This invention is directed to a stiffening plate for an electronic device circuit board. This invention is also directed to a high cosmetic quality and low profile switch assembly.
In some embodiments, a system for strengthening a circuit board may be provided. The system may include a circuit board that has at least one switch operatively coupled to a button. The switch may also include a plate operative to be placed over the circuit board. The plate may include at least one aperture operative to receive the at least one switch, and at least one wing extending perpendicularly from the plate. The wing may include at least one prong operative to ground the circuit board, and may extend along the edge of the circuit board.
In some embodiments, a method for strengthening a circuit board of an electronic device may be provided. The method may include providing a circuit board that includes at least one switch operatively coupled to a button. The plate may be aligning with the circuit board, where the plate includes at least one aperture operative to receive the at least one switch and at least one wing extending perpendicularly from the plate. The plate may be coupled to the circuit board, where the at least one wing rests against the edge of the circuit board.
In some embodiments, a hold switch for use in an electronic device may be provided. The hold switch may include a button that includes a body and at least one protrusion, where the protrusion extends from the bottom surface of the body. The hold switch may also include a label plate that includes at least two labels printed on the lower surface of the plate. The hold switch may finally include a backer plate that includes at least one aperture operative to receive the at least one protrusion. The at least one protrusion may be operative to pass through the label plate and into the at least one aperture.
The above and other features of the present invention, its nature and various advantages will be more apparent upon consideration of the following detailed description, taken in conjunction with the accompanying drawings, and in which:
To prevent board 100 from flexing in response to user inputs on buttons, board 100 may be constructed with a significant thickness. While such a solution may prevent board 100 from flexing, it may cause an inefficient use of space within the electronic device. This may be particularly problematic if the electronic device is small and space is at a premium. Another solution may be to reinforce only portions of board 100 where high amounts of flexing are expected. For example, board 100 may be reinforced in the areas surrounding switches 104, 105, 106, 107 and 108.
Board 100 may be reinforced using any suitable approach. In some embodiments, board 100 may be manufactured with varying thicknesses to add resistance to bending in portions of board 100 susceptible to bending forces. In some embodiments, an additional component may be added to board 100 to reinforce portions of board 100. For example, plate 120 may be coupled to board 100. Plate 120 may be constructed from any material having sufficient stiffness to reinforcing board 100. For example, plate 120 may be constructed from one of a metal (e.g., stainless steel), a plastic, a composite material, or any other suitable material. Plate 120 may be constructed with any suitable thickness, including for example a thickness that is less than the height of the tallest component 102 of board 100, or less than the tallest of switches 104, 105, 106, 107 and 108. By limiting the thickness of plate 120 to the height of the tallest component 102, the overall height needed to place board 100 in the electronic device may remain the same, whether plate 120 is coupled to board 100 or not.
In some embodiments, plate 120 may include wings 132 and 133 to provide additional stiffness to plate 120. Wings 132 and 133 may extend perpendicularly from the edge of plate 120 to provide additional strength against bending along the long axis of board 100. In some embodiments, at least one of wings 132 and 133 may include prongs 134 operative to contact the surface of the electronic device enclosure when board 100 and plate 120 are assembled in the electronic device. If prongs 134 (and plate 120) are constructed from an electrically conductive material, prongs 134 may be operative to provide a grounding path for board 100.
Plate 120 may include several apertures 124, 125, 126, 127 and 128 for receiving switches 104, 105, 106, 107 and 108, respectively. In some embodiments, plate 120 may also include other apertures 129 for receiving other components of board 100. Plate 120 may have any suitable shape. For example, plate 120 may be shaped to fit around components of board 100 such that plate 120 rests on unused areas of board 100. As another example, plate 120 may be shaped such that plate 120 is only added to the portion of board 100 to which high stresses are applied (e.g., the portions adjacent the switches). Plate 120 may include apertures 130 and 131 operative to be aligned with apertures 110 and 111 of board 100 to ensure that plate 120 is properly placed on board 120 and does not interfere with components 102. In some embodiments, one of apertures 130 and 131 and apertures 110 and 111 may be a pin operative to fit in an aperture. Wings 132 and 133 may rest against the edge of board 120 to further aid with the placement of plate 120 on board 100.
In some embodiments, the circuit board may be placed in an electronic device that has a small form factor. The electronic device may also include a low profile two position switch assembly that is contained within the electronic device for providing instructions to the circuit board.
Button 302 may include body 304 and protrusions 306 operative to extend from the lower surface of button 302. Protrusions 306 may extend into the electronic device case and engage an electrical switch of the electronic device (e.g., a hold switch). In some embodiments, button 302 may include several protrusions 306 (e.g., two protrusions) such that as button 302 is displaced, at least one of each protrusion 306 is operative to contact and move the electrical switch of the electronic device.
Label plate 310 may be constructed from any suitable transparent or translucent material. For example, plate 310 may be constructed from glass or plastic. Plate 310 may include labels 312 and 314, which may have different colors. The size of each of labels 312 and 314, and the size of button 302 may be selected such that when button 302 is moved, only one of labels 312 and 314 is visible to the user. For example, the delimitation between labels 312 and 314 may be the middle of plate 310 (e.g., where button 302 is inserted in plate 310). Labels 312 and 314 may be coupled to plate 310 using any suitable approach. In some embodiments, labels 312 and 314 may be printed or attached using an adhesive or tape to the upper surface of plate 310. Plate 310 may then include an additional layer (e.g., hard-coating) to protect the indicator icons. In some embodiments, labels 312 and 314 may instead be printed or attached using an adhesive or tape to the lower surface of plate 310. In such embodiments, plate 310 may serve as a protective surface for layers 312 and 314. Plate 310 may include aperture 316 operative to receive a portion of button 302 (e.g., protrusions 306).
Backer plate 320 may be any suitable plate for coupling layer plate 310 to button 302 to form switch 300. In some embodiments, backer plate 320 may be coupled to plate 310. For example, plate 320 may be coupled to plate 310 using at least one of an adhesive, tape, a mechanical fastener, a mechanical feature (e.g., a snap), or any other approach. Plate 320 may include apertures 322 operative to receive protrusions 306 of button 302. Protrusions 306 may extend past the bottom surface of plate 320 such that protrusions 306 may engage an electronic switch of the electronic device.
When placed in electronic device 600, the edges of switch 600 (e.g., the periphery of label plate 310,
This application is a divisional of U.S. patent application Ser. No. 12/710,026, filed Feb. 22, 2010 now U.S. Pat. No. 7,961,476, which is a divisional of U.S. patent application Ser. No. 12/100,670, filed Apr. 10, 2008 (now U.S. Pat. No. 7,710,737), which claims the benefit of prior filed U.S. Provisional Patent Application No. 60/967,816, filed Sep. 7, 2007, each of which is incorporated herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4318578 | Ericson et al. | Mar 1982 | A |
5059754 | Kaichi et al. | Oct 1991 | A |
5213204 | Sommer | May 1993 | A |
5383297 | Summerville et al. | Jan 1995 | A |
5783787 | Data | Jul 1998 | A |
5977499 | Black et al. | Nov 1999 | A |
7335064 | Matsukawa et al. | Feb 2008 | B2 |
8138435 | Patel et al. | Mar 2012 | B2 |
20050173201 | Meyer | Aug 2005 | A1 |
Number | Date | Country | |
---|---|---|---|
20110259636 A1 | Oct 2011 | US |
Number | Date | Country | |
---|---|---|---|
60967816 | Sep 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12710026 | Feb 2010 | US |
Child | 13105188 | US | |
Parent | 12100670 | Apr 2008 | US |
Child | 12710026 | US |