1. Field of the Invention
The present invention relates to Electro-Static Discharge (ESD) protection, i.e. using mechanism, device, circuit, apparatus, or any means to protection an integrated circuit from ESD damages.
2. Description of the Related Art
Human bodies may carry a lot of electrostatic charges. When an integrated circuit is touched by a human bodies during handling, a very high voltage (˜5 KV) and a high current (˜2 A) may be generated that can damage a delicate integrated circuit. The high voltage generated may breakdown MOS gate oxides, and the high power generated by high current may damage the metallurgical junctions. To protect an integrated circuit from ESD damages, the high voltage must be clamped, the high current must be limited, and the high heat generated from the high power consumption must be quickly dissipated to protect against temperature damage.
ESD protection becomes more important in today's semiconductor industry for several reasons. Firstly, as gate oxide of the MOS devices becomes thinner, it becomes more vulnerable to ESD damages due to aggressive scaling. Secondly, the threshold voltage of MOS devices in the core logic is lower from 0.7V to about 0.4V, and the breakdown voltage is lower from 5-7V to about 3-4V that can easily escape from the junction diodes' protection. Thirdly, high speed and high frequency circuits in an integrated circuit require very small input capacitance and yet good ESD protection. However, good ESD protection often requires large silicon area and high input capacitance. Therefore, the ESD protection issues deserve revisiting in today's nanometer devices.
A diode can be fabricated from polysilicon.
Polysilicon diodes can be used for ESD protection, refer to Ming-Dou Ker et al, “High-Current Characterization of Polysilicon Diode for Electrostatic Discharge Protection in Sub-Quarter-Micron Complementary Metal Oxide Semiconductor Technology,” Jpn. J. Appl. Phys. Vol. 42, 2003, pp. 3377-3378. Polysilicon structures for ESD protection in the prior arts are about a one-piece rectangular structure, which has rooms for improvements. Thus, there is still a need to use an optimized polysilicon diode structure to achieve higher ESD voltage, lower input capacitance, smaller area, and lower heat generated in today's giga-Hertz circuits.
Embodiments of ESD protection using ring structures of diodes are disclosed. The diodes constructed from polysilicon or active region body on insulated substrate can be fabricated from standard bulk or SOI CMOS logic processes to achieve high ESD immunity, low input capacitance, small I/O size and low cost.
In one embodiment, the ESD protection can be constructed from diodes in ring structures that can be comparable to the I/O pad size and/or can be hidden underneath the pad partially or wholly. The diodes can be constructed from at least one polysilicon structure, insulated active region in SOI process, or junction diode in standard CMOS process. One ring-shape diode has the P terminal coupled to the pad and the N terminal coupled to VDD. The other ring-shape diode has the P terminal coupled to the VSS and the N terminal coupled to the pad. There can be a plurality of ring-shape structures and can be placed in concentric manner to maximize the ESD performance in small size. The contour of the diodes can be in circle, polygon or other shapes. In one embodiment, the P or N terminal of the ring-shape diodes is coupled to VDD, VSS, or pad through Active Areas (AAs) so that the heat generated can be quickly dissipated. Advantageously, the same diode structure can be used to create CMOS gates, sources, drains, or interconnects in standard CMOS logic processes. The input capacitance using ring-shape diodes can be smaller than that in the conventional junction diodes or MOS connected as diodes for the same ESD performance. Particularly, the turn-on voltage of polysilicon diodes is about 0.6V, smaller than 0.7V of junction diodes. The breakdown voltage of the polysilicon or active-region diodes can be easily changed by adjusting the spacing of the P+ and N+ implants or the doping concentration in the space between P+ and N+ implants. Thus, high performance and low cost ESD protection can be realized.
The invention can be implemented in numerous ways, including as a method, system, device, or apparatus (including graphical user interface and computer readable medium). Several embodiments of the invention are discussed below.
As a switch device built on a semiconductor body, one embodiment can, for example, include at least: at least three regions in a portion of the semiconductor body, the first and the third regions being implanted with a first type of dopant, the second region being implanted with a second type of dopant, and the regions being adjacent are separated by spaces; and a silicide block layer (SBL) covering the spaces and overlapping into both implant regions to construct P/N junctions between the first/second and second/third regions. The first and third implant regions can be conductive when a sufficiently high voltage is applied between the first and third implant regions.
As an electronic system, one embodiment can, for example, include at least one integrated circuit including at least one switch device on a semiconductor body. The switch device includes at least: at least three implant regions provided on a portion of the semiconductor body, the first and third implant regions being with a first type of implant, the second implant region being with a second type of implant, and the implant regions being adjacent are separated by at least one space; and at least one silicide block layer (SBL) covering the at least one space and overlapping into the adjacent implant regions to construct P/N junctions in first/second and second/third implant regions.
As a method for providing a switch device on a semiconductor body, one embodiment can, for example, include at least: forming at least three regions in the semiconductor body, the first and the third regions being with a first type of implant and the second region being with a second type of implant, where adjacent ones of the implant regions are separated with a space; and forming a silicide block layer covering the space and overlapping into both of the adjacent implant regions to construct P/N junctions between first/second and second/third regions.
As an ESD device, one embodiment can, for example, include a plurality of ESD protection rings. At least one of the ESD protection rings can include at least one diode with P terminal coupled to the pad and the N terminal coupled to the VDD and at least another diode with P terminal coupled to the VSS and the N terminal coupled to the pad. The diode can be on a polysilicon or active-region body on an insulated substrate. The diode can also be a junction diode on a silicon substrate. Alternatively, the diode can have the P+ and N+ implant regions in the inner or outer part of a concentric ring. The P+ and N+ regions can be separated with a space, and a silicide block layer (SBL) can cover the space and overlap into both implant regions to construct P and N terminals of a diode. The P+ and N+ regions can be isolated by LOCOS (LOCal Oxidation), STI (Shallow Trench Isolation), dummy gate, or SBL in a junction diode on silicon substrate. In addition, the P and N terminals of the diodes coupled to VDD, VSS, or pad can be through contacts or vias to metals and/or through active areas to a thermally conductive substrate.
As an electronic system, one embodiment of the invention can, for example, include at least one Print Circuit Board (PCB), and at least one integrated circuit operatively connected to the PCB. The integrated circuit can include at least an I/O pad and at least one ESD protection structures. At least one of the ESD protection structures can include a ring-shape diode structure that has at least one diode with the P terminal coupled to the I/O pad and the N terminal coupled to the VDD and/or another diode with the P terminal coupled to the VSS and the N terminal coupled to the I/O pad. The diode can be on a polysilicon or active-region body on an insulated substrate. The diode can also be a junction diode on a silicon substrate. Alternatively, the P+ and N+ implant regions of the diode can be separated with a space (or isolation), such as LOCOS, STI, or dummy gate, and a silicide block layer can cover the space and overlap into both implant regions to construct P and N terminals of a diode, respectively. Also, the P or N terminal of the diodes can be coupled to VDD, VSS, or I/O pads through contacts or vias to metals, and/or through active areas to a thermally conductive substrate. There can be a plurality of ring-shape diode structures and placed in concentric manner. The contour of the diodes can be circle, polygon, or other shapes.
As a method for providing an ESD protection, one embodiment can, for example, include at least providing an ring-shape diode structure, where at least one of the ring-shape diode structures can include at least (i) a ring-shape diode with the P terminal coupled to an I/O pad and the N terminal coupled to a first supply voltage; and/or (ii) a ring-shape diode with the P terminal coupled to a second supply voltage and the N terminal coupled to the I/O pad. The diode can be a polysilicon or active-region body on an insulated substrate, or P/N junction on a silicon substrate. The P or N terminals of the diodes can be coupled to the first/second supply voltages or I/O pads through contacts or vias, to metal, and/or through active areas to a thermally conductive substrate. The embodiment of the invention can also include a plurality of concentric diode rings with the contour being circle, polygon, or other shapes.
Other aspects and advantages of the invention will become apparent from the following detailed description taken in conjunction with the accompanying drawings which illustrate, by way of example, the principles of the invention.
The present invention will be readily understood by the following detailed descriptions in conjunction with the accompanying drawings, wherein like reference numerals designate like structural elements, and in which:
Embodiments disclosed herein use an ESD structure with ring-shape diodes. The diodes can comprise P+ and N+ implants on a polysilicon or active region body on an insulated substrate with the P+ and N+ implants separated by a gap. The gap can be covered by a silicide block layer (SBL) and overlapping into both P+ and N+ areas. The diode can also be N+ active region on a P type substrate or P+ active region on an N well. The isolation between the P+ and N+ active regions can, for example, be LOCOS (LOCal Oxidation), STI (Shallow Trench Isolation), dummy gate, or SBL in standard CMOS processes. Since the P+ and N+ implants, active regions, and polysilicon are readily available in standard CMOS logic processes, these devices can be formed in an efficient and cost effective manner. There are no additional masks or process steps to save costs. The ESD protection device can also be included within an electronic system.
Semiconductor body on an insulated substrate can be used to construct switch devices such as Silicon Controlled Rectifier (SCR), DIAC, or TRIAC. The semiconductor body can be a polysilicon or active region body on an insulated substrate.
Semiconductor body can be used to construct switch devices such as SCR, DIAC, or TRIAC based on P/N junctions built on the polysilicon or active region body on insulated substrate. The P/N junctions can be constructed from a gap between P+ and N+ implant regions and covered by a silicide block layer and overlapping into both implant regions. The dopant concentration in the gap can be not intentionally doped or slightly doped with N or P type to control the on-resistance. The DIAC, SCR, or TRIAC can be in any shape such as a circle, ring, rectangle, or polygon. The P+ and N+ implant regions in the above discussions are interchangeable. At least one of the P+ or N+ implant regions can be coupled to active areas and further coupled to a thermally conductive substrate. Those skilled in the art understand that the above discussions are for illustration purposes. There are many equivalent constructions and embodiments that can be applied and that are still within the scope of this invention.
The above discussions of various switch devices such as SCR, DIAC, or TRIAC based on a semiconductor body, or ESD structures based on ring-shape diodes are for illustration purposes. The semiconductor body can be on a conductive substrate through a dielectric, such as SiO2 on silicon substrate, or can be on a non-conductive substrate, such as mylar, plastic, glass, or paper, etc with a thin layer of semiconductor material coated on top. The substrate can be a film or a bulk. The ring-shape diodes for ESD structures can be a polysilicon, active region body on an insulated substrate, or junction diodes on a silicon substrate. For polysilicon or active-region diodes, the P+ and N+ implant regions can be separated with a gap. An SBL can cover the gap and overlap into the N+ and P+ regions. The width of the gap can be adjusted to change polysilicon or active region diodes' breakdown voltage. The doping concentration in the gap region can be changed to adjust the turn-on resistance. For junction diodes, the N+ and P+ active regions can be separated by LOCOS, STI, dummy gate, or SBL isolation. The N+ or P+ implant in the inner or outer ring is interchangeable. An active areas (AAs) can be introduced in any places to couple the diodes or switch devices to a thermally conductive substrate. The numbers of the supply voltages can be more than two, e.g., VDD and VSS. Those skilled in the art understand that there are many varieties and equivalent embodiments that are within the scope of this invention.
The invention can be implemented in a part or all of an integrated circuit in a Printed Circuit Board (PCB), or in a system. The ESD structures can comprise one or plural of ring-shape diode structures. Each ring-shape diode structure can comprise at least one ring-shape diodes with one terminal coupled to the I/O pad and the other terminal coupled to a supply voltage.
The above description and drawings are only to be considered illustrative of exemplary embodiments, which achieve the features and advantages of the present invention. Modifications and substitutions of specific process conditions and structures can be made without departing from the spirit and scope of the present invention.
The many features and advantages of the present invention are apparent from the written description and, thus, it is intended by the appended claims to cover all such features and advantages of the invention. Further, since numerous modifications and changes will readily occur to those skilled in the art, it is not desired to limit the invention to the exact construction and operation as illustrated and described. Hence, all suitable modifications and equivalents may be resorted to as falling within the scope of the invention.
This application claims priority benefit of U.S. Provisional Patent Application No. 61/560,159, filed on Nov. 15, 2011 and entitled “Using Ring-Shape Polysilicon Diodes for Electro-Static Discharge (ESD) Protection,” which is hereby incorporated herein by reference
Number | Name | Date | Kind |
---|---|---|---|
3198670 | Nissim | Aug 1965 | A |
3715242 | Daniel | Feb 1973 | A |
4148046 | Hendrickson et al. | Apr 1979 | A |
4192059 | Khan et al. | Mar 1980 | A |
4642674 | Schoofs | Feb 1987 | A |
5192989 | Matsushita et al. | Mar 1993 | A |
5389552 | Iranmanesh | Feb 1995 | A |
5447876 | Moyer et al. | Sep 1995 | A |
5635742 | Hoshi et al. | Jun 1997 | A |
5637901 | Beigel et al. | Jun 1997 | A |
5723890 | Fujihira et al. | Mar 1998 | A |
5757046 | Fujihira et al. | May 1998 | A |
5761148 | Allan et al. | Jun 1998 | A |
5962903 | Sung et al. | Oct 1999 | A |
6002156 | Lin | Dec 1999 | A |
6008092 | Gould | Dec 1999 | A |
6034882 | Johnson et al. | Mar 2000 | A |
6054344 | Liang et al. | Apr 2000 | A |
6140687 | Shimormura et al. | Oct 2000 | A |
6243864 | Odani et al. | Jun 2001 | B1 |
6249472 | Tamura et al. | Jun 2001 | B1 |
6346727 | Ohtomo | Feb 2002 | B1 |
6388292 | Lin | May 2002 | B1 |
6400540 | Chang | Jun 2002 | B1 |
6405160 | Djaja et al. | Jun 2002 | B1 |
6461934 | Nishida et al. | Oct 2002 | B2 |
6483734 | Sharma et al. | Nov 2002 | B1 |
6611043 | Takiguchi | Aug 2003 | B2 |
6731535 | Ooishi et al. | May 2004 | B1 |
6770953 | Boeck et al. | Aug 2004 | B2 |
6803804 | Madurawe | Oct 2004 | B2 |
6813705 | Duesterwald et al. | Nov 2004 | B2 |
6944083 | Pedlow | Sep 2005 | B2 |
6967879 | Mizukoshi | Nov 2005 | B2 |
7009182 | Kannan et al. | Mar 2006 | B2 |
7211843 | Low et al. | May 2007 | B2 |
7212432 | Ferrant et al. | May 2007 | B2 |
7263027 | Kim et al. | Aug 2007 | B2 |
7294542 | Okushima | Nov 2007 | B2 |
7391064 | Tripsas et al. | Jun 2008 | B1 |
7411844 | Nitzan et al. | Aug 2008 | B2 |
7439608 | Arendt | Oct 2008 | B2 |
7461371 | Luo et al. | Dec 2008 | B2 |
7573762 | Kenkare et al. | Aug 2009 | B2 |
7589367 | Oh et al. | Sep 2009 | B2 |
7660181 | Kumar et al. | Feb 2010 | B2 |
7696017 | Tripsas et al. | Apr 2010 | B1 |
7701038 | Chen et al. | Apr 2010 | B2 |
7764532 | Kurjanowicz et al. | Jul 2010 | B2 |
7802057 | Iyer et al. | Sep 2010 | B2 |
7808815 | Ro et al. | Oct 2010 | B2 |
7830697 | Herner | Nov 2010 | B2 |
7833823 | Klersy | Nov 2010 | B2 |
7889204 | Hansen et al. | Feb 2011 | B2 |
7910999 | Lee et al. | Mar 2011 | B2 |
8008723 | Nagai | Aug 2011 | B2 |
8050129 | Liu et al. | Nov 2011 | B2 |
8089137 | Lung et al. | Jan 2012 | B2 |
8115280 | Chen et al. | Feb 2012 | B2 |
8119048 | Nishimura | Feb 2012 | B2 |
8168538 | Chen et al. | May 2012 | B2 |
8174063 | Liu et al. | May 2012 | B2 |
8174922 | Naritake | May 2012 | B2 |
8179711 | Kim et al. | May 2012 | B2 |
8183665 | Bertin et al. | May 2012 | B2 |
8217490 | Bertin et al. | Jul 2012 | B2 |
8233316 | Liu et al. | Jul 2012 | B2 |
8339079 | Tamada | Dec 2012 | B2 |
8369166 | Kurjanowicz et al. | Feb 2013 | B2 |
8373254 | Chen et al. | Feb 2013 | B2 |
8380768 | Hoefler | Feb 2013 | B2 |
8415764 | Chung | Apr 2013 | B2 |
8482972 | Chung | Jul 2013 | B2 |
8488359 | Chung | Jul 2013 | B2 |
8488364 | Chung | Jul 2013 | B2 |
8514606 | Chung | Aug 2013 | B2 |
8526254 | Kurjanowicz et al. | Sep 2013 | B2 |
8559208 | Chung | Oct 2013 | B2 |
8570800 | Chung | Oct 2013 | B2 |
8643085 | Pfirsch | Feb 2014 | B2 |
8644049 | Chung | Feb 2014 | B2 |
8648349 | Masuda et al. | Feb 2014 | B2 |
8649203 | Chung | Feb 2014 | B2 |
8699259 | Zhang et al. | Apr 2014 | B2 |
8760904 | Chung | Jun 2014 | B2 |
8817563 | Chung | Aug 2014 | B2 |
8830720 | Chung | Sep 2014 | B2 |
8854859 | Chung | Oct 2014 | B2 |
8861249 | Chung | Oct 2014 | B2 |
8988965 | Chung | Mar 2015 | B2 |
9019742 | Chung | Apr 2015 | B2 |
9019791 | Chung | Apr 2015 | B2 |
9025357 | Chung | May 2015 | B2 |
20020168821 | Williams et al. | Nov 2002 | A1 |
20020196659 | Hurst et al. | Dec 2002 | A1 |
20030104860 | Cannon et al. | Jun 2003 | A1 |
20030135709 | Niles et al. | Jul 2003 | A1 |
20030169625 | Hush et al. | Sep 2003 | A1 |
20040057271 | Parkinson | Mar 2004 | A1 |
20040113183 | Karpov et al. | Jun 2004 | A1 |
20040130924 | Ma et al. | Jul 2004 | A1 |
20050060500 | Luo et al. | Mar 2005 | A1 |
20050062110 | Dietz et al. | Mar 2005 | A1 |
20050110081 | Pendharkar | May 2005 | A1 |
20050124116 | Hsu et al. | Jun 2005 | A1 |
20050146962 | Schreck | Jul 2005 | A1 |
20050242386 | Ang | Nov 2005 | A1 |
20060072357 | Wicker | Apr 2006 | A1 |
20060092689 | Braun et al. | May 2006 | A1 |
20060104111 | Tripsas et al. | May 2006 | A1 |
20060120148 | Kim et al. | Jun 2006 | A1 |
20060129782 | Bansal et al. | Jun 2006 | A1 |
20060215440 | Cho et al. | Sep 2006 | A1 |
20060244099 | Kurjanowicz | Nov 2006 | A1 |
20070004160 | Voldman | Jan 2007 | A1 |
20070057323 | Furukawa et al. | Mar 2007 | A1 |
20070081377 | Zheng et al. | Apr 2007 | A1 |
20070133341 | Lee et al. | Jun 2007 | A1 |
20070138549 | Wu et al. | Jun 2007 | A1 |
20070223266 | Chen | Sep 2007 | A1 |
20070279978 | Ho et al. | Dec 2007 | A1 |
20080025068 | Scheuerlein et al. | Jan 2008 | A1 |
20080028134 | Matsubara et al. | Jan 2008 | A1 |
20080044959 | Cheng et al. | Feb 2008 | A1 |
20080067601 | Chen | Mar 2008 | A1 |
20080105878 | Ohara | May 2008 | A1 |
20080151612 | Pellizzer et al. | Jun 2008 | A1 |
20080175060 | Lie et al. | Jul 2008 | A1 |
20080220560 | Klersy | Sep 2008 | A1 |
20080225567 | Burr et al. | Sep 2008 | A1 |
20080280401 | Burr et al. | Nov 2008 | A1 |
20090055617 | Bansal et al. | Feb 2009 | A1 |
20090168493 | Kim et al. | Jul 2009 | A1 |
20090172315 | Iyer et al. | Jul 2009 | A1 |
20090180310 | Shimomura et al. | Jul 2009 | A1 |
20090194839 | Bertin et al. | Aug 2009 | A1 |
20090213660 | Pikhay et al. | Aug 2009 | A1 |
20090219756 | Schroegmeier et al. | Sep 2009 | A1 |
20090309089 | Hsia et al. | Dec 2009 | A1 |
20100027326 | Kim et al. | Feb 2010 | A1 |
20100085798 | Lu et al. | Apr 2010 | A1 |
20100091546 | Liu et al. | Apr 2010 | A1 |
20100142254 | Choi et al. | Jun 2010 | A1 |
20100171086 | Lung et al. | Jul 2010 | A1 |
20100232203 | Chung et al. | Sep 2010 | A1 |
20100238701 | Tsukamoto et al. | Sep 2010 | A1 |
20100246237 | Borot et al. | Sep 2010 | A1 |
20100277967 | Lee et al. | Nov 2010 | A1 |
20100301304 | Chen et al. | Dec 2010 | A1 |
20110022648 | Harris et al. | Jan 2011 | A1 |
20110062557 | Bandyopadhyay et al. | Mar 2011 | A1 |
20110128772 | Kim et al. | Jun 2011 | A1 |
20110145777 | Iyer et al. | Jun 2011 | A1 |
20110175199 | Lin et al. | Jul 2011 | A1 |
20110222330 | Lee et al. | Sep 2011 | A1 |
20110260289 | Oyamada | Oct 2011 | A1 |
20110297912 | Samachisa et al. | Dec 2011 | A1 |
20110310655 | Kreupl et al. | Dec 2011 | A1 |
20110312166 | Yedinak et al. | Dec 2011 | A1 |
20120032303 | Elkareh et al. | Feb 2012 | A1 |
20120039107 | Chung | Feb 2012 | A1 |
20120044736 | Chung | Feb 2012 | A1 |
20120044737 | Chung | Feb 2012 | A1 |
20120044738 | Chung | Feb 2012 | A1 |
20120044739 | Chung | Feb 2012 | A1 |
20120044740 | Chung | Feb 2012 | A1 |
20120044743 | Chung | Feb 2012 | A1 |
20120044744 | Chung | Feb 2012 | A1 |
20120044745 | Chung | Feb 2012 | A1 |
20120044746 | Chung | Feb 2012 | A1 |
20120044747 | Chung | Feb 2012 | A1 |
20120044748 | Chung | Feb 2012 | A1 |
20120044753 | Chung | Feb 2012 | A1 |
20120044756 | Chung | Feb 2012 | A1 |
20120044757 | Chung | Feb 2012 | A1 |
20120044758 | Chung | Feb 2012 | A1 |
20120047322 | Chung | Feb 2012 | A1 |
20120074460 | Kitagawa | Mar 2012 | A1 |
20120106231 | Chung | May 2012 | A1 |
20120147653 | Chung | Jun 2012 | A1 |
20120147657 | Sekar et al. | Jun 2012 | A1 |
20120209888 | Chung | Aug 2012 | A1 |
20120224406 | Chung | Sep 2012 | A1 |
20120256292 | Yu et al. | Oct 2012 | A1 |
20120314472 | Chung | Dec 2012 | A1 |
20120314473 | Chung | Dec 2012 | A1 |
20120320656 | Chung | Dec 2012 | A1 |
20120320657 | Chung | Dec 2012 | A1 |
20130148409 | Chung | Jun 2013 | A1 |
20130161780 | Kizilyalli et al. | Jun 2013 | A1 |
20130189829 | Mieczkowski et al. | Jul 2013 | A1 |
20130200488 | Chung | Aug 2013 | A1 |
20130201745 | Chung | Aug 2013 | A1 |
20130201746 | Chung | Aug 2013 | A1 |
20130201748 | Chung | Aug 2013 | A1 |
20130201749 | Chung | Aug 2013 | A1 |
20130208526 | Chung | Aug 2013 | A1 |
20130215663 | Chung | Aug 2013 | A1 |
20130235644 | Chung | Sep 2013 | A1 |
20130308366 | Chung | Nov 2013 | A1 |
20140071726 | Chung | Mar 2014 | A1 |
20140092674 | Chung | Apr 2014 | A1 |
20140124871 | Ko et al. | May 2014 | A1 |
20140124895 | Salzman et al. | May 2014 | A1 |
20140126266 | Chung | May 2014 | A1 |
20140131710 | Chung | May 2014 | A1 |
20140131711 | Chung | May 2014 | A1 |
20140131764 | Chung | May 2014 | A1 |
20140133056 | Chung | May 2014 | A1 |
20140160830 | Chung | Jun 2014 | A1 |
20140211567 | Chung | Jul 2014 | A1 |
20140269135 | Chung | Sep 2014 | A1 |
20140340954 | Chung | Nov 2014 | A1 |
20150003142 | Chung | Jan 2015 | A1 |
20150009743 | Chung | Jan 2015 | A1 |
20150014785 | Chung | Jan 2015 | A1 |
20150021543 | Chung | Jan 2015 | A1 |
20150029777 | Chung | Jan 2015 | A1 |
20150078060 | Chung | Mar 2015 | A1 |
Number | Date | Country |
---|---|---|
1469473 | Jan 2004 | CN |
1691204 | Nov 2005 | CN |
101083227 | May 2007 | CN |
101057330 | Oct 2007 | CN |
101188140 | May 2008 | CN |
101271881 | Sep 2008 | CN |
101483062 | Jul 2009 | CN |
101728412 | Jun 2010 | CN |
1367596 | Dec 2003 | EP |
03-264814 | Nov 1991 | JP |
I309081 | Apr 2009 | TW |
Entry |
---|
Office Action for U.S. Appl. No. 14/101,125, mailed Mar. 6, 2015. |
Hassan, “Argument for anti-fuse non-volatile memory in 28nm high-k metal gate”, Feb. 15, 2011, wwwl.eeetimes.com publication. |
Office Action for U.S. Appl. No. 13/026,783, mailed on Mar. 5, 2015. |
Final Office Action for U.S. Appl. No. 13/678,539, mailed Apr. 1, 2015. |
Office Action for U.S. Appl. No. 14/636,155, mailed on Apr. 10, 2015. |
Notice of Allowance for U.S. Appl. No. 14/021,990, mailed Apr. 14, 2015. |
Notice of Allowance for U.S. Appl. No. 13,842,824, mailed Apr. 14, 2015. |
Notice of Allowance for U.S. Appl. No. 14/071,957, mailed Apr. 14, 2014. |
Notice of Allowance for U.S. Appl. No. 14/231,404, mailed Apr. 17, 2015. |
Notice of Allowance for U.S. Appl. No. 13/590,444, mailed May 12, 2015. |
Notice of Allowance for U.S. Appl. No. 13/072,783, mailed May 13, 2015. |
Notice of Allowance for U.S. Appl. No. 13,833,067, mailed Jun. 5, 2015. |
Office Action for U.S. Appl. No. 13/314,444, mailed Dec. 10, 2014. |
U.S. Appl. No. 13/471,704, filed May 15, 2012. |
U.S. Appl. No. 13/026,650, filed Feb. 14, 2011. |
U.S. Appl. No. 13/026,656, filed Feb. 14, 2011. |
U.S. Appl. No. 13/026,664, filed Feb. 14, 2011. |
U.S. Appl. No. 13/026,678, filed Feb. 14, 2011. |
U.S. Appl. No. 13/026,692, filed Feb. 14, 2011. |
U.S. Appl. No. 13/026,704, filed Feb. 14, 2011. |
U.S. Appl. No. 13/026,717, filed Feb. 14, 2011. |
U.S. Appl. No. 13/026,725, filed Feb. 14, 2011. |
U.S. Appl. No. 13/026,752, filed Feb. 14, 2011. |
U.S. Appl. No. 13/026,771, filed Feb. 14, 2011. |
U.S. Appl. No. 13/026,783, filed Feb. 14, 2011. |
U.S. Appl. No. 13/026,835, filed Feb. 14, 2011. |
U.S. Appl. No. 13/026,840, filed Feb. 14, 2011. |
U.S. Appl. No. 13/026,852, filed Feb. 14, 2011. |
U.S. Appl. No. 13/214,198, filed Aug. 21, 2011. |
U.S. Appl. No. 13/590,044, filed Aug. 20, 2012. |
U.S. Appl. No. 13/590,047, filed Aug. 20, 2012. |
U.S. Appl. No. 13/590,049, filed Aug. 20, 2012. |
U.S. Appl. No. 13/590,050, filed Aug. 20, 2012. |
U.S. Appl. No. 13/214,183, filed Aug. 20, 2011. |
U.S. Appl. No. 13/288,843, filed Nov. 3, 2011. |
U.S. Appl. No. 13/314,444, filed Dec. 8, 2011. |
U.S. Appl. No. 13/397,673, filed Feb. 15, 2012. |
U.S. Appl. No. 13/571,797, filed Aug. 10, 2012. |
U.S. Appl. No. 13/678,539, filed Nov. 15, 2012. |
U.S. Appl. No. 13/678,541, filed Nov. 15, 2012. |
U.S. Appl. No. 13/678,543, filed Nov. 15, 2012. |
Ahn, S.J. et al, “Highly Reliable 50nm Contact Cell Technology for 256Mb PRAM,” IEEE VLSI Tech Symp., Jun. 2005, pp. 98-99. |
Alavi, Mohsen, et al., “A PROM Element Based on Salicide Allgomeration of Poly Fuses in a CMOS Logic Process,” IEEE IEDM, 97, pp. 855-858. |
Andre, T. W. et al., “A 4-Mb 0.18um 1T1MTJ Toggle MRAM With Balanced Three Input Sensing Scheme and Locally Mirrored Unidirectional Write Drivers,” IEEE J. of Solid-State Circuits, vol. 40, No. 1, Jan. 2005, pp. 301-309. |
Ang, Boon et al., “NiSi Polysilicon Fuse Reliability in 65nm Logic CMOS Technology,” IEEE Trans. on Dev. Mat. Rel. vol. 7, No. 2, Jun. 2007, pp. 298-303. |
Aziz, A. et al., “Lateral Polysilicon n+p Diodes: Effect of the Grain boundaries and of the p-Implemented Doping Level on the I-V and C-V Characteristics,” Springer Proceedings in Physics, vol. 54, 1991, pp. 318-322. |
Aziz, A. et al., “Lateral Polysilicon PN Diodes: Current-Voltage Characteristics Simulation Between 200K and 400K a Numerical Approach,” IEEE Trans. on Elec. Dev., vol. 41, No. 2, Feb. 1994, pp. 204-211. |
Banerjee, Kaustav et al., “High Current Effects in Silicide Films for Sub-0.25um VLSI Technologies,” IEEE 36th IRPS, 1998, pp. 284-292. |
Bedeschi, F. et al., “4-Mb MOSFET-Selected uTrench Phase-Change Memory Experimental Chip,” IEEE J. of Solid-State Circuits, vol. 40, No. 7, Jul. 2005, pp. 1557-1565. |
Bedeschi, F. et al., “A Bipolar-Selected Phase Change Memory Featuring Multi-Level Cell Storage,” IEEE J. Sol. Stat. Cir., vol. 44, No. 1, Jan. 2009, pp. 217-227. |
Bedeschi, F. et al., “A Fully Symmetrical Sense Amplifier for Non-volatile Memories,” IEEE. Int. Symp. on Circuits and Systems, (ISCAS), vol. 2, 2004, pp. 625-628. |
Bedeschi, F. et al., “An 8Mb Demonstrator for High-Density 1.8V Phase-Change Memories,” VLIS Cir. Symp, Jun. 2004, pp. 442-445. |
Bedeschi, F. et al., “SET and RESET Pulse Characterization in BJT-Selected Phase-Change Memory,” IEEE Int. Symp. on Circuits and Systems (ISCAS), 2005, pp. 1270-1273. |
Braganca, P. M. et al., “A Three-Terminal Approach to Developing Spin-Torque Written Magnetic Random Access Memory Cells,” IEEE Trans. on Nano. vol. 8, No. 2, Mar. 2009, pp. 190-195. |
Cagli, C. et al., “Evidence for threshold switching in the set process of NiO-based RRAM and physical modeling for set, reset, retention and disturb prediction,” IEEE IEDM, 2008, pp. 1-4. |
Chan, W. T. et al., “CMOS Compatible Zero-Mask One-Time Programmable (OTP) Memory Design,” Proc. Int. Conf. Solid State Integr. Cir. Tech., Beijing, China, Oct. 20-23, 2008. pp. 861-864. |
Chan, Wan Tim, et al., “CMOS Compatible Zero-Mask One Time Programmable Memory Design”, Master Thesis, Hong-Kong University of Science and Technologies, 2008. |
Chang, Meng-Fan et al., “Circuit Design Challenges in Embedded Memory and Resistive RAM (RRAM) for Mobile SoC and 3D-IC”, Design Automation Conference (ASP-DAC), 16th Asia and South Pacific, 2011, pp. 197-203. |
Cheng, Yu-Hsing et al., “Failure Analysis and Optimization of Metal Fuses for Post Package Trimming,” IEEE 45th IRPS, 2007, pp. 616-617. |
Chiu, Pi-Feng et al., “A Low Store Energy, Low VDDmin, Nonvolatile 8T2R SRAM with 3D Stacked RRAM Devices for Low Power Mobile Applications,” IEEE VLSI Cir./Tech Symp., Jun. 2010, pp. 229-230. |
Cho, Woo Yeong et al., “A 0.18um 3.0V 64Mb Non-Volatile Phase-Transition Random-Access Memory (PRAM),” ISSCC, Feb. 2004, Sec. 2-1. |
Choi, Sang-Jun et al., “Improvement of CBRAM Resistance Window by Scaling Down Electrode Size in Pure-GeTe Film,” IEEE Elec. Dev., vol. 30, No. 2, Feb. 2009, pp. 120-122. |
Choi, Youngdon et al., “A 20nm 1.8V 8Gb PRAM with 40MB/s Program Bandwidth,” IEEE ISSCC, 2012, pp. 46-47. |
Chung, S. et al., “A 1.25um2 Cell 32Kb Electrical Fuse Memory in 32nm CMOS with 700mV Vddmin and Parallel/Serial Interface,” VLSI Cir. Symp., Jun. 2009, pp. 30-31. |
Chung, S. et al., “A 512x8 Electrical Fuse Memory with 15um2 Cells Using 8-sq Asymmetrical Fuse and Core Devices in 90nm CMOS,” VLSI Cir. Symp., Jun. 2007, pp. 74-75. |
Crowley, Matthew et al., “512Mb PROM with 8 Layers of Antifuse/Diode Cells,” IEEE ISSCC 2003, Sec. 16.4. |
De Sandre, Guido et al., “A 4Mb LV MOS-Selected Embedded Phase Change Memory in 90nm Standard CMOS Technology,” IEEE J. Sol. Stat. Cir, vol. 46. No. 1, Jan. 2011, pp. 52-63. |
De Sandre, Guido et al., “A 90nm 4Mb Embedded Phase-Change Memory with 1.2V 12ns Read Access Time and 1MB/s Write Throughput,” ISSCC 2010, Sec. 14.7. |
Desikan, Rajagopalan et al., “On-Chip MRAM as a High-Bandwidth Low-Latency Replacement for DRAM Physical Memories,” Tech Report TR-02-47, Dept. of Computer Science, University of Texas, Austin, Sep. 27, 2002, 18 pages. |
Dietrich, Stefan et al., “A Nonvolatile 2-Mbit CBRAM Memory Core Featuring Advanced Read and Program Control,” IEEE J. of Solid-Stat Cir., vol. 42, No. 4, Apr. 2007, pp. 839-845. |
Dion, Michael J., “Reservoir Modeling for Electromigration Improvement of Metal Systems with Refractory Barriers,” IEEE 39th IRPS, 2001, pp. 327-333. |
Doorn, T. S. et al., “Ultra-fast Programming of Silicided Polysilicon Fuses Based on New Insights in the Programming Physics,” IEEE IEDM, 2005, pp. 667-670. |
Doorn, T. S., “Detailed Qualitative Model for the Programming Physics of Silicided Polysilicon Fuses,” IEEE Trans. on Elec. Dev. vol. 54, No. 12, Dec. 2007, pp. 3285-3291. |
Durlam, M. et al., “A 1-Mbit MRAM Based on 1T1MTJ Bit Cell Integrated With Copper Interconnects,” IEEE J. of Solid-State Circuits, vol. 38, No. 5, May 2003, pp. 769-773. |
Engel, B. et al., “The Science and Technology of Magnetoresistive Tunnel Memory,” IEEE Tran. on Nanotechnology, vol. 1, No. 1, Mar. 2002, pp. 32-38. |
Engel, B.N. et al., “A 4Mb Toggle MRAM Based on a Novel bit and Switching Method,” IEEE Trans. on Mag. vol. 41, No. 1, Jan. 2005, pp. 132-136. |
Fellner, Johannes, et al., “Lifetime Study for a Poly Fuse in a 0.35um Polycide CMOS Process,” IEEE 43rd IRPS, 2005, pp. 446-449. |
Gao, B. et al., “Oxide-Based RRAM: Uniformity Improvement Using a New Material-Oriented Methodology,” IEEE VLSI Tech. Symp., Jun. 2009, pp. 30-31. |
Gao, B. et al., “Oxide-Based RRAM Switching Mechanism: A New Ion-Transport-Recombination Model,” IEDM, Dec. 2008, pp. 563-566. |
Gill, M. et al., “Ovonic Unified Memory—A High Performance Nonvolatile Memory Technology for Stand-Alone Memory and Embedded Applications,” IEEE, ISSCC Dig. of Tech. Paper, Feb. 2002, pp. 202-203. |
Gogl, D. et al., “A 16-Mb MRAM Featuring Bootstrapped Write Drivers,” IEEE J. of Solid-State Circuits, vol. 40, No. 4, Apr. 2005, pp. 902-908. |
Gopalan, C. et al., Demonstration of Conductive Bridging Random Access Memory (CBRAM) in Logic CMOS Process, IEEE Int. Memory Workshop, 2010, pp. 1-4. |
Ha, Daewon and Kim, Kinam, “Recent Advances in High Density Phase Change Memory (PRAM),” IEEE VLSI Tech. Symp. Jun. 2007. |
Hosoi, Y. et al., “High Speed Unipolar Switching Resistance RAM (RRAM) Technology,” IEEE IEDM, Dec. 2006, pp. 1-4. |
Hosomi, M. et al., “A Novel Nonvolatile Memory with Spin Torque Transfer Magnetization Switching: Spin-RAM,” IEEE IEDM Dig. of Tech. Paper, Dec. 2005, pp. 459-463. |
Huang, Chia-En et al., “A New CMOS Logic Anti-Fuse Cell with Programmable Contact,” IEEE IEDM Tech. Dig. 2007, pp. 48-51. |
Im, Jay et al., “Characterization of Silicided Polysilicon Fuse Implemented in 65nm CMOS Technology,” 7th Annual Non-Volatile Memory Technology Symp, (NVMTS) 2006, pp. 55-57. |
Jin, Li-Yan et al., “Low-Area 1-Kb Multi-Bit OTP IP Design,” IEEE 8th Int. Conf. on ASIC (ASICON), 2009. pp. 629-632. |
Johnson, Mark et al., “512Mb PROM with a Three-Dimensional Array of Diode/Antifuse Memory Cells,” IEEE J. of Sol. Stat. Cir., vol. 38, No. 11, Nov. 2003, pp. 1920-1928. |
Kalnitsy, Alexander et al., “CoSi2 Integrated Fuses on Poly Silicon for Low Voltage 0.18um CMOS Applications,” IEEE IEDM 1999, pp. 765-768. |
Kang, Han-Byul et al., “Electromigration of NiSi Poly Gated Electrical Fuse and Its Resistance Behaviors Induced by High Temperature,” IEEE IRPS, 2010, pp. 265-270. |
Kang, Sangbeom et al., “A 0.1um 1.8V 256Mb Phase-Change Random Access Memory (PRAM) with 66Mhz Synchronous Burst-Read,” IEEE J. of Sol. Stat. Cir. vol. 42. No. 1, Jan. 2007, pp. 210-218. |
Kawahara, T. et al., “2Mb Spin-Transfer Torque RAM (SPRAM) with Bit-by-Bit Bidirectional Current Write and Parallelizing-Direction Current Read,” IEEE ISSCC Dig. of Tech. Paper, Feb. 2007, pp. 480-481. |
Ker, Ming-Dou et al., “High-Current Characterization of Polysilicon Diode for Electrostatic Discharge Protection in Sub-Quarter-Micron Complementary Metal Oxide Semiconductor Technology,” Jpn. J. Appl. Phys. vol. 42 (2003) pp. 3377-3378. |
Ker, Ming-Dou et al., “Ultra-High-Voltage Charge Pump Circuit in Low-Voltage Bulk CMOS Processes With Polysilicon Diodes,” IEEE Trans. on Cir. and Sys.-II: Exp. Brief., vol. 54, No. 1, Jan. 2007, pp. 47-51. |
Kim, Deok-Kee et al., “An Investigation of Electrical Current Induced Phase Transitions in the NiPtSi/Polysilicon System,” J. App. Phy. 103, 073708 (2008). |
Kim, I. S. et al., “High Performance PRAM Cell Scalable to sub-20nm Technology with below 4F2 Cell Size, Extendable to DRAM Applications,” IEEE VLSI Tech Symp., Jun. 2010, pp. 203-204. |
Kim, Jinbong et al., “3-Transistor Antifuse OTP ROM Array Using Standard CMOS Process,” IEEE VLSI Cir. Symposium, Jun. 2003, pp. 239-242. |
Kim, O. et al., “CMOS trimming circuit based on polysilicon fusing,” Elec. Lett. vol. 34, No. 4, pp. 355-356, Feb. 1998. |
Klee, V. et al., “A 0.13um Logic-Based Embedded DRAM Technology with Electrical Fuses, Cu Interconnect in SiLK, sub-7ns Random Access Time and its Extension to the 0.10um Generation,” IEEE IEDM, 2001, pp. 407-410. |
Kothandaramam, C. et al., “Electrically programmable fuse (eFUSE) using electromigration in silicides,” IEEE Elec. Dev. Lett., vol. 23, No. 9, pp. 523-525, Sep. 2002. |
Kulkarni, S. et al., “High-Density 3-D Metal-Fuse PROM Featuring 1.37um2 1T1R Bit Cell in 32nm High-K Metal-Gate CMOS Technology,” VLSI Cir. Symp., Jun. 2009 pp. 28-29. |
Kulkarni, S. et al., “A 4Kb Metal-Fuse OTP-ROM Macro Featuring a 2V Programmable 1.37um2 1T1R Bit Cell in 32nm High-K Metal-Gate CMOS,” IEEE J. of Sol. Stat. Cir, vol. 45, No. 4, Apr. 2010, pp. 863-868. |
Kund, Michael et al., “Conductive Bridging RAM (CBRAM): An Emerging Non-Volatile Memory Technology Scalable to Sub 20nm,” IEEE IEDM 2005, pp. 754-757. |
Lai, Han-Chao et al., “A 0.26um2 U-Shaped Nitride-Based Programming Cell on Pure 90nm CMOS Technology,” IEEE Elec. Dev. Lett. vol. 28, No. 9, Sep. 2007, pp. 837-839. |
Lai, S., “Current Status of the Phase Change Memory and Its Future,” IEEE IEDM Dig. of Tech. Paper, Dec. 2003, pp. 255-258. |
Lee, H. Y. et al., “Low Power and High Speed Bipolar Switching with a Thin Reactive Ti Buffer Layer in Robust HfO2 Based RRAM,” IEEE IEDM, 2008, pp. 1-4. |
Lee, K.J., et al., “A 90nm 1.8V 512Mb Diode-Switch PRAM with 266MB/s Read Throughout,” IEEE ISSCC, Dig. of Tech. Paper, Feb. 2007, 3 pgs. |
Lee, Kwang-Jin et al., “A 90nm 1.8V 512Mb Diode-Switch PRAM with 266MB/s Read Throughput,” IEEE J. of Sol. Stat. Cir., vol. 43, No. 1, Jan. 2008, pp. 150-162. |
Lee, M.-J. et al., “Stack Friendly all-Oxide 3D RRAM Using GaInZnO Peripheral TFT Realized Over Glass Substrates,” IEDM, Dec. 2008. pp. 1-4. |
Lee, Man Chiu et al., “OTP Memory for Low Cost Passive RFID Tags,” IEEE Conf. on Electron Devices and Solid-State Circuits (EDSSC), 2007, pp. 633-636. |
Liaw, Corvin et al., “The Conductive Bridging Random Access Memory (CBRAM): A Non-volatile Multi-Level Memory Technology,” 37th European Solid-State Device Research Conference (ESSDERC), 2007, pp. 226-229. |
Lim, Kyunam et al., “Bit Line Coupling Scheme and Electrical Fuse Circuit for Reliable Operation of High Density DRAM,” IEEE VLSI Cir. Symp. Jun. 2001, pp. 33-34. |
Maffitt, T. et al., “Design Considerations for MRAM,” IBM J. Res. & Dev., vol. 50, No. 1, Jan. 2006, pp. 25-39. |
Meng, X.Z. et al., “Reliability Concept for Electrical Fuses,” IEE Proc.-Sci Meas. Technol., vol. 144, No. 2, Mar. 1997, pp. 87-92. |
Min, Byung-Jun et al., “An Embedded Non-volatile FRAM with Electrical Fuse Repair Scheme and One Time Programming Scheme for High Performance Smart Cards,” IEEE CICC, Nov. 2005, pp. 255-258. |
Mojumder, N. N. et al., “Three-Terminal Dual-Pillar STT-MRAM for High Performance Robust Memory Applications,” IEEE Trans. Elec. Dev. vol. 58. No. 5, May 2011, pp. 1508-1516. |
Morimoto, T. et al., “A NiSi Salicide Technology for Advanced Logic Devices,” IEEE IEDM, Dec. 1991, pp. 653-656. |
Neale, Ron, “PCM Progress Report No. 6 Afterthoughts,” http://www.eetimes.com/General/PrintView/4236240, Feb. 13, 2012, 5 pages. |
Nebashi, R. et al., “A 90nm 12ns 32Mb 2T1MTJ MRAM,” IEEE ISSCC Dig. of Tech. Paper, Sess. 27.4, Feb. 2009, 3 pages. |
Ng, K.P. et al., “Diode-Base Gate Oxide Anti-Fuse One-Time Programmable Memory Array in Standard CMOS Process,” IEEE Int. Conf. of Elect. Dev. & Solid-Stat Cir. (EDSSC), Dec. 2009, pp. 457-460. |
Ohbayashi, Shigeki et al., “A 65nm Embedded SRAM With Wafer Level Burn-In Mode, Leak-Bit Redundancy and Cu E-Trim Fuse for Known Good Die,” IEEE J. of Solid. Stat. Cir., vol. 43, No. 1, Jan. 2008, pp. 96-108. |
Oh, G. H. et al., “Parallel Multi-Confined (PMC) Cell Technology for High Density MLC PRAM,” IEEE VLSI Tech. Symp., Jun. 2009, pp. 220-221. |
Oh, J. H. et al., “Full Integration of Highly Manufacturable 512Mb PRAM Based on 90nm Technology,” IEEE IEDM Dig. of Tech. Paper, Dec. 2006, pp. 1-4. |
Osada, K. et al., “Phase Change RAM Operated with 1.5V CMOS as Low Cost Embedded Memory,” IEEE CICC, Nov. 2005, pp. 431-434. |
Park, Don et al., “Study on Reliability of Metal Fuse for Sub-100nm Technology,” IEEE Int. Symp. on Semiconductor Manufacturing (ISSM), 2005, pp. 420-421. |
Park, Jongwoo et al., “Phase Transformation of Programmed NiSi Electrical Fuse: Diffusion, Agglomeration, and Thermal Stability,” 18th IEEE Int. Symp. on Physical and Failure Analysis of Integrated Circuits, (IPFA), 2011, pp. 1-7. |
Park, Young-Bae et al., “Design of an eFuse OTP Memory of 8 Bits Based on a 0.35um BCD Process,” Mobile IT Convergence (ICMIC), 2011 Int. Conf. on, pp. 137-139. |
Pellizzer, F. et al., “Novel uTrench Phase-Change Memory Cell for Embedded and Stand-alone Non-Volatile Memory Applications,” IEEE VLSI Tech Symp. Jun. 2004, pp. 18-19. |
Peng, J. et al., “A Novel Embedded OTP NVM Using Standard Foundry CMOS Logic Technology,” IEEE 21st Non-Volatile Semiconductor Memory Workshop (NVSMW) 2006, pp. 24-26. |
Rizzolo, R. F. et al., “IBM System z9 eFUSE applications and methodology,” IBM J. Res. & Dev. vol. 51 No. ½ Jan./Mar. 2007, pp. 65-75. |
Robson, Norm et al., “Electrically Programmable Fuse (eFuse) from Memory Redundancy to Autonomic Chips,” IEEE CICC, 2007, pp. 799-804. |
Russo, U. et al., “Conductive-Filament Switching Analysis and Self-Accelerated Thermal Dissolution Model for Reset in NiO-based RRAM,” IEDM, Dec. 2007, pp. 775-778. |
Safran, J. et al., “A Compact eFUSE Programmable Array Memory for SOI CMOS,” VLSI Cir. Symp. Jun. 2007, pp. 72-73. |
Sasaki, Takahiko et al., “Metal-Segregate-Quench Programming of Electrical Fuse,” IEEE 43rd IRPS, 2005, pp. 347-351. |
Schrogmeier, P. et al., “Time Discrete Voltage Sensing and Iterative Programming Control for a 4F2 Multilevel CBRAM,” VLSI Cir. Symp., Jun. 2007, pp. 186-187. |
Sheu, Shyh-Shyuan et al., “A 5ns Fast Write Multi-Level Non-Volatile 1K-bits RRAM Memory with Advance Write Scheme,” VLSI Cir. Symp., Jun. 2009, pp. 82-83. |
Sheu, Shyh-Shyuan et al., “Fast-Write Resistive RAM (RRAM) for Embedded Applications,” IEEE Design & Test of Computers, Jan./Feb. 2011, pp. 64-71. |
Shi, Min et al., “Zero-Mask Contact Fuse for One-Time-Programmable Memory in Standard CMOS Processes,” IEEE Dev. Lett. vol. 32, No. 7, Jul. 2011, pp. 955-957. |
Song, Y. J. et al., “Highly Reliable 256Mb PRAM with Advanced Ring Contact Technology and Novel Encapsulating Technology,” IEEE VLSI Tech Symp., Jun. 2006, pp. 153-154. |
Suto, Hiroyuki et al., “Programming Conditions for Silicided Poly-Si or Copper Electrically Programmable Fuses,” IEEE IIRW Final Report, 2007, pp. 84-89. |
Suto, Hiroyuki et al., “Study of Electrically Programmable Fuses Through Series of I-V Measurements,” IEEE IIRW Final Report, 2006, pp. 83-86. |
Suto, Hiroyuki et al., “Systematic Study of the Dopant-Dependent Properties of Electrically Programmable Fuses With Silicide Poly-Si Links Through a Series of I-V Measurements,” IEEE Trans. on Dev. Mat. Rel. vol. 7, No. 2, Jun. 2007, pp. 285-297. |
Takaoka, H. et al., A Novel Via-fuse Technology Featuring Highly Stable Blow Operation with Large On-off Ratio for 32nm Node and Beyond, IEDM, 2007, pp. 43-46. |
Tehrani, S. et al., “Magnetoresistive Random Access Memory Using Magnetic Tunnel Junction,” Proc. of IEEE, vol. 91, No. 5, May 2003, pp. 703-714. |
Tehrani, S., “Status and Outlook of MRAM Memory Technology,” IEEE IEDM Dig. of Tech Paper., Dec. 2006, pp. 1-4. |
Teichmann, J. et al., “One Time Programming (OTP) with Zener Diodes in CMOS Processes,” 33rd Conf. on European Solid-State Device Research (ESSDERC), 2003, pp. 433-436. |
Tian, C. et al., “Reliability Investigation of NiPtSi Electrical Fuse with Different Programming Mechanisms,” IEEE IIRW Final Report, 2007, pp. 90-93. |
Tian, C. et al., “Reliability Qualification of CoSi2 Electrical Fuse for 90nm Technology,” IEEE 44th IRPS, 2006, pp. 392-397. |
Tian, Chunyan et al., “Reliability Investigation of NiPtSi Electrical Fuse with Different Programming Mechanisms,” IEEE Trans. on Dev. Mat. Rel. vol. 8, No. 3, Sep. 2008, pp. 536-542. |
Tonti, W. R. et al., “Product Specific Sub-Micron E-Fuse Reliability and Design Qualification,” IEEE IIRW Final Report, 2003, pp. 36-40. |
Tonti, W. R., “Reliability and Design Qualification of a Sub-Micro Tungsten Silicide E-Fuse,” IEEE IRPS Proceedings, 2004, pp. 152-156. |
Tonti, W. R., “Reliability, Design Qualification, and Prognostic Opportunity of in Die E-Fuse,” IEEE Conference on Prognostics and Health Management (PHM), 2011, pp. 1-7. |
Ueda, T. et al., “A Novel Cu Electrical Fuse Structure and Blowing Scheme utilizing Crack-assisted Mode for 90-45nm-node and beyond,” IEEE VLSI Tech. Sym., Jun. 2006, 2 pages. |
Ulman, G. et al., “A Commercial Field-Programmable Dense eFUSE Array Memory with 00.999% Sense Yield for 45nm SOI CMOS”, ISSCC 2008/ Session 22 / Variation Compensation and Measurement/ 22.4, 2008 IEEE International Solid-State Circuits Conference, pp. 406-407. |
Vimercati, Daniele et al., “A 45nm 1Gbit 1.8V PCM for Wireless and Embedded Applications,” IEEE ISSCC Feb. 2010, 26 pages. |
Vinson, J. E., “NiCr Fuse Reliability—A New Approach,” Southcon/94, Conference Record, 1994, pp. 250-255. |
Walko, J., “Ovshinsky's Memories,” IEE Review, Issue 11, Nov. 2005, pp. 42-45. |
Wang, J. P. et al., “The Understanding of Resistive Switching Mechansim in HfO2-Based Resistive Random Access Memory,” IEDM, 2011, pp. 12.1.1-12.1.4. |
Wikipedia, “Programmable read-only memory”, http://en.wikipedia.org/wiki/Programmable—read-only—memory, downloaded Jan. 31, 2010, 4 pages. |
Worledge, D.C., “Single-Domain Model for Toggle MRAM,” IBM J. Res. & Dev. vol. 50, No. 1, Jan. 2006, pp. 69-79. |
Wu, Kuei-Sheng et al., “The Improvement of Electrical Programmable Fuse with Salicide-Block Dielectrical Film in 40nm CMOS Technology,” Interconnect Technology Conference (IITC), 2010 Int. pp. 1-3. |
Wu, Kuei-Sheng et al., “Investigation of Electrical Programmable Metal Fuse in 28nm and beyond CMOS Technology,” IEEE International Interconnect Technology Conference and 2011 Materials for Advanced Metallization (IITC/MAM), 2011, pp. 1-3. |
Yin, M. et al., “Enhancement of Endurance for CuxO based RRAM Cell,” 9th Int. Conf. on Solid-State and Integrated-Circuit Technology (ICSICT) 2008, pp. 917-920. |
Zhu, Jian-Gang, “Magnetoresistive Random Access Memory: The Path to Competitiveness and Scalability,” Proc. of IEEE, vol. 96, No. 11, Nov. 2008, pp. 1786-1798. |
Zhuang, W. W. et al., “Novell Colossal Magnetonresistive Thin Film Nonvolatile Resistance Random Access Memory (RRAM),” IEEE IEDM 2002, pp. 193-196. |
Notice of Allowance for U.S. Appl. No. 13/026,664 mailed Sep. 18, 2012. |
Office Action for U.S. Appl. No. 13/471,704 mailed Jul. 31, 2012. |
Notice of Allowance for U.S. Appl. No. 13/471,704 mailed Oct. 18, 2012. |
Notice of Allowance for U.S. Appl. No. 13/026,678 mailed Sep. 19, 2012. |
Office Action for U.S. Appl. No. 13/026,783 mailed Sep. 27, 2012. |
Office Action for U.S. Appl. No. 13/026,717 mailed Oct. 25, 2012. |
Office Action for U.S. Appl. No. 13/026,650 mailed Nov. 9, 2012. |
Office Action for U.S. Appl. No. 13/026,692 mailed Nov. 9, 2012. |
Office Action for U.S. Appl. No. 13/026,752 mailed Nov. 9, 2012. |
Office Action for U.S. Appl. No. 13/026,656 mailed Nov. 13, 2012. |
Office Action for U.S. Appl. No. 13/026,704 mailed Nov. 23, 2012. |
Office Action for U.S. Appl. No. 13/397,673, mailed Dec. 18, 2012. |
Office Action for U.S. Appl. No. 13/026,840, mailed Dec. 31, 2012. |
Office Action for U.S. Appl. No. 13/026,852, mailed Jan. 14, 2013. |
Office Action for U.S. Appl. No. 13/026,783, mailed Sep. 27, 2012. |
Restriction Requirement for U.S. Appl. No. 13/026,835, mailed Dec. 12, 2012. |
Notice of Allowance for U.S. Appl. No. 13/026,717, mailed Feb. 12, 2013. |
Office Action for U.S. Appl. No. 13/471,704, mailed Jan. 25, 2013. |
U.S. Appl. No. 13/761,048, filed Feb. 6, 2013. |
U.S. Appl. No. 13/761,057, filed Feb. 6, 2013. |
U.S. Appl. No. 13/761,097, filed Feb. 6, 2013. |
U.S. Appl. No. 13/761,045, filed Feb. 6, 2013. |
Office Action for U.S. Appl. No. 13/026,678, mailed Feb. 20, 2013. |
Notice of Allowance for U.S. Appl. No. 13/026,783, mailed Mar. 4, 2013. |
Notice of Allowance for U.S. Appl. No. 13/026,692, mailed Mar. 15, 2013. |
Office Action for U.S. Appl. No. 13/026,704, mailed Nov. 23, 2012. |
Notice of Allowance for U.S. Appl. No. 13/026,835, mailed Mar. 20, 2013. |
Notice of Allowance for U.S. Appl. No. 13/026,664, mailed Apr. 22, 2013. |
Notice of Allowance for U.S. Appl. No. 13/026,656, mailed Apr. 22, 2013. |
Jagasivamani et al., “Development of a Low-Power SRAM Compiler”, IEEE Press, 2001, pp. 498-501. |
Liu et al., “A Flexible Embedded SRAM Compiler”, IEEE Press, 2002, 3 pgs. |
Sundrararajan, “OSUSPRAM: Design of a Single Port SRAM Compiler in NCSU FREEPDK45 Process”, Mater of Science in Electrical Engineering, Oklahoma State University, Jul. 2010, 117 pgs. |
Notice of Allowance for U.S. Appl. No. 13/026,835, Mailed Apr. 18, 2013. |
Notice of Allowance for U.S. Appl. No. 13/026,704, mailed Apr. 30, 2013. |
Notice of Allowance for U.S. Appl. No. 13/026,852, mailed May 10, 2013. |
Notice of Allowance for U.S. Appl. No. 13/026,717, mailed May 15, 2013. |
Notice of Allowance for U.S. Appl. No. 13/471,704, mailed May 22, 2013. |
Notice of Allowance for U.S. Appl. No. 13/026,678, mailed May 28, 2013. |
Notice of Allowance for U.S. Appl. No. 13/026,650, mailed May 30, 2013. |
Restriction Requirement for U.S. Appl. No. 13/314,444, mailed Jun. 7, 2013. |
Restriction Requirement for U.S. Appl. No. 13/214,198, mailed Jun. 13, 2013. |
Notice of Allowance for U.S. Appl. No. 13/026,840, mailed Jun. 13, 2013. |
Restriction Requirement for U.S. Appl. No. 13/026,771, mailed Jun. 13, 2013. |
Notice of Allowance for U.S. Appl. No. 13/026,752, mailed Jul. 1, 2013. |
Restriction Requirement for U.S. Appl. No. 13/678,543, mailed Jul. 8, 2013. |
Office Action for U.S. Appl. No. 13/026,725, mailed Jul. 19, 2013. |
Notice of Allowance for U.S. Appl. No. 13/026,664, mailed Jul. 22, 2013. |
Notice of Allowance for U.S. Appl. No. 13/026,692, mailed Jul. 23, 2013. |
Notice of Allowance for U.S. Appl. No. 13/397,673, mailed Jul. 30, 2013. |
Notice of Allowance for U.S. Appl. No. 13/026,704, mailed Aug. 2, 2013. |
Notice of Allowance for U.S. Appl. No. 13/026,783, mailed Aug. 5, 2013. |
Office Action for U.S. Appl. No. 13/214,198, mailed Aug. 6, 2013. |
Office action for Chinese Patent Application No. 201110279954.7, mailed Jul. 1, 2013. |
Shen et al., “High-K Metal Gate Contact RRAM (CRRAM) in Pure 28 nm CMOS Logic Process”, Electron Devices Meeting (IEDM), 2012 IEEE International, Dec. 2012, 4 pgs. |
Tseng et al., “A New High-Density and Ultrasmall-Cell Size Contact RRAM (CR-RAM) with Fully CMOS-Logic-Compatible Technology and Circuits”, IEEE Transactions on Electron Devices, vol. 58, Issue 1, Jan. 2011, 6 pgs. |
Office Action for U.S. Appl. No. 13/026,783, mailed Sep. 9, 2013. |
Office Action for U.S. Appl. No. 13/314,444, mailed Sep. 9, 2013. |
Office Action for U.S. Appl. No. 13/026,771, mailed Sep. 9, 2013. |
Notice of Allowance for U.S. Appl. No. 13/026,852, mailed Sep. 18, 2013. |
Office Action (Ex Parte) for U.S. Appl. No. 13/678,543, mailed Sep. 20, 2013. |
Office Action for U.S. Appl. No. 13/835,308, mailed Sep. 27, 2013. |
Notice of Allowance for U.S. Appl. No. 13/026,717, mailed Oct. 1, 2013. |
Office Action for U.S. Appl. No. 13/954,831, mailed Oct. 1, 2013. |
Notice of Allowance for U.S. Appl. No. 13/026,656, mailed Oct. 4, 2013. |
Office Action for U.S. Appl. No. 13/214,183, mailed Oct. 25, 2013. |
Chua, “Many Times Programmable z8 Microcontroller”, e-Gizmo.cim, Nov. 21, 2006, pp. 1-5. |
Forum, Intel Multi-byte Nops, asmcommunity.net, Nov. 21, 2006, pp. 1-5. |
CMOS Z8 OTP Microcontrollers Product Specification, Zilog Inc., May 2008, Revision 1, pp. 1-84. |
OTP Programming Adapter Product User Guide, Zilog Inc., 2006, pp. 1-3. |
Notice of Allowance for U.S. Appl. No. 13/026,852, mailed Nov. 15, 2013. |
Notice of Allowance for U.S. Appl. No. 13/026,835, mailed Nov. 22, 2013. |
Notice of Allowance for U.S. Appl. No. 13/026,725, mailed Dec. 10, 2013. |
Office Action for U.S. Appl. No. 13/026,783, mailed Dec. 23, 2013. |
Notice of Allowance for U.S. Appl. No. 13/026,771, mailed Jan. 15, 2014. |
Office Action for Chinese Patent Application No. 201110244362.1, mailed Sep. 29, 2013. |
Office Action for Chinese Patent Application No. 201110235464.7, mailed Oct. 8, 2013. |
Office Action for Chinese Patent Application No. 201110244400.3, mailed Nov. 5, 2013. |
Office Action for Chinese Patent Application No. 201110244342.4, mailed Oct. 31, 2013. |
Restriction Requirement for U.S. Appl. No. 13/678,541, mailed Feb. 28, 2014. |
Notice of Allowance for U.S. Appl. No. 13/026,840, mailed Mar. 6, 2014. |
Notice of Allowance for U.S. Appl. No. 13/026,840, mailed Mar. 10, 2014. |
Notice of Allowance of U.S. Appl. No. 13/678,543, mailed Dec. 13, 2013. |
Notice of Allowance for U.S. Appl. No. 13/835,308, mailed Mar. 14, 2014. |
Notice of Allowance for U.S. Appl. No. 13/026,835, mailed Mar. 14, 2014. |
Notice of Allowance for U.S. Appl. No. 13/026,725, mailed Mar. 31, 2014. |
Notice of Allowance for U.S. Appl. No. 13/026,852, mailed Mar. 20, 2014. |
Notice of Allowance for U.S. Appl. No. 13/026,771, mailed Mar. 18, 2014. |
Final Office Action for U.S. Appl. No. 13/214,183, mailed Apr. 17, 2014. |
“Embedded Systems/Mixed C and Assembly Programming”, Wikibooks, Aug. 6, 2009, pp. 1-7. |
Notice of Allowance for U.S. Appl. No. 13/761,097, mailed Jul. 15, 2014. |
Office Action for U.S. Appl. No. 13/571,797, mailed Apr. 24, 2014. |
Notice of Allowance for U.S. Appl. No. 13/590,044, mailed Apr. 29, 2014. |
Notice of Allowance for U.S. Appl. No. 13/954,831, mailed May 27, 2014. |
Notice of Allowance of U.S. Appl. No. 13/833,044, mailed May 29, 2014. |
Notice of Allowance for U.S. Appl. No. 13/761,048, mailed Jun. 10, 2014. |
Office Action for Taiwanese Patent Application No. 100129642, mailed May 19, 2014 (with translation). |
Office Action for U.S. Appl. No. 13/072,783, mailed Nov. 7, 2013. |
Notice of Allowance for U.S. Appl. No. 13/026,840, mailed Jun. 24, 2014. |
Notice of Allowance for U.S. Appl. No. 13/214,198, mailed Jun. 23, 2014. |
Notice of Allowance for U.S. Appl. No. 13/590,044, mailed Jun. 23, 2014. |
Ker et al., “MOS-bounded diodes for on-chip ESD protection in a 0.15-μ m shallow-trench-isolation salicided CMOS Process” International Symposium on VLSI Technology, Systems and Applications, 2003, 5 pgs. |
Notice of Allowance for U.S. Appl. No. 13/840,965, mailed Jun. 25, 2014. |
Office Action for U.S. Appl. No. 13/970,562, mailed Jun. 27, 2014. |
Office Action for U.S. Appl. No. 13/835,308, mailed Jun. 27, 2014. |
Notice of Allowance for U.S. Appl. No. 13/288,843, mailed Jul. 8, 2014. |
Restriction Requirement for U.S. Appl. No. 13/678,539, mailed Jul. 1, 2014. |
Notice of Allowance for U.S. Appl. No. 14/231,413, mailed Jul. 18, 2014. |
Notice of Allowance for U.S. Appl. No. 13/590,044, mailed Jul. 23, 2014. |
Restriction Requirement for U.S. Appl. No. 13/833,067, mailed Jul. 11, 2014. |
Notice of Allowance for U.S. Appl. No. 13/954,831, mailed Aug. 4, 2014. |
Notice of Allowance for U.S. Appl. No. 13/761,097, mailed Jul. 25, 2014. |
Ex parte Quayle for U.S. Appl. No. 13/761,057, mailed Aug. 8, 2014. |
Final Office Action for U.S. Appl. No. 13/314,444, mailed May 14, 2014. |
Corrected Notice of Allowability for U.S. Appl. No. 13/288,843, mailed Aug. 19, 2014. |
Office Action for U.S. Appl. No. 13/590,049, mailed Aug. 29, 2014. |
Ex Parte Quayle for U.S. Appl. No. 13/590,047, mailed Aug. 29, 2014. |
Ex Parte Quayle for U.S. Appl. No. 13/590,050, mailed Sep. 3, 2014. |
Office Action for U.S. Appl. No. 13/678,539, mailed Sep. 10, 2014. |
Notice of Allowance for U.S. Appl. No. 13/288,843, mailed Sep. 18, 2014. |
Notice of Allowance for U.S. Appl. No. 13/761,057, mailed Sep. 26, 2014. |
Notice of Allowance for U.S. Appl. No. 13/833,044, mailed Sep. 24, 2014. |
Notice of Allowance for U.S. Appl. No. 13/314,444, mailed Sep. 24, 2014. |
Office Action for U.S. Appl. No. 13/761,045, mailed Sep. 30, 2014. |
Notice of Allowance for U.S. Appl. No. 13/835,308, mailed Oct. 10, 2014. |
Notice of Allowance for U.S. Appl. No. 13/571,797, mailed Oct. 14, 2014. |
Office Action for U.S. Appl. No. 13/833,067, mailed Oct. 20, 2014. |
Notice ofAllowance for U.S. Appl. No. 14/085,228, mailed Oct. 23, 2014. |
Office Action for U.S. Appl. No. 13/842,824, mailed Oct. 29, 2014. |
Herner et al., “Vertical p-i-n Polysilicon Diode with Antifuse for stackable Field-Programmable ROM”, IEEE Electron Device Letters, vol. 25, No. 5, pp. 271-273, May 2004. |
Notice of Allowance for U.S. Appl. No. 13/590,049, mailed Nov. 25, 2014. |
Notice of Allowance for U.S. Appl. No. 13/590,047, mailed Nov. 24, 2014. |
Office Action for U.S. Appl. No. 13/590,044, mailed Dec. 9, 2014. |
Notice of Allowance for U.S. Appl. No. 13/590,050, mailed Dec. 18, 2014. |
Office Action for U.S. Appl. No. 14/042,392, mailed Dec. 31, 2014. |
Office Action for U.S. Appl. No. 14/071,957, mailed Dec. 29, 2014. |
International Search Report and Written Opinion for International Patent Application No. PCT/US/2014/056676, mailed Dec. 19, 2014. |
Office Action for U.S. Appl. No. 14/493,083, mailed Jan. 8, 2015. |
Office Action for Chinese Patent Application No. 2011102443903, mailed Dec. 16, 2014 (with translation). |
Notice of Allowance for U.S. Appl. No. 13/970,562, mailed Jan. 23, 2015. |
Notice of Allowance for U.S. Appl. No. 14/493,069, mailed Feb. 17, 2015. |
Notice of Allowance for U.S. Appl. No. 14/085,228, mailed Feb. 18, 2015. |
Notice of Allowance for U.S. Appl. No. 13/761,045, mailed Feb. 18, 2015. |
Notice of Allowance for U.S. Appl. No. 14/231,404, mailed Jan. 22, 2015. |
Notice of Allowance for U.S. Appl. No. 14/021,990, mailed Dec. 9, 2014. |
Number | Date | Country | |
---|---|---|---|
20140131764 A1 | May 2014 | US |
Number | Date | Country | |
---|---|---|---|
61560159 | Nov 2011 | US |