Stacked module systems and methods

Information

  • Patent Grant
  • 7310458
  • Patent Number
    7,310,458
  • Date Filed
    Tuesday, October 25, 2005
    18 years ago
  • Date Issued
    Tuesday, December 18, 2007
    16 years ago
Abstract
The present invention provides methods for constructing stacked circuit modules and precursor assemblies with flexible circuitry. Using the methods of the present invention, a single set of flexible circuitry whether articulated as one or two flex circuits may be employed with CSP devices of a variety of configurations either with or without form standards.
Description
TECHNICAL FIELD

The present invention relates to aggregating integrated circuits and, in particular, to stacking integrated circuits in chip-scale packages and methods for creating stacked modules of chip-scale packages.


BACKGROUND OF THE INVENTION

A variety of techniques are used to stack packaged integrated circuits. Some methods require special packages, while other techniques stack conventional packages.


CSP refers generally to packages that provide connection to an integrated circuit through a set of contacts (often embodied as “bumps” or “balls”) arrayed across a major surface of the package. Instead of leads emergent from a peripheral side of the package as in “leaded” packages, in a CSP, contacts are placed on a major surface and typically emerge from the planar bottom surface of the package. The absence of “leads” on package sides renders most stacking techniques devised for leaded packages inapplicable for CSP stacking.


A variety of previous techniques for stacking CSPs typically present complex structural arrangements and thermal or high frequency performance issues. For example, thermal performance is a characteristic of importance in CSP stacks. Further, many stacking techniques result in modules that exhibit profiles taller than may be preferred for particular applications.


Staktek Group L.P., the assignee of the present invention, has developed a variety of stacked module designs that employ a form standard or mandrel that can provide thermal and/or construction advantages while providing a standard form that may allow use of a flexible circuit design with a variety of CSP types and body sizes. The mandrel or form standard stack designs come in a variety of shapes and sizes and materials. Some form standards extend beyond the perimeter edge or the extent of the CSP body and thus provide a form about which the flex circuitry transits.


Stacked module design and assembly techniques and systems that provide a thermally efficient, reliable structure that perform well at higher frequencies but do not add excessive height to the stack that can be manufactured at reasonable cost with readily understood and managed materials and methods are provided.


SUMMARY OF THE INVENTION

The present invention provides methods for constructing stacked circuit modules and precursor assemblies with flexible circuitry. Using the methods of the present invention, a single set of flexible circuitry, whether articulated as one or two flex circuits, may be employed with CSP devices of a variety of configurations either with or without form standards.





SUMMARY OF THE DRAWINGS


FIG. 1 is an elevation view of an assembly devised in accordance with a preferred embodiment of the present invention.



FIG. 2 depicts a two CSP embodiment of a module that employs an assembly devised in accordance with a preferred embodiment of the present invention.



FIG. 3 is an enlarged depiction of the area marked “A” in FIG. 1.



FIG. 4 illustrates an exemplar optional form standard that may be employed in some preferred embodiments of the present invention.



FIG. 5 is a plan view of an exemplar module from below depicting the relationship between an optional form standard and flex circuitry employed in a module in accordance with a preferred embodiment of the present invention.



FIG. 6 depicts two flex circuit edges in an arrangement according to a preferred embodiment of the present invention.



FIG. 7 depicts two flex edges in accordance with an alternative preferred embodiment of the present invention.



FIG. 8 depicts a tooling apparatus devised in accordance with a preferred embodiment of the present invention.



FIG. 9 depicts an enlarged depiction of the area marked “B” in FIG. 8.



FIG. 10 illustrates a tooling apparatus in accordance with a preferred embodiment of the present invention.



FIG. 11 illustrates another step in devising an assembly in accordance with a preferred embodiment of the present invention.



FIG. 12 depicts another step in devising an assembly in accordance with a preferred embodiment of the present invention.





DESCRIPTION OF PREFERRED EMBODIMENTS


FIG. 1 is an elevation view of assembly 12 devised in accordance with a preferred embodiment of the present invention. In this embodiment, assembly 12 includes what, in an assembled stacked module, will become a lower CSP which is here identified with reference 18. Constituent CSPs of preferred module embodiments have an upper surface 20 and a lower surface 22 and opposite lateral edges 24 and 26 and include at least one integrated circuit typically surrounded by a plastic body 27 with a lateral extent “L”. The body need not be plastic, but a large majority of packages in CSP technologies are plastic. Those of skill will realize that the present invention may be devised to create modules and precursor assemblies with different size CSPs and that the constituent CSPs may be of different types within the same module. The disclosed methods allow a single set of flex circuitry, whether comprised of one or two flex circuits, to be employed with a variety of body sizes of CSPs. For example, one of the constituent CSPs of an example module may be a typical CSP having lateral edges 24 and 26 that have an appreciable height to present a “side” while other constituent CSPs of the same module may be devised in packages that have lateral edges 24 and 26 that are more in the character of an edge rather than a side having appreciable height.


The invention is used with CSP packages of a variety of types and configurations such as, for example, those that are die-sized, as well those that are near chip-scale as well as the variety of ball grid array packages known in the art. It may also be used with those CSP-like packages that exhibit bare die connectives on one major surface. Thus, the term CSP should be broadly considered in the context of this application. Collectively, these will be known herein as chip scale packaged integrated circuits (CSPs) and preferred embodiments will be described in terms of CSPs, but the particular configurations used in the explanatory figures are not, however, to be construed as limiting. For example, the elevation view of FIG. 1 depicts a CSP of a particular profile known to those in the art, but it should be understood that the figures are exemplary only. The invention may be employed to advantage in the wide range of CSP configurations available in the art where an array of connective elements is available from at least one major surface. The invention is advantageously employed with CSPs that contain memory circuits, but may be employed to advantage with logic and computing circuits where added capacity without commensurate PWB or other board surface area consumption is desired.


Typical CSPs, such as, for example, ball-grid-array (“BGA”), micro-ball-grid array, and fine-pitch ball grid array (“FBGA”) packages have an array of connective contacts embodied, for example, as leads, bumps, solder balls, or balls that extend from lower surface 22 of a plastic casing in any of several patterns and pitches. An external portion of the connective contacts is often finished with a ball of solder. Shown in FIG. 1 are contacts 28 along lower surface 22 of illustrated CSP 18. Contacts 28 provide connection to the integrated circuit or circuits within the CSP package.


Flex circuits 30 and 32 are shown in conjunction with CSP 18. The entire flex circuit may be flexible or, as those of skill in the art will recognize, a PCB structure made flexible in certain areas to allow conformability around CSPs and rigid in other areas for planarity along CSP surfaces may be employed as an alternative flex circuit in the present invention. For example, structures known as rigid-flex may be employed. More than one flex circuit may be employed to implement the connections between constituent CSPs in a module.


As shown in FIG. 1, a substantially planar and optional form standard 34 is disposed along lower planar surface 22 of body 27 of CSP 18 in assembly 12. The depicted embodiment of assembly 12 is comprised of CSP 18 and optional form standard 34 and flex circuitry, which in this example is comprised of flex circuits 30 and 32. Flex circuits 30 and 32 have, respectively, upper portions 30U and 32U which terminate in edges 70A and 70B which are separated by gap “G” above the upper surface 20 of CSP 18. In some embodiments, gap G is preselected and imposed when assembly 12 is created as will be further shown.


Where employed, form standard 34 is disposed along a surface of a CSP even if literally separated from that surface by adhesive, for example. In this embodiment, form standard 34 is attached to flex circuits 30 and 32 with adhesive 35 and as shown, adhesive 35 has a portion 35B that extends beyond the extent of the form standard and about one major side of the flex circuitry.


Form standard 34 may take many configurations, but in preferred embodiments herein, it is substantially planar. A preferred embodiment is shown using a form standard 34 having a lateral extent smaller than the lateral extent L of CSP 18. Other embodiments may have a form standard 34 with a lateral extent larger than CSP 18. Other embodiments that employ form standards have a downward opening form standard shown in pending U.S. patent application Ser. No. 10/453,398, filed Jun. 3, 2003, now U.S. Pat. No. 6,914,324, commonly owned by Staktek Group L.P., the assignee of the present invention. In some cases, embodiments that employ downward opening form standards that are disposed across the upper surface of and arc underneath the lower surface of the CSP with which the form standard is associated may exhibit higher profiles. Module contacts 38 are shown through which a module may connect to an application environments in a preferred embodiment. Those of skill will recognize that module contacts 38 which are balls are not required to connect a module to an application environment and other connective strategies may be employed such as, for example, direct pad to pad connection schemes.


As shown in FIG. 1, adhesive 35 has portion 35A adjacent to form standard 34, and portion 35B extending beyond the lateral extent of form standard 34. Portion 35B may provide a number of benefits to the structure and assembly of a module. For example, the extension of adhesive portion 35B onto flex circuits 30 and 32 may help control the bend radius of curves 30A and 32A linking those portions of flex circuits 30 and 32 below CSP 18 to those portions 30U and 32U above CSP 18.



FIG. 2 depicts an exemplar module 10 in accordance with a preferred embodiment of the present invention that employs an optional form standard 34. Flex circuits 30 and 32 in FIG. 2 have adhesive portions or extended adhesive portions 35B of adhesive 35.



FIG. 3 is an enlarged depiction of the area marked “A” in FIG. 1. In a two-CSP module 10, contacts 28 of an upper CSP 16 contact the flex circuitry that transits about the body of lower CSP 18. Form standard 34 may be fixed to the lower (or upper) surface of the respective CSP with an adhesive 35 which preferably is thermally conductive while a stabilizing fill may be optionally employed between flex circuits at different levels in the module.


In a preferred embodiment, portions of flex circuits 30 and 32 may be attached to form standard 34 by adhesive 35, which, in a preferred embodiment, is a laminate tape adhesive. Other methods for attaching form standard 34 to flex circuitry may be employed in the present invention including, for example, liquid adhesive. Preferably, the adhesive will be thermally conductive. The depicted adhesive 35 is preferably disposed, after assembly, over a large portion of the curve 30A connecting the depicted upper portion 30U and lower portion 30L of flex circuit 30.



FIG. 4 illustrates an exemplar optional form standard 34 that may be employed in some preferred embodiments of the present invention where an optional form standard is employed. Form standard 34 as depicted in the preferred embodiment of FIG. 4 is comprised of nickel-plated copper and exhibits two windows identified by references A and B to allow the array of contacts 28 that rise above lower surface 22 of the respective CSP to readily pass through form standard 34. Form standard 34 may take other configurations and may, for example, be devised in more than one piece or have only one piece with only one window.



FIG. 5 is a plan view of an exemplar module 10 from below depicting an exemplar module 10 in which flex circuit 32 has been deleted to allow a view of the relationship between form standard 34 passing along lower planar surface 22 of CSP 18 and the flex circuitry employed in the module. On the right-hand side of the view of FIG. 5, and visible through window B of form standard 34, contacts 28 are shown rising from lower surface 22 of CSP 18 and projecting into window B. On the left-hand side of the view of FIG. 5, flex circuit 30 is represented as being disposed over part of form standard 34 and substantially all of window A of form standard 34. Module contacts 38 are shown along flex circuit 30.


The depicted edge of form standard 34 in this embodiment is outside the lateral extent of CSP 18. Other embodiments may have extend further outside. Other embodiments, such as depicted earlier, may have a form standard 34 with a lateral extent smaller than that of CSP 18. Still other embodiments do not employ a form standard.



FIG. 6 depicts two flex circuit edges 70A and 70B in a proximal arrangement according to a preferred embodiment of the present invention. Referring to FIG. 6, upper side 33 of flex circuits 30 and 32 are depicted. As those of skill will recognize, upper contact arrays 72A and 72B have been abstracted to illustrate only a few exemplar flex contacts or pads 44 when in practice, upper arrays 72A and 72B will typically include a greater number of individual flex contacts than the few shown for illustrative purposes.


The depiction of FIG. 6 shows flex edges 70A and 70B separated by gap G. The depicted flex circuitry may be comprised of one or two flex circuits and thus, the depicted flex edges may be edges of a single flex circuit or, a single edge 70A from flex circuit 30 and an edge 70B from flex circuit 32. Flex edges 70A and 70B terminate respective upper portions 30U and 32U of flex circuits 30 and 32. Whether one or two distinct flex circuits are employed with, for example, CSP 18 in module 10, in one embodiment, gap “G” between edges 70A and 70B is controlled by a physical form during creation of assembly 12 and upper arrays 72A and 72B will, therefore, be localized or fixed in relative position. This allows use of one flex circuitry design for a module (whether implemented with one or two distinct flex circuits) with a large variety of CSPs of differing types and body sizes.


Other means may be employed to position or set edges 70A and 70B and, by extension, arrays 72A and 72B. For example, flex edges 70A and 70B may be devised to be jointly fittable with each other as shown in FIG. 7 to position upper arrays 72A and 72B. Protrusion 74 fits with receptive check 75 to both align laterally and transversely edges 72A and 72B. Other similar devices may be employed to laterally and/or transversely align edges 72A and 72B. Thus, array 72A and 72B are disposed in predetermined relation to each other by the jointly fittable configuration of edges 70A and 70B to mesh with each other. Consequently, in this depicted alternative embodiment, edges 70A and 70B are disposed in predetermined relation to each other by their jointly fittable configurations.



FIG. 8 depicts a tooling apparatus 80 devised in accordance with a preferred embodiment of the present invention illustrating the use of a physical form to set gap G between edges 70A and 70B of flex circuitry employed in creating assembly 12. Tooling apparatus 80 includes an flex aligner 82 as shown in FIG. 8. When forming tool 84 disposes flex circuit 30 adjacent to upper surface 20 of example CSP 18 in forming assembly 12, edge 70B of flex circuit 32 is limited in lateral placement along upper surface 20 of CSP 18 by flex aligner 82. Gap “G” is, therefore, preselected by the dimensions of flex aligner 82 when disposed between edges 70A and 70B and gap G is determined and thus, edges 70A and 70B and therefore, upper arrays 72A and 72B are positioned during assembly.



FIG. 9 depicts an enlarged depiction of the area marked “B” in FIG. 8. As shown in the construction of the example assembly 12, flex circuit 30 is appended to an optional form standard 34. When assembly 12 comprising IC 18, optional form standard 34 and flex circuit 30 is disposed in cavity 88 of fixed form tool 86, flex 30 is deflected in an upward direction as shown in FIG. 9.



FIG. 10 illustrates a step in a method of devising an assembly 12 in accordance with a preferred embodiment of the present invention. As indicated, forming tools 84 are moveable as indicated by the arrow 84M to indicate with the “+”, sign, movement of forming tool 84 to dispose flex circuits 30 and 32 over CSP 18. The ends 70A and 70B are set apart at distance “G” apart by flex aligner 82.



FIG. 11 illustrates another step in a method for devising an assembly 12 in accordance with a preferred embodiment of the present invention. Press tool 89 is imposed on assembly 12 after flex circuits 30 and 32 have been disposed over the upper surface 20 of the subject CSP. Press tool 89 is preferably heated.



FIG. 12 depicts another step in a method for devising an assembly 12 in accordance with a preferred embodiment of the present invention. Press tool 89 has moved up off of assembly 12 as indicated by motion arrow 89M. Flex aligner 82 may now be withdrawn and assembly 12 is ready for combination with either another assembly 12 or a CSP 16 to form a module 10.

Claims
  • 1. A method for constructing an assembly devised for employment in a stacked circuit module, the method comprising the steps of: providing a first CSP having first and second lateral sides and upper and lower major surfaces and a body having a CSP lateral extent;providing flex circuitry to connect the first CSP to other CSPs, the flex circuitry having first and second upper portions terminated by first and second edges, respectively, and disposing said first and second upper portions of the flex circuitry above the upper major surface of the first CSP while disposing the first and second edges a preselected distance apart and employing a physical form to impose the preselected distance while constructing the assembly.
  • 2. The method of claim 1 further comprising the steps of providing a second CSP and disposing the second CSP above the assembly and connecting the second CSP to the flex circuitry.
  • 3. The method of claim 1 or 2 in which the flex circuitry comprises two flex circuits.
  • 4. The method of claim 1 or 2 further comprising the step of providing a form standard and disposing said form standard along the lower major surface of the first CSP.
  • 5. The method of claim 1 or 2 further comprising employing a flex aligner as the physical form to impose the preselected distance.
  • 6. The method of claim 5 in which a portion of the flex aligner is placed between the first and second edges.
  • 7. A method of devising an assembly for employment in a stacked module, the method comprising the steps of: providing a first CSP having first and second lateral sides and upper and lower major surfaces;providing flex circuitry to connect the first CSP to other CSPs, the flex circuitry having first and second upper portions that exhibit first and second contact sets, the first and second upper portions being terminated by jointly fittable first and second edges, respectively, which jointly fittable first and second edges are configured to mesh with each other; anddisposing the first and second upper portions of the flex circuitry above the upper major surface of the first CSP and meshing together said jointly configurable first and second edges.
  • 8. The method of claim 7 further comprising providing a second CSP and connecting the second CSP to the first and second contact sets of the flex circuitry.
  • 9. The method of claim 7 or 8 in which the flex circuitry comprises first and second flex circuits.
  • 10. The method of claim 7 or 8, further comprising attaching a form standard to the flex circuitry and the flex circuitry not exceeding the lateral extent of the first CSP.
  • 11. The method of claim 7 further comprising the step of providing a second CSP having first and second lateral sides and upper and lower major surfaces with CSP contacts along the lower major surface;providing a form standard and disposing said form standard along the lower major surface of the first CSP, the form standard having first and second edges defining a lateral extent of the form standard;connecting the form standard to the flex circuitry; andfolding the first and second end portions of the flex circuitry over the upper major surface of the first CSP to form an assembly; anddisposing the second CSP above the assembly.
RELATED APPLICATIONS

This application is a continuation-in-part of U.S. patent application Ser. No. 11/015,521, filed Dec. 17, 2004, pending, which is a continuation-in-part of U.S. patent application Ser. No. 10/845,029, filed May 13, 2004, now abandoned pending, which application is a continuation-in-part of PCT Application No. PCT/US03/29000, filed Sep. 15, 2003, pending. This application is also a continuation-in-part of U.S. patent application Ser. No. 10/400,309 filed Mar. 27, 2003, now abandoned, which application is a continuation of U.S. patent application Ser. No. 10/005,581, filed Oct. 26, 2001, now U.S. Pat. No. 6,576,992. U.S. patent application Ser. Nos. 11/015,521, 10/845,029, PCT Application No. PCT/US03/29000 and U.S. patent application Ser. Nos. 10/400,309 and 10/005,581 are hereby incorporated by reference.

US Referenced Citations (355)
Number Name Date Kind
3411122 Schiller et al. Nov 1968 A
3436604 Hyltin Apr 1969 A
3654394 Gordon Apr 1972 A
3746934 Stein Jul 1973 A
3766439 Isaacson Oct 1973 A
3772776 Weisenburger Nov 1973 A
3806767 Lehrfeld Apr 1974 A
3983547 Almasi Sep 1976 A
4079511 Grabbe Mar 1978 A
4288841 Gogal Sep 1981 A
4381421 Coats et al. Apr 1983 A
4406508 Sadigh-Behzadi Sep 1983 A
4420794 Anderson Dec 1983 A
4513368 Houseman Apr 1985 A
4587596 Bunnell May 1986 A
4645944 Uya Feb 1987 A
4696525 Coller et al. Sep 1987 A
4712129 Orcutt Dec 1987 A
4722691 Gladd et al. Feb 1988 A
4733461 Nakano Mar 1988 A
4758875 Fujisawa et al. Jul 1988 A
4763188 Johnson Aug 1988 A
4821007 Fields et al. Apr 1989 A
4823234 Konishi et al. Apr 1989 A
4833568 Berhold May 1989 A
4839717 Phy et al. Jun 1989 A
4862249 Carlson Aug 1989 A
4884237 Mueller et al. Nov 1989 A
4891789 Quattrini et al. Jan 1990 A
4903169 Kitagawa et al. Feb 1990 A
4911643 Perry et al. Mar 1990 A
4953060 Lauffer et al. Aug 1990 A
4956694 Eide Sep 1990 A
4983533 Go Jan 1991 A
4985703 Kaneyama Jan 1991 A
5012323 Farnworth Apr 1991 A
5016138 Woodman May 1991 A
5034350 Marchisi Jul 1991 A
5041015 Travis Aug 1991 A
5041902 McShane Aug 1991 A
5050039 Edfors Sep 1991 A
5057903 Olla Oct 1991 A
5064762 Nishiguchi Nov 1991 A
5068708 Newman Nov 1991 A
5081067 Shimru et al. Jan 1992 A
5099393 Bentlage et al. Mar 1992 A
5104820 Go et al. Apr 1992 A
5117282 Salatino May 1992 A
5122862 Kajihara et al. Jun 1992 A
5138430 Gow, III et al. Aug 1992 A
5138434 Wood et al. Aug 1992 A
5158912 Kellerman et al. Oct 1992 A
5159434 Kohno et al. Oct 1992 A
5159535 Desai et al. Oct 1992 A
5168926 Watson et al. Dec 1992 A
5198888 Sugano et al. Mar 1993 A
5198965 Curtis et al. Mar 1993 A
5214307 Davis May 1993 A
5219794 Satoh et al. Jun 1993 A
5222014 Lin Jun 1993 A
5224023 Smith et al. Jun 1993 A
5229641 Katayama Jul 1993 A
5229916 Frankeny et al. Jul 1993 A
5239198 Lin et al. Aug 1993 A
5240588 Uchida Aug 1993 A
5241454 Ameen et al. Aug 1993 A
5243133 Engle et al. Sep 1993 A
5247423 Lin et al. Sep 1993 A
5252855 Ogawa et al. Oct 1993 A
5252857 Kane et al. Oct 1993 A
5259770 Bates et al. Nov 1993 A
5261068 Gaskins et al. Nov 1993 A
5262927 Chia et al. Nov 1993 A
5276418 Klosowiak et al. Jan 1994 A
5281852 Normington Jan 1994 A
5289062 Wyland Feb 1994 A
5289346 Carey et al. Feb 1994 A
5313097 Haj-Ali-Ahmadi et al. May 1994 A
4437235 Burns Aug 1994 A
5337388 Jacobowitz et al. Aug 1994 A
5343366 Cipolla et al. Aug 1994 A
5345205 Kornrumpf Sep 1994 A
5347159 Khandros et al. Sep 1994 A
5347428 Carson et al. Sep 1994 A
5357478 Kikuda et al. Oct 1994 A
5361228 Adachi et al. Nov 1994 A
5362656 McMahon Nov 1994 A
5375041 McMahon Dec 1994 A
5384690 Davis et al. Jan 1995 A
5386341 Olson et al. Jan 1995 A
5394303 Yamaji Feb 1995 A
5396573 Ecker et al. Mar 1995 A
5397916 Normington Mar 1995 A
5428190 Stopperan Jun 1995 A
5432630 Lebby et al. Jul 1995 A
5438224 Papageorge et al. Aug 1995 A
5448511 Paurus et al. Sep 1995 A
5477082 Buckley, III et al. Dec 1995 A
5484959 Burns Jan 1996 A
5502333 Bertin et al. Mar 1996 A
5509197 Stone Apr 1996 A
5516989 Uedo et al. May 1996 A
5523619 McAllister et al. Jun 1996 A
5523695 Lin Jun 1996 A
5572065 Burns Nov 1996 A
5581498 Ludwig et al. Dec 1996 A
5588205 Roane Dec 1996 A
5594275 Kwon et al. Jan 1997 A
5610833 Chang et al. Mar 1997 A
5612570 Eide et al. Mar 1997 A
5620782 Davis et al. Apr 1997 A
5631193 Burns May 1997 A
5642055 Difrancesco Jun 1997 A
5644839 Stone Jul 1997 A
5646446 Nicewarner, Jr. et al. Jul 1997 A
5654877 Burns Aug 1997 A
5657537 Saia et al. Aug 1997 A
5677569 Choi et al. Oct 1997 A
5717556 Yanagida Feb 1998 A
5729894 Rostoker et al. Mar 1998 A
5737192 Linderman Apr 1998 A
5744827 Jeong et al. Apr 1998 A
5751553 Clayton May 1998 A
5763296 Casati et al. Jun 1998 A
5763943 Baker et al. Jun 1998 A
5764497 Mizumo et al. Jun 1998 A
5776797 Nicewarner, Jr. et al. Jul 1998 A
5778522 Burns Jul 1998 A
5778552 Burns Jul 1998 A
5783464 Burns Jul 1998 A
5789815 Tessier et al. Aug 1998 A
5801439 Fujisawa et al. Sep 1998 A
5804870 Burns Sep 1998 A
5805422 Otake et al. Sep 1998 A
5835988 Ishii Nov 1998 A
5841721 Kwon et al. Nov 1998 A
5852326 Khandros et al. Dec 1998 A
5869353 Levy et al. Feb 1999 A
5895969 Masuda et al. Apr 1999 A
5895970 Miyoshi et al. Apr 1999 A
5899705 Akram May 1999 A
5907178 Baker et al. May 1999 A
5917709 Johnson et al. Jun 1999 A
5922061 Robinson Jul 1999 A
5925934 Lim Jul 1999 A
5926369 Ingraham et al. Jul 1999 A
5933712 Bernhardt et al. Aug 1999 A
5949657 Karabatsos Sep 1999 A
5953215 Karabatsos Sep 1999 A
5959839 Gates Sep 1999 A
5963427 Bolleson Oct 1999 A
5973395 Suzuki et al. Oct 1999 A
5995370 Nakamori Nov 1999 A
6002167 Hatano et al. Dec 1999 A
6002589 Perino et al. Dec 1999 A
6013948 Akram et al. Jan 2000 A
6014316 Eide Jan 2000 A
6028352 Eide Feb 2000 A
6028365 Akram et al. Feb 2000 A
6034878 Osaka et al. Mar 2000 A
6040624 Chambers et al. Mar 2000 A
6072233 Corisis et al. Jun 2000 A
6084293 Ohuchi Jul 2000 A
6084294 Tomita Jul 2000 A
6084778 Malhi Jul 2000 A
6097087 Farnworth et al. Aug 2000 A
6102710 Beilin et al. Aug 2000 A
6111761 Peana et al. Aug 2000 A
6114763 Smith Sep 2000 A
6121676 Solberg Sep 2000 A
RE36916 Moshayedi Oct 2000 E
6130477 Chen et al. Oct 2000 A
6157541 Hacke Dec 2000 A
6165817 Akram Dec 2000 A
6172874 Bartilson Jan 2001 B1
6178093 Bhatt et al. Jan 2001 B1
6186106 Glovatsky Feb 2001 B1
6187652 Chou et al. Feb 2001 B1
6205654 Burns Mar 2001 B1
6208521 Nakatsuka Mar 2001 B1
6218731 Huang et al. Apr 2001 B1
6222737 Ross Apr 2001 B1
6225688 Kim et al. May 2001 B1
6233650 Johnson et al. May 2001 B1
6234820 Perino et al. May 2001 B1
6236565 Gordon May 2001 B1
6262895 Forthun Jul 2001 B1
6265660 Tandy Jul 2001 B1
6265766 Moden Jul 2001 B1
6266252 Karabatsos Jul 2001 B1
6271058 Yoshida Aug 2001 B1
6272741 Kennedy et al. Aug 2001 B1
6281577 Oppermann et al. Aug 2001 B1
6285560 Lyne Sep 2001 B1
6288907 Burns Sep 2001 B1
6300679 Mukerji et al. Oct 2001 B1
6303981 Moden Oct 2001 B1
6310392 Burns Oct 2001 B1
6313998 Kledzik Nov 2001 B1
6316825 Park et al. Nov 2001 B1
6320137 Bonser et al. Nov 2001 B1
6323060 Isaak Nov 2001 B1
6329706 Komiyama Dec 2001 B1
6338262 Dalal et al. Jan 2002 B1
6351029 Isaak Feb 2002 B1
6360433 Ross Mar 2002 B1
6360935 Flake Mar 2002 B1
6368896 Farnworth et al. Apr 2002 B2
6376769 Chung Apr 2002 B1
6384339 Neuman May 2002 B1
6392162 Karabatsos May 2002 B1
6410857 Gonya Jun 2002 B1
6414384 Lo et al. Jul 2002 B1
6417027 Akram Jul 2002 B1
6423622 Chen et al. Jul 2002 B1
6426240 Isaak Jul 2002 B2
6426549 Isaak Jul 2002 B1
6426560 Kawamura et al. Jul 2002 B1
6433418 Fujisawa et al. Aug 2002 B1
6437990 Degani et al. Aug 2002 B1
6444490 Bertin et al. Sep 2002 B2
6444921 Wang et al. Sep 2002 B1
6446158 Karabatsos Sep 2002 B1
6447321 Perino et al. Sep 2002 B1
6449159 Haba Sep 2002 B1
6452826 Kim et al. Sep 2002 B1
6462408 Wehrly, Jr. Oct 2002 B1
6462412 Kamei et al. Oct 2002 B2
6462423 Akram et al. Oct 2002 B1
6465877 Farnworth et al. Oct 2002 B1
6465893 Khandros et al. Oct 2002 B1
6473308 Forthun Oct 2002 B2
6486544 Hashimoto Nov 2002 B1
6487078 Kledzik et al. Nov 2002 B2
6489178 Coyle et al. Dec 2002 B2
6489687 Hashimoto Dec 2002 B1
6492718 Ohmori Dec 2002 B2
6500697 Ahmad Dec 2002 B2
6504104 Hacke et al. Jan 2003 B2
6509639 Lin Jan 2003 B1
6514793 Isaak Feb 2003 B2
6522018 Tay et al. Feb 2003 B1
6528870 Fukatsu et al. Mar 2003 B2
6532162 Schoenborn Mar 2003 B2
6538895 Worz et al. Mar 2003 B2
6549413 Karnezos et al. Apr 2003 B2
6552910 Moon et al. Apr 2003 B1
6559521 Tuttle May 2003 B2
6560117 Moon May 2003 B2
6572387 Burns et al. Jun 2003 B2
6576992 Cady et al. Jun 2003 B1
6588095 Pan Jul 2003 B2
6590282 Wang et al. Jul 2003 B1
6600222 Levardo Jul 2003 B1
6608763 Burns et al. Aug 2003 B1
6614664 Lee Sep 2003 B2
6617510 Schreiber et al. Sep 2003 B2
6620651 He et al. Sep 2003 B2
6624507 Nguyen et al. Sep 2003 B1
6627984 Bruce et al. Sep 2003 B2
6646333 Hogerl Nov 2003 B1
6657134 Spielberger et al. Dec 2003 B2
6660561 Forthun Dec 2003 B2
6670700 Hashimoto Dec 2003 B1
6673651 Ohuchi et al. Jan 2004 B2
6677670 Kondo Jan 2004 B2
6683377 Shim et al. Jan 2004 B1
6689634 Lyne Feb 2004 B1
6690584 Uzuka et al. Feb 2004 B2
6699730 Kim et al. Mar 2004 B2
6707148 Mostafazedeh et al. Mar 2004 B1
6707684 Andric et al. Mar 2004 B1
6709893 Moden et al. Mar 2004 B2
6724076 Kahlisch et al. Apr 2004 B1
6746894 Fee et al. Jun 2004 B2
6762495 Reyes et al. Jul 2004 B1
6762769 Moon et al. Jul 2004 B2
6765288 Damberg Jul 2004 B2
6768660 Kong et al. Jul 2004 B2
6773848 Nortoft et al. Aug 2004 B1
6776797 Blom Aug 2004 B1
6778404 Bolken et al. Aug 2004 B1
6781240 Choi et al. Aug 2004 B2
6785144 Akram Aug 2004 B1
6803651 Chiang Oct 2004 B1
6812567 Kim et al. Nov 2004 B2
6821029 Grung et al. Nov 2004 B1
6833984 Belgacem Dec 2004 B1
6841855 Jaeck et al. Jan 2005 B2
6849949 Lyu et al. Feb 2005 B1
6867496 Hashimoto Mar 2005 B1
6869825 Chiu Mar 2005 B2
6876074 Kim Apr 2005 B2
6879047 Heo Apr 2005 B1
6884653 Larson Apr 2005 B2
6891729 Ko et al. May 2005 B2
6893897 Sweterlitsch May 2005 B2
6908792 Bruce et al. Jun 2005 B2
6914324 Rapport et al. Jul 2005 B2
6919626 Burns Jul 2005 B2
6965166 Hikita et al. Nov 2005 B2
6998704 Yamazaki et al. Feb 2006 B2
7023701 Stocken et al. Apr 2006 B2
7081373 Roeters et al. Jul 2006 B2
7104804 Batinovich Sep 2006 B2
7129571 Kang Oct 2006 B2
20010006252 Kim et al. Jul 2001 A1
20010013423 Dalal et al. Aug 2001 A1
20010015487 Forthun Aug 2001 A1
20010035572 Isaak Nov 2001 A1
20010040793 Inaba Nov 2001 A1
20020006032 Karabatsos Jan 2002 A1
20020030995 Shoji Mar 2002 A1
20020044423 Primavera et al. Apr 2002 A1
20020048849 Isaak Apr 2002 A1
20020076919 Peters et al. Jun 2002 A1
20020101261 Karabatsos Aug 2002 A1
20020114143 Morrison et al. Aug 2002 A1
20020126951 Sutherland et al. Sep 2002 A1
20020139577 Miller Oct 2002 A1
20020153602 Tay et al. Oct 2002 A1
20020164838 Moon et al. Nov 2002 A1
20020180022 Emoto Dec 2002 A1
20030016710 Kamoto Jan 2003 A1
20030045025 Coyle et al. Mar 2003 A1
20030049886 Salmon Mar 2003 A1
20030081392 Cady et al. May 2003 A1
20030107118 Pflughaupt et al. Jun 2003 A1
20030109078 Takahashi et al. Jun 2003 A1
20030113998 Ross Jun 2003 A1
20030164551 Lee et al. Sep 2003 A1
20030168725 Warner et al. Sep 2003 A1
20040000708 Rapport et al. Jan 2004 A1
20040004281 Bai et al. Jan 2004 A1
20040021211 Damberg Feb 2004 A1
20040031972 Pflughaupt et al. Feb 2004 A1
20040045159 DiStefano et al. Mar 2004 A1
20040065963 Karnezos Apr 2004 A1
20040075991 Haba et al. Apr 2004 A1
20040099938 Kang et al. May 2004 A1
20040104470 Bang et al. Jun 2004 A1
20040115866 Bang et al. Jun 2004 A1
20040150107 Cha et al. Aug 2004 A1
20040157362 Beroz et al. Aug 2004 A1
20040203190 Pflughaupt et al. Oct 2004 A1
20040217461 Damberg Nov 2004 A1
20040217471 Haba Nov 2004 A1
20040238931 Haba et al. Dec 2004 A1
20040245617 Damberg et al. Dec 2004 A1
20040267409 De Lorenzo et al. Dec 2004 A1
20050018495 Bhakta et al. Jan 2005 A1
20050035440 Mohammad Feb 2005 A1
20050040508 Lee Feb 2005 A1
20050047250 Ruckerbauer et al. Mar 2005 A1
20050133897 Baek et al. Jun 2005 A1
Foreign Referenced Citations (26)
Number Date Country
004215467 Nov 1992 DE
004214102 Dec 1992 DE
0426-303 Oct 1990 EP
359088863 May 1984 JP
60-254762 Dec 1985 JP
60254762 Dec 1985 JP
3641047659 Mar 1986 JP
62-230027 Jun 1987 JP
4-209582 Jul 1992 JP
4-4368167 Dec 1992 JP
50-29634 Feb 1993 JP
63-153849 Jun 1998 JP
2000-88921 Mar 2000 JP
2000307029 Nov 2000 JP
2001077294 Mar 2001 JP
2001085592 Mar 2001 JP
2001332883 Nov 2001 JP
2003037246 Feb 2003 JP
2003086760 Mar 2003 JP
2003086761 Mar 2003 JP
2003309246 Oct 2003 JP
2003309247 Oct 2003 JP
2003347475 Dec 2003 JP
2003347503 Dec 2003 JP
WO9744824 Nov 1997 WO
WO 03037053 May 2003 WO
Related Publications (1)
Number Date Country
20060108572 A1 May 2006 US
Continuations (1)
Number Date Country
Parent 10005581 Oct 2001 US
Child 10400309 US
Continuation in Parts (4)
Number Date Country
Parent 11015521 Dec 2004 US
Child 11258438 US
Parent 10845029 May 2004 US
Child 11015521 US
Parent PCT/US03/29000 Sep 2003 US
Child 10845029 US
Parent 10400309 Mar 2003 US
Child 11258438 US