Stigmator assembly

Information

  • Patent Grant
  • 6548816
  • Patent Number
    6,548,816
  • Date Filed
    Tuesday, July 24, 2001
    23 years ago
  • Date Issued
    Tuesday, April 15, 2003
    21 years ago
  • Inventors
  • Original Assignees
  • Examiners
    • Barlow; John
    • Dudding; Alfred
    Agents
    • Webb Ziesenheim Logsdon Orkin & Hanson, P.C.
Abstract
A stigmator assembly capable of correcting even three-fold astigmatism without increasing the size of an electron microscope or the like in which the assembly is mounted. Values indicating control parameters A3 and θh are set with control knobs and entered into a first arithmetic circuit. Values indicating control parameters A2 and θq are set with control knobs and input into a second arithmetic circuit. The first arithmetic circuit calculates current values for producing a corrective hexapole field, using the entered control parameters A3 and θh. The second arithmetic circuit calculates current values for producing a corrective quadrupole field, using the entered control parameters A2 and θq. An adder circuit supplies control currents into coils, respectively, the control currents corresponding to the sums of the values calculated by the arithmetic circuits.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




The present invention relates to a stigmator assembly for correcting astigmatism produced in an instrument using a charged-particle beam such as a transmission electron microscope and, more particularly, to a stigmator assembly capable of correcting even three-fold astigmatism.




2. Description of the Related Art




With respect to on-axis astigmatism due to parasitic aberration in a transmission electron microscope, the first-order on-axis astigmatism shows a two-fold symmetry from a viewpoint of geometrical optics, while the second-order on-axis astigmatism shows a three-fold symmetry. Generally, an electron microscope is equipped with an octopole coil assembly for introducing a quadrupole field in the plane of the opening to correct astigmatism with a two-fold symmetry (hereinafter referred to as two-fold astigmatism). The exciting currents through the coils are controlled to produce a magnetic field for canceling the two-fold astigmatism.




Since the effect of astigmatism with a three-fold symmetry (hereinafter referred to as three-fold astigmatism) on the image is smaller than second-fold astigmatism, the necessity of correction of three-fold astigmatism has not been great. However, installation of a field emission gun or the like has increased the response characteristics of the electron microscope relative to the spatial frequency. Where such improved response characteristics are taken into consideration, image distortion due to three-fold astigmatism can no longer be neglected.




Generation of three-fold astigmatism and its correction are hereinafter described briefly. In an electromagnetic lens, the magnetic potential has slight deviation from axial symmetry. The deviation is caused by the fact that the bore in the polepieces forming the potential is not perfectly circular. In a cylindrical coordinate system (r, θ, z), expanding an arbitrary potential φ into Fourier components (A


m


(r, z), B


m


(r, z)) with respect to θ gives rise to









φ
=




(




A
m



(

r
,
z

)



cos






(

m





θ

)


+



B
m



(

r
,
z

)



sin






(

m





θ

)



)


m





(
1
)













Expansion into Fourier components in the cylindrical coordinate system (r, θ, z) is known as multiple magnetic field expansion.




Generally, terms other than axially symmetrical components appear in φ (r, θ, z) and induce different kinds of parasitic aberrations. The effects of disordered deviation from axial symmetry can be expressed as a combination of aberrations corresponding to multiple poles that are expanded terms. For the sake of simplicity of illustration, it is assumed that uniformity is achieved in the z-direction. Of the expanded components, the aberration induced by a potential given by Eq. (2) is considered.






φ


3




=C




3




r




3


cos 3(θ


3


−θ)  (2)






In Eq. (2), C


3


indicates the amount of potential, and θ


3


indicates the phase of the potential. Examples of distribution of φ


3


are shown in

FIG. 5

, where distributions of φ


3


=1 and φ


3


=−1 are shown under the condition where C


3


=1 and θ


3


=0. In

FIG. 5

, the circle inscribing the curves has r=1. Let B be a magnetic field derived from the potential given by Eq. (2). As shown in the potential curves of

FIG. 5

, the magnetic field B in this case is a hexapole field owing to a hexapole. Using (r, θ) coordinates, the magnetic field B is given by












B
=


-

u
0






φ
3









=


-


u
0



(










r


,


1
r











θ




)





φ
3








=


-

u
0





C
3



(


3


r
2


cos





3


(


θ
3

-
θ

)


,


-
3



r
2


sin





3


(


θ
3

-
θ

)



)










(
3
)













The state of the magnetic field B on the circle inscribing the potential curves with θ


3


=0 is indicated by the arrows in FIG.


6


. The magnitude of the magnetic field B is constant on the circumference and is a quadratic function of r that does not depend on θ, as given by Eq. (4).






|


B


|=3


C




3




μ




0




r




2


  (4)






If a round electron beam enters the magnetic field having the distribution as shown in

FIG. 6

perpendicularly to the plane of the paper, the shape of the electron beam is distorted into a three-fold symmetry, i.e., rotational symmetry of 120°. This is three-fold astigmatism.




Of the deviation from the axially symmetrical components of the electromagnetic lens, the potential distribution as shown in

FIG. 5

induces three-fold astigmatism. Therefore, in order to correct three-fold astigmatism, a potential distribution that cancels the astigmatism should be given close to the plane of opening of the electromagnetic lens. The r in Eq. (3) is made constant, and variation of θ


3


with varying θ is shown in FIG.


7


. This variation corresponds to variation in the potential on the circle inscribing the potential curves shown in

FIGS. 5 and 6

.




It is assumed that m coils L


n


(n=1, 2, . . . , m) are placed on the circumference of the opening plane of the electromagnetic lens such that the coils are angularly regularly spaced from each other at intervals of T from θ=0 to correct three-fold astigmatism. Let L


n


Ih be the ampere-turn of each coil necessary for the correction. The ampere-turn L


n


Ih is the coil exciting currents corresponding to the potentials assigned to the coils, respectively, to form the corrective field. In

FIG. 7

, the potentials to be canceled by coils arranged under the conditions where θ


3


=0, m=6, and T=π/3 are indicated by the broken lines. Generally, the ampere-turn L


n


Ih is given by








L




n




Ih=C




3




r




3


cos 3(θ


3




−nT


)(


T=


2


π/m


)  (5)






Ideally, infinitesimal coils are placed consecutively (T→0) to reproduce the distribution based on Eq. (3) and shown in FIG.


7


. In reality, however, only one achievable method is to place a finite number of coils having finite dimensions. Even in this case, the exciting currents can be estimated using Eq. (5). Under the present situations, the coils are placed, taking account of points corresponding to the maximum value (C


3


r


3


) and the minimum value (−C


3


r


3


) in the distribution shown in FIG.


7


. Six coils are necessary to create a hexapole field for correcting three-fold astigmatism. To rotate the magnetic field freely, 12 coils are generally placed.




As mentioned previously, three-fold astigmatism can be corrected by a stigmator in which 12 coils are positioned. However, in an electron microscope or the like, an octopole coil assembly has been already installed as some two-fold stigmators for correcting two-fold astigmatism. To correct three-fold astigmatism in an electron microscope, it is desired to place such stigmators in both illumination lens system and condenser lens system. If such stigmators are added under the condition where plural two-fold stigmators are installed, the height of the microscope column of the electron microscope is increased. Generally, limitations are placed on the height of a location where an electron microscope is installed. Where such limitations are taken into consideration, a three-fold stigmator may not be incorporated.




SUMMARY OF THE INVENTION




It is an object of the present invention to provide a stigmator assembly which comprises two-fold stigmators and a three-fold stigmator all mounted in an electron microscope, and capable of correcting even three-fold astigmatism, and having the same height as the conventional stigmator assembly having only two-fold stigmators.




A stigmator assembly in accordance with the present invention is equipped with plural stigmator coils circumferentially regularly spaced from each other on a circumference. The stigmator assembly further includes a control circuit for supplying sum control currents into the coils. The sum control currents are obtained by adding first control currents for producing a magnetic field that corrects three-fold astigmatism to second control currents for producing a magnetic field that corrects two-fold astigmatism.




Other objects and features of the invention will appear in the course of the description thereof, which follows.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a schematic diagram of an octopole coil assembly;





FIG. 2

is a block diagram of a stigmator assembly using the octopole coil assembly;





FIG. 3

is a schematic diagram of a dodecapole coil assembly;





FIG. 4

is a block diagram of a stigmator assembly using the dodecapole coil assembly;





FIG. 5

is a diagram illustrating an example of potential distribution that induces three-fold astigmatism;





FIG. 6

is a diagram showing the state of a magnetic field distribution on a circle that inscribes potential curves; and





FIG. 7

is a diagram illustrating examples of potentials to be canceled by coils.











DESCRIPTION OF THE PREFERRED EMBODIMENTS




In a first embodiment of the present invention, there is provided a stigmator assembly capable of correcting even three-fold astigmatism using an octopole coil assembly that would normally be used to correct only two-fold astigmatism, the octopole coil assembly being conventionally installed in a transmission electron microscope or the like. The octopole coil assembly using stigmator coils


11


-


18


is schematically shown in FIG.


1


.




Since the coils


11


-


18


are circumferentially regularly spaced from each other on a circumference, exciting currents fed into the coils


11


-


18


for correcting three-fold astigmatism can be determined by setting T=π/4 based on m=8 in Eq. (5). For simplicity, it is assumed that C


3


r


3


=A


3


and θ


3


=−θ


h


. Thus, we have








L




n




Ih=A




3


cos 3(θ


h




+nπ/


4)  (6)






Accordingly, arbitrary three-fold astigmatism can be corrected by supplying exciting currents L


n


Ih (n=1 to 8) into the coils


11


-


18


, respectively, the exciting currents being determined by Eq. (6). That is, arbitrary three-fold astigmatism can be corrected by supplying the currents L


n


Ih (n=1 to 8) into the coils


11


-


18


, respectively, for producing a hexapole field in which coefficient A


3


for determining the strength of the hexapole field and coefficient θ


h


for determining the phase angle of the hexapole field have been adjusted. Control parameters for the correction are A


3


and θ


h


, which correspond to the amplitude and phase, respectively, of three-fold astigmatism.




Similar consideration is given to two-fold astigmatism. In the case of a quadrupole, the potential distribution is selected as given by Eq. (7), and the exciting currents fed into the m coils for correcting two-fold astigmatism can be determined.






φ


2




=C




2




r




2


cos 2(θ


2


−θ)  (7)






where C


2


indicates the amount of potential and θ


2


indicates the phase of potential. Let L


n


Iq be the ampere-turn of each coil necessary for correction of two-fold astigmatism where m coils L


n


(n=1, 2, . . . , m) are angularly regularly spaced from each other at intervals of T from θ=0 on the circumference of the opening plane of the electromagnetic lens to correct two-fold astigmatism. The ampere-turn is given by








L




n




Iq=C




2




r




2


cos 2(θ


2




−nT


) (T=2


π/m


)  (8)






In this embodiment, there are eight coils


11


-


18


and so the exciting currents through the coils


11


-


18


for correcting two-fold astigmatism can be determined by setting T=π/4 based on m=8 in Eq. (8). Assuming C


2


r


2


=A


2


and θ


2


=−θ


q


, we have








L




n




Iq=A




2


cos 2(θ


q




+nπ/


4)  (9)






Arbitrary two-fold astigmatism can be corrected by supplying the exciting currents L


n


Iq (n=1 to 8) determined by Eq. (9). That is, arbitrary two-fold astigmatism can be corrected by supplying currents L


n


Iq (n=1 to 8) for producing a hexapole field, in which coefficient A


2


for determining the strength of the hexapole field and coefficient θ


q


for determining the phase angle of the hexapole field have been adjusted, according to the produced two-fold astigmatism. Control parameters for the correction are A


2


and θ


q


, which correspond to the amplitude and phase, respectively, of the two-fold astigmatism.




Where the sum currents that are the sums of the exciting currents given by Eq. (6) and the exciting currents given by Eq. (9) are supplied into the coils


11


-


18


, a magnetic field produced based on the linearity of magnetic field is the sum of a magnetic field created by the exciting currents given by Eq. (6) and a magnetic field created by exciting currents given by Eq. (9). Also, the force that charged particles such as an electron beam undergoes from the magnetic field has a linear relation to the magnetic field. That is, the effect of the magnetic field created by the sum currents on the charged particles is the sum of the effect of the magnetic field produced by the exciting currents given by Eq. (6) and the effect of the magnetic field produced by the exciting currents given by Eq. (9). This assures effectiveness of the decomposition of aberration based on Eq. (1).




Therefore, three-fold astigmatism and two-fold astigmatism can be corrected without interference using a single octopole coil assembly by controlling the sum currents flowing through the coils


11


-


18


with the control parameters A


3


, θ


h


, A


2


, and θ


q


.





FIG. 2

is a block diagram of a stigmator assembly using an octopole coil assembly. In this example, four kinds of control knobs


21


,


22


,


23


, and


24


are prepared. These control knobs


21


-


24


are input and setting means permitting a human operator to set the control parameters A


3


, θ


h


, A


2


, and θ


q


, respectively. Values indicating the control parameters A


3


and θ


h


are set with the control knobs


21


and


22


and entered into an arithmetic circuit (first arithmetic circuit)


31


. Values indicating the control parameters A


2


and θ


q


are set with the control knobs


23


and


24


and input into another arithmetic circuit (second arithmetic circuit)


32


.




The arithmetic circuit


31


performs calculations using the entered control parameters A


3


and θ


h


in accordance with Eq. (6), and produces control currents to be supplied to the coils


11


-


18


, respectively, according to the results of the calculations. The arithmetic circuit


32


performs calculations using the entered control parameters A


2


and θ


q


in accordance with Eq. (9), and produces control currents to be supplied to the coils


11


-


18


, respectively, according to the results of calculations.




An adder circuit


33


adds the control currents to be supplied to the coils


11


-


18


from the arithmetic circuit


31


to their respective control currents to be supplied to the coils


11


-


18


from the arithmetic circuit


32


for each of the coils


11


-


18


. The adder circuit supplies the results of the additions I


n


(=L


n


Ih+L


n


Iq, where n=1 to 8) to the coils


11


-


18


as control currents.




The arithmetic circuits


31


,


32


and the adder circuit


33


constitute a control circuit or control circuitry. The arithmetic circuits


31


and


32


may deliver calculated values that are digital values. The adder circuit


33


may sum up the digital values and then create analog control currents.




In this embodiment, three-fold astigmatism can be corrected, as well as two-fold astigmatism, using the octopole coil assembly that is conventionally installed in an electron microscope or the like and would normally be used to correct only two-fold astigmatism. Accordingly, it is not necessary to install additional corrective coils for correction of three-fold astigmatism. Consequently, the present invention can provide an environment in which three-fold astigmatism can be corrected, as well as two-fold astigmatism, without increasing the size of the microscope.




A second embodiment of the present invention is next described. In this second embodiment, a stigmator assembly capable of correcting two- and three-fold astigmatism using a dodecapole (12 pole) coil assembly.

FIG. 3

schematically shows the dodecapole coil assembly utilizing stigmator coils


51


-


62


.




It can be seen from the above considerations that three-fold astigmatism can be corrected using the dodecapole coil assembly, by setting T=π/6 based on m=12 in Eq. (5) to thereby determine the exciting currents through the coils


51


-


62


for correcting three-fold astigmatism and supplying the exciting currents into their respective coils


51


-


62


. In Eq. (5), C


3


r


3


is replaced by A


3


, and θ


3


is replaced by −θ


h


. Then, the relation T=π/6 is set. In consequence, Eq. (10) is derived.








L




n




Ih=A




3


cos 3(θ


h




+nπ/


6)  (10)






Arbitrary astigmatism can be corrected by supplying the exciting currents L


n


Ih (n=1 to 12) into the coils


51


-


62


, respectively, for producing the hexapole field determined by Eq. (10). In particular, arbitrary three-fold astigmatism can be corrected by supplying the currents L


n


Ih (n=1 to 12) into the coils


51


-


62


, respectively, for producing the hexapole field having current amplitude A


3


and phase θ


h


adjusted according to the produced three-fold astigmatism.




Furthermore, C


2


r


2


and θ


2


in Eq. (8) are replaced by A


2


and −θ


q


, respectively. The relation T=π/6 is set based on m=12. In this way, exciting currents through the coils


51


-


62


for correcting two-fold astigmatism as given by Eq. (11) can be determined.








L




n




Iq=A




2


cos 2(θ


q




+nπ/


6)  (11)






Three- and two-fold astigmatism can be corrected without interference using a single dodecapole coil assembly by supplying sum currents into the coils


51


-


62


, respectively. The sum currents are obtained by summing up control currents controlled with the control parameters A


3


and θ


h


based on Eq. (10) and control currents controlled with the control parameters A


2


and θ


q


based on Eq. (11), in the same way as in the first embodiment.





FIG. 4

is a block diagram of one example of stigmator assembly using a dodecapole coil assembly. In this configuration, values indicating the control parameters A


3


and θ


h


are set with the control knobs


21


and


22


and entered into an arithmetic circuit (first arithmetic circuit)


71


. Values indicating the control parameters A


2


and θ


q


are set with the control knobs


23


and


24


and input into another arithmetic circuit (second arithmetic circuit)


72


.




The arithmetic circuit


71


performs calculations using the entered control parameters A


3


and θ


h


in accordance with Eq. (10), and produces control currents to be supplied to the coils


51


-


62


, respectively, according to the results of the calculations. The arithmetic circuit


72


performs calculations using the entered control parameters A


2


and θ


q


in accordance with Eq. (11), and produces control currents to be supplied to the coils


51


-


62


, respectively, according to the results of calculations.




An adder circuit


73


adds the control currents to be supplied to the coils


51


-


62


from the arithmetic circuit


71


to their respective control currents to be supplied to the coils


51


-


62


from the arithmetic circuit


71


for each of the coils


51


-


62


. The adder circuit supplies the results of the additions I


n


(=L


n


Ih+L


n


Iq, where n=1 to 12) to the coils


51


-


62


as control currents.




The arithmetic circuits


71


,


72


and the adder circuit


73


constitute control circuitry. The arithmetic circuits


71


and


72


may deliver calculated values that are digital values. The adder circuit


73


may sum up the digital values and then create analog control currents.




In this embodiment, two- and three-fold astigmatism can be corrected by installing a dodecapole coil assembly instead of an octopole coil assembly that is conventionally installed in an electron microscope or the like and would normally be used to correct only two-fold astigmatism. Accordingly, it is not necessary to install both coils for correction of two-fold astigmatism and three-fold astigmatism, respectively. Consequently, the present invention can provide an environment in which three-fold astigmatism can be corrected, as well as two-fold astigmatism, without increasing the size of the microscope.




As described thus far, the present invention provides a stigmator assembly equipped with plural stigmator coils circumferentially regularly spaced from each other on a circumference. For example, the stigmator coils constitute an octopole coil assembly or dodecapole coil assembly. Hexapole field control currents for producing a hexapole field for correcting three-fold astigmatism are used. Also, quadrupole field control currents for producing a quadrupole field for correcting two-fold astigmatism are used. The hexapole field control currents and the quadrupole field control currents are added up and supplied into the coils. Consequently, two-fold astigmatism and three-fold astigmatism can be corrected simultaneously by the single octopole or dodecapole coil assembly. Both two-fold astigmatism and three-fold astigmatism can be corrected without increasing the size of the instrument incorporating the stigmator assembly.




Furthermore, in an electron microscope equipped with a conventional octopole coil assembly for correction of two-fold astigmatism, three-fold astigmatism can also be corrected without interference with the correction of two-fold astigmatism without adding any corrective coils. In an electron microscope equipped with a conventional octopole coil assembly for correction of two-fold astigmatism, correction of two-fold astigmatism and correction of three-fold astigmatism can be made without interference by installing and using a dodecapole coil assembly instead of the octopole coil assembly.




Having thus described my invention with the detail and particularity required by the Patent Laws, what is desired protected by Letters Patent is set forth in the following claims.



Claims
  • 1. A stigmator assembly comprising:plural stigmator coils circumferentially regularly spaced from each other on a circumference; and a control circuit for supplying sum control currents into said stigmator coils, said sum control currents being obtained by adding first control currents and second control currents, said first control currents being used to produce a magnetic field for correction of three-fold astigmatism, and said second control currents being used to produce a magnetic field for correction of two-fold astigmatism.
  • 2. The stigmator assembly of claim 1, wherein said stigmator coils constitute an octopole coil assembly or a dodecapole coil assembly.
  • 3. The stigmator assembly of claim 1, wherein said control circuit includes a first arithmetic circuit for calculating the values of the first control currents to be supplied into said coils to correct three-fold astigmatism, a second arithmetic circuit for calculating the values of the second control currents to be supplied into said coils to correct two-fold astigmatism, and an adder circuit for creating the sum control currents corresponding to the sums of the values calculated by said first arithmetic circuit and the values calculated by said second arithmetic circuit.
  • 4. The stigmator assembly of claim 3, wherein said first arithmetic circuit performs calculations given byA3 cos 3(θh+2nπ/m) where m is the number of said coils, n (n=1 to m) is a number given to each coil, A3 is a coefficient for determining the strength of a hexapole field for correction of said three-fold astigmatism, and θh is a term for determining the phase angle of said hexapole field, and wherein second arithmetic circuit performs calculations given byA2 cos 2(θq+2nπ/m) where A2 is a coefficient for determining the strength of a quadrupole field for correction of said two-fold astigmatism and θq is a term for determining the phase angle of said quadrupole field.
  • 5. The stigmator assembly of any one of claims 1-4, wherein said stigmator assembly is incorporated in a transmission electron microscope.
Priority Claims (1)
Number Date Country Kind
2000-223628 Jul 2000 JP
US Referenced Citations (2)
Number Name Date Kind
4162403 Baumgarten Jul 1979 A
4214162 Hoppe et al. Jul 1980 A
Non-Patent Literature Citations (1)
Entry
“Three-fold astigmatism in high-resolution transmission electron microscopy”, O.L. Krivanek, Ultramicroscopy, 55 (1994), pp. 419-433.