Stripe height lapping control structures for a multiple sensor array

Abstract
A method and system provide a storage device. A plurality of read sensor stacks for each reader of the storage device are provided. The read sensor stacks are distributed along a down track direction and offset in a cross-track direction. A plurality of electronic lapping guides (ELGs) are provided for the read sensor stacks. The read sensor stacks are lapped. Lapping is terminated based on signal(s) from the ELG(s).
Description
BACKGROUND


FIG. 1 depict an air-bearing surface (ABS) view of a conventional read transducer 10. The conventional read transducer 10 includes shields 12 and 20, sensor 14 and magnetic bias structures 16. The read sensor 14 is typically a giant magnetoresistive (GMR) sensor or tunneling magnetoresistive (TMR) sensor. The read sensor 14 includes an antiferromagnetic (AFM) layer, a pinned layer, a nonmagnetic spacer layer, and a free layer. Also shown is a capping layer. In addition, seed layer(s) may be used. The free layer has a magnetization sensitive to an external magnetic field. Thus, the free layer functions as a sensor layer for the magnetoresistive sensor 14. The magnetic bias structures 16 may be hard bias structures or soft bias structures. These magnetic bias structures are used to magnetically bias the sensor layer of the sensor 14.


Although the conventional magnetic recording transducer 10 functions, there are drawbacks. In particular, the conventional magnetic recording transducer 10 may not function adequately at higher recording densities. Two-dimensional magnetic recording (TDMR) technology may enable significantly higher recording densities. In TDMR, multiple read sensors are used. These sensors are longitudinally distributed along the cross track direction but are aligned in the down track direction. The central sensor reads the data from a track of interest, while the outer sensors sense the data in adjacent tracks in order to account for noise.


Although TDMR might be capable of higher recording densities, issues may be faced at skew. As a result, the transducer may not perform as desired for all skew angles. In addition, fabrication of the sensors may be challenging. Accordingly, what is needed is a system and method for improving the performance of a magnetic recording read transducer, particular for TDMR.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 depicts a conventional read transducer.



FIG. 2 depicts an exemplary embodiment of a disk drive.



FIGS. 3A and 3B depict ABS-facing views of an exemplary embodiment of a portion of a magnetic recording read transducer including the device and the lapping guides.



FIGS. 4A-4D depict views of an exemplary embodiment of electrical connections made to the ELGs for a magnetic recording read transducer.



FIG. 5 depicts a plan view of another exemplary embodiment of ELGs for a magnetic recording read transducer.



FIG. 6 depicts a plan view of another exemplary embodiment of ELGs for a magnetic recording read transducer.



FIG. 7 depicts an ABS-facing view of another exemplary embodiment of ELGs for a magnetic recording read transducer.



FIGS. 8A-8B depict ABS-facing and plan views of another exemplary embodiment of an ELG for a magnetic recording read transducer.



FIG. 9 is a flow chart depicting an exemplary embodiment of a method for fabricating a magnetic recording read transducer.



FIG. 10 is a flow chart depicting an exemplary embodiment of a method for fabricating a magnetic recording read transducer.





DETAILED DESCRIPTION


FIGS. 2 and 3A-3B depict side and ABS-facing views of a disk drive 100. For clarity, FIGS. 2, 3A and 3B are not to scale. For simplicity not all portions of the disk drive 100 are shown. In addition, although the disk drive 100 is depicted in the context of particular components other and/or different components may be used. For example, circuitry used to drive and control various portions of the disk drive 100 is not shown. For simplicity, only single components are shown. However, multiples of one or more of the components and/or their sub-components might be used. Further, in some embodiments, the devices shown in FIG. 3B may be removed during fabrication and thus not present in the final disk drive 100. However, in other embodiments, the devices shown in FIG. 3B may be present in the finished disk drive 100. Thus, FIG. 3B may be considered to how the disk drive 100 during fabrication, while FIG. 3A may depict the disk drive during fabrication or after manufacturing is complete.


The disk drive 100 includes media 101, a slider 102, a head 103 including a write transducer 104 and a read transducer 110. The write transducer includes at least a write pole 106 and coil(s) 108 for energizing the pole 106. Additional and/or different components may be included in the disk drive 100. Although not shown, the slider 102, and thus the transducers 104 and 110 are generally attached to a suspension (not shown). The transducers 104 and 110 are fabricated on the slider 102 and include an ABS proximate to the media 101 during use. Although both a write transducer 104 and a read transducer 110 are shown, in other embodiments, only a read transducer 110 may be present.


The read transducer 110 includes multiple read sensors 112, 114 and 116. The read sensors 112, 114 and 116 include sensor layers 113, 115 and 117, respectively, that may be free layers in a magnetoresistive junction such as a giant magnetoresistive (GMR) sensor, a tunneling magnetoresistive (TMR) sensor. Thus, each sensor 112, 114 and 116 may include a pinning layer, a pinned layer, a nonmagnetic spacer layer and a free layer 113, 115, and 117, respectively. For simplicity, only the free layers 113, 115 and 117 are separately labeled in FIG. 3A. The sensors 112, 114 and 116 may also include seed layer(s) (not shown) and capping layer(s) (not shown). The pinning layer is generally an AFM layer that is magnetically coupled to the pinned layer. In other embodiments, however, the pinning layer may be omitted or may use a different pinning mechanism. The free layers 113, 115 and 117 are each shown as a single layer, but may include multiple layers including but not limited to a synthetic antiferromagnetic (SAF) structure. The pinned layer may also be a simple layer or a multilayer. Although shown as extending the same distance from the ABS, the pinned layer may extend further than the corresponding free layer 113, 115, and/or 117, respectively. The nonmagnetic spacer layer may be a conductive layer, a tunneling barrier layer, or other analogous layer. Although depicted as a GMR or TMR sensor, in other embodiments, other structures and other sensing mechanisms may be used for the sensor.


Although described as read sensors, if FIG. 3A is considered to depict the transducer 110 before completion, particularly before lapping, the sensors 112, 114 and 116 may be read sensor stacks. Read sensor stacks include the layers provided for the read sensors, but definition of the stacks may not be completed. For example, lapping of the transducer 110 may not have been performed. However, the track widths of the sensors would have been defined in the cross track direction. For simplicity, when referring to FIG. 3A, items 112, 114 and 116 are generally termed sensors.


The read sensors 112, 114 and 116 are separated by distances d1 and d2 in a down track direction. The down track direction is perpendicular to the cross track direction. The cross track direction and track width direction are the same. In the embodiment shown in FIGS. 2-3B, the distance d1 and d2 between the sensors 112 and 114 and between the sensors 114 and 116, respectively, are the same. However, in other embodiments, the distances between the sensors 112, 114 and 116 may not be the same. It is generally desirable to reduce the distance between the sensors 112, 114 and 116 in order to reduce the skew effect. The distances d1 and d2 may each be at least ten nanometers and not more than four hundred nanometers. The read sensors 112, 114 and 116 may have multiple widths, w1, w2 and w3, respectively, in the track width, or cross-track, direction. However, in other embodiments, other widths are possible. The widths of the sensors 112, 114 and 116 may also be based on the track pitch. The track pitch is the distance from the center of one track to the center of the next track. Further, the widths may depend not only on the track pitch, but also on the distance between the sensors 112, 114 and 116.


The read sensors 112, 114 and 116 may also be displaced along the cross track direction. Therefore, the centers of each of the read sensors 112, 114 and 116 are not aligned along a vertical line that runs the down track direction. In the embodiment shown, none of the read sensors 112, 114 and 116 are aligned along a vertical line that runs in the down track direction. In other embodiments, some or all of the read sensors 112, 114 and 116 may be aligned. The read sensors 112, 114 and 116 may also partially overlap in the track width/cross track direction. However, in other embodiments, the read sensors 112, 114 and 116 may be aligned.


Also shown are bias structures 122, 123 and 124 that magnetically bias the read sensors 112, 114 and 116, respectively. The magnetic bias structure(s) 122, 123 and/or 124 may be soft bias structures fabricated with soft magnetic material(s). In other embodiments, the magnetic bias structure(s) 122, 123 and/or 124 may be hard magnetic bias structures. Other mechanisms for biasing the sensors 112, 114 and 116 might also be used.


The read sensors are separated by shields 130 and 140. The read sensors 112, 114 and 116 and shields 130 and 140 are surrounded by read shields 120 and 149. Thus, as used herein, a shield may be considered to be an internal shield, which is interleaved with read sensors 112, 114 and 116 and between the outer, read shields. The outermost shields for the read transducer 110 are termed read shields. In the embodiment shown in FIGS. 2-3B, three read sensors 112, 114 and 116 and two internal shields 130 and 140 are shown. However, in another embodiment, another number of read sensors 112, 114 and 116 and internal shields 130 and 140 may be present. The shields/read shields 120, 130, 140 and 149 generally include soft magnetic material. In some embodiments, one or more of the shields 120, 130, 140 and 149 may include ferromagnetic layers that are antiferromagnetically coupled.


The shields 130 and 140 may be configured to not only magnetically shield the sensors 112, 114 and 116, but also to provide electrical isolation. As a result, each shield 130 and 140 includes magnetic metallic layers separated by one or more insulating layers. Thus, the shield 130 includes conductive magnetic layers 132 and 136 that are separated by insulating layer 134. Similarly, the shield 140 includes conductive magnetic layers 142 and 146 separated by insulating layer 144. Thus, the shields 130 and 140 may magnetically shield and electrically isolate the sensors 112, 114 and 116.


Electronic lapping guides (ELGs) 150, 152 and 154 for the transducer 110 and disk drive 100 are shown in FIG. 3B. The ELGs 150, 152 and 154 are used to control lapping of the transducer 110 and thus the stripe heights of the sensors 112, 114 and 116 (length in the stripe height direction). Signal(s) from the ELGs 150, 152 and 154 are used to determine when to terminate lapping of the sensors 112, 114 and 116.


The ELGs 150, 152 and 154 may be formed in the same layers as the sensors 112, 114 and 116, respectively. For example, the ELGs 150, 152 and 154 may be at substantially the same layer as the free layers 113, 115 and 117, respectively, and thus at substantially the same distance from the underlying substrate (not shown). In other words, the ELGs 150152 and 154 may be coplanar with the sensors 112, 114 and 116, respectively. In some such embodiments, the ELGs 150, 152 and 154 may be coplanar with the sensor layers 113, 115 and 117, respectively. The distances between the ELGs 150 and 152 and the ELGs 152 and 154 may be substantially the same as the distances between the sensors/free layers 112/113 and 114/115 and the sensors/free layers 114/115 and 116/117, respectively. In the embodiment shown in FIGS. 2-3B, therefore, each ELG 150, 152 and 154 corresponds to a sensor 112, 114 and 116, respectively. In other embodiments, the number of sensors and the number of ELGs may not be the same. For example, a single ELG, such as the ELG 152, may be used for controlling lapping of all sensors 112, 114 and 116. In other embodiments, two ELGs may be used for three sensors. Other configurations may also be possible.


The ELGs 150, 152 and 154 may be configured in various manners. In some embodiments, each ELG 150, 152 and 154 may have its own contacts, allowing independent determinations of the resistances of the ELGs 150, 152 and 154. In other embodiments, at least some of the ELGs 150, 152 and 154 may share contacts. For example, the ELGs 150, 152 and 154 may be coupled in series. In such an embodiment, various sub-configurations are possible. For example, only two leads, a first for one side of the ELG 150 and a second for the opposite side of the ELG 154 may be provided. In other embodiments, additional other contacts and leads may be used for separate determinations of the resistance(s) of one or more of the ELGs 150, 152 and 154. In another embodiment, the ELGs 150, 152 and 154 may be connected in parallel. In such an embodiment one lead may connect to one side of the ELGs 150, 152 and 154, while the other lead connects to the other side of the ELGs 150, 152 and 154. Additional contacts and/or leads may be provided for the ELGs 150, 152 and/or 154 in order to isolate the ELG 150, 152 or 154 to independently determine its properties.


Using the ELG(s) 150, 152 and/or 154, lapping of the sensor stacks/sensors 112, 114 and 116 may be controlled. A signal from the ELG(s) 150, 152 and/or 154 may be used to determine when to terminate lapping of the transducer 110. This signal may correspond to the resistance(s) of the ELG(s) 150, 152 and/or 154. The resistances of the ELGs 150, 152 and 154 during lapping correspond to the stripe heights of the ELGs 150, 152 and/or 154 during lapping. As the resistances change, the stripe heights change. The ELG stripe heights correspond to stripe heights of the sensors 112, 114 and 116. Thus, the desired sensor stripe heights may be determined, the corresponding ELG stripe heights determined, and the target resistances of the ELGs 150, 152 and 154 set based on these stripe heights. When the measured resistance(s) of the ELG(s) 150, 152 and/or 154 are the same as the target resistance(s), lapping may be terminated.


Because one or more ELGs 150, 152 and/or 154 are used, fabrication of the transducer 110 may be improved. Use of a single ELG 150, 152 or 154 allows some control over lapping and, therefore, the stripe height of the sensors 112, 114 and 116. If multiple ELGs 150, 152 and/or 154 are used, this control may be improved. For example, lapping may be terminated when a combination of the stripe heights of the sensors 112, 114 and 116 is, as determined by the ELG signals, optimized. For example, if a single ELG 152 were used, lapping may be optimized for only the sensor 114. When some combination of the ELGs 150, 152 and 154 are used, a combination of the stripe heights of the sensors 112, 114 and 116 may be optimized.


For example, FIGS. 4A-4D depict views of an exemplary embodiment of ELGs 150, 152 and 154 and their electrical connections for a magnetic recording read transducer 110′ and disk drive 100′. The read transducer 110′ and disk drive 100′ are analogous to the read transducer 110 and disk drive 100, respectively. Consequently, similar components have analogous labels. Thus, the ELGs 150, 152 and 154 depicted in FIG. 4A are analogous to the ELGs 150, 152 and 154 depicted in FIG. 3B and used in connection with the sensors/sensor stacks 112, 114 and 116. Referring to FIGS. 3A and 4A-4D, FIG. 4A depicts an ABS-facing view, while FIGS. 4B, 4C and 4D depict plan views of the ELGs 150, 152 and 154, respectively. In the embodiment depicted in FIGS. 4A-4D, the ELGs 150, 152 and 154 are connected in series. Three ELGs 150, 152 and 154 corresponding to the sensors/sensor stacks 112, 114 and 116, respectively are shown. In other embodiments, another number of ELGs may be used.


In addition to the ELGs 150, 152 and 154, common ground connector 161, common pad connector 167, vias 160, 162, 164 and 166 and optional connectors 170 and 172 are shown. The ELG 152 is shown as having a mirror image configuration of pads, while the ELGs 150 and 154 have a partial mirror image. In other embodiments, other pad configurations may be used. The ELG 150 is thus connected to common ground connector 161 through via 160 and to ELG 152 through via 162. The ELG 152 is connected to the ELG 154 and optional connector 172 through via 164. The ELG 154 is connected to the common pad 167 through via 166. The specific manner in which the optional connectors 170 and 172 are connected to the appropriate portions of the ELGs 150, 152 and 154.


Common pads 161 and 167 allow for a single resistance measurement of the series resistance of the ELGs 150, 152 and 154 to be made using two pads. Optional connectors 170 and 172 allow for the resistance of each of the ELGs 150, 152 and 154 to be independently measured. For example, the ELG 150 may have its resistance measured using connectors 161 and 167. The ELG 152 may have its resistance independently measured using connectors 170 and 172. The ELG 154 may have its resistance independently measured using connectors 172 and 167. In other embodiments, one or both of the connectors 170 and 172 may be omitted.


In some embodiments, a measure of the stripe height, target lapping resistance and, therefore, target signal from the ELGs 150, 152 and 154 may be determined as follows. The resistance of ELG 150, R150, may be given by R150=[(W150/SH150) K150]Rs150, where W150 is the track width (width in the cross track direction) of ELG 150; SH150 is the stripe height of ELG 150 (length in the stripe height direction perpendicular to the ABS and perpendicular to the page in FIG. 4A), K150 is the leads resistance constant for ELG 150 and Rs150 is the sheet resistance of the ELG 150. Similarly, the resistance of ELG 152, R152, may be given by R152=[(W152/SH152) K152]Rs152, where W152 is the track width of ELG 152; SH152 is the stripe height of ELG 152, K152 is the leads resistance constant for ELG 152 and Rs152 is the sheet resistance of the ELG 152. The resistance of ELG 154, R154, may be given by R154=[(W154/SH154)+K154]Rs154, where W154 is the track width of ELG 154; SH154 is the stripe height of ELG 154, K154 is the leads resistance constant for ELG 154 and Rs154 is the sheet resistance of the ELG 154. The total, series resistance of the ELGs 150, 152 and 154 is R150+R152+R154. Thus, the total series resistance of the ELGs 150, 152 and 154 in FIGS. 4A-4D is: Rtotal=[(W150/SH150)+K150]Rs150+[(W152/SH152)+K152]Rs152 [(W154/SH154) K154]Rs154. Desired stripe heights for the ELGs 150, 152 and 154 may be selected based on a balance of considerations for the corresponding stripe heights of the read sensors 112, 114 and 116, respectively. Based on the desired stripe heights SH150, SH152 and SH154 for the ELGs 150, 152 and 154, respectively, the target resistance of the combination shown in FIGS. 4A-4D may be determined using the equations above. In some embodiments, the parameters such as Wx, SHx, K, and Rsx, are measured. In other embodiments, the parameters may be set as discussed below. When the actual series resistance of the ELGs 150, 152 and 154 as connected reaches the target resistance, lapping may be terminated.


The desired/target signal may be further calculated as follows. The windage is the offsets in the heights from the design target for the ELGs. The windage thus corresponds to the difference in stripe heights. If the ELG 150 is considered to have a base stripe height, then the stripe heights of ELGs 152 and 154 may be expressed as the stripe height of the ELG 150 and the windages for the ELGs 152 and 154. For example, FIGS. 5 and 6 depict exemplary embodiments of possible windages. In FIG. 5, the ELG 152′ and the ELG 154′ are both longer than the ELG 150′. Thus, the ELGs 152′ and 154′ have windages δ1 and δ2, respectively, that are both positive. In FIG. 6, the ELG 152″ is shorter than the ELG 150″ while the ELG 154″ is longer. The ELGs 152″ and 154″ have windage δ1′ that is negative and positive windage δ2′, respectively. In other embodiments, other windages are possible. For example, mechanisms which may be used to account for windage are described in U.S. Pat. No. 8,151,441.


Referring back to FIGS. 4A-4D, the ELGs 152 and 154 are presumed to have windages δ152 and δ154, respectively. Thus, the resistances become: R150=[(W150/SH150)+K150]Rs150; R152=[(W152/SH150152))+K152]Rs152 and R154=[(W154/SH150154))+K154]Rs154. Further, the ELGs 150, 152 and 154 may be designed such that the leads resistance constants are substantially the same (K150=K152=K154=K). The track widths of the ELGs 150, 152 and 154 may also be set to be substantially the same in some embodiments, (W150=W152=W154=W). Although it may be unlikely that the sheet resistances of the ELGs 150, 152 and 154 are the same because they are deposited separately, this might be assumed (Rs150=Rs152=Rs154=Rs) for simplification. As a result, the total series resistance may be as approximated by Rtotal=RsWK{(1/(KSH150)+1/W+1/(K(SH150152))+1/W+1/(K(SH150154))+1/W}.


The sensitivity may be considered the change in resistance divided by the changes in stripe height (ΔRtotal/ΔSH). Given the above, the sensitivity for the configuration shown in FIGS. 4A-4D may be given by: RsWK{[1/(KSH150)]2+[1/(K(SH150152))]2+[1/(K(SH150154))]2}. In this embodiment, the sensitivity is known and Rs, W and K are known or design constants. Thus, the desired stripe heights may be obtained. If a higher level of precision is desired, then the actual sheet resistances (Rs150, Rs152 and Rs154) and windages (δ152 and δ154) for the ELGs 150, 152 and 154 may be measured and used in determining the lapping rate and target resistance. For wafer level measurements prior to lapping, it may be assumed that δ152 and δ154 are much less than SH150. In such an embodiment, SH150=[RsW/(ΔRtotal/ASH)]1/2 and SH160=3/[Rtotal/(RsW)−3W]. These expressions for the stripe height of ELG 150 (or the other ELGs 152 and/or 154) may be used to estimate the upper bounds of the sensor stack stripe height and/or calibrate lapping.


In some embodiments, the ELGs 150, 152 and 154 may have different track widths. In such embodiments, the differences in track widths is to be accounted for. For example, in some such embodiments, the track widths of one of the ELGs may be a multiple of the track width of the remaining ELGs (e.g. W150=W152=W154/2). In all embodiments, however, the relevant parameters may either be measured or designed such that the lapping can be controlled using the ELGs 150, 152 and 154 connected in series to give the desired stripe heights for the sensors 112, 114 and 116, within acceptable limits.


Using the ELGs 150, 152 and/or 154 and the signals discussed above, termination of lapping of the sensors 112, 114 and 116 may be controlled such that a balance between the sensor 112, 114 and 116 responses may be achieved. Stated differently, variations in the stripe heights of the sensors 112, 114 and 116 may be better compensated. Optimizing lapping of the sensors 112, 114 and 116 may improve yield and improve performance of the combination of sensors 112, 114 and 116. If the series resistance, for example between connectors 161 and 167, is used, this control may be achieved using only two contact pads. Thus, the configuration of pads used for a single read sensor need not be changed. In other embodiments, accuracy might be further improved by providing pads for each of the ELGs 150, 152 and 154. Resistances, including sheet resistance, may also be measured for each of the ELGs 150, 152 and 154. Windage may be determined based on the sheet resistances. Further, direct feedback for each of the sensors 112, 114 and 116 may be provided during processing using the corresponding ELG 150, 152 and 154, respectively. Finally, subset(s) of the ELGs 150, 152 and 154 may also be used in fabrication of the disk drive. Thus, fabrication of the disk drive 100, 100′ and/or 100″ may be improved.



FIG. 7 depicts an ABS-facing view of another exemplary embodiment of ELGs for a magnetic recording read transducer 110″ and disk drive 100″. The read transducer 110″ and disk drive 100″ are analogous to the read transducer 110 and disk drive 100. Thus, analogous components have similar labels. Thus, the ELGs 150, 152 and 154 depicted in FIG. 7 are analogous to the ELGs 150, 152 and 154 depicted in FIG. 3B and used in connection with the sensors/sensor stacks 112, 114 and 116. Referring to FIGS. 3A and 7, an ABS-facing view is shown in FIG. 7. In the embodiment depicted in FIG. 7, the ELGs 150, 152 and 154 are connected in parallel. Three ELGs 150, 152 and 154 corresponding to the sensors/sensor stacks 112, 114 and 116, respectively are shown. In other embodiments, another number of ELGs may be used.


In addition to the ELGs 150, 152 and 154, common ground connector 161, common pad connector 167, vias 160, 162, 163, 164, 165 and 166 are shown. The vias 160, 162, 164, 166 and connectors 161 and 167 are analogous to those shown in FIG. 4A. The ELGs 150, 152 and 154 may each have a mirror image configuration of pads. In other embodiments, other pad configurations may be used. The ELG 150 is thus connected to common ground connector 161 through via 160 and to ELG 152 through vias 162 and 163. The ELG 152 is connected to the ELG 154 and optional connector 172 through vias 164 and 165. The ELG 154 is connected to the common pad 167 through via 166. Although not shown, optional connectors for independently determining the resistances of the ELGs 150, 152 and/or 154 may be provided. Such connectors are analogous to the connectors 170 and 172 depicted in FIG. 4A. Common pads 161 and 167 allow for a single resistance measurement of the parallel resistance of the ELGs 150, 152 and 154 to be made using two pads.


In some embodiments, a measure of the stripe height, target lapping resistance and, therefore, target signal from the ELGs 150, 152 and 154 may be determined as follows. The resistances of ELGs 150, 152 and 154 (R150, R152 and R154) are described above. The total, parallel resistance of the ELGs 150, 152 and 154 is 1/(1/R150+1/R152+1/R154). Thus, the total parallel resistance of the ELGs 150, 152 and 154 in FIG. 7 is: Rtotal,∥=1/{[[(W150/SH150)+K150]Rs150]−1+[[(W152/SH152)+K152]Rs152]−1+[[(W154/SH154) K154]Rs154]−1} Desired stripe heights for the ELGs 150, 152 and 154 may be selected based on a balance of considerations for the corresponding stripe heights of the read sensors 112, 114 and 116, respectively. Based on the desired stripe heights SH150, SH152 and SH154 for the ELGs 150, 152 and 154, respectively, the target resistance of the combination shown in FIG. 7 may be determined using the equations above. In some embodiments, the parameters such as Wx, SHx, Kx, and Rsx, are measured. In other embodiments, the parameters may be set as discussed below. When the actual resistance of the ELGs 150, 152 and 154 as connected in parallel reaches the target resistance, lapping may be terminated.


The desired/target signal may be further calculated using the windage described above. The ELGs 152 and 154 are presumed to have windages δ152 and δ154, respectively, with respect to the ELG 150. Thus, the total, parallel resistance becomes Rtotal,∥=1/{[[(W150/SH150)+K150]Rs150]−1+[[(W152/(SH150152))+K152]Rs152]−1 [[(W154/(SH150154))+K154]Rs154]−1}. As discussed above with respect to the series embodiment, the ELGs 150, 152 and 154 may be designed such that the leads resistance constants are substantially the same and given by K. The track widths of the ELGs 150, 152 and 154 may also be set to be substantially the same in some embodiments, W. Although it is unlikely that the sheet resistances of the ELGs 150, 152 and 154 are the same, this might be assumed (Rs150=Rs152=Rs154=Rs) for simplification. As a result, the total parallel resistance may be approximately by Rtotal,∥=1/{[[(W/SH150)+K]Rs]−1+[[(W/(SH150152))+K]Rs]−1+[[(W/(SH150154))+K]Rs]−1}. The sensitivity, estimated upper bound for the stripe heights and other parameters may be calculated or measured in a manner analogous to that described above in the series case. Similarly, differences in track width may be accounted for. In all embodiments, however, the relevant parameters may either be measured or designed such that the lapping can be controlled using the ELGs 150, 152 and 154 connected in parallel to give the desired stripe heights for the sensors 112, 114 and 116, within acceptable limits.


Using the ELGs 150, 152 and/or 154 and the signals discussed above, termination of lapping of the sensors 112, 114 and 116 may be controlled such that a balance between the sensor 112, 114 and 116 responses may be achieved. Stated differently, variations in the stripe heights of the sensors 112, 114 and 116 may be better compensated. Optimizing lapping of the sensors 112, 114 and 116 may improve yield and improve performance of the combination of sensors 112, 114 and 116. If the parallel resistance, for example between connectors 161 and 167, is used, this control may be achieved using only two contact pads. Thus, the configuration of pads used for a single read sensor need not be changed. In other embodiments, accuracy might be further improved by providing pads for each of the ELGs 150, 152 and 154. Resistances, including sheet resistance, may also be measured for each of the ELGs 150, 152 and 154. Windage may be determined based on the sheet resistances. Further, direct feedback for each of the sensors 112, 114 and 116 may be provided during processing using the corresponding ELG 150, 152 and 154, respectively. Subset(s) of the ELGs 150, 152 and 154 may also be used in fabrication of the disk drive. Thus, fabrication of the transducer 110 and/or 110′″ may be improved



FIGS. 8A and 8B depict an ABS-facing view and a plan view, respectively, of another exemplary embodiment of an ELG for a magnetic recording read transducer 110′ and disk drive 100′″. The read transducer 110′″ and disk drive 100′″ are analogous to the read transducer 110 and disk drive 100. Thus, analogous components have similar labels. Thus, the ELG 152 depicted in FIGS. 8A and 8B is analogous to the ELG 152 depicted in FIG. 3B and used in connection with the sensors/sensor stacks 112, 114 and 116. Although the ELG 152, which corresponds to the center sensor/sensor stack 114 may be preferred if a single ELG is used, in other embodiments, the ELG 150 or 154 might be employed instead.


In addition to the ELG 152, ground connector 161, pad connector 167 and vias 160 and 166 are shown. The vias 160 and 166 and connectors 161 and 167 are analogous to those shown in FIG. 4A. Additional vias 162 and 164 may be coupled to optional connectors (not shown). The ELG 152 may each have a mirror image configuration of pads. In other embodiments, other pad configurations may be used. The ELG 150 is thus connected to common ground connector 161 through via 160 and to ELG 152 through vias 162 and 163. The ELG 152 is connected to the ELG 154 and optional connector 172 through vias 164 and 165. The ELG 154 is connected to the common pad 167 through via 166. Pads 161 and 167 allow for a single resistance measurement of the ELG 152 to be made using two pads.


In some embodiments, a measure of the stripe height, target lapping resistance and, therefore, target signal from the ELG 152 may be determined as follows. The resistance of ELG 152 is R152=[(W152/(SH150152))+K152]Rs152. The desired (or target) stripe height for the ELG 152 may be selected based on a balance of considerations for the corresponding stripe heights of the read sensors 112, 114 and 116, respectively. For example, the desired stripe height of the ELG 152 may be based on the desired stripe height of the sensor 114. The corresponding target resistance may be calculated using the equation above. In some embodiments, the parameters such as W152, SH152, K152 and Rs152 are measured. In other embodiments, the parameters may be set below. When the actual resistance of the ELG 152 reaches the target resistance, lapping may be terminated.


Using the ELG 152 and the signals discussed above, termination of lapping of the sensors 112, 114 and 116 may be controlled. Because a single sensor is used, fabrication may be simplified and only two contact pads used. Electrical insulation of the ELG 152 may also be improved because no conductive ELGs, such as an ELG 150 or 154, are close to the ELG 152.



FIG. 9 is an exemplary embodiment of a method 300 for providing a read transducer having multiple read sensors and using ELG(s) to control lapping. For simplicity, some steps may be omitted, interleaved, and/or combined. The method 300 is also described in the context of providing a single recording transducer 110/110′/110″ depicted in FIGS. 2, 3A-3B, 4A-4D and 7. However, the method 300 may be used to fabricate multiple devices on a wafer at substantially the same time. The method 300 may also be used to fabricate other transducers including but not limited to any combination of the transducers 110, 110′, 110″ and/or 110′″. The method 300 is also described in the context of particular layers. A particular layer may include multiple materials and/or multiple sub-layers. The method 300 also may start after formation of other portions of the magnetic recording transducer.


The read sensor stacks are provided, via step 302. Step 302 typically includes depositing the layers for each of the sensors, then defining the sensors in at least the track width direction. The stripe height away from the ABS may also be defined in step 302. Portions of step 302 are generally interleaved with other steps. For example, the read sensor stack 112 may be formed, then a number of steps occur before formation of the read sensor stack 114. Similarly, a number of steps occur between formation of the read sensor stack 114 and fabrication of the read sensor stack 116.


The ELG(s) 150, 152 and/or 154 are provided, via step 304. In some embodiments, step 304 includes depositing and patterning the conductive material(s) for the ELG(s) 150, 152 and/or 154. Portions of step 304 may be interleaved with portions of step 302 such that the ELG(s) 150, 152 and 154 are at level(s) corresponding to the sensor stacks 112, 114 and 116, respectively. For example, the ELG 150 may be deposited and patterned at around the time that one or more of the layers of the sensor stack 112 is provided. Similarly, the ELG 152 may be deposited and patterned at around the time that one or more of the layers of the sensor stack 114 is provided. The ELG 154 may be deposited and patterned at around the time that one or more of the layers of the sensor stack 116 is provided. Thus, the ELG(s) 150, 152 and 154 are at substantially the same layer(s) in the device as the sensor stacks 112, 114 and 116. Fabrication of the transducer 110, 110′ and/or 110″ continues until the slider is ready for lapping.


Lapping is then performed until termination that is based upon the ELG signal(s), via step 306. Step 306 may include determining a target resistance for one or more of the ELG(s) 150, 152 and 154 and/or a resistance of a combination of one or more of the ELG(s) 150, 152 and 154. For example, a target for the series or parallel resistance described above may be determined. As is discussed above, this target resistance translates to stripe height(s) of the ELG(s) 150, 152 and/or 154 and to stripe heights of the sensors 112, 114 and 116. When the signal from the ELG(s) 150, 152 and/or 154 reaches the target, lapping may be terminated.


Using the method 300, the transducer 110, 110′ and/or 110″ and disk drive 100, 100′ and/or 100″, respectively, may be accomplished. Because lapping is controlled using the signals from the ELG(s) 150, 152 and/or 154, a better balancing of the stripe heights of the sensors 112, 114 and 116 may be achieved. Thus, yield for the method 300 may be improved and device performance enhanced.



FIG. 10 is an exemplary embodiment of a method 310 for providing a read transducer having multiple read sensors and using an ELG to control lapping. For simplicity, some steps may be omitted, interleaved, and/or combined. The method 310 is also described in the context of providing a single recording transducer 110′″ depicted in FIGS. 2, 3A-3B, and 8A-8B. However, the method 310 may be used to fabricate multiple transducers at substantially the same time. The method 310 may also be used to fabricate other transducers. The method 310 is also described in the context of particular layers. A particular layer may include multiple materials and/or multiple sub-layers. The method 310 also may start after formation of other portions of the magnetic recording transducer.


The read sensor stacks are provided, via step 312. Step 312 typically includes depositing the layers for each of the sensors, then defining the sensors in at least the track width direction. The stripe height away from the ABS may also be defined in step 312. Portions of step 312 are generally interleaved with other steps. For example, the read sensor stack 112 may be formed, then a number of steps occur before formation of the read sensor stack 114. Similarly, a number of steps occur between formation of the read sensor stack 114 and fabrication of the read sensor stack 116. Step 312 is analogous to step 302 of the method 300.


The ELG 152 is provided, via step 314. In some embodiments, step 314 includes depositing and patterning the conductive material(s) for the ELG 152. Portions of step 314 may be interleaved with portions of step 312 such that the ELG 152 is at a location corresponding to the sensor stack 114. For example, the ELG 152 may be deposited and patterned at around the time that one or more of the layers of the sensor stack 114 is provided. In other embodiments, the method 310 may form the ELG 150 or 154 depicted in FIG. 3B instead of the EGL 152. Thus, the ELG 150 is at substantially the same layer(s) in the device as the sensor stacks 114116. Fabrication of the transducer 110′″ continues until the slider is ready for lapping.


Lapping is then performed until termination that is based upon the ELG signal, via step 316. Step 316 may include determining a target resistance for one or more of the ELG 152. As is discussed above, this target resistance translates to stripe height of the ELG 152 and to stripe heights of the sensors 112, 114 and 116. When the signal from the ELG(s) 150, 152 and/or 154 reaches the target, lapping may be terminated.


Using the method 310, the transducer 110′″ and disk drive 100′″, respectively, may be accomplished. Because of the signals from the ELG(s) 150, 152 and/or 154, lapping may be controlled. Thus, yield for the method 310 may be improved and device performance enhanced. Thus, the benefits of the magnetic transducer(s) 110, 110′, 110″ and/or 110′″ may be achieved.

Claims
  • 1. A magnetic read transducer comprising: a first read sensor;a second read sensor;a third read sensor;a first electronic lapping guide associated with the first read sensor to control a stripe height of the first read sensor;a second electronic lapping guide associated with the second read sensor to control the stripe height of the second read sensor; anda third electronic lapping guide associated with the third read sensor to control the stripe height of the third read sensor,wherein the first electronic lapping guide is connected to a common ground connector, and wherein the third electronic lapping guide is connected to a common pad.
  • 2. The magnetic read transducer of claim 1, wherein the first read sensor and the second read sensor are separated by a first distance, wherein the first electronic lapping guide and the second electronic lapping guide are separated by a second distance, and wherein the first distance is substantially same as the second distance.
  • 3. The magnetic read transducer of claim 1, wherein the first electronic lapping guide is connected to the second electronic lapping guide through a first via and the second electronic lapping guide is connected to the third electronic lapping guide through a second via.
  • 4. The magnetic read transducer of claim 1, wherein the first read sensor is separated from the second read sensor by a first internal magnetic shield and the second read sensor is separated from the third read sensor by a second internal magnetic shield.
  • 5. The magnetic read transducer of claim 1, wherein the first read sensor and the second read sensor are separated by a first distance in a down track direction and the second read sensor and the third read sensor are separated by a second distance in the down track direction, wherein the first read sensor, the second read sensor, and the third read sensor are offset from one another in a cross track direction that is perpendicular to the down track direction, and wherein a width of the first read sensor overlaps with a width of the second read sensor in the cross track direction, and wherein the width of the second read sensor overlaps with a width of the third read sensor in the cross track direction.
  • 6. The magnetic read transducer of claim 1, further comprising a first read shield and a second read shield, wherein the first read sensor, the second read sensor, and the third read sensor are between the first read shield and the second read shield in a down track direction.
CROSS-REFERENCE TO RELATED PATENT APPLICATIONS

This application is a divisional of U.S. application Ser. No. 15/648,594, filed on Jul. 13, 2017, which is a divisional of U.S. application Ser. No. 14/560,731, filed on Dec. 4, 2014, now U.S. Pat. No. 9,721,595, the entireties of each of which are incorporated by reference herein.

US Referenced Citations (155)
Number Name Date Kind
3938193 Sargunar Feb 1976 A
4670732 Church Jun 1987 A
4689877 Church Sep 1987 A
5023991 Smith Jun 1991 A
5065483 Zammit Nov 1991 A
5210667 Zammit May 1993 A
5255141 Valstyn et al. Oct 1993 A
5494473 Dupuis Feb 1996 A
5699212 Erpelding et al. Dec 1997 A
6016290 Chen et al. Jan 2000 A
6018441 Wu et al. Jan 2000 A
6025978 Hoshi et al. Feb 2000 A
6025988 Yan Feb 2000 A
6032353 Hiner et al. Mar 2000 A
6033532 Minami Mar 2000 A
6046885 Aimonetti et al. Apr 2000 A
6055138 Shi Apr 2000 A
6073338 Liu et al. Jun 2000 A
6078479 Nepela et al. Jun 2000 A
6081499 Berger et al. Jun 2000 A
6094803 Carlson et al. Aug 2000 A
6103073 Thayamballi Aug 2000 A
6108166 Lederman Aug 2000 A
6125018 Takagishi et al. Sep 2000 A
6130779 Carlson et al. Oct 2000 A
6134089 Barr et al. Oct 2000 A
6193548 Sigl et al. Feb 2001 B1
6193584 Rudy Feb 2001 B1
6201673 Rottmayer et al. Mar 2001 B1
6233116 Chen et al. May 2001 B1
6304414 Crue et al. Oct 2001 B1
6370763 Watanuki et al. Apr 2002 B1
6404600 Hawwa et al. Jun 2002 B1
6504676 Hiner et al. Jan 2003 B1
6609948 Fontana, Jr. Aug 2003 B1
6611398 Rumpler et al. Aug 2003 B1
6700738 Sin et al. Mar 2004 B1
6760196 Niu et al. Jul 2004 B1
6801411 Lederman et al. Oct 2004 B1
6884148 Dovek et al. Apr 2005 B1
6912106 Chen et al. Jun 2005 B1
6935923 Burbank Aug 2005 B2
6947258 Li Sep 2005 B1
6961221 Niu et al. Nov 2005 B1
6989972 Stoev et al. Jan 2006 B1
6997784 Bunch Feb 2006 B2
7006327 Krounbi et al. Feb 2006 B2
7007372 Chen et al. Mar 2006 B1
7012832 Sin et al. Mar 2006 B1
7016143 Kirschenbaum et al. Mar 2006 B2
7023658 Knapp et al. Apr 2006 B1
7026063 Ueno et al. Apr 2006 B2
7110289 Sin et al. Sep 2006 B1
7111382 Knapp et al. Sep 2006 B1
7119995 Granstrom et al. Oct 2006 B2
7124654 Davies et al. Oct 2006 B1
7149061 Yamakura Dec 2006 B2
7154715 Yamanaka et al. Dec 2006 B2
7199975 Pan Apr 2007 B1
7211339 Seagle et al. May 2007 B1
7212384 Stoev et al. May 2007 B1
7283327 Liu et al. Oct 2007 B1
7284316 Huai et al. Oct 2007 B1
7292400 Bishop Nov 2007 B2
7337530 Stoev et al. Mar 2008 B1
7354664 Jiang et al. Apr 2008 B1
7417832 Erickson et al. Aug 2008 B1
7508627 Zhang et al. Mar 2009 B1
7522377 Jiang et al. Apr 2009 B1
7551393 Biskeborn et al. Jun 2009 B2
7551406 Thomas Jun 2009 B1
7639457 Chen et al. Dec 2009 B1
7660080 Liu et al. Feb 2010 B1
7681303 Kondo Mar 2010 B2
7719795 Hu et al. May 2010 B2
7800858 Bajikar et al. Sep 2010 B1
7874063 Matono Jan 2011 B2
7910267 Zeng et al. Mar 2011 B1
7911735 Sin et al. Mar 2011 B1
7911737 Jiang et al. Mar 2011 B1
8008912 Shang Aug 2011 B1
8065788 Guruz et al. Nov 2011 B2
8072705 Wang et al. Dec 2011 B1
8104166 Zhang et al. Jan 2012 B1
8151441 Rudy et al. Apr 2012 B1
8165709 Rudy Apr 2012 B1
8200054 Li et al. Jun 2012 B1
8307539 Rudy Nov 2012 B1
8351162 Etoh Jan 2013 B2
8400731 Li et al. Mar 2013 B1
8491801 Tanner et al. Jul 2013 B1
8495813 Hu et al. Jul 2013 B1
8498084 Leng et al. Jul 2013 B1
8506828 Osugi et al. Aug 2013 B1
8533937 Wang et al. Sep 2013 B1
8603593 Roy et al. Dec 2013 B1
8611054 Shang et al. Dec 2013 B1
8611055 Pakala et al. Dec 2013 B1
8630068 Mauri et al. Jan 2014 B1
8643980 Fowler et al. Feb 2014 B1
8665561 Knutson et al. Mar 2014 B1
8703397 Zeng et al. Apr 2014 B1
8711518 Zeng et al. Apr 2014 B1
8711528 Xiao et al. Apr 2014 B1
8739391 Childress Jun 2014 B2
8749790 Tanner et al. Jun 2014 B1
8760818 Diao et al. Jun 2014 B1
8780498 Jiang et al. Jul 2014 B1
8792208 Liu et al. Jul 2014 B1
8792312 Wang et al. Jul 2014 B1
8793866 Zhang et al. Aug 2014 B1
8797680 Luo et al. Aug 2014 B1
8797684 Tran et al. Aug 2014 B1
8797686 Bai et al. Aug 2014 B1
8797692 Guo et al. Aug 2014 B1
8813324 Emley et al. Aug 2014 B2
8824106 Garfunkel Sep 2014 B1
8873204 Gao Oct 2014 B1
8891207 Li Nov 2014 B1
8908333 Rudy Dec 2014 B1
8970988 Li Mar 2015 B1
9042058 Li et al. May 2015 B1
9042059 Katine et al. May 2015 B1
9431031 Xiao et al. Aug 2016 B1
9721595 Rudy et al. Aug 2017 B1
9786305 Li Oct 2017 B1
10008222 Rudy Jun 2018 B2
20060002032 Li et al. Jan 2006 A1
20060028770 Etoh Feb 2006 A1
20070030594 Biskeborn et al. Feb 2007 A1
20070230056 Beach et al. Oct 2007 A1
20080072418 Kondo et al. Mar 2008 A1
20100290157 Zhang et al. Nov 2010 A1
20110086240 Xiang et al. Apr 2011 A1
20110276287 Iben et al. Nov 2011 A1
20120087045 Yanagisawa et al. Apr 2012 A1
20120111826 Chen et al. May 2012 A1
20120216378 Emley et al. Aug 2012 A1
20120237878 Zeng et al. Sep 2012 A1
20120298621 Gao Nov 2012 A1
20130070371 Childress Mar 2013 A1
20130216702 Kaiser et al. Aug 2013 A1
20130216863 Li et al. Aug 2013 A1
20130257421 Shang et al. Oct 2013 A1
20140154529 Yang et al. Jun 2014 A1
20140175050 Zhang et al. Jun 2014 A1
20150062735 Sapozhnikov Mar 2015 A1
20150116867 Childress et al. Apr 2015 A1
20150140685 Watanabe May 2015 A1
20150243302 Kief Aug 2015 A1
20150255092 Macken Sep 2015 A1
20150325260 Singleton et al. Nov 2015 A1
20160005424 McKinlay Jan 2016 A1
20160005425 McKinlay Jan 2016 A1
20160203837 Han Jul 2016 A1
Foreign Referenced Citations (5)
Number Date Country
0 253 460 Jan 1988 EP
2002157710 May 2002 JP
2006172705 Jun 2006 JP
2009217911 Sep 2009 JP
WO-2015030676 Mar 2015 WO
Non-Patent Literature Citations (2)
Entry
Ex Parte Quayle Action on U.S. Appl. No. 14/560,731 dated Jan. 20, 2017.
US Office Action on U.S. Appl. No. 15/648,594 dated Mar. 29, 2018.
Related Publications (1)
Number Date Country
20180268847 A1 Sep 2018 US
Divisions (2)
Number Date Country
Parent 15648594 Jul 2017 US
Child 15988122 US
Parent 14560731 Dec 2014 US
Child 15648594 US