SLAMF4, KIR2DS4, CD155/PVR, KIR3DL1, CD94, LMIR1/CD300A, CD69, LMIR2/CD300c, CRACC/SLAMF7, LMIR3/CD300LF, DNAM-1, LMIR5/CD300LB, Fc-epsilon RII, LMIR6/CD300LE, Fc-γ RI/CD64, MICA, Fc-γ RIIB/CD32b, MICB, Fc-γ RIIC/CD32c, MULT-1, Fc-γ RIIA/CD32a, Nectin-2/CD112, Fc-γ RIII/CD16, NKG2A, FcRH1/IRTA5, NKG2C, FcRH2/IRTA4, NKG2D, FcRH4/IRTA1, NKp30, FcRH5/IRTA2, NKp44, Fc-Receptor-like 3/CD16-2, NKp46/NCR1, NKp80/KLRF1, NTB-A/SLAMF6, Rae-1, Rae-1 α, Rae-1 β, Rae-1 delta, H60, Rae-1 epsilon, ILT2/CD85j, Rae-1 γ, ILT3/CD85k, TREM-1, ILT4/CD85d, TREM-2, ILT5/CD85a, TREM-3, KIR/CD158, TREML1/TLT-1, KIR2DL1, ULBP-1, KIR2DL3, ULBP-2, KIR2DL4/CD158d, or ULBP-3; and (ii) a targeting moiety is directed against a tumor cell, along with the human IFNγ or human TNFα signaling agents described herein.
In one embodiment, the present Fc-based chimeric protein complex has (i) a targeting moiety directed against a NK cell, for example, mediated by targeting to Kir1alpha, DNAM-1 or CD64 and (ii) a targeting moiety is directed against a tumor cell, along with the human IFNγ or human TNFα signaling agents described herein.
In one embodiment, the present Fc-based chimeric protein complex has (i) a targeting moiety directed against a NK cell, for example, mediated by targeting to KIR1 and (ii) a targeting moiety is directed against a tumor cell, along with the human IFNγ or human TNFα signaling agents described herein. In an embodiment, the present Fc-based chimeric protein complex has a targeting moiety directed against KIR1 on NK cells and a second targeting moiety directed against PD-L1 or PD-L2 on tumor cells.
In one embodiment, the present Fc-based chimeric protein complex has (i) a targeting moiety directed against a NK cell, for example, mediated by targeting to TIGIT or KIR1 and (ii) a targeting moiety is directed against a tumor cell, along with the human IFNγ or human TNFα signaling agents described herein. In an embodiment, the present Fc-based chimeric protein complex has a targeting moiety directed against TIGIT on NK cells and a second targeting moiety directed against PD-L1 or PD-L2 on tumor cells.
By way of non-limiting example, in various embodiments, the present Fc-based chimeric protein complex has (i) a targeting moiety directed against a dendritic cell, for example, mediated by targeting to CLEC-9A, XCR1, RANK, CD36/SRB3, LOX-1/SR-E1, CD68, MARCO, CD163, SR-A1/MSR, CD5L, SREC-1, CL-PI/COLEC12, SREC-II, LIMPIIISRB2, RP105, TLR4, TLR1, TLR5, TLR2, TLR6, TLR3, TLR9, 4-IBB Ligand/TNFSF9, IL-12/IL-23 p40, 4-Amino-1,8-naphthalimide, ILT2/CD85j, CCL21/6Ckine, ILT3/CD85k, 8-oxo-dG, ILT4/CD85d, 8D6A, ILT5/CD85a, A2B5, lutegrin α 4/CD49d, Aag, Integrin β 2/CD18, AMICA, Langerin, B7-2/CD86, Leukotriene B4 RI, B7-H3, LMIR1/CD300A, BLAME/SLAMF8, LMIR2/CD300c, C1q R1/CD93, LMIR3/CD300LF, CCR6, LMIR5/CD300LB CCR7, LMIR6/CD300LE, CD40/TNFRSF5, MAG/Siglec-4-a, CD43, MCAM, CD45, MD-1, CD68, MD-2, CD83, MDL-1/CLEC5A, CD84/SLAMF5, MMR, CD97, NCAMLI, CD2F-10/SLAMF9, Osteoactivin GPNMB, Chern 23, PD-L2, CLEC-1, RP105, CLEC-2, Siglec-2/CD22, CRACC/SLAMF7, Siglec-3/CD33, DC-SIGN, Siglec-5, DC-SIGNR/CD299, Siglec-6, DCAR, Siglec-7, DCIR/CLEC4A, Siglec-9, DEC-205, Siglec-10, Dectin-1/CLEC7A, Siglec-F, Dectin-2/CLEC6A, SIGNR1/CD209, DEP-1/CD148, SIGNR4, DLEC, SLAM, EMMPRIN/CD147, TCCR/WSX-1, Fc-γ R1/CD64, TLR3, Fc-γ RIIB/CD32b, TREM-1, Fc-γ RIIC/CD32c, TREM-2, Fc-γ RIIA/CD32a, TREM-3, Fc-γ RIII/CD16, TREML1/TLT-1, ICAM-2/CD102, or Vanilloid R1; and (ii) a targeting moiety is directed against a tumor cell, along with the human IFNγ or human TNFα signaling agents described herein.
In one embodiment, the present Fc-based chimeric protein complex has (i) a targeting moiety directed against a dendritic cell, for example, mediated by targeting to CLEC-9A, DC-SIGN, CD64, CLEC4A, or DEC205 and (ii) a targeting moiety is directed against a tumor cell, along with the human IFNγ or human TNFα signaling agents described herein. In an embodiment, the present Fc-based chimeric protein complex has a targeting moiety directed against CLEC9A on dendritic cells and a second targeting moiety directed against PD-L1 or PD-L2 on tumor cells.
In one embodiment, the present Fc-based chimeric protein complex has (i) a targeting moiety directed against a dendritic cell, for example, mediated by targeting to CLEC9A and (ii) a targeting moiety is directed against a tumor cell, along with the human IFNγ or human TNFα signaling agents described herein. In an embodiment, the present Fc-based chimeric protein complex has a targeting moiety directed against CLEC9A on dendritic cells and a second targeting moiety directed against PD-L1 or PD-L2 on tumor cells.
In one embodiment, the present Fc-based chimeric protein complex has (i) a targeting moiety directed against a dendritic cell, for example, mediated by targeting to XCR1 and (ii) a targeting moiety is directed against a tumor cell, along with the human IFNγ or human TNFα signaling agents described herein. In an embodiment, the present Fc-based chimeric protein complex has a targeting moiety directed against XCR1 on dendritic cells and a second targeting moiety directed against PD-L1 or PD-L2 on tumor cells.
In one embodiment, the present Fc-based chimeric protein complex has (i) a targeting moiety directed against a dendritic cell, for example, mediated by targeting to RANK and (ii) a targeting moiety is directed against a tumor cell, along with the human IFNγ or human TNFα signaling agents described herein. In an embodiment, the present Fc-based chimeric protein complex has a targeting moiety directed against RANK on dendritic cells and a second targeting moiety directed against PD-L1 or PD-L2 on tumor cells.
By way of non-limiting example, in various embodiments, the present Fc-based chimeric protein complex has (i) a targeting moiety directed against a monocyte/macrophage, for example, mediated by targeting to SIRP1α, B7-1/CD80, ILT4/CD85d, B7-H1, ILT5/CD85a, Common β Chain, Integrin α 4/CD49d, BLAME/SLAMF8, Integrin α X/CDIIc, CCL6/C10, Integrin β 2/CD18, CD155/PVR, Integrin β 3/CD61, CD31/PECAM-1, Latexin, CD36/SR-B3, Leukotriene B4 R1, CD40/TNFRSF5, LIMPIIISR-B2, CD43, LMIR1/CD300A, CD45, LMIR2/CD300c, CD68, LMIR3/CD300LF, CD84/SLAMF5, LMIR5/CD300LB, CD97, LMIR6/CD300LE, CD163, LRP-1, CD2F-10/SLAMF9, MARCO, CRACC/SLAMF7, MD-1, ECF-L, MD-2, EMMPRIN/CD147, MGL2, Endoglin/CD105, Osteoactivin/GPNMB, Fc-γ RI/CD64, Osteopontin, Fc-γ RIIB/CD32b, PD-L2, Fc-γ RIIC/CD32c, Siglec-3/CD33, Fc-γ RIIA/CD32a, SIGNR1/CD209, Fc-γ RIII/CD16, SLAM, GM-CSF R α, TCCR/WSX-1, ICAM-2/CD102, TLR3, IFN-γ RI, TLR4, IFN-γ R2, TREM-1, IL-I RII, TREM-2, ILT2/CD85j, TREM-3, ILT3/CD85k, TREML1/TLT-1, 2B4/SLAMF 4, IL-10 R α, ALCAM, IL-10 R β, AminopeptidaseN/ANPEP, ILT2/CD85j, Common β Chain, ILT3/CD85k, C1q R1/CD93, ILT4/CD85d, CCR1, ILT5/CD85a, CCR2, CD206, Integrin α 4/CD49d, CCR5, Integrin α M/CDII b, CCR8, Integrin α X/CDIIc, CD155/PVR, Integrin β 2/CD18, CD14, Integrin β 3/CD61, CD36/SR-B3, LAIR1, CD43, LAIR2, CD45, Leukotriene B4-R1, CD68, LIMPIIISR-B2, CD84/SLAMF5, LMIR1/CD300A, CD97, LMIR2/CD300c, CD163, LMIR3/CD300LF, Coagulation Factor Ill/Tissue Factor, LMIR5/CD300LB, CX3CR1, CX3CL1, LMIR6/CD300LE, CXCR4, LRP-1, CXCR6, M-CSF R, DEP-1/CD148, MD-1, DNAM-1, MD-2, EMMPRIN/CD147, MMR, Endoglin/CD105, NCAM-L1, Fc-γ RI/CD64, PSGL-1, Fc-γ RIIIICD16, RP105, G-CSF R, L-Selectin, GM-CSF R α, Siglec-3/CD33, HVEM/TNFRSF14, SLAM, ICAM-1/CD54, TCCR/WSX-1, ICAM-2/CD102, TREM-1, IL-6 R, TREM-2, CXCRI/IL-8 RA, TREM-3, or TREMLI/TLT-1; and (ii) a targeting moiety is directed against a tumor cell, along with the human IFNγ or human TNFα signaling agents described herein.
In one embodiment, the present Fc-based chimeric protein complex has (i) a targeting moiety directed against a monocyte/macrophage, for example, mediated by targeting to B7-H1, CD31/PECAM-1, CD163, CCR2, or Macrophage Mannose Receptor CD206 and (ii) a targeting moiety is directed against a tumor cell, along with the human IFNγ or human TNFα signaling agents described herein.
In one embodiment, the present Fc-based chimeric protein complex has (i) a targeting moiety directed against a monocyte/macrophage, for example, mediated by targeting to SIRP1α and (ii) a targeting moiety is directed against a tumor cell, along with the human IFNγ or human TNFα signaling agents described herein. In an embodiment, the present Fc-based chimeric protein complex has a targeting moiety directed against SIRP1α on macrophage cells and a second targeting moiety directed against PD-L1 or PD-L2 on tumor cells.
In various embodiments, the present Fc-based chimeric protein complex has one or more targeting moieties directed against a checkpoint marker, e.g. one or more of PD-1/PD-L1 or PD-L2, CD28/CD80 or CD86, CTLA4/CD80 or CD86, ICOS/ICOSL or B7RP1, BTLA/HVEM, KIR, LAG3, CD137/CD137L, OX40/OX40L, CD27, CD40L, TIM3/Gal9, and A2aR. In one embodiment, the present Fc-based chimeric protein complex has (i) a targeting moiety directed against a checkpoint marker on a T cell, for example, PD-1 and (ii) a targeting moiety directed against a tumor cell, for example, PD-L1 or PD-L2, along with the human IFNγ or human TNFα signaling agents described herein. In an embodiment, the present Fc-based chimeric protein complex has a targeting moiety directed against PD-1 on T cells and a second targeting moiety directed against PD-L1 on tumor cells. In another embodiment, the present Fc-based chimeric protein complex has a targeting moiety directed against PD-1 on T cells and a second targeting moiety directed against PD-L2 on tumor cells.
In some embodiments, the present Fc-based chimeric protein complex comprises two or more targeting moieties directed to the same or different immune cells. In some embodiments, the present Fc-based chimeric protein complex has (i) one or more targeting moieties directed against an immune cell selected from a T cell, a B cell, a dendritic cell, a macrophage, a NK cell, or subsets thereof and (ii) one or more targeting moieties directed against either the same or another immune cell selected from a T cell, a B cell, a dendritic cell, a macrophage, a NK cell, or subsets thereof, along with the human IFNγ or human TNFα signaling agents described herein.
In one embodiment, the present Fc-based chimeric protein complex comprises one or more targeting moieties directed against a T cell and one or more targeting moieties directed against the same or another T cell. In one embodiment, the present Fc-based chimeric protein complex comprises one or more targeting moieties directed against a T cell and one or more targeting moieties directed against a B cell. In one embodiment, the present Fc-based chimeric protein complex comprises one or more targeting moieties directed against a T cell and one or more targeting moieties directed against a dendritic cell. In one embodiment, the present Fc-based chimeric protein complex comprises one or more targeting moieties against a T cell and one or more targeting moieties directed against a macrophage. In one embodiment, the present Fc-based chimeric protein complex comprises one or more targeting moieties against a T cell and one or more targeting moieties directed against a NK cell. For example, in an illustrative embodiment, the Fc-based chimeric protein complex may include a targeting moiety against CD8 and a targeting moiety against Clec9A. In another illustrative embodiment, the Fc-based chimeric protein complex may include a targeting moiety against CD8 and a targeting moiety against CD3. In another illustrative embodiment, the Fc-based chimeric protein complex may include a targeting moiety against CD8 and a targeting moiety against PD-1.
In one embodiment, the present Fc-based chimeric protein complex comprises one or more targeting moieties directed against a B cell and one or more targeting moieties directed against the same or another B cell. In one embodiment, the present Fc-based chimeric protein complex comprises one or more targeting moieties directed against a B cell and one or more targeting moieties directed against a T cell. In one embodiment, the present Fc-based chimeric protein complex comprises one or more targeting moieties directed against a B cell and one or more targeting moieties directed against a dendritic cell. In one embodiment, the present Fc-based chimeric protein complex comprises one or more targeting moieties against a B cell and one or more targeting moieties directed against a macrophage. In one embodiment, the present Fc-based chimeric protein complex comprises one or more targeting moieties against a B cell and one or more targeting moieties directed against a NK cell.
In one embodiment, the present Fc-based chimeric protein complex comprises one or more targeting moieties directed against a dendritic cell and one or more targeting moieties directed against the same or another dendritic cell. In one embodiment, the present Fc-based chimeric protein complex comprises one or more targeting moieties directed against a dendritic cell and one or more targeting moieties directed against a T cell. In one embodiment, the present Fc-based chimeric protein complex comprises one or more targeting moieties directed against a dendritic cell and one or more targeting moieties directed against a B cell. In one embodiment, the present Fc-based chimeric protein complex comprises one or more targeting moieties against a dendritic cell and one or more targeting moieties directed against a macrophage. In one embodiment, the present Fc-based chimeric protein complex comprises one or more targeting moieties against a dendritic cell and one or more targeting moieties directed against a NK cell.
In one embodiment, the present Fc-based chimeric protein complex comprises one or more targeting moieties directed against a macrophage and one or more targeting moieties directed against the same or another macrophage. In one embodiment, the present Fc-based chimeric protein complex comprises one or more targeting moieties directed against a macrophage and one or more targeting moieties directed against a T cell. In one embodiment, the present Fc-based chimeric protein complex comprises one or more targeting moieties directed against a macrophage and one or more targeting moieties directed against a B cell. In one embodiment, the present Fc-based chimeric protein complex comprises one or more targeting moieties against a macrophage and one or more targeting moieties directed against a dendritic cell. In one embodiment, the present Fc-based chimeric protein complex comprises one or more targeting moieties against a macrophage and one or more targeting moieties directed against a NK cell.
In one embodiment, the present Fc-based chimeric protein complex comprises one or more targeting moieties directed against an NK cell and one or more targeting moieties directed against the same or another NK cell. In one embodiment, the present Fc-based chimeric protein complex comprises one or more targeting moieties directed against an NK cell and one or more targeting moieties directed against a T cell. In one embodiment, the present Fc-based chimeric protein complex comprises one or more targeting moieties directed against an NK cell and one or more targeting moieties directed against a B cell. In one embodiment, the present Fc-based chimeric protein complex comprises one or more targeting moieties against an NK cell and one or more targeting moieties directed against a macrophage. In one embodiment, the present Fc-based chimeric protein complex comprises one or more targeting moieties against an NK cell and one or more targeting moieties directed against a dendritic cell.
In one embodiment, the present Fc-based chimeric protein complex comprises a targeting moiety directed against a tumor cell and a second targeting moiety directed against the same or a different tumor cell. In such embodiments, the targeting moieties may bind to any of the tumor antigens described herein.
In some embodiments, the Fc-based chimeric protein complex of the invention comprises one or more targeting moieties having recognition domains that bind to a target (e.g. antigen, receptor) of interest including those found on one or more cells selected from adipocytes (e.g., white fat cell, brown fat cell), liver lipocytes, hepatic cells, kidney cells (e.g., kidney parietal cell, kidney salivary gland, mammary gland, etc.), duct cells (of seminal vesicle, prostate gland, etc.), intestinal brush border cells (with microvilli), exocrine gland striated duct cells, gall bladder epithelial cells, ductulus efferens nonciliated cells, epididymal principal cells, epididymal basal cells, endothelial cells, ameloblast epithelial cells (tooth enamel secretion), planum semilunatum epithelial cells of vestibular system of ear (proteoglycan secretion), organ of Corti interdental epithelial cells (secreting tectorial membrane covering hair cells), loose connective tissue fibroblasts, corneal fibroblasts (corneal keratocytes), tendon fibroblasts, bone marrow reticular tissue fibroblasts, nonepithelial fibroblasts, pericytes, nucleus pulposus cells of intervertebral disc, cementoblasts/cementocytes (tooth root bonelike ewan cell secretion), odontoblasts/odontocytes (tooth dentin secretion), hyaline cartilage chondrocytes, fibrocartilage chondrocytes, elastic cartilage chondrocytes, osteoblasts/osteocytes, osteoprogenitor cells (stem cell of osteoblasts), hyalocytes of vitreous body of eye, stellate cells of perilymphatic space of ear, hepatic stellate cells (Ito cell), pancreatic stelle cells, skeletal muscle cells, satellite cells, heart muscle cells, smooth muscle cells, myoepithelial cells of iris, myoepithelial cells of exocrine glands, exocrine secretory epithelial cells (e.g., salivary gland cells, mammary gland cells, lacrimal gland cells, sweat gland cells, sebaceious gland cells, prostate gland cells, gastric glad cells, pancreatic acinar cells, pneumocytes), a hormone secreting cells (e.g., pituitary cells, neurosecretory cells, gut and respiratory tract cells, thyroid gland cells, parathyroid glad cells, adrenal gland cells, Leydig cells of testes, pancreatic islet cells), keratinizing epithelial cells, wet stratified barrier epithelial cells, neuronal cells (e.g., sensory transducer cells, autonomic neuron cells, sense organ and peripheral neuron supporting cells, and central nervous system neurons and glial cells such as interneurons, principal cells, astrocytes, oligodendrocytes, and ependymal cells).
In embodiments, the Fc-based chimeric protein complexes of the present technology comprise at least one Fc domain disclosed herein, at least one human IFNγ or human TNFα signaling agent (SA) disclosed herein, and at least one targeting moiety (TM) disclosed herein.
It is understood that, the present Fc-based chimeric protein complexes may encompass a complex of two fusion proteins. In some embodiments, the Fc-based chimeric protein complex comprises one or more fusion proteins.
In some embodiments, the Fc-based chimeric protein complex is heterodimeric. In some embodiments, the heterodimeric Fc-based chimeric protein complex has a trans orientation/configuration. In some embodiments, the heterodimeric Fc-based chimeric protein complex has a cis orientation/configuration. In some embodiments, the heterodimeric Fc-based chimeric protein complex does not comprise the human IFNγ or human TNFα signaling agent and targeting moiety on a single polypeptide. In some embodiments, the human IFNγ or human TNFα signaling agent and targeting moiety are on the same end (N-terminus or C-terminus) of the Fc domain or the Fc chains thereof. In some embodiments, the human IFNγ or human TNFα signaling agent and targeting moiety are on different ends (N-terminus or C-terminus) of the Fc domain or the Fc chains thereof. In some embodiments, the human IFNγ or human TNFα signaling agent is wild type or modified.
In some embodiments, the Fc-based chimeric protein has an improved in vivo half-life relative to a chimeric protein lacking an Fc or a chimeric protein which is not a heterodimeric complex. In some embodiments, the Fc-based chimeric protein has an improved solubility, stability and other pharmacological properties relative to a chimeric protein lacking an Fc or a chimeric protein which is not a heterodimeric complex.
Heterodimeric Fc-based chimeric protein complexes are composed of two different polypeptides. In embodiments described herein, the targeting domain is on a different polypeptide than the human IFNγ or human TNFα signaling agent and accordingly, proteins that contain only one targeting domain copy, and also only one human IFNγ or human TNFα signaling agent copy can be made (this provides a configuration in which potential interference with desired properties can be controlled). Further, in embodiments, one targeting domain (e.g. VHH) only can avoid cross-linking of the antigen on the cell surface (which could elicit undesired effects in some cases) Further, in embodiments, one human IFNγ or human TNFα signaling agent may alleviate molecular “crowding” and potential interference with avidity mediated restoration of effector function in dependence of the targeting domain. Further, in embodiments, heterodimeric Fc-based chimeric protein complexes can have two targeting moieties and these can be placed on the two different polypeptides. For instance, in embodiments, the C-terminus of both targeting moieties (e.g. VHHs) can be masked to avoid potential autoantibodies or pre-existing antibodies (e.g. VHH autoantibodies or pre-existing antibodies). Further, in embodiments, heterodimeric Fc-based chimeric protein complexes, e.g. with the targeting domain on a different polypeptide than the human IFNγ or human TNFα signaling agent (e.g. wild type human IFNγ or human TNFα signaling agent), may favor “cross-linking” of two cell types (e.g. a tumor cell and an immune cell). Further, in embodiments, heterodimeric Fc-based chimeric protein complexes can have two human IFNγ or human TNFα signaling agents, each on different polypeptides to allow more complex effector responses (e.g. with any two of the human IFNγ or human TNFα signaling agents described herein).
Further, in embodiments, heterodimeric Fc-based chimeric protein complexes, e.g. with the targeting domain on a different polypeptide than the human IFNγ or human TNFα signaling agent, combinatorial diversity of targeting moiety and human IFNγ or human TNFα signaling agent is provided in a practical manner. For instance, in embodiments, polypeptides with any of the targeting moieties described herein can be combined “off the shelf” with polypeptides with the human IFNγ or human TNFα signaling agents described herein to allow rapid generation of various combinations of targeting moieties and human IFNγ or human TNFα signaling agents in single Fc-based chimeric protein complexes.
In some embodiments, the Fc-based chimeric protein complexes described herein comprise one or more linkers. In some embodiments, the Fc-based chimeric protein complex includes a linker that connects the Fc domain, human IFNγ or human TNFα signaling agent(s) and targeting moiety(ies). In some embodiments, the Fc-based chimeric protein complex includes a linker that connects each human IFNγ or human TNFα signaling agent and targeting moiety (or, if more than one targeting moiety, a signaling agent to one of the targeting moieties). In some embodiments, the Fc-based chimeric protein complex includes a linker that connects each human IFNγ or human TNFα signaling agent to the Fc domain. In some embodiments, the Fc-based chimeric protein complex includes a linker that connects each targeting moiety to the Fc domain. In some embodiments, the Fc-based chimeric protein complex includes a linker that connects a targeting moiety to another targeting moiety. In some embodiments, the Fc-based chimeric protein complex includes a linker that connects a human IFNγ or human TNFα signaling agent to another human IFNγ or human TNFα signaling agent.
In some embodiments, the Fc-based chimeric protein complexes of the present invention include at least one linker that connects at least one human IFNγ or human TNFα signaling agent monomer or at least one targeting agent monomer to the Fc chain. In some embodiments, the present invention includes at least one linker that connects one human IFNγ or human TNFα signaling agent monomer to another human IFNγ or human TNFα signaling agent monomer or at least one linker that connects one targeting moiety monomer to another targeting moiety monomer. In other embodiments, the Fc-based chimeric protein complex includes at least one linker that connects at least one human IFNγ or human TNFα signaling agent monomer to the targeting moiety. In some embodiments, the linker connects at least one targeting moiety monomer to at least one human IFNγ or human TNFα signaling agent or a monomer thereof. In some embodiments, the Fc-based chimeric protein complex includes a first linker that connects at least one human IFNγ or human TNFα signaling agent monomer to a first Fc chain and a second linker connects at least one human IFNγ or human TNFα signaling agent monomer to a second Fc chain. In some embodiments, the Fc-based chimeric protein complex includes a first linker that connects at least one targeting moiety monomer to a first Fc chain and a second linker connects at least one targeting moiety monomer to a second Fc chain.
In some embodiments, an Fc-based chimeric protein complex comprises two or more targeting moieties. In such embodiments, the targeting moieties can be the same targeting moiety or they can be different targeting moieties.
In some embodiments, an Fc-based chimeric protein complex comprises two or more human IFNγ or human TNFα signaling agents. In such embodiments, the human IFNγ or human TNFα signaling agents can be the same targeting moiety or they can be different targeting moieties.
By way of example, in some embodiments, the Fc-based chimeric protein complex comprise an Fc domain, at least two human IFNγ or human TNFα signaling agents (SA), and at least two targeting moieties (TM), wherein the Fc domain and targeting moieties are selected from any of the Fc domains and targeting moieties disclosed herein. In some embodiments, the Fc domain is homodimeric.
In various embodiments, the Fc-based chimeric protein complex takes the form of any of the schematics of
In various embodiments, the Fc-based chimeric protein complex takes the form of any of the schematics of
In various embodiments, the Fc-based chimeric protein complex takes the form of any of the schematics of
In various embodiments, the Fc-based chimeric protein complex takes the form of any of the schematics of
In various embodiments, the Fc-based chimeric protein complex takes the form of any of the schematics of
In some embodiments, the two monomers of a dimeric human IFNγ or human TNFα signaling agents are linked to two Fc chains and the targeting moiety is attached to one Fc chain (
In some embodiments, three monomers of a trimeric human IFNγ or human TNFα signaling agents are linked to two Fc chains and the targeting moiety is attached to one Fc chain (e.g.,
In some embodiments, the Fc domain is homodimeric or heterodimeric. In some embodiments, the Fc domain is attached to one or more monomers of the same human IFNγ or human TNFα signaling agent or to multiple monomers of two or more human IFNγ or human TNFα signaling agents. In other embodiments, the Fc domain in attached to one or more monomers of the same targeting moiety or to multiple monomers of two or more targeting moieties.
By way of example, in some embodiments, the Fc-based chimeric protein complex comprise an Fc domain, wherein the Fc domain comprises ionic pairing mutation(s) and/or knob-in-hole mutation(s), at least one human IFNγ or human TNFα signaling agent, and at least one targeting moiety, wherein the ionic pairing motif and/or a knob-in-hole motif, human IFNγ or human TNFα signaling agent, and targeting moiety are selected from any of the ionic pairing motif and/or a knob-in-hole motif, human IFNγ or human TNFα signaling agents, and targeting moieties disclosed herein. In some embodiments, the Fc domain is heterodimeric. In some embodiments, the Fc domain comprises a mutation that reduces or eliminates its effector function.
In some embodiments, a targeting moiety or human IFNγ or human TNFα signaling agent is linked to the Fc domain, comprising one or both of CH2 and CH3 domains, and optionally a hinge region. For example, vectors encoding the targeting moiety, human IFNγ or human TNFα signaling agent, or combination thereof, linked as a single nucleotide sequence to an Fc domain can be used to prepare such polypeptides.
In some embodiments, the linker may be utilized to link various functional groups, residues, or moieties as described herein to the Fc-based chimeric protein complex. In some embodiments, the linker is a single amino acid or a plurality of amino acids that does not affect or reduce the stability, orientation, binding, neutralization, and/or clearance characteristics of the binding regions and the binding protein. In various embodiments, the linker is selected from a peptide, a protein, a sugar, or a nucleic acid.
In some embodiments, the Fc-based chimeric protein complex comprises a linker connecting a targeting moiety and the human IFNγ or human TNFα signaling agent. In some embodiments, the Fc-based chimeric protein complex comprises a linker within the human IFNγ or human TNFα signaling agent (e.g. in the case of single chain TNFα, which can comprise two linkers to yield a trimer or in the case of IFN-γ, which can comprise a linkers to yield a dimer).
The present technology contemplates the use of a variety of linker sequences. In various embodiments, the linker may be derived from naturally-occurring multi-domain proteins or are empirical linkers as described, for example, in Chichili et al., (2013), Protein Sci. 22(2):153-167, Chen et al., (2013), Adv Drug Deliv Rev. 65(10):1357-1369, the entire contents of which are hereby incorporated by reference. In some embodiments, the linker may be designed using linker designing databases and computer programs such as those described in Chen et al., (2013), Adv Drug Deliv Rev. 65(10):1357-1369 and Crasto et al., (2000), Protein Eng. 13(5):309-312, the entire contents of which are hereby incorporated by reference. In various embodiments, the linker may be functional. For example, without limitation, the linker may function to improve the folding and/or stability, improve the expression, improve the pharmacokinetics, and/or improve the bioactivity of the Fc-based chimeric protein complex
In some embodiments, the linker is a polypeptide. In some embodiments, the linker is less than about 100 amino acids long. For example, the linker may be less than about 100, about 95, about 90, about 85, about 80, about 75, about 70, about 65, about 60, about 55, about 50, about 45, about 40, about 35, about 30, about 25, about 20, about 19, about 18, about 17, about 16, about 15, about 14, about 13, about 12, about 11, about 10, about 9, about 8, about 7, about 6, about 5, about 4, about 3, or about 2 amino acids long. In some embodiments, the linker is a polypeptide. In some embodiments, the linker is greater than about 100 amino acids long. For example, the linker may be greater than about 100, about 95, about 90, about 85, about 80, about 75, about 70, about 65, about 60, about 55, about 50, about 45, about 40, about 35, about 30, about 25, about 20, about 19, about 18, about 17, about 16, about 15, about 14, about 13, about 12, about 11, about 10, about 9, about 8, about 7, about 6, about 5, about 4, about 3, or about 2 amino acids long. In some embodiments, the linker is flexible. In another embodiment, the linker is rigid.
In some embodiments, the linker length allows for efficient binding of a targeting moiety, a human IFNγ or human TNFα signaling agent, and/or an Fc domain to their targets (e.g., receptors). For instance, in some embodiments, the linker length allows for efficient binding of one of the targeting moieties and the human IFNγ or human TNFα signaling agent to receptors on the same cell as well as the efficient binding of the other targeting moiety to another cell. Illustrative pairs of cells are provided elsewhere herein.
In some embodiments the linker length is at least equal to the minimum distance between the binding sites of a targeting moiety, a human IFNγ or human TNFα signaling agent, and/or an Fc domain targets (e.g., receptors) on the same cell. In some embodiments the linker length is at least twice, or three times, or four times, or five times, or ten times, or twenty times, or 25 times, or 50 times, or one hundred times, or more the minimum distance between the binding sites of a targeting moiety, a human IFNγ or human TNFα signaling agent, and/or an Fc domain targets on the same cell.
In some embodiments, a linker connects the two targeting moieties to each other and this linker has a short length and a linker connects a targeting moiety and a human IFNγ or human TNFα signaling agent this linker is longer than the linker connecting the two targeting moieties. For example, the difference in amino acid length between the linker connecting the two targeting moieties and the linker connecting a targeting moiety and a human IFNγ or human TNFα signaling agent may be about 100, about 95, about 90, about 85, about 80, about 75, about 70, about 65, about 60, about 55, about 50, about 45, about 40, about 35, about 30, about 25, about 20, about 19, about 18, about 17, about 16, about 15, about 14, about 13, about 12, about 11, about 10, about 9, about 8, about 7, about 6, about 5, about 4, about 3, or about 2 amino acids. In some embodiments, the linker is flexible. In another embodiment, the linker is rigid.
In various embodiments, the linker is substantially comprised of glycine and serine residues (e.g. about 30%, or about 40%, or about 50%, or about 60%, or about 70%, or about 80%, or about 90%, or about 95%, or about 97% glycines and serines). For example, in some embodiments, the linker is (Gly4Ser)n, where n is from about 1 to about 8, e.g. 1, 2, 3, 4, 5, 6, 7, or 8 (SEQ ID NO: 1283-SEQ ID NO: 1290, respectively). In an embodiment, the linker sequence is GGSGGSGGGGSGGGGS (SEQ ID NO: 1291). Additional illustrative linkers include, but are not limited to, linkers having the sequence LE, GGGGS (SEQ ID NO: 1283), (GGGGS)n (n=1-7) (SEQ ID NO: 1283-SEQ ID NO: 1289), (Gly)8 (SEQ ID NO: 1292), (Gly)6 (SEQ ID NO: 1293), (EAAAK)n (n=1-3) (SEQ ID NO: 1294-SEQ ID NO: 1296), A(EAAAK)nA (n=2-5) (SEQ ID NO: 1297-SEQ ID NO: 1300), AEAAAKEAAAKA (SEQ ID NO: 1297), A(EAAAK)4ALEA(EAAAK)4A (SEQ ID NO: 1301), PAPAP (SEQ ID NO: 1302), KESGSVSSEQLAQFRSLD (SEQ ID NO: 1303), EGKSSGSGSESKST (SEQ ID NO: 1304), GSAGSAAGSGEF (SEQ ID NO: 1305), and (XP)n, with X designating any amino acid, e.g., Ala, Lys, or Glu. In various embodiments, the linker is GGS or (GGS)n (n=2-20) (SEQ ID NO: 1306-SEQ ID NO: 1324). In some embodiments, the linker is G. In some embodiments, the linker is AAA. In some embodiments, the linker is (GGGGS)n (n=9-20) (SEQ ID NO: 1325-SEQ ID NO: 1336).
In some embodiments, the linker is one or more of GGGSE (SEQ ID NO: 1337), GSESG (SEQ ID NO: 1338), GSEGS (SEQ ID NO: 1339), GEGGSGEGSSGEGSSSEGGGSEGGGSEGGGSEGGS (SEQ ID NO: 1340), and a linker of randomly placed G, S, and E every 4 amino acid intervals.
In some embodiments, the linker is a hinge region of an antibody (e.g., of IgG, IgA, IgD, and IgE, inclusive of subclasses (e.g. IgG1, IgG2, IgG3, and IgG4, and IgA1 and IgA2)). In various embodiments, the linker is a hinge region of an antibody (e.g., of IgG, IgA, IgD, and IgE, inclusive of subclasses (e.g. IgG1, IgG2, IgG3, and IgG4, and IgA1 and IgA2)). The hinge region, found in IgG, IgA, IgD, and IgE class antibodies, acts as a flexible spacer, allowing the Fab portion to move freely in space. In contrast to the constant regions, the hinge domains are structurally diverse, varying in both sequence and length among immunoglobulin classes and subclasses. For example, the length and flexibility of the hinge region varies among the IgG subclasses. The hinge region of IgG1 encompasses amino acids 216-231 and, because it is freely flexible, the Fab fragments can rotate about their axes of symmetry and move within a sphere centered at the first of two inter-heavy chain disulfide bridges. IgG2 has a shorter hinge than IgG1, with 12 amino acid residues and four disulfide bridges. The hinge region of IgG2 lacks a glycine residue, is relatively short, and contains a rigid poly-proline double helix, stabilized by extra inter-heavy chain disulfide bridges. These properties restrict the flexibility of the IgG2 molecule. IgG3 differs from the other subclasses by its unique extended hinge region (about four times as long as the IgG1 hinge), containing 62 amino acids (including 21 prolines and 11 cysteines), forming an inflexible poly-proline double helix. In IgG3, the Fab fragments are relatively far away from the Fc fragment, giving the molecule a greater flexibility. The elongated hinge in IgG3 is also responsible for its higher molecular weight compared to the other subclasses. The hinge region of IgG4 is shorter than that of IgG1 and its flexibility is intermediate between that of IgG1 and IgG2. The flexibility of the hinge regions reportedly decreases in the order IgG3>IgG1>IgG4>IgG2.
According to crystallographic studies, the immunoglobulin hinge region can be further subdivided functionally into three regions: the upper hinge region, the core region, and the lower hinge region. See Shin et al., 1992 Immunological Reviews 130:87. The upper hinge region includes amino acids from the carboxyl end of CH1 to the first residue in the hinge that restricts motion, generally the first cysteine residue that forms an interchain disulfide bond between the two heavy chains. The length of the upper hinge region correlates with the segmental flexibility of the antibody. The core hinge region contains the inter-heavy chain disulfide bridges, and the lower hinge region joins the amino terminal end of the CH2 domain and includes residues in CH2. Id. The core hinge region of wild-type human IgG1 contains the sequence Cys-Pro-Pro-Cys (SEQ ID NO: 1341), which when dimerized by disulfide bond formation, results in a cyclic octapeptide believed to act as a pivot, thus conferring flexibility. In various embodiments, the linker comprises, one, or two, or three of the upper hinge region, the core region, and the lower hinge region of any antibody (e.g., of IgG, IgA, IgD, and IgE, inclusive of subclasses (e.g. IgG1, IgG2, IgG3, and IgG4, and IgA1 and IgA2)). The hinge region may also contain one or more glycosylation sites, which include a number of structurally distinct types of sites for carbohydrate attachment. For example, IgA1 contains five glycosylation sites within a 17-amino-acid segment of the hinge region, conferring resistance of the hinge region polypeptide to intestinal proteases, considered an advantageous property for a secretory immunoglobulin. In various embodiments, the linker of the present invention comprises one or more glycosylation sites. In various embodiments, the linker is a hinge-CH2-CH3 domain of a human IgG4 antibody.
In some embodiments, the linker is a synthetic linker such as PEG.
In various embodiments, the linker may be functional. For example, without limitation, the linker may function to improve the folding and/or stability, improve the expression, improve the pharmacokinetics, and/or improve the bioactivity of the Fc-based chimeric protein complex. In another example, the linker may function to target the Fc-based chimeric protein complex to a particular cell type or location.
In some embodiments, the Fc-based chimeric protein complex of the present technology includes one or more functional groups, residues, or moieties. In various embodiments, the one or more functional groups, residues, or moieties are attached or genetically fused to any of the Fc-proteins, the human IFNγ or human TNFα signaling agents, and the targeting moieties described herein. In some embodiments, such functional groups, residues or moieties confer one or more desired properties or functionalities to the Fc-based chimeric protein complex of the present technology. Examples of such functional groups and of techniques for introducing them into the Fc-based chimeric protein complex are known in the art, for example, see Remington's Pharmaceutical Sciences, 16th ed., Mack Publishing Co., Easton, Pa. (1980).
In various embodiments, the Fc-based chimeric protein complex may by conjugated and/or fused with another agent to extend half-life or otherwise improve pharmacodynamic and pharmacokinetic properties. For example, in some embodiments, the Fc-based chimeric protein complex may be fused or conjugated with one or more of PEG, XTEN (e.g., as rPEG), polysialic acid (POLYXEN), albumin (e.g., human serum albumin or HSA), elastin-like protein (ELP), PAS, HAP, GLK, CTP, transferrin, and the like.
In some embodiments, the functional groups, residues, or moieties comprise a suitable pharmacologically acceptable polymer, such as poly(ethyleneglycol) (PEG) or derivatives thereof (such as methoxypoly(ethyleneglycol) or mPEG). In some embodiments, attachment of the PEG moiety increases the half-life and/or reduces the immunogenecity of the Fc-based chimeric protein complex. Generally, any suitable form of pegylation can be used, such as the pegylation used in the art for antibodies and antibody fragments (including but not limited to single domain antibodies such as VHHs); see, for example, Chapman, Nat. Biotechnol., 54, 531-545 (2002); by Veronese and Harris, Adv. Drug Deliv. Rev. 54, 453-456 (2003), by Harris and Chess, Nat. Rev. Drug. Discov., 2, (2003) and in WO04060965, the entire contents of which are hereby incorporated by reference. Various reagents for pegylation of proteins are also commercially available, for example, from Nektar Therapeutics, USA. In some embodiments, site-directed pegylation is used, in particular via a cysteine-residue (see, for example, Yang et al., Protein Engineering, 16, 10, 761-770 (2003), the entire contents of which is hereby incorporated by reference). For example, for this purpose, PEG may be attached to a cysteine residue that naturally occurs in the Fc-based chimeric protein complex. In some embodiments, the Fc-based chimeric protein complex is modified so as to suitably introduce one or more cysteine residues for attachment of PEG, or an amino acid sequence comprising one or more cysteine residues for attachment of PEG may be fused to the amino- and/or carboxy-terminus of the Fc-based chimeric protein complex, using techniques known in the art.
In some embodiments, the functional groups, residues, or moieties comprise N-linked or O-linked glycosylation. In some embodiments, the N-linked or O-linked glycosylation is introduced as part of a co-translational and/or post-translational modification.
In some embodiments, the functional groups, residues, or moieties comprise one or more detectable labels or other signal-generating groups or moieties. Suitable labels and techniques for attaching, using and detecting them are known in the art and, include, but are not limited to, fluorescent labels (such as fluorescein, isothiocyanate, rhodamine, phycoerythrin, phycocyanin, allophycocyanin, o-phthaldehyde, and fluorescamine and fluorescent metals such as Eu or others metals from the lanthanide series), phosphorescent labels, chemiluminescent labels or bioluminescent labels (such as luminal, isoluminol, theromatic acridinium ester, imidazole, acridinium salts, oxalate ester, dioxetane or GFP and its analogs), radio-isotopes, metals, metals chelates or metallic cations or other metals or metallic cations that are particularly suited for use in in vivo, in vitro or in situ diagnosis and imaging, as well as chromophores and enzymes (such as malate dehydrogenase, staphylococcal nuclease, delta-V-steroid isomerase, yeast alcohol dehydrogenase, alpha-glycerophosphate dehydrogenase, triose phosphate isomerase, biotinavidin peroxidase, horseradish peroxidase, alkaline phosphatase, asparaginase, glucose oxidase, beta-galactosidase, ribonuclease, urease, catalase, glucose-VI-phosphate dehydrogenase, glucoamylase and acetylcholine esterase). Other suitable labels include moieties that can be detected using NMR or ESR spectroscopy. Such labeled VHHs and polypeptides of the invention may, for example, be used for in vitro, in vivo or in situ assays (including immunoassays known per se such as ELISA, RIA, EIA and other “sandwich assays,” etc.) as well as in vivo diagnostic and imaging purposes, depending on the choice of the specific label.
In some embodiments, the functional groups, residues, or moieties comprise a tag that is attached or genetically fused to the Fc-based chimeric protein complex. In some embodiments, the Fc-based chimeric protein complex may include a single tag or multiple tags. The tag for example is a peptide, sugar, or DNA molecule that does not inhibit or prevent binding of the Fc-based chimeric protein complex to at target of interest or any other antigen of interest, such as, e.g., tumor antigens. In various embodiments, the tag is at least about: three to five amino acids long, five to eight amino acids long, eight to twelve amino acids long, twelve to fifteen amino acids long, or fifteen to twenty amino acids long. Illustrative tags are described for example, in U.S. Patent Publication No. US2013/0058962. In some embodiment, the tag is an affinity tag such as glutathione-S-transferase (GST) and histidine (His) tag. In an embodiment, the Fc-based chimeric protein complex comprises a His tag.
In some embodiments, the functional groups, residues, or moieties comprise a chelating group, for example, to chelate one of the metals or metallic cations. Suitable chelating groups, for example, include, without limitation, diethyl-enetriaminepentaacetic acid (DTPA) or ethylenediaminetetraacetic acid (EDTA).
In some embodiments, the functional groups, residues, or moieties comprise a functional group that is one part of a specific binding pair, such as the biotin-(strept)avidin binding pair. Such a functional group may be used to link the Fc-based chimeric protein complex to another protein, polypeptide or chemical compound that is bound to the other half of the binding pair, i.e., through formation of the binding pair. For example, an Fc-based chimeric protein complex may be conjugated to biotin, and linked to another protein, polypeptide, compound or carrier conjugated to avidin or streptavidin. For example, such a conjugated Fc-based chimeric protein complex may be used as a reporter, for example, in a diagnostic system where a detectable signal-producing agent is conjugated to avidin or streptavidin. Such binding pairs may, for example, also be used to bind the Fc-based chimeric protein complex to a carrier, including carriers suitable for pharmaceutical purposes. One non-limiting example are the liposomal formulations described by Cao and Suresh, Journal of Drug Targeting, 8, 4, 257 (2000). Such binding pairs may also be used to link a therapeutically active agent to the Fc-based chimeric protein complex.
In various embodiments, the Fc-based chimeric protein complex comprises a targeting moiety that is a VHH. In various embodiments, the VHH is not limited to a specific biological source or to a specific method of preparation. For example, the VHH can generally be obtained: (1) by isolating the VHH domain of a naturally occurring heavy chain antibody; (2) by expression of a nucleotide sequence encoding a naturally occurring VHH domain; (3) by “humanization” of a naturally occurring VHH domain or by expression of a nucleic acid encoding a such humanized VHH domain; (4) by “camelization” of a naturally occurring VH domain from any animal species, such as from a mammalian species, such as from a human being, or by expression of a nucleic acid encoding such a camelized VH domain; (5) by “camelization” of a “domain antibody” or “Dab” as described in the art, or by expression of a nucleic acid encoding such a camelized VH domain; (6) by using synthetic or semi-synthetic techniques for preparing proteins, polypeptides or other amino acid sequences known in the art; (7) by preparing a nucleic acid encoding a VHH using techniques for nucleic acid synthesis known in the art, followed by expression of the nucleic acid thus obtained; and/or (8) by any combination of one or more of the foregoing.
In an embodiment, the Fc-based chimeric protein complex comprises a VHH that corresponds to the VHH domains of naturally occurring heavy chain antibodies directed against a target of interest. In some embodiments, such VHH sequences can generally be generated or obtained by suitably immunizing a species of Camelid with a molecule of based on the target of interest (e.g., XCR1, Clec9A, CD8, SIRP1α, FAP, etc.) (i.e., so as to raise an immune response and/or heavy chain antibodies directed against the target of interest), by obtaining a suitable biological sample from the Camelid (such as a blood sample, or any sample of B-cells), and by generating VHH sequences directed against the target of interest, starting from the sample, using any suitable known techniques. In some embodiments, naturally occurring VHH domains against the target of interest can be obtained from naive libraries of Camelid VHH sequences, for example, by screening such a library using the target of interest or at least one part, fragment, antigenic determinant or epitope thereof using one or more screening techniques known in the art. Such libraries and techniques are, for example, described in WO9937681, WO0190190, WO03025020 and WO03035694, the entire contents of which are hereby incorporated by reference. In some embodiments, improved synthetic or semi-synthetic libraries derived from naive VHH libraries may be used, such as VHH libraries obtained from naive VHH libraries by techniques such as random mutagenesis and/or CDR shuffling, as for example, described in WO0043507, the entire contents of which are hereby incorporated by reference. In some embodiments, another technique for obtaining VHH sequences directed against a target of interest involves suitably immunizing a transgenic mammal that is capable of expressing heavy chain antibodies (i.e., so as to raise an immune response and/or heavy chain antibodies directed against the target of interest), obtaining a suitable biological sample from the transgenic mammal (such as a blood sample, or any sample of B-cells), and then generating VHH sequences directed against XCR1 starting from the sample, using any suitable known techniques. For example, for this purpose, the heavy chain antibody-expressing mice and the further methods and techniques described in WO02085945 and in WO04049794 (the entire contents of which are hereby incorporated by reference) can be used.
In an embodiment, the Fc-based chimeric protein complex comprises a VHH that has been “humanized” i.e., by replacing one or more amino acid residues in the amino acid sequence of the naturally occurring VHH sequence (and in particular in the framework sequences) by one or more of the amino acid residues that occur at the corresponding position(s) in a VH domain from a conventional 4-chain antibody from a human being. This can be performed using humanization techniques known in the art. In some embodiments, possible humanizing substitutions or combinations of humanizing substitutions may be determined by methods known in the art, for example, by a comparison between the sequence of a VHH and the sequence of a naturally occurring human VH domain. In some embodiments, the humanizing substitutions are chosen such that the resulting humanized VHHs still retain advantageous functional properties. Generally, as a result of humanization, the VHHs of the invention may become more “human-like,” while still retaining favorable properties such as a reduced immunogenicity, compared to the corresponding naturally occurring VHH domains. In various embodiments, the humanized VHHs of the invention can be obtained in any suitable manner known in the art and thus are not strictly limited to polypeptides that have been obtained using a polypeptide that comprises a naturally occurring VHH domain as a starting material.
In an embodiment, the Fc-based chimeric protein complex comprises a VHH that has been “camelized,” i.e., by replacing one or more amino acid residues in the amino acid sequence of a naturally occurring VH domain from a conventional 4-chain antibody by one or more of the amino acid residues that occur at the corresponding position(s) in a VHH domain of a heavy chain antibody of a camelid. In some embodiments, such “camelizing” substitutions are inserted at amino acid positions that form and/or are present at the VH-VL interface, and/or at the so-called Camelidae hallmark residues (see, for example, WO9404678, the entire contents of which are hereby incorporated by reference). In some embodiments, the VH sequence that is used as a starting material or starting point for generating or designing the camelized VHH is a VH sequence from a mammal, for example, the VH sequence of a human being, such as a VH3 sequence. In various embodiments, the camelized VHHs can be obtained in any suitable manner known in the art (i.e., as indicated under points (1)-(8) above) and thus are not strictly limited to polypeptides that have been obtained using a polypeptide that comprises a naturally occurring VH domain as a starting material.
In various embodiments, both “humanization” and “camelization” can be performed by providing a nucleotide sequence that encodes a naturally occurring VHH domain or VH domain, respectively, and then changing, in a manner known in the art, one or more codons in the nucleotide sequence in such a way that the new nucleotide sequence encodes a “humanized” or “camelized” VHH, respectively. This nucleic acid can then be expressed in a manner known in the art, so as to provide the desired VHH of the invention. Alternatively, based on the amino acid sequence of a naturally occurring VHH domain or VH domain, respectively, the amino acid sequence of the desired humanized or camelized VHH of the invention, respectively, can be designed and then synthesized de novo using techniques for peptide synthesis known in the art. Also, based on the amino acid sequence or nucleotide sequence of a naturally occurring VHH domain or VH domain, respectively, a nucleotide sequence encoding the desired humanized or camelized VHH, respectively, can be designed and then synthesized de novo using techniques for nucleic acid synthesis known in the art, after which the nucleic acid thus obtained can be expressed in a manner known in the art, so as to provide the desired VHH of the invention. Other suitable methods and techniques for obtaining the VHHs of the invention and/or nucleic acids encoding the same, starting from naturally occurring VH sequences or VHH sequences, are known in the art, and may, for example, comprise combining one or more parts of one or more naturally occurring VH sequences (such as one or more FR sequences and/or CDR sequences), one or more parts of one or more naturally occurring VHH sequences (such as one or more FR sequences or CDR sequences), and/or one or more synthetic or semi-synthetic sequences, in a suitable manner, so as to provide a VHH of the invention or a nucleotide sequence or nucleic acid encoding the same.
Methods for producing the Fc-based chimeric protein complex of the present technology are described herein. For example, DNA sequences encoding the Fc-based chimeric protein complex of the present technology can be chemically synthesized using methods known in the art. Synthetic DNA sequences can be ligated to other appropriate nucleotide sequences, including, e.g., expression control sequences, to produce gene expression constructs encoding the desired Fc-based chimeric protein complex of the present technology. Accordingly, in various embodiments, the present invention provides for isolated nucleic acids comprising a nucleotide sequence encoding the Fc-based chimeric protein complex of the present technology.
Nucleic acids encoding the Fc-based chimeric protein complex of the present technology can be incorporated (ligated) into expression vectors, which can be introduced into host cells through transfection, transformation, or transduction techniques. For example, nucleic acids encoding the Fc-based chimeric protein complex of the present technology invention can be introduced into host cells by retroviral transduction. Illustrative host cells are E. coli cells, Chinese hamster ovary (CHO) cells, human embryonic kidney 293 (HEK 293) cells, HeLa cells, baby hamster kidney (BHK) cells, monkey kidney cells (COS), human hepatocellular carcinoma cells (e.g., Hep G2), and myeloma cells. Transformed host cells can be grown under conditions that permit the host cells to express the genes that encode the Fc-based chimeric protein complex of the present technology. Accordingly, in various embodiments, the present invention provides expression vectors comprising nucleic acids that encode the Fc-based chimeric protein complex of the present technology. In various embodiments, the present invention additional provides host cells comprising such expression vectors.
Specific expression and purification conditions will vary depending upon the expression system employed. For example, if a gene is to be expressed in E. coli, it is first cloned into an expression vector by positioning the engineered gene downstream from a suitable bacterial promoter, e.g., Trp or Tac, and a prokaryotic signal sequence. In another example, if the engineered gene is to be expressed in eukaryotic host cells, e.g., CHO cells, it is first inserted into an expression vector containing for example, a suitable eukaryotic promoter, a secretion signal, enhancers, and various introns. The gene construct can be introduced into the host cells using transfection, transformation, or transduction techniques.
The Fc-based chimeric protein complex of the present technology can be produced by growing a host cell transfected with an expression vector encoding the Fc-based chimeric protein complex under conditions that permit expression of the protein. Following expression, the protein can be harvested and purified using techniques well known in the art, e.g., affinity tags such as glutathione-S-transferase (GST) and histidine (His) tags or by chromatography. In an embodiment, the Fc-based chimeric protein complex comprises a His tag. In an embodiment, the Fc-based chimeric protein complex comprises a His tag and a proteolytic site to allow cleavage of the His tag.
Accordingly, in various embodiments, the present invention provides for a nucleic acid encoding an Fc-based chimeric protein complex of the present invention. In various embodiments, the present invention provides for a host cell comprising a nucleic acid encoding an Fc-based chimeric protein complex of the present invention.
In various embodiments, the methods of modifying and producing the Fc-based chimeric protein complex as described herein can be easily adapted for the modification and production of any multi-specific Fc-based chimeric protein complex comprising two or more targeting moieties and/or human IFNγ or human TNFα signaling agents.
In various embodiments, the present Fc-based chimeric protein complex may be expressed in vivo, for instance, in a patient. For example, in various embodiments, the present Fc-based chimeric protein complex may be administered in the form of nucleic acid which encodes the present Fc-based chimeric protein complex. In various embodiments, the nucleic acid is DNA or RNA. In some embodiments, the present Fc-based chimeric protein complex is encoded by a modified mRNA, i.e. an mRNA comprising one or more modified nucleotides. In some embodiments, the modified mRNA comprises one or modifications found in U.S. Pat. No. 8,278,036, the entire contents of which are hereby incorporated by reference. In some embodiments, the modified mRNA comprises one or more of m5C, m5U, m6A, s2U, 4W, and 2′-O-methyl-U. In some embodiments, the present invention relates to administering a modified mRNA encoding one or more of the present Fc-based chimeric protein complexes. In some embodiments, the present invention relates to gene therapy vectors comprising the same. In some embodiments, the present invention relates to gene therapy methods comprising the same. In various embodiments, the nucleic acid is in the form of an oncolytic virus, e.g. an adenovirus, reovirus, measles, herpes simplex, Newcastle disease virus or vaccinia.
The Fc-based chimeric protein complex described herein can possess a sufficiently basic functional group, which can react with an inorganic or organic acid, or a carboxyl group, which can react with an inorganic or organic base, to form a pharmaceutically acceptable salt. A pharmaceutically acceptable acid addition salt is formed from a pharmaceutically acceptable acid, as is well known in the art. Such salts include the pharmaceutically acceptable salts listed in, for example, Journal of Pharmaceutical Science, 66, 2-19 (1977) and The Handbook of Pharmaceutical Salts; Properties, Selection, and Use. P. H. Stahl and C. G. Wermuth (eds.), Verlag, Zurich (Switzerland) 2002, which are hereby incorporated by reference in their entirety.
Pharmaceutically acceptable salts include, by way of non-limiting example, sulfate, citrate, acetate, oxalate, chloride, bromide, iodide, nitrate, bisulfate, phosphate, acid phosphate, isonicotinate, lactate, salicylate, acid citrate, tartrate, oleate, tannate, pantothenate, bitartrate, ascorbate, succinate, maleate, gentisinate, fumarate, gluconate, glucaronate, saccharate, formate, benzoate, glutamate, methanesulfonate, ethanesulfonate, benzenesulfonate, p-toluenesulfonate, camphorsulfonate, pamoate, phenylacetate, trifluoroacetate, acrylate, chlorobenzoate, dinitrobenzoate, hydroxybenzoate, methoxybenzoate, methylbenzoate, o-acetoxybenzoate, naphthalene-2-benzoate, isobutyrate, phenylbutyrate, α-hydroxybutyrate, butyne-1,4-dicarboxylate, hexyne-1,4-dicarboxylate, caprate, caprylate, cinnamate, glycollate, heptanoate, hippurate, malate, hydroxymaleate, malonate, mandelate, mesylate, nicotinate, phthalate, teraphthalate, propiolate, propionate, phenylpropionate, sebacate, suberate, p-bromobenzenesulfonate, chlorobenzenesulfonate, ethylsulfonate, 2-hydroxyethylsulfonate, methylsulfonate, naphthalene-1-sulfonate, naphthalene-2-sulfonate, naphthalene-1,5-sulfonate, xylenesulfonate, and tartarate salts.
The term “pharmaceutically acceptable salt” also refers to a salt of the compositions of the present invention having an acidic functional group, such as a carboxylic acid functional group, and a base. Suitable bases include, but are not limited to, hydroxides of alkali metals such as sodium, potassium, and lithium; hydroxides of alkaline earth metal such as calcium and magnesium; hydroxides of other metals, such as aluminum and zinc; ammonia, and organic amines, such as unsubstituted or hydroxy-substituted mono-, di-, or tri-alkylamines, dicyclohexylamine; tributyl amine; pyridine; N-methyl, N-ethylamine; diethylamine; triethylamine; mono-, bis-, or tris-(2-OH-lower alkylamines), such as mono-; bis-, or tris-(2-hydroxyethyl)amine, 2-hydroxy-tert-butylamine, or tris-(hydroxymethyl)methylamine, N,N-di-lower alkyl-N-(hydroxyl-lower alkyl)-amines, such as N,N-dimethyl-N-(2-hydroxyethyl)amine or tri-(2-hydroxyethyl)amine; N-methyl-D-glucamine; and amino acids such as arginine, lysine, and the like.
In some embodiments, the compositions described herein are in the form of a pharmaceutically acceptable salt.
In various embodiments, the present invention pertains to pharmaceutical compositions comprising the Fc-based chimeric protein complex described herein and a pharmaceutically acceptable carrier or excipient. In some embodiments, the present invention pertains to pharmaceutical compositions comprising the present Fc-based chimeric protein complex. In a further embodiment, the present invention pertains to pharmaceutical compositions comprising a combination of the present Fc-based chimeric protein complex and any other therapeutic agents described herein. Any pharmaceutical compositions described herein can be administered to a subject as a component of a composition that comprises a pharmaceutically acceptable carrier or vehicle. Such compositions can optionally comprise a suitable amount of a pharmaceutically acceptable excipient so as to provide the form for proper administration.
In various embodiments, pharmaceutical excipients can be liquids, such as water and oils, including those of petroleum, animal, vegetable, or synthetic origin, such as peanut oil, soybean oil, mineral oil, sesame oil and the like. The pharmaceutical excipients can be, for example, saline, gum acacia, gelatin, starch paste, talc, keratin, colloidal silica, urea and the like. In addition, auxiliary, stabilizing, thickening, lubricating, and coloring agents can be used. In one embodiment, the pharmaceutically acceptable excipients are sterile when administered to a subject. Water is a useful excipient when any agent described herein is administered intravenously. Saline solutions and aqueous dextrose and glycerol solutions can also be employed as liquid excipients, specifically for injectable solutions. Suitable pharmaceutical excipients also include starch, glucose, lactose, sucrose, gelatin, malt, rice, flour, chalk, silica gel, sodium stearate, glycerol monostearate, talc, sodium chloride, dried skim milk, glycerol, propylene, glycol, water, ethanol and the like. Any agent described herein, if desired, can also comprise minor amounts of wetting or emulsifying agents, or pH buffering agents. Other examples of suitable pharmaceutical excipients are described in Remington's Pharmaceutical Sciences 1447-1676 (Alfonso R. Gennaro eds., 19th ed. 1995), incorporated herein by reference.
The present invention includes the described pharmaceutical compositions (and/or additional therapeutic agents) in various formulations. Any inventive pharmaceutical composition (and/or additional therapeutic agents) described herein can take the form of solutions, suspensions, emulsion, drops, tablets, pills, pellets, capsules, capsules containing liquids, gelatin capsules, powders, sustained-release formulations, suppositories, emulsions, aerosols, sprays, suspensions, lyophilized powder, frozen suspension, desiccated powder, or any other form suitable for use. In one embodiment, the composition is in the form of a capsule. In another embodiment, the composition is in the form of a tablet. In yet another embodiment, the pharmaceutical composition is formulated in the form of a soft-gel capsule. In a further embodiment, the pharmaceutical composition is formulated in the form of a gelatin capsule. In yet another embodiment, the pharmaceutical composition is formulated as a liquid.
Where necessary, the inventive pharmaceutical compositions (and/or additional agents) can also include a solubilizing agent. Also, the agents can be delivered with a suitable vehicle or delivery device as known in the art. Combination therapies outlined herein can be co-delivered in a single delivery vehicle or delivery device.
The formulations comprising the inventive pharmaceutical compositions (and/or additional agents) of the present invention may conveniently be presented in unit dosage forms and may be prepared by any of the methods well known in the art of pharmacy. Such methods generally include the step of bringing the therapeutic agents into association with a carrier, which constitutes one or more accessory ingredients. Typically, the formulations are prepared by uniformly and intimately bringing the therapeutic agent into association with a liquid carrier, a finely divided solid carrier, or both, and then, if necessary, shaping the product into dosage forms of the desired formulation (e.g., wet or dry granulation, powder blends, etc., followed by tableting using conventional methods known in the art).
In various embodiments, any pharmaceutical compositions (and/or additional agents) described herein is formulated in accordance with routine procedures as a composition adapted for a mode of administration described herein.
Routes of administration include, for example: oral, intradermal, intramuscular, intraperitoneal, intravenous, subcutaneous, intranasal, epidural, sublingual, intranasal, intracerebral, intravaginal, transdermal, rectally, by inhalation, or topically. Administration can be local or systemic. In some embodiments, the administering is effected orally. In another embodiment, the administration is by parenteral injection. The mode of administration can be left to the discretion of the practitioner, and depends in-part upon the site of the medical condition. In most instances, administration results in the release of any agent described herein into the bloodstream.
In one embodiment, the Fc-based chimeric protein complex described herein is formulated in accordance with routine procedures as a composition adapted for oral administration. Compositions for oral delivery can be in the form of tablets, lozenges, aqueous or oily suspensions, granules, powders, emulsions, capsules, syrups, or elixirs, for example. Orally administered compositions can comprise one or more agents, for example, sweetening agents such as fructose, aspartame or saccharin; flavoring agents such as peppermint, oil of wintergreen, or cherry; coloring agents; and preserving agents, to provide a pharmaceutically palatable preparation. Moreover, where in tablet or pill form, the compositions can be coated to delay disintegration and absorption in the gastrointestinal tract thereby providing a sustained action over an extended period of time. Selectively permeable membranes surrounding an osmotically active driving any Fc-based chimeric protein complex described herein are also suitable for orally administered compositions. In these latter platforms, fluid from the environment surrounding the capsule is imbibed by the driving compound, which swells to displace the agent or agent composition through an aperture. These delivery platforms can provide an essentially zero order delivery profile as opposed to the spiked profiles of immediate release formulations. A time-delay material such as glycerol monostearate or glycerol stearate can also be useful. Oral compositions can include standard excipients such as mannitol, lactose, starch, magnesium stearate, sodium saccharin, cellulose, and magnesium carbonate. In one embodiment, the excipients are of pharmaceutical grade. Suspensions, in addition to the active compounds, may contain suspending agents such as, for example, ethoxylated isostearyl alcohols, polyoxyethylene sorbitol and sorbitan esters, microcrystalline cellulose, aluminum metahydroxide, bentonite, agar-agar, tragacanth, etc., and mixtures thereof.
Dosage forms suitable for parenteral administration (e.g. intravenous, intramuscular, intraperitoneal, subcutaneous and intra-articular injection and infusion) include, for example, solutions, suspensions, dispersions, emulsions, and the like. They may also be manufactured in the form of sterile solid compositions (e.g. lyophilized composition), which can be dissolved or suspended in sterile injectable medium immediately before use. They may contain, for example, suspending or dispersing agents known in the art. Formulation components suitable for parenteral administration include a sterile diluent such as water for injection, saline solution, fixed oils, polyethylene glycols, glycerine, propylene glycol or other synthetic solvents; antibacterial agents such as benzyl alcohol or methyl paraben; antioxidants such as ascorbic acid or sodium bisulfite; chelating agents such as EDTA; buffers such as acetates, citrates or phosphates; and agents for the adjustment of tonicity such as sodium chloride or dextrose.
For intravenous administration, suitable carriers include physiological saline, bacteriostatic water, Cremophor ELTM (BASF, Parsippany, NJ) or phosphate buffered saline (PBS). The carrier should be stable under the conditions of manufacture and storage, and should be preserved against microorganisms. The carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyetheylene glycol), and suitable mixtures thereof.
The compositions provided herein, alone or in combination with other suitable components, can be made into aerosol formulations (i.e., “nebulized”) to be administered via inhalation. Aerosol formulations can be placed into pressurized acceptable propellants, such as dichlorodifluoromethane, propane, nitrogen, and the like.
Any inventive pharmaceutical compositions (and/or additional agents) described herein can be administered by controlled-release or sustained-release means or by delivery devices that are well known to those of ordinary skill in the art. Examples include, but are not limited to, those described in U.S. Pat. Nos. 3,845,770; 3,916,899; 3,536,809; 3,598,123; 4,008,719; 5,674,533; 5,059,595; 5,591,767; 5,120,548; 5,073,543; 5,639,476; 5,354,556; and 5,733,556, each of which is incorporated herein by reference in its entirety. Such dosage forms can be useful for providing controlled- or sustained-release of one or more active ingredients using, for example, hydropropyl cellulose, hydropropylmethyl cellulose, polyvinylpyrrolidone, other polymer matrices, gels, permeable membranes, osmotic systems, multilayer coatings, microparticles, liposomes, microspheres, or a combination thereof to provide the desired release profile in varying proportions. Suitable controlled- or sustained-release formulations known to those skilled in the art, including those described herein, can be readily selected for use with the active ingredients of the agents described herein. The invention thus provides single unit dosage forms suitable for oral administration such as, but not limited to, tablets, capsules, gelcaps, and caplets that are adapted for controlled- or sustained-release.
Controlled- or sustained-release of an active ingredient can be stimulated by various conditions, including but not limited to, changes in pH, changes in temperature, stimulation by an appropriate wavelength of light, concentration or availability of enzymes, concentration or availability of water, or other physiological conditions or compounds.
In another embodiment, a controlled-release system can be placed in proximity of the target area to be treated, thus requiring only a fraction of the systemic dose (see, e.g., Goodson, in Medical Applications of Controlled Release, supra, vol. 2, pp. 115-138 (1984)). Other controlled-release systems discussed in the review by Langer, 1990, Science 249:1527-1533) may be used.
Pharmaceutical formulations preferably are sterile. Sterilization can be accomplished, for example, by filtration through sterile filtration membranes. Where the composition is lyophilized, filter sterilization can be conducted prior to or following lyophilization and reconstitution.
It will be appreciated that the actual dose of the Fc-based chimeric protein complex described herein to be administered according to the present invention will vary according to the particular dosage form, and the mode of administration. Many factors that may modify the action of the Fc-based chimeric protein complex (e.g., body weight, gender, diet, time of administration, route of administration, rate of excretion, condition of the subject, drug combinations, genetic disposition and reaction sensitivities) can be taken into account by those skilled in the art. Administration can be carried out continuously or in one or more discrete doses within the maximum tolerated dose. Optimal administration rates for a given set of conditions can be ascertained by those skilled in the art using conventional dosage administration tests.
In some embodiments, a suitable dosage of the Fc-based chimeric protein complex described herein is in a range of about 0.01 mg/kg to about 10 g/kg of body weight of the subject, about 0.01 mg/kg to about 1 g/kg of body weight of the subject, about 0.01 mg/kg to about 100 mg/kg of body weight of the subject, about 0.01 mg/kg to about 10 mg/kg of body weight of the subject, for example, about 0.01 mg/kg, about 0.02 mg/kg, about 0.03 mg/kg, about 0.04 mg/kg, about 0.05 mg/kg, about 0.06 mg/kg, about 0.07 mg/kg, about 0.08 mg/kg, about 0.09 mg/kg, about 0.1 mg/kg, about 0.2 mg/kg, about 0.3 mg/kg, about 0.4 mg/kg, about 0.5 mg/kg, about 0.6 mg/kg, about 0.7 mg/kg, about 0.8 mg/kg, about 0.9 mg/kg, about 1 mg/kg, about 1.1 mg/kg, about 1.2 mg/kg, about 1.3 mg/kg, about 1.4 mg/kg, about 1.5 mg/kg, about 1.6 mg/kg, about 1.7 mg/kg, about 1.8 mg/kg, 1.9 mg/kg, about 2 mg/kg, about 3 mg/kg, about 4 mg/kg, about 5 mg/kg, about 6 mg/kg, about 7 mg/kg, about 8 mg/kg, about 9 mg/kg, about 10 mg/kg body weight, about 100 mg/kg body weight, about 1 g/kg of body weight, about 10 g/kg of body weight, inclusive of all values and ranges there between.
Individual doses of the Fc-based chimeric protein complex described herein can be administered in unit dosage forms containing, for example, from about 0.01 mg to about 100 g, from about 0.01 mg to about 75 g, from about 0.01 mg to about 50 g, from about 0.01 mg to about 25 g, about 0.01 mg to about 10 g, about 0.01 mg to about 7.5 g, about 0.01 mg to about 5 g, about 0.01 mg to about 2.5 g, about 0.01 mg to about 1 g, about 0.01 mg to about 100 mg, from about 0.1 mg to about 100 mg, from about 0.1 mg to about 90 mg, from about 0.1 mg to about 80 mg, from about 0.1 mg to about 70 mg, from about 0.1 mg to about 60 mg, from about 0.1 mg to about 50 mg, from about 0.1 mg to about 40 mg active ingredient, from about 0.1 mg to about 30 mg, from about 0.1 mg to about 20 mg, from about 0.1 mg to about 10 mg, from about 0.1 mg to about 5 mg, from about 0.1 mg to about 3 mg, from about 0.1 mg to about 1 mg per unit dosage form, or from about 5 mg to about 80 mg per unit dosage form. For example, a unit dosage form can be about 0.01 mg, about 0.02 mg, about 0.03 mg, about 0.04 mg, about 0.05 mg, about 0.06 mg, about 0.07 mg, about 0.08 mg, about 0.09 mg, about 0.1 mg, about 0.2 mg, about 0.3 mg, about 0.4 mg, about 0.5 mg, about 0.6 mg, about 0.7 mg, about 0.8 mg, about 0.9 mg, about 1 mg, about 2 mg, about 3 mg, about 4 mg, about 5 mg, about 6 mg, about 7 mg, about 8 mg, about 9 mg about 10 mg, about 15 mg, about 20 mg, about 25 mg, about 30 mg, about 35 mg, about 40 mg, about 45 mg, about 50 mg, about 55 mg, about 60 mg, about 65 mg, about 70 mg, about 75 mg, about 80 mg, about 85 mg, about 90 mg, about 95 mg, about 100 mg, about 200 mg, about 500 mg, about 1 g, about 2.5 g, about 5 g, about 10 g, about 25 g, about 50 g, about 75 g, about 100 g, inclusive of all values and ranges there between.
In one embodiment, the Fc-based chimeric protein complex described herein are administered at an amount of from about 0.01 mg to about 100 g daily, from about 0.01 mg to about 75 g daily, from about 0.01 mg to about 50 g daily, from about 0.01 mg to about 25 g daily, from about 0.01 mg to about 10 g daily, from about 0.01 mg to about 7.5 g daily, from about 0.01 mg to about 5 g daily, from about 0.01 mg to about 2.5 g daily, from about 0.01 mg to about 1 g daily, from about 0.01 mg to about 100 mg daily, from about 0.1 mg to about 100 mg daily, from about 0.1 mg to about 95 mg daily, from about 0.1 mg to about 90 mg daily, from about 0.1 mg to about 85 mg daily, from about 0.1 mg to about 80 mg daily, from about 0.1 mg to about 75 mg daily, from about 0.1 mg to about 70 mg daily, from about 0.1 mg to about 65 mg daily, from about 0.1 mg to about 60 mg daily, from about 0.1 mg to about 55 mg daily, from about 0.1 mg to about 50 mg daily, from about 0.1 mg to about 45 mg daily, from about 0.1 mg to about 40 mg daily, from about 0.1 mg to about 35 mg daily, from about 0.1 mg to about 30 mg daily, from about 0.1 mg to about 25 mg daily, from about 0.1 mg to about 20 mg daily, from about 0.1 mg to about 15 mg daily, from about 0.1 mg to about 10 mg daily, from about 0.1 mg to about 5 mg daily, from about 0.1 mg to about 3 mg daily, from about 0.1 mg to about 1 mg daily, or from about 5 mg to about 80 mg daily. In various embodiments, the Fc-based chimeric protein complex is administered at a daily dose of about 0.01 mg, about 0.02 mg, about 0.03 mg, about 0.04 mg, about 0.05 mg, about 0.06 mg, about 0.07 mg, about 0.08 mg, about 0.09 mg, about 0.1 mg, about 0.2 mg, about 0.3 mg, about 0.4 mg, about 0.5 mg, about 0.6 mg, about 0.7 mg, about 0.8 mg, about 0.9 mg, about 1 mg, about 2 mg, about 3 mg, about 4 mg, about 5 mg, about 6 mg, about 7 mg, about 8 mg, about 9 mg about 10 mg, about 15 mg, about 20 mg, about 25 mg, about 30 mg, about 35 mg, about 40 mg, about 45 mg, about 50 mg, about 55 mg, about 60 mg, about 65 mg, about 70 mg, about 75 mg, about 80 mg, about 85 mg, about 90 mg, about 95 mg, about 100 mg, about 200 mg, about 500 mg, about 1 g, about 2.5 g, about 5 g, about 7.5 g, about 10 g, about 25 g, about 50 g, about 75 g, about 100 g, inclusive of all values and ranges there between.
In accordance with certain embodiments of the invention, the pharmaceutical composition comprising the Fc-based chimeric protein complex described herein may be administered, for example, more than once daily (e.g., about two times, about three times, about four times, about five times, about six times, about seven times, about eight times, about nine times, or about ten times daily), about once per day, about every other day, about every third day, about once a week, about once every two weeks, about once every month, about once every two months, about once every three months, about once every six months, or about once every year.
In various embodiments, the pharmaceutical composition of the present invention is co-administered in conjunction with additional therapeutic agent(s). Co-administration can be simultaneous or sequential.
In one embodiment, the additional therapeutic agent and the Fc-based chimeric protein complex are administered to a subject simultaneously. The term “simultaneously” as used herein, means that the additional therapeutic agent and the Fc-based chimeric protein complex are administered with a time separation of no more than about 60 minutes, such as no more than about 30 minutes, no more than about 20 minutes, no more than about 10 minutes, no more than about 5 minutes, or no more than about 1 minute. Administration of the additional therapeutic agent and the Fc-based chimeric protein complex be by simultaneous administration of a single formulation (e.g., a formulation comprising the additional therapeutic agent and the Fc-based chimeric protein complex) or of separate formulations (e.g., a first formulation including the additional therapeutic agent and a second formulation including the Fc-based chimeric protein complex).
Co-administration does not require the therapeutic agents to be administered simultaneously, if the timing of their administration is such that the pharmacological activities of the additional therapeutic agent and the Fc-based chimeric protein complex overlap in time, thereby exerting a combined therapeutic effect. For example, the additional therapeutic agent and the Fc-based chimeric protein complex can be administered sequentially. The term “sequentially” as used herein means that the additional therapeutic agent and the Fc-based chimeric protein complex are administered with a time separation of more than about 60 minutes. For example, the time between the sequential administration of the additional therapeutic agent and the Fc-based chimeric protein complex can be more than about 60 minutes, more than about 2 hours, more than about 5 hours, more than about 10 hours, more than about 1 day, more than about 2 days, more than about 3 days, more than about 1 week, or more than about 2 weeks, or more than about one month apart. The optimal administration times will depend on the rates of metabolism, excretion, and/or the pharmacodynamic activity of the additional therapeutic agent and the Fc-based chimeric protein complex being administered. Either the additional therapeutic agent or the Fc-based chimeric protein complex may be administered first.
Co-administration also does not require the therapeutic agents to be administered to the subject by the same route of administration. Rather, each therapeutic agent can be administered by any appropriate route, for example, parenterally or non-parenterally.
In some embodiments, the Fc-based chimeric protein complex described herein acts synergistically when co-administered with another therapeutic agent. In such embodiments, the Fc-based chimeric protein complex and the additional therapeutic agent may be administered at doses that are lower than the doses employed when the agents are used in the context of monotherapy.
In some embodiments, the present invention pertains to chemotherapeutic agents as additional therapeutic agents. For example, without limitation, such combination of the present Fc-based chimeric protein complex and chemotherapeutic agent find use in the treatment of cancers, as described elsewhere herein. Examples of chemotherapeutic agents include, but are not limited to, alkylating agents such as thiotepa and CYTOXAN cyclosphosphamide; alkyl sulfonates such as busulfan, improsulfan and piposulfan; aziridines such as benzodopa, carboquone, meturedopa, and uredopa; ethylenimines and methylamelamines including altretamine, triethylenemelamine, trietylenephosphoramide, triethiylenethiophosphoramide and trimethylolomelamine; acetogenins (e.g., bullatacin and bullatacinone); a camptothecin (including the synthetic analogue topotecan); bryostatin; cally statin; CC-1065 (including its adozelesin, carzelesin and bizelesin synthetic analogues); cryptophycins (e.g., cryptophycin 1 and cryptophycin 8); dolastatin; duocarmycin (including the synthetic analogues, KW-2189 and CB 1-TM1); eleutherobin; pancratistatin; a sarcodictyin; spongistatin; nitrogen mustards such as chlorambucil, chlornaphazine, cholophosphamide, estramustine, ifosfamide, mechlorethamine, mechlorethamine oxide hydrochloride, melphalan, novembichin, phenesterine, prednimustine, trofosfamide, uracil mustard; nitrosureas such as carmustine, chlorozotocin, fotemustine, lomustine, nimustine, and ranimnustine; antibiotics such as the enediyne antibiotics (e.g., calicheamicin, especially calicheamicin gammaII and calicheamicin omegaII (see, e.g., Agnew, Chem. Intl. Ed. Engl., 33: 183-186 (1994)); dynemicin, including dynemicin A; bisphosphonates, such as clodronate; an esperamicin; as well as neocarzinostatin chromophore and related chromoprotein enediyne antibiotic chromophores), aclacinomysins, actinomycin, authramycin, azaserine, bleomycins, cactinomycin, carabicin, caminomycin, carzinophilin, chromomycinis, dactinomycin, daunorubicin, detorubicin, 6-diazo-5-oxo-L-norleucine, ADRIAMYCIN doxorubicin (including morpholino-doxorubicin, cyanomorpholino-doxorubicin, 2-pyrrolino-doxorubicin and deoxy doxorubicin), epirubicin, esorubicin, idarubicin, marcellomycin, mitomycins such as mitomycin C, mycophenolic acid, nogalamycin, olivomycins, peplomycin, potfiromycin, puromycin, quelamycin, rodorubicin, streptonigrin, streptozocin, tubercidin, ubenimex, zinostatin, zorubicin; anti-metabolites such as methotrexate and 5-fluorouracil (5-FU); folic acid analogues such as denopterin, methotrexate, pteropterin, trimetrexate; purine analogs such as fludarabine, 6-mercaptopurine, thiamiprine, thioguanine; pyrimidine analogs such as ancitabine, azacitidine, 6-azauridine, carmofur, cytarabine, dideoxyuridine, doxifluridine, enocitabine, floxuridine; androgens such as calusterone, dromostanolone propionate, epitiostanol, mepitiostane, testolactone; anti-adrenals such as minoglutethimide, mitotane, trilostane; folic acid replenisher such as frolinic acid; aceglatone; aldophosphamide glycoside; aminolevulinic acid; eniluracil; amsacrine; bestrabucil; bisantrene; edatraxate; demecolcine; diaziquone; elformithine; elliptinium acetate; an epothilone; etoglucid; gallium nitrate; hydroxyurea; lentinan; lonidainine; maytansinoids such as maytansine and ansamitocins; mitoguazone; mitoxantrone; mopidanmol; nitraerine; pentostatin; phenamet; pirarubicin; losoxantrone; podophyllinic acid; 2-ethylhydrazide; procarbazine; PSK polysaccharide complex (JHS Natural Products, Eugene, Oreg.); razoxane; rhizoxin; sizofuran; spirogermanium; tenuazonic acid; triaziquone; 2,2′,2″-trichlorotriethylamine; trichothecenes (e.g., T-2 toxin, verracurin A, roridin A and anguidine); urethan; vindesine; dacarbazine; mannomustine; mitobronitol; mitolactol; pipobroman; gacytosine; arabinoside (“Ara-C”); cyclophosphamide; thiotepa; taxoids, e.g., TAXOL paclitaxel (Bristol-Myers Squibb Oncology, Princeton, N.J.), ABRAXANE Cremophor-free, albumin-engineered nanoparticle formulation of paclitaxel (American Pharmaceutical Partners, Schaumberg, 111.), and TAXOTERE doxetaxel (Rhone-Poulenc Rorer, Antony, France); chloranbucil; GEMZAR gemcitabine; 6-thioguanine; mercaptopurine; methotrexate; platinum analogs such as cisplatin, oxaliplatin and carboplatin; vinblastine; platinum; etoposide (VP-16); ifosfamide; mitoxantrone; vincristine; NAVELBINE. vinorelbine; novantrone; teniposide; edatrexate; daunomycin; aminopterin; xeloda; ibandronate; irinotecan (Camptosar, CPT-11) (including the treatment regimen of irinotecan with 5-FU and leucovorin); topoisomerase inhibitor RFS 2000; difluoromethylornithine (DMFO); retinoids such as retinoic acid; capecitabine; combretastatin; leucovorin (LV); oxaliplatin, including the oxaliplatin treatment regimen (FOLFOX); lapatinib (Tykerb); inhibitors of PKC-α, Raf, H-Ras, EGFR (e.g., erlotinib (Tarceva)) and VEGF-A that reduce cell proliferation and pharmaceutically acceptable salts, acids or derivatives of any of the above. In addition, the methods of treatment can further include the use of radiation. In addition, the methods of treatment can further include the use of photodynamic therapy.
Accordingly, in some embodiments, the present invention relates to combination therapies using the Fc-based chimeric protein complex and a chemotherapeutic agent. In some embodiments, the present invention relates to administration of the Fc-based chimeric protein complex to a patient undergoing treatment with a chemotherapeutic agent. In some embodiments, the chemotherapeutic agent is a DNA-intercalating agent such as, without limitation, doxorubicin, cisplatin, daunorubicin, and epirubicin. In an embodiment, the DNA-intercalating agent is doxorubicin.
In illustrative embodiments, the Fc-based chimeric protein complex acts synergistically when co-administered with doxorubicin. In an illustrative embodiment, the Fc-based chimeric protein complex acts synergistically when co-administered with doxorubicin for use in treating tumor or cancer. For example, co-administration of the Fc-based chimeric protein complex and doxorubicin may act synergistically to reduce or eliminate the tumor or cancer, or slow the growth and/or progression and/or metastasis of the tumor or cancer. In illustrative embodiments, the combination of the Fc-based chimeric protein complex and doxorubicin may exhibit improved safety profiles when compared to the agents used alone in the context of monotherapy. In illustrative embodiments, the Fc-based chimeric protein complex and doxorubicin may be administered at doses that are lower than the doses employed when the agents are used in the context of monotherapy.
In some embodiments, the present invention relates to combination therapy with one or more immune-modulating agents, for example, without limitation, agents that modulate immune checkpoint. In various embodiments, the immune-modulating agent targets one or more of PD-1, PD-L1, and PD-L2. In various embodiments, the immune-modulating agent is PD-1 inhibitor. In various embodiments, the immune-modulating agent is an antibody specific for one or more of PD-1, PD-L1, and PD-L2. For instance, in some embodiments, the immune-modulating agent is an antibody such as, by way of non-limitation, nivolumab, (ONO-4538/BMS-936558, MDX1106, OPDIVO, BRISTOL MYERS SQUIBB), pembrolizumab (KEYTRUDA, MERCK), pidilizumab (CT-011, CURE TECH), MK-3475 (MERCK), BMS 936559 (BRISTOL MYERS SQUIBB), MPDL3280A (ROCHE). In some embodiments, the immune-modulating agent targets one or more of CD137 or CD137L. In various embodiments, the immune-modulating agent is an antibody specific for one or more of CD137 or CD137L. For instance, in some embodiments, the immune-modulating agent is an antibody such as, by way of non-limitation, urelumab (also known as BMS-663513 and anti-4-1BB antibody). In some embodiments, the present Fc-based chimeric protein complex is combined with urelumab (optionally with one or more of nivolumab, lirilumab, and urelumab) for the treatment of solid tumors and/or B-cell non-Hodgkins lymphoma and/or head and neck cancer and/or multiple myeloma. In some embodiments, the immune-modulating agent is an agent that targets one or more of CTLA-4, AP2M1, CD80, CD86, SHP-2, and PPP2R5A. In various embodiments, the immune-modulating agent is an antibody specific for one or more of CTLA-4, AP2M1, CD80, CD86, SHP-2, and PPP2R5A. For instance, in some embodiments, the immune-modulating agent is an antibody such as, by way of non-limitation, ipilimumab (MDX-010, MDX-101, Yervoy, BMS) and/or tremelimumab (Pfizer). In some embodiments, the present Fc-based chimeric protein complex is combined with ipilimumab (optionally with bavituximab) for the treatment of one or more of melanoma, prostate cancer, and lung cancer. In various embodiments, the immune-modulating agent targets CD20. In various embodiments, the immune-modulating agent is an antibody specific CD20. For instance, in some embodiments, the immune-modulating agent is an antibody such as, by way of non-limitation, Ofatumumab (GENMAB), obinutuzumab (GAZYVA), AME-133v (APPLIED MOLECULAR EVOLUTION), Ocrelizumab (GENENTECH), TRU-015 (TRUBION/EMERGENT), veltuzumab (IMMU-106).
In some embodiments, the present invention relates to combination therapy using the Fc-based chimeric protein complex and a checkpoint inhibitor. In some embodiments, the present invention relates to administration of the Fc-based chimeric protein complex to a patient undergoing treatment with a checkpoint inhibitor. In some embodiments, the checkpoint inhibitor is an agent that targets one or more of PD-1, PD-L1, PD-L2, and CTLA-4 (including any of the anti-PD-1, anti-PD-L1, anti-PD-L2, and anti-CTLA-4 agents described herein). In some embodiment, the checkpoint inhibitor is one or more of nivolumab, (ONO-4538/BMS-936558, MDX1106, OPDIVO, BRISTOL MYERS SQUIBB), pembrolizumab (KEYTRUDA, MERCK), pidilizumab (CT-011, CURE TECH), MK-3475 (MERCK), BMS 936559 (BRISTOL MYERS SQUIBB), MPDL3280A (ROCHE), ipilimumab (MDX-010, MDX-101, Yervoy, BMS) and tremelimumab (Pfizer). In an embodiment, the checkpoint inhibitor is an antibody against PD-L1.
In illustrative embodiments, the Fc-based chimeric protein complex acts synergistically when co-administered with the anti-PD-L1 antibody. In an illustrative embodiment, the Fc-based chimeric protein complex acts synergistically when co-administered with the anti-PD-L1 antibody for use in treating tumor or cancer. For example, co-administration of the Fc-based chimeric protein complex and the anti-PD-L1 antibody may act synergistically to reduce or eliminate the tumor or cancer, or slow the growth and/or progression and/or metastasis of the tumor or cancer. In some embodiments, the combination of the Fc-based chimeric protein complex and the anti-PD-L1 antibody may exhibit improved safety profiles when compared to the agents used alone in the context of monotherapy. In some embodiments, the Fc-based chimeric protein complex and the anti-PD-L1 antibody may be administered at doses that are lower than the doses employed when the agents are used in the context of monotherapy.
In some embodiments, the present invention relates to combination therapies using the Fc-based chimeric protein complex and an immunosuppressive agent. In some embodiments, the present invention relates to administration of the Fc-based chimeric protein complex to a patient undergoing treatment with an immunosuppressive agent. In an embodiment, the immunosuppressive agent is TNF.
In illustrative embodiments, the Fc-based chimeric protein complex acts synergistically when co-administered with TNF. In an illustrative embodiment, the Fc-based chimeric protein complex acts synergistically when co-administered with TNF for use in treating tumor or cancer. For example, co-administration of the Fc-based chimeric protein complex and TNF may act synergistically to reduce or eliminate the tumor or cancer, or slow the growth and/or progression and/or metastasis of the tumor or cancer. In some embodiments, the combination of the Fc-based chimeric protein complex and TNF may exhibit improved safety profiles when compared to the agents used alone in the context of monotherapy. In some embodiments, the Fc-based chimeric protein complex and TNF may be administered at doses that are lower than the doses employed when the agents are used in the context of monotherapy.
In some embodiments, the Fc-based chimeric protein complex acts synergistically when used in combination with Chimeric Antigen Receptor (CAR) T-cell therapy. In an illustrative embodiment, the Fc-based chimeric protein complex acts synergistically when used in combination with CAR T-cell therapy in treating tumor or cancer. In an embodiment, the Fc-based chimeric protein complex acts synergistically when used in combination with CAR T-cell therapy in treating blood-based tumors. In an embodiment, the Fc-based chimeric protein complex acts synergistically when used in combination with CAR T-cell therapy in treating solid tumors. For example, use of the Fc-based chimeric protein complex and CAR T-cells may act synergistically to reduce or eliminate the tumor or cancer, or slow the growth and/or progression and/or metastasis of the tumor or cancer. In various embodiments, the Fc-based chimeric protein complex of the invention induces CAR T-cell division. In various embodiments, the Fc-based chimeric protein complex of the invention induces CAR T-cell proliferation. In various embodiments, the Fc-based chimeric protein complex of the invention prevents anergy of the CAR T cells.
In various embodiments, the CAR T-cell therapy comprises CAR T cells that target antigens (e.g., tumor antigens) such as, but not limited to, carbonic anhydrase IX (CAIX), 5T4, CD19, CD20, CD22, CD30, CD33, CD38, CD47, CS1, CD138, Lewis-Y, L1-CAM, MUC16, ROR-1, IL13Ra2, gp100, prostate stem cell antigen (PSCA), prostate-specific membrane antigen (PSMA), B-cell maturation antigen (BCMA), human papillomavirus type 16 E6 (HPV-16 E6), CD171, folate receptor alpha (FR-α), GD2, human epidermal growth factor receptor 2 (HER2), mesothelin, EGFRvIII, fibroblast activation protein (FAP), carcinoembryonic antigen (CEA), and vascular endothelial growth factor receptor 2 (VEGF-R2), as well as other tumor antigens well known in the art. Additional illustrative tumor antigens include, but are not limited to MART-1/Melan-A, gp100, Dipeptidyl peptidase IV (DPPIV), adenosine deaminase-binding protein (ADAbp), cyclophilin b, Colorectal associated antigen (CRC)-0017-1A/GA733, Carcinoembryonic Antigen (CEA) and its immunogenic epitopes CAP-1 and CAP-2, etv6, aml1, Prostate Specific Antigen (PSA) and its immunogenic epitopes PSA-1, PSA-2, and PSA-3, T-cell receptor/CD3-zeta chain, MAGE-family of tumor antigens (e.g., MAGE-A1, MAGE-A2, MAGE-A3, MAGE-A4, MAGE-A5, MAGE-A6, MAGE-A7, MAGE-A8, MAGE-A9, MAGE-A10, MAGE-A11, MAGE-A12, MAGE-Xp2 (MAGE-B2), MAGE-Xp3 (MAGE-B3), MAGE-Xp4 (MAGE-B4), MAGE-C1, MAGE-C2, MAGE-C3, MAGE-C4, MAGE-C5), GAGE-family of tumor antigens (e.g., GAGE-1, GAGE-2, GAGE-3, GAGE-4, GAGE-5, GAGE-6, GAGE-7, GAGE-8, GAGE-9), BAGE, RAGE, LAGE-1, NAG, GnT-V, MUM-1, CDK4, tyrosinase, p53, MUC family, HER2/neu, p21ras, RCAS1, α-fetoprotein, E-cadherin, α-catenin, β-catenin and γ-catenin, p120ctn, gp100 Pmel117, PRAME, NY-ESO-1, cdc27, adenomatous polyposis coli protein (APC), fodrin, Connexin 37, Ig-idiotype, p15, gp75, GM2 and GD2 gangliosides, viral products such as human papilloma virus proteins, Smad family of tumor antigens, Imp-1, NA, EBV-encoded nuclear antigen (EBNA)-1, brain glycogen phosphorylase, SSX-1, SSX-2 (HOM-MEL-40), SSX-1, SSX-4, SSX-5, SCP-1 CT-7, c-erbB-2, CD19, CD37, CD56, CD70, CD74, CD138, AGS16, MUC1, GPNMB, Ep-CAM, PD-L1, and PD-L2.
Exemplary CAR T-cell therapy include, but are not limited to, JCAR014 (Juno Therapeutics), JCAR015 (Juno Therapeutics), JCAR017 (Juno Therapeutics), JCAR018 (Juno Therapeutics), JCAR020 (Juno Therapeutics), JCAR023 (Juno Therapeutics), JCAR024 (Juno Therapeutics), CTL019 (Novartis), KTE-C19 (Kite Pharma), BPX-401 (Bellicum Pharmaceuticals), BPX-501 (Bellicum Pharmaceuticals), BPX-601 (Bellicum Pharmaceuticals), bb2121 (Bluebird Bio), CD-19 Sleeping Beauty cells (Ziopharm Oncology), UCART19 (Cellectis), UCART123 (Cellectis), UCART38 (Cellectis), UCARTCS1 (Cellectis), OXB-302 (Oxford BioMedica, MB-101 (Mustang Bio) and CAR T-cells developed by Innovative Cellular Therapeutics.
In some embodiments, the Fc-based chimeric protein complex is used in a method of treating multiple sclerosis (MS) in combination with one or more MS therapeutics including, but not limited to, 3-interferons, glatiramer acetate, T-interferon, IFN-ß-2 (U.S. Patent Publication No. 2002/0025304), spirogermaniums (e.g., N-(3-dimethylaminopropyl)-2-aza-8,8-dimethyl-8-germanspiro [4:5] decane, N-(3-dimethylaminopropyl)-2-aza-8,8-diethyl-8-germaspiro [4:5] decane, N-(3-dimethylaminopropyl)-2-aza-8,8-dipropyl-8-germaspiro [4:5] decane, and N-(3-dimethylaminopropyl)-2-aza-8, 8-dibutyl-8-germaspiro [4:5] decane), vitamin D analogs (e.g., 1,25 (OH) 2D3, (see, e.g., U.S. Pat. No. 5,716,946)), prostaglandins (e.g., latanoprost, brimonidine, PGE1, PGE2 and PGE3, see, e.g., U.S. Patent Publication No. 2002/0004525), tetracycline and derivatives (e.g., minocycline and doxycycline, see, e.g., U.S. Patent Publication No. 20020022608), a VLA-4 binding antibody (see, e.g., U.S. Patent Publication No. 2009/0202527), adrenocorticotrophic hormone, corticosteroid, prednisone, methylprednisone, 2-chlorodeoxyadenosine, mitoxantrone, sulphasalazine, methotrexate, azathioprine, cyclophosphamide, cyclosporin, fumarate, anti-CD20 antibody (e.g., rituximab), and tizanidine hydrochloride.
In some embodiments, the Fc-based chimeric protein complex is used in combination with one or more therapeutic agents that treat one or more symptoms or side effects of MS. Such agents include, but are not limited to, amantadine, baclofen, papaverine, meclizine, hydroxyzine, sulfamethoxazole, ciprofloxacin, docusate, pemoline, dantrolene, desmopressin, dexamethasone, tolterodine, phenyloin, oxybutynin, bisacodyl, venlafaxine, amitriptyline, methenamine, clonazepam, isoniazid, vardenafil, nitrofurantoin, psyllium hydrophilic mucilloid, alprostadil, gabapentin, nortriptyline, paroxetine, propantheline bromide, modafinil, fluoxetine, phenazopyridine, methylprednisolone, carbamazepine, imipramine, diazepam, sildenafil, bupropion, and sertraline.
In some embodiments, the Fc-based chimeric protein complex is used in a method of treating multiple sclerosis in combination with one or more of the disease modifying therapies (DMTs) described herein (e.g. the agents of Table A). In some embodiments, the present invention provides an improved therapeutic effect as compared to use of one or more of the DMTs described herein (e.g. the agents listed in the Table below) without the one or more disclosed binding agent. In an embodiment, the combination of the Fc-based chimeric protein complex and the one or more DMTs produces synergistic therapeutic effects.
MS disease progression may be most intensive, and most damaging, at the earliest stages of disease progression. Accordingly, counter to many reimbursement policies and physician practice in light of, for example, costs and side effect mitigation, it may be most beneficial for a patient's long term disease status to begin treatment with the most intensive DMTs, for instance so-called second-line therapies. In some embodiments, a patient is treated with a regimen of the Fc-based chimeric protein complex in combination with a second-line therapy. Such a combination is used to reduce the side effect profile of one or more second-line therapies. In some embodiments, the combination is used to reduce dose of frequency of administration of one or more second-line therapies. For example, the doses of agents listed in the Table provided above may be reduced by about 50%, or about 40%, or about 30%, or about 25% in the context of the combination and the/or the frequency of dosing may be decreased to be half as often, or a third as often or may be reduced from, for example, daily to every other day or weekly, every other day to weekly or bi-weekly, weekly to bi-weekly or monthly, etc. Accordingly, in some embodiments, the Fc-based chimeric protein complex increase patient adherence by allowing for more convenient treatment regimens. Further, some DMTs have a suggested lifetime dose limitation e.g. for mitoxantrone, the lifetime cumulative dose should be strictly limited to 140 mg/m2, or 2 to 3 years of therapy. In some embodiments, supplementation with the Fc-based chimeric protein complex preserves patient's access to mitoxantrone by allowing for lower or less frequent dosing with this DMT.
In some embodiments, the patient is a naive patient, who has not received treatment with one or more DMTs, and the Fc-based chimeric protein complex is used to buffer the side effects of a second-line therapy. Accordingly, the naive patient is able to benefit from the long-term benefits of a second-line therapy at disease outset. In some embodiments, the Fc-based chimeric protein complex is used as an entry therapy that precedes the use of a second-line therapy. For example, the Fc-based chimeric protein complex may be administered for an initial treatment period of about 3 months to stabilize disease and then the patient may be transitioned to a maintenance therapy of a second line agent.
It is generally believed that naive patients are more likely to respond to therapy as compared to patients that have received, and perhaps failed one or more DMT. In some embodiments, the Fc-based chimeric protein complex finds use in patients that have received, and perhaps failed one or more DMT. For example, in some embodiments, the Fc-based chimeric protein complex increases the therapeutic effect in patients that have received, and perhaps failed one or more DMT and may allow these patients to respond like naive patients.
In some embodiments, the patient has received or is receiving treatment with one or more DMTs and is not responding well. For example, the patient may be refractory or poorly responsive to one or more DMTs. In some embodiments, the patient is refractory, or poorly responsive to one or more of teriflunomide (AUBAGIO (GENZYME)); interferon beta-1a (AVONEX (BIOGEN IDEC); interferon beta-1b (BETASERON (BAYER HEALTHCARE PHARMACEUTICALS, INC.); glatiramer acetate (COPAXONE (TEVA NEUROSCIENCE); interferon beta-1b (EXTAVIA (NOVARTIS PHARMACEUTICALS CORP.); fingolimod (GILENYA (NOVARTIS PHARMACEUTICALS CORP.); alemtuzumab (LEMTRADA (GENZYME); mitoxantrone (NOVANTRONE (EMD SERONO); pegylated interferon beta-1a (PLEGRIDY (BIOGEN IDEC); interferon beta-1a (REBIF (EMD SERONO, INC.); dimethyl fumarate (BG-12) (TECFIDERA (BIOGEN IDEC); and natalizumab (TYSABRI (BIOGEN IDEC). In some embodiments, the one or more disclosed binding agent results in a therapeutic benefit of one or more DMTs in the patient and therefore reduces or eliminates the non-responsiveness to the DMT. For instance, this may spare the patient therapy with one or more DMTs at a higher dosing or frequency.
In patients with more aggressive disease, one approach is an induction treatment model, where a therapy with strong efficacy but strong safety concerns would be given first, followed by a maintenance therapy. An example of such a model might include initial treatment with alemtuzumab, followed by IFN-β, GA, or BG-12. In some embodiments, the one or more disclosed binding agent is used to prevent the need to switch therapies for maintenance. In some embodiments, the one or more disclosed binding agent is used to as maintenance therapy to one or more DMTs, including second line therapies. In some embodiments, the one or more disclosed binding agent is used to as first therapy in an induction, followed by another DMT as a maintenance therapy—such as, for example, a first line therapy.
In some embodiments, the one or more disclosed binding agent may be administered for an initial treatment period of about 3 months to stabilize disease and then the patient may be transitioned to a maintenance therapy of a first line agent.
In various embodiments, the one or more disclosed binding agent is used to reduce one or more side effects of a DMT, including without limitation any agent disclosed herein. For example, the one or more disclosed binding agent may be used in a regimen that allows dose sparing for one or more DMTs and therefore results in fewer side effects. For example, in some embodiments, the one or more disclosed binding agent may reduce one or more side effects of AUBAGIO or related agents, which may include hair thinning, diarrhea, flu, nausea, abnormal liver tests and unusual numbness or tingling in the hands or feet (paresthesias), levels of white blood cells, which can increase the risk of infections; increase in blood pressure; and severe liver damage. In some embodiments, the one or more disclosed binding agent may reduce one or more side effects of AVONEX or related agents which include flu-like symptoms following injection, depression, mild anemia, liver abnormalities, allergic reactions, and heart problems. In some embodiments, the one or more disclosed binding agent may reduce one or more side effects of BETASERON or related agents which include flu-like symptoms following injection, injection site reactions, allergic reactions, depression, liver abnormalities, and low white blood cell counts. In some embodiments, the one or more disclosed binding agent may reduce one or more side effects of COPAXONE or related agents which include injection site reactions, vasodilation (dilation of blood vessels); chest pain; a reaction immediately after injection, which includes anxiety, chest pain, palpitations, shortness of breath, and flushing. In some embodiments, the one or more disclosed binding agent may reduce one or more side effects of EXTAVIA or related agents which include flu-like symptoms following injection, injection site reactions, allergic reactions, depression, liver abnormalities, and low white blood cell counts. In some embodiments, the one or more disclosed binding agent may reduce one or more side effects of GILENYA or related agents which include headache, flu, diarrhea, back pain, liver enzyme elevations, cough, slowed heart rate following first dose, infections, and swelling in the eye. In some embodiments, the one or more disclosed binding agent may reduce one or more side effects of LEMTRADA or related agents which include rash, headache, fever, nasal congestion, nausea, urinary tract infection, fatigue, insomnia, upper respiratory tract infection, hives, itching, thyroid gland disorders, fungal Infection, pain in joints, extremities and back, diarrhea, vomiting, flushing, and infusion reactions (including nausea, hives, itching, insomnia, chills, flushing, fatigue, shortness of breath, changes in the sense of taste, indigestion, dizziness, pain). In some embodiments, the one or more disclosed binding agent may reduce one or more side effects of NOVANTRONE or related agents which include blue-green urine 24 hours after administration; infections, bone marrow suppression (fatigue, bruising, low blood cell counts), nausea, hair thinning, bladder infections, mouth sores, and serious liver and heart damage. In some embodiments, the one or more disclosed binding agent may reduce one or more side effects of PLEGRIDY or related agents which include flu-like symptoms following injection, injection site reactions, depression, mild anemia, liver abnormalities, allergic reactions, and heart problems. In some embodiments, the one or more disclosed binding agent may reduce one or more side effects of REBIF or related agents which include flu-like symptoms following injection, injection site reactions, liver abnormalities, depression, allergic reactions, and low red or white blood cell counts. In some embodiments, one or more disclosed binding agent may reduce one or more side effects of TECFIDERA or related agents which include flushing (sensation of heat or itching and a blush on the skin), gastrointestinal issues (nausea, diarrhea, abdominal pain), rash, protein in the urine, elevated liver enzymes; and reduction in blood lymphocyte (white blood cell) counts. In some embodiments, the one or more disclosed binding agent may reduce one or more side effects of TYSABRI or related agents which include headache, fatigue, urinary tract infections, depression, respiratory tract infections, joint pain, upset stomach, abdominal discomfort, diarrhea, vaginitis, pain in the arms or legs, rash, allergic or hypersensitivity reactions within two hours of infusion (dizziness, fever, rash, itching, nausea, flushing, low blood pressure, difficulty breathing, chest pain).
In some embodiments, the present invention relates to combination therapy with one or more chimeric agents described in WO 2013/10779, WO 2015/007536, WO 2015/007520, WO 2015/007542, and WO 2015/007903, the entire contents of which are hereby incorporated by reference in their entireties.
In some embodiments, inclusive of, without limitation, infectious disease applications, the present invention pertains to anti-infectives as additional therapeutic agents. In some embodiments, the anti-infective is an anti-viral agent including, but not limited to, Abacavir, Acyclovir, Adefovir, Amprenavir, Atazanavir, Cidofovir, Darunavir, Delavirdine, Didanosine, Docosanol, Efavirenz, Elvitegravir, Emtricitabine, Enfuvirtide, Etravirine, Famciclovir, and Foscarnet. In some embodiments, the anti-infective is an anti-bacterial agent including, but not limited to, cephalosporin antibiotics (cephalexin, cefuroxime, cefadroxil, cefazolin, cephalothin, cefaclor, cefamandole, cefoxitin, cefprozil, and ceftobiprole); fluoroquinolone antibiotics (cipro, Levaquin, floxin, tequin, avelox, and norflox); tetracycline antibiotics (tetracycline, minocycline, oxytetracycline, and doxycycline); penicillin antibiotics (amoxicillin, ampicillin, penicillin V, dicloxacillin, carbenicillin, vancomycin, and methicillin); monobactam antibiotics (aztreonam); and carbapenem antibiotics (ertapenem, doripenem, imipenem/cilastatin, and meropenem). In some embodiments, the anti-infectives include anti-malarial agents (e.g., chloroquine, quinine, mefloquine, primaquine, doxycycline, artemether/lumefantrine, atovaquone/proguanil and sulfadoxine/pyrimethamine), metronidazole, tinidazole, ivermectin, pyrantel pamoate, and albendazole.
In some embodiments, inclusive, without limitation, of autoimmmune applications, the additional therapeutic agent is an immunosuppressive agent. In some embodiments, the immunosuppressive agent is an anti-inflammatory agent such as a steroidal anti-inflammatory agent or a non-steroidal anti-inflammatory agent (NSAID). Steroids, particularly the adrenal corticosteroids and their synthetic analogues, are well known in the art. Examples of corticosteroids useful in the present invention include, without limitation, hydroxyltriamcinolone, alpha-methyl dexamethasone, beta-methyl betamethasone, beclomethasone dipropionate, betamethasone benzoate, betamethasone dipropionate, betamethasone valerate, clobetasol valerate, desonide, desoxymethasone, dexamethasone, diflorasone diacetate, diflucortolone valerate, fluadrenolone, fluclorolone acetonide, flumethasone pivalate, fluosinolone acetonide, fluocinonide, flucortine butylester, fluocortolone, fluprednidene (fluprednylidene) acetate, flurandrenolone, halcinonide, hydrocortisone acetate, hydrocortisone butyrate, methylprednisolone, triamcinolone acetonide, cortisone, cortodoxone, flucetonide, fludrocortisone, difluorosone diacetate, fluradrenolone acetonide, medrysone, amcinafel, amcinafide, betamethasone and the balance of its esters, chloroprednisone, clocortelone, clescinolone, dichlorisone, difluprednate, flucloronide, flunisolide, fluoromethalone, fluperolone, fluprednisolone, hydrocortisone, meprednisone, paramethasone, prednisolone, prednisone, beclomethasone dipropionate. (NSAIDS) that may be used in the present invention, include but are not limited to, salicylic acid, acetyl salicylic acid, methyl salicylate, glycol salicylate, salicylmides, benzyl-2,5-diacetoxybenzoic acid, ibuprofen, fulindac, naproxen, ketoprofen, etofenamate, phenylbutazone, and indomethacin. In some embodiments, the immunosupressive agent may be cytostatics such as alkylating agents, antimetabolites (e.g., azathioprine, methotrexate), cytotoxic antibiotics, antibodies (e.g., basiliximab, daclizumab, and muromonab), anti-immunophilins (e.g., cyclosporine, tacrolimus, sirolimus), inteferons, opioids, TNF binding proteins, mycophenolates, and small biological agents (e.g., fingolimod, myriocin). Additional anti-inflammatory agents are described, for example, in U.S. Pat. No. 4,537,776, the entire contents of which is incorporated by reference herein.
In some embodiments, the Fc-based chimeric protein complex described herein, include derivatives that are modified, i.e., by the covalent attachment of any type of molecule to the composition such that covalent attachment does not prevent the activity of the composition. For example, but not by way of limitation, derivatives include composition that have been modified by, inter alia, glycosylation, lipidation, acetylation, pegylation, phosphorylation, amidation, derivatization by known protecting/blocking groups, proteolytic cleavage, linkage to a cellular ligand or other protein, etc. Any of numerous chemical modifications can be carried out by known techniques, including, but not limited to specific chemical cleavage, acetylation, formylation, metabolic synthesis of tunicamycin, etc.
In still other embodiments, the Fc-based chimeric protein complex described herein further comprise a cytotoxic agent, comprising, in illustrative embodiments, a toxin, a chemotherapeutic agent, a radioisotope, and an agent that causes apoptosis, necrosis or any other form of cell death. Such agents may be conjugated to a composition described herein.
The Fc-based chimeric protein complex described herein may thus be modified post-translationally to add effector moieties such as chemical linkers, detectable moieties such as for example fluorescent dyes, enzymes, substrates, bioluminescent materials, radioactive materials, and chemiluminescent moieties, or functional moieties such as for example streptavidin, avidin, biotin, a cytotoxin, a cytotoxic agent, and radioactive materials.
Illustrative cytotoxic agents include, but are not limited to, methotrexate, aminopterin, 6-mercaptopurine, 6-thioguanine, cytarabine, 5-fluorouracil decarbazine; alkylating agents such as mechlorethamine, thioepa chlorambucil, melphalan, carmustine (BSNU), mitomycin C, lomustine (CCNU), 1-methylnitrosourea, cyclothosphamide, mechlorethamine, busulfan, dibromomannitol, streptozotocin, mitomycin C, cis-dichlorodiamine platinum (II) (DDP) cisplatin and carboplatin (paraplatin); anthracyclines include daunorubicin (formerly daunomycin), doxorubicin (adriamycin), detorubicin, carminomycin, idarubicin, epirubicin, mitoxantrone and bisantrene; antibiotics include dactinomycin (actinomycin D), bleomycin, calicheamicin, mithramycin, and anthramycin (AMC); and antimytotic agents such as the vinca alkaloids, vincristine and vinblastine. Other cytotoxic agents include paclitaxel (taxol), ricin, pseudomonas exotoxin, gemcitabine, cytochalasin B, gramicidin D, ethidium bromide, emetine, etoposide, tenoposide, colchicin, dihydroxy anthracin dione, 1-dehydrotestosterone, glucocorticoids, procaine, tetracaine, lidocaine, propranolol, puromycin, procarbazine, hydroxyurea, asparaginase, corticosteroids, mytotane (O,P′-(DDD)), interferons, and mixtures of these cytotoxic agents.
Further cytotoxic agents include, but are not limited to, chemotherapeutic agents such as carboplatin, cisplatin, paclitaxel, gemcitabine, calicheamicin, doxorubicin, 5-fluorouracil, mitomycin C, actinomycin D, cyclophosphamide, vincristine, bleomycin, VEGF antagonists, EGFR antagonists, platins, taxols, irinotecan, 5-fluorouracil, gemcytabine, leucovorine, steroids, cyclophosphamide, melphalan, vinca alkaloids (e.g., vinblastine, vincristine, vindesine and vinorelbine), mustines, tyrosine kinase inhibitors, radiotherapy, sex hormone antagonists, selective androgen receptor modulators, selective estrogen receptor modulators, PDGF antagonists, TNF antagonists, IL-1p antagonists, interleukins (e.g. IL-12 or IL-2), IL-12R antagonists, Toxin conjugated monoclonal antibodies, tumor antigen specific monoclonal antibodies, Erbitux, Avastin, Pertuzumab, anti-CD20 antibodies, Rituxan, ocrelizumab, ofatumumab, DXL625, HERCEPTIN®, or any combination thereof. Toxic enzymes from plants and bacteria such as ricin, diphtheria toxin and Pseudomonas toxin may be conjugated to the therapeutic agents (e.g. antibodies) to generate cell-type-specific-killing reagents (Youle, et al., Proc. Nat'l Acad. Sci. USA 77:5483 (1980); Gilliland, et al., Proc. Nat'l Acad. Sci. USA 77:4539 (1980); Krolick, et al., Proc. Nat'l Acad. Sci. USA 77:5419 (1980)).
Other cytotoxic agents include cytotoxic ribonucleases as described by Goldenberg in U.S. Pat. No. 6,653,104. Embodiments of the invention also relate to radioimmunoconjugates where a radionuclide that emits alpha or beta particles is stably coupled to the Fc-based chimeric protein complex, with or without the use of a complex-forming agent. Such radionuclides include beta-emitters such as Phosphorus-32, Scandium-47, Copper-67, Gallium-67, Yttrium-88, Yttrium-90, Iodine-125, Iodine-131, Samarium-153, Lutetium-177, Rhenium-186 or Rhenium-188, and alpha-emitters such as Astatine-211, Lead-212, Bismuth-212, Bismuth-213 or Actinium-225.
Illustrative detectable moieties further include, but are not limited to, horseradish peroxidase, acetylcholinesterase, alkaline phosphatase, beta-galactosidase and luciferase. Further illustrative fluorescent materials include, but are not limited to, rhodamine, fluorescein, fluorescein isothiocyanate, umbelliferone, dichlorotriazinylamine, phycoerythrin and dansyl chloride. Further illustrative chemiluminescent moieties include, but are not limited to, luminol. Further illustrative bioluminescent materials include, but are not limited to, luciferin and aequorin. Further illustrative radioactive materials include, but are not limited to, Iodine-125, Carbon-14, Sulfur-35, Tritium and Phosphorus-32.
Methods and compositions described herein have application to treating various diseases and disorders, including, but not limited to cancer, infections, immune disorders, and inflammatory diseases or conditions.
Further, any of the present agents may be for use in the treating, or the manufacture of a medicament for treating, various diseases and disorders, including, but not limited to cancer, infections, immune disorders, inflammatory diseases or conditions, and autoimmune diseases.
In some embodiments, the present invention relates to the treatment of, or a patient having cancer. As used herein, cancer refers to any uncontrolled growth of cells that may interfere with the normal functioning of the bodily organs and systems, and includes both primary and metastatic tumors. Primary tumors or cancers that migrate from their original location and seed vital organs can eventually lead to the death of the subject through the functional deterioration of the affected organs. A metastasis is a cancer cell or group of cancer cells, distinct from the primary tumor location, resulting from the dissemination of cancer cells from the primary tumor to other parts of the body. Metastases may eventually result in death of a subject. For example, cancers can include benign and malignant cancers, polyps, hyperplasia, as well as dormant tumors or micrometastases.
Illustrative cancers that may be treated include, but are not limited to, basal cell carcinoma, biliary tract cancer; bladder cancer; bone cancer; brain and central nervous system cancer; breast cancer; cancer of the peritoneum; cervical cancer; choriocarcinoma; colon and rectum cancer; connective tissue cancer; cancer of the digestive system; endometrial cancer; esophageal cancer; eye cancer; cancer of the head and neck; gastric cancer (including gastrointestinal cancer); glioblastoma; hepatic carcinoma; hepatoma; intra-epithelial neoplasm; kidney or renal cancer; larynx cancer; leukemia; liver cancer; lung cancer (e.g., small-cell lung cancer, non-small cell lung cancer, adenocarcinoma of the lung, and squamous carcinoma of the lung); melanoma; myeloma; neuroblastoma; oral cavity cancer (lip, tongue, mouth, and pharynx); ovarian cancer; pancreatic cancer; prostate cancer; retinoblastoma; rhabdomyosarcoma; rectal cancer; cancer of the respiratory system; salivary gland carcinoma; sarcoma; skin cancer; squamous cell cancer; stomach cancer; testicular cancer; thyroid cancer; uterine or endometrial cancer; cancer of the urinary system; vulval cancer; lymphoma including Hodgkin's and non-Hodgkin's lymphoma, as well as B-cell lymphoma (including low grade/follicular non-Hodgkin's lymphoma (NHL); small lymphocytic (SL) NHL; intermediate grade/follicular NHL; intermediate grade diffuse NHL; high grade immunoblastic NHL; high grade lymphoblastic NHL; high grade small non-cleaved cell NHL; bulky disease NHL; mantle cell lymphoma; AIDS-related lymphoma; and Waldenstrom's Macroglobulinemia; chronic lymphocytic leukemia (CLL); acute lymphoblastic leukemia (ALL); acute myeloid leukemia (AML); Hairy cell leukemia; chronic myeloblastic leukemia; as well as other carcinomas and sarcomas; and post-transplant lymphoproliferative disorder (PTLD), as well as abnormal vascular proliferation associated with phakomatoses, edema (e.g. that associated with brain tumors), and Meigs' syndrome.
In various embodiments, the present invention provides Fc-based chimeric protein complexes which comprise wild type or modified human IFNγ or human TNFα signaling agents for the treatment of cancer. In some embodiments, the Fc-based chimeric protein complexes of the invention significantly reduce and/or eliminate tumors. In some embodiments, the present Fc-based chimeric protein complexes significant reduce and/or eliminate tumors when administered to a subject in combination with other anti-cancer agents such as chemotherapeutic agents, checkpoint inhibitors, and immunosuppressive agents. In various embodiments, the combination of Fc-based chimeric protein complexes and other anti-cancer agents synergistically reduced tumor size and/or eliminated tumor cells.
In various embodiments, the present invention relates to cancer combination therapies with an Fc-based chimeric protein complex comprising one or more targeting moieties and one or more wild type or modified human IFNγ or human TNFα signaling agents. Accordingly, the present invention provides for an Fc-based chimeric protein complex that include, for example, a targeting moiety and one or more human IFNγ or human TNFα signaling agents and uses thereof in combination with anti-cancer agents.
For instance, in various embodiments, the present invention pertains to combination therapies for cancer involving Fc-based chimeric protein complex and a wild type or modified human IFNγ or human TNFα signaling agent.
In other embodiments, the present Fc-based chimeric protein complex comprises multiple targeting moieties and therefore be present in bispecific or trispecific formats. For instance, in various embodiments, the present invention pertains to combination therapies for cancer involving an Fc-based chimeric protein complex and a checkpoint inhibitor binding agent (e.g. anti-PD-L1, anti-PD-1, anti-PD-L2, or anti-CTLA) described herein and a modified human IFNγ or human TNFα signaling agent.
In various embodiments, the human IFNγ or human TNFα signaling agent is wild type or modified to have reduced affinity or activity for one or more of its receptors, which allows for attenuation of activity (inclusive of agonism or antagonism) and/or prevents non-specific signaling or undesirable sequestration of the chimeric protein. In some embodiments, the reduced affinity or activity at the receptor is restorable by inclusion in the present complex having one or more of the targeting moieties as described herein.
In some embodiments, the present invention relates to the treatment of, or a patient having a microbial infection and/or chronic infection. Illustrative infections include, but are not limited to, HIV/AIDS, tuberculosis, osteomyelitis, hepatitis B, hepatitis C, Epstein-Barr virus or parvovirus, T cell leukemia virus, bacterial overgrowth syndrome, fungal or parasitic infections.
In some embodiments, the present invention relates to the treatment of, or a patient having one or more of chronic granulomatous disease, osteopetrosis, idiopathic pulmonary fibrosis, Friedreich's ataxia, atopic dermatitis, Chagas disease, cancer, heart failure, autoimmune disease, sickle cell disease, thalassemia, blood loss, transfusion reaction, diabetes, vitamin B12 deficiency, collagen vascular disease, Shwachman syndrome, thrombocytopenic purpura, Celiac disease, endocrine deficiency state such as hypothyroidism or Addison's disease, autoimmune disease such as Crohn's Disease, systemic lupus erythematosis, rheumatoid arthritis or juvenile rheumatoid arthritis, ulcerative colitis immune disorders such as eosinophilic fasciitis, hypoimmunoglobulinemia, or thymoma/thymic carcinoma, graft versus host disease, preleukemia, Nonhematologic syndrome (e.g. Down's, Dubowwitz, Seckel), Felty syndrome, hemolytic uremic syndrome, myelodysplasic syndrome, nocturnal paroxysmal hemoglobinuria, osteomyelofibrosis, pancytopenia, pure red-cell aplasia, Schoenlein-Henoch purpura, malaria, protein starvation, menorrhagia, systemic sclerosis, liver cirrhosis, hypometabolic states, and congestive heart failure.
In some embodiments, the present invention relates to the treatment of, or a patient having one or more of chronic granulomatous disease, osteopetrosis, idiopathic pulmonary fibrosis, Friedreich's ataxia, atopic dermatitis, Chagas disease, mycobacterial infections, cancer, scleroderma, hepatitis, hepatitis C, septic shock, and rheumatoid arthritis.
In various embodiments, the present compositions are used to treat or prevent one or more inflammatory diseases or conditions, such as inflammation, acute inflammation, chronic inflammation, respiratory disease, atherosclerosis, restenosis, asthma, allergic rhinitis, atopic dermatitis, septic shock, rheumatoid arthritis, inflammatory bowel disease, inflammatory pelvic disease, pain, ocular inflammatory disease, celiac disease, Leigh Syndrome, Glycerol Kinase Deficiency, Familial eosinophilia (FE), autosomal recessive spastic ataxia, laryngeal inflammatory disease; Tuberculosis, Chronic cholecystitis, Bronchiectasis, Silicosis and other pneumoconioses.
In various embodiments, the present invention has application to treating autoimmune and/or neurodegenerative diseases.
In various embodiments, the present compositions are used to treat or prevent one or more conditions characterized by undesirable CTL activity, and/or a conditions characterized by high levels of cell death. For instance, in various embodiments, the present compositions are used to treat or prevent one or more conditions associated with uncontrolled or overactive immune response.
In various embodiments, the present compositions are used to treat or prevent one or more autoimmune and/or neurodegenerative diseases or conditions, such as MS, diabetes mellitus, lupus, celiac disease, Crohn's disease, ulcerative colitis, Guillain-Barre syndrome, scleroderms, Goodpasture's syndrome, Wegener's granulomatosis, autoimmune epilepsy, Rasmussen's encephalitis, Primary biliary sclerosis, Sclerosing cholangitis, Autoimmune hepatitis, Addison's disease, Hashimoto's thyroiditis, Fibromyalgia, Menier's syndrome; transplantation rejection (e.g., prevention of allograft rejection) pernicious anemia, rheumatoid arthritis, systemic lupus erythematosus, dermatomyositis, Sjogren's syndrome, lupus erythematosus, myasthenia gravis, Reiter's syndrome, Grave's disease, and other autoimmune diseases.
In various embodiments, the present invention is used to treat or prevent various autoimmune and/or neurodegenerative diseases. In some embodiments, the autoimmune and/or neurodegenerative diseases selected from MS (including without limitation the subtypes described herein), Alzheimer's disease (including, without limitation, Early-onset Alzheimer's, Late-onset Alzheimer's, and Familial Alzheimer's disease (FAD), Parkinson's disease and parkinsonism (including, without limitation, Idiopathic Parkinson's disease, Vascular parkinsonism, Drug-induced parkinsonism, Dementia with Lewy bodies, Inherited Parkinson's, Juvenile Parkinson's), Huntington's disease, Amyotrophic lateral sclerosis (ALS, including, without limitation, Sporadic ALS, Familial ALS, Western Pacific ALS, Juvenile ALS, Hiramaya Disease).
In an embodiment, the present invention provides methods for the treatment or prevention of one or more liver disorders, selected from viral hepatitis, alcohol hepatitis, autoimmune hepatitis, alcohol liver disease, fatty liver disease, steatosis, steatohepatitis, non-alcohol fatty liver disease, drug-induced liver disease, cirrhosis, fibrosis, liver failure, drug induced liver failure, metabolic syndrome, hepatocellular carcinoma, cholangiocarcinoma, primary biliary cirrhosis (primary biliary cholangitis), bile capillaries, Gilbert's syndrome, jaundice, and any other liver toxicity-associated indication. In some embodiments, the present invention provides methods for the treatment or prevention of liver fibrosis. In some embodiments, the present invention provides methods for the treatment or prevention of primary sclerosing cholangitis (PSC), chronic liver disease, nonalcoholic fatty liver disease (NAFLD), nonalcoholic steatohepatitis (NASH), hepatitis C infection, alcoholic liver disease, liver damage, optionally due to progressive fibrosis and liver fibrosis. In some embodiments, the present invention provides methods for the treatment or prevention of nonalcoholic steatohepatitis (NASH). In some embodiments, the present invention provides methods that reduce or prevent fibrosis. In some embodiments, the present invention provides methods that reduce or prevent cirrhosis. In some embodiments, the present invention provides methods that reduce or prevent hepatocellular carcinoma.
In various embodiments, the present invention provides methods for the treatment or prevention of cardiovascular disease, such as a disease or condition affecting the heart and vasculature, including but not limited to, coronary heart disease (CHD), cerebrovascular disease (CVD), aortic stenosis, peripheral vascular disease, atherosclerosis, arteriosclerosis, myocardial infarction (heart attack), cerebrovascular diseases (stroke), transient ischaemic attacks (TIA), angina (stable and unstable), atrial fibrillation, arrhythmia, valvular disease, and/or congestive heart failure. In various embodiments, the present invention provides methods for the treatment or prevention of cardiovascular disease which involves inflammation.
In various embodiments, the present invention provides methods for the treatment or prevention of one or more respiratory diseases, such as asthma, chronic obstructive pulmonary disease (COPD), bronchiectasis, allergic rhinitis, sinusitis, pulmonary vasoconstriction, inflammation, allergies, impeded respiration, respiratory distress syndrome, cystic fibrosis, pulmonary hypertension, pulmonary vasoconstriction, emphysema, Hantavirus pulmonary syndrome (HPS), Loeffler's syndrome, Goodpasture's syndrome, Pleurisy, pneumonitis, pulmonary edema, pulmonary fibrosis, Sarcoidosis, complications associated with respiratory syncitial virus infection, and other respiratory diseases.
In various embodiments, the present invention is used to treat or prevent MS. In various embodiments, the Fc-based chimeric protein complexes as described herein are used to eliminate and reduce multiple MS symptoms. Illustrative symptoms associated with multiple sclerosis, which can be prevented or treated with the compositions and methods described herein, include: optic neuritis, diplopia, nystagmus, ocular dysmetria, internuclear ophthalmoplegia, movement and sound phosphenes, afferent pupillary defect, paresis, monoparesis, paraparesis, hemiparesis, quadraparesis, plegia, paraplegia, hemiplegia, tetraplegia, quadraplegia, spasticity, dysarthria, muscle atrophy, spasms, cramps, hypotonia, clonus, myoclonus, myokymia, restless leg syndrome, footdrop, dysfunctional reflexes, paraesthesia, anaesthesia, neuralgia, neuropathic and neurogenic pain, l'hermitte's sign, proprioceptive dysfunction, trigeminal neuralgia, ataxia, intention tremor, dysmetria, vestibular ataxia, vertigo, speech ataxia, dystonia, dysdiadochokinesia, frequent micturation, bladder spasticity, flaccid bladder, detrusor-sphincter dyssynergia, erectile dysfunction, anorgasmy, frigidity, constipation, fecal urgency, fecal incontinence, depression, cognitive dysfunction, dementia, mood swings, emotional lability, euphoria, bipolar syndrome, anxiety, aphasia, dysphasia, fatigue, Uhthoff's symptom, gastroesophageal reflux, and sleeping disorders. Mitigation or amelioration or one more of these symptoms in a subject can be achieved by the one or more agent as described herein.
In various embodiments, the Fc-based chimeric protein complexes as described herein is used to treat or prevent clinically isolated syndrome (CIS). A clinically isolated syndrome (CIS) is a single monosymptomatic attack compatible with MS, such as optic neuritis, brain stem symptoms, and partial myelitis. Patients with CIS that experience a second clinical attack are generally considered to have clinically definite multiple sclerosis (CDMS). Over 80 percent of patients with CIS and MRI lesions go on to develop MS, while approximately 20 percent have a self-limited process. Patients who experience a single clinical attack consistent with MS may have at least one lesion consistent with multiple sclerosis prior to the development of clinically definite multiple sclerosis. In various embodiments, the presently described Fc-based chimeric protein complexes is used to treat CIS so it does not develop into MS, including, for example RRMS.
In various embodiments, the Fc-based chimeric protein complexes as described herein are used to treat or prevent radiologically isolated syndrome (RIS). In RIS, incidental imaging findings suggest inflammatory demyelination in the absence of clinical signs or symptoms. In various embodiments, the Fc-based chimeric protein complex is used to treat RIS so it does not develop into MS, including, for example RRMS.
In various embodiments, the Fc-based chimeric protein complexes as described herein are used to treat one or more of benign multiple sclerosis; relapsing-remitting multiple sclerosis (RRMS); secondary progressive multiple sclerosis (SPMS); progressive relapsing multiple sclerosis (PRMS); and primary progressive multiple sclerosis (PPMS).
Benign multiple sclerosis is a retrospective diagnosis which is characterized by 1-2 exacerbations with complete recovery, no lasting disability and no disease progression for 10-15 years after the initial onset. Benign multiple sclerosis may, however, progress into other forms of multiple sclerosis. In various embodiments, the Fc-based chimeric protein complex is used to treat benign multiple sclerosis so it does not develop into MS.
Patients suffering from RRMS experience sporadic exacerbations or relapses, as well as periods of remission. Lesions and evidence of axonal loss may or may not be visible on MRI for patients with RRMS. In various embodiments, the Fc-based chimeric protein complexes as described herein are used to treat RRMS. In some embodiments, RRMS includes patients with RRMS; patients with SPMS and superimposed relapses; and patients with CIS who show lesion dissemination on subsequent MRI scans according to McDonald's criteria. A clinical relapse, which may also be used herein as “relapse,” “confirmed relapse,” or “clinically defined relapse,” is the appearance of one or more new neurological abnormalities or the reappearance of one or more previously observed neurological abnormalities. This change in clinical state must last at least 48 hours and be immediately preceded by a relatively stable or improving neurological state of at least 30 days. In some embodiments, an event is counted as a relapse when the subject's symptoms are accompanied by observed objective neurological changes, consistent with an increase of at least 1.00 in the Expanded Disability Status Scale (EDSS) score or one grade in the score of two or more of the seven FS or two grades in the score of one of FS as compared to the previous evaluation.
SPMS may evolve from RRMS. Patients afflicted with SPMS have relapses, a diminishing degree of recovery during remissions, less frequent remissions and more pronounced neurological deficits than RRMS patients. Enlarged ventricles, which are markers for atrophy of the corpus callosum, midline center and spinal cord, are visible on MRI of patients with SPMS. In various embodiments, the Fc-based chimeric protein complexes as described herein is used to treat RRMS so it does not develop into SPMS.
PPMS is characterized by a steady progression of increasing neurological deficits without distinct attacks or remissions. Cerebral lesions, diffuse spinal cord damage and evidence of axonal loss are evident on the MRI of patients with PPMS. PPMS has periods of acute exacerbations while proceeding along a course of increasing neurological deficits without remissions. Lesions are evident on MRI of patients suffering from PRMS. In various embodiments, the Fc-based chimeric protein complex as described herein is used to treat RRMS and/or SPMS so it does not develop into PPMS.
In some embodiments, the Fc-based chimeric protein complexes as described herein are used in a method of treatment of relapsing forms of MS. In some embodiments, the Fc-based chimeric protein complex is used in a method of treatment of relapsing forms of MS to slow the accumulation of physical disability and/or reduce the frequency of clinical exacerbations, and, optionally, for patients who have experienced a first clinical episode and have MRI features consistent with MS. In some embodiments, the Fc-based chimeric protein complexes as described herein are used in a method of treatment of worsening relapsing-remitting MS, progressive-relapsing MS or secondary-progressive MS to reduce neurologic disability and/or the frequency of clinical exacerbations. In some embodiments, the Fc-based chimeric protein complexes reduce the frequency and/or severity of relapses.
In some embodiments, the Fc-based chimeric protein complexes are used in a method of treatment of relapsing forms of MS in patients who have had an inadequate response to (or are refractory to) one, or two, or three, or four, or five, or six, or seven, or eight, or nine, or ten or more disease modifying therapies (DMTs).
In various embodiments, the subject's symptoms may be assessed quantitatively, such as by EDSS, or decrease in the frequency of relapses, or increase in the time to sustained progression, or improvement in the magnetic resonance imaging (MRI) behavior in frequent, serial MRI studies and compare the patient's status measurement before and after treatment. In a successful treatment, the patient status will have improved (e.g., the EDSS measurement number or frequency of relapses will have decreased, or the time to sustained progression will have increased, or the MRI scans will show less pathology).
In some embodiments, the patient can be evaluated, e.g., before, during or after receiving the Fc-based chimeric protein complexes e.g., for indicia of responsiveness. Various clinical or other indicia of effectiveness of treatment, e.g., EDSS score; MRI scan; relapse number, rate, or severity; multiple sclerosis functional composite (MSFC); multiple sclerosis quality of life inventory (MSQLI); Paced Serial Addition Test (PASAT); symbol digit modalities test (SDMT); 25-foot walk test; 9-hole peg test; low contrast visual acuity; Modified Fatigue Impact Scale; expanded disability status score (EDSS); multiple sclerosis functional composite (MSFC); Beck Depression Inventory; and 7/24 Spatial Recall Test can be used. In various embodiments, the Fc-based chimeric protein complexes cause an improvement in one or more of these measures. Further, the patient can be monitored at various times during a regimen. In some embodiments, the Fc-based chimeric protein complexes cause a disease improvement as assessed by MacDonald dissemination in space and time. For example, for dissemination in space, lesion imaging, such as, by way of illustration, Barkhof-Tintore MR imaging criteria, may be used, including at least one gadolinium-enhancing lesion or 9 T2 hyperintense lesions; at least one infratentorial lesion; at least one juxtacortical lesion; at least about three periventricular lesions; and a spinal cord lesion. For dissemination in time, MRI can also be used; for example, if an MRI scan of the brain performed at >3 months after an initial clinical event demonstrates a new gadolinium-enhancing lesion, this may indicate a new CNS inflammatory event, because the duration of gadolinium enhancement in MS is usually less than 6 weeks. If there are no gadolinium-enhancing lesions but a new T2 lesion (presuming an MRI at the time of the initial event), a repeat MR imaging scan after another 3 months may be needed with demonstration of a new T2 lesion or gadolinium-enhancing lesion.
In some embodiments, disease effects are assessed using any of the measures described in Lavery, et al. Multiple Sclerosis International, Vol 2014 (2014), Article ID 262350, the entire contents of which are hereby incorporated by reference.
In some embodiments, the Fc-based chimeric protein complex results in one or more of: (a) prevention of worsening in disability defined as deterioration by 1.0 point on EDSS, (b) increase in time to relapse, (c) reduction or stabilization of number and/or volume of gadolinium enhancing lesions, (d) decreased annualized relapse rate, (e) increased relapse duration and severity by NRS score, (f) decrease in disease activity as measured by MRI (annual rate of new or enlarging lesions), (g) lower average number of relapses at 1 year, or 2 years, (h) sustained disease progression as measured by the EDSS at 3 months, (i) prevention of conversion to CDMS, (j) no or few new or enhancing T2 lesions, (k) minimal change in hyperintense T2 lesion volume, (l) increased time to McDonald defined MS, (m) prevention of progression of disability as measured by sustained worsening of EDSS at 12 weeks, (n) reduction in time to relapse at 96 weeks, and (o) reduction or stabilization of brain atrophy (e.g. percentage change from baseline).
In one embodiment, the Fc-based chimeric protein complexes are administered and is effective to result in a decreased rate of relapse (e.g., at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80% or greater reduction in rate of relapse) compared to the rate of relapse before administration (e.g., compared to the rate of relapse following administration for 12 months or for less than 12 months, e.g., about 10, or about 8, or about 4, or about 2 or less months) of treatment, or before commencement of treatment, when measured between 3-24 months (e.g., between 6-18 months, e.g., 12 months) after a previous relapse.
In one embodiment, the Fc-based chimeric protein complexes are administered and are effective to result in a prevention of an increase in EDSS score from a pre-treatment state. The Kurtzke Expanded Disability Status Scale (EDSS) is a method of quantifying disability in multiple sclerosis. The EDSS replaced the previous Disability Status Scales which used to bunch people with MS in the lower brackets. The EDSS quantifies disability in eight Functional Systems (FS) and allows neurologists to assign a Functional System Score (FSS) in each of these. The Functional Systems are: pyramidal, cerebellar, brainstem, sensory, bowel and bladder, visual and cerebral.
In one embodiment, the Fc-based chimeric protein complexes are administered and is effective to result in a decreased EDSS score (e.g., a decrease of 1, 1.5, 2, 2.5, 3 points or more, e.g., over at least three months, six months, one year, or longer) compared to the EDSS score following administration of the Fc-based chimeric protein complexes (e.g. for 12 months or for less than 12 months, e.g., less than 10, 8, 4 or less months, or before the commencement of treatment).
In one embodiment, the Fc-based chimeric protein complexes are administered and is effective to result in a decreased number of new lesions overall or of any one type (e.g., at least 10%, 20%, 30%, 40% decrease), compared to the number of new lesions following administration of the Fc-based chimeric protein complexes for 12 months or for less than 12 months, e.g., less than 10, 8, 4 or less months, or before commencement of treatment;
In one embodiment, the Fc-based chimeric protein complexes are administered and is effective to result in a decreased number of lesions overall or of any one type (e.g., at least 10%, 20%, 30%, 40% decrease), compared to the number of lesions following administration of the Fc-based chimeric protein complexes for 12 months or for less than 12 months, e.g., less than 10, 8, 4 or less months, or before commencement of treatment;
In one embodiment, the Fc-based chimeric protein complexes are administered and is effective to result in a reduced rate of appearance of new lesions overall or of any one type (e.g., at least 10%, 20%, 30%, 40% reduced rate), compared to the rate of appearance of new lesions following administration for 12 months or for less than 12 months, e.g., less than 10, 8, 4 or less months, or before commencement of treatment;
In one embodiment, the Fc-based chimeric protein complexes are administered and is effective to result in a reduced increase in lesion area overall or of any one type (e.g., at least 10%, 20%, 30%, 40% decreased increase), compared to an increase in lesion area following administration for 12 months or less than 12 months, e.g., less than 10, 8, 4 or less months, or before commencement of treatment.
In one embodiment, the Fc-based chimeric protein complexes are administered and is effective to result in a reduced incidence or symptom of optic neuritis (e.g., improved vision), compared to the incidence or symptom of optic neuritis following administration for 12 months or for less than 12 months, e.g., less than 10, 8, 4 or less months, or before commencement of treatment.
In various embodiments, methods of the invention are useful in treatment a human subject. In some embodiments, the human is a pediatric human. In other embodiments, the human is an adult human. In other embodiments, the human is a geriatric human. In other embodiments, the human may be referred to as a patient. In some embodiments, the human is a female. In some embodiments, the human is a male.
In certain embodiments, the human has an age in a range of from about 1 to about 18 months old, from about 18 to about 36 months old, from about 1 to about 5 years old, from about 5 to about 10 years old, from about 10 to about 15 years old, from about 15 to about 20 years old, from about 20 to about 25 years old, from about 25 to about 30 years old, from about 30 to about 35 years old, from about 35 to about 40 years old, from about 40 to about 45 years old, from about 45 to about 50 years old, from about 50 to about 55 years old, from about 55 to about 60 years old, from about 60 to about 65 years old, from about 65 to about 70 years old, from about 70 to about 75 years old, from about 75 to about 80 years old, from about 80 to about 85 years old, from about 85 to about 90 years old, from about 90 to about 95 years old or from about 95 to about 100 years old. In various embodiments, the human has an age of more than 30 years old.
In various embodiments, the present compositions are capable of, or find use in methods of, immune modulation. For instance, in various embodiments, the present methods of treatment may involve the immune modulation described herein. In some embodiments, the immune modulation involves IFN signaling, including modified IFN signaling, in the context of a dendritic cell (DC).
In various embodiments, a multi-specific Fc-based chimeric protein complex is provided. In some embodiments, such multi-specific Fc-based chimeric protein complex of the invention recognizes and binds to a first target and one or more antigens found on one or more immune cells, which can include, without limitation, megakaryocytes, thrombocytes, erythrocytes, mast cells, basophils, neutrophils, eosinophils, monocytes, macrophages, natural killer cells, T lymphocytes (e.g., cytotoxic T lymphocytes, T helper cells, natural killer T cells), B lymphocytes, plasma cells, dendritic cells, or subsets thereof. In some embodiments, the Fc-based chimeric protein complex specifically binds to an antigen of interest and effectively directly or indirectly recruits one of more immune cells.
In some embodiments, the Fc-based chimeric protein complex specifically binds to an antigen of interest and effectively directly or indirectly recruits one of more immune cells to cause an immunosuppressive effect, e.g. the Fc-based chimeric protein complex directly or indirectly recruits an immunosuppressive immune cell. In some embodiments, the immunosuppressive immune cell is a regulatory T cell (or “Tregs” which, as used herein, refers to a subpopulation of T cells which modulate the immune system, abrogate autoimmune disease, maintain tolerance to self-antigens and thwart anti-tumor immune responses). Other immunosuppressive immune cells include myeloid suppressor cells (or “MSC,” which, as used herein, refers to a heterogeneous population of cells, defined by their myeloid origin, immature state, and ability to potently suppress T cell responses); tumor associated neutrophils (or “TANs” which, as used herein, refers to a subset of neutrophils that are capable of suppressing immune responses); tumor associated macrophages (or “TAMs” which, as used herein, refers to a subset of macrophages that may reduce an immune response), M2 macrophages, and/or tumor-inducing mast cells (which as used herein, refers to a subset of bone marrow-derived, long-lived, heterogeneous cellular population). Also, immunosuppressive immune cells include Th2 cells and Th17 cells. Additionally, immunosuppressive immune cells include immune cells, e.g., CD4+ and/or CD8+ T cells, expressing one or more checkpoint inhibitory receptors (e.g. receptors, including CTLA-4, B7-H3, B7-H4, TIM-3, expressed on immune cells that prevent or inhibit uncontrolled immune responses). See Stagg, J. et. al., Immunotherapeutic approach in triple-negative breast cancer. Ther Adv Med Oncol. (2013) 5(3):169-181).
In some embodiments, the Fc-based chimeric protein complex stimulates regulatory T cell (Treg) proliferation. Treg cells are characterized by the expression of the Foxp3 (Forkhead box p3) transcription factor. Most Treg cells are CD4+ and CD25+, and can be regarded as a subset of helper T cells, although a small population may be CD8+. Thus the immune response, which is to be modulated by a method of the invention, may comprise inducing proliferation of Treg cells, optionally in response to an antigen. Thus the method may comprise administering to the subject an Fc-based chimeric protein complex comprising the antigen. The antigen may be administered with an adjuvant which promotes proliferation of Treg cells.
Insofar as this method involves stimulating proliferation and differentiation of Treg cells in response to a specific antigen, it can be considered to be a method of stimulating an immune response. However, given that Treg cells may be capable of modulating the response of other cells of the immune system against an antigen in other ways, e.g. inhibiting or suppressing their activity, the effect on the immune system as a whole may be to modulate (e.g. suppress or inhibit) the response against that antigen. Thus the methods of this aspect of the invention can equally be referred to as methods of modulating (e.g. inhibiting or suppressing) an immune response against an antigen.
In some embodiments, the methods therapeutically or prophylactically inhibit or suppress an undesirable immune response against a particular antigen, even in a subject with pre-existing immunity or an on-going immune response to that antigen. This may be particularly useful, for example, in the treatment of autoimmune disease.
Under certain conditions, it may also be possible to tolerize a subject against a particular antigen by targeting the antigen to an antigen presenting cell expressing a target of the targeting moiety of the Fc-based chimeric protein complex. The invention thus provides a method for inducing tolerance in a subject towards an antigen, comprising administering to the subject a composition comprising the antigen, wherein the antigen is associated with a binding agent having affinity for the targeting moiety of the Fc-based chimeric protein complex and wherein the antigen is administered in the absence of an adjuvant. Tolerance in this context typically involves depletion of immune cells which would otherwise be capable of responding to that antigen, or inducing a lasting reduction in responsiveness to an antigen in such immune cells.
It may be particularly desirable to raise a Treg response against an antigen to which the subject exhibits, or is at risk of developing, an undesirable immune response. For example, it may be a self-antigen against which an immune response occurs in an autoimmune disease. Examples of autoimmune diseases in which specific antigens have been identified as potentially pathogenically significant include multiple sclerosis (myelin basic protein), insulin-dependent diabetes mellitus (glutamic acid decarboxylase), insulin-resistant diabetes mellitus (insulin receptor), celiac disease (gliadin), bullous pemphigoid (collagen type XVII), auto-immune haemolytic anaemia (Rh protein), auto-immune thrombocytopenia (GpIIb/IIIa), myaesthenia gravis (acetylcholine receptor), Graves' disease (thyroid-stimulating hormone receptor), glomerulonephritis, such as Goodpasture's disease (alpha3(IV)NC1 collagen), and pernicious anaemia (intrinsic factor). Alternatively, the target antigen may be an exogenous antigen which stimulates a response which also causes damage to host tissues. For example, acute rheumatic fever is caused by an antibody response to a Streptococcal antigen which cross-reacts with a cardiac muscle cell antigen. Thus these antigens, or particular fragments or epitopes thereof, may be suitable antigens for use in the present invention.
In various embodiments, the present agents, or methods using these agents, reduce or suppress autoreactive T cells. In some embodiments, the multi-specific Fc-based chimeric protein complex, optionally through an interferon signaling in the context of an Fc-based chimeric protein complex, causes this immunosuppression. In some embodiments, the multi-specific Fc-based chimeric protein complex stimulates PD-L1 or PD-L2 signaling and/or expression which may suppress autoreactive T cells. In some embodiments, the Fc-based chimeric protein complex, optionally through an interferon signaling in the context of an Fc-based chimeric protein complex, causes this immunosuppression. In some embodiments, the Fc-based chimeric protein complex stimulates PD-L1 or PD-L2 signaling and/or expression, which may suppress autoreactive T cells.
In various embodiments, the present methods comprise modulating the ratio of regulatory T cells to effector T cells in favor of immunosuppression, for instance, to treat autoimmune diseases. For instance, the present methods, in some embodiments, reduce and/or suppress one or more of cytotoxic T cells; effector memory T cells; central memory T cells; CD8+ stem cell memory effector cells; TH1 effector T-cells; TH2 effector T cells; TH9 effector T cells; TH17 effector T cells. For instance, the present methods, in some embodiments, increase and/or stimulate one or more of CD4+CD25+FOXP3+ regulatory T cells, CD4+CD25+ regulatory T cells, CD4+CD25− regulatory T cells, CD4+CD25high regulatory T cells, TIM-3+PD-1+ regulatory T cells, lymphocyte activation gene-3 (LAG-3)+ regulatory T cells, CTLA-4/CD152+ regulatory T cells, neuropilin-1 (Nrp-1)+ regulatory T cells, CCR4+CCR8+ regulatory T cells, CD62L (L-selectin)+ regulatory T cells, CD45RBlow regulatory T cells, CD127low regulatory T cells, LRRC32/GARP+ regulatory T cells, CD39+ regulatory T cells, GITR+ regulatory T cells, LAP+ regulatory T cells, 1Bi11+ regulatory T cells, BTLA+ regulatory T cells, type 1 regulatory T cells (Tr1 cells), T helper type 3 (Th3) cells, regulatory cell of natural killer T cell phenotype (NKTregs), CD8+ regulatory T cells, CD8+CD28− regulatory T cells and/or regulatory T-cells secreting IL-10, IL-35, TGF-β, TNF-α, Galectin-1, IFN-γ and/or MCP1.
In some embodiments, the present methods favor immune inhibitory signals over immune stimulatory signals. In some embodiments, the present methods allow for reversing or suppressing immune activating or co-stimulatory signals. In some embodiments, the present methods allow for providing immune inhibitory signals. For instance, in some embodiments, the present agents and methods reduce the effects of an immune stimulatory signal, which, without limitation, is one or more of 4-1BB, OX-40, HVEM, GITR, CD27, CD28, CD30, CD40, ICOS ligand; OX-40 ligand, LIGHT (CD258), GITR ligand, CD70, B7-1, B7-2, CD30 ligand, CD40 ligand, ICOS, ICOS ligand, CD137 ligand and TL1A. Further, in some embodiments, the present agents and methods increase the effects of an immune inhibitory signal, which, without limitation, is one or more of CTLA-4, PD-L1, PD-L2, PD-1, BTLA, HVEM, TIM3, GAL9, LAG3, VISTA, KIR, 2B4, CD160 (also referred to as BY55), CGEN-15049, CHK 1 and CHK2 kinases, A2aR, CEACAM (e.g., CEACAM-1, CEACAM-3 and/or CEACAM-5), and various B-7 family ligands (including, but are not limited to, B7-1, B7-2, B7-DC, B7-H1, B7-H2, B7-H3, B7-H4, B7-H5, B7-H6 and B7-H7.
The present invention also provides kits for the administration of any Fc-based chimeric protein complex described herein (e.g. with or without additional therapeutic agents). The kit is an assemblage of materials or components, including at least one of the inventive pharmaceutical compositions described herein. Thus, in some embodiments, the kit contains at least one of the pharmaceutical compositions described herein.
The exact nature of the components configured in the kit depends on its intended purpose. In one embodiment, the kit is configured for the purpose of treating human subjects.
Instructions for use may be included in the kit. Instructions for use typically include a tangible expression describing the technique to be employed in using the components of the kit to effect a desired therapeutic outcome, such as to treat cancer. Optionally, the kit also contains other useful components, such as, diluents, buffers, pharmaceutically acceptable carriers, syringes, catheters, applicators, pipetting or measuring tools, bandaging materials or other useful paraphernalia as will be readily recognized by those of skill in the art.
The materials and components assembled in the kit can be provided to the practitioner stored in any convenience and suitable ways that preserve their operability and utility. For example, the components can be provided at room, refrigerated or frozen temperatures. The components are typically contained in suitable packaging materials. In various embodiments, the packaging material is constructed by well-known methods, preferably to provide a sterile, contaminant-free environment. The packaging material may have an external label which indicates the contents and/or purpose of the kit and/or its components.
As used herein, “a,” “an,” or “the” can mean one or more than one.
Further, the term “about” when used in connection with a referenced numeric indication means the referenced numeric indication plus or minus up to 10% of that referenced numeric indication. For example, the language “about 50” covers the range of 45 to 55.
As used herein, the term “effective amount” refers to a quantity sufficient to achieve a desired therapeutic and/or prophylactic effect, e.g., an amount which results in the prevention of, or a decrease in a disease or disorder or one or more signs or symptoms associated with a disease or disorder. In the context of therapeutic or prophylactic applications, the amount of a composition administered to the subject will depend on the degree, type, and severity of the disease and on the characteristics of the individual, such as general health, age, sex, body weight and tolerance to drugs. The skilled artisan will be able to determine appropriate dosages depending on these and other factors. The compositions can also be administered in combination with one or more additional therapeutic compounds. In the methods described herein, the therapeutic compounds may be administered to a subject having one or more signs or symptoms of a disease or disorder. As used herein, something is “decreased” if a read-out of activity and/or effect is reduced by a significant amount, such as by at least about 10%, at least about 20%, at least about 30%, at least about 40%, at least about 50%, at least about 60%, at least about 70%, at least about 80%, at least about 90%, at least about 95%, at least about 97%, at least about 98%, or more, up to and including at least about 100%, in the presence of an agent or stimulus relative to the absence of such modulation. As will be understood by one of ordinary skill in the art, in some embodiments, activity is decreased and some downstream read-outs will decrease but others can increase.
Conversely, activity is “increased” if a read-out of activity and/or effect is increased by a significant amount, for example by at least about 10%, at least about 20%, at least about 30%, at least about 40%, at least about 50%, at least about 60%, at least about 70%, at least about 80%, at least about 90%, at least about 95%, at least about 97%, at least about 98%, or more, up to and including at least about 100% or more, at least about 2-fold, at least about 3-fold, at least about 4-fold, at least about 5-fold, at least about 6-fold, at least about 7-fold, at least about 8-fold, at least about 9-fold, at least about 10-fold, at least about 50-fold, at least about 100-fold, in the presence of an agent or stimulus, relative to the absence of such agent or stimulus.
As referred to herein, all compositional percentages are by weight of the total composition, unless otherwise specified. As used herein, the word “include,” and its variants, is intended to be non-limiting, such that recitation of items in a list is not to the exclusion of other like items that may also be useful in the compositions and methods of this technology. Similarly, the terms “can” and “may” and their variants are intended to be non-limiting, such that recitation that an embodiment can or may comprise certain elements or features does not exclude other embodiments of the present technology that do not contain those elements or features.
Although the open-ended term “comprising,” as a synonym of terms such as including, containing, or having, is used herein to describe and claim the invention, the present invention, or embodiments thereof, may alternatively be described using alternative terms such as “consisting of” or “consisting essentially of.”
As used herein, the words “preferred” and “preferably” refer to embodiments of the technology that afford certain benefits, under certain circumstances. However, other embodiments may also be preferred, under the same or other circumstances. Furthermore, the recitation of one or more preferred embodiments does not imply that other embodiments are not useful, and is not intended to exclude other embodiments from the scope of the technology.
The amount of compositions described herein needed for achieving a therapeutic effect may be determined empirically in accordance with conventional procedures for the particular purpose. Generally, for administering therapeutic agents for therapeutic purposes, the therapeutic agents are given at a pharmacologically effective dose. A “pharmacologically effective amount,” “pharmacologically effective dose,” “therapeutically effective amount,” or “effective amount” refers to an amount sufficient to produce the desired physiological effect or amount capable of achieving the desired result, particularly for treating the disorder or disease. An effective amount as used herein would include an amount sufficient to, for example, delay the development of a symptom of the disorder or disease, alter the course of a symptom of the disorder or disease (e.g., slow the progression of a symptom of the disease), reduce or eliminate one or more symptoms or manifestations of the disorder or disease, and reverse a symptom of a disorder or disease. Therapeutic benefit also includes halting or slowing the progression of the underlying disease or disorder, regardless of whether improvement is realized.
Effective amounts, toxicity, and therapeutic efficacy can be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., for determining the LD50 (the dose lethal to about 50% of the population) and the ED50 (the dose therapeutically effective in about 50% of the population). The dosage can vary depending upon the dosage form employed and the route of administration utilized. The dose ratio between toxic and therapeutic effects is the therapeutic index and can be expressed as the ratio LD50/ED50. In some embodiments, compositions and methods that exhibit large therapeutic indices are preferred. A therapeutically effective dose can be estimated initially from in vitro assays, including, for example, cell culture assays. Also, a dose can be formulated in animal models to achieve a circulating plasma concentration range that includes the IC50 as determined in cell culture, or in an appropriate animal model. Levels of the described compositions in plasma can be measured, for example, by high performance liquid chromatography. The effects of any particular dosage can be monitored by a suitable bioassay. The dosage can be determined by a physician and adjusted, as necessary, to suit observed effects of the treatment.
In certain embodiments, the effect will result in a quantifiable change of at least about 10%, at least about 20%, at least about 30%, at least about 50%, at least about 70%, or at least about 90%. In some embodiments, the effect will result in a quantifiable change of about 10%, about 20%, about 30%, about 50%, about 70%, or even about 90% or more. Therapeutic benefit also includes halting or slowing the progression of the underlying disease or disorder, regardless of whether improvement is realized.
As used herein, “methods of treatment” are equally applicable to use of a composition for treating the diseases or disorders described herein and/or compositions for use and/or uses in the manufacture of a medicaments for treating the diseases or disorders described herein.
In some Examples, two variants of the knob-in-hole technology are used: Ridgway (derived from Ridgway et al., Protein Engineering 1996; 9:617-621) and Merchant (derived from Merchant et al., Nature Biotechnology 1998; 16:677-681 and used in examples 1 and 2 described herein). Sequences are referred to as Fc1 and Fc2 (Ridgway hole and knob, respectively) and Fc3 and Fc4 (Merchant hole and knob, respectively) and shown below.
As an alternative to expressing Activity-on-Target cytokines (AcTakines) as a single chain cytokine in which two copies of the cytokines (signaling agents) for dimeric cytokines are present on the same Fc-chain by directly linking to each other or linking to each other with a linker (see
GSGGSGGSGGSGGSGGSGGSGGSDKTHTCPPCPAPEAAGGPSVFLFPPKP
GGSGGSGGSGGSGGSGGSGGSGGSGGSGGSGGSGGSGGSGGSGGSGGSGG
SGGSGGSGGSQDPYVKEAENLKKYFNAGHSDVADNGTLFLGILKNWKEES
SGGSGGSGGSGGSGGSGGSGGSGGSGGSGGSGGSGGSQDPYVKEAENLKK
The constructs R1CHCL50-20*GGS-Fc3-IFNg_delta 16 (P-1857) and Fc4-20*GGS-IFNg_delta 16 (P-1856) were combined, and transiently expressed in the ExpiCHO™ expression system (Thermo Fisher Scientific) according to the manufacturer's guidelines. One week after the transfection, supernatant was collected, and cells were removed by centrifugation. Recombinant proteins, IFNg Fc AFN, were purified from the supernatant using Pierce Protein A spin plates (Thermo Fisher Scientific).
Hek293T cells were transiently transfected with: (i) interferon gamma receptor (IFNGR1); (ii) signal transducer and activator of signaling 1 (STAT1); (iii) pGAS-TA-luciferase receptor; and (iv) empty vector (MOCK) or human Clec9A. Two days after the transfection, the cells were stimulated overnight with a serial dilution wild type IFNg or IFNg Fc AFN. Luciferase activities of Hek293T cells were measured in cell lysates.
As an alternative to expressing trimeric cytokines as a single chain variant in which three copies of the cytokine (signaling agents) are present on the same Fc-chain by directly linking to each other or linking to each other with a linker (see
SGGSGGSGGSGGSGGSGGSGGSGGSGGSDKTHTCPPCPAPEAAGGPSVFL
SGGSGGSGGSGGSGGSGGSGGSGGSGGSGGSGGSGGSSSRTPSDKPVAHV
SGGSGGSGGSGGSGGSGGSGGSGGSGGSGGSGGSGGSSSRTPSDKPVAHV
The constructs were combined, and transiently expressed in the ExpiCHO™ expression system (Thermo Fisher Scientific) as follows:
One week after the transfection, supernatant was collected and cells were removed by centrifugation. Recombinant proteins were purified from the supernatant using the Pierce Protein A spin plates (Thermo Fisher Scientific).
HEK-Dual™ TNF-α cells (InvivoGen) were derived from the human embryonic kidney 293 cell line by stable co-transfection of two NF-κB-inducible reporter constructs. This allowed the TNF-α-induced NF-κB activation by monitoring the activity of either a secreted alkaline phosphatase (SEAP) or a secreted luciferase (Lucia). Parental cells were stably transfected with an expression vector encoding the human CD20 sequence. Stable transfected clones were selected in puromycin-containing medium. Parental HEK-Dual™ and HEK-Dual™-hCD20 cells were seeded at 20,000 cells per 96-well and subsequently stimulated overnight with a serial dilution of Fc AFRs. Secreted Lucia luciferase activity was measured using QUANTI-Luc™ (InvivoGen).
While the invention has been described in connection with specific embodiments thereof, it will be understood that it is capable of further modifications and this application is intended to cover any variations, uses, or adaptations of the invention following, in general, the principles of the invention and including such departures from the present disclosure as come within known or customary practice within the art to which the invention pertains and as may be applied to the essential features hereinbefore set forth and as follows in the scope of the appended claims.
Those skilled in the art will recognize, or be able to ascertain, using no more than routine experimentation, numerous equivalents to the specific embodiments described specifically herein. Such equivalents are intended to be encompassed in the scope of the following claims.
All patents and publications referenced herein are hereby incorporated by reference in their entireties.
The publications discussed herein are provided solely for their disclosure prior to the filing date of the present application. Nothing herein is to be construed as an admission that the present invention is not entitled to antedate such publication by virtue of prior invention.
As used herein, all headings are simply for organization and are not intended to limit the disclosure in any manner. The content of any individual section may be equally applicable to all sections.
This application claims the benefit of U.S. Provisional Patent Application No. 63/250,425, filed Sep. 30, 2021, the entire contents of which are hereby incorporated by reference in their entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2022/077336 | 9/30/2022 | WO |
Number | Date | Country | |
---|---|---|---|
63250425 | Sep 2021 | US |