Force rebalance accelerometers which include a proof mass suspended between one or more magnet assemblies are generally known in the art. Examples of such accelerometers are disclosed in U.S. Pat. Nos. 4,182,187; 4,250,757; 4,394,405; 4,399,700; 4,400,979; 4,441,366; 4,555,944; 4,555,945; 4,592,234; 4,620,442; 4,697,455; 4,726,228; 4,932,258; 4,944,184; 5,024,089; 5,085,079; 5,090,243; 5,097,172; 5,111,694; 5,182,949; 5,203,210; 5,212,984; and 5,220,831, all herein incorporated by reference. Such force rebalance accelerometers normally include a proof mass, known to be formed from amorphous quartz, suspended by one or more flexures to enable the proof mass to deflect in response to forces or accelerations along a sensitive axis, generally perpendicular to the plane of the proof mass. At rest, the proof mass is normally suspended equidistantly between upper and lower excitation rings. Electrically conductive material forming pick-off capacitance plates, is disposed on opposing sides of the proof mass to form capacitive elements with the excitation rings. An acceleration or force applied along the sensitive axis causes the proof mass to deflect either upwardly or downwardly which causes the distance between the pick-off capacitance plates and the upper and lower excitation rings to vary. This change in the distance between the pick-off capacitance plates and the upper and lower excitation rings causes a change in the capacitance of the capacitive elements. The difference in the capacitances of the capacitive elements is thus representative of the displacement of the proof mass along the sensitive axis. This displacement signal is applied to a servo system that includes one or more electromagnets which function to return the proof mass to its null or at-rest position. The magnitude of the drive currents applied to the electromagnets, in turn, is representative of the acceleration or force along the sensitive axis.
The electromagnets are known to include a magnet formed from, for example, alnico, normally bonded to an excitation ring formed from a material having relatively high permeability, such as Invar, to form a magnetic return path. The materials used for the magnet and the excitation ring will have different coefficients of thermal expansion, since the materials are different. As such, the interface defined between the magnet and the excitation ring will be subject to stress as a function of temperature. Such stress over a period of time and/or temperature degrades the performance of the accelerometer.
In order to resolve this problem, compliant epoxies have been used to bond the magnet to the excitation ring. However, such compliant epoxies degrade the long term stability of the accelerometer. Moreover, the alloys used in the excitation ring do not optimally match the expansion coefficient of the silicon dioxide-based capacitance plates, creating temperature-induced false acceleration signal, compromising the precision and accuracy of motion-sourced acceleration.
Embodiments include a force rebalance accelerometer that more precisely and accurately provides accelerometer values attributable to changes in motion and not falsely signaled by changes in temperature. Embodiments more accurately provide true accelerometer readings due to changes in velocity by minimizing non-velocity related or noise related contributions that would otherwise falsely indicate a change in velocity. Embodiments include accelerometer components made from materials having substantially similar coefficients of thermal expansion.
Particular embodiments of the rebalance accelerometer include a cylinder or canister having a silicon dioxide-based proof mass with capacitive elements that engage with a magnet assembly made of Super Invar. The Super Invar alloys provide substantially similar coefficients of thermal expansion to the silicon dioxide-based proof mass. The proof mass is suspended by one or more flexures between stationary mounted upper and lower excitation rings. The proof mass is isolated from the interior walls of the cylinder via an air gap interposed between the proof mass and interior walls. The air gap is filled with an inert gas. Pick-off capacitance plates are formed or otherwise mounted to the opposing sides of the proof mass. The pick-off capacitance plates provide capacitance elements whose capacitance varies in response to displacement of the proof mass to provide a displacement signal proportional to the acceleration of the movement experienced by the rebalance accelerometer. False signals mimicking acceleration attributable to changing temperatures are substantially reduced in accelerometers of the particular embodiments made from materials having substantially similar coefficients of thermal expansion.
The particular embodiments are described in detail below with reference to the following drawings.
The magnet assemblies 22 include a permanent magnet 42 and a generally cylindrical excitation ring or flux concentrator 44. The excitation ring 44 is configured to have a generally C-shaped cross section. The material for the excitation ring 44 is selected to have relatively high permeability, such as Super Invar, to form a magnetic return path. Inwardly facing surfaces 46 on the excitation rings 44 form in combination with the conductive material 40 on the opposing sides of the proof mass 28 form variable capacitance elements PO1 and PO2 as shown in
Referring to
In response to an acceleration or force along a sensitive axis S, generally perpendicular to the plane of the proof mass 28, the proof mass 28 moves toward one or the other of the excitation rings 44. This displacement of the proof mass 28 changes the respective distances between the surfaces on the pick-off capacitance plates 46 formed on the opposing sides of the proof mass 28 relative to the upper and lower excitation rings 44. This change in the distance results in a change in the capacitance of the capacitive elements PO1 and PO2. Circuitry for measuring this change in capacitance is disclosed in U.S. Pat. No. 4,634,965 herein incorporated by reference.
The difference in the values of the capacitances PO1 and PO2 is representative of the displacement of the proof mass 28 either upwardly or downwardly along the sensitive axis S. This displacement signal is applied to a servo system which includes the magnet assemblies 22 and the torquer coils 36 and 38 which form electromagnets to return the proof mass 28 to its null position. The magnitude of the drive current to the electromagnets is a measure of the acceleration of the proof mass 28 along the sensitive axis S.
As shown in
To substantially reduce temperature-derived distortion signals, the excitation ring 44 is made from Super Invar alloys that substantially match the thermo coefficient of expansion of the silicon dioxide-based proof mass 28. Accordingly, movement of the proof mass 28 causes the capacitive elements 40 to produce a signal attributable to the motion experienced by the accelerometer 20, and not distorted signals caused by differences or changes in temperatures that the magnet assembly 22 or other components of the accelerometer 20 would experience.
The Super Invar used in the excitation ring 44 is an alloy of approximately 31% Nickel, 5% Cobalt, and 64% Iron.
Several modifications and variations of the present embodiments are possible in light of the above teachings. Other compositions of the Nickel-Cobalt-Iron Super Invar may be used. For example, an alloy composition of approximately 32.0% Nickel, 5.4% Cobalt, less than 1% Carbon, less than 1% Silicon, less than 1% Manganese, less than 1% Sulfur, less than 1% Chromium, less than 1% Aluminum, less than 1% Copper, and the remaining percentage balance Iron may be used.
Thus, it is to be understood that, within the scope of the appended claims, the invention may be practiced otherwise than as specifically described above.
While the preferred embodiment of the invention has been illustrated and described, as noted above, many changes can be made without departing from the spirit and scope of the invention. For example, another Super Invar alloy composition would include 31.75% Nickel, 5.36% Cobalt, 0.05% Carbon, 0.09% Silicon, 0.39% Manganese, 0.01% Sulfur, 0.03% Chromium, 0.07% Aluminum, 0.08% Copper, and the remaining percentage balance Iron.
Accordingly, the scope of the invention is not limited by the disclosure of the preferred embodiment. Instead, the invention should be determined entirely by reference to the claims that follow.
Number | Name | Date | Kind |
---|---|---|---|
1689814 | Brace | Oct 1928 | A |
3702073 | Jacobs | Nov 1972 | A |
3999700 | Chalmers | Dec 1976 | A |
4182187 | Hanson | Jan 1980 | A |
4250757 | Hanson | Feb 1981 | A |
4394405 | Atherton | Jul 1983 | A |
4400979 | Hanson et al. | Aug 1983 | A |
4441366 | Hanson | Apr 1984 | A |
4555944 | Hanson et al. | Dec 1985 | A |
4555945 | Hanson | Dec 1985 | A |
4592234 | Norling | Jun 1986 | A |
4620442 | MacGugan et al. | Nov 1986 | A |
4697455 | Norling | Oct 1987 | A |
4726228 | Norling | Feb 1988 | A |
4853298 | Harner et al. | Aug 1989 | A |
4872342 | Hanson et al. | Oct 1989 | A |
4932258 | Norling | Jun 1990 | A |
4944184 | Blake et al. | Jul 1990 | A |
5024089 | Norling | Jun 1991 | A |
5085079 | Holdren et al. | Feb 1992 | A |
5090243 | Holdren et al. | Feb 1992 | A |
5097172 | Becka | Mar 1992 | A |
5111694 | Foote | May 1992 | A |
5182949 | Rupnick et al. | Feb 1993 | A |
5203210 | Terry et al. | Apr 1993 | A |
5212984 | Norling et al. | May 1993 | A |
5220831 | Lee | Jun 1993 | A |
5532665 | Foote et al. | Jul 1996 | A |
6727787 | Worth et al. | Apr 2004 | B1 |
6846368 | Katsuragi et al. | Jan 2005 | B1 |
Number | Date | Country | |
---|---|---|---|
20060117853 A1 | Jun 2006 | US |