Steerable endoscope and improved method of insertion

Information

  • Patent Grant
  • 10893794
  • Patent Number
    10,893,794
  • Date Filed
    Monday, August 24, 2015
    9 years ago
  • Date Issued
    Tuesday, January 19, 2021
    3 years ago
Abstract
A system for advancing an instrument along an arbitrary path includes a flexible and steerable instrument and an electronic memory configured to store a three-dimensional model of the path, the three-dimension model being generated based on signals from the instrument as it traverses along the path. The system further includes an electronic motion controller logically coupled to the electronic memory, wherein the electronic motion controller is configured to automatically control the instrument to traverse the path based on the three dimensional model.
Description
FIELD OF THE INVENTION

The present invention relates generally to endoscopes and endoscopic medical procedures. More particularly, it relates to a method and apparatus to facilitate insertion of a flexible endoscope along a tortuous path, such as for colonoscopic examination and treatment.


BACKGROUND OF THE INVENTION

An endoscope is a medical instrument for visualizing the interior of a patient's body. Endoscopes can be used for a variety of different diagnostic and interventional procedures, including colonoscopy, bronchoscopy, thoracoscopy, laparoscopy and video endoscopy.


Colonoscopy is a medical procedure in which a flexible endoscope, or colonoscope, is inserted into a patient's colon for diagnostic examination and/or surgical treatment of the colon. A standard colonoscope is typically 135-185 mm in length and 12-13 mm in diameter, and includes a fiberoptic imaging bundle, illumination fibers and one or two instrument channels that may also be used for insufflation or irrigation. The colonoscope is inserted via the patient's anus and is advanced through the colon, allowing direct visual examination of the colon, the ileocecal valve and portions of the terminal ileum. Insertion of the colonoscope is complicated by the fact that the colon represents a tortuous and convoluted path. Considerable manipulation of the colonoscope is often necessary to advance the colonoscope through the colon, making the procedure more difficult and time consuming and adding to the potential for complications, such as intestinal perforation. Steerable colonoscopes have been devised to facilitate selection of the correct path through the curves of the colon. However, as the colonoscope is inserted farther and farther into the colon, it becomes more difficult to advance the colonoscope along the selected path. At each turn, the wall of the colon must maintain the curve in the colonoscope. The colonoscope rubs against the mucosal surface of the colon along the outside of each turn. Friction and slack in the colonoscope build up at each turn, making it more and more difficult to advance and withdraw the colonoscope. In addition, the force against the wall of the colon increases with the buildup of friction. In cases of extreme tortuosity, it may become impossible to advance the colonoscope all of the way through the colon.


Steerable endoscopes, catheters and insertion devices for medical examination or treatment of internal body structures are described in the following U.S. patents, the disclosures of which are hereby incorporated by reference in their entirety: U.S. Pat. Nos. 4,753,223; 5,337,732; 5,662,587; 4,543,090; 5,383,852; 5,487,757 and 5,337,733.


SUMMARY OF THE INVENTION

In keeping with the foregoing discussion, the present invention takes the form of a steerable endoscope for negotiating tortuous paths through a patient's body. The steerable endoscope can be used for a variety of different diagnostic and interventional procedures, including colonoscopy, bronchoscopy, thoracoscopy, laparoscopy and video endoscopy. The steerable endoscope is particularly well suited for negotiating the tortuous curves encountered when performing a colonoscopy procedure.


The steerable endoscope has an elongated body with a manually or selectively steerable distal portion and an automatically controlled proximal portion. The selectively steerable distal portion can be selectively steered or bent up to a full 180 degree bend in any direction. A fiberoptic imaging bundle and one or more illumination fibers extend through the body from the proximal end to the distal end. Alternatively, the endoscope can be configured as a video endoscope with a miniaturized video camera, such as a CCD camera, which transmits images to a video monitor by a transmission cable or by wireless transmission. Optionally, the endoscope may include one or two instrument channels that may also be used for insufflation or irrigation.


A proximal handle attached to the elongate body includes an ocular for direct viewing and/or for connection to a video camera, a connection to an illumination source and one or more luer lock fittings that are connected to the instrument channels. The handle is connected to a steering control for selectively steering or bending the selectively steerable distal portion in the desired direction and to an electronic motion controller for controlling the automatically controlled proximal portion of the endoscope. An axial motion transducer is provided to measure the axial motion of the endoscope body as it is advanced and withdrawn. Optionally, the endoscope may include a motor or linear actuator for automatically advancing and withdrawing the endoscope.


The method of the present invention involves inserting the distal end of the endoscope body into a patient, either through a natural orifice or through an incision, and steering the selectively steerable distal portion to select a desired path. When the endoscope body is advanced, the electronic motion controller operates the automatically controlled proximal portion of the body to assume the selected curve of the selectively steerable distal portion. This process is repeated by selecting another desired path with the selectively steerable distal portion and advancing the endoscope body again. As the endoscope body is further advanced, the selected curves propagate proximally along the endoscope body. Similarly, when the endoscope body is withdrawn proximally, the selected curves propagate distally along the endoscope body. This creates a sort of serpentine motion in the endoscope body that allows it to negotiate tortuous curves along a desired path through or around and between organs within the body.


The method can be used for performing colonoscopy or other endoscopic procedures, such as bronchoscopy, thoracoscopy, laparoscopy and video endoscopy. In addition, the apparatus and methods of the present invention can be used for inserting other types of instruments, such as surgical instruments, catheters or introducers, along a desired path within the body.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows a prior art colonoscope being employed for a colonoscopic examination of a patient's colon.



FIG. 2 shows a first embodiment of the steerable endoscope of the present invention.



FIG. 3 shows a second embodiment of the steerable endoscope of the present invention.



FIG. 4 shows a third embodiment of the steerable endoscope of the present invention.



FIG. 5 shows a fourth embodiment of the steerable endoscope of the present invention.



FIG. 6 shows a wire frame model of a section of the body of the endoscope in a neutral or straight position.



FIG. 7 shows the wire frame model of the endoscope body shown in FIG. 6 passing through a curve in a patient's colon.



FIG. 8 shows the endoscope of the present invention being employed for a colonoscopic examination of a patient's colon.



FIG. 9 shows the endoscope of the present invention being employed for a colonoscopic examination of a patient's colon.



FIG. 10 shows the endoscope of the present invention being employed for a colonoscopic examination of a patient's colon.



FIG. 11 shows the endoscope of the present invention being employed for a colonoscopic examination of a patient's colon.



FIG. 12 shows the endoscope of the present invention being employed for a colonoscopic examination of a patient's colon.



FIG. 13 shows the endoscope of the present invention being employed for a colonoscopic examination of a patient's colon.





DETAILED DESCRIPTION OF THE INVENTION


FIG. 1 shows a prior art colonoscope 500 being employed for a colonoscopic examination of a patient's colon C. The colonoscope 500 has a proximal handle 506 and an elongate body 502 with a steerable distal portion 504. The body 502 of the colonoscope 500 has been lubricated and inserted into the colon C via the patient's anus A. Utilizing the steerable distal portion 504 for guidance, the body 502 of the colonoscope 500 has been maneuvered through several turns in the patient's colon C to the ascending colon G. Typically, this involves a considerable amount of manipulation by pushing, pulling and rotating the colonoscope 500 from the proximal end to advance it through the turns of the colon C. After the steerable distal portion 504 has passed, the wall of the colon C maintains the curve in the flexible body 502 of the colonoscope 500 as it is advanced. Friction develops along the body 502 of the colonoscope 500 as it is inserted, particularly at each turn in the colon C. Because of the friction, when the user attempts to advance the colonoscope 500, the body 502′ tends to move outward at each curve, pushing against the wall of the colon C, which exacerbates the problem by increasing the friction and making it more difficult to advance the colonoscope 500. On the other hand, when the colonoscope 500 is withdrawn, the body 502″ tends to move inward at each curve taking up the slack that developed when the colonoscope 500 was advanced. When the patient's colon C is extremely tortuous, the distal end of the body 502 becomes unresponsive to the user's manipulations, and eventually it may become impossible to advance the colonoscope 500 any farther. In addition to the difficulty that it presents to the user, tortuosity of the patient's colon also increases the risk of complications, such as intestinal perforation.



FIG. 2 shows a first embodiment of the steerable endoscope 100 of the present invention. The endoscope 100 has an elongate body 102 with a manually or selectively steerable distal portion 104 and an automatically controlled proximal portion 106. The selectively steerable distal portion 104 can be selectively steered or bent up to a full 180 degree bend in any direction. A fiberoptic imaging bundle 112 and one or more illumination fibers 114 extend through the body 102 from the proximal end 110 to the distal end 108. Alternatively, the endoscope 100 can be configured as a video endoscope with a miniaturized video camera, such as a CCD camera, positioned at the distal end 108 of the endoscope body 102. The images from the video camera can be transmitted to a video monitor by a transmission cable or by wireless transmission. Optionally, the body 102 of the endoscope 100 may include one or two instrument channels 116, 118 that may also be used for insufflation or irrigation. The body 102 of the endoscope 100 is highly flexible so that it is able to bend around small diameter curves without buckling or kinking. When configured for use as a colonoscope, the body 102 of the endoscope 100 is typically from 135 to 185 cm in length and approximately 12-13 mm in diameter. The endoscope 100 can be made in a variety of other sizes and configurations for other medical and industrial applications.


A proximal handle 120 is attached to the proximal end 110 of the elongate body 102. The handle 120 includes an ocular 124 connected to the fiberoptic imaging bundle 112 for direct viewing and/or for connection to a video camera 126. The handle 120 is connected to an illumination source 128 by an illumination cable 134 that is connected to or continuous with the illumination fibers 114. A first luer lock fitting, 130 and a second luer lock fitting 132 on the handle 120 are connected, to the instrument channels 116, 118.


The handle 120 is connected to an electronic motion controller 140 by way of a controller cable 136. A steering control 122 is connected to the electronic motion controller 140 by way of a second cable 13 M. The steering control 122 allows the user to selectively steer or bend the selectively steerable distal portion 104 of the body 102 in the desired direction. The steering control 122 may be a joystick controller as shown, or other known steering control mechanism. The electronic motion controller 140 controls the motion of the automatically controlled proximal portion 106 of the body 102. The electronic motion controller 140 may be implemented using a motion control program running on a microcomputer or using an application-specific motion controller. Alternatively, the electronic motion controller 140 may be implemented using a neural network controller.


An axial motion transducer 150 is provided to measure the axial motion of the endoscope body 102 as it is advanced and withdrawn. The axial motion transducer 150 can be made in many possible configurations. By way of example, the axial motion transducer 150 in FIG. 2 is configured as a ring 152 that surrounds the body 102 of the endoscope 100. The axial motion transducer 150 is attached to a fixed point of reference, such as the surgical table or the insertion point for the endoscope 100 on the patient's body. As the body 102 of the endoscope 100 slides through the axial motion transducer 150, it produces a signal indicative of the axial position of the endoscope body 102 with respect to the fixed point of reference and sends a signal to the electronic motion controller 140 by telemetry or by a cable (not shown). The axial motion transducer 150 may use optical, electronic or mechanical means to measure the axial position of the endoscope body 102. Other possible configurations for the axial motion transducer 150 are described below.



FIG. 3 shows a second embodiment of the endoscope 100 of the present invention. As in the embodiment of FIG. 2, the endoscope 100 has an elongate body 102 with a selectively steerable distal portion 104 and an automatically controlled proximal portion 106. The steering control 122 is integrated into proximal handle 120 in the form of one or two dials for selectively steering the selectively steerable distal portion 104 of the endoscope 100. Optionally, the electronic motion controller 140 may be miniaturized and integrated into proximal handle 120, as well. In this embodiment, the axial motion transducer 150 is configured with a base 154 that is attachable to a fixed point of reference, such as the surgical table. A first roller 156 and a second roller 158 contact the exterior of the endoscope body 102. A multi-turn potentiometer 160 or other motion transducer is connected to the first roller 156 to measure the axial motion of the endoscope body 102 and to produce a signal indicative of the axial position.


The endoscope 100 may be manually advanced or withdrawn by the user by grasping the body 102 distal to the axial motion transducer 150. Alternatively, the first roller 156 and/or second roller 158 may be connected to a motor 162 for automatically advancing and withdrawing the body 102 of the endoscope 100.



FIG. 4 shows a third embodiment of the endoscope 100 of the present invention, which utilizes an elongated housing 170 to organize and contain the endoscope 100. The housing 170 has a base 172 with a linear track 174 to guide the body 102 of the endoscope 100. The housing 170 may have an axial motion transducer 150′ that is configured as a linear motion transducer integrated into the linear track 174. Alternatively, the housing, 170 may have an axial motion transducer 150″ configured similarly to the axial motion transducer 150 in FIG. 2 or 3. The endoscope 100 may be manually advanced or withdrawn by the user by grasping the body 102 distal to the housing 170. Alternatively, the housing 170 may include a motor 176 or other linear motion actuator for automatically advancing and withdrawing the body 102 of the endoscope 100. In another alternative configuration, a motor with friction wheels, similar to that described above in connection with FIG. 3, may be integrated into the axial motion transducer 150″.



FIG. 5 shows a fourth embodiment of the endoscope 100 of the present invention, which utilizes a rotary housing 180 to organize and contain the endoscope 100. The housing 180 has a base 182 with a rotating drum 184 to guide the body 102 of the endoscope 100. The housing 180 may have an axial motion transducer 150′″ that is configured as a potentiometer connected to the pivot axis 186 of the rotating drum 184. Alternatively, the housing 180 may have an axial motion transducer 150′″ configured similarly to the axial motion transducer 150 in FIG. 2 or 3. The endoscope 100 may be manually advanced or withdrawn by the user by grasping the body 102 distal to the housing 180. Alternatively, the housing 180 may include a motor 188 connected to the rotating drum 184 for automatically advancing and withdrawing the body 102 of the endoscope 100. In another alternative configuration, a motor with friction wheels, similar to that described above in connection with FIG. 3, may be integrated into the axial motion transducer 150″.



FIG. 6 shows a wire frame model of a section of the body 102 of the endoscope 100 in a neutral or straight position. Most of the internal structure of the endoscope body 102 has been eliminated in this drawing for the sake of clarity. The endoscope body 102 is divided up into sections 1, 2, 3 . . . 10, etc. The geometry of each section is defined by four length measurements along the a, b, c and d axes. For example, the geometry of section 1 is defined by the four length measurements l1a, l1b, l1c, l1d, and the geometry of section 2 is defined by the four length measurements l2a, l2b l2b, l2d, etc. Preferably, each of the length measurements is individually controlled by a linear actuator (not shown). The linear actuators may utilize one of several different operating principles. For example, each of the linear actuators may be a self-heating NiTi alloy linear actuator or an electrorheological plastic actuator, or other known mechanical, pneumatic, hydraulic or electromechanical actuator. The geometry of each section may be altered using the linear actuators to change the four length measurements along the a, b, c and d axes. Preferably, the length measurements are changed in complementary pairs to selectively bend the endoscope body 102 in a desired direction. For example, to bend the endoscope body 102 in the direction of the a axis, the measurements l1a, l2a, l13a . . . l10a would be shortened and the measurements l1b, l2b l3b . . . l10b would be lengthened an equal amount. The amount by which these measurements are changed determines the radius of the resultant curve.


In the selectively steerable distal portion 104 of the endoscope body 102, the linear actuators that control the a, b, c and d axis measurements of each section are selectively controlled by the user through the steering control 122. Thus, by appropriate control of the a, b, c and d axis measurements, the selectively steerable distal portion 104 of the endoscope body 102 can be selectively steered or bent up to a full 180 degrees in any direction.


In the automatically controlled proximal portion 106, however, the a, b, c and d axis measurements of each section are automatically controlled by the electronic motion controller 140, which uses a curve propagation method to control the shape of the endoscope body 102. To explain how the curve propagation method operates, FIG. 7 shows the wire frame model of a part of the automatically controlled proximal portion 106 of the endoscope body 102 shown in FIG. 6 passing through a curve in a patient's colon C. For simplicity, an example of a two-dimensional curve is shown and only the a and b axes will be considered. In a three-dimensional curve all four of the a, b, c and d axes would be brought into play.


In FIG. 7, the endoscope body 102 has been maneuvered through the curve in the colon C with the benefit of the selectively steerable distal portion 104 (this part of the procedure is explained in more detail below) and now the automatically controlled proximal portion 106 resides in the curve. Sections 1 and 2 are in a relatively straight part of the colon C, therefore l1a=l1b and l2a=l2b. However, because sections 3-7 are in the S-shaped curved section, l3a<l3b, l4a<l4b and l5a<l5b, but l6a>l6b, l7a>l7b and l8a>l8b. When the endoscope body 102 is advanced distally by one unit, section 1 moves into the position marked 1′, section 2 moves into the position previously occupied by section 1, section 3 moves into the position previously occupied by section 2, etc. The axial motion transducer 150 produces a signal indicative of the axial position of the endoscope body 102 with respect to a fixed point of reference and sends the signal to the electronic motion controller 140. Under control of the electronic motion controller 140, each time the endoscope body 102 advances one unit, each section in the automatically controlled proximal portion 106 is signaled to assume the shape of the section that previously occupied the space that it is now in. Therefore, when the endoscope body 102 is advanced to the position marked 1′, l1a=l1b, l2a=l2b, l3a=l3b, l4a<l4b, l5a<l5b, l6a<l6b, l7a>l7b and l8a>l8b, and l9a>l9b, when the endoscope body 102 is advanced to the position marked 1″, l1a=l1b, l2a=l2b, l3a=l3b, l4a=l4b, l5a<l5b, l6a<l6b, l7a<l7b, l8a>l8b, l9a>l9b and l10a>l10b. Thus, the S-shaped curve propagates proximally along the length of the automatically controlled proximal portion 106 of the endoscope body 102. The S-shaped curve appears to be fixed in space, as the endoscope body 102 advances distally.


Similarly, when the endoscope body 102 is withdrawn proximally, each time the endoscope body 102 is moved proximally by one unit, each section in the automatically controlled proximal portion 106 is signaled to assume the shape of the section that previously occupied the space that it is now in. The S-shaped curve propagates distally along the length of the automatically controlled proximal portion 106 of the endoscope body 102, and the S-shaped curve appears to be fixed in space, as the endoscope body 102 withdraws proximally.


Whenever the endoscope body 102 is advanced or withdrawn, the axial motion transducer 150 detects the change in position and the electronic motion controller 140 propagates the selected curves proximally or distally along the automatically controlled proximal portion 106 of the endoscope body 102 to maintain the curves in a spatially fixed position. This allows the endoscope body 102 to move through tortuous curves without putting unnecessary force on the wall of the colon C.



FIGS. 8-13 show the endoscope 100 of the present invention being employed for a colonoscopic examination of a patient's colon. In FIG. 8, the endoscope body 102 has been lubricated and inserted into the patient's colon C through the anus A. The distal end 108 of the endoscope body 102 is advanced through the rectum R until the first turn in the colon C is reached, as observed through the ocular 124 or on a video monitor. To negotiate the turn, the selectively steerable distal portion 104 of the endoscope body 102 is manually steered toward the sigmoid colon S by the user through the steering control 122. The control signals from the steering control 122 to the selectively steerable distal portion 104 are monitored by the electronic motion controller 140. When the correct curve of the selectively steerable distal portion 104 for advancing the distal end 108 of the endoscope body 102 into the sigmoid colon S has been selected, the curve is logged into the memory of the electronic motion controller 140 as a reference. This step can be performed in a manual mode, in which the user gives a command to the electronic motion controller 140 to record the selected curve, using keyboard commands or voice commands. Alternatively, this step can be performed in an automatic mode, in which the user signals to the electronic motion controller 140 that the desired curve has been selected by advancing the endoscope body 102 distally.


Whether operated in manual mode or automatic mode, once the desired curve has been selected with the selectively steerable distal portion 104, the endoscope body 102 is advanced distally and the selected curve is propagated proximally along the automatically controlled proximal portion 106 of the endoscope body 102 by the electronic motion controller 140, as described above. The curve remains fixed in space while the endoscope body 102 is advanced distally through the sigmoid colon S. In a particularly tortuous colon, the selectively steerable distal portion 104 may have to be steered through multiple curves to traverse the sigmoid colon S.


As illustrated in FIG. 9, the user may stop the endoscope 100 at any point for examination or treatment of the mucosal surface or any other features within the colon C. The selectively steerable distal portion 104 may be steered in any direction to examine the inside of the colon C. When the user has completed the examination of the sigmoid colon S, the selectively steerable distal portion 104 is steered in a superior direction toward the descending colon D. Once the desired curve has been selected with the selectively steerable distal portion 104, the endoscope body 102 is advanced distally into the descending colon D, and the second curve as well as the first curve are propagated proximally along the automatically controlled proximal portion 106 of the endoscope body 102, as shown in FIG. 10.


If, at any time, the user decides that the path taken by the endoscope body 102 needs to be revised or corrected, the endoscope 100 may be withdrawn proximally and the electronic motion controller 140 commanded to erase the previously selected curve. This can be done manually using keyboard commands or voice commands or automatically by programming the electronic motion controller 140 to go into a revise mode when the endoscope body 102 is withdrawn a certain distance. The revised or corrected curve is selected using the selectively steerable distal portion 104, and the endoscope body 102 is advanced as described before.


The endoscope body 102 is advanced through the descending colon D until it reaches the left (splenic) flexure FI of the colon. Here, in many cases, the endoscope body 102 must negotiate an almost 180 degree hairpin turn. As before, the desired curve is selected using the selectively steerable distal portion 104, and the endoscope body 102 is advanced distally through the transverse colon T, as shown in FIG. 11. Each of the previously selected curves is propagated proximally along the automatically controlled proximal portion 106 of the endoscope body 102. The same procedure is followed at the right (hepatic) flexure Fr of the colon and the distal end 108 of the endoscope body 102 is advanced through the ascending colon G to the cecum E, as shown in FIG. 12. The cecum E, the ileocecal valve V and the terminal portion of the ileum I can be examined from this point using the selectively steerable distal portion 104 of the endoscope body 102.



FIG. 13 shows the endoscope 100 being withdrawn through the colon C. As the endoscope 100 is withdrawn, the endoscope body 102 follows the previously selected curves by propagating the curves distally along the automatically controlled proximal portion 106, as described above. At any point, the user may stop the endoscope 100 for examination or treatment of the mucosal surface or any other features within the colon C using the selectively steerable distal portion 104 of the endoscope body 102.


In one preferred method according to the present invention, the electronic motion controller 140 includes an electronic memory in which is created a three-dimensional mathematical model of the patient's colon or other anatomy through which the endoscope body 102 is maneuvered. The three-dimensional model can be annotated by the operator to record the location of anatomical landmarks, lesions, polyps, biopsy samples and other features of interest. The three-dimensional model of the patient's anatomy can be used to facilitate reinsertion of the endoscope body 102 in subsequent procedures. In addition, the annotations can be used to quickly find the location of the features of interest. For example, the three-dimensional model can be annotated with the location where a biopsy sample was taken during an exploratory endoscopy. The site of the biopsy sample can be reliably located again in follow-up procedures to track the progress of a potential disease process and/or to perform a therapeutic procedure at the site.


In one particularly preferred variation of this method, the electronic motion controller 140 can be programmed, based on the three-dimensional model in the electronic memory, so that the endoscope body 102 will automatically assume the proper shape to follow the desired path as it is advanced through the patient's anatomy. In embodiments of the steerable endoscope 100 that are configured for automatically advancing and withdrawing the endoscope body 102, as described above in connection with FIGS. 3, 4 and 5, the endoscope body 102 can be commanded to advance automatically through the patient's anatomy to the site of a previously noted lesion or other point of interest based on the three-dimensional model in the electronic memory.


Imaging software would allow the three-dimensional model of the patient's anatomy obtained using the steerable endoscope 100 to be viewed on a computer monitor or the like. This would facilitate comparisons between the three dimensional model and images obtained with other imaging modalities, for example fluoroscopy, radiography, ultrasonography, magnetic resonance imaging (MRI), computed tomography (CT scan), electron beam tomography or virtual colonoscopy. Conversely, images from these other imaging modalities can be used to map out an approximate path or trajectory to facilitate insertion of the endoscope body 102. In addition, images from other imaging modalities can be used to facilitate locating suspected lesions with the steerable endoscope 100. For example, images obtained using a barium-contrast radiograph of the colon can be used to map out an approximate path to facilitate insertion of the endoscope body 102 into the patient's colon. The location and depth of any suspected lesions seen on the radiograph can be noted so that the endoscope body 102 can be quickly and reliably guided to the vicinity of the lesion.


Imaging modalities that provide three-dimensional information, such as biplanar fluoroscopy, CT or MRI, can be used to program the electronic motion controller 140 so that the endoscope body 102 will automatically assume the proper shape to follow the desired path as it is advanced through the patient's anatomy. In embodiments of the steerable endoscope 100 that are configured for automatically advancing and withdrawing the endoscope body 102, the endoscope body 102 can be commanded to advance automatically though the patient's anatomy along the desired path as determined by the three-dimensional information. Similarly, the endoscope body 102 can be commanded to advance automatically to the site of a suspected lesion or other point of interest noted on the images.


Although the endoscope of the present invention has been described for use as a colonoscope, the endoscope can be configured for a number of other medical and industrial applications. In addition, the present invention can also be configured as a catheter, cannula, surgical instrument or introducer sheath that uses the principles of the invention for navigating through tortuous body channels.


In a variation of the method that is particularly applicable to laparoscopy or thoracoscopy procedures, the steerable endoscope 100 can be selectively maneuvered along a desired path around and between organs in a patient's body cavity. The distal end 108 of the endoscope 100 is inserted into the patient's body cavity through a natural opening, through a surgical incision or through a surgical cannula or introducer. The selectively steerable distal portion 104 can be used to explore and examine the patient's body cavity and to select a path around and between the patient's organs. The electronic motion controller 140 can be used to control the automatic controlled proximal portion 106 of the endoscope body 102 to follow the selected path and, if necessary, to return to a desired location using the three-dimensional model in the electronic memory of the electronic motion controller 140.


While the present invention has been described herein with respect to the exemplary embodiments and the best mode for practicing the invention, it will be apparent to one of ordinary skill in the art that man modifications, improvements and subcombinations of the various embodiments, adaptations and variations can be made to the invention without departing from the spirit and scope thereof.

Claims
  • 1. A system for advancing an instrument along an arbitrary path, comprising: a flexible and steerable instrument, the instrument including a distal portion configured to be selectively steered to assume a selected three-dimensional curve during advancement along an arbitrary path; andan electronic motion controller operably coupled to the instrument to receive signals from the instrument representing a three-dimensional model of the three-dimensional curve, the electronic motion controller comprising electronic memory configured to store the three-dimensional model based on the signals received from the instrument as the instrument traverses along the path and assumes the selected three-dimensional curve.
  • 2. The system of claim 1, wherein the electronic motion controller is programmed to control a proximal portion of the instrument to assume a shape based on the three-dimensional model.
  • 3. The system of claim 2, wherein the electronic motion controller is programmed to control the proximal portion of the instrument to propagate the selected three-dimensional curve along the proximal portion of the instrument while the instrument is advanced distally along the path.
  • 4. The system of claim 2, wherein the electronic motion controller is further programmed to control the proximal portion of the instrument to propagate the selected three-dimensional curve along the proximal portion of the instrument while the instrument is withdrawn proximally along the path.
  • 5. The system of claim 2, wherein the proximal portion of the instrument includes a plurality of segments, wherein adjacent segments of the plurality of segments are pivotally coupled to each other.
  • 6. The system of claim 1, wherein the distal portion of the instrument includes a plurality of segments, wherein adjacent segments of the plurality of segments are pivotally coupled to each other.
  • 7. The system of claim 1, further comprising: an axial motion transducer in communication with the electronic motion controller, the axial motion transducer being configured to transmit a signal to the electronic motion controller, the signal being indicative of an axial position of the instrument.
  • 8. The system of claim 7, wherein the electronic motion controller is programmed to control the instrument based on the signal indicative of the axial position of the instrument received from the axial motion transducer as the instrument is advanced distally along the path.
  • 9. The system of claim 1, wherein the path is in a patient's anatomy, and wherein the electronic memory is further configured to store an annotation in the three-dimensional model, the annotation being a location of a feature of interest along the path.
  • 10. The system of claim 9, the electronic motion controller being programmed to control advancement of the instrument distally along the path in the patient's anatomy to return to the location of the feature of interest according to the annotation in the three-dimensional model.
  • 11. The system of claim 10, wherein the electronic motion controller is further configured to: selectively steer the distal portion of the instrument along the path in the patient's anatomy to return the instrument to the location of the feature of interest; andcontrol a shape of the instrument during steering based on the stored three-dimensional model.
  • 12. The system of claim 9, wherein the feature of interest is chosen from at least one of an anatomical landmark, a lesion, a polyp, and a location from which a biopsy sample was taken.
  • 13. The system of claim 1, wherein the electronic motion controller is further programmed to control a shape of the instrument to propagate the selected three-dimensional curve along the instrument such that the selected three-dimensional curve remains approximately fixed in space as the instrument is advanced distally or withdrawn proximally.
  • 14. The system of claim 1, wherein the path is within at least a part of a patient's colon.
  • 15. The system of claim 1, wherein the instrument is a colonoscope.
  • 16. The system of claim 1, further comprising a motor configured to withdraw the instrument and advance the instrument along the path.
  • 17. A system for controlling movement of a steerable instrument along a path, comprising: a flexible and steerable instrument having a proximal portion comprising a plurality of interconnected segments, each segment being coupled with a respective actuator of a plurality of actuators; andan electronic motion controller logically coupled to an electronic memory, wherein the electronic motion controller is configured to: selectively steer a distal portion of the instrument in one or both of two steering directions orthogonal to one another and to an advancement direction of the instrument to assume a selected three-dimensional curve during advancement of the instrument along an arbitrary path,generate a three-dimensional model of the selected three-dimensional curve in the electronic memory based on information related to positions of segments of the instrument along a length of the instrument received during advancement of the instrument along the arbitrary path,control at least the proximal portion of the instrument by controlling the actuators to linearly assume the selected three-dimensional curve of the distal portion in an infinitely variable motion while the instrument is advanced distally along the arbitrary path, andpropagate a measured length of at least one side of the distal portion from the selected three-dimensional curve to at least one side of the proximal portion while advancing the instrument distally along the arbitrary path.
  • 18. The system of claim 17, further comprising: an axial motion transducer configured to detect an axial position of the instrument, the axial position being detected based on the measured length of the at least one side of the distal portion from the selected three-dimensional curve,wherein the axial motion transducer is in signal communication with the electronic motion controller to provide the detected axial position to the electronic motion controller.
  • 19. The system of claim 17, wherein the electronic motion controller is configured to propagate the selected three-dimensional curve along the instrument such that the selected three-dimensional curve is fixed relative to a point of reference while advancing the instrument distally.
  • 20. The system of claim 19, wherein the point of reference is located at a distance from the arbitrary path.
CROSS-REFERENCE TO OTHER APPLICATIONS

This application is a continuation of U.S. application Ser. No. 14/148,322, filed Jan. 6, 2014, which is a continuation of U.S. application Ser. No. 13/535,979, filed Jun. 28, 2012 (now U.S. Pat. No. 8,641,602), which is a continuation of U.S. application Ser. No. 11/129,093, filed May 13, 2005 (now U.S. Pat. No. 8,226,546), which is a continuation of U.S. application Ser. No. 10/229,189, filed Aug. 26, 2002 (now U.S. Pat. No. 7,044,907), which is a continuation of U.S. application Ser. No. 09/790,204, filed Feb. 20, 2001 (now U.S. Pat. No. 6,468,203), which claims priority to U.S. Provisional Application No. 60/194,140, filed Apr. 3, 2000, each of which is incorporated by reference herein in its entirety.

US Referenced Citations (478)
Number Name Date Kind
616672 Kelling Dec 1898 A
1590919 Wahl et al. Jun 1926 A
2241576 Charles May 1941 A
2510198 Tesmer Jun 1950 A
2533494 Mitchell, Jr. Dec 1950 A
2767705 Moore Oct 1956 A
3060972 Sheldon Oct 1962 A
3071161 Ulrich Jan 1963 A
3096962 Meijs Jul 1963 A
3162214 Wilfred, Jr. Dec 1964 A
3168274 Street Feb 1965 A
3190286 Stokes Jun 1965 A
3266059 Stelle Aug 1966 A
3430662 Guarnaschelli Mar 1969 A
3497083 Victor et al. Feb 1970 A
3546961 Marton Dec 1970 A
3610231 Takahashi et al. Oct 1971 A
3625084 Siebert Dec 1971 A
3643653 Takahashi et al. Feb 1972 A
3739770 Mori Jun 1973 A
3773034 Burns et al. Nov 1973 A
3780740 Rhea Dec 1973 A
3858578 Milo Jan 1975 A
3871358 Fukuda et al. Mar 1975 A
3897775 Furihata Aug 1975 A
3913565 Kawahara Oct 1975 A
3946727 Okada et al. Mar 1976 A
3990434 Free Nov 1976 A
4054128 Seufert et al. Oct 1977 A
4176662 Frazer Dec 1979 A
4233981 Schomacher Nov 1980 A
4236509 Takahashi et al. Dec 1980 A
4240435 Yazawa et al. Dec 1980 A
4272873 Dietrich Jun 1981 A
4273111 Tsukaya Jun 1981 A
4286585 Ogawa Sep 1981 A
4327711 Takagi May 1982 A
4366810 Slanetz, Jr. Jan 1983 A
4393728 Larson et al. Jul 1983 A
4418688 Loeb Dec 1983 A
4432349 Oshiro Feb 1984 A
4483326 Yamaka et al. Nov 1984 A
4489826 Dubson Dec 1984 A
4494417 Larson et al. Jan 1985 A
4499895 Takayama Feb 1985 A
4503842 Takayama Mar 1985 A
4517652 Bennett et al. May 1985 A
4534339 Collins et al. Aug 1985 A
4543090 McCoy Sep 1985 A
4551061 Olenick Nov 1985 A
4559928 Takayama Dec 1985 A
4566843 Iwatsuka et al. Jan 1986 A
4577621 Patel Mar 1986 A
4592341 Omagari et al. Jun 1986 A
4601283 Chikama Jul 1986 A
4601705 McCoy Jul 1986 A
4601713 Fuqua Jul 1986 A
4621618 Omagari Nov 1986 A
4624243 Lowery et al. Nov 1986 A
4630649 Oku Dec 1986 A
4643184 Mobin-Uddin Feb 1987 A
4646722 Silverstein et al. Mar 1987 A
4648733 Merkt Mar 1987 A
4651718 Collins et al. Mar 1987 A
4655257 Iwashita Apr 1987 A
4683773 Diamond Aug 1987 A
4686963 Cohen et al. Aug 1987 A
4696544 Costella Sep 1987 A
4712969 Kimura Dec 1987 A
4726355 Okada Feb 1988 A
4753222 Morishita Jun 1988 A
4753223 Bremer Jun 1988 A
4754909 Barker et al. Jul 1988 A
4784117 Miyazaki Nov 1988 A
4787369 Allred, III et al. Nov 1988 A
4788967 Ueda Dec 1988 A
4790624 Van Hoye et al. Dec 1988 A
4793326 Shishido Dec 1988 A
4796607 Allred, III et al. Jan 1989 A
4799474 Ueda Jan 1989 A
4800890 Cramer Jan 1989 A
4807593 Ito Feb 1989 A
4815450 Patel Mar 1989 A
4832473 Ueda May 1989 A
4834068 Gottesman May 1989 A
4846573 Taylor et al. Jul 1989 A
4873965 Danieli Oct 1989 A
4873990 Holmes et al. Oct 1989 A
4879991 Ogiu Nov 1989 A
4884557 Takehana et al. Dec 1989 A
4890602 Hake Jan 1990 A
4895431 Tsujiuchi et al. Jan 1990 A
4899731 Takayama et al. Feb 1990 A
4904048 Sogawa et al. Feb 1990 A
4917114 Green et al. Apr 1990 A
4919112 Siegmund Apr 1990 A
4930494 Takehana et al. Jun 1990 A
4949927 Madocks et al. Aug 1990 A
4957486 Davis Sep 1990 A
4969709 Sogawa et al. Nov 1990 A
4971035 Ito Nov 1990 A
4977886 Takehana et al. Dec 1990 A
4977887 Gouda Dec 1990 A
4987314 Gotanda et al. Jan 1991 A
5005558 Aomori Apr 1991 A
5005559 Blanco et al. Apr 1991 A
5014709 Bjelkhagen et al. May 1991 A
5018509 Suzuki et al. May 1991 A
5025778 Silverstein et al. Jun 1991 A
5025804 Kondo Jun 1991 A
5050585 Takahashi Sep 1991 A
5059158 Bellio et al. Oct 1991 A
5060632 Hibino et al. Oct 1991 A
5090956 McCoy Feb 1992 A
5092901 Hunter et al. Mar 1992 A
5103403 Chhayder et al. Apr 1992 A
5125395 Adair Jun 1992 A
5127393 McFarlin et al. Jul 1992 A
5159446 Hibino et al. Oct 1992 A
5166787 Irion Nov 1992 A
5174276 Crockard Dec 1992 A
5174277 Matsumaru Dec 1992 A
5188111 Yates et al. Feb 1993 A
5203319 Danna et al. Apr 1993 A
5207695 Trout, III May 1993 A
5217001 Nakao et al. Jun 1993 A
5218280 Edwards Jun 1993 A
5220911 Tamura Jun 1993 A
5228429 Hatano Jul 1993 A
5234448 Wholey et al. Aug 1993 A
5239982 Trauthen Aug 1993 A
5243967 Hibino Sep 1993 A
5250058 Miller et al. Oct 1993 A
5250167 Adolf et al. Oct 1993 A
5251611 Zehel et al. Oct 1993 A
5253647 Takahashi et al. Oct 1993 A
5254809 Martin Oct 1993 A
5257617 Takahashi Nov 1993 A
5259364 Bob et al. Nov 1993 A
5268082 Oguro et al. Dec 1993 A
5269289 Takehana et al. Dec 1993 A
5271381 Ailinger et al. Dec 1993 A
5271382 Chikama Dec 1993 A
5279610 Park et al. Jan 1994 A
5297443 Wentz Mar 1994 A
5325845 Adair Jul 1994 A
5337732 Grundfest et al. Aug 1994 A
5337733 Bauerfeind et al. Aug 1994 A
5343874 Picha et al. Sep 1994 A
5347987 Feldstein et al. Sep 1994 A
5348259 Blanco et al. Sep 1994 A
5368015 Wilk Nov 1994 A
5370108 Miura et al. Dec 1994 A
5383467 Auer et al. Jan 1995 A
5383852 Stevens-Wright Jan 1995 A
5389222 Shahinpoor Feb 1995 A
5394864 Kobayashi et al. Mar 1995 A
5396879 Wilk et al. Mar 1995 A
5400769 Tanii et al. Mar 1995 A
5402768 Adair Apr 1995 A
5411508 Bessler et al. May 1995 A
5413108 Alfano May 1995 A
5421337 Richards-Kortum et al. Jun 1995 A
5425738 Gustafson et al. Jun 1995 A
5429118 Cole et al. Jul 1995 A
5431645 Smith et al. Jul 1995 A
5439000 Gunderson et al. Aug 1995 A
5451221 Cho et al. Sep 1995 A
5456714 Owen Oct 1995 A
5460166 Yabe et al. Oct 1995 A
5460168 Masubuchi et al. Oct 1995 A
5469840 Tanii et al. Nov 1995 A
5479930 Gruner et al. Jan 1996 A
5482029 Sekiguchi et al. Jan 1996 A
5486182 Nakao et al. Jan 1996 A
5487385 Avitall Jan 1996 A
5487757 Truckai et al. Jan 1996 A
5489256 Adair Feb 1996 A
5492131 Galel Feb 1996 A
5503616 Jones Apr 1996 A
5507287 Palcic et al. Apr 1996 A
5507717 Kura et al. Apr 1996 A
5522788 Kuzmak Jun 1996 A
5531664 Adachi et al. Jul 1996 A
5535759 Wilk Jul 1996 A
5551945 Yabe et al. Sep 1996 A
5556370 Maynard Sep 1996 A
5556700 Kaneto et al. Sep 1996 A
5558619 Kami et al. Sep 1996 A
5558665 Kieturakis Sep 1996 A
5577992 Chiba et al. Nov 1996 A
5586968 Grundl et al. Dec 1996 A
5590660 MacAulay et al. Jan 1997 A
5601087 Gunderson et al. Feb 1997 A
5602449 Krause et al. Feb 1997 A
5620408 Vennes et al. Apr 1997 A
5624380 Takayama et al. Apr 1997 A
5624381 Kieturakis Apr 1997 A
5626553 Frassica et al. May 1997 A
5631040 Takuchi et al. May 1997 A
5645064 Littmann et al. Jul 1997 A
5645520 Nakamura et al. Jul 1997 A
5647368 Zeng et al. Jul 1997 A
5647840 Damelio et al. Jul 1997 A
5651366 Liang et al. Jul 1997 A
5651769 Waxman et al. Jul 1997 A
5653690 Booth et al. Aug 1997 A
5658238 Suzuki et al. Aug 1997 A
5662585 Willis et al. Sep 1997 A
5662587 Grundfest et al. Sep 1997 A
5662621 Lafontaine Sep 1997 A
5665050 Benecke Sep 1997 A
5667476 Frassica et al. Sep 1997 A
5679216 Takayama et al. Oct 1997 A
5681260 Ueda et al. Oct 1997 A
5725475 Yasui et al. Mar 1998 A
5728044 Shan Mar 1998 A
5733245 Kawano Mar 1998 A
5746694 Wilk et al. May 1998 A
5749828 Solomon et al. May 1998 A
5752912 Takahashi et al. May 1998 A
5759151 Sturges Jun 1998 A
5762613 Sutton et al. Jun 1998 A
5765561 Chen et al. Jun 1998 A
5769792 Palcic et al. Jun 1998 A
5771902 Lee et al. Jun 1998 A
5772597 Goldberger et al. Jun 1998 A
5773835 Sinofsky Jun 1998 A
5779624 Chang Jul 1998 A
5807241 Heimberger Sep 1998 A
5810715 Moriyama Sep 1998 A
5810716 Mukherjee et al. Sep 1998 A
5810717 Maeda et al. Sep 1998 A
5810776 Bacich et al. Sep 1998 A
5813976 Filipi et al. Sep 1998 A
5819749 Lee et al. Oct 1998 A
5827190 Palcic et al. Oct 1998 A
5827265 Glinsky et al. Oct 1998 A
5842973 Bullard Dec 1998 A
5848972 Triedman et al. Dec 1998 A
5855565 Bar-Cohen et al. Jan 1999 A
5857962 Bracci et al. Jan 1999 A
5860581 Robertson et al. Jan 1999 A
5860914 Chiba et al. Jan 1999 A
5868760 McGuckin, Jr. Feb 1999 A
5873817 Kokish et al. Feb 1999 A
5876329 Harhen Mar 1999 A
5876373 Giba et al. Mar 1999 A
5885208 Moriyama Mar 1999 A
5893369 Lemole Apr 1999 A
5897417 Grey Apr 1999 A
5897488 Ueda Apr 1999 A
5902254 Magram May 1999 A
5906591 Dario et al. May 1999 A
5908381 Aznoian et al. Jun 1999 A
5911715 Berg et al. Jun 1999 A
5912147 Stoler et al. Jun 1999 A
5916146 Allotta et al. Jun 1999 A
5916147 Boury Jun 1999 A
5921915 Aznoian et al. Jul 1999 A
5928136 Barry Jul 1999 A
5941815 Chang Aug 1999 A
5941908 Goldsteen et al. Aug 1999 A
5957833 Shan Sep 1999 A
5968052 Sullivan, III Oct 1999 A
5971767 Kaufman et al. Oct 1999 A
5976074 Moriyama Nov 1999 A
5989182 Hori et al. Nov 1999 A
5989230 Frassica Nov 1999 A
5993381 Ito Nov 1999 A
5993447 Blewett et al. Nov 1999 A
5996346 Maynard Dec 1999 A
6016440 Simon et al. Jan 2000 A
6033359 Doi Mar 2000 A
6036636 Motoki et al. Mar 2000 A
6036702 Bachinski et al. Mar 2000 A
6042155 Lockwood Mar 2000 A
6048307 Grundl et al. Apr 2000 A
6059718 Taniguchi et al. May 2000 A
6063022 Ben-Haim May 2000 A
6066102 Townsend et al. May 2000 A
6066132 Chen et al. May 2000 A
6068629 Haissaguerre et al. May 2000 A
6068638 Makower May 2000 A
6071234 Takada Jun 2000 A
6096023 Lemelson Aug 2000 A
6096289 Goldenberg Aug 2000 A
6099464 Shimizu et al. Aug 2000 A
6099465 Inoue Aug 2000 A
6099485 Patterson Aug 2000 A
6106510 Lunn et al. Aug 2000 A
6109852 Shahinpoor et al. Aug 2000 A
6117296 Thomson Sep 2000 A
6119913 Adams et al. Sep 2000 A
6129667 Dumoulin et al. Oct 2000 A
6129683 Sutton et al. Oct 2000 A
6141577 Rolland et al. Oct 2000 A
6149581 Klingenstein Nov 2000 A
6162171 Ng et al. Dec 2000 A
6174280 Oneda et al. Jan 2001 B1
6174291 McMahon et al. Jan 2001 B1
6178346 Amundson et al. Jan 2001 B1
6179776 Adams et al. Jan 2001 B1
6185448 Borovsky Feb 2001 B1
6201989 Whitehead et al. Mar 2001 B1
6203493 Ben-Haim Mar 2001 B1
6203494 Moriyama Mar 2001 B1
6210337 Dunham et al. Apr 2001 B1
6221006 Dubrul et al. Apr 2001 B1
6233476 Strommer et al. May 2001 B1
6241657 Chen et al. Jun 2001 B1
6249076 Madden et al. Jun 2001 B1
6264086 McGuckin, Jr. Jul 2001 B1
6270453 Sakai Aug 2001 B1
6293907 Axon et al. Sep 2001 B1
6306081 Ishikawa et al. Oct 2001 B1
6309346 Farhadi Oct 2001 B1
6315714 Akiba Nov 2001 B1
6319197 Tsuji et al. Nov 2001 B1
6327492 Lemelson Dec 2001 B1
6332089 Acker et al. Dec 2001 B1
6348058 Melkent et al. Feb 2002 B1
6352503 Matsui et al. Mar 2002 B1
6366799 Acker et al. Apr 2002 B1
6371907 Hasegawa et al. Apr 2002 B1
6402687 Ouchi Jun 2002 B1
6408889 Komachi Jun 2002 B1
6425535 Akiba Jul 2002 B1
6428203 Danley Aug 2002 B1
6428470 Thompson Aug 2002 B1
6443888 Ogura et al. Sep 2002 B1
6447444 Avni et al. Sep 2002 B1
6453190 Acker et al. Sep 2002 B1
6459481 Schaack Oct 2002 B1
6468203 Belson Oct 2002 B2
6468265 Evans et al. Oct 2002 B1
6482148 Luke Nov 2002 B1
6482149 Torii Nov 2002 B1
6485413 Boppart et al. Nov 2002 B1
6485496 Suyker et al. Nov 2002 B1
6490467 Bucholz et al. Dec 2002 B1
6503259 Huxel et al. Jan 2003 B2
6511417 Taniguchi et al. Jan 2003 B1
6511418 Shahidi et al. Jan 2003 B2
6514237 Maseda Feb 2003 B1
6517477 Wendlandt Feb 2003 B1
6527706 Ide Mar 2003 B2
6537211 Wang et al. Mar 2003 B1
6544215 Bencini et al. Apr 2003 B1
6547723 Ouchi Apr 2003 B1
6554793 Pauker et al. Apr 2003 B1
6569084 Mizuno et al. May 2003 B1
6569173 Blatter et al. May 2003 B1
6589163 Aizawa et al. Jul 2003 B2
6610007 Belson et al. Aug 2003 B2
6616600 Pauker Sep 2003 B2
6638213 Ogura et al. Oct 2003 B2
6641528 Torii Nov 2003 B2
6650920 Schaldach et al. Nov 2003 B2
6656110 Irion et al. Dec 2003 B1
6664718 Pelrine et al. Dec 2003 B2
6679836 Couvillon, Jr. et al. Jan 2004 B2
6690963 Ben-Haim et al. Feb 2004 B2
6699183 Wimmer Mar 2004 B1
6719685 Fujikura et al. Apr 2004 B2
6761685 Adams et al. Jul 2004 B2
6783491 Saadat et al. Aug 2004 B2
6790173 Saadat et al. Sep 2004 B2
6793621 Butler et al. Sep 2004 B2
6800056 Tartaglia et al. Oct 2004 B2
6808499 Churchill et al. Oct 2004 B1
6808520 Fourkas et al. Oct 2004 B1
6817973 Merril et al. Nov 2004 B2
6835173 Couvillon, Jr. Dec 2004 B2
6837846 Jaffe et al. Jan 2005 B2
6837847 Ewers et al. Jan 2005 B2
6837849 Ogura et al. Jan 2005 B2
6843793 Brock et al. Jan 2005 B2
6850794 Shahidi Feb 2005 B2
6858005 Ohline et al. Feb 2005 B2
6869396 Belson Mar 2005 B2
6875170 Francois et al. Apr 2005 B2
6890297 Belson May 2005 B2
6902528 Garibaldi et al. Jun 2005 B1
6942613 Ewers et al. Sep 2005 B2
6960161 Amling et al. Nov 2005 B2
6960162 Saadat et al. Nov 2005 B2
6960163 Ewers et al. Nov 2005 B2
6974411 Belson Dec 2005 B2
6984203 Tartaglia et al. Jan 2006 B2
6997870 Couvillon, Jr. Feb 2006 B2
7018331 Chang et al. Mar 2006 B2
7044907 Belson May 2006 B2
7087013 Belson et al. Aug 2006 B2
7125403 Julian et al. Oct 2006 B2
7167180 Shibolet Jan 2007 B1
7285088 Miyake Oct 2007 B2
7297142 Brock Nov 2007 B2
7371210 Brock et al. May 2008 B2
7447534 Kingsley et al. Nov 2008 B1
8062212 Belson Nov 2011 B2
8226546 Belson Jul 2012 B2
8517923 Belson et al. Aug 2013 B2
8641602 Belson Feb 2014 B2
8827894 Belson Sep 2014 B2
8834354 Belson Sep 2014 B2
8845524 Belson et al. Sep 2014 B2
9138132 Belson Sep 2015 B2
20020016607 Bonadio et al. Feb 2002 A1
20020045778 Murahashi et al. Apr 2002 A1
20020129508 Blattner et al. Sep 2002 A1
20020130673 Pelrine et al. Sep 2002 A1
20020151767 Sonnenschein et al. Oct 2002 A1
20020169361 Taniguchi et al. Nov 2002 A1
20020183592 Suzuki et al. Dec 2002 A1
20030065373 Lovett et al. Apr 2003 A1
20030083550 Miyagi May 2003 A1
20030130598 Manning et al. Jul 2003 A1
20030167007 Belson Sep 2003 A1
20030182091 Kukuk Sep 2003 A1
20030195387 Kortenbach et al. Oct 2003 A1
20030233056 Saadat et al. Dec 2003 A1
20030236455 Swanson et al. Dec 2003 A1
20030236505 Bonadio et al. Dec 2003 A1
20030236549 Bonadio et al. Dec 2003 A1
20040019254 Belson et al. Jan 2004 A1
20040044270 Barry Mar 2004 A1
20040049251 Knowlton Mar 2004 A1
20040097788 Mourlas et al. May 2004 A1
20040106852 Windheuser et al. Jun 2004 A1
20040176683 Whitin et al. Sep 2004 A1
20040186350 Brenneman et al. Sep 2004 A1
20040193008 Jaffe et al. Sep 2004 A1
20040193009 Jaffe et al. Sep 2004 A1
20040210109 Jaffe et al. Oct 2004 A1
20040220450 Jaffe et al. Nov 2004 A1
20040230096 Stefanchik et al. Nov 2004 A1
20050085693 Belson et al. Apr 2005 A1
20050124855 Jaffe et al. Jun 2005 A1
20050137454 Saadat et al. Jun 2005 A1
20050137455 Ewers et al. Jun 2005 A1
20050137456 Saadat et al. Jun 2005 A1
20050154258 Tartaglia et al. Jul 2005 A1
20050154261 Ohline et al. Jul 2005 A1
20050165276 Belson et al. Jul 2005 A1
20050168571 Lia et al. Aug 2005 A1
20050203339 Butler et al. Sep 2005 A1
20050209506 Butler et al. Sep 2005 A1
20050250990 Le et al. Nov 2005 A1
20060009678 Jaffe et al. Jan 2006 A1
20060015009 Jaffe et al. Jan 2006 A1
20060015010 Jaffe et al. Jan 2006 A1
20060052664 Julian et al. Mar 2006 A1
20060089528 Tartaglia et al. Apr 2006 A1
20060089529 Tartaglia et al. Apr 2006 A1
20060089530 Tartaglia et al. Apr 2006 A1
20060089531 Tartaglia et al. Apr 2006 A1
20060089532 Tartaglia et al. Apr 2006 A1
20060100642 Yang et al. May 2006 A1
20060235457 Belson Oct 2006 A1
20060235458 Belson Oct 2006 A1
20060258912 Belson et al. Nov 2006 A1
20070043259 Jaffe et al. Feb 2007 A1
20070093858 Gambale et al. Apr 2007 A1
20070135803 Belson Jun 2007 A1
20070161291 Swinehart et al. Jul 2007 A1
20070161857 Durant et al. Jul 2007 A1
20070249901 Ohline et al. Oct 2007 A1
20070270650 Eno et al. Nov 2007 A1
20080045794 Belson Feb 2008 A1
20080154288 Belson Jun 2008 A1
20080214893 Tartaglia et al. Sep 2008 A1
20080248215 Sauer et al. Oct 2008 A1
20090099420 Woodley et al. Apr 2009 A1
20090216083 Durant et al. Aug 2009 A1
20100094088 Ohline et al. Apr 2010 A1
20110306836 Ohline et al. Dec 2011 A1
20150005576 Belson et al. Jan 2015 A1
Foreign Referenced Citations (120)
Number Date Country
2823025 Feb 1986 DE
3707787 Sep 1988 DE
4102211 Aug 1991 DE
19626433 Jan 1998 DE
19729499 Jan 1999 DE
165718 Dec 1985 EP
382974 Aug 1990 EP
497781 Jan 1994 EP
0993804 Apr 2000 EP
1101442 May 2001 EP
1681013 Jul 2006 EP
2048086 Mar 1994 ES
2062930 Dec 1994 ES
2732225 Oct 1996 FR
2807960 Oct 2001 FR
2347685 Sep 2000 GB
20000559 Jul 2000 IE
20020170 Mar 2002 IE
4712705 May 1972 JP
61205912 Sep 1986 JP
63136014 Jun 1988 JP
63272322 Nov 1988 JP
1152413 Jun 1989 JP
H01153292 Jun 1989 JP
1229220 Sep 1989 JP
1262372 Oct 1989 JP
2246986 Oct 1990 JP
2296209 Dec 1990 JP
3004830 Jan 1991 JP
3109021 May 1991 JP
3136630 Jun 1991 JP
3139325 Jun 1991 JP
3170125 Jul 1991 JP
4002322 Jan 1992 JP
4054970 Feb 1992 JP
5001999 Jan 1993 JP
5011196 Jan 1993 JP
5111458 May 1993 JP
5177002 Jul 1993 JP
5184531 Jul 1993 JP
5305073 Nov 1993 JP
6007287 Jan 1994 JP
7088788 Apr 1995 JP
7116104 May 1995 JP
7120684 May 1995 JP
8010336 Jan 1996 JP
8066351 Mar 1996 JP
8322783 Dec 1996 JP
8322786 Dec 1996 JP
9028662 Feb 1997 JP
10014863 Jan 1998 JP
10337274 Dec 1998 JP
11042258 Feb 1999 JP
11048171 Feb 1999 JP
2000279367 Oct 2000 JP
21046318 Feb 2001 JP
21096478 Apr 2001 JP
2001519199 Oct 2001 JP
2001521773 Nov 2001 JP
3322356 Sep 2002 JP
2002264048 Sep 2002 JP
2002531164 Sep 2002 JP
2003504148 Feb 2003 JP
2005507731 Mar 2005 JP
871786 Oct 1981 SU
1256955 Sep 1986 SU
1301701 Apr 1987 SU
WO-199219147 Nov 1992 WO
WO-9315648 Aug 1993 WO
WO-199317751 Sep 1993 WO
WO-199419051 Sep 1994 WO
WO-199504556 Feb 1995 WO
WO-9509562 Apr 1995 WO
WO-9605768 Feb 1996 WO
WO-199710746 Mar 1997 WO
WO-9725101 Jul 1997 WO
WO-9729701 Aug 1997 WO
WO-9729710 Aug 1997 WO
WO-199811816 Mar 1998 WO
WO-199824017 Jun 1998 WO
WO-9849938 Nov 1998 WO
WO-199916359 Apr 1999 WO
WO-199933392 Jul 1999 WO
WO-199951283 Oct 1999 WO
WO-199959664 Nov 1999 WO
WO-0010456 Mar 2000 WO
WO-200010466 Mar 2000 WO
WO-200027462 May 2000 WO
WO-200054653 Sep 2000 WO
WO-200074565 Dec 2000 WO
WO-200149353 Jul 2001 WO
WO-200158973 Aug 2001 WO
WO-200167964 Sep 2001 WO
WO-200170096 Sep 2001 WO
WO-200170097 Sep 2001 WO
WO-0174235 Oct 2001 WO
WO-200180935 Nov 2001 WO
WO-200224058 Mar 2002 WO
WO-200239909 May 2002 WO
WO-200247549 Jun 2002 WO
WO-200264028 Aug 2002 WO
WO-200268988 Sep 2002 WO
WO-200269841 Sep 2002 WO
WO-200289692 Nov 2002 WO
WO-200296276 Dec 2002 WO
WO-03028547 Apr 2003 WO
WO-03073920 Sep 2003 WO
WO-200373921 Sep 2003 WO
WO-03086498 Oct 2003 WO
WO-03092476 Nov 2003 WO
WO-2004000403 Dec 2003 WO
WO-200406980 Jan 2004 WO
WO-2004019769 Mar 2004 WO
WO-2004049905 Jun 2004 WO
WO-200471284 Aug 2004 WO
WO-200480313 Sep 2004 WO
WO-2004084702 Oct 2004 WO
WO-2005072445 Aug 2005 WO
WO-200584542 Sep 2005 WO
WO-2006136827 Dec 2006 WO
Non-Patent Literature Citations (59)
Entry
“Active endoscope (ELASTOR, shape memory alloy robot),” 9 pages including 3 figures and 4 photographs. Accessed Feb. 21, 2002. Internet: http://mozu.mes.titech.ac.jp/research/medical/endoscopetendoscope.html.
Bar-Cohen, J., “EAP applications, potential, and challenges,” Chapter 21 in Electroactive Polymer (EAP) Actuators as Artificial Muscles, Bar-Cohen, Ed., SPIE Press, 2001, pp. 615-659.
Bar-Cohen, Y., “EAP history, current status, and infrastructure,” Chapter 1 in Electroactive Polymer (EAP) Actuators as Artificial Muscles, Bar-Cohen Ed., SPIE Press, 2001, pp. 3-44.
Bar-Cohen, Y. Ed., Worldwide ElectroActive Polymers (Artificial Muscles) Newsletter, Jun. 2001, vol. 3, issue 1, pp. 1-14.
Bar-Cohen, Y., “Transition of EAP material from novelty to practical applications—are we there yet” Smart Structures and Materials 2001: Electroactive Polymer Actuators and Devices, Yoseph Bar-Cohen Ed., Proceedings of SPIE, Mar. 5-8, 2001, vol. 4329, pp. 1-6.
Belson et al., U.S. Appl. No. 11/796,220 entitled “Steerable segmented endoscope and method of insertion” filed Apr. 27, 2007.
Berger, W. L. et al., “Sigmoid Stiffener for Decompression Tube Placement in Colonic Pseudo-Obstruction,” Endoscopy, 2000, vol. 32, Issue 1, pp. 54-57.
Brock, D.L., “Review of artificial muscle based on contractile polymers,” MIT Artificial Intelligence Laboratory, A.I.Memo No. 1330, Nov. 1991, 10 pages. Accessed Jun. 23, 2005. Internet: http://www.ai.mit.edu/projects/muscle/papers/memo1330/memo1330.html.
Cho, S. et al., “Development of micro inchworm robot actuated by electrostrictive polymer actuator,” Smart Structures and Materials 2001: Electroactive Polymer Actuators and Devices, Yoseph Bar-Cohen Ed., Proceedings of SPIE, Mar. 5-8, 2001, vol. 4329, pp. 466-474.
Office Action issued in corresponding Japanese Application No. P2006-551580, dated Aug. 21, 2012, Dispatch No. 568236.
Duntgen, C., “Walking machines: 0-legged-robots: A compilation by Christian Duntgen,” Aug. 26, 2000, 16 pages.
Durant, et al.; U.S. Appl. No. 12/036,976 entitled “Systems and methods for articulating an elongate body,” filed Feb. 25, 2008.
EP03791924 Supplementary Partial Search Report, dated Feb. 27, 2009, 4 pages.
EP11175098 Extended EP Search Report dated Dec. 1, 2011, 7 pages.
European Search Report for Application No. EP05002014, dated Mar. 31, 2005, 3 pages.
Extended European Search Report for Application No. EP05824444, dated Apr. 13, 2011, 6 pages.
French language U.S. Appl. No. 09/556,673, Christian Francois et al., filed Apr. 21, 2000.
Grecu, E. et al., “Snake-like flexible Micro-robot,” Copernicus project presentation, financed by European Community, Project start May 1, 1995, 6 pages. Accessed Dec. 27, 2001; Internet: http://www.agip.sciences.univ-metz.fr/˜mihalach/Copernicus_project_engl.html.
Hasson, H.M., “Technique of Open Laparoscopy,” (from step 1 to step 9), May 1979, 2424 North Clark Street, Chicago, Illinois 60614, 3 pages.
Ikuta, Koji et al., “Shape memory alloy servo actuator system with electric resistance feedback and application for active endoscope,” Proc. IEEE International Conference on Robotics and Automation, 1988, pp. 427-430, vol. 1, IEEE.
International Preliminary Examination Report for Application No. PCT/US2001/10907, dated Jan. 21, 2003, 3 pages.
International Search Report and Written Opinion for Application No. PCT/US2004/026948, dated Dec. 29, 2005, 4 pages.
International Search Report and Written Opinion for Application No. PCT/US2005/03140, dated May 6, 2008, 6 pages.
International Search Report for Application No. PCT/US2001/10907, dated Aug. 28, 2001, 3 pages.
Ireland Application No. 2000/0225 filed on Mar. 22, 2000, Inventor Declan B., et al.
Jager, E.W.H. et al., “Microfabricating conjugated polymer actuators,” Science, Nov. 24, 2000, vol. 290, pp. 1540-1545.
Japanese application No. 2007-541342 Office Action dated May 17, 2011, 7 pages, including translation.
Jeon, J.W. et al., “Electrostrictive polymer actuators and their control systems,” Smart Structures and Materials 2001: Electroactive Polymer Actuators and Devices, Yoseph Bar-Cohen Ed., Proceedings of SPIE, Mar. 5-8, 2001, vol. 4329, pp. 380-388.
Klaassen, B., “GMD-SNAKE: Robot snake with a flexible real-time control,” AiS—GMD—Snake, last updated Oct. 17, 2001, 3 pages, accessed Dec. 27, 2001; Internet: http://ais.gmd.de/BAR/snake.html.
Kornbluh, R. et al., “Application of dielectric elastomer EAP actuators,”Chapter 16 in Electroactive Polymer (EAP) Actuators as Artificial Muscles, Yoseph Bar-Cohen, Ed., SPIE Press, 2001, pp. 457-495.
Kubler, C. et al., “Endoscopic robots,” Proceedings of 3rd International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI 2000), Oct. 11-14, 2000, in Lecture Notes in Computer Science, Springer, vol. 1935, pp. 949-955.
Laptop Magazine, Science & Technology section, Oct. 2002, pp. 98, 100, and 102.
Lee, Thomas S. et al., “A highly redundant robot system for inspection,” Proceedings of Conference on Intelligent Robotics in Field, Factory, Service, and Space (CIRFFSS '94). Mar. 21-24, 1994. vol. 1, pp. 142-148. Houston, Texas.
Lightdale, C.J., “New developments in endoscopy,” American College of Gastroenterology 65th Annual Scientific Meeting, Day 1, Oct. 16, 2000, pp. 1-9.
Madden, J.D.W., Abstract of “Conducting polymer actuators,” Smart Structures and Materials 2001: Electroactive Polymer Actuators and Devices, Yoseph Bar-Cohen Ed., Proceedings of SPIE, Mar. 5-8, 2001, vol. 4329, 1 page.
Madden, J.D.W. et al., “Polypyrrole actuators: modeling and performance”, Smart Structures and Materials 2001: Electroactive Polymer Actuators and Devices, Yoseph Bar-Cohen Ed., Proceedings of SPIE, Mar. 5-8, 2001, vol. 4329, pp. 72-83.
Mazzoldi, A., “Smart Catheters,” Internet: http://www.piaggio.ccii.unipi.it/cathe.htm, printed Aug. 27, 2001, 2 pages.
McKernan, J.B. et al., “Laparoscopic general surgery,” Journal of the Medical Association of Georgia, Mar. 1990, vol. 79, Issue 3, pp. 157-159.
Nam, J.D., “Electroactive polymer (EAP) actuators and devices for micro-robot systems,” Nov. 28, 2000, 1 page.
Office Action dated Jul. 30, 2013 for Japanese Application No. 20110200974 filed Sep. 14, 2011.
Ohline et al., U.S. Appl. No. 12/425,272 entitled “Tendon-driven endoscope and methods of use,” filed Apr. 16, 2009.
PCT/US02/29472 International Search Report , dated Mar. 6, 2003, 3 pages.
PCT/US03/06078 International Search Report , dated Aug. 13, 2003, 1 page.
PCT/US03/13600 International Search Report, dated Dec. 12, 2003, 1 page.
PCT/US03/27042 International Search Report, dated Feb. 4, 2004, 2 pages.
PCT/US03/37778 International Search Report, dated Feb. 8, 2005, 1 page.
PCT/US2005/040893 International Search Report and Written Opinion of the International Searching Authority, dated Jun. 23, 2008, 5 pages.
Peirs, J. et al., “Miniature parallel manipulators for integration in a self-propelling endoscope,” IUAP P4/24 IMechS Workshop, Organized by UCL/PRM, Oct. 27, 1999, 2 pages.
Pelrine, R. et al., “Applications of dielectric elastomer actuators,” Smart Structures and Materials 2001: Electroactive Polymer Actuators and Devices, Yoseph Bar-Cohen Ed., Proceedings of SPIE, Mar. 5-8, 2001, vol. 4329, Issue 1, pp. 335-349.
Sansinena, J.M. et al., “Conductive polymers,” Chapter 7 of Electroactive Polymer (EAP) Actuators as Artificial Muscles, Bar-Cohen Ed., SPIE Press, 2001, pp. 193-221.
Slatkin, A.B. et al., “The development of a robotic endoscope,” Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems, Aug. 5-9, 1995, vol. 2, pp. 162-171, Pittsburgh, Pennsylvania.
Supplementary European Search Report for Application No. EP03790076, dated Dec. 28, 2007, 4 pages.
Supplementary European Search Report for Application No. EP04781605, dated Jul. 23, 2010, 3 pages.
Supplementary European Search Report for Application No. EP05712548, dated Jul. 6, 2012, 3 pages.
Supplementary European Search Report of EP Patent Application No. EP03728638, dated Oct. 27, 2005, 2 pages total.
U.S. Appl. No. 12/425,272 Office Action dated Mar. 11, 2011, 7 pages.
Vertut, Jean and Phillipe Coiffet, Robot Technology: Teleoperation and Robotics Evolution and Development, English translation, Prentice-Hall, Inc., Inglewood Cliffs, NJ, USA 1986, vol. 3A, 332 pages.
Woodley et al., U.S. Appl. No. 11/871,104 entitled “System for managing bowden cables in articulating instruments,” filed Oct. 11, 2007.
Zuccaro, G., “Procedural sedation in the GI suite,” A conference co-sponsored by the American Society of Anesthesiologists, 16th Annual Meeting 2001, May 3-6, 2001, pp. 162-171.
Related Publications (1)
Number Date Country
20150359414 A1 Dec 2015 US
Provisional Applications (1)
Number Date Country
60194140 Apr 2000 US
Continuations (5)
Number Date Country
Parent 14148322 Jan 2014 US
Child 14833921 US
Parent 13535979 Jun 2012 US
Child 14148322 US
Parent 11129093 May 2005 US
Child 13535979 US
Parent 10229189 Aug 2002 US
Child 11129093 US
Parent 09790204 Feb 2001 US
Child 10229189 US