1. Field of the Invention
The present invention relates to integrating III-V semiconductor devices upon silicon substrates. More particularly this invention relates to the buffer layer between a III-V semiconductor device and a silicon substrate.
2. Discussion of Related Art
A variety of electronic and optoelectronic devices can be enabled by developing thin film relaxed lattice constant III-V semiconductors on elemental silicon (Si) substrates. Surface layers capable of achieving the performance advantages of III-V materials may host a variety of high performance electronic devices such as CMOS and quantum well (QW) transistors fabricated from extreme high mobility materials such as, but not limited to, indium antimonide (InSb), indium gallium arsenide (InxGa1−xAs) (x>0.53) and indium arsenide (InAs). Optical devices such as lasers, detectors and photovoltaics may also be fabricated from various other direct band gap materials, such as, but not limited to, gallium arsenide (GaAs) and indium gallium arsenide (InGaAs). These devices can be further enhanced by monolithically integrating them with conventional devices of silicon and use of a silicon substrate has the additional advantage of cost reduction.
Despite all these advantages, the growth of III-V materials upon silicon substrates presents many challenges. Crystal defects are generated by lattice mismatch, polar-on-nonpolar mismatch and thermal mismatch between the III-V semiconductor epitaxial layer and the silicon semiconductor substrate. When the lattice mismatch between the epitaxial layer and substrate exceeds a few percent, the strain induced by the mismatch becomes too great and defects are generated in the epitaxial layer when the epitaxial film relaxes. Once the film thickness is greater than the critical thickness (film is strained below this thickness and relaxed above this thickness), the strain is relaxed by creating misfit dislocations at the film and substrate interface as well as in the epitaxial film. The epitaxial crystal defects are typically in the form of threading dislocations, stacking faults and twins (periodicity breaks where one portion of the lattice is a mirror image of another). Many defects, particularly threading dislocations, tend to propagate into the “device layer” where the semiconductor device is fabricated. Generally, the severity of defect generation correlates to the amount of lattice mismatch between the III-V semiconductor and the silicon substrate. For these reasons, the large lattice mismatch (approximately 19.2% between the exemplary indium antimonide (InSb) and silicon (Si) combination) typically results in an epitaxial device layer having a high defect density, on the order of 1×109 cm−2 to 1×1010 cm−2. The high defect density reduces the carrier mobility theoretically possible in bulk InSb, eliminating many of the technical advantages of “InSb-on-silicon” integration. For example, the electron mobility in bulk InSb films is estimated to be approximately 76,000 cm2/Vs. However, to date, the best reported electron mobility of an InSb film formed over a silicon substrate is significantly lower, approximately 40,000-50,000 cm2/Vs.
Similarly, a high defect density is also detrimental to photonic devices formed in or upon III-V semiconductor device layers on silicon substrates. The recombination-generation (R-G) energies of crystal defects are typically mid-gap, detracting from the performance of a semiconductor device layer that has been band gap engineered for a particular optical wavelength.
Various buffer layers have been used in attempts to relieve the strain induced by the lattice mismatch between the silicon substrate and the III-V device layer and thereby reduce the detrimental defect density of the device layer. For example, as shown in apparatus 100 of
In various embodiments, a stacking fault and twin blocking barrier for integrating III-V semiconductor devices on silicon substrates is described with reference to figures. However, certain embodiments may be practiced without one or more of these specific details, or in combination with other known methods and materials. In the following description, numerous specific details are set forth, such as specific materials, dimensions and processes, etc., in order to provide a thorough understanding of the present invention. In other instances, well-known semiconductor processes and manufacturing techniques have not been described in particular detail in order to not unnecessarily obscure the present invention. Reference throughout this specification to “an embodiment” means that a particular feature, structure, material, or characteristic described in connection with the embodiment is included in at least one embodiment of the invention. Thus, the appearances of the phrase “in an embodiment” in various places throughout this specification are not necessarily referring to the same embodiment of the invention. Furthermore, the particular features, structures, materials, or characteristics may be combined in any suitable manner in one or more embodiments.
Embodiments of the present invention reduce the dislocations within the III-V device layer formed over a silicon substrate to near bulk-like quality by utilizing a buffer architecture and specific fabrication techniques tailored to the particular III-V device layer desired. As shown in
In particular embodiments, the III-V buffer layer 240 is formed on a vicinal surface of silicon substrate 210 having regular arrays of double-stepped (100) terraces across the substrate surface. A vicinal surface is a higher order crystal plane of the silicon substrate, such as, but not limited to the (211), (511), (013), (711) planes. A vicinal substrate surface having double-stepped terraces is capable of suppressing anti-phase domains (APD) in the III-V buffer layer 240. An APD is created when a first polar crystal domain of layer 240, having group III atoms attached to the nonpolar silicon substrate surface, meets a second polar crystal domain of layer 240, having group V atoms attached to the silicon substrate. A crystal discontinuity forms in layer 240 at the border between these first and second domains providing recombination-generation centers detrimental to the operation of a semiconductor device. The term “polar” refers to the partially ionic bonding character between the constituents of a III-V compound semiconductor.
Embodiments providing the double atomic step in the silicon substrate 210 provide for a terrace level of sufficient depth to prevent the growth species of buffer layer 240 from bonding to a higher level terrace even after all binding sites in the lowest terrace are occupied. Thus, the double step terrace prevents ad-hoc surface bonding so that the growth of the III-V buffer layer 240 proceeds in a stepwise fashion with each polar group III-V atomic bi-layer sequentially filling the lowest terrace of the nonpolar group IV, silicon substrate. In some embodiments, anti-phase domains are eliminated by growing layer 240 to a thickness greater than approximately 1.5 um. At such thicknesses, anti-phase domains are substantially annihilated and a single domain film can be formed even on first order planes, such as, but not limited to, the (100) silicon substrates commonly used for microelectronic fabrication. In alternative embodiments, a single domain layer 240 is grown such a manner that the formation of anti-phase domains is avoided. In such embodiments layer 240 may not be required to be thick, and may for example, be less than approximately 0.1 um in thickness using offcut Si substrate along with proper growth parameters such as growth rate, growth temperature and starting growth precursors. Additionally, buffer layer 240 grown according to embodiments of this invention may be substantially free of stacking faults and twins. The phrase substantially free of stacking faults and twins as used herein means that stacking fault and twin densities cannot be accurately measured using cross-section TEM or bandwidth TEM because such methods lose resolution below the detectible range of approximately 1×107 cm−2.
In a particular embodiment, the III-V buffer layer 240 has a lattice spacing larger than the silicon substrate 210, and the III-V device layer 280 has a lattice spacing larger than the III-V buffer layer 240. In one such an embodiment, buffer 240 is comprised of a gallium antimonide (GaSb) layer 240 formed between the silicon substrate 210 and an indium antimonide (InSb) device layer 280. The 6.09 Å lattice constant of GaSb layer 240 is approximately 12.2% larger than the 5.43 Å lattice constant of the Silicon substrate 210 upon which layer 240 is formed. The 6.48 Å lattice constant of the InSb layer 280 is approximately 6.2% larger than the GaSb layer 240. Thus, in this particular embodiment, the lattice constant of the buffer 240 incremented the lattice spacing of the silicon substrate 210 to the lattice spacing of the III-V device layer 280, thereby partitioning the total lattice mismatch between two separate material interfaces. In this manner, the InSb device layer 280 need only accommodate the strain of a 6.2% lattice mismatch with GaSb layer 240 rather than the entire 19.2% mismatch with the silicon substrate 210.
It should be appreciated that various III-V device layers, such as, but not limited to, indium arsenide (InAs) device layers may be similarly integrated with silicon substrates using other buffer embodiments. For example, in another embodiment of the present invention, III-V buffer layer 240 is comprised of a gallium arsenide (GaAs) formed between the silicon substrate 210 and indium arsenide (InAs) device layer 280 to graduate the lattice constant in a manner analogous to that just described for the InSb embodiment.
In embodiments of the present invention, the buffer 240 comprises materials which glide dislocations and terminate a significant percentage of the dislocations within the layer. In particular embodiments, the III-V buffer layer 240 is comprised of a relatively narrow band gap III-V semiconductor material. Generally, the extent of dislocation glide is dependent on the hardness of the material, with glide occurring more readily in softer materials. Semiconductor materials of narrower band gap are typically softer, and it has been found more dislocation glide occurs in narrower band gap materials. Furthermore, more of the dislocations are terminated or contained as the thickness of a material capable of dislocation glides is increased. In one particular embodiment, the III-V buffer layer 240 is GaSb having a thickness between approximately 0.3 um and 5.0 um. GaSb readily glides defects because the band gap of GaSb is relatively narrow, approximately 0.7 eV. Dislocation glide occurring within the GaSb changes the direction a defect propagates. This is particularly true for threading dislocations which typically propagate at an approximate sixty degree angle from the substrate surface. Gliding can change the direction of a threading dislocation to an angle more parallel to the surface of the film to terminate or contain the dislocations within the film as the buffer layer is thickened. For this reason, many of the defects induced by the strain of the 12.2% lattice mismatch between the silicon substrate 210 and a III-V buffer layer 240 of GaSb are glided and contained within the GaSb layer 240. Because many such glided dislocations will not propagate into subsequently grown films, it is therefore possible to avoid simply accumulating defects within the subsequent epitaxial layers.
As previously discussed, the 6.09 Å lattice constant of GaSb layer 240 is approximately 12.2% larger than the 5.43 Å lattice constant of the Silicon substrate 210 upon which layer 240 is formed. Because the band gap of GaSb is approximately 0.7 eV, the GaSb layer 240 is relatively soft and able to glide dislocations. In the same vein, it should be apparent that an embodiment utilizing GaSb provides better dislocation glide characteristics than an embodiment utilizing GaAs for the III-V buffer layer 240 because band gap of GaSb is lower than GaAs.
In embodiments of the present invention, the III-V buffer layer 240 has a low melting point temperature which improves the thermal activation of dislocation glide within layer 240 during the subsequent layer growth. Dislocation glide reduces the propagation of threading dislocations, stacking faults and twins into the subsequent layers. In a particular embodiment, for example, a III-V buffer layer 240 of GaSb has a melting point of approximately 712 C. In another particular embodiment, the melting point of a GaAs layer 240 is approximately 1237 C. Generally, the lower the melting point of the material, the better the dislocation glide.
In particular embodiments, buffer 240 allows for subsequent growth of a device layer 280 having an acceptably low final defect density. For such embodiments, the buffer 240 accommodates much of the 19.2% lattice mismatch between InSb device layer 280 and silicon substrate 210 to obtain a device layer having a threading dislocation defect density below 1×108 cm−2.
In embodiments of the present invention, the III-V device layer 280 of
Fabrication begins with silicon substrate 310. In a particular embodiment, substrate 310 has a vicinal surface, as shown in
Next, the III-V buffer layer is formed upon the silicon substrate 310. Commonly known growth techniques may be used to form the III-V buffer layer, such as, but not limited to, metalorganic chemical vapor deposition (MOCVD) or molecular beam epitaxy (MBE). As previously discussed, in particular embodiments, the buffer is formed in a manner that either avoids the formation of anti-phase domains (APD) or annihilates them as the film thickness is increased.
In a particular embodiment, as shown in
The high mobility required to ensure the terraces are successively filled is provided for by the growth parameters of the nucleation layer 320 and these parameters therefore depend on the particular mobility characteristics of species comprising the material of layer 320. For example, in one embodiment, a nucleation layer 320 is formed using migration enhanced epitaxy (MEE) at a temperature of between 300 C and 600 C. MEE proceeds in a fashion similar to that of atomic layer deposition (ALD). MEE has a relatively slower growth rate, approximately 0.1 um/hr, because once the group V element is introduced to the substrate there is a hold time during which both the group V source and group III source shutters are closed (shuttered). This hold time accommodates the relatively lower mobility of the group V species. No hold time is required for group III species because surface migration of this species relatively higher mobility. In a particular MEE embodiment, the substrate surface is exposed to an antimony (Sb) source for approximately 10 seconds to form a monolayer of Sb on the lowest terrace level. The Sb source and is then shuttered for a hold time of approximately 60 seconds. This relatively long hold time allows for the Sb species to migrate on the surface of the silicon substrate to ensure the bonding sites of the lowest terrace level are filled. Then, the substrate surface is exposed to a gallium (Ga) source for approximately 10 seconds. No hold time is required because of the high surface mobility of Ga. Next, the Sb is reopened for approximately 10 second and then again closed for a hold time. This process is repeated to form a GaSb nucleation layer 320 sufficiently thick to fill all the terraces of the silicon substrate 310, approximately 150 Å in a particular embodiment. In an embodiment, GaSb nucleation temperatures are in between 300 C. and 600 C. In particular GaSb embodiment, the MEE growth temperature is between approximately 400 C. and approximately 510 C. Higher temperature embodiments enable a higher quality film. In other embodiments, MEE can be utilized to form a nucleation layer of an alternate buffer material, such as, but not limited to GaAs.
In yet another embodiment, a nucleation layer 320 is formed on the vicinal silicon substrate 310 utilizing traditional MBE (without migration enhancement). The relatively higher flux of this particular embodiment using traditional MBE provides higher film growth rates and therefore higher throughput than MEE embodiments. In a particular MBE nucleation embodiment, GaSb is formed on the silicon substrate 310 at a temperature between approximately 400 C. and approximately 510 C. The high-flux embodiments are well suited to GaSb because of the relatively low vapor pressure and high sticking coefficient of antimony (Sb) as compared to arsenic (As) of GaAs films.
Next, as shown in
In other embodiments of the present invention, it is preferred to have a thin buffer layer 340. In some embodiments, a thin buffer layer 340 may function as a wetting layer, being only as thick as needed to bridge the non-polar/polar interface between the substrate 310 and buffer layer 340, as well as avoid the formation of anti-phase domains. Because the buffer layer 340 is thin, it is less efficient at transferring strain into a subsequently deposited layer than a thick buffer layer 340 may be. In one particular embodiment, the GaSb film 330 is grown to a maximum thickness of 0.3 um. In yet another embodiment, the GaSb film 330 is grown to a maximum thickness of 0.1 um. In some embodiments it is desirable to have the entire GaSb buffer layer 340, including nucleation layer 320 and layer 330, below approximately 0.1 um.
In still another embodiment, the III-V buffer layer 340 is formed on a traditional silicon substrate 310 having a lower order plane surface, such as, but not limited to (100). The III-V buffer layer 340 is grown without a nucleation step and permitted to form anti-phase domains. In an embodiment, the single-step growth is performed at a temperature between 500 C. and 700 C. Once the film thickness is greater than approximately 1.5 um, the anti-phase domains, along with the stacking faults and twins, are substantially annihilated and the film becomes single-domain. In a particular embodiment, a III-V buffer layer 340 comprising between approximately 1.5 and 2.0 um GaSb is formed on a traditional (100) silicon substrate 310 that has a 0 degree offcut.
Finally, with the completion of the buffer 340, device layer 380 is formed, as shown in
In a particular embodiment, the device layer 380 may have a larger lattice constant material than the buffer layer 340. For example, wherein buffer layer 340 comprises GaSb with a lattice constant of approximately 6.09 Å, the device layer 380 may comprise InSb, which has a lattice constant of approximately 6.48 Å. In such an embodiment, the GaSb buffer layer 340 may induce a compressive stress into the larger lattice constant InSb device layer 380. The larger lattice constant InSb device layer 380 will retain the strain up until the device layer 380 reaches its critical thickness. Beyond the critical thickness, a lattice mismatched layer will relax, thus reducing strain. In one embodiment, an InSb device layer 380 grown at less than 410 C. will have a critical thickness of approximately 100 Å.
In another embodiment, the device layer 380 may have a smaller lattice constant than the buffer layer 340. For example, wherein the buffer layer 340 comprises GaSb with a lattice constant of approximately 6.09 Å, the device layer 380 may be comprised of a smaller lattice constant material such as InxGa1-xAs (x˜0.7, ˜5.9 Å), InAs (6.06 Å), or InP (5.87 Å). In such an embodiment, a strained device layer 380 may be detrimental to device performance. For example, a tensilely strained device layer 380 may be prone to cracking, thus introducing detrimental defects. In an embodiment, where the device layer 380 has a smaller lattice constant than the buffer layer 340, the buffer layer 340 may have a maximum thickness of less than approximately 0.3 um in order to reduce the amount of strain being induced in the device layer 380.
Generally, the lower barrier layer 481 is formed of a higher band gap material than the overlying quantum well 483. The lower barrier layer 481 is of sufficient thickness to provide a potential barrier to charge carriers in the transistor channel. In a particular embodiment, the lower barrier layer thickness is between about 100 Å and about 250 Å. In other embodiments, the lower barrier is InAlSb between 2500 Å and 3000 Å thick. In still other embodiments, lower barrier layer 481 is microns thick to further reduce defect density in the quantum well 483. In certain embodiments wherein the buffer 440 is comprised of a GaSb, the lower barrier layer 481 is comprised of aluminum indium antimonide (AlxIn1-xSb). In a particular embodiment, the lower barrier layer 481 is AlxIn1-xSb with 15% aluminum. In certain other embodiments wherein the buffer 440 comprises GaAs, the lower barrier layer 481 is comprised of indium aluminum arsenide (InAlAs).
Then, over the lower barrier layer 481, a quantum well 483 is formed of a material with a smaller band gap than that of the lower barrier. In an embodiment wherein the buffer 440 comprises GaSb, the quantum well 483 is doped or undoped and formed of InSb. In another embodiment wherein the buffer 440 comprises GaAs, the quantum well 483 is doped or undoped and formed of indium gallium arsenide (InxGa1-xAs) or InAs, as two examples. Quantum well 483 is of a sufficient thickness to provide adequate channel conductance. In certain embodiments, the thickness of the quantum well 483 is between about 50 Å and about 300 Å.
Over the quantum well 483 is the upper barrier layer 485. Upper barrier layer 485 has a larger band gap than the quantum well 483, thereby confining a majority of charge carriers within the quantum well 483 for reduced device leakage. The upper barrier layer 485 may be formed of the same or different materials as the lower barrier layer 481. In certain embodiments wherein the buffer 440 comprises GaSb, the upper barrier layer 485 comprises aluminum indium antimonide (AlxIn1-xSb). In a particular embodiment, the upper barrier layer 485 is AlxIn1-xSb with 15% aluminum. In certain other embodiments, wherein the buffer 440 comprises GaAs, the upper barrier layer 485 comprises indium aluminum arsenide (InAlAs). The upper barrier layer 485 may include a delta-doped layer (not shown) to supply carriers for embodiments where the lower quantum well is undoped (optionally the lower barrier 481 may be similarly doped to supply carriers). For an n-type device utilizing an AlxIn1-xSb upper barrier 485, the delta doping may be done using silicon (Si) or tellurium (Te) impurities, as two examples. The upper barrier layer 485 may have various thicknesses and in certain embodiments the upper barrier layer 485 is between about 40 Å and 400 Å thick.
Finally, to complete device layer 480 as shown in
As shown in
As shown in
Then, as shown in
Although the present invention has been described in language specific to structural features and/or methodological acts, it is to be understood that the invention defined in the appended claims is not necessarily limited to the specific features or acts described. The specific features and acts disclosed are instead to be understood as particularly graceful implementations of the claimed invention useful for illustrating the present invention.
The present application is a divisional of U.S. patent application Ser. No. 11/498,901 filed on Aug. 2, 2006, now U.S. Pat. No. 8,143,646 which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4231149 | Chapman et al. | Nov 1980 | A |
4487652 | Almgren | Dec 1984 | A |
4711701 | McLevige | Dec 1987 | A |
4751201 | Nottenburg et al. | Jun 1988 | A |
4818715 | Chao | Apr 1989 | A |
4871692 | Lee et al. | Oct 1989 | A |
4872046 | Morkoc et al. | Oct 1989 | A |
4905063 | Beltram et al. | Feb 1990 | A |
4906589 | Chao | Mar 1990 | A |
4907048 | Huang | Mar 1990 | A |
4914059 | Nissim et al. | Apr 1990 | A |
4994873 | Madan | Feb 1991 | A |
4996574 | Shirasaki et al. | Feb 1991 | A |
5023203 | Choi | Jun 1991 | A |
5120666 | Gotou | Jun 1992 | A |
5124777 | Lee | Jun 1992 | A |
5141893 | Ito et al. | Aug 1992 | A |
5144378 | Hikosaka | Sep 1992 | A |
5179037 | Seabaugh | Jan 1993 | A |
5216271 | Takagi et al. | Jun 1993 | A |
5278102 | Horie | Jan 1994 | A |
5308999 | Gotou | May 1994 | A |
5328810 | Lowrey et al. | Jul 1994 | A |
5338959 | Kim et al. | Aug 1994 | A |
5346836 | Manning et al. | Sep 1994 | A |
5346839 | Sundaresan | Sep 1994 | A |
5357119 | Wang et al. | Oct 1994 | A |
5391506 | Tada et al. | Feb 1995 | A |
5428237 | Yuzurihara et al. | Jun 1995 | A |
5466621 | Hisamoto et al. | Nov 1995 | A |
5475869 | Gomi et al. | Dec 1995 | A |
5479033 | Baca et al. | Dec 1995 | A |
5482877 | Rhee | Jan 1996 | A |
5495115 | Kudo et al. | Feb 1996 | A |
5514885 | Myrick | May 1996 | A |
5521859 | Ema et al. | May 1996 | A |
5543351 | Hirai et al. | Aug 1996 | A |
5545586 | Koh | Aug 1996 | A |
5563077 | Ha | Oct 1996 | A |
5576227 | Hsu | Nov 1996 | A |
5578513 | Maegawa | Nov 1996 | A |
5595919 | Pan | Jan 1997 | A |
5595941 | Okarnoto et al. | Jan 1997 | A |
5652454 | Iwamatsu et al. | Jul 1997 | A |
5658806 | Lin et al. | Aug 1997 | A |
5665203 | Lee et al. | Sep 1997 | A |
5682048 | Shinohara et al. | Oct 1997 | A |
5698869 | Yoshimi et al. | Dec 1997 | A |
5701016 | Burroughes et al. | Dec 1997 | A |
5716879 | Choi et al. | Feb 1998 | A |
5739544 | Yuki et al. | Apr 1998 | A |
5760442 | Shigyo et al. | Jun 1998 | A |
5770513 | Okaniwa | Jun 1998 | A |
5773331 | Solomon et al. | Jun 1998 | A |
5776821 | Haskell et al. | Jul 1998 | A |
5793088 | Choi et al. | Aug 1998 | A |
5804848 | Mukai | Sep 1998 | A |
5811324 | Yang | Sep 1998 | A |
5814895 | Hirayama et al. | Sep 1998 | A |
5821629 | Wen et al. | Oct 1998 | A |
5827769 | Aminzadeh et al. | Oct 1998 | A |
5838029 | Shakuda | Nov 1998 | A |
5844278 | Mizuno et al. | Dec 1998 | A |
5856225 | Lee et al. | Jan 1999 | A |
5859456 | Efland et al. | Jan 1999 | A |
5880015 | Hata | Mar 1999 | A |
5883564 | Partin | Mar 1999 | A |
5888309 | Yu | Mar 1999 | A |
5889304 | Watanabe | Mar 1999 | A |
5899710 | Mukai | May 1999 | A |
5905285 | Gardner et al. | May 1999 | A |
5908313 | Chau et al. | Jun 1999 | A |
5952701 | Bulucea | Sep 1999 | A |
5965914 | Miyamoto | Oct 1999 | A |
5976767 | Li | Nov 1999 | A |
5981400 | Lo | Nov 1999 | A |
5985726 | Yu et al. | Nov 1999 | A |
6013926 | Oku et al. | Jan 2000 | A |
6018176 | Lim | Jan 2000 | A |
6031249 | Yamazaki et al. | Feb 2000 | A |
6051452 | Shigyo et al. | Apr 2000 | A |
6054355 | Inumiya et al. | Apr 2000 | A |
6063675 | Rodder | May 2000 | A |
6063677 | Rodder et al. | May 2000 | A |
6066869 | Noble et al. | May 2000 | A |
6087208 | Krivokapic et al. | Jul 2000 | A |
6093621 | Tseng | Jul 2000 | A |
6114201 | Wu | Sep 2000 | A |
6114206 | Yu | Sep 2000 | A |
6117697 | Seaford et al. | Sep 2000 | A |
6117741 | Chatterjee et al. | Sep 2000 | A |
6120846 | Hintermaier et al. | Sep 2000 | A |
6133593 | Boos et al. | Oct 2000 | A |
6144072 | Iwamatsu et al. | Nov 2000 | A |
6150222 | Gardner et al. | Nov 2000 | A |
6153485 | Pey et al. | Nov 2000 | A |
6163053 | Kawashima | Dec 2000 | A |
6165880 | Yaung et al. | Dec 2000 | A |
6174820 | Habermehl et al. | Jan 2001 | B1 |
6190975 | Kubo et al. | Feb 2001 | B1 |
6200865 | Gardner et al. | Mar 2001 | B1 |
6218309 | Miller et al. | Apr 2001 | B1 |
6251729 | Montree et al. | Jun 2001 | B1 |
6251763 | Inumiya et al. | Jun 2001 | B1 |
6252262 | Jonker et al. | Jun 2001 | B1 |
6259135 | Hsu et al. | Jul 2001 | B1 |
6261921 | Yen et al. | Jul 2001 | B1 |
6262456 | Yu et al. | Jul 2001 | B1 |
6274503 | Hsieh | Aug 2001 | B1 |
6287924 | Chao et al. | Sep 2001 | B1 |
6294416 | Wu | Sep 2001 | B1 |
6307235 | Forbes et al. | Oct 2001 | B1 |
6310367 | Yagishita et al. | Oct 2001 | B1 |
6319807 | Yeh et al. | Nov 2001 | B1 |
6320212 | Chow | Nov 2001 | B1 |
6335251 | Miyano et al. | Jan 2002 | B2 |
6358800 | Tseng | Mar 2002 | B1 |
6359311 | Colinge et al. | Mar 2002 | B1 |
6362111 | Laaksonen et al. | Mar 2002 | B1 |
6368923 | Huang | Apr 2002 | B1 |
6376317 | Forbes et al. | Apr 2002 | B1 |
6383882 | Lee et al. | May 2002 | B1 |
6387820 | Sanderfer | May 2002 | B1 |
6391782 | Yu | May 2002 | B1 |
6396108 | Krivokapic et al. | May 2002 | B1 |
6399970 | Kubo et al. | Jun 2002 | B2 |
6403434 | Yu | Jun 2002 | B1 |
6403981 | Yu | Jun 2002 | B1 |
6406795 | Hwang et al. | Jun 2002 | B1 |
6407442 | Inoue et al. | Jun 2002 | B2 |
6413802 | Hu et al. | Jul 2002 | B1 |
6413877 | Annapragada | Jul 2002 | B1 |
6424015 | Ishibashi et al. | Jul 2002 | B1 |
6437550 | Andoh et al. | Aug 2002 | B2 |
6458662 | Yu | Oct 2002 | B1 |
6459123 | Enders et al. | Oct 2002 | B1 |
6465290 | Suguro et al. | Oct 2002 | B1 |
6472258 | Adkisson et al. | Oct 2002 | B1 |
6475869 | Yu | Nov 2002 | B1 |
6475890 | Yu | Nov 2002 | B1 |
6479866 | Xiang | Nov 2002 | B1 |
6483146 | Lee et al. | Nov 2002 | B2 |
6483151 | Wakabayashi et al. | Nov 2002 | B2 |
6483156 | Adkisson et al. | Nov 2002 | B1 |
6495403 | Skotnicki | Dec 2002 | B1 |
6498096 | Bruce et al. | Dec 2002 | B2 |
6500767 | Chiou et al. | Dec 2002 | B2 |
6501141 | Leu | Dec 2002 | B1 |
6506692 | Andideh | Jan 2003 | B2 |
6525403 | Inaba et al. | Feb 2003 | B2 |
6526996 | Chang et al. | Mar 2003 | B1 |
6534807 | Mandelman et al. | Mar 2003 | B2 |
6537862 | Song | Mar 2003 | B2 |
6537885 | Kang et al. | Mar 2003 | B1 |
6537901 | Cha et al. | Mar 2003 | B2 |
6541829 | Nishinohara et al. | Apr 2003 | B2 |
6555879 | Krivokapic et al. | Apr 2003 | B1 |
6562665 | Yu | May 2003 | B1 |
6562687 | Deleonibus | May 2003 | B1 |
6566734 | Sugihara et al. | May 2003 | B2 |
6583469 | Fried et al. | Jun 2003 | B1 |
6605498 | Murthy et al. | Aug 2003 | B1 |
6607948 | Sugiyama | Aug 2003 | B1 |
6610576 | Nowak | Aug 2003 | B2 |
6611029 | Ahmed et al. | Aug 2003 | B1 |
6630388 | Sekigawa et al. | Oct 2003 | B2 |
6635909 | Clark et al. | Oct 2003 | B2 |
6642090 | Fried et al. | Nov 2003 | B1 |
6642114 | Nakamura | Nov 2003 | B2 |
6645797 | Buynoski et al. | Nov 2003 | B1 |
6645826 | Yamazaki et al. | Nov 2003 | B2 |
6645861 | Cabral et al. | Nov 2003 | B2 |
6656853 | Ito | Dec 2003 | B2 |
6657259 | Fried et al. | Dec 2003 | B2 |
6660598 | Hanafi et al. | Dec 2003 | B2 |
6664160 | Park et al. | Dec 2003 | B2 |
6680240 | Maszara | Jan 2004 | B1 |
6686231 | Ahmed et al. | Feb 2004 | B1 |
6689650 | Gambino et al. | Feb 2004 | B2 |
6693324 | Maegawa et al. | Feb 2004 | B2 |
6696366 | Morey et al. | Feb 2004 | B1 |
6706571 | Yu et al. | Mar 2004 | B1 |
6709982 | Buynoski et al. | Mar 2004 | B1 |
6713396 | Anthony | Mar 2004 | B2 |
6716684 | Krivokapic et al. | Apr 2004 | B1 |
6716686 | Buynoski et al. | Apr 2004 | B1 |
6716690 | Wang et al. | Apr 2004 | B1 |
6730964 | Horiuchi | May 2004 | B2 |
6744103 | Snyder | Jun 2004 | B2 |
6756657 | Zhang et al. | Jun 2004 | B1 |
6762469 | Mocuta et al. | Jul 2004 | B2 |
6764884 | Yu et al. | Jul 2004 | B1 |
6770516 | Wu et al. | Aug 2004 | B2 |
6774390 | Sugiyama et al. | Aug 2004 | B2 |
6784071 | Chen et al. | Aug 2004 | B2 |
6784076 | Gonzalez et al. | Aug 2004 | B2 |
6787402 | Yu | Sep 2004 | B1 |
6787439 | Ahmed et al. | Sep 2004 | B2 |
6787845 | Deleonibus | Sep 2004 | B2 |
6787854 | Yang et al. | Sep 2004 | B1 |
6790733 | Natzle et al. | Sep 2004 | B1 |
6794313 | Chang | Sep 2004 | B1 |
6794718 | Nowak et al. | Sep 2004 | B2 |
6798000 | Luyken et al. | Sep 2004 | B2 |
6800885 | An et al. | Oct 2004 | B1 |
6800910 | Lin et al. | Oct 2004 | B2 |
6803631 | Dakshina-Murthy et al. | Oct 2004 | B2 |
6812075 | Fried et al. | Nov 2004 | B2 |
6812111 | Cheong et al. | Nov 2004 | B2 |
6815277 | Fried et al. | Nov 2004 | B2 |
6821834 | Ando | Nov 2004 | B2 |
6825506 | Chau et al. | Nov 2004 | B2 |
6830998 | Pan et al. | Dec 2004 | B1 |
6833588 | Yu et al. | Dec 2004 | B2 |
6835614 | Hanafi et al. | Dec 2004 | B2 |
6835618 | Dakshina-Murthy et al. | Dec 2004 | B1 |
6838322 | Pham et al. | Jan 2005 | B2 |
6844238 | Yeo et al. | Jan 2005 | B2 |
6849556 | Takahashi | Feb 2005 | B2 |
6849884 | Clark et al. | Feb 2005 | B2 |
6852559 | Kwak et al. | Feb 2005 | B2 |
6855606 | Chen et al. | Feb 2005 | B2 |
6855990 | Yeo et al. | Feb 2005 | B2 |
6858478 | Chau et al. | Feb 2005 | B2 |
6864540 | Divakaruni et al. | Mar 2005 | B1 |
6867433 | Yeo et al. | Mar 2005 | B2 |
6867460 | Anderson et al. | Mar 2005 | B1 |
6869868 | Chiu et al. | Mar 2005 | B2 |
6869898 | Inaki et al. | Mar 2005 | B2 |
6870226 | Maeda et al. | Mar 2005 | B2 |
6884154 | Mizushima et al. | Apr 2005 | B2 |
6885055 | Lee | Apr 2005 | B2 |
6891234 | Connelly et al. | May 2005 | B1 |
6897527 | Dakshina-Murthy et al. | May 2005 | B2 |
6902962 | Yeo et al. | Jun 2005 | B2 |
6909151 | Hareland et al. | Jun 2005 | B2 |
6919238 | Bohr | Jul 2005 | B2 |
6921691 | Li et al. | Jul 2005 | B1 |
6921702 | Ahn et al. | Jul 2005 | B2 |
6921963 | Krivokapic et al. | Jul 2005 | B2 |
6921982 | Joshi et al. | Jul 2005 | B2 |
6924190 | Dennison | Aug 2005 | B2 |
6955961 | Chung | Oct 2005 | B1 |
6960517 | Rios et al. | Nov 2005 | B2 |
6967351 | Fried et al. | Nov 2005 | B2 |
6974738 | Hareland et al. | Dec 2005 | B2 |
6975014 | Krivokapic et al. | Dec 2005 | B1 |
6977415 | Matsuo | Dec 2005 | B2 |
6998301 | Yu et al. | Feb 2006 | B1 |
6998318 | Park | Feb 2006 | B2 |
7013447 | Mathew et al. | Mar 2006 | B2 |
7018551 | Beintner et al. | Mar 2006 | B2 |
7045401 | Lee et al. | May 2006 | B2 |
7045407 | Keating et al. | May 2006 | B2 |
7045441 | Chang et al. | May 2006 | B2 |
7056794 | Ku et al. | Jun 2006 | B2 |
7060539 | Chidambarrao et al. | Jun 2006 | B2 |
7061055 | Sekigawa et al. | Jun 2006 | B2 |
7071064 | Doyle et al. | Jul 2006 | B2 |
7074623 | Lochtefeld et al. | Jul 2006 | B2 |
7084018 | Ahmed et al. | Aug 2006 | B1 |
7105390 | Brask et al. | Sep 2006 | B2 |
7105891 | Visokay | Sep 2006 | B2 |
7105894 | Yeo et al. | Sep 2006 | B2 |
7105934 | Anderson et al. | Sep 2006 | B2 |
7112478 | Grupp et al. | Sep 2006 | B2 |
7115945 | Lee et al. | Oct 2006 | B2 |
7119402 | Kinoshita et al. | Oct 2006 | B2 |
7122463 | Ohuchi | Oct 2006 | B2 |
7141856 | Lee et al. | Nov 2006 | B2 |
7154118 | Lindert | Dec 2006 | B2 |
7163851 | Abadeer et al. | Jan 2007 | B2 |
7163898 | Mariani et al. | Jan 2007 | B2 |
7183137 | Lee et al. | Feb 2007 | B2 |
7187043 | Arai et al. | Mar 2007 | B2 |
7202503 | Chow et al. | Apr 2007 | B2 |
7214991 | Yeo et al. | May 2007 | B2 |
7235822 | Li | Jun 2007 | B2 |
7238564 | Ko et al. | Jul 2007 | B2 |
7241653 | Hareland et al. | Jul 2007 | B2 |
7247547 | Zhu et al. | Jul 2007 | B2 |
7250645 | Wang et al. | Jul 2007 | B1 |
7291886 | Doris et al. | Nov 2007 | B2 |
7339241 | Orlowski et al. | Mar 2008 | B2 |
7348284 | Doyle et al. | Mar 2008 | B2 |
7348642 | Nowak | Mar 2008 | B2 |
7354817 | Watanabe et al. | Apr 2008 | B2 |
7358121 | Chau et al. | Apr 2008 | B2 |
7396730 | Li | Jul 2008 | B2 |
7452778 | Chen et al. | Nov 2008 | B2 |
7456471 | Anderson et al. | Nov 2008 | B2 |
7456476 | Hareland et al. | Nov 2008 | B2 |
7479421 | Kavalieros et al. | Jan 2009 | B2 |
7485503 | Brask et al. | Feb 2009 | B2 |
7573059 | Hudait et al. | Aug 2009 | B2 |
7585734 | Kang et al. | Sep 2009 | B2 |
7612416 | Takeuchi et al. | Nov 2009 | B2 |
7655989 | Zhu et al. | Feb 2010 | B2 |
7701018 | Yamagami et al. | Apr 2010 | B2 |
20010019886 | Bruce et al. | Sep 2001 | A1 |
20010026985 | Kim et al. | Oct 2001 | A1 |
20010040907 | Chakrabarti | Nov 2001 | A1 |
20020011612 | Hieda | Jan 2002 | A1 |
20020036290 | Inaba et al. | Mar 2002 | A1 |
20020037619 | Sugihara et al. | Mar 2002 | A1 |
20020048918 | Grider et al. | Apr 2002 | A1 |
20020058374 | Kim et al. | May 2002 | A1 |
20020074614 | Furuta et al. | Jun 2002 | A1 |
20020081794 | Ito | Jun 2002 | A1 |
20020093332 | Schroeder et al. | Jul 2002 | A1 |
20020096724 | Liang et al. | Jul 2002 | A1 |
20020142529 | Matsuda et al. | Oct 2002 | A1 |
20020149031 | Kim et al. | Oct 2002 | A1 |
20020160553 | Yamanaka et al. | Oct 2002 | A1 |
20020166838 | Nagarajan | Nov 2002 | A1 |
20020167007 | Yamazaki et al. | Nov 2002 | A1 |
20020177263 | Hanafi et al. | Nov 2002 | A1 |
20020177282 | Song | Nov 2002 | A1 |
20020185655 | Fahimulla et al. | Dec 2002 | A1 |
20030036290 | Hsieh et al. | Feb 2003 | A1 |
20030042542 | Maegawa et al. | Mar 2003 | A1 |
20030057477 | Hergenrother et al. | Mar 2003 | A1 |
20030057486 | Gambino et al. | Mar 2003 | A1 |
20030067017 | Ieong et al. | Apr 2003 | A1 |
20030080332 | Phillips | May 2003 | A1 |
20030085194 | Hopkins, Jr. | May 2003 | A1 |
20030098479 | Murthy et al. | May 2003 | A1 |
20030098488 | O'Keeffe et al. | May 2003 | A1 |
20030102497 | Fried et al. | Jun 2003 | A1 |
20030102518 | Fried et al. | Jun 2003 | A1 |
20030111686 | Nowak | Jun 2003 | A1 |
20030122186 | Sekigawa et al. | Jul 2003 | A1 |
20030143791 | Cheong et al. | Jul 2003 | A1 |
20030151077 | Mathew et al. | Aug 2003 | A1 |
20030174534 | Clark et al. | Sep 2003 | A1 |
20030190766 | Gonzalez et al. | Oct 2003 | A1 |
20030201458 | Clark et al. | Oct 2003 | A1 |
20030203636 | Anthony | Oct 2003 | A1 |
20030227036 | Sugiyama | Dec 2003 | A1 |
20040016968 | Coronel et al. | Jan 2004 | A1 |
20040029345 | Deleonibus et al. | Feb 2004 | A1 |
20040029393 | Ying et al. | Feb 2004 | A1 |
20040031979 | Lochtefeld et al. | Feb 2004 | A1 |
20040033639 | Chinn et al. | Feb 2004 | A1 |
20040036118 | Abadeer et al. | Feb 2004 | A1 |
20040036126 | Chau et al. | Feb 2004 | A1 |
20040036127 | Chau et al. | Feb 2004 | A1 |
20040038436 | Mori et al. | Feb 2004 | A1 |
20040038533 | Liang | Feb 2004 | A1 |
20040061178 | Lin et al. | Apr 2004 | A1 |
20040063286 | Kim et al. | Apr 2004 | A1 |
20040070020 | Fujiwara et al. | Apr 2004 | A1 |
20040075149 | Fitzgerald et al. | Apr 2004 | A1 |
20040082125 | Hou | Apr 2004 | A1 |
20040092062 | Ahmed et al. | May 2004 | A1 |
20040092067 | Hanafi et al. | May 2004 | A1 |
20040094807 | Chau et al. | May 2004 | A1 |
20040099903 | Yeo et al. | May 2004 | A1 |
20040099966 | Chau et al. | May 2004 | A1 |
20040108523 | Chen et al. | Jun 2004 | A1 |
20040108558 | Kwak et al. | Jun 2004 | A1 |
20040110097 | Ahmed et al. | Jun 2004 | A1 |
20040113181 | Wicker | Jun 2004 | A1 |
20040119100 | Nowak et al. | Jun 2004 | A1 |
20040124492 | Matsuo | Jul 2004 | A1 |
20040126975 | Ahmed et al. | Jul 2004 | A1 |
20040132236 | Doris | Jul 2004 | A1 |
20040145000 | An et al. | Jul 2004 | A1 |
20040145019 | Dakshina-Murthy et al. | Jul 2004 | A1 |
20040166642 | Chen et al. | Aug 2004 | A1 |
20040169221 | Ko et al. | Sep 2004 | A1 |
20040169269 | Yeo et al. | Sep 2004 | A1 |
20040180491 | Arai et al. | Sep 2004 | A1 |
20040191980 | Rios et al. | Sep 2004 | A1 |
20040195624 | Liu et al. | Oct 2004 | A1 |
20040198003 | Yeo et al. | Oct 2004 | A1 |
20040203254 | Conley et al. | Oct 2004 | A1 |
20040209463 | Kim et al. | Oct 2004 | A1 |
20040217420 | Yeo et al. | Nov 2004 | A1 |
20040219722 | Pham et al. | Nov 2004 | A1 |
20040219780 | Ohuchi | Nov 2004 | A1 |
20040222473 | Risaki | Nov 2004 | A1 |
20040227187 | Cheng et al. | Nov 2004 | A1 |
20040238887 | Nihey | Dec 2004 | A1 |
20040238915 | Chen et al. | Dec 2004 | A1 |
20040256647 | Lee et al. | Dec 2004 | A1 |
20040262683 | Bohr et al. | Dec 2004 | A1 |
20040262699 | Rios et al. | Dec 2004 | A1 |
20050019993 | Lee et al. | Jan 2005 | A1 |
20050020020 | Collaert et al. | Jan 2005 | A1 |
20050035415 | Yeo et al. | Feb 2005 | A1 |
20050040429 | Uppal | Feb 2005 | A1 |
20050040444 | Cohen | Feb 2005 | A1 |
20050059214 | Cheng et al. | Mar 2005 | A1 |
20050062082 | Bucher et al. | Mar 2005 | A1 |
20050073060 | Datta et al. | Apr 2005 | A1 |
20050093028 | Chambers | May 2005 | A1 |
20050093067 | Yeo et al. | May 2005 | A1 |
20050093075 | Bentum et al. | May 2005 | A1 |
20050093154 | Kottantharayil et al. | May 2005 | A1 |
20050104055 | Kwak et al. | May 2005 | A1 |
20050110082 | Cheng et al. | May 2005 | A1 |
20050116289 | Boyd et al. | Jun 2005 | A1 |
20050118790 | Lee et al. | Jun 2005 | A1 |
20050127362 | Zhang et al. | Jun 2005 | A1 |
20050127632 | Gehret | Jun 2005 | A1 |
20050133829 | Kunii et al. | Jun 2005 | A1 |
20050133866 | Chau et al. | Jun 2005 | A1 |
20050136584 | Boyanov et al. | Jun 2005 | A1 |
20050139860 | Snyder et al. | Jun 2005 | A1 |
20050145894 | Chau et al. | Jul 2005 | A1 |
20050145941 | Bedell et al. | Jul 2005 | A1 |
20050145944 | Murthy et al. | Jul 2005 | A1 |
20050148131 | Brask | Jul 2005 | A1 |
20050148137 | Brask et al. | Jul 2005 | A1 |
20050153494 | Ku et al. | Jul 2005 | A1 |
20050156171 | Brask et al. | Jul 2005 | A1 |
20050156202 | Rhee et al. | Jul 2005 | A1 |
20050156227 | Jeng | Jul 2005 | A1 |
20050161739 | Anderson et al. | Jul 2005 | A1 |
20050162928 | Rosmeulen | Jul 2005 | A1 |
20050167766 | Yagishita | Aug 2005 | A1 |
20050170593 | Kang et al. | Aug 2005 | A1 |
20050184316 | Kim | Aug 2005 | A1 |
20050189583 | Kim et al. | Sep 2005 | A1 |
20050199919 | Liu | Sep 2005 | A1 |
20050202604 | Cheng et al. | Sep 2005 | A1 |
20050215014 | Ahn et al. | Sep 2005 | A1 |
20050215022 | Adam et al. | Sep 2005 | A1 |
20050224797 | Ko et al. | Oct 2005 | A1 |
20050224800 | Lindert et al. | Oct 2005 | A1 |
20050227498 | Furukawa | Oct 2005 | A1 |
20050230763 | Huang et al. | Oct 2005 | A1 |
20050233156 | Senzaki | Oct 2005 | A1 |
20050239252 | Ahn et al. | Oct 2005 | A1 |
20050255642 | Liu et al. | Nov 2005 | A1 |
20050266645 | Park | Dec 2005 | A1 |
20050272192 | Oh et al. | Dec 2005 | A1 |
20050277294 | Schaeffer et al. | Dec 2005 | A1 |
20050280121 | Doris et al. | Dec 2005 | A1 |
20050287752 | Nouri et al. | Dec 2005 | A1 |
20060014338 | Doris et al. | Jan 2006 | A1 |
20060040054 | Pearlstein et al. | Feb 2006 | A1 |
20060043500 | Chen et al. | Mar 2006 | A1 |
20060046521 | Vaartstra et al. | Mar 2006 | A1 |
20060063469 | Talieh et al. | Mar 2006 | A1 |
20060068591 | Radosavljevic et al. | Mar 2006 | A1 |
20060071299 | Doyle et al. | Apr 2006 | A1 |
20060086977 | Shah et al. | Apr 2006 | A1 |
20060148182 | Datta et al. | Jul 2006 | A1 |
20060154478 | Hsu et al. | Jul 2006 | A1 |
20060170066 | Mathew et al. | Aug 2006 | A1 |
20060172480 | Wang et al. | Aug 2006 | A1 |
20060172497 | Hareland et al. | Aug 2006 | A1 |
20060180859 | Radosavljevic et al. | Aug 2006 | A1 |
20060202270 | Son et al. | Sep 2006 | A1 |
20060204898 | Gutsche et al. | Sep 2006 | A1 |
20060205164 | Ko et al. | Sep 2006 | A1 |
20060211184 | Boyd et al. | Sep 2006 | A1 |
20060220131 | Kinoshita et al. | Oct 2006 | A1 |
20060227595 | Chuang et al. | Oct 2006 | A1 |
20060240622 | Lee et al. | Oct 2006 | A1 |
20060244066 | Yeo et al. | Nov 2006 | A1 |
20060263699 | Abatchev et al. | Nov 2006 | A1 |
20060281325 | Chou et al. | Dec 2006 | A1 |
20070001219 | Radosavljevic et al. | Jan 2007 | A1 |
20070023795 | Nagano et al. | Feb 2007 | A1 |
20070029624 | Nowak | Feb 2007 | A1 |
20070045735 | Orlowski et al. | Mar 2007 | A1 |
20070045748 | Booth, Jr. et al. | Mar 2007 | A1 |
20070048930 | Figura et al. | Mar 2007 | A1 |
20070052041 | Sorada et al. | Mar 2007 | A1 |
20070069302 | Jin | Mar 2007 | A1 |
20070090416 | Doyle | Apr 2007 | A1 |
20070093010 | Mathew et al. | Apr 2007 | A1 |
20070108514 | Inoue et al. | May 2007 | A1 |
20070187682 | Takeuchi et al. | Aug 2007 | A1 |
20070241414 | Narihiro | Oct 2007 | A1 |
20070262389 | Chau et al. | Nov 2007 | A1 |
20080017890 | Yuan et al. | Jan 2008 | A1 |
20080017934 | Kim et al. | Jan 2008 | A1 |
20080032478 | Hudait et al. | Feb 2008 | A1 |
20080111163 | Russ et al. | May 2008 | A1 |
20080116515 | Gossner et al. | May 2008 | A1 |
20080128797 | Dyer et al. | Jun 2008 | A1 |
20080212392 | Bauer | Sep 2008 | A1 |
20080237655 | Nakabayashi et al. | Oct 2008 | A1 |
20080258207 | Radosavljevic et al. | Oct 2008 | A1 |
20090061572 | Hareland et al. | Mar 2009 | A1 |
20090099181 | Wurster et al. | Apr 2009 | A1 |
20100200923 | Chen et al. | Aug 2010 | A1 |
Number | Date | Country |
---|---|---|
10203998 | Aug 2003 | DE |
0 265 314 | Apr 1988 | EP |
0 469 604 | Feb 1992 | EP |
0 474 952 | Mar 1992 | EP |
0510667 | Oct 1992 | EP |
0623963 | Nov 1994 | EP |
1091413 | Apr 2001 | EP |
1202335 | May 2002 | EP |
1566844 | Aug 2005 | EP |
2156149 | Oct 1985 | GB |
56073454 | Jun 1981 | JP |
59145538 | Aug 1984 | JP |
2303048 | Dec 1990 | JP |
05 090252 | Apr 1993 | JP |
06005856 | Jan 1994 | JP |
06 132521 | May 1994 | JP |
6151387 | May 1994 | JP |
406177089 | Jun 1994 | JP |
06224440 | Aug 1994 | JP |
9162301 | Jun 1997 | JP |
20037842 | Feb 2000 | JP |
2000037842 | Feb 2000 | JP |
2001-189453 | Jul 2001 | JP |
2001338987 | Dec 2001 | JP |
20022298051 | Oct 2002 | JP |
2003298051 | Oct 2003 | JP |
2005085916 | Mar 2005 | JP |
200414538 | Aug 1992 | TW |
200518310 | Nov 1992 | TW |
516232 | Jan 2003 | TW |
561530 | Jan 2003 | TW |
548799 | Aug 2003 | TW |
200402872 | Feb 2004 | TW |
200405408 | Apr 2004 | TW |
200417034 | Sep 2004 | TW |
WO 9106976 | May 1991 | WO |
WO0243151 | May 2002 | WO |
WO02095814 | Nov 2002 | WO |
WO03003442 | Jan 2003 | WO |
WO2004059726 | Jul 2004 | WO |
WO2005036651 | Apr 2005 | WO |
Entry |
---|
Yano et al., “Time-resolved reflection high energy electron diffraction analysis for atomic layer depositions of GaSb by molecular beam epitaxy”, Journal of Crystal Growth 146 (1995) pp. 349-353. |
A. Wan et al., Characterization of GaAs grown by Molecular Beam Epitaxy on Vicinal Ge (100) Substrates. J. Vac. Sci. Technol. B 22(4) Jul./Aug. 2004, pp. 1893-1897. |
Akaha et al., JP2005-85916, Mar. 31, 2005, Machine translation in English, 11 pages. |
Ashley, et al., “Novel InSb-based Quantum Well Transistors for Ultra-High Speed, Low Power Logic Applications,” Solid-State and Integrated Circuits Technology, 7th International Conference on, Beijing 2004, IEEE vol. 3, 4 Pages. |
Balakrishnan et al., “Room-temperature optically-pumped GaSb quantum well based VCSEL monolithically grown on Si (100) substrate,” Electronic Letters, vol. 42, No. 6, Mar. 16, 2006, 2 pages. |
Intel Corporation Notice of Allowance for U.S. Appl. No. 11/498,901 mailed Nov. 23, 2011. |
Intel Corporation Office Action for U.S. Appl. No. 11/498,901 mailed Jun. 23, 2011. |
Intel Corporation Office Action for U.S. Appl. No. 11/498,901 mailed Sep. 1, 2010. |
Intel Corporation Office Action for U.S. Appl. No. 11/498,901 mailed Mar. 26, 2010. |
Intel Corporation Office Action for U.S. Appl. No. 11/498,901 mailed Dec. 17, 2009. |
Intel Corporation Office Action for U.S. Appl. No. 11/498,901 mailed Jun. 8, 2009. |
Intel Corporation Office Action for U.S. Appl. No. 11/498,901 mailed Nov. 17, 2008. |
Intel Corporation Office Action for U.S. Appl. No. 11/498,901 mailed Aug. 1, 2008. |
Intel Corporation Notice of Allowance for U.S. Appl. No. 12/915,557 mailed Jun. 9, 2011. |
Intel Corporation Notice of Allowance for U.S. Appl. No. 11/498,685 mailed Aug. 6, 2010. |
Intel Corporation Notice of Allowance for U.S. Appl. No. 11/501,253 mailed Apr. 7, 2009. |
Intel Corporation Office Action for U.S. Appl. No. 11/498,685 mailed Nov. 24, 2009. |
Intel Corporation Office Action for U.S. Appl. No. 11/498,685 mailed May 26, 2010. |
Intel Corporation Office Action for U.S. Appl. No. 11/501,253 mailed Dec. 12, 2008. |
Intel Corporation Office Action for U.S. Appl. No. 11/501,253 mailed May 14, 2008. |
M. Doczy et al., US Patent Application, Extreme High Mobility CMOS Logic, U.S. Appl. No. 11/305,452, Dec. 15, 2005. |
M. Mori et al. Heteroepitaxial growth of InSb films on a Si(001) substrate via AlSb buffer layer, Applied Surface Science 216 (2003) ppp. 569-574. |
Nguyen et al., “Growth of heteroepitaxial GaSb thn films on Si (100) substrates,” Journal of Materials Research, vol. 19, No. 8, Aug. 2004, pp. 2315-2321. |
R.M. Sieg et al., Toward device-quality GaAs Growth by Molecular Beam Epitaxy on Offcut Ge/SiGe/Si substrates, J. Vac. Sci. Technol. B. 16(3) May/Jun. 1998, pp. 1471-1474. |
S. Scholz et al., MOVPE Growth of GaAs on Ge Substrates by Inserting a Thin Low Temperature Buffer Layer, Cryst. Res. Technol. 41, No. 2 (2006), pp. 111-116. |
Uchida et al., “Reduction of dislocation density by thermal annealing for GaAs/GaSb/Si heterostructure,” Journal of Crystal Growth, 150, 1995, pp. 681-684. |
T. Ashley et al., “High-Speed, Low-Pressure InSb Transistors”, 1997 IEEE, IEDM 97-751, pp. 30.4.1-30.4.4. |
Ashley et al. “InSb-Based Quantum Well Transistors for High Speed, Low Power Applications”, QinetiQ, Malvern Technology Center and Intel (2004), 2 pages. |
Bednyi et al. “Electronic State of the Surface of INP Modified by Treatment in Sulfur Vapor” Soviet Physics Semiconductors, Am. Inst. of Physics, New York, vol. 26, No. 8, Aug. 1, 1992. |
V.N. Bessolov et al., “Chalcogenide Passivation of III-V Semiconductor Surfaces”, 1998 American Institute of Physics, Semiconductors 32 (11), Nov. 1998. |
Buchanan, D.A. “Fabrication of Midgap Metal Gates Compatible with Ultrathin Dielectrics”, Applied Physics Letters 73.12 (1998), pp. 1676-1678. |
Chau, R., “Advanced Metal Gate/High-K Dielectric Stacks for High-Performance CMOS Transistors”, Proceedings of AVS 5th International Conference of Microelectronics and Interfaces, Mar. 2004, (3 pgs.). |
Claflin, B. “Interface Studies of Tungsten Nitride and Titanium Nitride Composite Metal Gate Electrodes with Thin Dielectric Layers”, Journal of Vacuum Science and Technology, A 16.3 (1998), pp. 1757-1761. |
Datta et al. “85mm Gate Length Enhancement and Depletion Mode InSb Quantum Well Transistors for Ultra High Speed and Very Low Power Digital Logic Applications” IEEE Dec. 5, 2005, pp. 763-766. |
Datta, et al., U.S. Patent Application “Extreme High Mobility CMOS Logic” U.S. Appl. No. 11/305,452, filed Dec. 15, 2005. |
Frank et al., HfO2 and Al2O3 Dielectrics GaAs Grown by Atomic Layer Deposition, Applied Physics Letters, vol. 86, Issue 15, id. 152904, 2005, 1 page. |
C. Gonzalez et al., “Selenium Passivation of GaAs(001): A Combined Experimental and Theoretical Study”, Institute of Physics Publishing, Journal of Physics Condensed Matter, J. Phys.: Condens. Matter 16 (2004), pp. 2187-2206. |
Hwang, Jeong-Mo, “Novel Polysilicon/TiN Stacked Gate Structure for Fully Depleted SOI/CMOS”, International Electronic Devices Meeting Technical Digest (1992), pp. 345-348. |
H.W. Jang et al. “Incorporation of Oxygen Donors in AlGaN”, J. Electronchem Soc. 152, pp. G536-G540, (2004). |
Jin, B. et al., “Mobility Enhancement in Compressively Strained SIGE Surface Channel PMOS Transistors with HF02/TIN Gate Stack”, Proceedings of the First Joint International Symposium, 206th Meeting of Electrochemical Society, Oct. 2004, pp. 111-122. |
B.A. Kuruvilla et al., “Passivation of GaAs (100) using Selenium Sulfide”, 1993 American Institute of Physics, J. Appl. Phys. 73 (9), May 1, 1993, pp. 4384-4387. |
D. Mistele et al., “Incorporation of Dielectric Layers into the Processing of 111-Nitride-Based Heterostructure Field-Effect Transistors”, Journal of Electronic Materials, vol. 32, No. 5, 2003, pp. 355-363. |
Nowak, Edward J. et al., “Turning Silicon on Its Edge,” IEEE Circuits & Devices Magazine, vol. 1, (Jan./Feb. 2004), pp. 20-31. |
K.Y. Park et al., “Device Charateristics of AlGaN/GaN MIS-HFET Using Al2O3-HfO2 Laminated High-k Dielectric”, Japanese Journal of Applied Physics, vol. 43, No. 11A, 2004, pp. L1433-L1435. |
Passlack et al., “Self-Aligned GaAs p-Channel Enhancement Mode MOS Heterostructure Field-Effect Transistor”, IEEE Electron Device Letters, vol. 23, No. 9, Sep. 2002, pp. 508-510. |
PCT Search Report PCT/US2006/044601, Mar. 19, 2007, 7 pages. |
T. Sugizaki et al., “Novel Multi-bit SONOS Type Flash Memory Using a High-k Charge Trapping Layer” 2003 Symposium on VLSI Technology Digest of Technical Papers, pp. 27-28. |
Kuo, Charles , et al., A Capacitorless Double-Gate DRAM Cell Design for High Density Applications, IEEE, 2002, 4 pgs. |
Kuo, Charles , et al., “A Capacitorless Double Gate DRAM Technology for Sub-100-nm Embedded and Stand-Alone Memory Applications”, IEEE 50(12):, (2003), 2408-2416. |
Ludwig, et al., FinFET Technology for Future Microprocessors, IEEE Int'l. SOI Conference, New Port Beach, CA, Sep. 29-Oct. 2, 2003, 2 pgs. |
Martel, Richard , et al., “Carbon Nanotube Field Effect Transistors for Logic Applications”, IEEE 2001, 4 pgs. |
Mayer, T. M., et al., “Chemical Vapor Deposition of Flouroalkylsilane Monolayer Films for Adhesion Control in Microelectromechanical Systems”, J. Vac. Sci. Technol. B. 18(5), 2000, 8 pgs. |
Nackaerts, et al., “A 0.314um2 6T-SRAM Cell build with Tall Triple-Gate Devices for 45nm node applications using 0.75NA 193nm lithography”, IEEE, 2004, 4 pgs. |
Nowak, E. J., et al., “A Functional FinFET-DGCMOS SRAM Cell”, Int'l Electron Devices Meeting, San Francisco, CA Dec. 8-11, 2002, 4 pgs. |
Nowak, E. J., et al., “Scaling Beyond the 65 nm Node with FinFET-DGCMOS”, IEEE CICC, San Jose, CA Sep. 21-24, 2003, 4 pgs. |
Ohsawa, Takashi , et al., “Memory Design Using a One-Transistor Gain Cell on SOI”, IEEE 37(11), Nov. 2002, 13 pgs. |
Park, Donggun , et al., 3-dimensional nano-CMOS Transistors to Overcome Scaling Limits, IEEE 2004ISBN 0-7803-8511-X, 6 pgs. |
Park, Jae-Hyoun , et al., Quantum-Wired MOSFET Photodetector Fabricated by Conventional Photolighography on SOI Substrate, Nanotechnology, 4th IEEE Conference on Munich Germany, Aug. 16-19, 2004, Piscataway, NJ, 3 pgs. |
Park, T. , et al., “Fabrication of Body-Tied FinFETs (Omega MOSFETS) Using Bulk Si Wafers”, 2003 Symposia on VLSI Technology Digest of Technical Papers, (Jun. 2003), pp. 135-136. |
Park, Jong-Tae , et al., “Pi-Gate SOI MOSFET”, IEEE Electron Device Letters, vol. 22, No. 8, Aug. 2001, 2 pgs. |
Park, T. , et al., “PMOS Body-Tied FinFET (Omega MOSFET) Characteristics”, IEEE Device Research Conference, Piscataway, NJ, Jun. 23-25, 2003, 2 pgs. |
Seevinck, Evert , et al., Static-Noise Margin Analysis of MOS SRAM Cells, IEEE, (SC-22)5, Oct. 1987, 7 pgs. |
Stadele, M. , et al., A Comprehensive Study of Corner Effects in Tri-gate Transistors, IEEE 2004, 4 pgs. |
Stolk, Peter A., et al., Device Modeling Statistical Dopant Fluctuations in MOS Transistors, IEEE Transactions on Electron Devices, (45)9, 1997, 4 pgs. |
Subramanian, V. , “A Bulk-Si-Compatible Ultrathin-body SOI Technology for Sub-100m MOSFETS”, Proceeding of the 57th Annual Device Research Conference, (1999), pp. 28-29. |
Tanaka, T. , et al., Scalability Study on a Capacitorless IT-DRAM: From Single-gate PD-SOI to Double-gate FinDRAM, IEEE, 2004, 4 pgs. |
Tang, Stephen H., et al., FinFET—A Quasi-Planar Double-Gate MOSFET, IEEE International Solid-State Circuits Conference, Feb. 6, 2001, 3 pgs. |
Tokoro, Kenji , et al., Anisotropic Etching Properties of Silicon in KOH and TMAH Solutions, International Symposium on Micromechatronics and Human Science, IEEE, 1998, 6 pgs. |
Wang, X. , et al., “Band alignments in sidewall strained Si/strained SiGe heterostructures”, (May 28, 2002), 1-5. |
Wolf, Stanley , et al., Silicon Processing for the VLSI Era, vol. 1: Process Technology, Lattice Press, Sep. 1986, 3 pgs. |
Xiong, Weize , et al., Improvement of FinFET Electrical Characteristics by Hydrogen Annealing, IEEE Electron Device Letters, 25(8), Aug. 2004, 3 pgs. |
Xiong, W. , et al., Corner Effect in Multiple-Gate SOI MOSFETs, IEEE, 2003, 3 pgs. |
Yang, Fu-Liang , et al., 5nm-Gage Nanowire FinFET, IEEE, 2004, 2 pgs. |
Auth, Christopher P., et al., Vertical, Fully-Depleted, Surrounding Gate MOSFETs on sub-0.1 um Thick Silicon Pillars, 54th Annual Device Research Conference Digest, 1996, 2 pgs. |
Bandyopadhyay, Krisanu , et al., “Self-Assembled Monolayers of Small Aromatic Disulfide and Diselenide Molecules on Polycrystalline Gold Films:”, Department of Chemistry & Regional Sophisticated Instrumentation Centre, India Institute of Technology, (Apr. 30, 1999). |
Burenkov, A. , et al., Corner Effect in Double and Triple Gate FinFETs, European Solid-State Device Research 2003, 33rd Conference on ESSDERC, 4pgs. |
Chang, L. , et al., CMOS Circuit Performance Enhancement by Surface Orientation Optimization, IEEE Transactions on Electron Devices, vol. 51, No. 10, Oct. 2004, 7 pgs. |
Chang, S. T., et al., 3-D Simulation of Strained Si/SiGe Heterojunction FinFets, Semiconductor Device Research Symposium, Dec. 2003, 2 pgs. |
Choi, Yang-Kyu , et al., A Spacer Patterning Technology for Nanoscale CMOS, IEEE, (49)3, XP-001102694, Mar. 2002, 6 pgs. |
Choi, Yang-Kyu , et al., Sub-20nm CMOS FinFET Technologies, IEEE, IEDM, 2001, 4pgs. |
Collaert, N. , et al., A Functional 41-stage ring oscillator using scaled FinFET devices with 25-nm gate lengths and 10-nm fin widths applicable for the 45-nm CMOS node, IEEE Electron Device Letters, vol. 25, No. 8, Aug. 2004, 3 pgs. |
Fried, David M., et al., Improved Independent Gate N-Type FinFET Fabrication and Characterization, IEEE 24(9), Sep. 2003, 3 pgs. |
Fried, David M., et al., High-Performance P-Type Independent-Gate FinFETs, IEEE 25(4), 2004, 3 pgs. |
Guo, Jing , et al., Performance Projections for Ballistic Carbon Nanotube Field-Effect Transistors, Applied Physics Letters 80(17), Apr. 29, 2002, 3 pgs. |
Hisamoto, Digh , et al., A Fully Depleted Lean-Channel Transistor (Delta)-A Novel Vertical Ultrathin SOI MOSFET, IEEE Electron Device Letters, V. 11 (1), Jan. 1990, 4 pgs. |
Hisamoto, Digh , et al., A Folded-Channel MOSFET for Deepsub-tenth Micron Era, 1998 IEEE International Electron Device Meeting Technical Digest, 3 pgs. |
Hisamoto, Digh , et al., FinFET-A Self-Aligned Double-Gate MOSFET Scalable to 20 nm, IEEE Transaction on Electron Devices, vol. 47, No. 12, Dec. 2000, 6 pgs. |
Huang, Xuejue , et al., “Sub 50 nm FinFET: PMOS”, 1999 IEEE International Electron Device Meeting Technical Digest, (1999), pp. 67-70. |
Ieong, M. , et al., Three Dimensional CMOS Devices and Integrated Circuits, IEEE CICC San Jose CA Sep. 21-24, 2003, 8 pgs. |
Javey, Ali , et al., High-k dielectrics for advanced carbon-nanotube transistors and logic gates, www.nature.com/naturematerials.com, 2002, 6 pgs. |
Javey, Ali , et al., Ballistic carbon nanotube field-effect transistors, Nature, vol. 424, Aug. 7, 2003, 4 pgs. |
Jones, E. C., et al., Doping Challenges in Exploratory Devices for High Performance Logic, 14th Int'l Conference, Piscataway, NJ, Sep. 22-27, 2002, 6 pgs. |
Kim, Sung M., et al., A Novel Multi-channel Field Effect Transistor (McFET) on Bulk Si for High Performance Sub-80nm Application, IEEE, 2004, 4 pgs. |
Number | Date | Country | |
---|---|---|---|
20120142166 A1 | Jun 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11498901 | Aug 2006 | US |
Child | 13366143 | US |