Sterile interface for articulated surgical instruments

Information

  • Patent Grant
  • 11571195
  • Patent Number
    11,571,195
  • Date Filed
    Thursday, June 17, 2021
    3 years ago
  • Date Issued
    Tuesday, February 7, 2023
    a year ago
  • Inventors
  • Original Assignees
  • Examiners
    • Nguyen; Camtu T
    Agents
    • Eversheds Sutherland (US) LLP
    • Bolten; Christopher C.
    • Heng; Albert K.
Abstract
A sterile interface for a surgical platform is provided, optionally to be used with a mechanical telemanipulator. The sterile interface is configured to allow for transmission of motion without dimensional inconsistencies between a non-sterile surgical platform and a sterile surgical instrument that are related to one another in a master-slave configuration. The sterile interface is configured to allow for multiple changes of sterile surgical instruments during a surgical procedure without contaminating the sterile field. The sterile interface allows for interchangeable sterile articulated surgical instruments to be attached to the surgical platform without coming into contact with non-sterile portions of the surgical platform.
Description
FIELD OF THE INVENTION

A sterile interface for surgical instruments is provided. More particularly, a sterile interface is provided whereby a sterile instrument portion is attached or detached from a surgical device platform that is not in the sterile field. Even more particularly, the present invention relates to a sterile interface wherein articulated surgical instruments, which may be laparoscopic instruments, may be attached or detached from a surgical platform. The sterile interface allows for the rapid, easy, attachment and detachment of sterile articulated surgical instruments from a surgical platform several times during a surgical procedure, thus allowing the operator to use a multitude of surgical instruments during one procedure while maintaining a sterile surgical field, but while also not requiring the sterilization of the entire surgical platform.


BACKGROUND OF THE INVENTION

Open surgery is still the standard technique for most surgical procedures. It has been used by the medical community for several decades and consists of performing the surgical tasks by a long incision in the abdomen or other body cavity, through which traditional surgical tools are inserted. However, due to the long incision, this approach is extremely invasive for the patient, resulting in substantial blood loos during the surgery and long and painful recovery periods in an in-patient setting.


In order to reduce the invasiveness of open surgery, laparoscopy, a minimally invasive technique, was developed. Instead of a single long incision, one or more smaller incisions are made in the patient through which appropriately sized surgical instruments and endoscopic cameras are inserted. Because of the low degree of invasiveness, laparoscopic techniques reduce blood loss and pain while also shortening hospital stays. When performed by experienced surgeons, these techniques can attain clinical outcomes similar to open surgery. However, despite the above-mentioned advantages, laparoscopy requires advanced surgical skills to manipulate the generally rigid and long instrumentation through small incisions in the patient.


Traditionally, laparoscopic instruments, such as graspers, dissectors, scissors and other tools, have been mounted on straight shafts. These shafts are inserted through small incisions into the patient's body and, because of that, their range of motion inside the body is reduced. The entry incision acts as a point of rotation, decreasing the surgeon's freedom for positioning and orientating the instruments inside the patient. Therefore, due to the drawbacks of currently available instrumentation, laparoscopic procedures are mainly limited to use in simple surgeries, while only a small minority of surgeons is able to use them in complex procedures.


Laparoscopic instruments can be provided as disposable or reusable medical devices. Disposable devices are thrown away after each utilization, without having the need to be cleaned. On the other hand, reusable devices must be cleaned and sterilized after each procedure. In many instances, cost-effectiveness and operating room efficiency requires that instruments be cleaned, sterilized and re-used.


Several laparoscopic instruments may be used during a single surgical procedure. For example, graspers, dissectors and scissors may all need to be used. The present Applicants have demonstrated the use of articulated laparoscopic surgical instruments in conjunction with a mechanical telemanipulator, which allows the surgeon to have control over the instruments with a master-slave configuration based upon mechanical transmission of the surgeon's hand movements to the surgical instruments at pre-determined levels of amplification.


In this context, and in the context of other remotely actuated instrument systems, it is often desirable to detach and attach multiple instruments during a single procedure or period of operation. Particularly in the surgical context, although also when working in delicate, sensitive or contaminated environments, it is often desirable to create a sterile interface wherein the instruments being attached and detached are sterile but the platform to which they are attached is not in the sterile field.


Prior examples of detachable sterile surgical instruments are known, but they have functional or dimensional drawbacks. In any remotely actuated system, the interface between sterile and non-sterile components must not only be designed in such a way as to maintain the sterility of, for example, the surgical instruments, but it must also provide a faithful transmission of motion from the remote actuator to the distally located instruments. Thus, each degree of freedom provided to the user of the remotely actuated system must be reproduced through transmission elements at the junction between the detachable instrument and the platform without dimensional inaccuracies or backlash. In addition, the connector element is often a single use or limited use product and so manufacturing costs should be relatively cheap. Prior interfaces, such as those shown in U.S. Pat. No. 7,699,855, have these known drawbacks due to their design elements, which typically transmit motion through reduced diameters and, thus, are susceptible to inaccuracies, backlash, other unwanted movements and incomplete transmission of motion. Prior interfaces, such as those found in U.S. Pat. No. 7,699,855 are limited-use and can only be taken through a certain number of sterilization cycles before becoming inoperative when connected with the surgical platform.


Accordingly, an aim of the present invention is to overcome the aforementioned drawbacks of known devices by providing a sterile interface for remotely actuated surgical devices wherein sterile surgical instruments can be easily attached and detached from a non-sterile surgical platform. An additional aim is for the interface to provide faithful transmission of motion from the remote, non-sterile platform to the distally located sterile surgical instruments without dimensional inaccuracies or backlash. An additional aim is to provide single use interface elements that are inexpensive to manufacture but that nevertheless have tolerances that provide for the aforementioned faithful transmission of motion. An alternative aim is to provide interface elements that are relatively inexpensive to manufacture but are designed to be taken through multiple sterilization cycles without needing to be replaced, thus reducing overall operating room costs.


SUMMARY OF THE INVENTION

These aims and other advantages are realized in a new sterile interface for the attachment of sterile surgical instruments to a non-sterile surgical platform. The sterile interface is intended to be used with articulated surgical instruments that are attached to a surgical platform. The surgical platform can be provided in the context of a mechanical telemanipulator.


In various embodiments, the sterile interface can be used in connection with a mechanical telemanipulator with a master-slave architecture and a mechanical transmission system. This enables a natural replication of user hand movements on a proximal handle at end-effector elements.


The sterile interface is designed such that surgical instruments, and in particular embodiments, laparoscopic surgical instruments, can be attached and detached from the mechanical surgical platform several times during a single surgical procedure. The sterile interface of the present invention is designed in such a way that sterilization is possible, allowing for several cycles of use before the interface elements need to be replaced.





BRIEF DESCRIPTION OF THE FIGURES


FIG. 1 shows a mechanical telemanipulator with a detachable surgical instrument according to an embodiment of the present invention.



FIG. 2 shows the kinematics of a mechanical telemanipulator with a detachable surgical instrument according to an embodiment of the present invention.



FIG. 3 shows a surgical instrument detached from a mechanical telemanipulator according to an embodiment of the present invention.



FIG. 4 shows the kinematics associated with a surgical instrument detached from a mechanical telemanipulator according to an embodiment of the present invention.



FIG. 5 shows a detachable surgical instrument according to an embodiment of the present invention.



FIGS. 6 through 11 show various articulated end-effector links in various positions according to various embodiments of the present invention.



FIG. 12 shows the rotational elements of an interface portion of a surgical instrument according to an embodiment of the present invention.



FIG. 13 shows the rotational kinematics of an interface portion of a surgical instrument according to an embodiment of the present invention.



FIG. 14 shows a schematic view of the rotational elements of an interface portion of a surgical instrument according to an embodiment of the present invention.



FIGS. 15 and 16 show the mechanical transmission elements of a mechanical telemanipulator in conjunction with a detached surgical instrument according to an embodiment of the present invention.



FIG. 17 through 21 show various perspective views of an interface element in accordance with various embodiments of the present invention.



FIGS. 22 and 23 show schematic views of kinematics associated with a mechanical telemanipulator according to an embodiment of the present invention.



FIGS. 24 and 25 show perspective views of the attachment of elements of a surgical instrument to a surgical platform according to an embodiment of the present invention.



FIG. 26 shows a perspective view of various elements of a fixation ring for attachment of a sterile cover according to an embodiment of the present invention.





DETAILED DESCRIPTION OF THE INVENTION

The sterile interface for articulated surgical instruments, according to an embodiment of the present invention, is intended to be used in a mechanical telemanipulator 1, like the one shown in FIG. 1, whose kinematic model is shown in FIG. 2. One of the key features of this kind of mechanical telemanipulator 1 lies in a master-slave architecture and mechanical transmission system, which enable a natural replication of the user hand movements on a proximal handle 2, by the end-effector 3 of a distal surgical instrument 4 on a remote location.


The surgical instrument 4 can take different functions and forms, like a dissector, scissor or grasper and can be plugged and unplugged from the mechanical telemanipulator 1 several times during the same surgical procedure (FIGS. 3 and 4). The remaining part of the mechanical telemanipulator 1, excluding the surgical instrument 4, is referred as the surgical platform 21. It is desirable for the surgical instruments being plugged and unplugged to be sterile while the surgical platform is non-sterile. These plugging/unplugging procedures involve not only the structural attachment/detachment of the proximal part of surgical instrument 4 to the distal part of the surgical platform 21 but also the connection/disconnection of the mechanical transmission systems that deliver motion from the different articulations of the proximal handle 2 to the equivalent articulations of the end-effector 3. In addition, these plugging/unplugging procedures have to be easily and quickly performed by the surgeons during the surgical procedure in order to avoid long and frustrating breaks in the surgeon's workflow.


A surgical instrument 4 for minimally invasive surgical procedures, being able to be connected to an embodiment of the sterile surgical interface of the present invention, is described herein, and is seen generally in FIG. 5. This surgical instrument 4 includes a distal articulated end-effector 3, a proximal hub 5 and a main shaft 6, through which different mechanical elements 7, 8, 9 may pass, delivering motion to the different end-effector links 10, 11, 12 (FIG. 6) from the proximal hub 5. Referring to FIG. 6, the end-effector 3 is connected to the distal extremity of the main shaft 6 by a proximal joint, which allows the rotation of the proximal end-effector link 10 by the proximal axis 13 in such a manner that the orientation of the proximal end-effector link 10 with respect to the main shaft axis 14 can be changed. The distal end-effector links 11, 12 are pivotally connected to the proximal end-effector link 10 by two distal joints, having coincident axes of rotation, which are represented by the distal axis 15. This distal axis 15 is substantially perpendicular and non-intersecting with the proximal axis 13 and substantially intersects the main shaft axis 14. FIGS. 7 to 11 show the surgical instrument 4 with different angular displacements at the end-effector joints.


With reference to FIGS. 12 and 13, the movement is transmitted to each one of the three distal articulations of the instrument 4 by a rotating element 17, 18, 19, which is able to rotate about an axis 20 and is connected to a transmission element 7, 8, 9. As a result, when the rotating element 17, 18, 19 rotates a certain angle θ1, θ2, θ3 about the axis 20, a rotation α1, α2, α3 is transmitted to the respective end-effector link 10, 11, 12. Accordingly, FIG. 14 shows how the movement is transmitted to the rotating elements 17, 18, 19 of the surgical instrument 4 from the distal part of the surgical platform 21. The cylindrical elements 25, 26, 27, which are mounted inside the housing element 23, are able to translate along circular paths that are collinear with the axis 20. When the proximal hub 5 is attached to the housing element 23, the cylindrical elements 25, 26, 27 can be respectively connected to the rotating elements 17, 18, 19, so that the movements generated at the handle 2 can be transmitted to the three end-effector links 10, 11, 12 by the transmission elements 7, 8, 9.


Since the surgical instrument 4 is entering the patient's body, it has to be sterile, just like the area in the vicinity of the patient. On the other hand, the surgical platform 21 is not sterile (and it is not desirable to have the entire surgical platform be part of the sterile field as this would not be practical in view of normal operating room workflow) and therefore should be separated from the sterile instrument portions by the sterile interface 28, which protects the sterile area from the non-sterile components of the surgical platform 21 (FIG. 15).


The sterile interface 28 comprises two main components: a flexible sleeve 30, which covers the moving links of the surgical platform 21 and a rigid connector 29, which i) guarantees that the sterile instrument 4 is not directly touching non-sterile components, ii) enables attachment/detachment between the surgical instrument 4 and the surgical platform 21, and iii) ensures the connection/disconnection of the mechanical transmission systems that deliver motion to the end-effector links 10, 11, 12. Full connection of the mechanical transmission systems during operation of the platform is necessary for faithful replication of operator hand movements at the end effector.



FIG. 16 shows an embodiment of the current invention where the sterile interface 28 comprises a plastic flexible sleeve 30 and a multi-component plastic rigid connector 29. This plastic rigid connector 29 can be either sterilisable/reprocessable or single-use. However, in this particular embodiment, it is considered to be single-use, just like the plastic flexible sleeve 30. FIGS. 17 and 18 show different 3D views of the rigid connector 29, with its multiple components 31, 32, 33, 34, 35, 36, 37. The three miniature cups 32 are able to move along three circular grooves 32a, where they are inserted at the level of the insertion grooves 32b. The core component 31 has two surfaces 31c where the rings 33 and 34 can rotate, actuated by the compression springs 35 and 36. The fixation ring 37 can be attached to the core component 31 by the deformation of the flanged surface 31f where the grooves 31a and the sharp points 31b are located.



FIG. 19 shows how the rigid connector 29 can be positioned and operationally connected between the proximal hub 5 of the surgical instrument 4 and the housing element 23 of the surgical platform 21. In order to connect/disconnect the mechanical transmission systems that deliver motion to the end-effector links 10, 11, 12 the cylindrical elements 25, 26, 27 are inserted on the three miniature cups 32, which are then inserted on the rotating elements 17, 18, 19. In this way, it can be guaranteed that the sterile surgical instrument 4 is not directly touching non-sterile components. Since the rigid connector 29 can be a single-use product, its manufacturing processes have to guarantee fairly low production costs, which typically cannot deliver very accurate components. Therefore, by transmitting the movement, through the miniature cups 32, with translations on a maximized-diameter-circular path, this interface is less sensitive to dimensional inaccuracies or backlash between matching components. This is an improvement over other known devices where movement is transmitted by rotations with reduced diameters. A further advantage of this interface 28 pertains to its axisymmetric geometry, which is volumetrically optimized for rotations about the main shaft axis 14.


In another embodiment of the current invention (FIG. 24), the miniature cups 32 don't need to be pre-inserted in the three circular grooves 32a. Instead, they have a geometry which enables them to be pre-inserted directly on the cylindrical elements 25, 26, 27 before the attachment of the core element 31 on the housing element 23. As shown in FIG. 25, the miniature cups 32 can be attached directly to the cylindrical elements 25, 26, 27 thanks to their geometry, which comprises multiple longitudinal groves that enable the miniature cups to expand radially when the cylindrical elements 25, 26, 27 are inserted. Other solutions for the attachment of the miniature cups 32 on the cylindrical elements 25, 26, 27 can be used, using deformable components (like the one shown in FIG. 25) or non-deformable components (for instance, using threaded surfaces, the miniature cups 32 can be screwed on the cylindrical elements 25, 26, 27, or using magnets).


The structural attachment/detachment between the surgical instrument 4 and the remaining part of the surgical platform 21 is made by inserting the five radially-displaced platform pins 24 in the five radially-displaced connector grooves 31e. On the surgical instrument 4 side, the five radially-displaced instrument pins 22 are inserted in the five radially-displaced connector grooves 31d. As can be seen in FIG. 19, these two attachment mechanisms, used to attach the rigid connector 29 on the surgical platform 21 and the surgical instrument 4 on the rigid connector 29, have axi-asymmetric features or geometries (in the current embodiment, axi-asymmetric placement of radially-displaced pins and connector grooves) that prevent users from inserting the sterile articulated instruments on a wrong axial direction.



FIG. 20 shows in detail the attachment mechanism between each instrument pin 22 and the respective connector groove 31d. When the instrument pin 22 enters the connector groove 31d, it touches the angular surface 34a of the ring 34, causing its angular displacement against the compression spring 36. This angular displacement allows the instrument pin 22 to reach the end of the connector groove 31d, where it is kept in place by the action of the compression spring 36, whose force presses the angular surface 34b of the ring 34 against the instrument pin 22. This sequence is simultaneously done at all the radially-displaced instrument pins 22, guaranteeing the structural attachment between the surgical instrument 4 and the rigid connector 29. The structural detachment between the surgical instrument 4 and the rigid connector 29 is achieved by the reverse sequence of actions. The structural attachment/detachment between the rigid connector 29 and the housing element 23 of the surgical platform 21 is performed in a similar interaction between each platform pin 24 and its respective connector groove 31e.



FIG. 21 shows how the flexible sleeve 30 can be releasably attached to the rigid connector 29, by being squeezed between the flanged surface 31f of the core component 31 and the fixation ring 37. The indentation of the sharp points 31b on the flexible sleeve 30 reinforces the attachment. This method of attachment is an improvement over prior art interfaces where the flexible sleeve 30 is glued or welded to the rigid connector 29, which jeopardizes the possibility of having the flexible sleeve 30 as a single-use product and the rigid connector 29 as a reusable device. Therefore, with this feature in the interface as per the current invention, the rigid connector 29 can be cleaned and sterilized after each procedure, which can significantly reduce procedure costs over the use of prior art solutions.


In another embodiment of the current invention (FIG. 26), the fixation ring 37 may be fixed to a rotating ring 38, which is able to freely rotate around the core component 31. In this embodiment, the flexible sleeve 30 is squeezed between the fixation ring 37 and the rotating ring 38 and its torsional deformation is minimized when the core component 31 is rotated around the axis 20 by the platform 21.


While this invention has been shown and described with reference to particular embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the appended claims. For instance, the mechanical telemanipulator 1 can assume other kinematics, like the ones shown in FIGS. 22 and 23. In addition, while the sterile interface of the present invention has been primarily described in connection with a laparoscopic surgical platform, one of skill in the art will understand that the sterile interface could easily be used with other surgical platforms, such as open field systems. In addition, the current sterile interface could be used with other telemanipulator or remote actuation systems in other sterile situations outside of the surgical context.

Claims
  • 1. A method for maintaining sterility of surgical instruments during a surgical procedure, the method comprising: locking a rigid connector to a surgical platform;locking the rigid connector to a proximal hub of an articulated surgical instrument;covering moving links of the surgical platform with a flexible sleeve coupled to the rigid connector;moving an end-effector of the articulated surgical instrument responsive to movement at the surgical platform to perform the surgical procedure while maintaining sterility of the articulated surgical instrument during the surgical procedure;detaching the articulated surgical instrument from the rigid connector; andremoving the flexible sleeve from the surgical platform.
  • 2. The method of claim 1, wherein covering moving links of the surgical platform via the flexible sleeve ensures that the articulated surgical instrument is not directly touching the surgical platform during the surgical procedure.
  • 3. The method of claim 1, further comprising mating at least one miniature cup with both a mechanical transmission from the surgical platform and a mechanical transmission of the articulated surgical instrument.
  • 4. The method of claim 1, wherein removing the flexible sleeve from the surgical platform comprises detaching the flexible sleeve from the rigid connector.
  • 5. The method of claim 1, further comprising attaching and detaching the articulated surgical instrument from the surgical platform several times during the surgical procedure.
  • 6. The method of claim 1, further comprising sterilizing the rigid connector after each surgical procedure.
  • 7. The method of claim 1, wherein locking the rigid connector to the surgical platform comprises locking a first ring of the rigid connector with a second ring of the rigid connector.
  • 8. The method of claim 7, wherein moving the end-effector of the articulated surgical instrument responsive to movement at the surgical platform comprises moving the end-effector of the articulated surgical instrument responsive to movement at the surgical platform via a core of the rigid connector, the core concentric with and extending between the first ring and the second ring.
  • 9. The method of claim 1, wherein locking the rigid connector to the proximal hub of the articulated surgical instrument comprising locking the rigid connector to the proximal hub of the articulated surgical instrument such that the articulated surgical instrument does not contact non-sterile components of the surgical platform.
  • 10. The method of claim 1, wherein the rigid connector comprises axi-asymmetric features or geometries that prevent users from inserting the articulated surgical instrument in an incorrect axial position.
  • 11. The method of claim 1, further comprising connecting a mechanical transmission to deliver motion from the surgical platform to the articulated surgical instrument.
  • 12. The method of claim 11, wherein moving the end-effector of the articulated surgical instrument responsive to movement at the surgical platform comprises delivering motion from the surgical platform to the articulated surgical instrument via the mechanical transmission.
  • 13. The method of claim 1, further comprising engaging a rotating ring with a fixation ring to capture a portion of the flexible sleeve therebetween to couple the flexible sleeve to the rigid connector, the rotating ring configured to freely rotate around the rigid connector.
  • 14. A method for maintaining sterility of surgical instruments during a surgical procedure, the method comprising: locking a rigid connector to a surgical platform;attaching a proximal hub of an articulated surgical instrument to the rigid connector without contacting non-sterile components of the surgical platform;covering moving links of the surgical platform with a flexible sleeve coupled to the rigid connector; andmoving an end-effector of the articulated surgical instrument responsive to movement at the surgical platform to perform the surgical procedure while maintaining sterility of the articulated surgical instrument during the surgical procedure.
  • 15. The method of claim 14, wherein locking the rigid connector to the surgical platform comprises locking a first ring of the rigid connector with a second ring of the rigid connector.
  • 16. The method of claim 15, wherein moving the end-effector of the articulated surgical instrument responsive to movement at the surgical platform comprises moving the end-effector of the articulated surgical instrument responsive to movement at the surgical platform via a core of the rigid connector, the core concentric with and extending between the first ring and the second ring.
  • 17. The method of claim 14, wherein the rigid connector comprises axi-asymmetric features or geometries that prevent users from inserting the articulated surgical instrument in an incorrect axial position.
  • 18. The method of claim 14, further comprising connecting a mechanical transmission to deliver motion from the surgical platform to the articulated surgical instrument.
  • 19. The method of claim 18, wherein moving the end-effector of the articulated surgical instrument responsive to movement at the surgical platform comprises delivering motion from the surgical platform to the articulated surgical instrument via the mechanical transmission.
  • 20. The method of claim 14, further comprising engaging a rotating ring with a fixation ring to capture a portion of the flexible sleeve therebetween to couple the flexible sleeve to the rigid connector, the rotating ring configured to freely rotate around the rigid connector.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a divisional of U.S. patent application Ser. No. 15/536,573, filed Jun. 15, 2017, now U.S. Pat. No. 11,039,820, which is a national phase of International PCT Patent Application Serial No. PCT/IB2015/002487, filed Dec. 18, 2015, which claims the benefit of U.S. Provisional Patent Application Ser. No. 62/094,079, filed Dec. 19, 2014, the entire contents of each of which are incorporated herein by reference.

US Referenced Citations (399)
Number Name Date Kind
2764301 Goertz et al. Sep 1956 A
2771199 Jelatis Nov 1956 A
2774488 Goertz et al. Dec 1956 A
2846084 Goertz et al. Aug 1958 A
3065863 Saunders, Jr. et al. Nov 1962 A
3095096 Chesley Jun 1963 A
3212651 Specht et al. Oct 1965 A
3261480 Haaker et al. Jul 1966 A
3297172 Haaker et al. Jan 1967 A
3391801 Haaker Jul 1968 A
3425569 Haaker et al. Feb 1969 A
4221516 Haaker et al. Sep 1980 A
4522196 Cunningham Jun 1985 A
4756655 Jameson Jul 1988 A
5147357 Rose et al. Sep 1992 A
5176352 Braun Jan 1993 A
5207114 Salisbury, Jr. et al. May 1993 A
5209747 Knoepfler May 1993 A
5304203 El-Mallawany et al. Apr 1994 A
5308358 Bond et al. May 1994 A
5330502 Hassler et al. Jul 1994 A
5368606 Marlow et al. Nov 1994 A
5383888 Zvenyatsky et al. Jan 1995 A
5484435 Fleenor et al. Jan 1996 A
5591119 Adair Jan 1997 A
5599151 Daum et al. Feb 1997 A
5603723 Aranyi et al. Feb 1997 A
5631973 Green May 1997 A
5649955 Hashimoto et al. Jul 1997 A
5649956 Jensen et al. Jul 1997 A
5710870 Ohm et al. Jan 1998 A
5716352 Viola et al. Feb 1998 A
5735874 Measamer et al. Apr 1998 A
5779727 Orejola Jul 1998 A
5784542 Ohm et al. Jul 1998 A
5792045 Adair Aug 1998 A
5797900 Madhani et al. Aug 1998 A
5810716 Mukherjee et al. Sep 1998 A
5810805 Sutcu et al. Sep 1998 A
5828813 Ohm Oct 1998 A
5908436 Cuschieri et al. Jun 1999 A
5931832 Jensen Aug 1999 A
5951587 Qureshi et al. Sep 1999 A
5976122 Madhani et al. Nov 1999 A
6026701 Reboulet Feb 2000 A
6063095 Wang et al. May 2000 A
6132368 Cooper Oct 2000 A
6197017 Brock et al. Mar 2001 B1
6206903 Ramans Mar 2001 B1
6233504 Das et al. May 2001 B1
6281651 Haanpaa et al. Aug 2001 B1
6312435 Wallace et al. Nov 2001 B1
6331181 Tierney et al. Dec 2001 B1
6358249 Chen et al. Mar 2002 B1
6361534 Chen et al. Mar 2002 B1
6364879 Chen et al. Apr 2002 B1
6371952 Madhani et al. Apr 2002 B1
6375610 Verschuur Apr 2002 B2
6394998 Wallace et al. May 2002 B1
6435794 Springer Aug 2002 B1
6436107 Wang et al. Aug 2002 B1
6459926 Nowlin et al. Oct 2002 B1
6491701 Tierney et al. Dec 2002 B2
6554844 Lee et al. Apr 2003 B2
6587750 Gerbi et al. Jul 2003 B2
6594552 Nowlin et al. Jul 2003 B1
6671581 Niemeyer et al. Dec 2003 B2
6699177 Wang et al. Mar 2004 B1
6786896 Madhani et al. Sep 2004 B1
6788999 Green Sep 2004 B2
6799065 Niemeyer Sep 2004 B1
6840938 Morley et al. Jan 2005 B1
6850817 Green Feb 2005 B1
6852107 Wang et al. Feb 2005 B2
6879880 Nowlin et al. Apr 2005 B2
6902560 Morley et al. Jun 2005 B1
6913613 Schwarz et al. Jul 2005 B2
6951535 Ghodoussi et al. Oct 2005 B2
6991627 Madhani et al. Jan 2006 B2
6994708 Manzo Feb 2006 B2
7025064 Wang et al. Apr 2006 B2
7048745 Tierney et al. May 2006 B2
7083571 Wang et al. Aug 2006 B2
7090637 Danitz et al. Aug 2006 B2
7101363 Nishizawa et al. Sep 2006 B2
7122032 Shinmura Oct 2006 B2
7204836 Wagner et al. Apr 2007 B2
7232440 Dumbauld et al. Jun 2007 B2
7241289 Braun Jul 2007 B2
7306597 Manzo Dec 2007 B2
7316681 Madhani et al. Jan 2008 B2
7338513 Lee et al. Mar 2008 B2
7364582 Lee Apr 2008 B2
7373219 Nowlin et al. May 2008 B2
7398707 Morley et al. Jul 2008 B2
7481824 Boudreaux et al. Jan 2009 B2
7549998 Braun Jun 2009 B2
7594912 Cooper et al. Sep 2009 B2
7608039 Todd Oct 2009 B1
7615002 Rothweiler et al. Nov 2009 B2
7615067 Lee et al. Nov 2009 B2
7674255 Braun Mar 2010 B2
7699855 Anderson et al. Apr 2010 B2
7756036 Druke et al. Jul 2010 B2
7819894 Mitsuishi et al. Oct 2010 B2
7824401 Manzo et al. Nov 2010 B2
7828798 Buysse et al. Nov 2010 B2
7833156 Williams et al. Nov 2010 B2
7890211 Green Feb 2011 B2
7914521 Wang et al. Mar 2011 B2
7976458 Stefanchik et al. Jul 2011 B2
8048084 Schneid Nov 2011 B2
8105320 Manzo Jan 2012 B2
8114017 Bacher Feb 2012 B2
8137263 Marescaux et al. Mar 2012 B2
8142447 Cooper et al. Mar 2012 B2
8224485 Unsworth Jul 2012 B2
8246617 Welt et al. Aug 2012 B2
8267958 Braun Sep 2012 B2
8287469 Stefanchik et al. Oct 2012 B2
8292889 Cunningham et al. Oct 2012 B2
8306656 Schaible et al. Nov 2012 B1
8308738 Nobis et al. Nov 2012 B2
8332072 Schaible et al. Dec 2012 B1
8336751 Scirica Dec 2012 B2
8347754 Veltri et al. Jan 2013 B1
8353898 Lutze et al. Jan 2013 B2
8357161 Mueller Jan 2013 B2
8382742 Hermann et al. Feb 2013 B2
8388516 Sholev Mar 2013 B2
8403832 Cunningham et al. Mar 2013 B2
8414475 Sholev Apr 2013 B2
8418904 Wenchell et al. Apr 2013 B2
8423186 Itkowitz et al. Apr 2013 B2
8433389 Geiger et al. Apr 2013 B2
8435171 Sholev May 2013 B2
8496152 Viola Jul 2013 B2
8518024 Williams et al. Aug 2013 B2
8523900 Jinno et al. Sep 2013 B2
8540748 Murphy et al. Sep 2013 B2
8562592 Conlon et al. Oct 2013 B2
8568444 Cunningham Oct 2013 B2
8579176 Smith et al. Nov 2013 B2
8591397 Berkelman et al. Nov 2013 B2
8597280 Cooper et al. Dec 2013 B2
8602287 Yates et al. Dec 2013 B2
8603077 Cooper et al. Dec 2013 B2
8616431 Timm et al. Dec 2013 B2
8617203 Stefanchik et al. Dec 2013 B2
8663270 Donnigan et al. Mar 2014 B2
8668689 Dumbauld et al. Mar 2014 B2
8668702 Awtar et al. Mar 2014 B2
8690755 Sholev Apr 2014 B2
8696666 Sanai et al. Apr 2014 B2
8709000 Madhani et al. Apr 2014 B2
8761930 Nixon Jun 2014 B2
8768509 Unsworth Jul 2014 B2
8792688 Unsworth Jul 2014 B2
8801752 Fortier et al. Aug 2014 B2
8816628 Nowlin et al. Aug 2014 B2
8818560 Kishi Aug 2014 B2
8821480 Burbank Sep 2014 B2
8827135 Amid et al. Sep 2014 B2
8828046 Stefanchik et al. Sep 2014 B2
8845517 Russo Sep 2014 B2
8845622 Paik et al. Sep 2014 B2
8870049 Amid et al. Oct 2014 B2
8870867 Walberg et al. Oct 2014 B2
8887979 Mastri et al. Nov 2014 B2
8894674 Balanev et al. Nov 2014 B2
8919348 Williams et al. Dec 2014 B2
8930027 Schaible et al. Jan 2015 B2
8945098 Seibold et al. Feb 2015 B2
8961499 Paik et al. Feb 2015 B2
8961514 Garrison Feb 2015 B2
8968187 Kleyman et al. Mar 2015 B2
8989844 Cinquin et al. Mar 2015 B2
8992564 Jaspers Mar 2015 B2
9023015 Penna May 2015 B2
9033998 Schaible et al. May 2015 B1
9044238 Orszulak Jun 2015 B2
9084606 Greep Jul 2015 B2
9113860 Viola et al. Aug 2015 B2
9113861 Martin et al. Aug 2015 B2
9149339 Unsworth Oct 2015 B2
9204939 Frimer et al. Dec 2015 B2
9216013 Scirica et al. Dec 2015 B2
9295379 Sholev Mar 2016 B2
9307894 Von Grunberg et al. Apr 2016 B2
9333040 Shellenberger et al. May 2016 B2
9345545 Shellenberger et al. May 2016 B2
9360934 Ruiz Morales et al. Jun 2016 B2
9421003 Williams et al. Aug 2016 B2
9474580 Hannaford et al. Oct 2016 B2
9480531 Von Grunberg Nov 2016 B2
9492240 Itkowitz et al. Nov 2016 B2
9504456 Frimer et al. Nov 2016 B2
9603672 Shellenberger et al. Mar 2017 B2
9669542 Karguth et al. Jun 2017 B2
9696700 Beira et al. Jul 2017 B2
9757204 Frimer et al. Sep 2017 B2
9757206 Frimer et al. Sep 2017 B2
9763741 Alvarez et al. Sep 2017 B2
9795282 Sholev et al. Oct 2017 B2
9795454 Seeber et al. Oct 2017 B2
9877794 Csiky Jan 2018 B2
D816243 Barber Apr 2018 S
9937013 Frimer et al. Apr 2018 B2
9943372 Sholev et al. Apr 2018 B2
10028792 Frimer et al. Jul 2018 B2
10039609 Frimer et al. Aug 2018 B2
10039820 Coller Aug 2018 B2
10052157 Frimer et al. Aug 2018 B2
10064691 Frimer et al. Sep 2018 B2
10071488 Robinson et al. Sep 2018 B2
10092164 Sholev et al. Oct 2018 B2
10092359 Beira et al. Oct 2018 B2
10092365 Seeber Oct 2018 B2
10136956 Seeber Nov 2018 B2
10201392 Frimer et al. Feb 2019 B2
10265129 Beira Apr 2019 B2
10325072 Beira et al. Jun 2019 B2
10357320 Beira Jul 2019 B2
10357324 Flatt Jul 2019 B2
10363055 Beira et al. Jul 2019 B2
10413374 Chassot et al. Sep 2019 B2
10510447 Beira et al. Dec 2019 B2
10548680 Beira Feb 2020 B2
10568709 Beira Feb 2020 B2
10646294 Beira May 2020 B2
10786272 Beira Sep 2020 B2
20020040217 Jinno Apr 2002 A1
20020049367 Irion et al. Apr 2002 A1
20020072736 Tierney et al. Jun 2002 A1
20020082612 Moll et al. Jun 2002 A1
20030013949 Moll et al. Jan 2003 A1
20030155747 Bridges Aug 2003 A1
20030208186 Moreyra Nov 2003 A1
20040049205 Lee et al. Mar 2004 A1
20040116906 Lipow Jun 2004 A1
20040236316 Danitz et al. Nov 2004 A1
20040253079 Sanchez Dec 2004 A1
20050096502 Khalili May 2005 A1
20050204851 Morley et al. Sep 2005 A1
20050240078 Kwon et al. Oct 2005 A1
20060043698 Bridges Mar 2006 A1
20060079884 Manzo et al. Apr 2006 A1
20060178559 Kumar et al. Aug 2006 A1
20060183975 Saadat et al. Aug 2006 A1
20060219065 Jinno et al. Oct 2006 A1
20060235436 Anderson et al. Oct 2006 A1
20060253109 Chu Nov 2006 A1
20070088340 Brock et al. Apr 2007 A1
20070137371 Devengenzo et al. Jun 2007 A1
20070156123 Moll et al. Jul 2007 A1
20070208375 Nishizawa et al. Sep 2007 A1
20070299387 Williams et al. Dec 2007 A1
20080039255 Jinno et al. Feb 2008 A1
20080046122 Manzo et al. Feb 2008 A1
20080058776 Jo et al. Mar 2008 A1
20080071208 Voegele et al. Mar 2008 A1
20080103492 Morley et al. May 2008 A1
20080177285 Brock et al. Jul 2008 A1
20080243106 Coe et al. Oct 2008 A1
20080287926 Abou El Kheir Nov 2008 A1
20080314181 Schena Dec 2008 A1
20090030449 Kawai et al. Jan 2009 A1
20090036902 DiMaio et al. Feb 2009 A1
20090192522 Blumenkranz Jul 2009 A1
20090198253 Omori Aug 2009 A1
20090216248 Uenohara et al. Aug 2009 A1
20090216249 Jinno et al. Aug 2009 A1
20090247821 Rogers Oct 2009 A1
20090248039 Cooper et al. Oct 2009 A1
20090275994 Phan et al. Nov 2009 A1
20090299141 Downey et al. Dec 2009 A1
20090326552 Diolaiti Dec 2009 A1
20100004508 Naito et al. Jan 2010 A1
20100011900 Burbank Jan 2010 A1
20100023025 Zeiner et al. Jan 2010 A1
20100082041 Prisco Apr 2010 A1
20100094130 Ninomiya et al. Apr 2010 A1
20100121347 Jaspers May 2010 A1
20100160929 Rogers et al. Jun 2010 A1
20100160940 Lutze et al. Jun 2010 A1
20100170519 Romo et al. Jul 2010 A1
20100225209 Goldberg et al. Sep 2010 A1
20100234857 Itkowitz et al. Sep 2010 A1
20100286712 Won et al. Nov 2010 A1
20100305595 Hermann Dec 2010 A1
20100318099 Itkowitz et al. Dec 2010 A1
20100318101 Choi Dec 2010 A1
20100324551 Gerhardt Dec 2010 A1
20100331859 Omori Dec 2010 A1
20110087236 Stokes et al. Apr 2011 A1
20110087238 Wang et al. Apr 2011 A1
20110213346 Morley et al. Sep 2011 A1
20110230867 Hirschfeld et al. Sep 2011 A1
20110275901 Shelton, IV Nov 2011 A1
20110276084 Shelton, IV Nov 2011 A1
20110290854 Timm et al. Dec 2011 A1
20110301419 Craft et al. Dec 2011 A1
20120010628 Cooper et al. Jan 2012 A1
20120027762 Schofield Feb 2012 A1
20120031114 Mueller et al. Feb 2012 A1
20120049623 Nakayama Mar 2012 A1
20120095298 Stefanchik et al. Apr 2012 A1
20120116163 Lutze et al. May 2012 A1
20120132018 Tang et al. May 2012 A1
20120143173 Steege et al. Jun 2012 A1
20120158014 Stefanchik et al. Jun 2012 A1
20120191245 Fudaba et al. Jul 2012 A1
20120209292 Devengenzo et al. Aug 2012 A1
20120232339 Csiky Sep 2012 A1
20120253326 Kleyman Oct 2012 A1
20120277762 Lathrop et al. Nov 2012 A1
20120283745 Goldberg et al. Nov 2012 A1
20120289973 Prisco et al. Nov 2012 A1
20120289974 Rogers et al. Nov 2012 A1
20120296341 Seibold et al. Nov 2012 A1
20130123805 Park et al. May 2013 A1
20130144274 Stefanchik et al. Jun 2013 A1
20130172713 Kirschenman Jul 2013 A1
20130172906 Olson et al. Jul 2013 A1
20130245643 Woodard, Jr. et al. Sep 2013 A1
20130245647 Martin et al. Sep 2013 A1
20130282027 Woodard, Jr. et al. Oct 2013 A1
20130303408 Indermuhle Nov 2013 A1
20130304083 Kaercher et al. Nov 2013 A1
20130304084 Beira et al. Nov 2013 A1
20140005681 Gee et al. Jan 2014 A1
20140018447 McGovern et al. Jan 2014 A1
20140018780 Hirscheld Jan 2014 A1
20140018960 Itkowitz Jan 2014 A1
20140052152 Au et al. Feb 2014 A1
20140076088 Berkelman et al. Mar 2014 A1
20140114481 Ogawa et al. Apr 2014 A1
20140135794 Cau May 2014 A1
20140142595 Awtar et al. May 2014 A1
20140166023 Kishi Jun 2014 A1
20140180308 Von Grunberg Jun 2014 A1
20140188091 Vidal et al. Jul 2014 A1
20140188159 Steege Jul 2014 A1
20140195010 Beira et al. Jul 2014 A1
20140200561 Ingmanson et al. Jul 2014 A1
20140207150 Rosa et al. Jul 2014 A1
20140229007 Kishi Aug 2014 A1
20140230595 Butt et al. Aug 2014 A1
20140249546 Shvartsberg et al. Sep 2014 A1
20140263541 Leimbach et al. Sep 2014 A1
20140263553 Leimbach et al. Sep 2014 A1
20140276950 Smaby et al. Sep 2014 A1
20140276951 Hourtash et al. Sep 2014 A1
20140276956 Crainich et al. Sep 2014 A1
20140277017 Leimbach et al. Sep 2014 A1
20140350570 Lee Nov 2014 A1
20150057499 Erden et al. Feb 2015 A1
20150057702 Edmondson et al. Feb 2015 A1
20150060517 Williams Mar 2015 A1
20150066018 Doll et al. Mar 2015 A1
20150105821 Ward et al. Apr 2015 A1
20150113933 Markt Apr 2015 A1
20150142018 Sniffin et al. May 2015 A1
20150150575 Hartoumbekis et al. Jun 2015 A1
20150173840 Lohmeier Jun 2015 A1
20150230869 Shim et al. Aug 2015 A1
20150250547 Fukushima et al. Sep 2015 A1
20150265355 Prestel et al. Sep 2015 A1
20160022365 Jensen et al. Jan 2016 A1
20160051274 Howell et al. Feb 2016 A1
20160151115 Karguth et al. Jun 2016 A1
20160220314 Huelman et al. Aug 2016 A1
20160302876 Teichtmann Oct 2016 A1
20160346053 Beira Dec 2016 A1
20160374766 Schuh Dec 2016 A1
20170020615 Koenig et al. Jan 2017 A1
20170245954 Beira Aug 2017 A1
20170252096 Felder et al. Sep 2017 A1
20170265951 Grover et al. Sep 2017 A1
20170273749 Grover et al. Sep 2017 A1
20170308667 Beira et al. Oct 2017 A1
20170360522 Beira Dec 2017 A1
20170367778 Beira Dec 2017 A1
20180000544 Beira Jan 2018 A1
20180000550 Beira Jan 2018 A1
20180008358 Kostrzewski et al. Jan 2018 A1
20180028269 Morel et al. Feb 2018 A1
20180055583 Schuh et al. Mar 2018 A1
20180078439 Cagle et al. Mar 2018 A1
20180110576 Kopp Apr 2018 A1
20180125519 Beira et al. May 2018 A1
20180125592 Beira May 2018 A1
20180242991 Beira Aug 2018 A1
20180353252 Chassot et al. Dec 2018 A1
20180360548 Marshall et al. Dec 2018 A1
20190133698 Beira et al. May 2019 A1
20190239968 Beira Aug 2019 A1
20190328473 Chassot et al. Oct 2019 A1
20200105412 Beira Apr 2020 A1
Foreign Referenced Citations (125)
Number Date Country
101027010 Aug 2007 CN
101584594 Nov 2009 CN
101637402 Feb 2010 CN
101732093 Jun 2010 CN
103717355 Apr 2014 CN
4303311 Aug 1994 DE
19652792 May 1999 DE
10314827 Apr 2004 DE
10314828 Jul 2004 DE
102012222755 Jun 2014 DE
102014205036 Sep 2015 DE
102014205159 Sep 2015 DE
0595291 May 1994 EP
0621009 Oct 1994 EP
0677275 Oct 1995 EP
0776739 Jun 1997 EP
1254642 Nov 2002 EP
1279371 Dec 2004 EP
1886630 Feb 2008 EP
1889579 Feb 2008 EP
1889583 Feb 2008 EP
2058090 May 2009 EP
1977677 Aug 2009 EP
2095778 Sep 2009 EP
1889583 Apr 2011 EP
2377477 May 2012 EP
2473119 Jul 2012 EP
2305144 Oct 2012 EP
2044893 Jul 2013 EP
2653110 Oct 2013 EP
2679192 Jan 2014 EP
2736680 Jun 2014 EP
2777561 Sep 2014 EP
2783643 Oct 2014 EP
2837340 Feb 2015 EP
2837354 Feb 2015 EP
2554131 Aug 2015 EP
2777561 Oct 2015 EP
2979657 Feb 2016 EP
2837340 Oct 2016 EP
2783643 Jan 2019 EP
834244 May 1960 GB
969899 Sep 1964 GB
2004041580 Feb 2004 JP
2007290096 Nov 2007 JP
2008104620 May 2008 JP
2009018027 Jan 2009 JP
20110032444 Mar 2011 KR
20130031403 Mar 2013 KR
722754 Mar 1980 SU
WO-8200611 Mar 1982 WO
WO-9743942 Nov 1997 WO
WO-9825666 Jun 1998 WO
WO-03067341 Aug 2003 WO
WO-03086219 Oct 2003 WO
WO-2004052171 Jun 2004 WO
WO-2005009482 Feb 2005 WO
WO-2005046500 May 2005 WO
WO-2006086663 Aug 2006 WO
WO-2007133065 Nov 2007 WO
WO-2008130235 Oct 2008 WO
WO-2009091497 Jul 2009 WO
WO-2009095893 Aug 2009 WO
WO-2009145572 Dec 2009 WO
WO-2009157719 Dec 2009 WO
WO-2010019001 Feb 2010 WO
WO-2010030114 Mar 2010 WO
WO-2010050771 May 2010 WO
WO-2010083480 Jul 2010 WO
WO-2010096580 Aug 2010 WO
WO-2010130817 Nov 2010 WO
WO-2011025818 Mar 2011 WO
WO-2011027183 Mar 2011 WO
WO-2011123669 Oct 2011 WO
WO-2012020386 Feb 2012 WO
WO-2012049623 Apr 2012 WO
WO-2013007784 Jan 2013 WO
WO-2013014621 Jan 2013 WO
WO-2014012780 Jan 2014 WO
WO-2014018447 Jan 2014 WO
WO-2014067804 May 2014 WO
WO-2014094716 Jun 2014 WO
WO-2014094717 Jun 2014 WO
WO-2014094718 Jun 2014 WO
WO-2014094719 Jun 2014 WO
WO-2014139023 Sep 2014 WO
WO-2014145148 Sep 2014 WO
WO-2014156221 Oct 2014 WO
WO-2014201010 Dec 2014 WO
WO-2014201538 Dec 2014 WO
WO-2015081946 Jun 2015 WO
WO-2015081947 Jun 2015 WO
WO-2015088647 Jun 2015 WO
WO-2015088655 Jun 2015 WO
WO-2015111475 Jul 2015 WO
WO-2015113933 Aug 2015 WO
WO-2015129383 Sep 2015 WO
WO-2015139674 Sep 2015 WO
WO-2015175200 Nov 2015 WO
WO-2016030767 Mar 2016 WO
WO-2016083189 Jun 2016 WO
WO-2016097861 Jun 2016 WO
WO-2016097864 Jun 2016 WO
WO-2016097868 Jun 2016 WO
WO-2016097871 Jun 2016 WO
WO-2016097873 Jun 2016 WO
WO-2016154173 Sep 2016 WO
WO-2016162751 Oct 2016 WO
WO-2016162752 Oct 2016 WO
WO-2016183054 Nov 2016 WO
WO-2016189284 Dec 2016 WO
WO-2016209891 Dec 2016 WO
WO-2017015599 Jan 2017 WO
WO-2017037532 Mar 2017 WO
WO-2017064301 Apr 2017 WO
WO-2017064303 Apr 2017 WO
WO-2017064305 Apr 2017 WO
WO-2017064306 Apr 2017 WO
WO-2017134077 Aug 2017 WO
WO-2017220978 Dec 2017 WO
WO-2018142112 Aug 2018 WO
WO-2018162921 Sep 2018 WO
WO-2019099346 May 2019 WO
WO-2020131304 Jun 2020 WO
WO-2020263870 Dec 2020 WO
Non-Patent Literature Citations (72)
Entry
US 9,232,978 B2, 01/2016, Shellenberger et al. (withdrawn)
U.S. Appl. No. 13/878,924, now U.S. Pat. No. 10,092,359, filed May 17, 2013, Oct. 9, 2018.
U.S. Appl. No. 14/233,184, now U.S. Pat. No. 9,696,700, filed Jan. 16, 2014, Jul. 4, 2017.
U.S. Appl. No. 15/116,509, now U.S. Pat. No. 10,265,129, filed Aug. 3, 2016, Apr. 23, 2019.
U.S. Appl. No. 15/506,659, now U.S. Pat. No. 10,357,320, filed Feb. 24, 2017, Jul. 23, 2019.
U.S. Appl. No. 15/536,539, now U.S. Pat. No. 10,864,049, filed Jun. 15, 2017, Dec. 15, 2020.
U.S. Appl. No. 15/536,562, now U.S. Pat. No. 10,864,052, filed Jun. 15, 2017, Dec. 15, 2020.
U.S. Appl. No. 15/536,568, now U.S. Pat. No. 10,548,680, filed Jun. 15, 2017, Feb. 4, 2020.
U.S. Appl. No. 15/536,573, now U.S. Pat. No. 11,039,820, filed Jun. 15, 2017, Jun. 22, 2021.
U.S. Appl. No. 15/536,576, now U.S. Pat. No. 10,646,294, filed Jun. 15, 2017, May 12, 2020.
U.S. Appl. No. 15/564,193, now U.S. Pat. No. 10,568,709, filed Oct. 3, 2017, Feb. 25, 2020.
U.S. Appl. No. 15/564,194, now U.S. Pat. No. 10,363,055, filed Oct. 3, 2017, Jul. 30, 2019.
U.S. Appl. No. 15/633,611, now U.S. Pat. No. 10,325,072, filed Jun. 26, 2017, Jun. 18, 2019.
U.S. Appl. No. 15/756,037, now U.S. Pat. No. 10,786,272, filed Feb. 27, 2018, Sep. 29, 2020.
U.S. Appl. No. 15/976,812, filed May 10, 2018.
U.S. Appl. No. 16/153,695, filed Oct. 5, 2018.
U.S. Appl. No. 16/269,383, now U.S. Pat. No. 10,413,374, filed Feb. 6, 2019, Sep. 17, 2019.
U.S. Appl. No. 16/389,854, filed Apr. 19, 2019.
U.S. Appl. No. 16/442,435, now U.S. Pat. No. 10,510,447, filed Jun. 14, 2019, Dec. 17, 2019.
U.S. Appl. No. 16/505,585, filed Jul. 8, 2019.
U.S. Appl. No. 16/701,063, filed Dec. 2, 2019.
U.S. Appl. No. 16/870,870, filed May 8, 2020.
U.S. Appl. No. 17/032,631, filed Sep. 25, 2020.
Abbott, et al., Design of an Endoluminal Notes Robotic System, IEEE/RSJ International Conference on Intelligent Robots and Systems, 2007, San Diego, CA (pp. 410-416).
Aesculap Surgical Technologies, Aesculap.RTM. Caiman™, Advanced Bipolar Seal and Cut Technology Brochure, 6 pages (retrieved Aug. 31, 2015).
Arata, et al., Development of a dexterous minimally-invasive surgical system with augmented force feedback capability, IEEE/RSJ International Conference on Intelligent Robots and Systems, 2005 (pp. 3207-3212).
Cavusoglu, et al., Laparoscopic Telesurgical Workstation, IEEE Transactions on Robotics and Automation, (15)4:728-739 (1999).
Charles, et al., Dexterity-enhanced Telerobotic Microsurgery, 8th International Conference Advanced Robotics, pp. 5-10 (1997).
Communication Relating to the Results of the Partial International Search dated May 28, 2019 in Int'l PCT Patent Appl. Serial No. PCT/IB2019/050961 (1510).
Dachs, et al., Novel Surgical Robot Design: Minimizing the Operating Envelope With in the Sterile Field, 28th International Conference, IEEE Engineering in Medicine Biology Society, 2006, New York (pp. 1505-1508).
Dario, et al., “Novel Mechatronic Tool for Computer-Assisted Arthroscopy,” IEEE Transactions on Information Technology in Biomedicine, 4(1):15-29 (Mar. 2000).
European Search Report dated Dec. 10, 2013 in EP Patent Appl. Serial No. 12767107.1 (0330).
Extended European Search Report dated Mar. 18, 2020 in EP Patent Appl. Serial No. 19213231.4 (1031).
Focacci, et al., Lightweight Hand-held Robot for Laparoscopic Surgery, IEEE International Conference on Robotics & Automation, Rome, Italy, pp. 599-604 (2007).
Guthart, et al., The Intuitive™. Telesurgery System: Overview and Application, IEEE International Conference on Robotics & Automation, San Francisco, CA, 2000 (pp. 618-621).
Ikuta, et al., Development of Remote Microsurgery Robot and New Surgical Procedure for Deep and Narrow Space, IEEE International Conference on Robotics & Automation, Taipei, Taiwan, 2003 (pp. 1103-1108).
Ikuta, et al., Hyper Redundant Miniature Manipulator ‘Hyper Finger’ for Remote Minimally Invasive Surgery in Deep Area, IEEE International Conference on Robotics & Automation, Taipei, Taiwan, 2003 (pp. 1098-1102).
International Search & Written Opinion dated Jul. 7, 2020 in Int'l PCT Patent Appl. Serial No. PCT/IB2020/050039 (1610).
International Search Report & Written Opinion dated Feb. 2, 2017 in Int'l PCT Patent Appl. Serial No. PCT/IB2016/001286 (1310).
International Search Report & Written Opinion dated Jan. 18, 2013 in Int'l PCT Patent Appl Serial No. PCT/IB2012/053786 (0310).
International Search Report & Written Opinion dated Jul. 10, 2018 in Int'l PCT Patent Appl. Serial No. PCT/IB2018/053272 (1410).
International Search Report & Written Opinion dated Jun. 10, 2016 in Int'l PCT Patent Appl Serial No. PCT/IB2015/002533 (0810).
International Search Report & Written Opinion dated Jun. 13, 2016 in Int'l PCT Patent Appl Serial No. PCT/IB2015/002493 (0710).
International Search Report & Written Opinion dated Mar. 30, 2015 in Int'l PCT Patent Appl Serial No. PCT/EP2015/051473 (0410).
International Search Report & Written Opinion dated May 23, 2016 in Int'l PCT Patent Appl Serial No. PCT/IB2015/002524 (0610).
International Search Report & Written Opinion dated May 24, 2016 in Int'l PCT Patent Appl Serial No. PCT/IB2015/002487 (0910).
International Search Report & Written Opinion dated Sep. 2, 2016 in Int'l PCT Patent Appl Serial No. PCT/IB2016/000543 (1110).
International Search Report & Written Opinion dated Feb. 17, 2016 in Int'l PCT Patent Appl. Serial No. PCT/IB2015/002095 (0510).
International Search Report & Written Opinion dated Mar. 23, 2012 in Int'l PCT Patent Appl. Serial No. PCT/IB2011/054476 (0210).
International Search Report & Written Opinion dated Apr. 26, 2016 in Int'l PCT Patent Appl. Serial No. PCT/IB2015/002512 (1010).
International Search Report & Written Opinion dated Jul. 7, 2020 in Int'l. PCT Patent Appl. Serial No. PCTIB2020050039 (1610).
International Search Report & Written Opinion dated Jul. 23, 2019 in Int'l PCT Patent Appl. No. PCT/IB2019/050961 (1510).
International Search Report & Written Opinion dated Aug. 25, 2016 in Int'l PCT Patent Appl. Serial No. PCT/IB2016/000542 (1210).
Ishii, et al., Development of a New Bending Mechanism and Its Application to Robotic Forceps Manipulator, IEEE International Conference on Robotics & Automation, Rome, Italy, 2007 (pp. 238-243).
Kobayashi, et al., Small Occupancy Robotic Mechanisms for Endoscopic Surgery, International Conference on Medical Image Computing and Computer assisted Interventions, 2002, (pp. 75-82).
Lang, et al., Intra-operative robotics: NeuroArm., Acta Neurochir Suppl, 109:231-236 (2011).
Mayer, et al., The Endo[PA]R System for Minimally Invasive Robotic Surgery, IEEE/RSJ International Conference on Intelligent Robots and Systems, Sendai, Japan, 2004 (pp. 3637-3642).
Mitsuishi, et al., Development of a Remote Minimally Invasive Surgical System with Operational Environment Transmission Capability, IEEE International Conference on Robotics & Automation, Taipei, Taiwan, 2003, (pp. 2663-2670).
Mitsuishi, et al., Master-Slave Robotic Platform and its Feasibility Study for MicroNeurosurgery, Int. J. Med. Robot., 9(2):180-9 (2013).
Morita, et al., Microsurgical Robotic System for the Deep Surgical Field: development of a Prototype and Feasibility Studies in Animal and Cadaveric Models, J. Neurosurg., 103(2):320-7 (2005).
Nakamura, et al., Multi-DOF Forceps Manipulator System for Laparoscopic Surgery-Mechanism miniaturized & Evaluation of New Interface, 4th International Conference on Medical Image Computing and Computer assisted Interventions (MICCAI2001), 2001 (pp. 606-613).
Peirs, et al., “Design of an Advanced Tool Guiding System for Robotic Surgery,” IEEE International Conference on Robotics & Automation, Taipei, Taiwan, 2003, (pp. 2651-2656).
Salle, et al., Optimal Design of High Dexterity Modular MIS Instrument for Coronary Artery Bypass Grafting, IEEE International Conference on Robotics & Automation, New Orleans, LA, 2004, (pp. 1276-1281).
Seibold, et al., Prototype of Instrument for Minimally Invasive Surgery with 6-Axis Force Sensing Capability, IEEE International Conference on Robotics & Automation, Barcelona, Spain, 2005, (pp. 496-501).
Simaan, et al., Dexterous System for Laryngeal Surgery: Multi-Backbone Bending Snake-like Slaves for Teleoperated Dexterous Surgical Tool Manipulation, IEEE International Conference on Robotics & Automation, New Orleans, LA, 2004 (pp. 351-357).
Stryker™, Endoscopy, Take a Look Around, Ideal Eyes.TM. FFD122 HD, Articulating Laparoscope Brochure, 2 pages (2009).
Swiss Search Report dated Jun. 4, 2012 in Swiss Patent Application No. CH 00702/12.
Tavakoli, et al., Force Reflective Master-Slave System for Minimally Invasive Surgery, IEEE/RSJ International Conference on Intelligent Robots and Systems, Las Vegas, NV, 2003, (pp. 3077-3082).
Taylor, et al., Steady-Hand Robotic System for Microsurgical Augmentation, The International Journal of Robotics Research, 18(12):1201-1210 (1999).
Www.cttc.co/technologies/maestro-non-robotic-dexterous-laproscopic-instrum-ent-writs-providing-seven-degrees, Maestro: Non-Robotic Dexterous Laproscopic Instrument With a Wrist Providing Seven Degrees of Freedom, accessed Nov. 12, 2015, 4 pages.
Yamashita, et al., Development of Endoscopic Forceps Manipulator Using Multi-Slider Linkage Mechanisms, The 1st Asian Symposium on Computer Aided Surgery-Robotic and Image-Guided Surgery, Ibaraki, Japan, 4 pages (2005).
Zeus, Robotic Surgical System, available at http://allaboutroboticsurgery.com/zeusrobot.html.
Related Publications (1)
Number Date Country
20210307737 A1 Oct 2021 US
Provisional Applications (1)
Number Date Country
62094079 Dec 2014 US
Divisions (1)
Number Date Country
Parent 15536573 US
Child 17351118 US