Aspects of the present disclosure are directed toward radiant daytime cooling. In certain more specific embodiments, a structure facilitates far-field radiation at particular wavelengths while blocking radiation at solar wavelengths. Additionally, aspects of the present disclosure allow for cooling of buildings and similar structures.
Aspects of the present disclosure utilize radiative cooling techniques that exploit the natural transparency window for electromagnetic waves in the Earth's atmosphere to transport heat from terrestrial objects. These techniques can be used to facilitate passively cooling even at temperatures that are well below the ambient air temperature. Particular aspects are premised upon the recognition that the blackbody spectral radiation wavelengths for common terrestrial temperatures (0-50° C.) are at or near wavelengths where the atmosphere is nearly transparent.
For buildings (and other structures), cooling is a larger issue when the temperature is higher and when the building is exposed to direct sunlight, both of which happen during daytime. Daytime radiative cooling can therefore be significantly more useful than nighttime cooling, but is also often much more challenging due to the problem of absorbed solar radiation.
Various example embodiments may be more completely understood in consideration of the following detailed description in connection with the accompanying drawings.
While the disclosure is amenable to various modifications and alternative forms, specifics thereof have been shown by way of example in the drawings and will be described in detail. It should be understood, however, that the intention is not to limit the disclosure to the particular embodiments described. On the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the scope of the disclosure including aspects defined in the claims.
Various aspects of the present disclosure are directed towards apparatus, methods of use, and methods of manufacturing of radiative cooling structures.
Certain aspects of the present disclosure are directed towards methods/apparatuses that include a radiative cooling device for cooling an object. A solar spectrum reflecting structure is configured and arranged to suppress light modes within the structure from coupling to sources that are externally located relative to the object being cooled. The particular light modes that are suppressed can be targeted to prohibiting coupling of incoming solar radiation by including at least some wavelengths in the visible, near IR, and ultraviolet spectrum (solar spectrum). A thermally-emissive structure is configured and arranged to facilitate thermally-generated emissions from the object and in mid-infrared (IR) wavelengths. At least a portion of both the solar spectrum reflecting structure and the thermally-emissive structure are integrated into a constitution to both prohibit the coupling of the incoming solar spectrum to the object and facilitate the emission from the object and in mid-IR wavelengths. This type of integration can be particularly useful for a number of different reasons, some of which are discussed in more detail herein.
Radiative cooling can include nighttime cooling, however, such cooling often has a relatively limited practical relevance. For instance, nighttime radiative cooling is often of limited value because nighttime has lower ambient temperatures than daytime, and therefore, there is less of a need for cooling. Accordingly, aspects of the present disclosure are directed toward macroscopically planar photonic structures that selectively enhance mid-IR emission of light, specifically in the atmospheric transparency window, and also suppress absorption of light in the wavelength range of 300 nm-4 μm, i.e., the solar spectral range. Such structures can be useful for a variety of applications including, but not limited to, passively cooling terrestrial structures such as buildings, homes and electronics in the daytime and the nighttime.
In particular embodiments, the structure is macroscopically planar in nature and includes layering and texturing at the nanometer to micrometer scale. For instance, the structure can include materials whose properties are given by a frequency-dependent dielectric constant and are configured to enable sub-wavelength interference and near-field light coupling between constituent layers so as to form spectral regions with a suppressed number of light modes. This suppression can be in the form of photonic band gaps that lead to reduced absorption of solar light. The structure can also include materials, whose properties are given by a frequency-dependent dielectric constant and are configured to enable sub-wavelength interference and near-field light coupling between constituent layers so as to form spectral regions with an enhanced number of light modes. These enhanced light modes can be used to increase the emission of light in the 8-13 μm wavelength range. There are a number of configurations and mechanism for achieving the suppression or enhancement of light modes. A few, non-limiting examples are discussed hereafter.
To enhance the emissivity in the 8-13 μm wavelength range or in the wavelength range supported by a blackbody with temperatures in the range of 250−350° K, a first solution uses a grating or a photonic crystal, to couple surface phonon-polaritons to free-space light modes. This leads to the enhanced emission of light in the 8-13 μm or in the wavelength range supported by a blackbody with temperatures in the range of 250-350° K. The enhanced emission of light is embodied in the emissivity spectrum.
According to another solution, a finite multilayer stack is used that includes two or more materials. The stack is configured to exploit a near-field coupling of light mode, and sub-wavelength interference. This allows for the enhancement of the emission of light in the 8-13 μm wavelength range or in the wavelength range supported by a blackbody with temperatures in the range of 250-350° K. The enhanced emission of light is embodied in the emissivity spectrum.
To suppress absorption in the 300 nm-4 μm wavelength range, one solution uses a multilayer stack consisting of two or more materials, to exploit near-field coupling of light modes, and sub-wavelength interference, to suppress absorption of solar light (300 nm-4 μm). The suppressed absorption of light is embodied in the emissivity/absorption spectrum.
Turning now to the figures,
An example and experimental embodiment of the structure of
Immediately below the grating layers is a multilayer stack: 3 sets of 5 bilayers (15 layers in total) of varying thicknesses. The first set of 5 bilayers has thicknesses of 25 nm of TiO2 and 35 nm of MgF2; the second set 50 nm of TiO2 and 70 nm of MgF2; the third set of 75 nm of TiO2 and 105 nm MgF2. The multilayer stack is designed to suppress the absorption of solar light throughout the solar spectrum. For instance, these layers can create photonic band gaps that prevent solar light from propagating through the structure.
The particular materials, patterning and thicknesses can be varied and still provide the ability to enhance or suppress the relevant light modes in a single integrated constitution as shown in
In comparison, solar panels that operate at 20% efficiency can generate less than 200 W/m2 at peak capacity. In certain conditions, the passive daytime radiative coolers proposed here could be thought of as solar panel substitutes (or supplements) that reduce the demand on a rooftop solar system by reducing the need for air conditioning (cooling) systems.
Reducing the air conditioning load at peak hours can be particularly useful for reducing the grid's overall need for dirty ‘peak-power’ sources that kick in to cover extra power needs in the summer. Moreover, such radiative cooling structures can reduce overall energy demands from commercial buildings such as factories, warehouses and data centers, lending a significant hand to the nation's energy efficiency goals. Air conditioning alone is believed to represent 23% of the power usage of residential and commercial buildings, or 16.33% of the total electric power usage of the United States as of 2011. A 10% reduction in air conditioning needs system wide via thorough implementation of daytime radiative cooling structures would thus represent a 1.6% reduction in the total electric power usage of the country, or 61.7 TWh. This would be equivalent to reducing the need for 7 GW of power generating capacity overall.
Moreover, the support structure could include adjustable elements (e.g., a rotational support portion) that allow the cooling structure to be optimally oriented. In some instances, the orientation could be adjusted for different times of day or even different times of the year. For example, the cooling structure can be uninstalled or oriented to reduce cooling when the ambient temperature is below a threshold value, as may occur during certain times of the year or simply during a cold front. Other possibilities include the use of such structures for cooling of temporary structures (e.g., temporary buildings for large events) or use on mobile structures while motionless and removed during motion (e.g., to avoid damage due to wind shear or objects that might strike the cooling structure during movement).
Accordingly, automobiles represent another area where cooling energy costs can be reduced with a daytime radiative cooler. Although all vehicles could potentially benefit, electric vehicle (EV) battery range could benefit greatly from a reduction of air conditioning needs. It is believed that air-conditioning can reduce an EV's charge depletion range by up to 35%. Experimental modeling suggests that an air conditioning load of 1000 W for small cars could then be reduced 10% by covering 2 m2 of the car's surface.
Another potential application is for extra-terrestrial cooling. In outer space, radiation is the dominant mechanism of heat exchange and temperature regulation. A device operating in space (e.g., orbiting satellite, spaceship or landing probe) which produces heat has the potential to benefit from the use of a radiative cooling structure that would allow it to cool more efficiently and/or obtain a pre-specified equilibrium temperature.
Embodiments of the present disclosure are directed toward these and other mechanisms for passively cooling structures even in extremely hot environments. This can be useful for cost and energy savings over the lifetime of buildings and other structures or objects.
Consistent with experimental examples discussed herein, assuming an radiative cooler is operating at its peak cooling rate, then 40 m2 of daytime radiative cooler on the rooftop (20% of a total of 200 m2 available rooftop space), one can offset 32% of a house's air conditioning needs during the hottest hours of the day.
The embodiments and specific applications discussed herein may be implemented in connection with one or more of the above-described aspects, embodiments and implementations, as well as with those shown in the appended figures.
For further details regarding cooling efficiency and energy costs, reference is made to the below-listed documents, which are fully incorporated herein by reference.
Various embodiments described above, and shown in the figures may be implemented together and/or in other manners. One or more of the items depicted in the present disclosure can also be implemented in a more separated or integrated manner, or removed and/or rendered as inoperable in certain cases, as is useful in accordance with particular applications. In view of the description herein, those skilled in the art will recognize that many changes may be made thereto without departing from the spirit and scope of the present disclosure.
This patent document is a divisional under 35 U.S.C. § 120 of U.S. patent application Ser. No. 13/829,997 filed on Mar. 14, 2013 (U.S. Pat. No. 9,709,349) which claims benefit under 35 U.S.C. § 119 to U.S. Provisional Patent Application Ser. No. 61/726,777, entitled “Structures For Radiative Cooling” and filed on Nov. 15, 2012; each of these patent documents is fully incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3310102 | Trombe | Mar 1967 | A |
4147040 | Altman | Apr 1979 | A |
4323619 | Silvestrini et al. | Apr 1982 | A |
4423605 | Petrick et al. | Jan 1984 | A |
4586350 | Berdahl | May 1986 | A |
6830713 | Hebrink et al. | Dec 2004 | B2 |
7105117 | Rodgers et al. | Sep 2006 | B2 |
7274458 | Perez et al. | Sep 2007 | B2 |
7503971 | Wojtysiak | Mar 2009 | B2 |
8012571 | Liu et al. | Sep 2011 | B2 |
8182924 | Hebrink et al. | May 2012 | B2 |
8263731 | Liu et al. | Sep 2012 | B2 |
8409720 | Hebrink et al. | Apr 2013 | B2 |
8630040 | Bright et al. | Jan 2014 | B2 |
8792165 | Merrill et al. | Jul 2014 | B2 |
8846169 | McCormick et al. | Sep 2014 | B2 |
8854730 | Wang et al. | Oct 2014 | B2 |
8879151 | Merrill et al. | Nov 2014 | B2 |
8975011 | Dunn et al. | Mar 2015 | B2 |
8975012 | Dunn et al. | Mar 2015 | B2 |
8982462 | Merrill et al. | Mar 2015 | B2 |
9012044 | Bright | Apr 2015 | B2 |
9019607 | Merrill et al. | Apr 2015 | B2 |
9034459 | Condo et al. | May 2015 | B2 |
9097858 | Merrill | Aug 2015 | B2 |
9291757 | Merrill et al. | Mar 2016 | B2 |
20120210736 | Rockenfeller | Aug 2012 | A1 |
Entry |
---|
Eden Rephaell et al. “Ultrabroadband Photonic Structures to Achieve High-Performance Daytime Radiative Cooling.” NANO Letters 13, ACS Publications, American Chemical Society, 1457-1461 (Mar. 5, 2013). |
Angus R. Gentle and Geoff B. Smith. “A Subambient Open Roof Surface under the Mid-Summer Sun.” Advanced Science 2, Material Views, 1-4 (2015). |
3M. “Vikuity™ Enhanced Specular Reflector (ESR).” Vikuity™ Display Enhancement Application Guidelines, 4 pgs. (2003). |
3M. “Vikuity™ Enhanced Specular Reflector Film (ESR) Material Safety Data Sheet,” 1-5 (Feb. 2006). |
R. Farrington and J. Rugh, “Impact of vehicle air-conditioning on fuel economy, tailpipe emissions, and electric vehicle range,” Tech. Rep., National Renewable Energy Laboratory, http://www.nrel.gov/docs/fy00osti/28960.pdf (2000). |
R. Robb, A. Brooker, L. Ramroth, J. Rugh and K. Smith, “Analysis of off-board powered thermal preconditioning in electric drive vehicles,” Tech. Rep., National Renewable Energy Laboratory, http://www.nrel.gov/vehiclesandfuels/vsa/pdfs/49252.pdf (2010). |
A. Burdick, “Strategy guideline: Accurate heating and cooling load calculations,” Tech. Rep., U.S. Dept. of Energy: Energy Efficiency and Renewable Energy, http://www.nrel.gov/docs/fy11osti/51603.pdf (Jun. 2011). |
Number | Date | Country | |
---|---|---|---|
20170314878 A1 | Nov 2017 | US |
Number | Date | Country | |
---|---|---|---|
61726777 | Nov 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13829997 | Mar 2013 | US |
Child | 15652766 | US |