All publications and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.
The present invention relates generally to endoscopes and endoscopic medical procedures. More particularly, it relates to a method and apparatus to facilitate insertion of a flexible endoscope along a tortuous path, such as for colonoscopic examination and treatment.
An endoscope is a medical instrument for visualizing the interior of a patient's body. Endoscopes can be used for a variety of different diagnostic and interventional procedures, including colonoscopy, bronchoscopy, thoracoscopy, laparoscopy and video endoscopy.
Colonoscopy is a medical procedure in which a flexible endoscope, or colonoscope, is inserted into a patient's colon for diagnostic examination and/or surgical treatment of the colon. A standard colonoscope is typically 135-185 cm in length and 12-19 mm in diameter, and includes a fiberoptic imaging bundle or a miniature camera located at the instrument's tip, illumination fibers, one or two instrument channels that may also be used for insufflation or irrigation, air and water channels, and vacuum channels. The colonoscope is inserted via the patient's anus and is advanced through the colon, allowing direct visual examination of the colon, the ileocecal valve and portions of the terminal ileum. Insertion of the colonoscope is complicated by the fact that the colon represents a tortuous and convoluted path. Considerable manipulation of the colonoscope is often necessary to advance the colonoscope through the colon, making the procedure more difficult and time consuming and adding to the potential for complications, such as intestinal perforation. Steerable colonoscopes have been devised to facilitate selection of the correct path though the curves of the colon. However, as the colonoscope is inserted farther and farther into the colon, it becomes more difficult to advance the colonoscope along the selected path. At each turn, the wall of the colon must maintain the curve in the colonoscope. The colonoscope rubs against the mucosal surface of the colon along the outside of each turn. Friction and slack in the colonoscope build up at each turn, making it more and more difficult to advance and withdraw the colonoscope. In addition, the force against the wall of the colon increases with the buildup of friction. In cases of extreme tortuosity, it may become impossible to advance the colonoscope all of the way through the colon.
Steerable endoscopes, catheters and insertion devices for medical examination or treatment of internal body structures are described in the following U.S. patents, the disclosures of which are hereby incorporated by reference in their entirety: U.S. Pat. Nos. 4,753,223; 5,337,732; 5,662,587; 4,543,090; 5,383,852; 5,487,757 and 5,337,733.
In keeping with the foregoing discussion, the present invention takes the form of a steerable endoscope for negotiating tortuous paths through a patient's body. The steerable endoscope can be used for a variety of different diagnostic and interventional procedures, including colonoscopy, upper endoscopy, bronchoscopy, thoracoscopy, laparoscopy and video endoscopy. The steerable endoscope is particularly well suited for negotiating the tortuous curves encountered when performing a colonoscopy procedure.
The steerable endoscope has an elongated body with a manually or selectively steerable distal portion and an automatically controlled proximal portion. The selectively steerable distal portion can be selectively steered or bent up to a full 180 degree bend in any direction. A fiberoptic imaging bundle and one or more illumination fibers extend through the body from the proximal end to the distal end. Alternatively, the endoscope can be configured as a video endoscope with a miniaturized video camera, such as a CCD camera, which transmits images to a video monitor by a transmission cable or by wireless transmission, or alternatively through the use of CMOS imaging technology. Optionally, the endoscope may include one or two instrument channels that may also be used for insufflation or irrigation, air and water channels, and vacuum channels.
A proximal handle attached to the elongate body includes an ocular for direct viewing and/or for connection to a video camera, a connection to an illumination source and one or more luer lock fittings that are connected to the instrument channels. The handle is connected to a steering control for selectively steering or bending the selectively steerable distal portion in the desired direction and to an electronic motion controller for controlling the automatically controlled proximal portion of the endoscope. An axial motion transducer is provided to measure the axial motion of the endoscope body as it is advanced and withdrawn. Optionally, the endoscope may include a motor or linear actuator for both automatically advancing and withdrawing the endoscope, or for automatically advancing and passively withdrawing the endoscope.
One preferable embodiment of the endoscope includes a segmented endoscopic embodiment having multiple independently controllable segments which may be individually motorized and interconnected by joints. Each of the individual adjacent segments may be pivotable about two independent axes to offer a range of motion during endoscope insertion into a patient.
This particular embodiment, as mentioned, may have individual motors, e.g., small brushed DC motors, to actuate each individual segment. Furthermore, each segment preferably has a backbone segment which defines a lumen therethrough to allow a continuous lumen to pass through the entire endoscopic instrument to provide an access channel through which wires, optical fibers, air and/or water channels, various endoscopic tools, or any variety of devices and wires may be routed. The entire assembly, i.e., motors, backbone, cables, etc., may be encased or covered in a biocompatible material, e.g., a polymer, which is also preferably lubricious to allow for minimal frictional resistance during endoscope insertion and advancement into a patient. This biocompatible cover may be removable from the endoscopic body to expose the motors and backbone assembly to allow for direct access to the components. This may also allow for the cover to be easily replaced and disposed after use in a patient.
The method of the present invention involves inserting the distal end of the endoscope body into a patient, either through a natural orifice or through an incision, and steering the selectively steerable distal portion to select a desired path. When the endoscope body is advanced or inserted further into the patient's body, the electronic motion controller operates the automatically controlled proximal portion of the body to assume the selected curve of the selectively steerable distal portion. This process is repeated by selecting another desired path with the selectively steerable distal portion and advancing the endoscope body again. As the endoscope body is further advanced, the selected curves propagate proximally along the endoscope body. Similarly, when the endoscope body is withdrawn proximally, the selected curves propagate distally along the endoscope body, either automatically or passively. This creates a sort of serpentine motion in the endoscope body that allows it to negotiate tortuous curves along a desired path through or around and between organs within the body.
The method can be used for performing colonoscopy or other endoscopic procedures, such as bronchoscopy, thoracoscopy, laparoscopy and video endoscopy. In addition, the apparatus and methods of the present invention can be used for inserting other types of instruments, such as surgical instruments, catheters or introducers, along a desired path within the body.
A proximal handle 120 is attached to the proximal end 110 of the elongate body 102. The handle 120 includes an ocular 124 connected to the fiberoptic imaging bundle 112 for direct viewing and/or for connection to a video camera 126 or a recording device 127. The handle 120 is connected to an illumination source 128 by an illumination cable 134 that is connected to or continuous with the illumination fibers 114. A first luer lock fitting, 130 and a second luer lock fitting 132 on the handle 120 are connected to the instrument channels 116, 118.
The handle 120 is connected to an electronic motion controller 140 by way of a controller cable 136. A steering control 122 is connected to the electronic motion controller 140 by way of a second cable 13 M. The steering control 122 allows the user to selectively steer or bend the selectively steerable distal portion 104 of the body 102 in the desired direction. The steering control 122 may be a joystick controller as shown, or other known steering control mechanism. The electronic motion controller 140 controls the motion of the automatically controlled proximal portion 106 of the body 102. The electronic motion controller 140 may be implemented using a motion control program running on a microcomputer or using an application-specific motion controller. Alternatively, the electronic motion controller 140 may be implemented using, a neural network controller.
An axial motion transducer 150 is provided to measure the axial motion of the endoscope body 102 as it is advanced and withdrawn. The axial motion transducer 150 can be made in many possible configurations. By way of example, the axial motion transducer 150 in
The endoscope 100 may be manually advanced or withdrawn by the user by grasping the body 102 distal to the axial motion transducer 150. Alternatively, the first roller 156 and/or second roller 158 may be connected to at least one motor, e.g., motor 162, for automatically advancing and withdrawing the body 102 of the endoscope 100.
In the selectively steerable distal portion 104 of the endoscope body 102, the linear actuators that control the a, b, c and d axis measurements of each section are selectively controlled by the user through the steering control 122. Thus, by appropriate control of the a, b, c and d axis measurements, the selectively steerable distal portion 104 of the endoscope body 102 can be selectively steered or bent up to a full 180 degrees in any direction.
In the automatically controlled proximal portion 106, however, the a, b, c and d direction measurements of each section are automatically controlled by the electronic motion controller 140, which uses a curve propagation method to control the shape of the endoscope body 102. To explain how the curve propagation method operates,
In
Similarly, when the endoscope body 102 is withdrawn proximally, each time the endoscope body 102 is moved proximally by one unit, each section in the automatically controlled proximal portion 106 is signaled to assume the shape of the section that previously occupied the space that it is now in. The S-shaped curve propagates distally along the length of the automatically controlled proximal portion 106 of the endoscope body 102, and the S-shaped curve appears to be fixed in space, as the endoscope body 102 withdraws proximally.
Whenever the endoscope body 102 is advanced or withdrawn, the axial motion transducer 150 detects the change in position and the electronic motion controller 140 propagates the selected curves proximally or distally along the automatically controlled proximal portion 106 of the endoscope body 102 to maintain the curves in a spatially fixed position. This allows the endoscope body 102 to move through tortuous curves without putting unnecessary force on the wall of the colon C.
As mentioned above, such a segmented body may be actuated by a variety of methods. A preferable method involves the use of electromechanical motors individually mounted on each individual segment to move the segments relative to one another.
A single motor, or multiple motors depending upon the desired result and application, may be attached to at least a majority of the segments. An embodiment having a single motor on a segment is illustrated in
Each motor 204 has a rotatable shaft which extends from an end of the motor 204 to provide for the transmission of power to actuate the segments 192. Upon this shaft, a spool 206 may be rotatingly attached with a first end of the cable 208 further wound about the spool 206. The cable 208 may then be routed from spool 206 through a channel 212 which is defined in the cable guide 210 and out through opening 214 (as seen in greater detail in
In operation, when the motor 204 is operated to spin the shaft in a first direction, e.g., clockwise, the spool 206 rotates accordingly and the cable 208 pulls in a corresponding direction on the adjacent segment 192 and transmits the torque to subsequently actuate it along a first axis. When the motor 204 is operated to spin the shaft in a second direction opposite to the first, e.g., counter-clockwise, the spool 206 again rotates accordingly and the cable 208 would then pull in the corresponding opposing direction on the adjacent segment 192 to subsequently transmit the torque and actuate it in the opposite direction.
As seen further in
Prior to insertion into a patient, the endoscope 200 may be wound onto the rotating drum 184 within the rotary housing 180 of
Whether operated in manual mode or automatic mode, once the desired curve has been selected with the selectively steerable distal portion 104, the endoscope body 102 is advanced distally and the selected curve is propagated proximally along the automatically controlled proximal portion 106 of the endoscope body 102 by the electronic motion controller 140, as described above. The curve remains fixed in space while the endoscope body 102 is advanced distally through the sigmoid colon S. In a particularly tortuous colon, the selectively steerable distal portion 104 may have to be steered through multiple curves to traverse the sigmoid colon S.
As illustrated in
If, at any time, the user decides that the path taken by the endoscope body 102 needs to be revised or corrected, the endoscope 100 may be withdrawn proximally and the electronic motion controller 140 commanded to erase the previously selected curve. This can be done manually using keyboard commands or voice commands or automatically by programming the electronic motion controller 140 to go into a revise mode when the endoscope body 102 is withdrawn a certain distance. The revised or corrected curve is selected using the selectively steerable distal portion 104, and the endoscope body 102 is advanced as described before.
The endoscope body 102 is advanced through the descending colon D until it reaches the left (splenic) flexure F1 of the colon. Here, in many cases, the endoscope body 102 must negotiate an almost 180 degree hairpin turn. As before, the desired curve is selected using the selectively steerable distal portion 104, and the endoscope body 102 is advanced distally through the transverse colon T, as shown in
In one preferred method according to the present invention, the electronic motion controller 140 includes an electronic memory in which is created a three-dimensional mathematical model of the patient's colon or other anatomy through which the endoscope body 102 is maneuvered. The three-dimensional model can be annotated by the operator to record the location of anatomical landmarks, lesions, polyps, biopsy samples and other features of interest. The three-dimensional model of the patient's anatomy can be used to facilitate reinsertion of the endoscope body 102 in subsequent procedures. In addition, the annotations can be used to quickly find the location of the features of interest. For example, the three-dimensional model can be annotated with the location where a biopsy sample was taken during an exploratory endoscopy. The site of the biopsy sample can be reliably located again in follow-up procedures to track the progress of a potential disease process and/or to perform a therapeutic procedure at the site.
In one particularly preferred variation of this method, the electronic motion controller 140 can be programmed, based on the three-dimensional model in the electronic memory, so that the endoscope body 102 will automatically assume the proper shape to follow the desired path as it is advanced through the patient's anatomy. In embodiments of the steerable endoscope 100 that are configured for automatically advancing and withdrawing the endoscope body 102, as described above in connection with
Imaging software would allow the three-dimensional model of the patient's anatomy obtained using the steerable endoscope 100 to be viewed on a computer monitor or the like. This would facilitate comparisons between the three-dimensional model and images obtained with other imaging modalities, for example fluoroscopy, radiography, ultrasonography, magnetic resonance imaging (MRI), computed tomography (CT scan), electron beam tomography or virtual colonoscopy. Conversely, images from these other imaging modalities can be used to map out an approximate path or trajectory to facilitate insertion of the endoscope body 102. In addition, images from other imaging modalities can be used to facilitate locating suspected lesions with the steerable endoscope 100. For example, images obtained using a barium-contrast radiograph of the colon can be used to map out an approximate path to facilitate insertion of the endoscope body 102 into the patient's colon. The location and depth of any suspected lesions seen on the radiograph can be noted so that the endoscope body 102 can be quickly and reliably guided to the vicinity of the lesion.
Imaging modalities that provide three-dimensional information, such as biplanar fluoroscopy, CT or MRI, can be used to program the electronic motion controller 140 so that the endoscope body 102 will automatically assume the proper shape to follow the desired path as it is advanced through the patient's anatomy. In embodiments of the steerable endoscope 100 that are configured for automatically advancing and withdrawing the endoscope body 102, the endoscope body 102 can be commanded to advance automatically though the patient's anatomy along the desired path as determined by the three-dimensional imaging information. Similarly, the endoscope body 102 can be commanded to advance automatically to the site of a suspected lesion or other point of interest noted on the images.
As described above, the axial motion transducer 150 can be made in many possible configurations, e.g., shown in
As the endoscopic body 238 passes through the datum channel 236, one preferable optical method of measuring the depth of insertion and axial position may involve measurement through the use of reflective infra-red sensors mounted on the datum 234. The outer surface of the endoscopic body 238 may have hatch marks or some other indicative or reflective marking placed at known intervals along the body 238. As the endoscopic body 238 is advanced or withdrawn through the anus A and the datum channel 236, an optical sensor can read or sense the hatch marks and increment or decrement the distance traveled by the endoscopic body accordingly. Thus, a sensor reading such marks may have an output that registers as a logic-level “1” or “ON” when a mark is sensed and a logic-level “0” or “OFF” when no mark is sensed. By counting or tracking the number of 1-to-0 transitions on a sensor output, the depth may be measured accordingly. Thus resolution of the depth measurement may be determined in part in this embodiment by the spacing between the hatch marks.
A simplified representation of how the distance may be used to advance the device may be seen in
The segmented embodiment 242 may be comprised of a number of individual segments 2421 to 242n (only segments 242, to 2425 are shown for clarity). Each segment 2421 to 242n preferably has its own separate controller 2501 to 250n, respectively, contained within each segment. Types of controllers used may include microcontrollers. The controllers 2501 to 250n may serve to perform several functions, e.g., measuring the angle of each segment joint in each of the two axes α and β, as described above, activating the motors contained within the segments 2421 to 242n to actuate endoscope 242 movement, and receiving and handling commands issued from the master controller 248. Having individual controllers 2501 to 250n in each respective segment 2421 to 242n enables each segment to manage the requirements for a given configuration locally at the controller level without oversight from the master controller 248 after a command has been issued.
Accordingly, a flow chart embodiment for the master controller algorithm 260, as shown in
To maintain the orientation of each axis α and β and the positioning and the depth of each segment 2421 to 242n, a data array, or similar data structure, may be used by the master controller 248 to organize the information, as shown in the following Table 1. Depth index D1 to Dn is used here to denote the individual hatch marks, as seen in
As discussed above, the individual controllers 2501 to 250n may serve a variety of functions, including accepting commands from the master controller 248, managing communications with other controllers as necessary, measuring and controlling the position of individual segments 2421 to 242n, and performing diagnostics, error checking, etc., among other things. The algorithm to control each segment 2421 to 242n is preferably similar for each segment; although the lead segment 2421 or first few segments are under the guidance of the physician to selectively control and steer so that the desired curve is set for an appropriate path to be followed
The initial step 282 for the system preferably first occurs where all communications, actuator (or motor), position sensors, and orientation are initialized. The controllers 2501 to 250n may then wait to receive any communications from the master controller 248 in step 284. If no communications are received, the controllers 2501 to 250n preferably enter into a main loop while awaiting commands. When a command is received, each of the controllers 2501 to 250n may request diagnostic data, as in step 286. If diagnostic data is requested, the appropriate diagnostics are performed in step 288 and the results are sent back to the master controller 248, as in step 290. If no diagnostic data is requested in step 286, each of the controllers 2501 to 250n in step 292 may then determine whether actuation or motion has been requested by the master controller 248. If no actuation or motion has been requested, the relevant segment may continue to receive a command; otherwise, the relevant segment determines whether a command has been issued affecting the segment axis α, as in step 294, or segment axis β, as in step 300. If the segment axis α is to be altered, the command is sent to the α axis PID controller (or to a superior control scheme) in step 296, and the appropriate actuator is subsequently activated effecting the actuation of the segment in the α axis, as in step 298. Likewise, if the segment axis β is to be altered, either alone or in conjunction with the α axis, the command is sent to the β axis PID controller (or to a superior control scheme) in step 302, and the appropriate actuator is subsequently activated effecting the actuation of the segment in the β axis, as shown in step 304. Once the appropriate commands have been effectuated, the controllers 2501 to 250n again enter the main loop to await any further commands.
Although the endoscope of the present invention has been described for use as a colonoscope, the endoscope can be configured for a number of other medical and industrial applications. In addition, the present invention can also be configured as a catheter, cannula, surgical instrument or introducer sheath that uses the principles of the invention for navigating through tortuous body channels.
In a variation of the method that is particularly applicable to laparoscopy or thoracoscopy procedures, the steerable endoscope 100 can be selectively maneuvered along a desired path around and between organs in a patient's body cavity. The distal end 108 of the endoscope 100 is inserted into the patient's body cavity through a natural opening, through a surgical incision or through a surgical cannula, introducer, or trocar. The selectively steerable distal portion 104 can be used to explore and examine the patient's body cavity and to select a path around and between the patient's organs. The electronic motion controller 140 can be used to control the automatically controlled proximal portion 106 of the endoscope body 102 to follow the selected path and, if necessary, to return to a desired location using the three-dimensional model in the electronic memory of the electronic motion controller 140.
A further variation which involves a non-contact method of measurement and tracking of the steerable endoscope is seen in
As the endoscope 238 is advanced through the descending D and transverse colon T, the transponders may be detected by an external navigational unit 320 which may have a display 322 showing the position of the endoscope 238 within the patient. As the endoscope 238 is further advanced within the patient, as seen in
Use of the navigational unit 320 may also be particularly applicable to laparoscopy or thoracoscopy procedures, as described above, in spaces within the body other than the colon. For example, the endoscope 238 may also be selectively maneuvered along a desired path around and between organs in a patient's body cavity through any of the openings into the body discussed above. While being maneuvered through the body cavity, the endoscope 238 may be guided and tracked by the externally located navigational unit 320 while the endoscope's 238 location may be electronically marked and noted relative to a predetermined reference point, such as the datum, or relative to anatomical landmarks, as described above.
While the present invention has been described herein with respect to the exemplary embodiments and the best mode for practicing the invention, it will be apparent to one of ordinary skill in the art that many modifications, improvements and subcombinations of the various embodiments, adaptations and variations can be made to the invention without departing from the spirit and scope thereof.
The present application is a continuation of U.S. patent application Ser. No. 12/950,921, now U.S. Pat. No. 8,845, 542 entitled “Steerable Segmented Endoscope and Method of Insertion” filed Nov. 19, 2010, which is a continuation of U.S. patent application Ser. No. 11/796,220 entitled “Steerable Segmented Endoscope and Method of Insertion” filed Apr. 27, 2007, now abandoned, which is a continuation of Ser. No. 10/622,801 entitled “Steerable Segmented Endoscope and Method of Insertion” filed Jul. 18, 2003, now abandoned, which is a continuation of U.S. patent application Ser. No. 09/969,927, now U.S. Pat. No. 6,610,007 entitled “Steerable Segmented Endoscope and Method of Insertion” filed Oct. 2, 2001, which is a continuation-in-part of U.S. patent application Ser. No. 09/790,204, now U.S. Pat. No. 6,468,203, entitled “Steerable Endoscope and Improved Method of Insertion” filed Feb. 20, 2001, which claims priority of U.S. Provisional Patent Application No. 60/194,140 filed Apr. 3, 2000, each of which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
616672 | Kelling | Dec 1898 | A |
1590919 | Wahl et al. | Jun 1926 | A |
2241576 | Charles | May 1941 | A |
2510198 | Tesmer | Jun 1950 | A |
2533494 | Mitchell, Jr. | Dec 1950 | A |
2767705 | Moore | Oct 1956 | A |
3060972 | Sheldon | Oct 1962 | A |
3071161 | Ulrich | Jan 1963 | A |
3096962 | Meijs | Jul 1963 | A |
3162214 | Wilfred, Jr. | Dec 1964 | A |
3168274 | Street | Feb 1965 | A |
3190286 | Stokes | Jun 1965 | A |
3266059 | Stelle | Aug 1966 | A |
3430662 | Guarnaschelli | Mar 1969 | A |
3497083 | Victor et al. | Feb 1970 | A |
3546961 | Marton | Dec 1970 | A |
3610231 | Takahashi et al. | Oct 1971 | A |
3625084 | Siebert | Dec 1971 | A |
3643653 | Takahashi et al. | Feb 1972 | A |
3739770 | Mori | Jun 1973 | A |
3773034 | Burns et al. | Nov 1973 | A |
3780740 | Rhea | Dec 1973 | A |
3858578 | Milo | Jan 1975 | A |
3871358 | Fukuda et al. | Mar 1975 | A |
3897775 | Furihata | Aug 1975 | A |
3913565 | Kawahara | Oct 1975 | A |
3946727 | Okada et al. | Mar 1976 | A |
3990434 | Free | Nov 1976 | A |
4054128 | Seufert et al. | Oct 1977 | A |
4176662 | Frazer | Dec 1979 | A |
4233981 | Schomacher | Nov 1980 | A |
4236509 | Takahashi et al. | Dec 1980 | A |
4240435 | Yazawa et al. | Dec 1980 | A |
4272873 | Dietrich | Jun 1981 | A |
4273111 | Tsukaya | Jun 1981 | A |
4286585 | Ogawa | Sep 1981 | A |
4327711 | Takagi | May 1982 | A |
4366810 | Slanetz, Jr. | Jan 1983 | A |
4393728 | Larson et al. | Jul 1983 | A |
4418688 | Loeb | Dec 1983 | A |
4432349 | Oshiro | Feb 1984 | A |
4483326 | Yamaka et al. | Nov 1984 | A |
4489826 | Dubson | Dec 1984 | A |
4494417 | Larson et al. | Jan 1985 | A |
4499895 | Takayama | Feb 1985 | A |
4503842 | Takayama | Mar 1985 | A |
4517652 | Bennett et al. | May 1985 | A |
4534339 | Collins et al. | Aug 1985 | A |
4543090 | McCoy | Sep 1985 | A |
4551061 | Olenick | Nov 1985 | A |
4559928 | Takayama | Dec 1985 | A |
4566843 | Iwatsuka et al. | Jan 1986 | A |
4577621 | Patel | Mar 1986 | A |
4592341 | Omagari et al. | Jun 1986 | A |
4601283 | Chikama | Jul 1986 | A |
4601705 | McCoy | Jul 1986 | A |
4601713 | Fuqua | Jul 1986 | A |
4621618 | Omagari | Nov 1986 | A |
4624243 | Lowery et al. | Nov 1986 | A |
4630649 | Oku | Dec 1986 | A |
4643184 | Mobin-Uddin | Feb 1987 | A |
4646722 | Silverstein et al. | Mar 1987 | A |
4648733 | Merkt | Mar 1987 | A |
4651718 | Collins et al. | Mar 1987 | A |
4655257 | Iwashita | Apr 1987 | A |
4683773 | Diamond | Aug 1987 | A |
4686963 | Cohen et al. | Aug 1987 | A |
4696544 | Costella | Sep 1987 | A |
4712969 | Kimura | Dec 1987 | A |
4726355 | Okada | Feb 1988 | A |
4753222 | Morishita | Jun 1988 | A |
4753223 | Bremer | Jun 1988 | A |
4754909 | Barker et al. | Jul 1988 | A |
4784117 | Miyazaki | Nov 1988 | A |
4787369 | Allred, III et al. | Nov 1988 | A |
4788967 | Ueda | Dec 1988 | A |
4790624 | Van Hoye et al. | Dec 1988 | A |
4793326 | Shishido | Dec 1988 | A |
4796607 | Allred, III et al. | Jan 1989 | A |
4799474 | Ueda | Jan 1989 | A |
4800890 | Cramer | Jan 1989 | A |
4807593 | Ito | Feb 1989 | A |
4815450 | Patel | Mar 1989 | A |
4832473 | Ueda | May 1989 | A |
4834068 | Gottesman | May 1989 | A |
4846573 | Taylor et al. | Jul 1989 | A |
4873965 | Danieli | Oct 1989 | A |
4873990 | Holmes et al. | Oct 1989 | A |
4879991 | Ogiu | Nov 1989 | A |
4884557 | Takehana et al. | Dec 1989 | A |
4890602 | Hake | Jan 1990 | A |
4895431 | Tsujiuchi et al. | Jan 1990 | A |
4899731 | Takayama et al. | Feb 1990 | A |
4904048 | Sogawa et al. | Feb 1990 | A |
4917114 | Green et al. | Apr 1990 | A |
4919112 | Siegmund | Apr 1990 | A |
4930494 | Takehana et al. | Jun 1990 | A |
4949927 | Madocks et al. | Aug 1990 | A |
4957486 | Davis | Sep 1990 | A |
4969709 | Sogawa et al. | Nov 1990 | A |
4971035 | Ito | Nov 1990 | A |
4977886 | Takehana et al. | Dec 1990 | A |
4977887 | Gouda | Dec 1990 | A |
4987314 | Gotanda et al. | Jan 1991 | A |
5005558 | Aomori | Apr 1991 | A |
5005559 | Blanco et al. | Apr 1991 | A |
5014709 | Bjelkhagen et al. | May 1991 | A |
5018509 | Suzuki et al. | May 1991 | A |
5025778 | Silverstein et al. | Jun 1991 | A |
5025804 | Kondo | Jun 1991 | A |
5050585 | Takahashi | Sep 1991 | A |
5059158 | Bellio | Oct 1991 | A |
5060632 | Hibino et al. | Oct 1991 | A |
5090956 | McCoy | Feb 1992 | A |
5092901 | Hunter et al. | Mar 1992 | A |
5103403 | Chhayder et al. | Apr 1992 | A |
5125395 | Adair | Jun 1992 | A |
5127393 | McFarlin et al. | Jul 1992 | A |
5159446 | Hibino et al. | Oct 1992 | A |
5166787 | Irion | Nov 1992 | A |
5174276 | Crockard | Dec 1992 | A |
5174277 | Matsumaru | Dec 1992 | A |
5188111 | Yates et al. | Feb 1993 | A |
5203319 | Danna et al. | Apr 1993 | A |
5207695 | Trout, III | May 1993 | A |
5217001 | Nakao et al. | Jun 1993 | A |
5218280 | Edwards | Jun 1993 | A |
5220911 | Tamura | Jun 1993 | A |
5228429 | Hatano | Jul 1993 | A |
5234448 | Wholey et al. | Aug 1993 | A |
5239982 | Trauthen | Aug 1993 | A |
5243967 | Hibino | Sep 1993 | A |
5250058 | Miller et al. | Oct 1993 | A |
5250167 | Adolf et al. | Oct 1993 | A |
5251611 | Zehel et al. | Oct 1993 | A |
5253647 | Takahashi et al. | Oct 1993 | A |
5254809 | Martin | Oct 1993 | A |
5257617 | Takahashi | Nov 1993 | A |
5259364 | Bob et al. | Nov 1993 | A |
5268082 | Oguro et al. | Dec 1993 | A |
5269289 | Takehana et al. | Dec 1993 | A |
5271381 | Ailinger et al. | Dec 1993 | A |
5271382 | Chikama | Dec 1993 | A |
5279610 | Park et al. | Jan 1994 | A |
5297443 | Wentz | Mar 1994 | A |
5325845 | Adair | Jul 1994 | A |
5337732 | Grundfest et al. | Aug 1994 | A |
5337733 | Bauerfeind et al. | Aug 1994 | A |
5343874 | Picha et al. | Sep 1994 | A |
5347987 | Feldstein et al. | Sep 1994 | A |
5348259 | Blanco et al. | Sep 1994 | A |
5368015 | Wilk | Nov 1994 | A |
5370108 | Miura et al. | Dec 1994 | A |
5383467 | Auer et al. | Jan 1995 | A |
5383852 | Stevens-Wright | Jan 1995 | A |
5389222 | Shahinpoor | Feb 1995 | A |
5394864 | Kobayashi et al. | Mar 1995 | A |
5396879 | Wilk et al. | Mar 1995 | A |
5400769 | Tanii et al. | Mar 1995 | A |
5402768 | Adair | Apr 1995 | A |
5411508 | Bessler et al. | May 1995 | A |
5413108 | Alfano | May 1995 | A |
5421337 | Richards-Kortum et al. | Jun 1995 | A |
5425738 | Gustafson et al. | Jun 1995 | A |
5429118 | Cole et al. | Jul 1995 | A |
5431645 | Smith et al. | Jul 1995 | A |
5439000 | Gunderson et al. | Aug 1995 | A |
5451221 | Cho et al. | Sep 1995 | A |
5456714 | Owen | Oct 1995 | A |
5460166 | Yabe et al. | Oct 1995 | A |
5460168 | Masubuchi et al. | Oct 1995 | A |
5469840 | Tanii et al. | Nov 1995 | A |
5479930 | Gruner et al. | Jan 1996 | A |
5482029 | Sekiguchi et al. | Jan 1996 | A |
5486182 | Nakao et al. | Jan 1996 | A |
5487385 | Avitall | Jan 1996 | A |
5487757 | Truckai et al. | Jan 1996 | A |
5489256 | Adair | Feb 1996 | A |
5492131 | Galel | Feb 1996 | A |
5503616 | Jones | Apr 1996 | A |
5507287 | Palcic et al. | Apr 1996 | A |
5507717 | Kura et al. | Apr 1996 | A |
5522788 | Kuzmak | Jun 1996 | A |
5531664 | Adachi et al. | Jul 1996 | A |
5535759 | Wilk | Jul 1996 | A |
5551945 | Yabe et al. | Sep 1996 | A |
5556370 | Maynard | Sep 1996 | A |
5556700 | Kaneto et al. | Sep 1996 | A |
5558619 | Kami et al. | Sep 1996 | A |
5558665 | Kieturakis | Sep 1996 | A |
5577992 | Chiba et al. | Nov 1996 | A |
5586968 | Grundl et al. | Dec 1996 | A |
5590660 | MacAulay et al. | Jan 1997 | A |
5601087 | Gunderson et al. | Feb 1997 | A |
5602449 | Krause et al. | Feb 1997 | A |
5620408 | Vennes et al. | Apr 1997 | A |
5624380 | Takayama et al. | Apr 1997 | A |
5624381 | Kieturakis | Apr 1997 | A |
5626553 | Frassica et al. | May 1997 | A |
5631040 | Takuchi et al. | May 1997 | A |
5645064 | Littmann et al. | Jul 1997 | A |
5645520 | Nakamura et al. | Jul 1997 | A |
5647368 | Zeng et al. | Jul 1997 | A |
5647840 | Damelio et al. | Jul 1997 | A |
5651366 | Liang et al. | Jul 1997 | A |
5651769 | Waxman et al. | Jul 1997 | A |
5653690 | Booth et al. | Aug 1997 | A |
5658238 | Suzuki et al. | Aug 1997 | A |
5662585 | Willis et al. | Sep 1997 | A |
5662587 | Grundfest et al. | Sep 1997 | A |
5662621 | Lafontaine | Sep 1997 | A |
5665050 | Benecke | Sep 1997 | A |
5667476 | Frassica et al. | Sep 1997 | A |
5679216 | Takayama et al. | Oct 1997 | A |
5681260 | Ueda et al. | Oct 1997 | A |
5725475 | Yasui et al. | Mar 1998 | A |
5728044 | Shan | Mar 1998 | A |
5733245 | Kawano | Mar 1998 | A |
5746694 | Wilk et al. | May 1998 | A |
5749828 | Solomon et al. | May 1998 | A |
5752912 | Takahashi et al. | May 1998 | A |
5759151 | Sturges | Jun 1998 | A |
5762613 | Sutton et al. | Jun 1998 | A |
5765561 | Chen et al. | Jun 1998 | A |
5769792 | Palcic et al. | Jun 1998 | A |
5771902 | Lee et al. | Jun 1998 | A |
5772597 | Goldberger et al. | Jun 1998 | A |
5773835 | Sinofsky | Jun 1998 | A |
5779624 | Chang | Jul 1998 | A |
5807241 | Heimberger | Sep 1998 | A |
5810715 | Moriyama | Sep 1998 | A |
5810716 | Mukherjee et al. | Sep 1998 | A |
5810717 | Maeda et al. | Sep 1998 | A |
5810776 | Bacich et al. | Sep 1998 | A |
5813976 | Filipi et al. | Sep 1998 | A |
5819749 | Lee et al. | Oct 1998 | A |
5827190 | Palcic et al. | Oct 1998 | A |
5827265 | Glinsky et al. | Oct 1998 | A |
5842973 | Bullard | Dec 1998 | A |
5848972 | Triedman et al. | Dec 1998 | A |
5855565 | Bar-Cohen et al. | Jan 1999 | A |
5857962 | Bracci et al. | Jan 1999 | A |
5860581 | Robertson et al. | Jan 1999 | A |
5860914 | Chiba et al. | Jan 1999 | A |
5868760 | McGuckin, Jr. | Feb 1999 | A |
5873817 | Kokish et al. | Feb 1999 | A |
5876329 | Harhen | Mar 1999 | A |
5876373 | Giba et al. | Mar 1999 | A |
5885208 | Moriyama | Mar 1999 | A |
5893369 | LeMole | Apr 1999 | A |
5897417 | Grey | Apr 1999 | A |
5897488 | Ueda | Apr 1999 | A |
5902254 | Magram | May 1999 | A |
5906591 | Dario et al. | May 1999 | A |
5908381 | Aznoian et al. | Jun 1999 | A |
5911715 | Berg et al. | Jun 1999 | A |
5912147 | Stoler et al. | Jun 1999 | A |
5916146 | Allotta et al. | Jun 1999 | A |
5916147 | Boury | Jun 1999 | A |
5921915 | Aznoian et al. | Jul 1999 | A |
5928136 | Barry | Jul 1999 | A |
5941815 | Chang | Aug 1999 | A |
5941908 | Goldsteen et al. | Aug 1999 | A |
5957833 | Shan | Sep 1999 | A |
5968052 | Sullivan, III | Oct 1999 | A |
5971767 | Kaufman et al. | Oct 1999 | A |
5976074 | Moriyama | Nov 1999 | A |
5989182 | Hori et al. | Nov 1999 | A |
5989230 | Frassica | Nov 1999 | A |
5993381 | Ito | Nov 1999 | A |
5993447 | Blewett et al. | Nov 1999 | A |
5996346 | Maynard | Dec 1999 | A |
6016440 | Simon et al. | Jan 2000 | A |
6033359 | Doi | Mar 2000 | A |
6036636 | Motoki et al. | Mar 2000 | A |
6036702 | Bachinski et al. | Mar 2000 | A |
6042155 | Lockwood | Mar 2000 | A |
6048307 | Grundl et al. | Apr 2000 | A |
6059718 | Taniguchi et al. | May 2000 | A |
6063022 | Ben-Haim | May 2000 | A |
6066102 | Townsend et al. | May 2000 | A |
6066132 | Chen et al. | May 2000 | A |
6068629 | Haissaguerre et al. | May 2000 | A |
6068638 | Makower | May 2000 | A |
6071234 | Takada | Jun 2000 | A |
6096023 | Lemelson | Aug 2000 | A |
6096289 | Goldenberg | Aug 2000 | A |
6099464 | Shimizu et al. | Aug 2000 | A |
6099465 | Inoue | Aug 2000 | A |
6099485 | Patterson | Aug 2000 | A |
6106510 | Lunn et al. | Aug 2000 | A |
6109852 | Shahinpoor et al. | Aug 2000 | A |
6117296 | Thomson | Sep 2000 | A |
6119913 | Adams et al. | Sep 2000 | A |
6129667 | Dumoulin et al. | Oct 2000 | A |
6129683 | Sutton et al. | Oct 2000 | A |
6141577 | Rolland et al. | Oct 2000 | A |
6149581 | Klingenstein | Nov 2000 | A |
6162171 | Ng et al. | Dec 2000 | A |
6174280 | Oneda et al. | Jan 2001 | B1 |
6174291 | McMahon et al. | Jan 2001 | B1 |
6178346 | Amundson et al. | Jan 2001 | B1 |
6179776 | Adams et al. | Jan 2001 | B1 |
6185448 | Borovsky | Feb 2001 | B1 |
6201989 | Whitehead et al. | Mar 2001 | B1 |
6203493 | Ben-Haim | Mar 2001 | B1 |
6203494 | Moriyama | Mar 2001 | B1 |
6210337 | Dunham et al. | Apr 2001 | B1 |
6221006 | Dubrul et al. | Apr 2001 | B1 |
6233476 | Strommer et al. | May 2001 | B1 |
6241657 | Chen et al. | Jun 2001 | B1 |
6249076 | Madden et al. | Jun 2001 | B1 |
6264086 | McGuckin, Jr. | Jul 2001 | B1 |
6270453 | Sakai | Aug 2001 | B1 |
6293907 | Axon et al. | Sep 2001 | B1 |
6306081 | Ishikawa et al. | Oct 2001 | B1 |
6309346 | Farhadi | Oct 2001 | B1 |
6315714 | Akiba | Nov 2001 | B1 |
6319197 | Tsuji et al. | Nov 2001 | B1 |
6327492 | Lemelson | Dec 2001 | B1 |
6332089 | Acker et al. | Dec 2001 | B1 |
6348058 | Melkent et al. | Feb 2002 | B1 |
6352503 | Matsui et al. | Mar 2002 | B1 |
6366799 | Acker et al. | Apr 2002 | B1 |
6371907 | Hasegawa et al. | Apr 2002 | B1 |
6402687 | Ouchi | Jun 2002 | B1 |
6408889 | Komachi | Jun 2002 | B1 |
6425535 | Akiba | Jul 2002 | B1 |
6428203 | Danley | Aug 2002 | B1 |
6428470 | Thompson | Aug 2002 | B1 |
6443888 | Ogura et al. | Sep 2002 | B1 |
6447444 | Avni et al. | Sep 2002 | B1 |
6453190 | Acker et al. | Sep 2002 | B1 |
6459481 | Schaack | Oct 2002 | B1 |
6468203 | Belson | Oct 2002 | B2 |
6468265 | Evans et al. | Oct 2002 | B1 |
6482148 | Luke | Nov 2002 | B1 |
6482149 | Torii | Nov 2002 | B1 |
6485413 | Boppart et al. | Nov 2002 | B1 |
6485496 | Suyker et al. | Nov 2002 | B1 |
6490467 | Bucholz et al. | Dec 2002 | B1 |
6503259 | Huxel et al. | Jan 2003 | B2 |
6511417 | Taniguchi et al. | Jan 2003 | B1 |
6511418 | Shahidi et al. | Jan 2003 | B2 |
6514237 | Maseda | Feb 2003 | B1 |
6517477 | Wendlandt | Feb 2003 | B1 |
6527706 | Ide | Mar 2003 | B2 |
6537211 | Wang et al. | Mar 2003 | B1 |
6544215 | Bencini et al. | Apr 2003 | B1 |
6547723 | Ouchi | Apr 2003 | B1 |
6554793 | Pauker et al. | Apr 2003 | B1 |
6569084 | Mizuno et al. | May 2003 | B1 |
6569173 | Blatter et al. | May 2003 | B1 |
6589163 | Aizawa et al. | Jul 2003 | B2 |
6610007 | Tartaglia et al. | Aug 2003 | B2 |
6616600 | Pauker | Sep 2003 | B2 |
6638213 | Ogura et al. | Oct 2003 | B2 |
6641528 | Torii | Nov 2003 | B2 |
6650920 | Schaldach et al. | Nov 2003 | B2 |
6656110 | Irion et al. | Dec 2003 | B1 |
6664718 | Pelrine et al. | Dec 2003 | B2 |
6679836 | Couvillon, Jr. et al. | Jan 2004 | B2 |
6690963 | Ben-Haim et al. | Feb 2004 | B2 |
6699183 | Wimmer | Mar 2004 | B1 |
6719685 | Fujikura et al. | Apr 2004 | B2 |
6761685 | Adams et al. | Jul 2004 | B2 |
6783491 | Saadat et al. | Aug 2004 | B2 |
6790173 | Saadat et al. | Sep 2004 | B2 |
6793621 | Butler et al. | Sep 2004 | B2 |
6800056 | Tartaglia et al. | Oct 2004 | B2 |
6808499 | Churchill et al. | Oct 2004 | B1 |
6808520 | Fourkas et al. | Oct 2004 | B1 |
6817973 | Merril et al. | Nov 2004 | B2 |
6835173 | Couvillon, Jr. | Dec 2004 | B2 |
6837846 | Jaffe et al. | Jan 2005 | B2 |
6837847 | Ewers et al. | Jan 2005 | B2 |
6837849 | Ogura et al. | Jan 2005 | B2 |
6843793 | Brock et al. | Jan 2005 | B2 |
6850794 | Shahidi | Feb 2005 | B2 |
6858005 | Ohline et al. | Feb 2005 | B2 |
6869396 | Belson | Mar 2005 | B2 |
6875170 | Francois et al. | Apr 2005 | B2 |
6890297 | Belson | May 2005 | B2 |
6902528 | Garibaldi et al. | Jun 2005 | B1 |
6942613 | Ewers et al. | Sep 2005 | B2 |
6960161 | Amling et al. | Nov 2005 | B2 |
6960162 | Saadat et al. | Nov 2005 | B2 |
6960163 | Ewers et al. | Nov 2005 | B2 |
6974411 | Belson | Dec 2005 | B2 |
6984203 | Tartaglia et al. | Jan 2006 | B2 |
6997870 | Couvillon, Jr. | Feb 2006 | B2 |
7018331 | Chang et al. | Mar 2006 | B2 |
7044907 | Belson | May 2006 | B2 |
7087013 | Belson et al. | Aug 2006 | B2 |
7125403 | Julian et al. | Oct 2006 | B2 |
7167180 | Shibolet | Jan 2007 | B1 |
7285088 | Miyake | Oct 2007 | B2 |
7297142 | Brock | Nov 2007 | B2 |
7371210 | Brock et al. | May 2008 | B2 |
7447534 | Kingsley et al. | Nov 2008 | B1 |
8062212 | Belson | Nov 2011 | B2 |
8226546 | Belson | Jul 2012 | B2 |
8517923 | Belson et al. | Aug 2013 | B2 |
8641602 | Belson | Feb 2014 | B2 |
8827894 | Belson | Sep 2014 | B2 |
8834354 | Belson | Sep 2014 | B2 |
20020016607 | Bonadio et al. | Feb 2002 | A1 |
20020045778 | Murahashi et al. | Apr 2002 | A1 |
20020129508 | Blattner et al. | Sep 2002 | A1 |
20020130673 | Pelrine et al. | Sep 2002 | A1 |
20020151767 | Sonnenschein et al. | Oct 2002 | A1 |
20020169361 | Taniguchi et al. | Nov 2002 | A1 |
20020183592 | Suzuki et al. | Dec 2002 | A1 |
20030065373 | Lovett et al. | Apr 2003 | A1 |
20030083550 | Miyagi | May 2003 | A1 |
20030130598 | Manning et al. | Jul 2003 | A1 |
20030167007 | Belson | Sep 2003 | A1 |
20030182091 | Kukuk | Sep 2003 | A1 |
20030195387 | Kortenbach et al. | Oct 2003 | A1 |
20030233056 | Saadat et al. | Dec 2003 | A1 |
20030236455 | Swanson et al. | Dec 2003 | A1 |
20030236505 | Bonadio et al. | Dec 2003 | A1 |
20030236549 | Bonadio et al. | Dec 2003 | A1 |
20040019254 | Belson et al. | Jan 2004 | A1 |
20040044270 | Barry | Mar 2004 | A1 |
20040049251 | Knowlton | Mar 2004 | A1 |
20040097788 | Mourlas et al. | May 2004 | A1 |
20040106852 | Windheuser et al. | Jun 2004 | A1 |
20040176683 | Whitin et al. | Sep 2004 | A1 |
20040186350 | Brenneman et al. | Sep 2004 | A1 |
20040193008 | Jaffe et al. | Sep 2004 | A1 |
20040193009 | Jaffe et al. | Sep 2004 | A1 |
20040210109 | Jaffe et al. | Oct 2004 | A1 |
20040220450 | Jaffe et al. | Nov 2004 | A1 |
20040230096 | Stefanchik et al. | Nov 2004 | A1 |
20050085693 | Belson et al. | Apr 2005 | A1 |
20050124855 | Jaffe et al. | Jun 2005 | A1 |
20050137454 | Saadat et al. | Jun 2005 | A1 |
20050137455 | Ewers et al. | Jun 2005 | A1 |
20050137456 | Saadat et al. | Jun 2005 | A1 |
20050154258 | Tartaglia et al. | Jul 2005 | A1 |
20050154261 | Ohline et al. | Jul 2005 | A1 |
20050165276 | Belson et al. | Jul 2005 | A1 |
20050168571 | Lia et al. | Aug 2005 | A1 |
20050203339 | Butler et al. | Sep 2005 | A1 |
20050209506 | Butler et al. | Sep 2005 | A1 |
20050222497 | Belson | Oct 2005 | A1 |
20050250990 | Le et al. | Nov 2005 | A1 |
20060009678 | Jaffe et al. | Jan 2006 | A1 |
20060015009 | Jaffe et al. | Jan 2006 | A1 |
20060015010 | Jaffe et al. | Jan 2006 | A1 |
20060052664 | Julian et al. | Mar 2006 | A1 |
20060089528 | Tartaglia et al. | Apr 2006 | A1 |
20060089529 | Tartaglia et al. | Apr 2006 | A1 |
20060089530 | Tartaglia et al. | Apr 2006 | A1 |
20060089531 | Tartaglia et al. | Apr 2006 | A1 |
20060089532 | Tartaglia et al. | Apr 2006 | A1 |
20060100642 | Yang et al. | May 2006 | A1 |
20060235457 | Belson | Oct 2006 | A1 |
20060235458 | Belson | Oct 2006 | A1 |
20060258912 | Belson et al. | Nov 2006 | A1 |
20070043259 | Jaffe et al. | Feb 2007 | A1 |
20070093858 | Gambale et al. | Apr 2007 | A1 |
20070135803 | Belson | Jun 2007 | A1 |
20070161291 | Swinehart et al. | Jul 2007 | A1 |
20070161857 | Durant et al. | Jul 2007 | A1 |
20070249901 | Ohline et al. | Oct 2007 | A1 |
20070270650 | Eno et al. | Nov 2007 | A1 |
20080045794 | Belson | Feb 2008 | A1 |
20080154288 | Belson | Jun 2008 | A1 |
20080214893 | Tartaglia et al. | Sep 2008 | A1 |
20080248215 | Sauer et al. | Oct 2008 | A1 |
20090099420 | Woodley et al. | Apr 2009 | A1 |
20090216083 | Durant et al. | Aug 2009 | A1 |
20100094088 | Ohline et al. | Apr 2010 | A1 |
20110065993 | Belson et al. | Mar 2011 | A1 |
20110306836 | Ohline et al. | Dec 2011 | A1 |
20140121461 | Belson | May 2014 | A1 |
Number | Date | Country |
---|---|---|
2823025 | Feb 1986 | DE |
3707787 | Sep 1988 | DE |
4102211 | Aug 1991 | DE |
19626433 | Jan 1998 | DE |
19729499 | Jan 1999 | DE |
165718 | Dec 1985 | EP |
382974 | Aug 1990 | EP |
497781 | Jan 1994 | EP |
0993804 | Apr 2000 | EP |
1101442 | May 2001 | EP |
1681013 | Jul 2006 | EP |
2048086 | Mar 1994 | ES |
2062930 | Dec 1994 | ES |
2732225 | Oct 1996 | FR |
2807960 | Oct 2001 | FR |
2347685 | Sep 2000 | GB |
20000559 | Jul 2000 | IE |
20020170 | Mar 2002 | IE |
4712705 | May 1972 | JP |
61205912 | Sep 1986 | JP |
63136014 | Jun 1988 | JP |
63272322 | Nov 1988 | JP |
1152413 | Jun 1989 | JP |
H01153292 | Jun 1989 | JP |
1229220 | Sep 1989 | JP |
1262372 | Oct 1989 | JP |
2246986 | Oct 1990 | JP |
2296209 | Dec 1990 | JP |
3004830 | Jan 1991 | JP |
3109021 | May 1991 | JP |
3136630 | Jun 1991 | JP |
3139325 | Jun 1991 | JP |
3170125 | Jul 1991 | JP |
4002322 | Jan 1992 | JP |
4054970 | Feb 1992 | JP |
5001999 | Jan 1993 | JP |
5011196 | Jan 1993 | JP |
5111458 | May 1993 | JP |
5177002 | Jul 1993 | JP |
5184531 | Jul 1993 | JP |
5305073 | Nov 1993 | JP |
6007287 | Jan 1994 | JP |
7088788 | Apr 1995 | JP |
7116104 | May 1995 | JP |
7120684 | May 1995 | JP |
8010336 | Jan 1996 | JP |
8066351 | Mar 1996 | JP |
8322783 | Dec 1996 | JP |
8322786 | Dec 1996 | JP |
9028662 | Feb 1997 | JP |
10014863 | Jan 1998 | JP |
10337274 | Dec 1998 | JP |
11042258 | Feb 1999 | JP |
11048171 | Feb 1999 | JP |
2000279367 | Oct 2000 | JP |
21046318 | Feb 2001 | JP |
21096478 | Apr 2001 | JP |
2001519199 | Oct 2001 | JP |
2001521773 | Nov 2001 | JP |
3322356 | Sep 2002 | JP |
2002264048 | Sep 2002 | JP |
2002531164 | Sep 2002 | JP |
2003504148 | Feb 2003 | JP |
2005507731 | Mar 2005 | JP |
871786 | Oct 1981 | SU |
1256955 | Sep 1986 | SU |
1301701 | Apr 1987 | SU |
WO-9219147 | Nov 1992 | WO |
WO-9315648 | Aug 1993 | WO |
WO-9317751 | Sep 1993 | WO |
WO-9419051 | Sep 1994 | WO |
WO-9504556 | Feb 1995 | WO |
WO-9509562 | Apr 1995 | WO |
WO-9605768 | Feb 1996 | WO |
WO-9710746 | Mar 1997 | WO |
WO-9725101 | Jul 1997 | WO |
WO-9729701 | Aug 1997 | WO |
WO-9729710 | Aug 1997 | WO |
WO-9811816 | Mar 1998 | WO |
WO-9824017 | Jun 1998 | WO |
WO-9849938 | Nov 1998 | WO |
WO-9916359 | Apr 1999 | WO |
WO-9933392 | Jul 1999 | WO |
WO-9951283 | Oct 1999 | WO |
WO-9959664 | Nov 1999 | WO |
WO-0010456 | Mar 2000 | WO |
WO-0010466 | Mar 2000 | WO |
WO-0027462 | May 2000 | WO |
WO-0054653 | Sep 2000 | WO |
WO-0074565 | Dec 2000 | WO |
WO-0149353 | Jul 2001 | WO |
WO-0158973 | Aug 2001 | WO |
WO-0167964 | Sep 2001 | WO |
WO-0170096 | Sep 2001 | WO |
WO-0170097 | Sep 2001 | WO |
WO-0174235 | Oct 2001 | WO |
WO-0180935 | Nov 2001 | WO |
WO-0224058 | Mar 2002 | WO |
WO-0239909 | May 2002 | WO |
WO-0247549 | Jun 2002 | WO |
WO-02064028 | Aug 2002 | WO |
WO-02068988 | Sep 2002 | WO |
WO-02069841 | Sep 2002 | WO |
WO-02089692 | Nov 2002 | WO |
WO-02096276 | Dec 2002 | WO |
WO-03028547 | Apr 2003 | WO |
WO-03073920 | Sep 2003 | WO |
WO-03073921 | Sep 2003 | WO |
WO-03086498 | Oct 2003 | WO |
WO-03092476 | Nov 2003 | WO |
WO-04000403 | Dec 2003 | WO |
WO-2004006980 | Jan 2004 | WO |
WO-2004019769 | Mar 2004 | WO |
WO-2004049905 | Jun 2004 | WO |
WO-2004071284 | Aug 2004 | WO |
WO-2004080313 | Sep 2004 | WO |
WO-2004084702 | Oct 2004 | WO |
WO-2005072445 | Aug 2005 | WO |
WO-2005084542 | Sep 2005 | WO |
WO-20060136827 | Dec 2006 | WO |
Entry |
---|
Berger, W. L. et al., “Sigmoid Stiffener for Decompression Tube Placement in Colonic Pseudo-Obstruction,” Endoscopy, 2000, vol. 32, Issue 1, pp. 54-57. |
Hasson, H.M., “Technique of Open Laparoscopy,” (from step 1 to step 9), May 1979, 2424 North Clark Street, Chicago, Illinois 60614, 3 pages. |
Lee, Thomas S. et al., “A highly redundant robot system for inspection,” Proceedings of Conference on Intelligent Robotics in Field, Factory, Service, and Space (CIRFFSS '94). Mar. 21-24, 1994. vol. 1, pp. 142-148. Houston, Texas. |
McKernan, J.B. et al., “Laparoscopic general surgery,” Journal of the Medical Association of Georgia, Mar. 1990, vol. 79, Issue 3, pp. 157-159. |
Slatkin, A.B. et al., “The development of a robotic endoscope,” Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems, Aug. 5-9, 1995, vol. 2, pp. 162-171, Pittsburgh, Pennsylvania. |
“Active endoscope (ELASTOR, shape memory alloy robot),” 9 pages including 3 figures and 4 photographs. Accessed Feb. 21, 2002. Internet: http://mozu.mes.titech.ac.jp/research/medical/endoscope/endoscope.html . |
Bar-Cohen, J., “EAP applications, potential, and challenges,” Chapter 21 in Electroactive Polymer (EAP) Actuators as Artificial Muscles, Bar-Cohen, Ed., SPIE Press, 2001, pp. 615-659. |
Bar-Cohen, Y., “EAP history, current status, and infrastructure,” Chapter 1 in Electroactive Polymer (EAP) Actuators as Artificial Muscles, Bar-Cohen Ed., SPIE Press, 2001, pp. 3-44. |
Bar-Cohen, Y. Ed., Worldwide ElectroActive Polymers (Artificial Muscles) Newsletter, Jun. 2001, vol. 3, issue 1, pp. 1-14. |
Bar-Cohen, Y., “Transition of EAP material from novelty to practical applications—are we there yet” Smart Structures and Materials 2001: Electroactive Polymer Actuators and Devices, Yoseph Bar-Cohen Ed., Proceedings of SPIE, Mar. 5-8, 2001, vol. 4329, pp. 1-6. |
Brock, D.L., “Review of artificial muscle based on contractile polymers,” MIT Artificial Intelligence Laboratory, A.I.Memo No. 1330, Nov. 1991, 10 pages. Accessed Jun. 23, 2005. Internet: http://www.ai.mit.edu/projects/muscle/papers/memo1330/memo1330.html. |
Cho, S. et al., “Development of micro inchworm robot actuated by electrostrictive polymer actuator,” Smart Structures and Materials 2001: Electroactive Polymer Actuators and Devices, Yoseph Bar-Cohen Ed., Proceedings of SPIE, Mar. 5-8, 2001, vol. 4329, pp. 466-474. |
Office Action issued in corresponding Japanese Application No. P2006-551580, Dispatch Date: Aug. 21, 2012, Dispatch No. 568236. |
Duntgen, C., “Walking machines: 0-legged-robots: A compilation by Christian Duntgen,” Aug. 26, 2000, 16 pages. |
EP03791924 Supplementary Partial Search Report, dated Feb. 27, 2009, 4 pages. |
EP11175098 Extended EP Search Report dated Dec. 1, 2011, 7 pages. |
European Search Report for Application No. EP05002014, dated Mar. 31, 2005, 3 pages. |
Extended European Search Report for Application No. EP05824444, dated Apr. 13, 2011, 6 pages. |
French language U.S. Appl. No. 09/556,673, Christian Francois et al., filed Apr. 21, 2000. |
Grecu, E. et al., “Snake-like flexible Micro-robot,” Copernicus project presentation, financed by European Community, Project start May 1, 1995, 6 pages. Accessed Dec. 27, 2001; Internet: http://www.agip.sciences.univ-metz.fr/˜mihalach/Copernicus—project—engl.html. |
Ikuta, Koji et al., “Shape memory alloy servo actuator system with electric resistance feedback and application for active endoscope,” Proc. IEEE International Conference on Robotics and Automation, 1988, pp. 427-430, vol. 1, IEEE. |
International Preliminary Examination Report for Application No. PCT/US2001/10907, dated Jan. 21, 2003, 3 pages. |
International Search Report and Written Opinion for Application No. PCT/US2004/026948, dated Dec. 29, 2005, 4 pages. |
International Search Report and Written Opinion for Application No. PCT/US2005/03140, dated May 6, 2008, 6 pages. |
International Search Report for Application No. PCT/US2001/10907, dated Aug. 28, 2001, 3 pages. |
Ireland Application No. 2000/0225 filed on Mar. 22, 2000, Inventor Declan B., et al. |
Jager, E.W.H. et al., “Microfabricating conjugated polymer actuators,” Science, Nov. 24, 2000, vol. 290, pp. 1540-1545. |
Japanese application No. 2007-541342 Office Action dated May 17, 2011, 7 pages, including translation. |
Jeon, J.W. et al., “Electrostrictive polymer actuators and their control systems,” Smart Structures and Materials 2001: Electroactive Polymer Actuators and Devices, Yoseph Bar-Cohen Ed., Proceedings of SPIE, Mar. 5-8, 2001, vol. 4329, pp. 380-388. |
Klaassen, B., “GMD-Snake: Robot snake with a flexible real-time control,” AiS—GMD-Snake, last updated Oct. 17, 2001, 3 pages, accessed Dec. 27, 2001; Internet: http://ais.gmd.de/BAR/snake.html. |
Kornbluh, R. et al., “Application of dielectric elastomer EAP actuators,” Chapter 16 in Electroactive Polymer (EAP) Actuators as Artificial Muscles, Yoseph Bar-Cohen, Ed., SPIE Press, 2001, pp. 457-495. |
Kubler, C. et al., “Endoscopic robots,” Proceedings of 3rd International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI 2000), Oct. 11-14, 2000, in Lecture Notes in Computer Science, Springer, vol. 1935, pp. 949-955. |
Laptop Magazine, Science & Technology section, Oct. 2002, pp. 98, 100, and 102. |
Lightdale, C.J., “New developments in endoscopy,” American College of Gastroenterology 65th Annual Scientific Meeting, Day 1, Oct. 16, 2000, pp. 1-9. |
Madden, J.D.W., Abstract of “Conducting polymer actuators,” Smart Structures and Materials 2001: Electroactive Polymer Actuators and Devices, Yoseph Bar-Cohen Ed., Proceedings of SPIE, Mar. 5-8, 2001, vol. 4329, 1 page. |
Madden, J.D.W. et al., “Polypyrrole actuators: modeling and performance”, Smart Structures and Materials 2001: Electroactive Polymer Actuators and Devices, Yoseph Bar-Cohen Ed., Proceedings of SPIE, Mar. 5-8, 2001, vol. 4329, pp. 72-83. |
Mazzoldi, A., “Smart Catheters,” Internet: http://www.piaggio.ccii.unipi.it/cathe.htm, printed Aug. 27, 2001, 2 pages. |
Nam, J.D., “Electroactive polymer (EAP) actuators and devices for micro-robot systems,” Nov. 28, 2000, 1 page. |
Office Action dated Jul. 30, 2013 for Japanese Application No. 20110200974 filed Sep. 14, 2011. |
PCT/US02/29472 International Search Report , dated Mar. 6, 2003, 3 pages. |
PCT/US03/06078 International Search Report , dated Aug. 13, 2003, 1 page. |
PCT/US03/13600 International Search Report, dated Dec. 12, 2003, 1 page. |
PCT/US03/27042 International Search Report, dated Feb. 4, 2004, 2 pages. |
PCT/US03/37778 International Search Report, dated Feb. 8, 2005, 1 page. |
PCT/US2005/040893 International Search Report and Written Opinion of the International Searching Authority, dated Jun. 23, 2008, 5 pages. |
Peirs, J. et al., “Miniature parallel manipulators for integration in a self-propelling endoscope,” IUAP P4/24 IMechS Workshop, Organized by UCL/PRM, Oct. 27, 1999, 2 pages. |
Pelrine, R. et al., “Applications of dielectric elastomer actuators,” Smart Structures and Materials 2001: Electroactive Polymer Actuators and Devices, Yoseph Bar-Cohen Ed., Proceedings of SPIE, Mar. 5-8, 2001, vol. 4329, Issue 1, pp. 335-349. |
Sansinena, J.M. et al., “Conductive polymers,” Chapter 7 of Electroactive Polymer (EAP) Actuators as Artificial Muscles, Bar-Cohen Ed., SPIE Press, 2001, pp. 193-221. |
Supplementary European Search Report for Application No. EP03790076, dated Dec. 28, 2007, 4 pages. |
Supplementary European Search Report for Application No. EP04781605, dated Jul. 23, 2010, 3 pages. |
Supplementary European Search Report for Application No. EP05712548, dated Jul. 6, 2012, 3 pages. |
Supplementary European Search Report of EP Patent Application No. EP03728638, dated Oct. 27, 2005, 2 pages total. |
U.S. Appl. No. 12/425,272 Office Action dated Mar. 11, 2011, 7 pages. |
Vertut, Jean and Phillipe Coiffet, Robot Technology: Teleoperation and Robotics Evolution and Development, English translation, Prentice-Hall, Inc., Inglewood Cliffs, NJ, USA 1986, vol. 3A, 332 pages. |
Zuccaro, G., “Procedural sedation in the GI suite,” A conference co-sponsored by the American Society of Anesthesiologists, 16th Annual Meeting 2001, May 3-6, 2001, pp. 162-171. |
Number | Date | Country | |
---|---|---|---|
20150005576 A1 | Jan 2015 | US |
Number | Date | Country | |
---|---|---|---|
60194140 | Apr 2000 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12950921 | Nov 2010 | US |
Child | 14486708 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11796220 | Apr 2007 | US |
Child | 12950921 | US | |
Parent | 10622801 | Jul 2003 | US |
Child | 11796220 | US | |
Parent | 09969927 | Oct 2001 | US |
Child | 10622801 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09790204 | Feb 2001 | US |
Child | 09969927 | US |