SUPPRESSION OF PAIN BY GENE EDITING

Abstract
Provided herein are systems, compositions, kits, and methods for the suppression of pain (e.g., chronic pain). Genes encoding ion channels (e.g., SCN9A) responsible for the propagation pain signals in neurons (e.g., DRG neurons) may be edited using a genome editing agent (e.g., a nucleobase editor). In some embodiments, loss-of-function ion channel mutants are generated, leading to pain suppression. In some embodiments, the genome editing agent is administered locally to the site of pain or to the nerves responsible for propagation of the pain signal.
Description
REFERENCE TO A SEQUENCE LISTING SUBMITTED AS A TEXT FILE VIA EFS-WEB

This application contains a Sequence Listing which has been submitted in ASCII format via EFS-Web and is hereby incorporated by reference in its entirety. Said ASCII copy, created on Jul. 17, 2023, is named H082470245US02-SUBSEQ-AZW and is 4,153,363 bytes in size.


BACKGROUND OF THE INVENTION

Long-term chronic pain due to trauma and associated with advanced cancer as well as other causes remains an unmet medical need. Management of pain using painkillers is inherently limited by the development of tolerance, physiological dependence, progressive addiction, and potential for overdose. Current health care policies in response to the massive demand for painkillers have led to extensive prescription of opioids, inadvertently contributing to broader public challenges associated with substance abuse and drug-related crime. Fundamentally, there is a pressing need for an innovative solution to address chronic pain that is non-addictive, generalizable, and/or permanent.


SUMMARY OF THE INVENTION

Described herein are systems, compositions, kits, and methods for the suppression of pain (e.g., chronic pain). The strategies rely, at least in part, on the targeted editing of genes encoding proteins (e.g., ion channels such as Nav1.7 encoded by the SCN9A gene) responsible for the propagation of pain signals in sensory neurons that display dysregulated excitability, e.g., in dorsal root ganglia (DRG) neurons. The targeted genome editing may be achieved, in some embodiments, using a genome editing agent, e.g., a nucleobase editor comprising a catalytically inactive Cas9 or a Cas9 nickase and a cytosine deaminase. The nucleobase editor introduces cytosine (C) to thymine (T) mutations in the targeted gene. In some embodiments, loss-of-function ion channel mutants are generated, leading to pain suppression. In some embodiments, the genome editing agent is administered locally to the site of pain. The pain suppression strategies provided herein are effective in long-term pain suppression and have high safety profiles. In some embodiments, neurotropic viral delivery vectors are used to specifically deliver the genome editing agent to neurons. In some embodiments, neuron-specific promoters are used to drive the expression of the genome editing agents specifically in neurons.


Some aspects of the present disclosure provide methods of editing a polynucleotide encoding an ion channel in a dorsal root ganglia (DRG) neuron, the method comprising contacting the ion channel-encoding polynucleotide with: (i) a fusion protein comprising: (a) a guide nucleotide sequence-programmable DNA binding protein domain; and (b) a cytosine deaminase domain; and (ii) a guide nucleotide sequence targeting the fusion protein of (i) to a target cytosine (C) base in the ion channel-encoding polynucleotide, whereby the contacting results in deamination of the target C base by the fusion protein, resulting in a cytosine (C) to thymine (T) change in the ion channel-encoding polynucleotide. In some embodiments, the guide nucleotide sequence-programmable DNA binding protein domain is selected from the group consisting of: nuclease inactive Cas9 (dCas9) domains, nuclease inactive Cpf1 domains, nuclease inactive Argonaute domains, and variants thereof.


In some embodiments, the guide nucleotide sequence-programmable DNA-binding protein domain is a nuclease inactive Cas9 (dCas9) domain. In some embodiments, the dCas9 domain is from Streptococcus pyogenes. In some embodiments, the amino acid sequence of the dCas9 domain includes mutations corresponding to a D10A and/or H840A mutation in SEQ ID NO: 1. In some embodiments, the amino acid sequence of the dCas9 domain includes a mutation corresponding to a D10A mutation in SEQ ID NO: 1, and wherein the dCas9 domain includes a histidine at the position corresponding to amino acid 840 of SEQ ID NO: 1. In some embodiments, the guide nucleotide sequence-programmable DNA-binding protein domain comprises a nuclease inactive Cpf1 (dCpf1) domain. In some embodiments, the dCpf1domain is from a species of Acidaminococcus or Lachnospiraceae. In some embodiments, the guide nucleotide sequence-programmable DNA-binding protein domain comprises a nuclease inactive Argonaute (dAgo) domain. In some embodiments, the dAgo domain is from Natronobacterium gregoryi (dNgAgo).


In some embodiments, the cytosine deaminase domain comprises an apolipoprotein B mRNA-editing complex (APOBEC) family deaminase. In some embodiments, the cytosine deaminase is selected from the group consisting of APOBEC1, APOBEC2, APOBEC3A, APOBEC3B, APOBEC3C, APOBEC3D, APOBEC3F, APOBEC3G deaminase, APOBEC3H deaminase, APOBEC4 deaminase, activation-induced deaminase (AID), and pmCDA1. In some embodiments, the cytosine deaminase comprises the amino acid sequence of any one of SEQ ID NOs: 271-292 and 303.


In some embodiments, the fusion protein further comprises a uracil glycosylase inhibitor (UGI) domain. In some embodiments, the UGI domain comprises the amino acid sequence of SEQ ID NO: 304.


In some embodiments, the cytosine deaminase domain is fused to the N-terminus of the guide nucleotide sequence-programmable DNA-binding protein domain. In some embodiments, the UGI domain is fused to the C-terminus of the guide nucleotide sequence-programmable DNA-binding protein domain.


In some embodiments, the cytosine deaminase and the guide nucleotide sequence-programmable DNA-binding protein domain are fused via an optional linker. In some embodiments, the UGI domain is fused to the dCas9 domain via an optional linker.


In some embodiments, the fusion protein has the structure NH2-[cytosine deaminase domain]-[optional linker sequence]-[guide nucleotide sequence-programmable DNA-binding protein domain]-[optional linker sequence]-[UGI domain]-COOH. In some embodiments, the fusion protein has the structure NH2-[UGI domain]-[optional linker sequence]-[cytosine deaminase domain]-[optional linker sequence]-[guide nucleotide sequence-programmable DNA-binding protein domain]-COOH. In some embodiments, the fusion protein has the structure NH2-[cytosine deaminase domain]-[optional linker sequence]-[guide nucleotide sequence-programmable DNA-binding protein domain]-COOH.


In some embodiments, the linker comprises (GGGS)n (SEQ ID NO: 2430), (GGGGS)n (SEQ ID NO: 308), (G)n (SEQ ID NO: 2498), (EAAAK)n (SEQ ID NO: 309), (GGS)n (SEQ ID NO: 2467), SGSETPGTSESATPES (SEQ ID NO: 310), or (XP)n motif, or a combination of any of these, wherein n is independently an integer between 1 and 30, and wherein X is any amino acid. In some embodiments, the linker comprises the amino acid sequence SGSETPGTSESATPES (SEQ ID NO: 310). In some embodiments, the linker is (GGS)n (SEQ ID NO: 2467), and wherein n is 1, 3, or 7.


In some embodiments, the fusion protein comprises the amino acid sequence of any one of SEQ ID NO: 10, 293-302, and 2495.


In some embodiments, the polynucleotide encoding the ion channel comprises a coding strand and a complementary strand. In some embodiments, the polynucleotide encoding the ion channel comprises a coding region and a non-coding region. In some embodiments, the C to T change occurs in the coding region of the ion channel-encoding polynucleotide. In some embodiments, the C to T change leads to a mutation in the ion channel.


In some embodiments, the mutation introduces a premature stop codon in the ion channel-coding sequence that leads to a truncated or non-functional ion channel. In some embodiments, the premature stop codon is TAG (Amber), TGA (Opal), or TAA (Ochre). In some embodiments, the mutation destabilizes ion-channel protein folding. In some embodiments, the C to T change occurs at a C base-paired with the G base in a start codon (AUG).


In some embodiments, the C to T change occurs at the non-coding region of the ion channel-encoding polynucleotide. In some embodiments, the C to T change occurs at a splicing site in the non-coding region of the ion channel-encoding polynucleotide. In some embodiments, the C to T change occurs at an intron-exon junction. In some embodiments, the C to T change occurs at a splicing donor site. In some embodiments, the C to T change occurs at a splicing acceptor site.


In some embodiments, the ion channel is selected from the group consisting of: NaV1.7, NaV1.8. NaV1.9, NaV1.3, CaV3.2, HCN1, HCN2, and Ano1. In some embodiments, the ion channel is NaV1.7 encoded by the SCN9A gene.


In some embodiments, the mutation is a loss-of-function mutation. In some embodiments, the C to T change occurs in a target codon selected from Tables 2, 4, and 6. In some embodiments, the guide nucleotide sequence is selected from SEQ ID NOs: 339-1456.


In some embodiments, a PAM sequence is located 3′ of the C being changed. In some embodiments, a PAM sequence is located 5′ of the C being changed. In some embodiments, the PAM sequence is selected from the group consisting of: NGG, NGAN, NGNG, NGAG, NGCG, NNGRRT, NGGNG, NGRRN, NNNRRT, NNNGATT, NNAGAA, and NAAAC, wherein Y is pyrimidine, R is purine, and N is any nucleobase. In some embodiments, the PAM sequence is selected from the group consisting of: NNT, NNNT, and YNT, wherein Y is pyrimidine, and N is any nucleobase. In some embodiments, no PAM sequence is located 3′ of the target C base. In some embodiments, no PAM sequence is located 5′ of the target C base.


In some embodiments, at least 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 mutations are introduced into the ion channel-encoding polynucleotide. In some embodiments, the guide nucleotide sequence is RNA (gRNA). In some embodiments, the guide nucleotide sequence is ssDNA (gDNA).


In some embodiments, the DRG neuron is in a mammal. In some embodiments, the mammal is a rodent. In some embodiments, the rodent is a mouse. In some embodiments, the rodent is a rat. In some embodiments, the mammal is a human.


In some embodiments, a nucleic acid construct encoding the fusion protein is delivered to the DRG neuron via a neurotropic viral delivery vector. In some embodiments, the neurotropic viral delivery vector is derived from Herpesviridae, varicella zoster virus, pseudorabies virus, cyromegalovirus, Epstein-barr virus, encephalitis virus, polio virus, coxsackie virus, echo virus, mumps virus, measles virus, and rabies virus. In some embodiments, the neurotropic viral delivery vector is derived from Herpes Simplex Virus 1 (HSV-1). In some embodiments, the neurotropic viral delivery vector is derived from a recombinant adeno-associated virus (AAV).


Other aspects of the present disclosure provide compositions comprising: (i) a fusion protein comprising: (a) a guide nucleotide sequence-programmable DNA binding protein domain; and (b) a cytosine deaminase domain; and (ii) a guide nucleotide sequence targeting the fusion protein of (i) to a target cytosine (C) base in an ion channel-encoding polynucleotide.


Further provided herein are compositions comprising a neurotropic viral delivery vector comprising a nucleic acid encoding: (i) a fusion protein comprising: (a) a guide nucleotide sequence-programmable DNA binding protein domain; and (b) a cytosine deaminase domain; and (ii) a guide nucleotide sequence targeting the fusion protein of (i) to a target cytosine (C) base in an ion channel-encoding polynucleotide.


In some embodiments, the guide nucleotide sequence comprises the nucleotide sequence of any one of SEQ ID NOs: 339-1456, 1504-2425, and 2443-2445. In some embodiments, the composition further comprises a pharmaceutically acceptable carrier. Kits comprising the compositions described herein are also provided.


Other aspects of the present disclosure provide methods of suppressing pain, the method comprising administering to a subject in need thereof a therapeutically effective amount of the composition described herein.


In some embodiments, the pain is chronic pain. In some embodiments, the pain is selected from the group consisting of: neuropathic pain, allodynia, hyperalgesia, dysesthesia, causalgia, neuralgia, and arthralgia. In some embodiments, the pain is associated with cancer, tumor pressure, bone metastasis, chemotherapy peripheral neuropathy, radiculopathy (sciatica, lumbar, cervical, failed back surgery syndrome), piriformis syndrome, phantom pain, arachnoiditis, fibromyalgia, facet joint mediated pain, sympathetically-mediated pain syndrome such as complex regional pain syndromes (crps), sacroiliac (si) joint mediated pain, meralgia paresthetica, localized myofacial pain syndromes-myofacial trigger points, diffuse myofacial pain syndrome, post-herpetic neuralgia, trigeminal neuralgia, glossopharyngeal neuralgia, scar pain (post-epesiotomy, post-hernia repair, post-surgery, post-radiotherapy), vulvodynia, vaginismus, levator ani syndrome, chronic prostatitis, interstitial cystitis, first bite syndrome, rheumatoid arthritis pain, osteoarthritis pain, atypical odontalgia, phantom tooth pain, neuropathic orofacial pain, primary erythermalgia and atypical facial pain.


In some embodiments, the subject is a mammal. In some embodiments, the mammal is a rodent. In some embodiments, the rodent is a mouse. In some embodiments, the rodent is a rat. In some embodiments, the mammal is a human. In some embodiments, the mammal is a companion animal. In some embodiments, the companion animal is a dog, a cat, a horses, a cattle, a pig, a sheep, a goat, a chicken, a mouse, a rat, a guinea pig, or a hamster. In some embodiments, the composition is administered orally or parenterally.


The details of certain embodiments of the invention are set forth in the Detailed Description of Certain Embodiments, as described below. Other features, objects, and advantages of the invention will be apparent from the Definitions, Examples, Figures, and Claims.





BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which constitute a part of this specification, illustrate several embodiments of the invention and together with the description, serve to explain the principles of the invention.



FIGS. 1A-1C show schematic representations of exemplary ion channels and signal transmission in doral root ganglion (DRG) neurons. FIG. 1A is a schematic representing a DRG neuron extending an axonal projection that expresses specialized ion channels for triggering and propagating action potentials (AP) in response to stimuli. The body of the neuron resides in a ganglion near the spinal cord together with thousands of other neurons. The output from the dendrites of this neuron inside the spinal cord involve the release of the neurotransmitters, such as glutamate and substance P, and become the pain signals propagated by the spinal cord that are interpreted as signals of pain by the brain. Adapted from Reference 1 in the “References” section. FIG. 1B is a schematic representing a programmable genome editing treatment with a localized neurotropic viral vector to deliver an expression construct into the axon, exploiting the retrograde transport mechanisms to the nucleus of a dorsal root ganglion (DRG) neuron to modify one of the specialized genes that mediate the threshold or transmission of action potentials that are interpreted as pain (Table 12). FIG. 1C is a schematic representing the outcome (green arrows) of programmable genome editing treatment with a topologically localized neurotropic viral vector, for example, targeting the NaV1.7/SCN9a gene.



FIG. 2 shows exemplary, non-limiting representative examples of genome modifications using cytidine deaminase base editing, which can be applied to modify DRG neuron genes and afferent pain signals.



FIG. 3 shows a two-dimensional representation of the primary amino acid sequence of an isoform of NaV1.7/SCN9A, highlighting the transmembrane regions. The circles show non-limiting examples of variants that can be generated by genome modifications using cytidine deaminase base editing, which can be applied to modify the NaV1.7/SCN9A gene and afferent pain signals. The NaV1.7/Scn9A ion channel is shown as a non-limiting example of ion channels of DRG neurons. Other possible modifications, such as intron/exon junctions are not shown for clarity (see, e.g., FIG. 4).



FIGS. 4A-4B. FIG. 4A shows non-limiting examples of the results obtained from C-+T base editing treatments using guide-RNAs targeted to the NaV1.7/SCN9A gene in the mouse Neuro-2a cell line, analysed using Illumina MiSeq high-throughput DNA sequencing. The treatments shown generate premature STOP codons or modify intron/exon junctions involved in mRNA splicing. FIG. 4B is a two-dimensional representation of the primary amino acid sequence of an isoform of mouse NaV1.7/SCN9A highlighting the sites targeted in panel A and other representative sites that can be targeted in the same manner (black). Additional possible modifications are not shown for clarity (see, e.g., FIG. 3).



FIGS. 5A-5B show representative plots obtained from C-T base editing treatments targeted to the NaV1.7/SCN9A gene in the mouse Neuro-2a cell line, analysed using Illumina MiSeq high-throughput DNA sequencing. FIG. 5A shows the S. pyogenes Cas9 DNA-binding domain fused to APOBEC and UGI (SpBE4), and FIG. 5B shows the KKH variant of the S. aureus Cas9 DNA-binding domain fused to APOBEC and UGI (KKH-SaBE3). The X axis sequence is underlined at the PAM and the end of the protospacer-targeting region is marked with a horizontal line. A dashed box highlights a target codon that is modified to a premature STOP codon by C to T base-editors acting on either the forward (coding) or reverse (template) strand of genomic DNA. The protospacer sequences in Figure SA correspond from top to bottom to SEQ ID NOs: 2447-2457, with 2457 repeated twice at the end.



FIGS. 6A-6C. FIG. 6A shows representative examples of the results obtained from active wild-type S. pyogenes Cas9 treatments using guide-RNAs targeted to the NaV1.7/SCN9A gene in the mouse Neuro-2a cell line, analysed using Illumina MiSeq high-throughput DNA sequencing. FIG. 6B is a gel electrophoresis analysis of PCR products following wild-type S. pyogenes Cas9 treatment using two or more guide-RNAs targeted to the NaV1.7/SCN9A gene in the mouse Neuro-2a cell line, which generate indels and longer deletions between the predicted target sites. The uncut genomic site (plus small indels) are seen as a high molecular-weight band, and large deletions are seen as the lower molecular-weight bands. FIG. 6C shows a representative analysis by Illumina MiSeq high-throughput DNA showing the large deletion product following wild-type S. pyogenes Cas9 treatment using two guide-RNAs, g3 and g12 from FIG. 6B, targeted to the NaV1.7/SCN9A gene in the mouse Neuro-2a cell line sequencing. The protospacer sequences in FIG. 6A correspond from top to bottom to SEQ ID NOs: 2458-2466 and 2457.





DEFINITIONS

As used herein and in the claims, the singular forms “a,” “an,” and “the” include the singular and the plural reference unless the context clearly indicates otherwise. Thus, for example, a reference to “an agent” includes a single agent and a plurality of such agents.


A “dorsal root ganglion (DRG),” also referred to as a “spinal ganglion” or “posterior root ganglion,” is a cluster of nerve cell bodies (a ganglion) in the posterior root of a spinal nerve. A neuron in the DRG is referred to herein as a “dorsal root ganglia (DRG) neuron.” The dorsal root ganglia contain the cell bodies of sensory neurons.


A “neuron” is an electrically excitable cell that processes and transmits information through electrical and chemical signals. These signals between neurons occur via synapses, specialized connections with other cells. Neurons can connect to each other to form neural networks. Neurons are the core components of the brain and spinal cord of the central nervous system (CNS), and of the ganglia of the peripheral nervous system (PNS).


There are several types of specialized neurons: sensory neurons, motor neurons, and interneurons. A “sensory neuron” is a neuron that responds to stimuli such as touch, sound, or light, and all other stimuli affecting the cells of the sensory organs that then send signals to the spinal cord and brain. A “motor neuron” is a neuron that receives signals from the brain and spinal cord to cause muscle contractions and affect glandular outputs. A “interneuron” is a neuron that connects neurons to other neurons within the same region of the brain or spinal cord in neural networks.


In the PNS, an afferent nerve fiber is the axon of an afferent sensory neuron. It is a long process extending far from the nerve cell body that carries nerve impulses from sensory receptors or sense organs toward the central nervous system. The opposite direction of neural activity is termed efferent conduction.


Neurons are electrically excitable, maintaining voltage gradients across their membranes by means of metabolically driven ion pumps, which combine with ion channels embedded in the membrane to generate intracellular-versus-extracellular concentration differences of ions, such as sodium, potassium, chloride, and calcium. Changes in the cross-membrane voltage can alter the function of voltage-dependent ion channels. If the voltage changes by a large enough amount, an all-or-none electrochemical pulse called an action potential is generated, which travels rapidly along the cell's axon, and activates synaptic connections with other cells when it arrives.


An “ion channel” is a pore-forming membrane protein expressed on the surface of a cell (e.g., a DRG neuron). Ion channels on the surface of a cell (e.g., a DRG neuron) have various biological functions including: establishing a resting membrane potential, shaping action potentials and other electrical signals by gating the flow of ions across the cell membrane, controlling the flow of ions across secretory and epithelial cells, and regulating cell volume. Activated transmembrane ion channels allow ions into or out of cells. Genes encoding ion channels in DRG neurons that are responsible for propagation of pain are provided in Example 2.


“Hyperalgesia” is an increased sensitivity to pain, which may be caused by damage to nociceptors or peripheral nerves. Temporary increased sensitivity to pain also occurs as part of sickness behavior, the evolved response to infection. Long-term opioid (e.g. heroin, morphine) users and those on high-dose opioid medications for the treatment of chronic pain may experience hyperalgesia and experience pain out of proportion to physical findings, which is a common cause for loss of efficacy of these medications over time.


“Allodynia” refers to central pain sensitization (increased response of neurons) following normally non-painful, often repetitive, stimulation. Allodynia can lead to the triggering of a pain response from stimuli which do not normally provoke pain. Temperature or physical stimuli can provoke allodynia, which may feel like a burning sensation. Allodynia often occurs after injury to a site. Allodynia is different from hyperalgesia, an extreme, exaggerated reaction to a stimulus which is normally painful.


The term “loss-of-function mutation” or “inactivating mutation” refers to a mutation that results in the gene product having less or no function (being partially or wholly inactivated). When the allele has a complete loss of function (null allele), it is often called an amorphic mutation in the Muller's morphs schema. Phenotypes associated with such mutations are most often recessive. Exceptions are when the organism is haploid, or when the reduced dosage of a normal gene product is not enough for a normal phenotype (this is called haploinsufficiency).


The term “gain-of-function mutation” or “activating mutation” refers to a mutation that changes the gene product such that its effect gets stronger (enhanced activation) or even is superseded by a different and abnormal function. A gain of function mutation may also be referred to as a neomorphic mutation. When the new allele is created, a heterozygote containing the newly created allele as well as the original will express the new allele, genetically defining the mutations as dominant phenotypes.


The term “genome” refers to the genetic material of a cell or organism. It typically includes DNA (or RNA in the case of RNA viruses). The genome includes both the genes, the coding regions, the noncoding DNA, and the genomes of the mitochondria and chloroplasts. A genome does not typically include genetic material that is artificially introduced into a cell or organism, e.g., a plasmid that is transformed into a bacteria is not a part of the bacterial genome.


A “programmable DNA-binding protein” refers to DNA binding proteins that can be programmed to target to any desired nucleotide sequence within a genome. To program the DNA-binding protein to bind a desired nucleotide sequence, the DNA binding protein may be modified to change its binding specificity. e.g., zinc finger DNA-binding domain, zinc finger nuclease (ZFN), or transcription activator-like effector proteins (TALE). ZFNs are artificial restriction enzymes generated by fusing a zinc finger DNA-binding domain to a DNA-cleavage domain. Zinc finger domains can be engineered to target specific desired DNA sequences, and this enables zinc-fingers to bind unique sequences within complex genomes. Transcription activator-like effector nucleases (TALEN) are engineered restriction enzymes that can be engineered to cut specific sequences of DNA. They are made by fusing a TAL effector DNA-binding domain to a nuclease domain (e.g. Fok1). Transcription activator-like effectors (TALEs) can be engineered to bind practically any desired DNA sequence. Methods for programming ZFNs and TALEs are familiar to one skilled in the art. For example, such methods are described in Maeder et al., Mol. Cell 31 (2): 294-301, 2008; Carroll et al., Genetics Society of America, 188 (4): 773-782, 2011; Miller et al., Nature Biotechnology 25 (7): 778-785, 2007; Christian et al., Genetics 186 (2): 757-61, 2008; Li et al., Nucleic Acids Res. 39 (1): 359-372, 2010; and Moscou et al., Science 326 (5959): 1501, 2009, each of which are incorporated herein by reference.


A “guide nucleotide sequence-programmable DNA-binding protein” refers to a protein, a polypeptide, or a domain that is able to bind DNA, and the binding to its target DNA sequence is mediated by a guide nucleotide sequence. Thus, it is appreciated that the guide nucleotide sequence-programmable DNA-binding protein binds a guide nucleotide sequence. The “guide nucleotide” may be an RNA or DNA molecule (e.g., a single-stranded DNA or ssDNA molecule) that is complementary to the target sequence and can guide the DNA binding protein to the target sequence. As such, a guide nucleotide sequence-programmable DNA-binding protein may be a RNA-programmable DNA-binding protein (e.g., a Cas9 protein), or an ssDNA-programmable DNA-binding protein (e.g., an Argonaute protein). “Programmable” means the DNA-binding protein may be programmed to bind any DNA sequence that the guide nucleotide targets.


In some embodiments, the guide nucleotide sequence exists as a single nucleotide molecule and comprises two domains: (1) a domain that shares homology to a target nucleic acid (e.g., and directs binding of a guide nucleotide sequence-programmable DNA-binding protein to the target); and (2) a domain that binds a guide nucleotide sequence-programmable DNA-binding protein. In some embodiments, domain (2) corresponds to a sequence known as a tracrRNA and comprises a stem-loop structure. For example, in some embodiments, domain (2) is identical or homologous to a tracrRNA as provided in Jinek et al., Science 337:816-821(2012), which is incorporated herein by reference. Other examples of gRNAs (e.g., those including domain 2) can be found in U.S. Patent Application Publication US 2016/0208288 and U.S. Patent Application Publication US 2016/0200779, each of which is incorporated herein by reference.


Because the guide nucleotide sequence hybridizes to a target DNA sequence, the guide nucleotide sequence-programmable DNA-binding proteins are able to specifically bind, in principle, to any sequence complementary to the guide nucleotide sequence. Methods of using guide nucleotide sequence-programmable DNA-binding protein, such as Cas9, for site-specific editing of the genome (with or without cleaving the double stranded DNA) are known in the art (see e.g., Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819-823 (2013); Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823-826 (2013); Hwang. W. Y. et al. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nature Biotechnology 31, 227-229 (2013); Jinek, M. et al. RNA-programmed genome editing in human cells. eLife 2, e00471 (2013); Dicarlo, J. E. et al. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Research (2013); Jiang, W. et al. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nature Biotechnology 31, 233-239 (2013); each of which is incorporated herein by reference).


As used herein, the term “Cas9” or “Cas9 nuclease” refers to an RNA-guided nuclease comprising a Cas9 protein, a fragment, or a variant thereof. A Cas9 nuclease is also referred to sometimes as a casn1 nuclease or a CRISPR (clustered regularly interspaced short palindromic repeat)-associated nuclease. CRISPR is an adaptive immune system that provides protection against mobile genetic elements (viruses, transposable elements and conjugative plasmids). CRISPR clusters contain spacers, sequences complementary to antecedent mobile elements, and target invading nucleic acids. CRISPR clusters are transcribed and processed into CRISPR RNA (crRNA). In type II CRISPR systems correct processing of pre-crRNA requires a trans-encoded small RNA (tracrRNA), endogenous ribonuclease 3 (rnc), and a Cas9 protein. The tracrRNA serves as a guide for ribonuclease 3-aided processing of pre-crRNA. Subsequently, Cas9/crRNA/tracrRNA endonucleolytically cleaves a linear or circular dsDNA target complementary to the spacer. The target strand not complementary to the crRNA is first cut endonucleolytically, then trimmed 3′-5′ exonucleolytically. In nature, DNA-binding and cleavage typically requires protein and both RNAs. However, single guide RNAs (“sgRNA”, or simply “gNRA”) can be engineered so as to incorporate aspects of both the crRNA and tracrRNA into a single RNA species. See, e.g., Jinek et al., Science 337:816-821(2012), which is incorporated herein by reference.


Cas9 nuclease sequences and structures are well known to those of skill in the art (see, e.g., Ferretti et al., Proc. Natl. Acad. Sci. 98:4658-4663(2001); Deltcheva E. et al., Nature 471:602-607(2011); and Jinek et al., Science 337:816-821(2012), each of which is incorporated herein by reference). Cas9 orthologs have been described in various species. Additional suitable Cas9 nucleases and sequences will be apparent to those of skill in the art based on this disclosure, and such Cas9 nucleases and sequences include Cas9 sequences from the organisms and loci disclosed in Chylinski et al., (2013) RNA Biology 10:5, 726-737; which are incorporated herein by reference. In some embodiments, wild type Cas9 corresponds to Cas9 from Streptococcus pyogenes (NCBI Reference Sequence: NC_002737.2, SEQ ID NO: 5 (nucleotide); and Uniport Reference Sequence: Q99ZW2, SEQ ID NO: 1 (amino acid).










(SEQ ID NO: 5)



ATGGATAAGAAATACTCAATAGGCTTAGATATCGGCACAAATAGCGTCGGATGGGCGGTGATCAC






TGATGAATATAAGGTTCCGTCTAAAAAGTTCAAGGTTCTGGGAAATACAGACCGCCACAGTATCA





AAAAAAATCTTATAGGGGCTCTTTTATTTGACAGTGGAGAGACAGCGGAAGCGACTCGTCTCAAA





CGGACAGCTCGTAGAAGGTATACACGTCGGAAGAATCGTATTTGTTATCTACAGGAGATTTTTTCA





AATGAGATGGCGAAAGTAGATGATAGTTTCTTTCATCGACTTGAAGAGTCTTTTTTGGTGGAAGAA





GACAAGAAGCATGAACGTCATCCTATTTTTGGAAATATAGTAGATGAAGTTGCTTATCATGAGAAA





TATCCAACTATCTATCATCTGCGAAAAAAATTGGTAGATTCTACTGATAAAGCGGATTTGCGCTTA





ATCTATTTGGCCTTAGCGCATATGATTAAGTTTCGTGGTCATTTTTTGATTGAGGGAGATTTAAATC





CTGATAATAGTGATGTGGACAAACTATTTATCCAGTTGGTACAAACCTACAATCAATTATTTGAAG





AAAACCCTATTAACGCAAGTGGAGTAGATGCTAAAGCGATTCTTTCTGCACGATTGAGTAAATCAA





GACGATTAGAAAATCTCATTGCTCAGCTCCCCGGTGAGAAGAAAAATGGCTTATTTGGGAATCTCA





TTGCTTTGTCATTGGGTTTGACCCCTAATTTTAAATCAAATTTTGATTTGGCAGAAGATGCTAAATT





ACAGCTTTCAAAAGATACTTACGATGATGATTTAGATAATTTATTGGCGCAAATTGGAGATCAATA





TGCTGATTTGTTTTTGGCAGCTAAGAATTTATCAGATGCTATTTTACTTTCAGATATCCTAAGAGTA





AATACTGAAATAACTAAGGCTCCCCTATCAGCTTCAATGATTAAACGCTACGATGAACATCATCAA





GACTTGACTCTTTTAAAAGCTTTAGTTCGACAACAACTTCCAGAAAAGTATAAAGAAATCTTTTTT





GATCAATCAAAAAACGGATATGCAGGTTATATTGATGGGGGAGCTAGCCAAGAAGAATTTTATAA





ATTTATCAAACCAATTTTAGAAAAAATGGATGGTACTGAGGAATTATTGGTGAAACTAAATCGTGA





AGATTTGCTGCGCAAGCAACGGACCTTTGACAACGGCTCTATTCCCCATCAAATTCACTTGGGTGA





GCTGCATGCTATTTTGAGAAGACAAGAAGACTTTTATCCATTTTTAAAAGACAATCGTGAGAAGAT





TGAAAAAATCTTGACTTTTCGAATTCCTTATTATGTTGGTCCATTGGCGCGTGGCAATAGTCGTTTT





GCATGGATGACTCGGAAGTCTGAAGAAACAATTACCCCATGGAATTTTGAAGAAGTTGTCGATAA





AGGTGCTTCAGCTCAATCATTTATTGAACGCATGACAAACTTTGATAAAAATCTTCCAAATGAAAA





AGTACTACCAAAACATAGTTTGCTTTATGAGTATTTTACGGTTTATAACGAATTGACAAAGGTCAA





ATATGTTACTGAAGGAATGCGAAAACCAGCATTTCTTTCAGGTGAACAGAAGAAAGCCATTGTTG





ATTTACTCTTCAAAACAAATCGAAAAGTAACCGTTAAGCAATTAAAAGAAGATTATTTCAAAAAA





ATAGAATGTTTTGATAGTGTTGAAATTTCAGGAGTTGAAGATAGATTTAATGCTTCATTAGGTACC





TACCATGATTTGCTAAAAATTATTAAAGATAAAGATTTTTTGGATAATGAAGAAAATGAAGATATC





TTAGAGGATATTGTTTTAACATTGACCTTATTTGAAGATAGGGAGATGATTGAGGAAAGACTTAAA





ACATATGCTCACCTCTTTGATGATAAGGTGATGAAACAGCTTAAACGTCGCCGTTATACTGGTTGG





GGACGTTTGTCTCGAAAATTGATTAATGGTATTAGGGATAAGCAATCTGGCAAAACAATATTAGAT





TTTTTGAAATCAGATGGTTTTGCCAATCGCAATTTTATGCAGCTGATCCATGATGATAGTTTGACAT





TTAAAGAAGACATTCAAAAAGCACAAGTGTCTGGACAAGGCGATAGTTTACATGAACATATTGCA





AATTTAGCTGGTAGCCCTGCTATTAAAAAAGGTATTTTACAGACTGTAAAAGTTGTTGATGAATTG





GTCAAAGTAATGGGGCGGCATAAGCCAGAAAATATCGTTATTGAAATGGCACGTGAAAATCAGAC





AACTCAAAAGGGCCAGAAAAATTCGCGAGAGCGTATGAAACGAATCGAAGAAGGTATCAAAGAA





TTAGGAAGTCAGATTCTTAAAGAGCATCCTGTTGAAAATACTCAATTGCAAAATGAAAAGCTCTAT





CTCTATTATCTCCAAAATGGAAGAGACATGTATGTGGACCAAGAATTAGATATTAATCGTTTAAGT





GATTATGATGTCGATCACATTGTTCCACAAAGTTTCCTTAAAGACGATTCAATAGACAATAAGGTC





TTAACGCGTTCTGATAAAAATCGTGGTAAATCGGATAACGTTCCAAGTGAAGAAGTAGTCAAAAA





GATGAAAAACTATTGGAGACAACTTCTAAACGCCAAGTTAATCACTCAACGTAAGTTTGATAATTT





AACGAAAGCTGAACGTGGAGGTTTGAGTGAACTTGATAAAGCTGGTTTTATCAAACGCCAATTGG





TTGAAACTCGCCAAATCACTAAGCATGTGGCACAAATTTTGGATAGTCGCATGAATACTAAATACG





ATGAAAATGATAAACTTATTCGAGAGGTTAAAGTGATTACCTTAAAATCTAAATTAGTTTCTGACT





TCCGAAAAGATTTCCAATTCTATAAAGTACGTGAGATTAACAATTACCATCATGCCCATGATGCGT





ATCTAAATGCCGTCGTTGGAACTGCTTTGATTAAGAAATATCCAAAACTTGAATCGGAGTTTGTCT





ATGGTGATTATAAAGTTTATGATGTTCGTAAAATGATTGCTAAGTCTGAGCAAGAAATAGGCAAA





GCAACCGCAAAATATTTCTTTTACTCTAATATCATGAACTTCTTCAAAACAGAAATTACACTTGCA





AATGGAGAGATTCGCAAACGCCCTCTAATCGAAACTAATGGGGAAACTGGAGAAATTGTCTGGGA





TAAAGGGCGAGATTTTGCCACAGTGCGCAAAGTATTGTCCATGCCCCAAGTCAATATTGTCAAGAA





AACAGAAGTACAGACAGGCGGATTCTCCAAGGAGTCAATTTTACCAAAAAGAAATTCGGACAAGC





TTATTGCTCGTAAAAAAGACTGGGATCCAAAAAAATATGGTGGTTTTGATAGTCCAACGGTAGCTT





ATTCAGTCCTAGTGGTTGCTAAGGTGGAAAAAGGGAAATCGAAGAAGTTAAAATCCGTTAAAGAG





TTACTAGGGATCACAATTATGGAAAGAAGTTCCTTTGAAAAAAATCCGATTGACTTTTTAGAAGCT





AAAGGATATAAGGAAGTTAAAAAAGACTTAATCATTAAACTACCTAAATATAGTCTTTTTGAGTTA





GAAAACGGTCGTAAACGGATGCTGGCTAGTGCCGGAGAATTACAAAAAGGAAATGAGCTGGCTCT





GCCAAGCAAATATGTGAATTTTTTATATTTAGCTAGTCATTATGAAAAGTTGAAGGGTAGTCCAGA





AGATAACGAACAAAAACAATTGTTTGTGGAGCAGCATAAGCATTATTTAGATGAGATTATTGAGC





AAATCAGTGAATTTTCTAAGCGTGTTATTTTAGCAGATGCCAATTTAGATAAAGTTCTTAGTGCAT





ATAACAAACATAGAGACAAACCAATACGTGAACAAGCAGAAAATATTATTCATTTATTTACGTTG





ACGAATCTTGGAGCTCCCGCTGCTTTTAAATATTTTGATACAACAATTGATCGTAAACGATATACG





TCTACAAAAGAAGTTTTAGATGCCACTCTTATCCATCAATCCATCACTGGTCTTTATGAAACACGC





ATTGATTTGAGTCAGCTAGGAGGTGACTGA





(SEQ ID NO: 1) 



MDKKYSIGLDIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARR






RYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLR





KKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDA





KAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDN





LLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEK





YKEIFFDQSKNGYAGYIDGGASQLEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIH





LGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDK





GASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLF





KTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLT





LTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANR





NFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVI






EMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQEL







DINRLSDYDVDHIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRK







FDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSD







FRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKA







TAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQ







TGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIME






RSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLA





SHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAEN





IIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGD 


(single underline: HNH domain; double underline: RuvC domain)






In some embodiments, wild type Cas9 corresponds to Cas9 from Streptococcus Aureus. S. aureus Cas9 wild type (SEQ ID NO: 6)











MKRNYILGLDIGITSVGYGIIDYETRDVIDAGVRLFKEANVENNE






GRRSKRGARRLKRRRRHRIQRVKKLLFDYNLLTDHSELSGINPYE






ARVKGLSQKLSEEEFSAALLHLAKRRGVHNVNEVEEDTGNELSTK






EQISRNSKALEEKYVAELQLERLKKDGEVRGSINRFKTSDYVKEA






KQLLKVQKAYHQLDQSFIDTYIDLLETRRTYYEGPGEGSPFGWKD






IKEWYEMLMGHCTYFPEELRSVKYAYNADLYNALNDLNNLVITRD






ENEKLEYYEKFQIIENVFKQKKKPTLKQIAKEILVNEEDIKGYRV






TSTGKPEFTNLKVYHDIKDITARKEIIENAELLDQIAKILTIYQS






SEDIQEELTNLNSELTQLEIEQISNLKGYTGTHNLSLKAINLILD






ELWHTNDNQIAIFNRLKLVPKKVDLSQQKEIPTTLVDDFILSPVV






KRSFIQSIKVINAIIKKYGLPNDIIIELAREKNSKDAQKMINEMQ






KRNRQTNERIEEIIRTTGKENAKYLIEKIKLHDMQEGKCLYSLEA






IPLEDLLNNPFNYEVDHIIPRSVSFDNSFNNKVLVKQEENSKKGN






RTPFQYLSSSDSKISYETFKKHILNLAKGKGRISKTKKEYLLEER






DINRFSVQKDFINRNLVDTRYATRGLMNLLRSYFRVNNLDVKVKS






INGGFTSFLRRKWKFKKERNKGYKHHAEDALIIANADFIFKEWKK






LDKAKKVMENQMFEEKQAESMPEIETEQEYKEIFITPHQIKHIKD






FKDYKYSHRVDKKPNRELINDTLYSTRKDDKGNTLIVNNLNGLYD






KDNDKLKKLINKSPEKLLMYHHDPQTYQKLKLIMEQYGDEKNPLY






KYYEETGNYLTKYSKKDNGPVIKKIKYYGNKLNAHLDITDDYPNS






RNKVVKLSLKPYRFDVYLDNGVYKFVTVKNLDVIKKENYYLVNSK






CYLEAKKLKKISNQAEFIASFYNNDLIKINGELYRVIGVNNDLLN






RIEVNMIDITYREYLENMNDKRPPRIIKTIASKTQSIKKYSTDIL






GNLYEVKSKKHPQIIKKG 






In some embodiments, wild type Cas9 corresponds to Cas9 from Streptococcus thermophilus.












Streptococcusthermophilus wild type




CRISPR3 Cas9 (St3Cas9)



(SEQ ID NO: 7)



MTKPYSIGLDIGTNSVGWAVITDNYKVPSKKMKVLGNTSKKYIKKN






LLGVLLFDSGITAEGRRLKRTARRRYTRRRNRILYLQEIFSTEMAT






LDDAFFQRLDDSFLVPDDKRDSKYPIFGNLVEEKVYHDEFPTIYHL






RKYLADSTKKADLRLVYLALAHMIKYRGHFLIEGEFNSKNNDIQKN






FQDFLDTYNAIFESDLSLENSKQLEEIVKDKISKLEKKDRILKLFP






GEKNSGIFSEFLKLIVGNQADFRKCFNLDEKASLHFSKESYDEDLE






TLLGYIGDDYSDVFLKAKKLYDAILLSGFLTVTDNETEAPLSSAMI






KRYNEHKEDLALLKEYIRNISLKTYNEVFKDDTKNGYAGYIDGKTN






QEDFYVYLKNLLAEFEGADYFLEKIDREDFLRKQRTFDNGSIPYQI






HLQEMRAILDKQAKFYPFLAKNKERIEKILTFRIPYYVGPLARGNS






DFAWSIRKRNEKITPWNFEDVIDKESSAEAFINRMTSFDLYLPEEK






VLPKHSLLYETFNVYNELTKVRFIAESMRDYQFLDSKQKKDIVRLY






FKDKRKVTDKDIIEYLHAIYGYDGIELKGIEKQFNSSLSTYHDLLN






IINDKEFLDDSSNEAIIEEIIHTLTIFEDREMIKQRLSKFENIFDK






SVLKKLSRRHYTGWGKLSAKLINGIRDEKSGNTILDYLIDDGISNR






NFMQLIHDDALSFKKKIQKAQIIGDEDKGNIKEVVKSLPGSPAIKK






GILQSIKIVDELVKVMGGRKPESIVVEMARENQYTNQGKSNSQQRL






KRLEKSLKELGSKILKENIPAKLSKIDNNALQNDRLYLYYLQNGKD






MYTGDDLDIDRLSNYDIDHIIPQAFLKDNSIDNKVLVSSASNRGKS






DDFPSLEVVKKRKTFWYQLLKSKLISQRKFDNLTKAERGGLLPEDK






AGFIQRQLVETRQITKHVARLLDEKFNNKKDENNRAVRTVKIITLK






STLVSQFRKDFELYKVREINDFHHAHDAYLNAVIASALLKKYPKLE






PEFVYGDYPKYNSFRERKSATEKVYFYSNIMNIFKKSISLADGRVI






ERPLIEVNEETGESVWNKESDLATVRRVLSYPQVNVVKKVEEQNHG






LDRGKPKGLFNANLSSKPKPNSNENLVGAKEYLDPKKYGGYAGISN






SFAVLVKGTIEKGAKKKITNVLEFQGISILDRINYRKDKLNFLLEK






GYKDIELIIELPKYSLFELSDGSRRMLASILSTNNKRGEIHKGNQI






FLSQKFVKLLYHAKRISNTINENHRKYVENHKKEFEELFYYILEFN






ENYVGAKKNGKLLNSAFQSWQNHSIDELCSSFIGPTGSERKGLFEL






TSRGSAADFEFLGVKIPRYRDYTPSSLLKDATLIHQSVTGLYETRI






DLAKLGEG







Streptococcusthermophilus CRISPR1 Cas9




wild type (St1Cas9)



(SEQ ID NO: 8)



MSDLVLGLDIGIGSVGVGILNKVTGEIIHKNSRIFPAAQAENNLV






RRTNRQGRRLTRRKKHRRVRLNRLFEESGLITDFTKISINLNPYQ






LRVKGLTDELSNEELFIALKNMVKHRGISYLDDASDDGNSSIGDY






AQIVKENSKQLETKTPGQIQLERYQTYGQLRGDFTVEKDGKKHRL






INVFPTSAYRSEALRILQTQQEFNPQITDEFINRYLEILTGKRKY






YHGPGNEKSRTDYGRYRTSGETLDNIFGILIGKCTFYPDEFRAAK






ASYTAQEFNLLNDLNNLTVPTETKKLSKEQKNQIINYVKNEKAMG






PAKLFKYIAKLLSCDVADIKGYRIDKSGKAEIHTFEAYRKMKTLE






TLDIEQMDRETLDKLAYVLTLNTEREGIQEALEHEFADGSFSQKQ






VDELVQFRKANSSIFGKGWHNFSVKLMMELIPELYETSEEQMTIL






TRLGKQKTTSSSNKTKYIDEKLLTEEIYNPVVAKSVRQAIKIVNA






AIKEYGDFDNIVIEMARETNEDDEKKAIQKIQKANKDEKDAAMLK






AANQYNGKAELPHSVFHGHKQLATKIRLWHQQGERCLYTGKTISI






HDLINNSNQFEVDHILPLSITFDDSLANKVLVYATANQEKGQRTP






YQALDSMDDAWSFRELKAFVRESKTLSNKKKEYLLTEEDISKFDV






RKKFIERNLVDTRYASRVVLNALQEHFRAHKIDTKVSVVRGQFTS






QLRRHWGIEKTRDTYHHHAVDALIIAASSQLNLWKKQKNTLVSYS






EDQLLDIETGELISDDEYKESVFKAPYQHFVDTLKSKEFEDSILF






SYQVDSKFNRKISDATIYATRQAKVGKDKADETYVLGKIKDIYTQ






DGYDAFMKIYKKDKSKFLMYRHDPQTFEKVIEPILENYPNKQINE






KGKEVPCNPFLKYKEEHGYIRKYSKKGNGPEIKSLKYYDSKLGNH






IDITPKDSNNKVVLQSVSPWRADVYFNKTTGKYEILGLKYADLQF






EKGTGTYKISQEKYNDIKKKEGVDSDSEFKFTLYKNDLLLVKDTE






TKEQQLFRFLSRTMPKQKHYVELKPYDKQKFEGGEALIKVLGNVA






NSGQCKKGLGKSNISIYKVRTDVLGNQHIIKNEGDKPKLDF






In some embodiments, the Cas9 domain of any of the fusion proteins provided herein is a Cas9 from archaea (e.g. nanoarchaea), which constitute a domain and kingdom of single-celled prokaryotic microbes. In some embodiments, the Cas9 domain is CasX or CasY, which have been described in, for example, Burstein et al., “New CRISPR-Cas systems from uncultivated microbes.” Cell Res. 2017 Feb. 21. doi: 10.1038/cr.2017.21, which is incorporated herein by reference. Using genome-resolved metagenomics, a number of CRISPR-Cas systems were identified, including the first reported Cas9 in the archaeal domain of life. This divergent Cas9 protein was found in nanoarchaea as part of an active CRISPR-Cas system. In bacteria, two previously unknown systems were discovered, CRISPR-CasX and CRISPR-CasY, which are among the most compact systems yet discovered. In some embodiments, Cas9 refers to CasX, or a variant of CasX. In some embodiments, Cas9 refers to a CasY, or a variant of CasY. It should be appreciated that other RNA-guided DNA binding proteins may be used as a nucleic acid programmable DNA binding protein (napDNAbp) and are within the scope of this disclosure.


In some embodiments, the Cas9 domain comprises an amino acid sequence that is at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to a naturally-occurring CasX or CasY protein. In some embodiments, the Cas9 domain is a naturally-occurring CasX or CasY protein. In some embodiments, the Cas9 domain comprises an amino acid sequence that is at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to any one of SEQ ID NOs: 336-337. In some embodiments, the Cas9 domain comprises an amino acid sequence of any one SEQ ID NOs: 336-337. It should be appreciated that CasX and CasY from other bacterial species may also be used in accordance with the present disclosure.


In some embodiments, wild-type Cas9 refers to CasX from Sulfolobus islandicus (strain REY15A).











(SEQ ID NO: 336)



MEVPLYNIFGDNYIIQVATEAENSTIYNNKVEIDDEELRNVLNLAY






KIAKNNEDAAAERRGKAKKKKGLEGETTTSNIILPLSGNDKNPWTE






TLKCYNFPTTVALSEVFKNFSQVKECEEVSAPSFVKPEFYKFGRSP






GMVERTRRVKLEVEPHYLIMAAAGWVLTRLGKAKVSEGDYVGVNVF






TPTRGILYSLIQNVNGIVPGIKPETAFGLWIARKVVSSVTNPNVSV






VSIYTISDAVGQNPTTINGGFSIDLTKLLEKRDLLSERLEAIARNA






LSISSNMRERYIVLANYIYEYLTGSKRLEDLLYFANRDLIMNLNSD






DGKVRDLKLISAYVNGELIRGEG






In some embodiments, wild-type Cas9 refers to CasX from Sulfolobus islandicus (strain REY15A).











(SEQ ID NO: 337)



MEVPLYNIFGDNYIIQVATEAENSTIYNNKVEIDDEELRNVLNLAY






KIAKNNEDAAAERRGKAKKKKGLEGETTTSNIILPLSGNDKNPWTE






TLKCYNFPTTVALSEVFKNFSQVKECEEVSAPSFVKPEFYEFGRSP






GMVERTRRVKLEVEPHYLIIAAAGWVLTRLGKAKVSEGDYVGVNVF






TPTRGILYSLIQNVNGIVPGIKPETAFGLWIARKVVSSVTNPNVSV






VRIYTISDAVGQNPTTINGGFSIDLTKLLEKRYLLSERLEAIARNA






LSISSNMRERYIVLANYIYEYLTGSKRLEDLLYFANRDLIMNLNSD






DGKVRDLKLISAYVNGELIRGEG






In some embodiments, wild-type Cas9 refers to CasY from a Parcubacteria group bacterium.

    • CasY (ncbi.nlm.nih.gov/protein/APG80656.1)









CasY (ncbi.nlm.nih.gov/protein/APG80656.1)


>APG80656.1 CRISPR-associated protein CasY


[uncultured Parcubacteria group bacterium]


(SEQ ID NO: 2469)


MSKRHPRISGVKGYRLHAQRLEYTGKSGAMRTIKYPLYSSPSGGRTV





PREIVSAINDDYVGLYGLSNFDDLYNAEKRNEEKVYSVLDFWYDCVQ





YGAVFSYTAPGLLKNVAEVRGGSYELTKTLKGSHLYDELQIDKVIKF





LNKKEISRANGSLDKLKKDIIDCFKAEYRERHKDQCNKLADDIKNAK





KDAGASLGERQKKLFRDFFGISEQSENDKPSFTNPLNLTCCLLPFDT





VNNNRNRGEVLFNKLKEYAQKLDKNEGSLEMWEYIGIGNSGTAFSNF





LGEGFLGRLRENKITELKKAMMDITDAWRGQEQEEELEKRLRILAAL





TIKLREPKFDNHWGGYRSDINGKLSSWLQNYINQTVKIKEDLKGHKK





DLKKAKEMINRFGESDTKEEAVVSSLLESIEKIVPDDSADDEKPDIP





AIAIYRRFLSDGRLTLNRFVQREDVQEALIKERLEAEKKKKPKKRKK





KSDAEDEKETIDFKELFPHLAKPLKLVPNFYGDSKRELYKKYKNAAI





YTDALWKAVEKIYKSAFSSSLKNSFFDTDFDKDFFIKRLQKIFSVYR





RFNTDKWKPIVKNSFAPYCDIVSLAENEVLYKPKQSRSRKSAAIDKN





RVRLPSTENIAKAGIALARELSVAGFDWKDLLKKEEHEEYIDLIELH





KTALALLLAVTETQLDISALDFVENGTVKDFMKTRDGNLVLEGRFLE





MFSQSIVFSELRGLAGLMSRKEFITRSAIQTMNGKQAELLYIPHEFQ





SAKITTPKEMSRAFLDLAPAEFATSLEPESLSEKSLLKLKQMRYYPH





YFGYELTRTGQGIDGGVAENALRLEKSPVKKREIKCKQYKTLGRGQN





KIVLYVRSSYYQTQFLEWFLHRPKNVQTDVAVSGSFLIDEKKVKTRW





NYDALTVALEPVSGSERVFVSQPFTIFPEKSAELEGQRYLGIDIGEY





GIAYTALEITGDSAKILDQNFISDPQLKTLREEVKGLKLDQRRGTFA





MPSTKIARIRESLVHSLRNRIHHLALKHKAKIVYELEVSRFEEGKQK





IKKVYATLKKADVYSEIDADKNLQTTVWGKLAVASEISASYTSQFCG





ACKKLWRAEMQVDETITTQELIGTVRVIKGGTLIDAIKDFMRPPIFD





ENDTPFPKYRDFCDKHHISKKMRGNSCLFICPFCRANADADIQASQT





IALLRYVKEEKKVEDYFERFRKLKNIKVLGQMKKI 






In some embodiments, Cas9 refers to Cas9 from: Corynebacterium ulcerans (NCBI Refs: NC_015683.1, NC_017317.1); Corynebacterium diphtheria (NCBI Refs: NC_016782.1, NC_016786.1); Spiroplasma syrphidicola (NCBI Ref: NC_021284.1); Prevotella intermedia (NCBI Ref: NC_017861.1); Spiroplasma taiwanense (NCBI Ref: NC_021846.1); Streptococcus iniae (NCBI Ref: NC_021314.1); Belliella baltica (NCBI Ref: NC_018010.1); Psychroflexus torquisI (NCBI Ref: NC_018721.1); Listeria innocua (NCBI Ref: NP_472073.1); Campylobacter jejuni (NCBI Ref: YP_002344900.1); or Neisseria. meningitidis (NCBI Ref: YP_002342100.1) or to a Cas9 from any of the organisms listed in Example 1 (SEQ ID NOs: 11-260).


To be used as in the fusion protein of the present disclosure as the guide nucleotide sequence-programmable DNA binding protein domain, a Cas9 protein needs to be nuclease inactive. A nuclease-inactive Cas9 protein may interchangeably be referred to as a “dCas9” protein (for nuclease-“dead” Cas9). Methods for generating a Cas9 protein (or a fragment thereof) having an inactive DNA cleavage domain are known (See, e.g., Jinek et al., Science. 337:816-821(2012); Qi et al., (2013) Cell. 28; 152(5):1173-83, each of which are incorporated herein by reference). For example, the DNA cleavage domain of Cas9 is known to include two subdomains, the HNH nuclease subdomain and the RuvCI subdomain. The HNH subdomain cleaves the strand complementary to the gRNA, whereas the RuvCI subdomain cleaves the non-complementary strand. Mutations within these subdomains can silence the nuclease activity of Cas9. For example, the mutations D10A and H840A completely inactivate the nuclease activity of S. pyogenes Cas9 (Jinek et al., Science. 337:816-821(2012); Qi et al., Cell. 28; 152(5):1173-83 (2013)).










dCas9 (D10A and H840A)



(SEQ ID NO: 2)



MDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTAR






RRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLR





KKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDA





KAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDN





LLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEK





YKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHL





GELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGA





SAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFK





TNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLT





LFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRN





FMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVI






EMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQEL







DINRLSDYDVDAIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRK







FDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSD







FRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKA







TAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQ






TGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIME





RSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLA





SHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENI





IHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGD


(single underline: HNH domain; double underline: RuvC domain)






The dCas9 of the present disclosure encompasses completely inactive Cas9 or partially inactive Cas9. For example, the dCas9 may have one of the two nuclease domain inactivated, while the other nuclease domain remains active. Such a partially active Cas9 may also be referred to as a Cas9 nickase, due to its ability to cleave one strand of the targeted DNA sequence. The Cas9 nickase suitable for use in accordance with the present disclosure has an active HNH domain and an inactive RuvC domain and is able to cleave only the strand of the target DNA that is bound by the sgRNA (which is the opposite strand of the strand that is being edited via cytidine deamination). The Cas9 nickase of the present disclosure may comprise mutations that inactivate the RuvC domain, e.g., a D10A mutation. It is to be understood that any mutation that inactivates the RuvC domain may be included in a Cas9 nickase, e.g., insertion, deletion, or single or multiple amino acid substitution in the RuvC domain. In a Cas9 nickase useful in the present disclosure, while the RuvC domain is inactivated, the HNH domain remains activate. Thus, while the Cas9 nickase may comprise mutations other than those that inactivate the RuvC domain (e.g., D10A), those mutations do not affect the activity of the HNH domain. In a non-limiting Cas9 nickase example, the histidine at position 840 remains unchanged. The sequence of an exemplary Cas9 nickase suitable for the present disclosure is provided below.











S.pyogenes Cas9 Nickase (D10A)




(SEQ ID NO: 3) 



MDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTAR






RRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLR





KKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDA





KAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDN





LLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKY





KEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHL





GELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGA





SAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKT





NRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLT





LFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRN





FMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVI






EMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQEL







DINRLSDYDVDHIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRK







FDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSD







FRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKA







TAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQ







TGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIM






ERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNELALPSKYVNFLY





LASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQ





AENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGD 


(single underline: HNH domain; double underline: RuvC domain)






S.aureus Cas9 Nickase (D10A)



(SEQ ID NO: 4)



MKRNYILGLAIGITSVGYGIIDYETRDVIDAGVRLFKEANVENNEGRRSKRGARRLKRRRRHRIQRVKK






LLFDYNLLTDHSELSGINPYEARVKGLSQKLSEEEFSAALLHLAKRRGVHNVNEVEEDTGNELSTKEQI





SRNSKALEEKYVAELQLERLKKDGEVRGSINRFKTSDYVKEAKQLLKVQKAYHQLDQSFIDTYIDLLE





TRRTYYEGPGEGSPFGWKDIKEWYEMLMGHCTYFPEELRSVKYAYNADLYNALNDLNNLVITRDENEKL





EYYEKFQIIENVFKQKKKPTLKQIAKEILVNEEDIKGYRVTSTGKPEFTNLKVYHDIKDITARKEIIEN





AELLDQIAKILTIYQSSEDIQEELTNLNSELTQLEIEQISNLKGYTGTHNLSLKAINLILDELWHTNDNQ





IAIFNRLKLVPKKVDLSQQKEIPTTLVDDFILSPVVKRSFIQSIKVINAIIKKYGLPNDIIIELAREKNS





KDAQKMINEMQKRNRQTNERIEEIIRTTGKENAKYLIEKIKLHDMQEGKCLYSLEAIPLEDLLNNPFNYL





VDHIIPRSVSFDNSFNNKVLVKQEENSKKGNRTPFQYLSSSDSKISYETFKKHILNLAKGKGRISKTKKE





YLLEERDINRFSVQKDFINRNLVDTRYATRGLMNLLRSYFRVNNLDVKVKSINGGFTSFLRRKWKFKKER





NKGYKHHAEDALIIANADFIFKEWKKLDKAKKVMENQMFEEKQAESMPEIETEQEYKEIFITPHQIKHI





KDFKDYKYSHRVDKKPNRELINDTLYSTRKDDKGNTLIVNNLNGLYDKDNDKLKKLINKSPEKLLMYHH





DPQTYQKLKLIMEQYGDEKNPLYKYYEETGNYLTKYSKKDNGPVIKKIKYYGNKLNAHLDITDDYPNSR





NKVVKLSLKPYRFDVYLDNGVYKFVTVKNLDVIKKENYYLVNSKCYLEAKKLKKISNQAEFIASFYNND





LIKINGELYRVIGVNNDLLNRIEVNMIDITYREYLENMNDKRPPRIIKTIASKTQSIKKYSTDILGNLY





EVKSKKHPQIIKKG 






It is appreciated that when the term “dCas9” or “nuclease-inactive Cas9” is used herein, it refers to Cas9 variants that are inactive in both HNH and RuvC domains as well as Cas9 nickases. For example, the dCas9 may include the amino acid sequence set forth in SEQ ID NO: 2 or SEQ ID NO: 3. In some embodiments, the dCas9 may comprise other mutations that inactivate RuvC or HNH domain. Additional suitable mutations that inactivate Cas9 will be apparent to those of skill in the art based on this disclosure and knowledge in the field, and are within the scope of this disclosure. Such additional exemplary suitable nuclease-inactive Cas9 domains include, but are not limited to, D839A and/or N863A (See, e.g., Prashant et al., Nature Biotechnology. 2013; 31(9): 833-838, which are incorporated herein by reference), or K603R (See, e.g., Chavez et al., Nature Methods 12, 326-328, 2015, which is incorporated herein by reference). The term Cas9, dCas9, or Cas9 variant also encompasses Cas9, dCas9, or Cas9 variants from any organism. Also appreciated is that dCas9. Cas9 nickase, or other appropriate Cas9 variants from any organisms may be used in accordance with the present disclosure.


A “deaminase” refers to an enzyme that catalyzes the removal of an amine group from a molecule, or deamination, for example through hydrolysis. In some embodiments, the deaminase is a cytidine deaminase, catalyzing the deamination of cytidine (C) to uridine (U), deoxycytidine (dC) to deoxyuridine (dU), or 5-methyl-cytidine to thymidine (T, 5-methyl-U), respectively. Subsequent DNA repair mechanisms ensure that a dU is replaced by T, as described in Komor et al (Nature, Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage, 533, 420-424 (2016), which is incorporated herein by reference). In some embodiments, the deaminase is a cytosine deaminase, catalyzing and promoting the conversion of cytosine to uracil (e.g., in RNA) or thymine (e.g., in DNA). In some embodiments, the deaminase is a naturally-occurring deaminase from an organism, such as a human, chimpanzee, gorilla, monkey, cow, dog, rat, or mouse. In some embodiments, the deaminase is a variant of a naturally-occurring deaminase from an organism, and the variants do not occur in nature. For example, in some embodiments, the deaminase or deaminase domain is at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75% at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to a naturally-occurring deaminase from an organism.


A “cytosine deaminase” refers to an enzyme that catalyzes the chemical reaction “cytosine+H2O→uracil+NH3” or “5-methyl-cytosine+H2O→thymine+NH3.” As it may be apparent from the reaction formula, such chemical reactions result in a C to U/T nucleobase change. In the context of a gene, such nucleotide change, or mutation, may in turn lead to an amino acid change in the protein, which may affect the protein's function, e.g., loss-of-function or gain-of-function. Subsequent DNA repair mechanisms ensure that uracil bases in DNA are replaced by T, as described in Komor et al (Nature, Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage, 533, 420-424 (2016), which is incorporated herein by reference).


One exemplary suitable class of cytosine deaminases is the apolipoprotein B mRNA-editing complex (APOBEC) family of cytosine deaminases encompassing eleven proteins that serve to initiate mutagenesis in a controlled and beneficial manner. The apolipoprotein B editing complex 3 (APOBEC3) enzyme provides protection to human cells against a certain HIV-1 strain via the deamination of cytosines in reverse-transcribed viral ssDNA. These cytosine deaminases all require a Zn2+-coordinating motif (His-X-Glu-X23-26-Pro-Cys-X2-4-Cys; SEQ ID NO: 1996) and bound water molecule for catalytic activity. The glutamic acid residue acts to activate the water molecule to a zinc hydroxide for nucleophilic attack in the deamination reaction. Each family member preferentially deaminates at its own particular “hotspot,” for example, WRC (W is A or T, R is A or G) for hAID, or TTC for hAPOBEC3F. A recent crystal structure of the catalytic domain of APOBEC3G revealed a secondary structure comprising a five-stranded β-sheet core flanked by six α-helices, which is believed to be conserved across the entire family. The active center loops have been shown to be responsible for both ssDNA binding and in determining “hotspot” identity. Overexpression of these enzymes has been linked to genomic instability and cancer, thus highlighting the importance of sequence-specific targeting. Another suitable cytosine deaminase is the activation-induced cytidine deaminase (AID), which is responsible for the maturation of antibodies by converting cytosines in ssDNA to uracils in a transcription-dependent, strand-biased fashion.


The term “base editors” or “nucleobase editors,” as used herein, broadly refer to any of the fusion proteins described herein. In some embodiments, the nucleobase editors are capable of precisely deaminating a target base to convert it to a different base, e.g., the base editor may target C bases in a nucleic acid sequence and convert the C to T base. For example, in some embodiments, the base editor may be a cytosine deaminase-dCas9 fusion protein. In some embodiments, the base editor may be a cytosine deaminase-Cas9 nickase fusion protein. In some embodiments, the base editor may be a deaminase-dCas9-UGI fusion protein. In some embodiments, the base editor may be an UGI-deaminase-dCas9 fusion protein. In some embodiments, the base editor may be an UGI-deaminase-Cas9 nickase fusion protein. In some embodiments, the base editor may be an APOBEC1-dCas9-UGI fusion protein. In some embodiments, the base editor may be an APOBEC1-Cas9 nickase-UGI fusion protein. In some embodiments, the base editor may be an APOBEC1-dCpf1-UGI fusion protein. In some embodiments, the base editor may be an APOBEC1-dNgAgo-UGI fusion protein. In some embodiments, the base editor may comprise a second UGI domain. Non-limiting exemplary sequences of the nucleobase editors useful in the present disclosure are provided in Example 1, SEQ ID NOs: 293-302 and 2495. Such nucleobase editors and methods of using them for genome editing have been described in the art, e.g., in U.S. Pat. No. 9,068,179, US Patent Application Publications US 2015/0166980, US 2015/0166981, US 2015/0166982, US20150166984, and US20150165054, and US Provisional Applications, U.S. Ser. No. 62/245,828, filed Oct. 23, 2015; 62/279,346, filed Jan. 15, 2016; 62/311,763, filed Mar. 22, 2016; 62/322,178, filed Apr. 13, 2016, 62/357,352, filed Jun. 30, 2016, 62/370,700, filed Aug. 3, 2016; 62/398,490, filed Sep. 22, 2016; 62/408,686, filed Oct. 14, 2016; PCT Application PCT/US2016/058344, filed Oct. 22, 2016; U.S. patent application Ser. No. 15/311,852, filed Oct. 22, 2016; Komor et al. (2017) Improved Base Excision Repair Inhibition and Bateriophage Mu Gam Protein Yields C:G-to-T:A base editors with higher efficiency and product purity. Sci Adv, 3: eaao4774; and in Komor et al., Nature, Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage, 533, 420-424 (2016), the entire contents of each of which is incorporated herein by reference.


The term “target site” or “target sequence” refers to a sequence within a nucleic acid molecule (e.g., a DNA molecule) that is deaminated by the fusion protein provided herein. In some embodiments, the target sequence is a polynucleotide (e.g., a DNA), wherein the polynucleotide comprises a coding strand and a complementary strand. The meaning of a “coding strand” and “complementary strand.” as used herein, is the same as the common meaning of the terms in the art. In some embodiments, the target sequence is a sequence in the genome of a mammal. In some embodiments, the target sequence is a sequence in the genome of a human. In some embodiments, the target sequence is a sequence in the genome of a non-human animal The term “target codon” refers to the amino acid codon that is edited by the base editor and converted to a different codon via deamination. The term “target base” refers to the nucleotide base that is edited by the base editor and converted to a different base via deamination. In some embodiments, the target codon in the coding strand is edited (e.g., deaminated). In some embodiments, the target codon in the complimentary strand is edited (e.g., deaminated).


The term “linker,” as used herein, refers to a chemical group or a molecule linking two molecules or moieties, e.g., two domains of a fusion protein, such as, for example, a nuclease-inactive Cas9 domain and a nucleic acid editing domain (e.g., a deaminase domain). Typically, the linker is positioned between, or flanked by, two groups, molecules, domains, or other moieties and connected to each one via a covalent bond, thus connecting the two. In some embodiments, the linker is an amino acid or a plurality of amino acids (e.g., a peptide or protein). In some embodiments, the linker is an organic molecule, group, polymer (e.g. a non-natural polymer, non-peptidic polymer), or chemical moiety. In some embodiments, the linker is 2-100 amino acids in length, for example, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 30-35, 35-40, 40-45, 45-50, 50-60, 60-70, 70-80, 80-90, 90-100, 100-150, or 150-200 amino acids in length. Longer or shorter linkers are also contemplated.


The term “mutation.” as used herein, refers to a substitution of a residue within a sequence, e.g., a nucleic acid or amino acid sequence, with another residue, or a deletion or insertion of one or more residues within a sequence. Mutations are typically described herein by identifying the original residue followed by the position of the residue within the sequence and by the identity of the newly substituted residue. Various methods for making the amino acid substitutions (mutations) provided herein are well known in the art, and are provided by, for example, Green and Sambrook. Molecular Cloning: A Laboratory Manual (4th ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor. N.Y. (2012)).


The terms “nucleic acid,” and “polynucleotide,” as used herein, refer to a compound comprising a nucleobase and an acidic moiety, e.g., a nucleoside, a nucleotide, or a polymer of nucleotides. Typically, polymeric nucleic acids, e.g., nucleic acid molecules comprising three or more nucleotides are linear molecules, in which adjacent nucleotides are linked to each other via a phosphodiester linkage. In some embodiments, “nucleic acid” refers to individual nucleic acid residues (e.g. nucleotides and/or nucleosides). In some embodiments, “nucleic acid” refers to an oligonucleotide chain comprising three or more individual nucleotide residues. As used herein, the terms “oligonucleotide” and “polynucleotide” can be used interchangeably to refer to a polymer of nucleotides (e.g., a string of at least three nucleotides). In some embodiments, “nucleic acid” encompasses RNA as well as single and/or double-stranded DNA. Nucleic acids may be naturally occurring, for example, in the context of a genome, a transcript, an mRNA, tRNA, rRNA, siRNA, snRNA, a plasmid, cosmid, chromosome, chromatid, or other naturally occurring nucleic acid molecule. On the other hand, a nucleic acid molecule may be a non-naturally occurring molecule, e.g., a recombinant DNA or RNA, an artificial chromosome, an engineered genome, or fragment thereof, or a synthetic DNA, RNA, DNA/RNA hybrid, or including non-naturally occurring nucleotides or nucleosides. Furthermore, the terms “nucleic acid,” “DNA,” “RNA,” and/or similar terms include nucleic acid analogs, e.g., analogs having other than a phosphodiester backbone. Nucleic acids can be purified from natural sources, produced using recombinant expression systems and optionally purified, chemically synthesized, etc. Where appropriate, e.g., in the case of chemically synthesized molecules, nucleic acids can comprise nucleoside analogs such as analogs having chemically modified bases or sugars, and backbone modifications. A nucleic acid sequence is presented in the 5′ to 3′ direction unless otherwise indicated. In some embodiments, a nucleic acid is or comprises natural nucleosides (e.g. adenosine, thymidine, guanosine, cytidine, uridine, deoxyadenosine, deoxythymidine, deoxyguanosine, and deoxycytidine); nucleoside analogs (e.g., 2-aminoadenosine, 2-thiothymidine, inosine, pyrrolo-pyrimidine, 3-methyl adenosine, 5-methylcytidine, 2-aminoadenosine, C5-bromouridine, C5-fluorouridine, C5-iodouridine, C5-propynyl-uridine, C5-propynyl-cytidine, C5-methyleytidine, 2-aminoadenosine, 7-deazaadenosine, 7-deazaguanosine, 8-oxoadenosine, 8-oxoguanosine, 0(6)-methylguanine, and 2-thiocytidine); chemically modified bases; biologically modified bases (e.g., methylated bases); intercalated bases; modified sugars (e.g., 2′-fluororibose, ribose, 2′-deoxyribose, arabinose, and hexose); and/or modified phosphate groups (e.g., phosphorothioates and 5′-N-phosphoramidite linkages).


The terms “protein.” “peptide.” and “polypeptide” are used interchangeably herein, and refer to a polymer of amino acid residues linked together by peptide (amide) bonds. The terms refer to a protein, peptide, or polypeptide of any size, structure, or function. Typically, a protein, peptide, or polypeptide will be at least three amino acids long. A protein, peptide, or polypeptide may refer to an individual protein or a collection of proteins. One or more of the amino acids in a protein, peptide, or polypeptide may be modified, for example, by the addition of a chemical entity such as a carbohydrate group, a hydroxyl group, a phosphate group, a farnesyl group, an isofarnesyl group, a fatty acid group, a linker for conjugation, functionalization, or other modification, etc. A protein, peptide, or polypeptide may also be a single molecule or may be a multi-molecular complex. A protein, peptide, or polypeptide may be just a fragment of a naturally occurring protein or peptide. A protein, peptide, or polypeptide may be naturally occurring, recombinant, or synthetic, or any combination thereof. The term “fusion protein” as used herein refers to a hybrid polypeptide which comprises protein domains from at least two different proteins. One protein may be located at the amino-terminal (N-terminal) portion of the fusion protein or at the carboxy-terminal (C-terminal) protein thus forming an “amino-terminal fusion protein” or a “carboxy-terminal fusion protein,” respectively. A protein may comprise different domains, for example, a nucleic acid binding domain (e.g., the gRNA binding domain of Cas9 that directs the binding of the protein to a target site) and a nucleic acid cleavage domain or a catalytic domain of a nucleic-acid editing protein. In some embodiments, a protein is in a complex with, or is in association with, a nucleic acid, e.g., RNA. Any of the proteins provided herein may be produced by any method known in the art. For example, the proteins provided herein may be produced via recombinant protein expression and purification, which is especially suited for fusion proteins comprising a peptide linker. Methods for recombinant protein expression and purification are well known, and include those described by Green and Sambrook, Molecular Cloning: A Laboratory Manual (4th ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (2012)), which are incorporated herein by reference.


The term “subject,” as used herein, refers to an individual organism, for example, an individual mammal. A “subject in need thereof”, refers to an individual who has a disease, a symptom of the disease, or a predisposition toward the disease, with the purpose to cure, heal, alleviate, relieve, alter, remedy, ameliorate, improve, or affect the disease, the symptom of the disease, or the predisposition toward the disease. In some embodiments, the subject is a mammal. In some embodiments, the subject is a non-human primate. In some embodiments, the subject is human. In some embodiments, the mammal is a rodent. In some embodiments, the rodent is a mouse. In some embodiments, the rodent is a rat. In some embodiments, the mammal is a companion animal. A “companion animal” refers to pets and other domestic animals. Non-limiting examples of companion animals include dogs and cats; livestock such as horses, cattle, pigs, sheep, goats, and chickens; and other animals such as mice, rats, guinea pigs, and hamsters.


The term “recombinant” as used herein in the context of proteins or nucleic acids refers to proteins or nucleic acids that do not occur in nature, but are the product of human engineering. For example, in some embodiments, a recombinant protein or nucleic acid molecule comprises an amino acid or nucleotide sequence that comprises at least one, at least two, at least three, at least four, at least five, at least six, or at least seven mutations as compared to any naturally occurring sequence. The fusion proteins (e.g., base editors) useful in the present disclosure are made recombinantly. Recombinant technology is familiar to those skilled in the art.


An “intron” refers to any nucleotide sequence within a gene that is removed by RNA splicing during maturation of the final RNA product. The term intron refers to both the DNA sequence within a gene and the corresponding sequence in RNA transcripts. Sequences that are joined together in the final mature RNA after RNA splicing are exons. Introns are found in the genes of most organisms and many viruses, and can be located in a wide range of genes, including those that generate proteins, ribosomal RNA (rRNA), and transfer RNA (tRNA). When proteins are generated from intron-containing genes. RNA splicing takes place as part of the RNA processing pathway that follows transcription and precedes translation.


An “exon” refers to any part of a gene that will become a part of the final mature RNA produced by that gene after introns have been removed by RNA splicing. The term exon refers to both the DNA sequence within a gene and to the corresponding sequence in RNA transcripts. In RNA splicing, introns are removed and exons are covalently joined to one another as part of generating the mature messenger RNA.


“Splicing” refers to the processing of a newly synthesized messenger RNA transcript (also referred to as a primary mRNA transcript). After splicing, introns are removed and exons are joined together (ligated) for form mature mRNA molecule containing a complete open reading frame that is decoded and translated into a protein. For nuclear-encoded genes, splicing takes place within the nucleus either co-transcriptionally or immediately after transcription. The molecular mechanism of RNA splicing has been extensively described, e.g., in Pagani et al., Nature Reviews Genetics 5, 389-396, 2004; Clancy et al., Nature Education 1 (1): 31, 2011; Cheng et al., Molecular Genetics and Genomics 286 (5-6): 395-410, 2014; Taggart et al., Nature Structural & Molecular Biology 19 (7): 719-2, 2012, the contents of each of which are incorporated herein by reference. One skilled in the art is familiar with the mechanism of RNA splicing.


“Alternative splicing” refers to a regulated process during gene expression that results in a single gene coding for multiple proteins. In this process, particular exons of a gene may be included within or excluded from the final, processed messenger RNA (mRNA) produced from that gene. Consequently, the proteins translated from alternatively spliced mRNAs will contain differences in their amino acid sequence and, often, in their biological functions. Notably, alternative splicing allows the human genome to direct the synthesis of many more proteins than would be expected from its 20,000 protein-coding genes. Alternative splicing is sometimes also termed differential splicing. Alternative splicing occurs as a normal phenomenon in eukaryotes, where it greatly increases the biodiversity of proteins that can be encoded by the genome; in humans, ˜95% of multi-exonic genes are alternatively spliced. There are numerous modes of alternative splicing observed, of which the most common is exon skipping. In this mode, a particular exon may be included in mRNAs under some conditions or in particular tissues, and omitted from the mRNA in others. Abnormal variations in splicing are also implicated in disease; a large proportion of human genetic disorders result from splicing variants. Abnormal splicing variants are also thought to contribute to the development of cancer, and splicing factor genes are frequently mutated in different types of cancer. The regulation of alternative splicing is also described in the art, e.g., in Douglas et al., Annual Review of Biochemistry 72 (1): 291-336, 2003; Pan et al., Nature Genetics 40 (12): 1413-1415, 2008; Martin et al., Nature Reviews 6 (5): 386-398, 2005; Skotheim et al., The international journal of biochemistry & cell biology 39 (7-8): 1432-49, 2007, each of which is incorporated herein by reference.


A “coding frame” or “open reading frame” refers to a stretch of codons that encodes a polypeptide. Since DNA is interpreted in groups of three nucleotides (codons), a DNA strand has three distinct reading frames. The double helix of a DNA molecule has two anti-parallel strands so, with the two strands having three reading frames each, there are six possible frame translations. A functional protein may be produced when translation proceeds in the correct coding frame. An insertion or a deletion of one or two bases in the open reading frame causes a shift in the coding frame that is also referred to as a “frameshift mutation.” A frameshift mutation typical results in premature translation termination and/or truncated or non-functional protein.


A “neurotropic virus” is a virus that is capable of accessing or entering the nervous system and neurovirulent if it is capable of causing disease within the nervous system (e.g., CNS or PNS). Important neuroinvasive viruses include poliovirus, which is highly neurovirulent but weakly neuroinvasive, and rabies virus, which is highly neurovirulent but requires tissue trauma (often resulting from an animal bite) to become neuroinvasive. Neurotropic viral delivery vectors may be derived from neurotropic virus to facilitate the delivery of agents (e.g., therapeutic agents for neurological diseases) to neurons. Non-limiting, exemplary neurotropic viruses that may be used to develop neurotropic viral delivery vectors include: Japanese encephalitis virus, Venezuelan equine encephalitis virus, California encephalitis viruses; polio virus, coxsackie virus, echo virus, mumps virus, measles virus, influenza virus, rabies virus, herpes simplex virus, varicella-zoster virus, Epstein-Barr virus, cytomegalo virus, and HHV-6 virus. Methods of using neurotropic viral delivery vectors to delivery therapeutic agents to neurons have been described in the art, e.g., in Lim et al., Pharmacol Res. 2010 January; 61(1): 14-26; Berges et al., Molecular Therapy, Volume 15, Issue 1, January 2007, Pages 20-29; and Beverly et al., Nature Reviews Neuroscience 4, 353-364, 2003, each of which in incorporated herein by reference.


Other viruses that are known to be suitable for gene transfer may also be used to deliver agents to neurons, e.g., adeno-associated virus (AAV), lentivirus, and retrovirus. An AAV-based neurotropic viral delivery system has recently been described in Deverman et al., Nature Biotechnology 34, 204-209 (2016), incorporated herein by reference. Delivery of a split Cas9 using AAV has also been described, e.g., in Truong et al., Nucl. Acids Res. 43, 6450 (2016), and U.S. Provisional Application 62/408,575, filed Oct. 14, 2016, each of which is incorporated herein by reference.


These and other exemplary substituents are described in more detail in the Detailed Description, Examples, and Claims. The invention is not intended to be limited in any manner by the above exemplary listing of substituents.


DETAILED DESCRIPTION OF CERTAIN EMBODIMENTS

A normal physiological outcome of trauma, inflammation, and/or nerve injury is the induction of gene expression changes in neighboring nociceptive neurons during the period required for healing. Such changes in gene expression, for example, may facilitate the firing of action potentials by neurons at a lower activation threshold and in turn underlie the sensations of pain (e.g., hyperalgesia (increased pain sensitivity) and allodynia (pain following a normally innocuous stimulus)). Chronic pain develops when the enhanced sensitization of sensory neurons becomes irreversibly established and becomes a persistent maladaptive condition. The functional specialization of sensory neurons is driven by the expression of dedicated ion channel genes (e.g., the ion channel genes listed in Table 12) that fine-tune the membrane polarization to trigger and propagate action potentials in response to stimuli. Accordingly, the etiology of chronic pain can be attributed to, at least in part, the dysregulated expression of one or more genes in one or more neurons.


In general, the types of chronic pain that occur in most parts of the body and the extremities involve afferent neurons of the dorsal root ganglia (DRG), which reside in clusters of nerve cells near the spinal cord and have long axons extending towards, for example, the skin, muscles, and organs (FIG. 1). The mechanism of enhanced excitability involves voltage-gated ion channels and background/leak channels that set the resting membrane potential and firing threshold of DRG neurons. Under normal conditions, chemical, mechanical, or thermal stimuli are required to activate receptors and ion channels in peripheral nerve endings to initiate action potentials that propagate along the axons of DRG neurons. In some instances, the dendritic termini of the DRG neurons liberate glutamate and substance-P at synapses in the spinal cord dorsal horn, activating second-order neurons that communicate pain signals to the brain.


Human DRG neurons constitutively express specific and specialized ion channels that have been implicated in afferent pain signaling, which may be targeted for modulation of chronic pain conditions. Three sodium channels (NaV1.7, NaV1.8, and NaV1.9) are constitutively expressed in DRG neurons, and a fourth gene (NaV1.3) displays elevated expression after nerve injury (Table 12). In some embodiments, targeting the ion channels using the strategies described herein leads to gene ablation, loss-of-function, destabilization of the transcript and/or protein folding of the targeted ion channels, which in turn leads to reduced pain transmission. In some embodiments, the normal function of the DRG neurons in triggering action potentials and reaching a normal membrane depolarization threshold is not comprised post editing.


Thus, in some embodiments, a polynucleotide encoding any one of NaV1.7. NaV1.8, NaV1.9, NaV1.3, CaV3.2, HCN1, HCN2, or Ano1 ion-channels is targeted by a genome editing agent (e.g., a nucleobase editor, nuclease). In some embodiments, a polynucleotide (e.g., DNA) encoding NaV1.7 ion channel is targeted.


In a human genome, the NaV1.7 ion channel is encoded by the SCN9A gene. Thus, in some embodiments, the nucleobase editor targets the SCN9A gene in a genome, e.g., a human genome. Disruption of SCN9A is only desirable at a localized level, because nociception is essentially a protective mechanism from overextension and deformation of our joints and muscles, and it is also necessary for our sense of smell. Humans presenting homozygous SCN9A loss-of-function mutations may suffer from congenital insensitivity to pain (CIP). Conversely, gain-of-function mutations in the sodium channels NaV1.7 (SCN9A) or NaV1.8 (SCN10A) cause congenital pain syndromes, such as primary erythermalgia. In some embodiments, the SCN9A gene is involved in itching.


Various genome-editing agents useful in the present disclosure may be deployed to the DRG neurons (e.g., dysregulated DRG neurons to modify the genes responsible for propagation of pain signals in DRG neurons. The strategies for pain (e.g., chronic pain) suppression described herein are superior to traditional methods of pain management due to their high specificity, efficacy, and safety profile. In some embodiments, one or more design elements may be utilized in the strategies described herein that achieves precise and selective targeting of pain-causative neurons. Such design elements include, for example: 1) localized delivery of a non-replicative viral vector that requires synaptic terminals, sparing the bulk of somatic tissues near the pain site, 2) neuron-specific promoters that drive expression of the genome editing construct; and/or 3) guide-RNA programmed targeting of non-essential ion channel genes exclusively expressed by DRG neurons to spare other types of neurons (efferent neurons, interneurons, etc.).


Some aspects of the present disclosure relate to editing a polynucleotide encoding an ion channel in a DRG neuron, the method comprising contacting the ion channel-encoding polynucleotide with a nucleobase editor described herein and a guide nucleotide sequence targeting the nucleobase editor to a target site in the ion channel-encoding polynucleotide. The nucleobase editors described herein target C bases. Contacting the nucleobase editor with a target C base (e.g., a target C base in a ion channel-encoding polynucleotide) results in a cytosine (C) to thymine (T) change in the ion channel-encoding polynucleotide. Such C to T base change ultimately leads to a C:G to T:A base pair change.


Strategies for Targeting Ion Channels in DRG Neurons

The targeted editing of polynucleotides encoding ion channels in neurons (e.g., DRG neurons) may be achieved, in some embodiments, using nucleobase editors as described in, e.g., U.S. Pat. No. 9,068,179, issued Jun. 30, 2015, US Patent Application Publications US 2015/0166980, US 2015/0166981. US 2015/0166982, US 2015/0166984, and US 2015/0165054, and US Provisional Applications, U.S. Ser. No. 62/245,828, filed Oct. 23, 2015; 62/279,346, filed Jan. 15, 2016; 62/311,763, filed Mar. 22, 2016; 62/322,178, filed Apr. 13, 2016, 62/357,352, filed Jun. 30, 2016, 62/370,700, filed Aug. 3, 2016; 62/398,490, filed Sep. 22, 2016; and 62/408,686, filed Oct. 14, 2016; PCT Application PCT/US2016/058344, filed Oct. 22, 2016; U.S. patent application Ser. No. 15/311,852, filed Oct. 22, 2016; and in Komor et al., Nature, Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage, 533, 420-424 (2016), the entire contents of each of which are incorporated herein by reference.


The nucleobase editors can precisely edit a target base in an ion channel-encoding polynucleotide without introducing a DNA double stand break, thus reducing genome instability and preventing possible oncogenic modifications that may be caused by other genome editing methods. The nucleobase editors described herein may be programmed to target and modify a single base. In some embodiments, the target base is a cytosine (C) base and may be converted to a thymine (T) base via deamination by the nucleobase editor.


In some embodiments, the ion channel-encoding polynucleotide is a DNA molecule comprising a coding strand and a complementary strand, e.g., a gene locus for the ion channel in a genome. The target base may be on either the coding-strand or the complementary strand of an ion channel-encoding polynucleotide. In some embodiments, the ion channel-encoding polynucleotide includes coding regions (e.g., exons) and non-coding regions (e.g., introns or splicing sites). In some embodiments, the target base (e.g., a C base) is located in the coding region (e.g., an exon) of the ion channel-encoding polynucleotide (e.g., the ion channel gene locus). In some embodiments, the conversion of a base in the coding region results in an amino acid change in the ion channel protein sequence, i.e., a mutation. In some embodiments, editing the ion channel-encoding polynucleotide results in a loss-of-function mutant (e.g., for SCN9A). In some embodiments, editing the ion channel-encoding polynucleotide results in a gain-of-function mutant (e.g., for SCN11A).


In some embodiments, the target base is located in a non-coding region of the ion channel-encoding polynucleotide, e.g., in an intron or a splicing site. In some embodiments, a target base is located in a splicing site and the editing of such target base causes alternative splicing of the ion channel mRNA. In some embodiments, the alternative splicing leads to loss-of-function ion-channel mutants. In some embodiments, the alternative splicing leads to the introduction of a premature stop codon in an ion channel mRNA, resulting in truncated and/or unstable ion channel proteins. In some embodiments, ion channel mutants that are defective in folding are produced.


In some embodiments, the activity of a loss-of-function ion channel variant may be reduced by at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 99%, or more. In some embodiments, the loss-of-function ion channel variant has no more than 50%, no more than 40%, no more than 30%, no more than 20%, no more than 10%, no more than 5%, no more than 1%, or less activity compared to a wild type ion channel protein.


In some embodiments, the activity of a gain-of-function ion channel variant may be elevated by at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 99%, or more. In some embodiments, the loss-of-function ion channel variant has no more than 50%, no more than 40%, no more than 30%, no more than 20%, no more than 10%, no more than 5%, no more than 1%, or less activity compared to a wild type ion channel protein.


To edit the ion channel-encoding polynucleotide gene, the ion channel-encoding nucleotide may contacted with a genome-editing agent (e.g., a programmable nuclease or a nucleobase editor), wherein the genome-editing agent binds to its target sequence and edits the target site. For example, the genome-editing agent (e.g., a nucleobase editor) may be expressed in a cell where editing is desired (e.g., a DRG neuron), to thereby allow contacting of the ion channel gene with the agent. In some embodiments, the binding of the genome editing agent (e.g., a nucleobase editor) to its target sequence in the ion channel-encoding polynucleotide is mediated by a guide nucleotide sequence, e.g., a guide RNA (gRNA). The guide nucleotide sequence is designed to be complementary to one of the strands of the target sequence in the ion channel-encoding polynucleotide. The guide nucleotide sequence may be engineered to guide the nucleobase editor to any target base (e.g., target bases listed in Table 2) in an ion channel gene (e.g., SCN9A), provided that a PAM is located 3′ of the target base. In some embodiments, the guide nucleotide sequence is co-expressed with the programmable nuclease or nucleobase editor in a cell where editing is desired (e.g., a DRG neuron). In some embodiments, a programmable nuclease or a nucleobase editor in complex with a gRNA is delivered to a cell where editing is desired (e.g., a DRG neuron). Strategies of editing the ion channel genes using nucleobase editors are provided.


Codon Change

Using the nucleobase editors, an amino acid codon may be converted to a different codon via deamination of a target base within the codon. For example, in some embodiments, a cytosine (C) base is converted to a thymine (T) base via deamination by a nucleobase editor comprising a cytosine deaminase domain (e.g., APOBEC1 or AID). It is worth noting that during a C to T change via deamination (e.g., by a cytosine deaminase such as APOBEC1 or AID), the cytosine is first converted to a uridine (U), leading to a G:U mismatch. The G:U mismatch is then converted by DNA repair machinery and replication pathways to T:A pair, thus introducing the thymine at the position of the original cytosine. In some embodiments, conversion of a base in an amino acid codon may lead to a change of the amino acid the codon encodes. Cytosine deaminases are capable of converting a cytosine (C) base to a thymine (T) base via deamination. Thus, it is envisioned that, for amino acid codons containing a C base, the C base may be directly converted to T. For example, codon (CTC) for leucine may be changed to a TTC (phenylalanine) codon via the deamination of the first C on the coding strand. For amino acid codons that contain a guanine (G) base, a C base is present on the complementary strand; and the G base may be converted to an adenosine (A) via the deamination of the C on the complementary strand. For example, an ATG (Met/M) codon may be converted to a ATA (lie/I) codon via the deamination of the third C on the complementary strand. In some embodiments, two C to T changes are required to convert a codon to a different codon. Non-limiting examples of possible mutations that may be made (e.g., in the ion channel-encoding polynucleotide) by the nucleobase editors of the present disclosure are summarized in Table 1.









TABLE 1







Exemplary Codon Changes via Base Editing











Target codon
Base-editing reaction (s)
Edited codon






CTT (Leu/L)
1st base C to T on coding strand
TTT (Phe/F)



CTC (Leu/L)
1st base C to T on coding strand
TTC (Phe/F)



ATG (Met/M)
3rd base C to T on complementary strand
ATA (Ile/I)



GTT (Val/V)
1st base C to T on complementary stand
ATT (Ile/I)



GTA (Val/V)
1st base C to T on complementary stand
ATA (Ile/I)



GTC (Val/V)
1st base C to T on complementary strand
ATC (Ile/I)



GTG (Val/V)
1st base C to T on complementary strand
ATG (Met/M)



TCT (Ser/S)
2nd base C to T on coding strand
TTT (Phe/F)



TCC (Ser/S)
2nd base C to T on coding strand
TTC (Phe/F)



TCA (Ser/S)
2nd base C to T on coding strand
TTA (Leu/L)



TCG (Ser/S)
2nd base C to T on coding strand
TTG (Leu/L)



AGT (Ser/S)
2nd base C to T on complementary strand
AAT (Asp/N)



AGC (Ser/S)
2nd base C to T on complementary strand
AAC (Aps/N)



CCT (Pro/P)
1st base C to T on coding strand
TCT (Ser/S)



CCC (Pro/P)
1st base C to T on coding strand
TCC (Ser/S)



CCA (Pro/P)
1st base C to T on coding strand
TCA (Ser/S)



CCG (Pro/P)
1st base C to T on coding strand
TCG (Ser/S)



CCT (Pro/P)
2nd base C to T on coding strand
CTT (Leu/L)



CCC (Pro/P)
2nd base C to T on coding strand
CTC (Leu/L)



CCA (Pro/P)
2nd base C to T on coding strand
CTA (Leu/L)



CCG (Pro/P)
2nd base C to T on coding strand
CTG (Leu/L)



ACT (Thr/T)
2nd base C to T on coding strand
ATT (Leu/L)



ACC (Thr/T)
2nd base C to T on coding strand
ATC (Leu/L)



ACA (Thr/T)
2nd base C to T on coding strand
ATA (Leu/L)



ACG (Thr/T)
2nd base C to T on coding strand
ATG (Met/M)



GCT (Ala/A)
2nd base C to T on coding strand
GTT (Val/V)



GCC (Ala/A)
2nd base C to T on coding strand
GTC (Val/V)



GCA (Ala/A)
2nd base C to T on coding strand
GTA (Val/V)



GCG (Ala/A)
2nd base C to T on coding strand
GTG (Val/V)



GCT (Ala/A)
1st base C to T on complementary stand
ACT (Thr/T)



GCC (Ala/A)
1st base C to T on complementary stand
ACC (Thr/T)



GCA (Ala/A)
1st base C to T on complementary stand
ACA (Thr/T)



GCG (Ala/A)
1st base C to T on complementary stand
ACG (Thr/T)



CAT (His/H)
1st base C to T on complementary stand
TAT (Tyr/Y)



CAC (His/H)
1st base C to T on complementary stand
TAC (Tyr/Y)



GAT (Asp/D)
1st base C to T on complementary stand
AAT (Asp/N)



GAC (Asp/D)
1st base C to T on complementary stand
AAC (Asp/N)



GAA (Glu/E)
1st base C to T on complementary stand
AAA (Lys/K)



GAG (Glu/E)
1st base C to T on complementary stand
AAG (Lys/K)



TGT (Cys/C)
2nd base C to T on complementary stand
TAT (Tyr/Y)



TGC (Cys/C)
2nd base C to T on complementary stand
TAC (Tyr/Y)



CGT (Arg/R)
1st base C to T on coding strand
TGT (Cys/C)



CGC (Arg/R)
1st base C to T on coding strand
TGC (Cys/C)



AGA (Arg/R)
2nd base C to T on complementary stand
AAA (Lys/K)



AGG (Arg/R)
2nd base C to T on complementary stand
AAG (Lys/K)



CGG (Arg/R)
2nd base C to T on complementary stand
CAG (Gln/Q)



CGG (Arg/R)
1st base C to T on coding strand
TGG (Trp/W)



GGT (Gly/G)
2nd base C to T on complementary stand
GAT (Asp/D)



GGC (Gly/G)
2nd base C to T on complementary stand
GAC (Asp/D)



GGA (Gly/G)
2nd base C to T on complementary stand
GAA (Glu/E)



GGG (Gly/G)
2nd base C to T on complementary stand
GAG (Glu/E)



GGT (Gly/G)
1st base C to T on complementary stand
AGT (Ser/S)



GGC (Gly/G)
1st base C to T on complementary stand
AGC (Ser/S)



GGA (Gly/G)
1st base C to T on complementary stand
AGA (Arg/R)



GGG (Gly/G)
1st base C to T on complementary stand
AGG (Arg/R)









In some embodiments, nucleobase editor is guided by a guide nucleotide sequence to its target sequence that it binds. In some embodiments, the guide nucleotide sequence is a gRNA sequence. An gRNA typically comprises a tracrRNA framework allowing for Cas9 binding, and a guide sequence, which confers sequence specificity to fusion proteins disclosed herein. In some embodiments, the guide RNA comprises a structure 5′-[guide sequence]-guuuuagagcuagaaauagcaaguuaaaauaaaggcuaguccguuaucaacuugaaaaaguggcaccgagucggugcuuuuu-3′ (SEQ ID NO: 338), wherein the guide sequence comprises a sequence that is complementary to the target sequence. The guide sequence is typically about 20 nucleotides long. For example, the guide sequence may be 15-25 nucleotides long. In some embodiments, the guide sequence is 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25 nucleotides long. Such suitable guide RNA sequences typically comprise guide sequences that are complementary to a nucleic sequence within 50 (e.g., 50, 45, 40, 35, 30, 25, 20, 15, or 10) nucleotides upstream or downstream of the target nucleotide to be edited.


In some embodiments, at least 1 mutation is introduced into the ion channel-encoding polynucleotide. In some embodiments, at least 2, 3, 4, 5, 6, 7, 8, 9, 10 or more mutations are introduced into the ion channel-encoding polynucleotide.


Target sites for nucleobase editors in the SCN9A gene encoding the ion channel NaV1.7 are provided in Table 2. The mutations presented herein are for illustration purpose only and are not meant to be limiting.









TABLE 2







Exemplary NaV1.7 (SNA9A) Protective Loss-of-Function Mutations


via Codon Changes

















Program-









mable
SEQ





Residue
Codon
Resulting
guide-RNA
ID

gRNA size
BE


Change
Change
Codon(s)
sequence
NOs
(PAM)
(C edited)
typea

















P5L/S/F
CCT
YYT
GAUGGCAAUG
339
(CAG)
20 (C14/15)
SpBE3





UUGCCUCCCC









P5L/S/F
CCN
YYN
AUGGCAAUGU
340
(AGG)
20 (C13/14)
SpBE3





UGCCUCCCCC









P5/6L/S/F
CCN
YYN
UGGCAAUGUU
341
(GGAC)
20 (C12/13)
VQR-





GCCUCCCCCA



SpBE3





P5/6L/S/F
CCN
YYN
UGUUGCCUCC
342
(CAG)
20 (C6/7)
SpBE3





CCCAGGACCU









P5/6/7L/S/F
CCN
YYN
GUUGCCUCCC
343
(AGAG)
20 (C5/6)
EQR-





CCAGGACCUC



SpBE3





P5/6/7L7S/F
CCN
YYN
UUGCCUCCCC
344
(GAG)
20 (C4/5)
SpBE3





CAGGACCUCA









P35L/S/F
CCC
YYC
AAAAUCAAAG
345
(AAG)
20 (C14/15)
SpBE3








GAACCCAAAG






P35L/S/F
CCC
YYC
AAAUCAAAGG
346
(AGAA)
20 (C13/14)
VQR-





AACCCAAAGA



SpBE3





P35L/S/F
CCC
YYC
CAAAGGAACC
347
(AAG)
20 (C9/10)
SpBE3





CAAAGAAGAA









P35LVS/F
CCC
YYC
AAAGGAACCC
348
(AGAA)
20 (C8/9)
VQR-





AAAGAAGAAA



SpBE3





P35L/S/F
CCC
YYC
GGAACCCAAA
349
(AAG)
20 (C5/6)
SpBE3





GAAGAAAAGA









P35L/S/F
CCC
YYC
GAACCCAAAG
350
(AGAT)
20 (C4/5)
VQR-





AAGAAAAGAA



SpBE3





P35L7S/F
CCC
YYC
CCCAAAGAAG
351
(TGAT)
20 (C1/2)
VQR-





AAAAGAAAGA



SpBE3





P35L/S/F
CCC
YYC
AGGAACCCAA
352
(AAAGAT)
20 (C6/7)
KKH-





AGAAGAAAAG



SaBE3





P35L/S/F
CCC
YYC
AACCCAAAGA
353
(GATGAT)
20 (C3/4)
KKH-





AGAAAAGAAA



SaBE3





P35LVS/F
CCC
YYC
GAAAAUCAAA
354
(GAAGAAA)
20 (C15/16)
St1BE3





GGAACCCAAA









P35LVS/F
CCC
YYC
UCAAAGGAAC
355
(AAAGAAA)
20 (C10/11)
St1BE3





CCAAAGAAGA









P47L/S/F
CCA
YYA
GAUGAAGAAG
356
(AAG)
20 (C13/14)
SpBE3





CCCCAAAGCC









P47L/S/F
CCA
YYA
GAAGAAGCCC
357
(CAG)
20 (C10/11)
SpBE3





CAAAGCCAAG









P47L/S/F
CCA
YYA
AAGAAGCCCC
358
(AGTG)
20 (C9/10)
VQR-





AAAGCCAAGC



SpBE3





P47L/S/F
CCA
YYA
GAAGCCCCAA
359
(TGAC)
20 (C7/8)
VQR-





AGCCAAGCAG



SpBE3





P47/49L7S/F
CCA
YYA
CCCAAAGCCA
360
(TGG)
20 (C2/3/
SpBE3





AGCAGUGACU


8/9)






P47/49L/S/F
CCA
YYA
CCAAAGCCAA
361
(GGAA)
20 (C1/2/
VQR-





GCAGUGACUU


7/8)
SpBE3





P47L/S/F
CCA
YYA
AUGAAGAAGC
362
(AGCAGT)
20 (C12/13)
KKH-





CCCAAAGCCA



SaBE3





P49LVS/F
CCA
YYA
AAAGCCAAGC
363
(AAG)
20 (C5/6)
SpBE3





AGUGACUUGG









P49L/S/F
CCA
YYA
CCAAGCAGUG
364
(TGG)
20 (C1/2)
SpBE3





ACUUGGAAGC









P60L/S/F
CCC
YYC
AAACAGCUGC
365
(TGG)
20 (C10/11)
SpBE3





CCUUCAUCUA









P60LVS/F
CCC
YYC
AACAGCUGCC
366
(GGG)
20 (C9/10)
SpBE3





CUUCAUCUAU









P60LVS/F
CCC
YYC
ACAGCUGCCC
367
(GGG)
20 (C8/9)
SpBE3





UUCAUCUAUG









P60L/S/F
CCC
YYC
CAGCUGCCCU
368
(GGAC)
20 (C7/8)
VQR-





UCAUCUAUGG



SpBE3





P60L7S/F
CCC
YYC
AAACAGCUGC
369
(TGGGG)
20 (C10/11)
St3BE3





CCUUCAUCUA









P67/8L/S/F
CCT
YYT
UGGGGACAUU
370
(TGG)
20 (Cl 1 -15)
SpBE3





CCUCCCGGCA









P67/8L7S/F
CCT
YYT
GGGGACAUUC
371
(GGTG)
20 (C10-14)
VQR-





CUCCCGGCAU



SpBE3





P67/8L/S/F
CCT
YYT
CAUUCCUCCC
372
(CAG)
20 (C5-9)
SpBE3





GGCAUGGUGU









P67/8L/S/F
CCT
YYT
AUUCCUCCCG
373
(AGAG)
20 (C4-8)
EQR*





GCAUGGUGUC



SpBE3





P67/8L7S/F
CCT
YYT
UUCCUCCCGG
374
(GAG)
20 (C3-7)
SpBE3





CAUGGUGUCA









P67L/S/F
CCT
YYT
UAUGGGGACA
375
(CATGGT)
20 (C13-17)
KKH-





UUCCUCCCGG



SaBE3





P67L/S/F
CCT
YYT
UGGGGACAUU
376
(TGGTG)
20 (C11-15)
St3BE3





CCUCCCGGCA









P74L/S/F
CCC
YYC
CAUGGUGUCA
377
(AGG)
20 (C14/15)
SpBE3





GAGCCCCUGG









P74LVS/F
CCC
YYC
AUGGUGUCAG
378
(GGAC)
20 (C13/14)
VQR-





AGCCCCUGGA



SpBE3





P74L/S/F
CCC
YYC
GUCAGAGCCC
379
(TGG)
20 (C8/9)
SpBE3





CUGGAGGACU









P74L/S/F
CCC
YYC
UCAGAGCCCC
380
(GGAC)
20 (C7/8)
VQR-





UGGAGGACUU



SpBE3





P80L7S/F
CCC
YYC
GGACUUGGAC
381
(CAG)
20 (C11/12)
SpBE3





CCCUACUAUG









P80L/S/F
CCC
YYC
GACUUGGACC
382
(AGAC)
20 (C10/11)
VQR-





CCUACUAUGC



SpBE3





P80LVS/F
CCC
YYC
ACCCCUACUA
383
(AAG)
20 (C3/4)
SpBE3





UGCAGACAAA









P80L/S/F
CCC
YYC
CCCCUACUAU
387
(AGG)
20 (C2/3)
SpBE3





GCAGACAAAA









P80LVS/F
CCC
YYC
CCCUACUAUG
388
(GGTG)
20 (C1/2)
VQR-





CAGACAAAAA



SpBE3





P80LVS/F
CCC
YYC
GACCCCUACU
389
(AAAGGT)
20 (C4/5)
KKH-





AUGCAGACAA



SaBE3





P80L/S/F
CCC
YYC
CCCCUACUAU
390
(AGGTG)
20 (C2/3)
St3BE3





GCAGACAAAA









P111L7S/F
CCT
YYT
CUUUCUCCUU
391
(AAG)
20 (C7/8)
SpBE3





UCAGUCCUCU









P111L/S/F
CCT
YYT
UUUCUCCUUU
392
(AGAA)
20 (C6/7)
VQR-





CAGUCCUCUA



SpBE3





P111L7S/F
CCT
YYT
UCUCCUUUCA
393
(AAG)
20 (C4/5)
SpBE3





GUCCUCUAAG









P111/4L/S/F
CCT
YYT
CUCCUUUCAG
394
(AGAA)
20
VQR-





UCCUCUAAGA


(C3/4/12)
SpBE3





P111L/S/F
CCT
YYT
UCUCCUUUCA
395
(AAGAAT)
20 (C4/5)
SaBE3





GUCCUCUAAG









P111L/S/F
CCT
YYT
GCUUUCUCCU
396
(TAAGAAG)
20 (C8/9)
St1BE3





UUCAGUCCUC









P111L/S/F
CCT
YYT
UUCUCCUUUC
397
(GAAGAAT)
20 (C5/6)
St1BE3





AGUCCUCUAA









P114L/S/F
CCT
YYT
CCUCUAAGAA
398
(TAAGAT)
20
KKH-





GAAUAUCUAU


(C1/2/12)
SaBE3





C134Y
TGC
TAC
AGUGCACAUG
399
(TGAA)
20 (C5)
VQR-





AUGAGCAUGC



SpBE3





C134Y
TGC
TAC
GUCAGAAUAG
400
(GAG)
20 (C13)
SpBE3





UGCACAUGAU









C134Y
TGC
TAC
CACAUGAUGA
401
(TAAGGT)
20 (C1)
KKH-





GCAUGCUGAA



SaBE3





C134Y
TGC
TAC
UAGUGCACAU
402
(CTGAAT)
20 (C6)
SaBE3





GAUGAGCAUG









C140Y
TGC
TAC
AAUAUGCAGU
403
(AGTG)
20 (C7)
VQR-





UUGUCAGAAU



SpBE3





C140Y
TGC
TAC
AAAUAUGCAG
404
(TAG)
20 (C8)
SpBE3





UUUGUCAGAA









C140Y
TGC
TAC
UCAUAAAUAU
405
(AGAA)
20 (C12)
VQR-





GCAGUUUGUC



SpBE3





C140Y
TGC
TAC
GUCAUAAAUA
406
(CAG)
20 (C13)
SpBE3





UGCAGUUUGU









C140Y
TGC
TAC
CAGUUUGUCA
407
(CATGAT)
20 (C1)
KKH-





GAAUAGUGCA



SaBE3





C140Y
TGC
TAC
AUAAAUAUGC
408
(AATAGT)
20 (C10)
KKH-





AGUUUGUCAG



SaBE3





C140Y
TGC
TAC
GUCAUAAAUA
409
(CAGAAT)
20 (C13)
SaBE3





UGCAGUUUGU









C140Y
TGC
TAC
GGUCAUAAAU
410
(TCAGAAT)
20 (C14)
St1BE3





AUGCAGUUUG









P148L7S/F
CCA
YYA
CCAUGAAUAA
411
(TGG)
20 (C12/13)
SpBE3





CCCACCGGAC









P148L7S/F
CCA
YYA
CAUGAAUAAC
412
(GGAC)
20 (C11/12)
VQR-





CCACCGGACU



SpBE3





P148L/S/F
CCA
YYA
AUAACCCACC
413
(AAAAAT)
20 (C6-10)
KKH-





GGACUGGACC



SaBE3





P149US/F
CCG
YYG
ACCGGACUGG
414
(TCGAGT)
20 (C2/3)
SaBE3





ACCAAAAAUG









G161R
GGA
ARR
AAAGUAUAUA
415
(AGTG)
20 (C13)
VQR-





UUCCAGUAAA



SpBE3





G161R
GGA
ARR
UCAAAAGUAU
416
(AAAAGT)
20 (C16)
KKH-





AUAUUCCAGU



SaBE3





G179R
GGA
ARR
CUACACAGAA
417
(AGG)
20 (C-1)
SpBE3





GCCUCUUGCA









G179R
GGA
ARR
CCUACACAGA
418
(AAG)
20 (C1)
SpBE3





AGCCUCUUGC









G179R
GGA
ARR
AAGUGAAUUC
419
(AAG)
20 (C12)
SpBE3





UCCUACACAG









G179R
GGA
ARR
AAAAGUGAAU
420
(AGAA)
20 (C14)
VQR-





UCUCCUACAC



SpBE3





G179R
GGA
ARR
CCUACACAGA
421
(AAGGAT)
20 (C1)
SaBE3





AGCCUCUUGC









G179R
GGA
ARR
AGAAAAGUGA
422
(ACAGAAG)
20 (C16)
St1BE3





AUUCUCCUAC









P187L/S/F
CCG
YYG
UUCUUCGUGA
423
(TGG)
20 (C12/13)
SpBE3





CCCGUGGAAC









P187L/S/F
CCG
YYG
UCGUGACCCG
424
(TGG)
20 (C8/9)
SpBE3





UGGAACUGGC









P187L/S/F
CCG
YYG
CGUGACCCGU
425
(GGAT)
20 (C7/8)
VQR-





GGAACUGGCU



SpBE3





P187L/S/F
CCG
YYG
UUCGUGACCC
426
(CTGGAT)
20 (C9/10)
SaBE3





GUGGAACUGG









P229L/S/F
CCA
YYA
UUUCUGUAAU
427
(AAG)
20 (C12/13)
SpBE3





CCCAGGUAAG









P229L7S/F
CCA
YYA
AAUCCCAGGU
428
(TGG)
20 (C5/6)
SpBE3





AAGAAGUAAU









P229L/S/F
CCA
YYA
AUCCCAGGUA
429
(GGTG)
20 (C4/5)
VQR-





AGAAGUAAUU



SpBE3





P229L/S/F
CCA
YYA
CCCAGGUAAG
430
(TGTG)
20 (C2/3)
VQR-





AAGUAAUUGG



SpBE3





P229US/F
CCA
YYA
UAUUUCUGUA
431
(AGAAGT)
20 (C14/15)
KKH-





AUCCCAGGUA



SaBE3





P229L/S/F
CCA
YYA
UUCUGUAAUC
432
(AGTAAT)
20 (C11/12)
KKH-





CCAGGUAAGA



SaBE3





P229US/F
CCA
YYA
GUAAUCCCAG
433
(ATTGGT)
20 (C7/8)
KKH-





GUAAGAAGUA



SaBE3





P229L/S/F
CCA
YYA
AAUCCCAGGU
434
(TGGTG)
20 (C5/6)
St3BE3





AAGAAGUAAU









G236R
GGG
ARR
CCUACAAUUG
435
(TGAA)
20 (C1)
VQR-





UCUUCAGGCC



SpBE3





G236R
GGG
ARR
AAGCCCCUAC
436
(AGG)
20 (C6)
SpBE3





AAUUGUCUUC









G236R
GGG
ARR
AAAGCCCCUA
437
(CAG)
20 (C7)
SpBE3





CAAUUGUCUU









G236R
GGG
ARR
CUACAAUUGU
438
(GAAAAT)
20 (C-1)
KKH-





CUUCAGGCCU



SaBE3





C255Y
TGT
TAT
ACAGAACACA
439
(TGAC)
20 (C2)
VQR-





GUCAGGAUCA



SpBE3





C255Y
TGT
TAT
ACUCAGACAG
440
(GGAT)
20 (C8)
VQR-





AACACAGUCA



SpBE3





C255Y
TGT
TAT
CACUCAGACA
441
(AGG)
20 (C9)
SpBE3





GAACACAGUC









C255Y
TGT
TAT
ACACUCAGAC
442
(CAG)
20 (C10)
SpBE3





AGAACACAGU









C255Y
TGT
TAT
ACACUCAGAC
443
(CAGGAT)
20 (C10)
SaBE3





AGAACACAGU









G263R
GGA
ARR
CAAUUAGUGC
444
(AGAC)
20 (C-1)
VQR-





AAACACACUC



SpBE3





G263R
GGA
ARR
CCAAUUAGUG
445
(CAG)
20 (C1)
SpBE3





CAAACACACU









C275Y
TGT
TAT
UUCGAAAACA
446
(AGG)
20 (C9)
SpBE3





UUUAUGCUUC









C275Y
TGT
TAT
UUUCGAAAAC
447
(CAG)
20 (C10)
SpBE3





AUUUAUGCUU









C275Y
TGT
TAT
AUUUCGAAAA
448
(TCAGGT)
20 (C11)
KKH-





CAUUUAUGCU



SaBE3





C315Y
TGT
TAT
CCACAAAGGA
449
(GGAT)
20 (C4)
VQR-





GAGCAUCUUU



SpBE3





C315Y
TGT
TAT
ACCACAAAGG
450
(TGG)
20 (C5)
SpBE3





AGAGCAUCUU









C315Y
TGT
TAT
UGUGCUGAAA
451
(GAG)
20 (C14)
SpBE3





CCACAAAGGA









C315Y
TGT
TAT
AACCACAAAG
452
(TTGGAT)
20 (C6)
SaBE3





GAGAGCAUCU









C324Y
TGT
TAT
ACACUGACUA
453
(AGAA)
20 (C2)
VQR-





CACACGAGAA



SpBE3





C324Y
TGT
TAT
GACACUGACU
454
(AAG)
20 (C3)
SpBE3





ACACACGAGA









C324Y
TGT
TAT
CUGGACACUG
455
(AGAA)
20 (C6)
VQR-





ACUACACACG



SpBE3





C324Y
TGT
TAT
UCUGGACACU
456
(GAG)
20 (C7)
SpBE3





GACUACACAC









C324Y
TGT
TAT
GGACACUGAC
457
(AAAGAAC)
20 (C4)
St1BE3





UACACACGAG









C324Y
TGT
TAT
CUCUGGACAC
458
(CGAGAAA)
20 (C8)
St1BE3





UGACUACACA









C325Y
TGT
TAT
CUCUGGACAC
459
(CGAG)
20 (C8)
EQR-





UGACUACACA



SpBE3





P325L/S/F
CCA
YYA
AGUGUCCAGA
460
(TGTG)
20 (C6/7)
VQR-





GGGGUACACC



SpBE3





P325L/S/F
CCA
YYA
UGUCCAGAGG
461
(TGTG)
20 (C4/5)
VQR-





GGUACACCUG



SpBE3





P325LVS/F
CCA
YYA
UCCAGAGGGG
462
(TGAA)
20 (C2/3)
VQR-





UACACCUGUG



SpBE3





P325L/S/F
CCA
YYA
CCAGAGGGGU
463
(GAAAAT)
20 (C1/2)
KKH-





ACACCUGUGU



SaBE3





C330Y
TGT
TAT
AGGUGUACCC
464
(TGAC)
20 (C-1)
VQR-





CUCUGGACAC



SpBE3





C330Y
TGT
TAT
UCACACAGGU
465
(GGAC)
20 (C6)
VQR-





GUACCCCUCU



SpBE3





C330Y
TGT
TAT
UUCACACAGG
466
(TGG)
20 (C7)
SpBE3





UGUACCCCUC









P337L/S/F
CCT
YYT
AUUGGCAGAA
467
(TGG)
20 (C13/14)
SpBE3





ACCCUGAUUA









P337L/S/F
CCT
YYT
AAACCCUGAU
468
(CGAG)
20 (C5/6)
EQR-





UAUGGCUACA



SpBE3





P337L/S/F
CCT
YYT
AACCCUGAUU
469
(GAG)
20 (C4/5)
SpBE3





AUGGCUACAC









P532L/S/F
CCC
YYC
UACCCCCAAU
470
(CCAAAT)
20 (C5/6)
KKH-





CAGGUACCAC



SaBE3





P536L/S/F
CCA
YYA
UGCAGUCACC
471
(CGTG)
20 (C9/10)
VQR-





ACUCAGCAUU



SpBE3





P536L/S/F
CCA
YYA
CAGUCACCAC
472
(TGG)
20 (C7/8)
SpBE3





UCAGCAUUCG









P591L/S/F
CCC
YYC
GCUCACUGUU
473
(AGAC)
20 (C15/16)
VQR-





UGUGCCCCAC



SpBE3





P591L/S/F
CCC
YYC
UGUUUGUGCC
474
(CAG)
20 (C9/10)
SpBE3





CCACAGACCC









P591L7S/F
CCC
YYC
GUUUGUGCCC
475
(AGG)
20 (Ca8/9)
SpBE3





CACAGACCCC









P591L/S/F
CCC
YYC
UUUGUGCCCC
476
(GGAG)
20 (C7/8)
EQR-





ACAGACCCCA



SpBE3





P591L/S/F
CCC
YYC
UUGUGCCCCA
477
(GAG)
20 (C6/7)
SpBE3





CAGACCCCAG









P591L/S/F
CCC
YYC
UGUGCCCCAC
478
(AGCG)
20 (C5/6)
VRER-





AGACCCCAGG



SpBE3





P591L/S/F
CCC
YYC
UGCCCCACAG
479
(CGAC)
20
VQR-





ACCCCAGGAG


(C3/4/12)
SpBE3





P591L/S/F
CCC
YYC
GUUUGUGCCC
480
(AGGAG)
20 (C8/9)
St3BE3





CACAGACCCC









P594L7S/F
CCC
YYC
CACAGACCCC
481
(CAG)
20 (C7/8)
SpBE3





AGGAGCGACG









P594LVS/F
CCC
YYC
AGACCCCAGG
482
(CAG)
20 (C4/5)
SpBE3





AGCGACGCAG









P594L7S/F
CCC
YYC
ACAGACCCCA
483
(AGCAGT)
20 (C6/7)
KKH-





GGAGCGACGC



SaBE3





P609/10L/S/
CCA
YYA
UAGGUCCCCA
484
(CGG)
20 (C8-12)
SpBE3


F


CCAAUGCUGC









P609/10L/S/
CCA
YYA
AGGUCCCCAC
485
(GGTG)
20 (C7-11)
VQR-


F


CAAUGCUGCC



SpBE3





P609/10L/S/
CCA
YYA
GUCCCCACCA
486
(TGAA)
20 (C5-9)
VQR-


F


AUGCUGCCGG



SpBE3





P609/10L/S/
CCA
YYA
CCACCAAUGC
487
(CGG)
20 (C1-4)
SpBE3


F


UGCCGGUGAA









P609/10L/S/
CCA
YYA
AGUACCUCCC
488
(GCCGGT)
20 (C10-14)
KKH-


F


CACCAAUGCU



SaBE3





P609/10L7S/
CCA
YYA
UAGGUCCCCA
489
(CGGTG)
20 (C8-12)
St3BE3


F


CCAAUGCUGC









P610L/S/F
CCA
YYA
CACCAAUGCU
490
(GGG)
20 (C3/4)
SpBE3





GCCGGUGAAC









P610L/S/F
CCA
YYA
ACCAAUGCUG
491
(GGAA)
20 (C2/3)
VQR-





CCGGUGAACG



SpBE3





P613L7S/F
CCG
YYG
CACCAAUGCU
492
(GGG)
20 (C12/13)
SpBE3





GCCGGUGAAC









P613L7S/F
CCG
YYG
ACCAAUGCUG
493
(GGAA)
20 (C11/12)
VQR-





CCGGUGAACG



SpBE3





P613L/S/F
CCG
YYG
CCGGUGAACG
494
(CAG)
20 (C1/2)
SpBE3





GGAAAAUGCA









P613L7S/F
CCG
YYG
CCAAUGCUGC
495
(GAAAAT)
20 (C10/11)
KKH-





CGGUGAACGG



SaBE3





P640L/S/F
CCC
YYC
CCCUCAUGCU
496
(CAG)
20 (C12/13)
SpBE3





CCCCAAUGGA









P640US/F
CCC
YYC
CCCCAAUGGA
497
(CAG)
20 (C2/3)
SpBE3





CAGCUUCUGC









P640L7S/F
CCC
YYC
CCCAAUGGAC
498
(AGAG)
20 (C1/2)
EQR-





AGCUUCUGCC



SpBE3





P640L/S/F
CCC
YYC
CCCAAUGGAC
499
(AGAGGT)
20 (C1/2)
KKH-





AGCUUCUGCC



SaBE3





P646L7S/F
CCA
YYA
GCUUCUGCCA
500
(TAG)
20 (C8/9)
SpBE3





GAGGUGAUAA









P646L7S/F
CCA
YYA
CUUCUGCCAG
501
(AGAT)
20 (C7/8)
VQR-





AGGUGAUAAU



SpBE3





P646L/S/F
CCA
YYA
UGCCAGAGGU
502
(AAG)
20 (C3/4)
SpBE3





GAUAAUAGAU









P646L7S/F
CCA
YYA
GCCAGAGGUG
503
(AGG)
20 (C2/3)
SpBE3





AUAAUAGAUA









P646L/S/F
CCA
YYA
GGACAGCUUC
504
(GATAAT)
20 (C13/14)
KKH-





UGCCAGAGGU



SaBE3





P646L/S/F
CCA
YYA
AGCUUCUGCC
505
(ATAGAT)
20 (C9/10)
KKH-





AGAGGUGAUA



SaBE3





P683L7S/F
CCC
YYC
AUGCUGAAUG
506
(CAG)
20 (C13/14)
SpBE3





AUCCCAACCU









P683L/S/F
CCC
YYC
UGCUGAAUGA
507
(AGAC)
20 (02/13)
VQR-





UCCCAACCUC



SpBE3





P683LVS/F
CCC
YYC
UGAAUGAUCC
508
(CAG)
20 (C9/10)
SpBE3





CAACCUCAGA









P683L7S/F
CCC
YYC
GAAUGAUCCC
509
(AGAG)
20 (C8/9)
EQR-





AACCUCAGAC



SpBE3





P683L/S/F
CCC
YYC
AAUGAUCCCA
510
(GAG)
20 (C7/8)
SpBE3





ACCUCAGACA









P683L7S/F
CCC
YYC
AUGAUCCCAA
511
(AGAG)
20 (C6/7)
EQR-





CCUCAGACAG



SpBE3





P683L7S/F
CCC
YYC
UGAUCCCAAC
512
(GAG)
20 (C5/6)
SpBE3





CUCAGACAGA









P683L/S/F
CCC
YYC
GAUCCCAACC
513
(AGCAAT)
20 (C4/5)
KKH-





UCAGACAGAG



SaBE3





P711US/F
CCA
YYA
CAGACAAAAA
514
(GGTG)
20 (04/15)
VQR-





UGUCCACCUU



SpBE3





P711US/F
CCA
YYA
GACAAAAAUG
515
(TGG)
20 (02/13)
SpBE3





UCCACCUUGG









P711/2L/S/F
CCA
YYA
AAAUGUCCAC
516
(CAG)
20 (C7-11)
SpBE3





CUUGGUGGUA









P711/2L/S/F
CCA
YYA
AAUGUCCACC
517
(AGAT)
20 (C6-10)
VQR-





UUGGUGGUAC



SpBE3





P711LVS/F
CCA
YYA
CAGACAAAAA
518
(GGTGGT)
20 (04/15)
KKH-





UGUCCACCUU



SaBE3





P711/2L/S/F
CCA
YYA
AAAAUGUCCA
519
(ACAGAT)
20 (C8-12)
KKH-





CCUUGGUGGU



SaBE3





P711L7S/F
CCA
YYA
CCAGACAAAA
520
(TGGTG)
20 (C15/16)
St3BE3





AUGUCCACCU









P728L/S/F
CCA
YYA
GAAUUGCUCU
521
(TAAAAT)
20 (C11/12)
KKH-





CCAUAUUGGA



SaBE3





P728L/S/F
CCA
YYA
UCCAUAUUGG
522
(AAAAGT)
20 (C2/3)
KKH-





AUAAAAUUCA



SaBE3





P744L/S/F
CCT
YYT
AUUGUAAUGG
523
(AGAT)
20 (C13/14)
VQR-





AUCCUUUUGU



SpBE3





P744L/S/F
CCT
YYT
UUAUUGUAAU
524
(GTAGAT)
20 (C15/16)
KKH-





GGAUCCUUUU



SaBE3





P744L/S/F
CCT
YYT
AUGGAUCCUU
525
(TGCAAT)
20 (C7/8)
KKH-





UUGUAGAUCU



SaBE3





C753V
TGC
TAC
CUAUGCAAAU
526
(AGAT)
20 (C6)
VQR-





GGUAAUUGCA



SpBE3





C753Y
TGC
TAC
ACUAUGCAAA
527
(AAG)
20 (C7)
SpBE3





UGGUAAUUGC









C753Y
TGC
TAC
AACUAUGCAA
528
(CAAGAT)
20 (C8)
KKH-





AUGGUAAUUG



SaBE3





P767L/S/F
CCA
YYA
AUGGAACACC
529
(TGAG)
20 (C13/14)
EQR-





ACCCAAUGAC



SpBE3





P767L/S/F
CCA
YYA
UGGAACACCA
530
(GAG)
20 (C12/13)
SpBE3





CCCAAUGACU









P767L/S/F
CCA
YYA
GGAACACCAC
531
(AGG)
20 (C11/12)
SpBE3





CCAAUGACUG









P767US/F
CCA
YYA
GAACACCACC
532
(GGAA)
20 (C10/11)
VQR-





CAAUGACUGA



SpBE3





P767L/S/F
CCA
YYA
GGAACACCAC
533
(AGGAAT)
20 (C11/12)
SaBE3





CCAAUGACUG









P767LVS/F
CCA
YYA
ACCCAAUGAC
534
(AAAAAT)
20 (C3/4)
KKH-





UGAGGAAUUC



SaBE3





G779R
GGA
ARR
UCCUAUAGCA
535
(TGAA)
20 (C2)
VQR-





AGUACAUUUU



SpBE3





G779R
GGA
ARR
CUUACCAAAU
536
(AAG)
20 (C13)
SpBE3





UUCCUAUAGC









G779R
GGA
ARR
UUCCUAUAGC
537
(TTGAAT)
20 (C3)
SaBE3





AAGUACAUUU









G779R
GGA
ARR
GACUUACCAA
538
(GCAAGT)
20 (C15)
KKH-





AUUUCCUAUA



SaBE3





G785R
GGA
ARR
UUCCAGUAAA
539
(AGAA)
20 (C3)
VQR-





GACCUAAGUG



SpBE3





G785R
GGA
ARR
AUUCCAGUAA
540
(GAG)
20 (C4)
SpBE3





AGACCUAAGU









G785R
GGA
ARA
AAGAUUCCAG
541
(AGTG)
20 (C7)
VQR-





UAAAGACCUA



SpBE3





G785R
GGA
ARA
AAAGAUUCCA
542
(AAG)
20 (C8)
SpBE3





GUAAAGACCU









G785R
GGA
ARA
AGCUGCAAAG
543
(AGAC)
20 (C14)
VQR-





AUUCCAGUAA



SpBE3





G785R
GGA
ARA
CCAGUAAAGA
544
(AAAAAT)
20 (C1)
KKH-





CCUAAGUGAG



SaBE3





G785R
GGA
ARA
GCAAAGAUUC
545
(CTAAGT)
20 (C10)
KKH-





CAGUAAAGAC



SaBE3





G785R
GGA
ARA
GAUUCCAGUA
546
(TGAGAAA)
20 (C5)
St1BE3





AAGACCUAAG









G786R
GGA
ARR
GAUUCCAGUA
547
(TGAG)
20 (C5)
EQR-








AAGACCUAAG



SpBE3


P800US/F
CCA
YYA
GGAUCCAUAU
548
(AAG)
20 (C5/6)
SpBE3





GAGUAUUUCC









P800L/S/F
CCA
YYA
UCCAUAUGAG
549
(TAG)
20 (C2/3)
SpBE3





UAUUUCCAAG









P800L/S/F
CCA
YYA
CCAUAUGAGU
550
(AGG)
20 (C1/2)
SpBE3





AUUUCCAAGU









P800L7S/F
CCA
YYA
AUGGAUCCAU
551
(CCAAGT)
20 (C7/8)
KKH-





AUGAGUAUUU



SaBE3





G830R
GGA
ARA
CCUUCCACAU
552
(GAG)
20 (Cl)
SpBE3





CUGCUAGAAA









G830R
GGA
ARA
AUCCUUCCAC
553
(AAG)
20 (C3)
SpBE3





AUCUGCUAGA









G830R
GGA
ARA
ACAAUCCUUC
554
(AGAA)
20 (C6)
VQR-





CACAUCUGCU



SpBE3





G830R
GGA
ARA
GACAAUCCUU
555
(TAG)
20 (C7)
SpBE3





CCACAUCUGC









G830R
GGA
ARA
UGACAAUCCU
556
(CTAGAAA)
20 (C8)
St1BE3





UCCACAUCUG









G831R
GGA
ARA
UCCUUCCACA
557
(AGAG)
20 (C2)
EQR-





UCUGCUAGAA



SpBE3





P850US/F
CCA
YYA
CUGGCCAACA
558
(TGAT)
20 (C5/6)
VQR-





UUGAACAUGC



SpBE3





P850LVS/F
CCA
YYA
UCCUGGCCAA
559
(GCTGAT)
20 (C7/8)
KKH-





CAUUGAACAU













SaBE3





P850L/S/F
CCA
YYA
CCAACAUUGA
560
(TAAGAT)
20 (C1/2)
KKH-





ACAUGCUGAU



SaBE3





C895Y
TGT
TAT
AUUCUUUGUA
561
(AAG)
20 (C-1)
SpBE3





GCUCUUACCA









C895Y
TGT
TAT
UCUUGCAGAC
562
(TAG)
20 (C12)
SpBE3





ACAUUCUUUG









C897Y
TGC
TAC
UCUUGCAGAC
563
(TAG)
20 (C6)
SpBE3





ACAUUCUUUG









C903Y
TGT
TAT
ACAGUCAUCA
564
(AGAC)
20 (C2)
VQR-





UUGAUCUUGC



SpBE3





C903Y
TGT
TAT
UACAGUCAUC
565
(CAG)
20 (C3)
SpBE3





AUUGAUCUUG









C903Y
TGT
TAT
UGGGAGCGUA
566
(TGAT)
20 (C11)
VQR-





CAGUCAUCAU



SpBE3





P906L/S/F
CCA
YYA
UACGCUCCCA
567
(TGAA)
20 (C8/9)
VQR-





CGGUGGCACA



SpBE3





P906L/S/F
CCA
YYA
CUCCCACGGU
568
(CGAC)
20 (C4/5)
VQR-





GGCACAUGAA



SpBE3





C925Y
TGT
TAT
ACAGCACGCG
569
(AGG)
20 (C2)
SpBE3





GAACACAAUC









C925Y
TGT
TAT
CACAGCACGC
570
(CAG)
20 (C3)
SpBE3





GGAACACAAU









C925Y
TGT
TAT
CCACUCUCCA
571
(GGAA)
20 (C13)
VQR-





CACAGCACGC



SpBE3





C925Y
TGT
TAT
UCCACUCUCC
572
(CGG)
20 (C14)
SpBE3





ACACAGCACG









C925Y
TGT
TAT
UAUCCACUCU
573
(CGCG)
20 (C16)
VRER-





CCACACAGCA



SpBE3





C925Y
TGT
TAT
UCUCCACACA
574
(CACAAT)
20 (C9)
KKH-





GCACGCGGAA



SaBE3





C935Y
TGT
TAT
GACCUCCAUA
575
(TGG)
20 (C13)
SpBE3





CAGUCCCACA









C935Y
TGT
TAT
GCGACCUCCA
576
(CATGGT)
20 (C15)
KKH-





UACAGUCCCA



SaBE3





C944Y
TGC
TAC
AAGGCACAUA
577
(CGAC)
20 (C5)
VQR-





GCUUGACCAG



SpBE3





C944Y
TGC
TAC
AUAAGGCACA
578
(AGCG)
20 (C7)
VRER-





UAGCUUGACC



SpBE3





C944Y
TGC
TAC
AAUAAGCCAC
579
(CAG)
20 (C8)
SpBE3





AUAGCUUGAC









C944Y
TGC
TAC
AAACAAUAAG
580
(TGAC)
20 (C12)
VQR-





GCACAUAGCU



SpBE3





G955R
GGA
ARA
CACCAGGUUU
581
(TGAC)
20 (C11)
VQR-





CCAAUGACCA



SpBE3





P983L7S/F
CCT
YYT
ACCCUGAUGC
582
(CAG)
20 (C3/4)
SpBE3





AAACAACCUC









P983L7S/F
CCT
YYT
CCCUGAUGCA
583
(AGAT)
20 (C2/3)
VQR-





AACAACCUCC



SpBE3





P983L/S/F
CCT
YYT
GACCCUGAUG
584
(CCAGAT)
20 (C4/5)
KKH-





CAAACAACCU



SaBE3





P1018LVS/F
CCA
YYA
UCCAAAAAGC
585
(CAG)
20 (C10/11)
SpBE3





CAAAGAUUUC









P1018LVS/F
CCA
YYA
CCAAAAAGCC
586
(AGG)
20 (C9/10)
SpBE3





AAAGAUUUCC









P1018LVS/F
CCA
YYA
CAAAAAGCCA
587
(GGG)
20 (C8/9)
SpBE3





AAGAUUUCCA









P1018L7S/F
CCA
YYA
AAAAAGCCAA
588
(GGAG)
20 (C7/8)
EQR-





AGAUUUCCAG



SpBE3





P1018L7S/F
CCA
YYA
AAAAGCCAAA
589
(GAG)
20 (C6/7)
SpBE3





GAUUUCCAGG









P1018LVS/F
CCA
YYA
AAAGCCAAAG
590
(AGAT)
20 (C5/6)
VQR-





AUUUCCAGGG



SpBE3





P1018LVS/F
CCA
YYA
CCAAAGAUUU
591
(AAG)
20 (C1/2)
SpBE3





CCAGGGAGAU









P1018LVS/F
CCA
YYA
AAAAAGCCAA
592
(GGAGAT)
20 (C7/8)
KKH-





AGAUUUCCAG



SaBE3





P1018LVS/F
CCA
YYA
CAAAAAGCCA
593
(GGGAG)
20 (C8/9)
St3BE3





AAGAUUUCCA









P1083L7S/F
CCC
YYC
UAUUCACAAU
594
(CAG)
20 (C11/12)
SpBE3





CCCAGCCUCA









P1083LVS/F
CCC
YYC
AUUCACAAUC
595
(AGTG)
20 (C10/11)
VQR-





CCAGCCUCAC



SpBE3





P1083L7S/F
CCC
YYC
UCACAAUCCC
596
(TGAC)
20 (C8/9)
VQR-





AGCCUCACAG



SpBE3





P1083LVS/F
CCC
YYC
CAAUCCCAGC
597
(CAG)
20 (C5/6)
SpBE3





CUCACAGUGA









P1083L/S/F
CCC
YYC
AAUCCCAGCC
598
(AGTG)
20 (C4/5)
VQR-





UCACAGUGAC



SpBE3





P1083L7S/F
CCC
YYC
UUUAUUCACA
599
(CACAGT)
20 (C13/14)
KKH-





AUCCCAGCCU



SaBE3





P1083L/S/F
CCC
YYC
CACAAUCCCA
600
(GACAGT)
20 (C7/8)
KKH-





GCCUCACAGU



SaBE3





P1083L/S/F
CCC
YYC
CCCAGCCUCA
601
(GCCAAT)
20 (C1/2)
KKH-





CAGUGACAGU



SaBE3





P1090US/F
CCA
YYA
GUGACAGUGC
602
(TGG)
20 (C10/11)
SpBE3





CAAUUGCACC









P1090LVS/F
CCA
YYA
UGACACUCCC
603
(GGG)
20 (C9/10)
SpBE3





AAUUGCACCU









P1090L7S/F
CCA
YYA
GACAGUGCCA
604
(GGG)
20 (C8/9)
SpBE3





AUUGCACCUG









P1090L/S/F
CCA
YYA
ACACUGCCAA
605
(GGAA)
20 (C7/8)
VQR-





UUGCACCUGG



SpBE3





P1090/3L/S/
CCA
YYA
CCAAUUGCAC
606
(CGAT)
20
VQR-


F


CUGGGGAAUC


(C1/2/10/11
SpBE3








)






P1090LVS/F
CCA
YYA
GACAGUGCCA
607
(GGGAAT)
20 (C8/9)
SaBE3





AUUGCACCUG









P1090/3L/S/
CCA
YYA
UGCCAAUUGC
608
(TCCGAT)
20
KKH-


F


ACCUGGGGAA


(C3/4/13)
SaBE3





P1090L7S/F
CCA
YYA
GUGACAGUGC
609
(TGGGG)
20 (C10/11)
St3BE3





CAAUUGCACC









P1093LVS/F
CCT
YYT
UGCACCUGGG
610
(TGG)
20 (C5/6)
SpBE3





GAAUCCGAUU









P1093L/S/F
CCT
YYT
GCACCUGGGG
611
(GGAA)
20 (C4/5)
VQR-





AAUCCGAUUU



SpBE3





P1093LVS/F
CCT
YYT
CACCUGGGGA
612
(GAAAAT)
20 (C3/4)
KKH-





AUCCGAUUUG



SaBE3





P1133US/F
CCT
YYT
ACAGUUGAUA
613
(TGG)
20 (C13/14)
SpBE3





ACCCUUUGCC









P1133L/S/F
CCT
YYT
CAGUUGAUAA
614
(GGAG)
20 (Cl 2/13)
EQR-





CCCUUUGCCU



SpBE3





P1133LVS/F
CCT
YYT
AGUUGAUAAC
615
(GAG)
20 (C11/12)
SpBE3





CCUUUGCCUG









P1133L7S/F
CCT
YYT
GUUGAUAACC
616
(AGAA)
20 (C10/11)
VQR-





CUUUGCCUGG



SpBE3





P1133/5L/S/
CCT
YYT
UGAUAACCCU
617
(AAG)
20 (C8-14)
SpBE3


F


UUGCCUGGAG









P1133/5L/S/
CCT
YYT
GAUAACCCUU
618
(AGG)
20 (C7-14)
SpBE3


F


UGCCUGGAGA









P1133/5L/S/
CCT
YYT
AUAACCCUUU
619
(GGAG)
20 (C6-13)
EQR-


F


GCCUGGAGAA



SpBE3





P1133/5L/S/
CCT
YYT
UAACCCUUUG
620
(GAG)
20 (C5-12)
SpBE3


F


CCUGGAGAAG









P1133/5L/S/
CCT
YYT
AACCCUUUGC
621
(AGAA)
20 (C4-11)
VQR-


F


CUGGAGAAGG



SpBE3





P1133/5L/S/
CCT
YYT
CCCUUUGCCU
622
(AAG)
20 (C2-9)
SpBE3


F


GGAGAAGGAG









P1133/5L/S/
CCT
YYT
CCUUUGCCUG
623
(AGAA)
20 (C1-8)
VQR-


F


GAGAAGGAGA



SpBE3





P1133/5L/S/
CCT
YYT
ACAGUUGAUA
624
(TGGAG)
20 (C13/14)
St3BE3


F


ACCCUUUGCC









P1133/5L/S/
CCT
YYT
CAGUUGAUAA
625
(GGAGAAG)
20 (C12/13)
SHBE3


F


CCCUUUGCCU









P1133/5L/S/
CCT
YYT
GAUAACCCUU
626
(AGGAG)
20 (C7-14)
St3BE3


F


UGCCUGGAGA









P1133/5L/S/
CCT
YYT
AUAACCCUUU
627
(GGAGAAG)
20 (C6-13)
St1BE3


F


GCCUGGAGAA









P1133/5L/S/
CCT
YYT
ACCCUUUGCC
628
(GAAGAAG)
20 (C3-10)
St1BE3


F


UGGAGAAGGA









P1135L/S/F
CCT
YYT
UUUGCCUGGA
629
(AAG)
20 (C5/6)
SpBE3





GAAGGAGAAG









P1135LVS/F
CCT
YYT
GCCUGGAGAA
630
(CAG)
20 (C2/3)
SpBE3





GGAGAAGAAG









P1135IVS/F
CCT
YYT
CCUGGAGAAG
631
(AGAG)
20 (C1/2)
EQR-





GAGAAGAAGC



SpBE3





P1145L7S/F
CCT
YYT
GAGGCUGAAC
632
(CGAT)
20 (C10/11)
VQR-





CUAUGAAUUC



SpBE3





P1145US/F
CCT
YYT
GCUGAACCUA
633
(TGAG)
20 (C7/8)
EQR-





UGAAUUCCGA



SpBE3





P1145L7S/F
CCT
YYT
CUGAACCUAU
634
(GAG)
20 (C6/7)
SpBE3





GAAUUCCGAU









P1145LVS/F
CCT
YYT
ACCUAUGAAU
635
(CAG)
20 (C2/3)
SpBE3





UCCGAUGAGC









P1145LVS/F
CCT
YYT
CCUAUGAAUU
636
(AGAG)
20 (C1/2)
EQR-





CCGAUGAGCC



SpBE3





P1145LVS/F
CCT
YYT
CAGAGGCUGA
637
(TCCGAT)
20 (C12/13)
KKH-





ACCUAUGAAU



SaBE3





P1151L/S/F
CCA
YYA
UGAGCCAGAG
638
(CAG)
20 (C5/6)
SpBE3





GCCUGUUUCA









P1151LVS/F
CCA
YYA
GAGCCAGAGG
639
(AGAT)
20 (C4/5)
VQR-





CCUGUUUCAC



SpBE3





P1151LVS/F
CCA
YYA
CCAGAGGCCU
640
(TGG)
20 (C1/2)
SpBE3





GUUUCACAGA









P1151LVS/F
CCA
YYA
AUGAGCCAGA
641
(ACAGAT)
20 (C6/7)
KKH-





GGCCUGUUUC



SaBE3





P1151LVS/F
CCA
YYA
AGCCAGAGGC
642
(GATGGT)
20 (C3/4)
KKH-





CUGUUUCACA



SaBE3





C1154Y
TGT
TAT
AAACAGGCCU
643
(GGAA)
20 (C6)
VQR-





CUGGCUCAUC



SpBE3





C1154Y
TGT
TAT
GAAACAGGCC
644
(CGG)
20 (C7)
SpBE3





UCUGGCUCAU









C1154Y
TGT
TAT
CCAUCUGUGA
645
(TGG)
20 (C15)
SpBE3





AACAGGCCUC









C1154Y
TGT
TAT
GAAACAGGCC
646
(CGGAAT)
20 (C7)
SaBE3





UCUGGCUCAU









C1159Y
TGT
TAT
CAUACACAAC
647
(AGAC)
20 (C7)
VQR-





CUGACAAGAA



SpBE3





C1159Y
TGT
TAT
CCAUACACAA
648
(AAG)
20 (C8)
SpBE3





CCUGACAAGA









C1159Y
TGT
TAT
CCUCCAUACA
649
(AGAA)
20 (C11)
VQR-





CAACCUGACA



SpBE3





C1159Y
TGT
TAT
ACCUCCAUAC
650
(AAG)
20 (C12)
SpBE3





ACAACCUGAC









C1159Y
TGT
TAT
AACCUCCAUA
651
(CAAGAAA)
20 (C13)
St1BE3





CACAACCUGA









P1285LVS/F
CCC
YYC
UUGGCCCCAU
652
(CGG)
20 (C6/7)
SpBE3





UAAAUCCCUU









P1285LVS/F
CCC
YYC
UGGCCCCAUU
653
(GGAC)
20 (C5/6)
VQR-





AAAUCCCUUC



SpBE3





P1297LVS/F
CCT
YYT
AGACCUCUAA
654
(TAG)
20 (C4/5)
SpBE3





GAGCCUUAUC









P1297LVS/F
CCT
YYT
UACCUCUAAG
655
(AGAT)
20 (C3/4)
VOR-





AGCCUUAUCU



SpBE3





P1297LVS/F
CCT
YYT
AAGACCUCUA
656
(CTAGAT)
20 (C5/6)
KKH-





AGAGCCUUAU



SaBE3





P1319LVS/F
CCT
YYT
AGGAGCAAUU
657
(TGAA)
20 (C11/12)
VQR-





CCUUCCAUCA



SpBE3





P1319LVS/F
CCT
YYT
GCAAUUCCUU
658
(TGTG)
20 (C7/8)
VQR-





CCAUCAUGAA



SpBE3





P1319LVS/F
CCT
YYT
UAGGAGCAAU
659
(ATGAAT)
20 (C12/13)
SaBE3





UCCUUCCAUC









C1328Y
TGT
TAT
ACACACAAGU
660
(TGAT)
20 (C4)
VQR-





AGCACAUUCA



SpBE3





C1328Y
TGT
TAT
AGACACACAA
661
(CATGAT)
20 (C6)
KKH-





GUAGCACAUU



SaBE3





G1339R
GGA
ARA
CCAUGAUGCU
662
(CAG)
20 (C-1)
SpBE3





GAAUAUCAGC









G1339R
GGA
ARA
ACUCCCAUGA
663
(CAG)
20 (C4)
SpBE3





UGCUGAAUAU









G1339R
GGA
ARA
CAAAUUUACU
664
(TGAA)
20 (C11)
VQR-





CCCAUGAUGC



SpBE3





G1339R
GGA
ARA
CCAUGAUGCU
665
(CAGAAT)
20 (C1)
SaBE3





GAAUAUCAGC









G1339R
GGA
ARA
ACAAAUUUAC
666
(CTGAAT)
20 (C12)
SaBE3





UCCCAUGAUG









G1339R
GGA
ARA
CCCAUGAUGC
667
(CCAGAAT)
20 (C1)
St1BE3





UGAAUAUCAG









C1350Y
TGT
TAT
AAUACACUCA
668
(CAG)
20 (C7)
SpBE3





UAGAACUUGC









P1360LVS/F
CCT
YYT
GUCACGGUUU
669
(AAG)
20 (C11/12)
SpBE3





CCUGCAAGUC









P1360LVS/F
CCT
YYT
GGGUCACGGU
670
(TCAAGT)
20 (C13/14)
KKH-





UUCCUGCAAG



SaBE3





P1360LVS/F
CCT
YYT
GGUUUCCUGC
671
(CCAAAT)
20 (C6/7)
KKH-





AAGUCAAGUU



SaBE3





P1365LVS/F
CCA
YYA
AGUCAAGUUC
672
(CGAA)
20 (C10/11)
VQR-





CAAAUCGUUC



SpBE3





P1365LVS/F
CCA
YYA
AAGUCAAGUU
673
(CCGAAT)
20 (C11/12)
SaBE3





CCAAAUCGUU









C1370Y
TGT
TAT
AUUCGGAACG
674
(TGAC)
20 (C2)
VQR-





AUUUGGAACU



SpBE3





C1370V
TGT
TAT
CAAAACAUUC
675
(GGAA)
20 (C8)
VQR-





GGAACGAUUU



SpBE3





C1370Y
TGT
TAT
GCAAAACAUU
676
(TGG)
20 (C9)
SpBE3





CGGAACGAUU









C1370Y
TGT
TAT
UAAGGGCAAA
677
(CGAT)
20 (C14)
VQR-





ACAUUCGGAA



SpBE3





C1370Y
TGT
TAT
CAUAAGGGCA
678
(AACGAT)
20 (C16)
KKH-





AAACAUUCGG



SaBE3





P1425L7S/F
CCC
YYC
GUAGACAAGC
679
(TGAA)
20 (C13/14)
VQR-





AGCCCAAAUA



SpBE3





P1425L7S/F
CCC
YYC
AAGCAGCCCA
680
(TAG)
20 (C7/8)
SpBE3





AAUAUGAAUA









G1444R
GGG
ARR
UGACCCAAAG
681
(CGAC)
20 (C5)
VQR-





AUGAUAAAGA



SpBE3





G1444R
GGG
ARR
GAAUGACCCA
682
(AGAC)
20 (C8)
VQR-





AAGAUGAUAA



SpBE3





G1444R
GGG
ARR
AGAAUGACCC
683
(AAG)
20 (C9)
SpBE3





AAAGAUGAUA









G1444R
GGG
ARR
AGUGAAGAAU
684
(TGAT)
20 (C14)
VQR-





GACCCAAAGA



SpBE3





G1444R
GGG
ARR
CCCAAAGAUG
685
(CAAAAT)
20 (C2)
KKH-





AUAAAGACGA



SaBE3





S1490Fb
TCC
TTY
UGGGGUCCAA
686
(AAG)
20 (C7/8)
SpBE3





GAAGCCACAA









S1490Fb
TCC
TTY
GGGUCCAAGA
687
(GCCAAT)
20 (C5/6)
KKH-





AGCCACAAAA



SaBE3





P1493/6L/S/
CCA
YYA
AGCCACAAAA
688
(CGAC)
20
VQR-


F


GCCAAUUCCU


(C3/4/12)
SpBE3





P1493US/F
CCA
YYA
GGGUCCAAGA
689
(GCCAAT)
20 (C13/14)
KKH-





AGCCACAAAA



SaBE3





P1496L7S/F
CCA
YYA
ACAAAAGCCA
690
(CAG)
20 (C8/9)
SpBE3





AUUCUUCGAC









P1496/8L/S/
CCA
YYA
CAAAAGCCAA
691
(AGG)
20 (C7-14)
SpBE3


F


UUCCUCGACC









P1496/8L/S/
CCA
YYA
AAAAGCCAAU
692
(GGG)
20 (C6-13)
SpBE3


F


UCCUCGACCA









P1496/8L/S/
CCA
YYA
AAAGCCAAUU
693
(GGG)
20 (C5-12)
SpBE3


F


CCUCGACCAG









P1496/8L/S/
CCA
YYA
AAAGCCAAUU
694
(GGG)
20 (C5-12)
SpBE3


F


CCUCGACCAG









P1496/8USI
CCA
YYA
CAAAAGCCAA
695
(AGGGGT)
20 (C7-14)
SaBE3


F


UUCCUCGACC









P1496L7S/F
CCA
YYA
CAAAAGCCAA
696
(AGGGG)
20 (C7-14)
St3BE3





UUCCUCGACC









P1498/1500
CCT
YYT
AAUUCCUCGA
697
(AAAAAT)
20 (C5-12)
KKH-


L/S/F


CCAGGGGUAA



SaBE3





P1500L7S/F
CCA
YYA
AAUUCCUCGA
698
(AAAAAT)
20 (C11/12)
KKH-





CCAGGGGUAA



SaBE3





C1526Y
TGT
TAT
GUUGAGACAG
699
(TGAT)
20 (C8)
VQR-





AUAAGAACCA



SpBE3





C1526Y
TGT
TAT
UUACCAUGUU
700
(AGAA)
20 (C15)
VQR-





GAGACAGAUA



SpBE3





C1526Y
TGT
TAT
GUUACCAUGU
701
(AAG)
20 (C16)
SpBE3





UGAGACAGAU









C1526Y
TGT
TAT
AGACAGAUAA
702
(ACTAAT)
20 (C4)
KKH-





GAACCAUGAU



SaBE3





C1526Y
TGT
TAT
AUGUUGAGAC
703
(CATGAT)
20 (C10)
KKH-





AGAUAAGAAC



SaBE3





C1526Y
TGT
TAT
GGUUACCAUG
704
(TAAGAAC)
20 (C17)
St1BE3





UUGAGACAGA









G1560R
GGA
ARA
CACACAUUCU
705
(GGAT)
20 (C11)
VQR-





CCAGUGAAAA



SpBE3





G1560R
GGA
ARA
GCACACAUUC
706
(AGG)
20 (C12)
SpBE3





UCCAGUGAAA









G1560R
GGA
ARA
AGCACACAUU
707
(AAG)
20 (C13)
SpBE3





CUCCAGUGAA









G1560R
GGA
ARA
AGCACACAUU
708
(AAGGAT)
20 (C13)
SaBE3





CUCCAGUGAA









C1562Y
TGT
TAT
CACACAUUCU
709
(GGAT)
20 (C5)
VQR-





CCAGUGAAAA



SpBE3





C1562Y
TGT
TAT
GCACACAUUC
710
(AGG)
20 (C6)
SpBE3





UCCAGUGAAA









C1562Y
TGT
TAT
AGCACACAUU
711
(AAG)
20 (C7)
SpBE3





CUCCAGUGAA









C1562Y
TGT
TAT
UUUUAGCACA
712
(TGAA)
20 (C11)
VQR-





CAUUCUCCAG



SpBE3





C1562Y
TGT
TAT
AGUUUUAGCA
713
(AGTG)
20 (C13)
VQR-





CACAUUCUCC



SpBE3





C1562Y
TGT
TAT
CAGUUUUAGC
714
(CAG)
20 (C14)
SpBE3





ACACAUUCUC









C1562Y
TGT
TAT
AGCACACAUU
715
(AAGGAT)
20 (CT)
SaBE3





CUCCAGUGAA









C1562Y
TGT
TAT
AUCAGUUUUA
716
(TCCAGT)
20 (C16)
KKH-





GCACACAUUC



SaBE3





G1577R
GGA
ARA
CCAUCCUACA
717
(AGTG)
20 (C5)
VQR-





GUGAAGUAGU



SpBE3





G1577R
GGA
ARA
UCCAUCCUAC
718
(TAG)
20 (C6)
SpBE3





AGUGAAGUAG









G1577R
GGA
ARA
UAUUCCAUCC
719
(TAG)
20 (C9)
SpBE3





UACAGUGAAG









G1577R
GGA
ARA
AAAUAUUCCA
720
(AAG)
20 (C12)
SpBE3





UCCUACAGUG









G1577R
GGA
ARA
AAAAAUAUUC
721
(TGAA)
20 (C14)
VQR-





CAUCCUACAG



SpBE3





G1577R
GGA
ARA
AUUCCAUCCU
722
(AGTAGT)
20 (C8)
KKH-





ACAGUGAAGU



SaBE3





G1577R
GGA
ARA
AAUAUUCCAU
723
(AGTAGT)
20 (C11)
KKH-





CCUACAGUGA



SaBE3





G1577R
GGA
ARA
AAAAAUAUUC
724
(TGAAGT)
20 (C14)
KKH-





CAUCCUACAG



SaBE3





P1606L7S/F
CCT
YYT
UUGUGUCCCC
725
(CGAG)
20 (C9/10)
EQR-





UACCCUGUUC



SpBE3





P1606LVS/F
CCT
YYT
UGUGUCCCCU
726
(GAG)
20 (C8/9)
SpBE3





ACCCUGUUCC









P1606L7S/F
CCT
YYT
GUGUCCCCUA
727
(AGTG)
20 (C7/8)
VQR-





CCCUGUUCCG



SpBE3





P1606LVS/F
CCT
YYT
GUCCCCUACC
728
(TGAT)
20 (C5/6)
VQR-





CUGUUCCGAG



SpBE3





P1606LVS/F
CCT
YYT
UUUGUGUCCC
729
(CCGAGT)
20 (C10/11)
SaBE3





CUACCCUGUU









P1606LVS/F
CCT
YYT
GUGUCCCCUA
730
(AGTGAT)
20 (C7/8)
KKH-





CCCUGUUCCG



SaBE3





G1626R
GGA
ARA
CUUUGACUAG
731
(CGG)
20 (C-1)
SpBE3





ACGUAGGAUU









G1626R
GGA
ARA
UGCUCCUUUG
732
(GGAT)
20 (C5)
VQR-





ACUAGACGUA



SpBE3





G1626R
GGA
ARA
UUGCUCCUUU
733
(AGG)
20 (C6)
SpBE3





GACUAGACGU









G1626R
GGA
ARA
UUUGCUCCUU
734
(TAG)
20 (CT)
SpBE3





UGACUAGACG









G1626R
GGA
ARA
UCCCCUUUGC
735
(AGAC)
20 (C12)
VQR-





UCCUUUGACU



SpBE3





G1626R
GGA
ARA
AUCCCCUUUG
736
(TAG)
20 (C13)
SpBE3





CUCCUUUGAC









G1626R
GGA
ARA
UUUGCUCCUU
737
(TAGGAT)
20 (CT)
SaBE3





UGACUAGACG









G1629R
GGG
ARR
UCCCCUUUGC
738
(AGAC)
20 (C3)
VQR-





UCCUUUGACU



SpBE3





G1629R
GGG
ARR
AUCCCCUUUG
739
(TAG)
20 (C4)
SpBE3





CUCCUUUGAC









G1629R
GGG
ARR
GCGGAUCCCC
740
(TGAC)
20 (C8)
VQR-





UUUGCUCCUU



SpBE3





P1642LVS/F
CCT
YYT
CUUCCUGCGU
741
(CGG)
20 (C4/5)
SpBE3





UGUUUAACAU









G1662R
GGA
ARA
CAUUCCAAAG
742
(TGAA)
20 (C5)
VQR-





AUGGCGUAGA



SpBE3





G1662R
GGA
ARA
GGACAUUCCA
743
(AGAT)
20 (C8)
VQR-





AAGAUGGCGU



SpBE3





G1662R
GGA
ARA
UGGACAUUCC
744
(TAG)
20 (C9)
SpBE3





AAAGAUGGCG









G1662R
GGA
ARA
AAGUUGGACA
745
(GGCG)
20 (C13)
VRER-





UUCCAAAGAU



SpBE3





G1662R
GGA
ARA
UUGGACAUUC
746
(GTAGAT)
20 (C10)
KKH-





CAAAGAUGGC



SaBE3





G1662R
GGA
ARA
AAAGUUGGAC
747
(TGGCG)
20 (C14)
St3BE3





AUUCCAAAGA









C1690Y
TGC
TAC
GCAAAUCAUA
748
(AGG)
20 (C2)
SpBE3





CUGUUGCCAA









C1690Y
TGC
TAC
GGCAAAUCAU
749
(AAG)
20 (C3)
SpBE3





ACUGUUGCCA









C1690Y
TGC
TAC
AGGCAAAUCA
750
(AAAGGT)
20 (C4)
KKH-





UACUGUUGCC



SaBE3





P1706LVS/F
CCT
YYT
UUGCUAGCAC
751
(CAG)
20 (C10/11)
SpBE3





CUAUUCUUAA









P1706LVS/F
CCT
YYT
UAGCACCUAU
752
(AAG)
20 (C6/7)
SpBE3





UCUUAACAGU









P1706L7S/F
CCT
YYT
GAUUGCUAGC
753
(AACAGT)
20 (C12/13)
KKH-





ACCUAUUCUU



SaBE3





P1712LVS/F
CCA
YYA
UUAACAGUAA
754
(TGTG)
20 (C12-14)
VQR-





GCCACCCGAC



SpBE3





P1712L7S/F
CCA
YYA
AACAGUAAGC
755
(TGAC)
20 (C10/11)
VQR-





CACCCGACUG



SpBE3





P1712/3L/S/
CCA
YYA
CCACCCGACU
756
(AAAAGT)
20 (C1-5)
KKH-


F


GUGACCCAAA



SaBE3





P1713L/S/F
CCC
YYC
ACCCGACUGU
757
(AAG)
20 (C2/3)
SpBE3





GACCCAAAAA









C1715Y
TGT
TAT
AGUCGGGUGG
758
(AGAA)
20 (C-1)
VQR-





CUUACUGUUA



SpBE3





C1715Y
TGT
TAT
CAGUCGGGUG
759
(AAG)
20 (C1)
SpBE3





GCUUACUGUU









C1715Y
TGT
TAT
UUUUUUGGGU
760
(TGG)
20 (C13)
SpBE3





CACAGUCGGG









C1715Y
TGT
TAT
CUUUUUUUGG
761
(GGTG)
20 (C15)
VQR-





GUCACAGUCG



SpBE3





C1715Y
TGT
TAT
ACUUUUUUUG
762
(GGG)
20 (C16)
SpBE3





GGUCACAGUC









C1715Y
TGT
TAT
CAGUCGGGUG
763
(AAGAAT)
20 (C1)
SaBE3





GCUUACUGUU









C1715Y
TGT
TAT
GAACUUUUUU
764
(TCGGGT)
20 (C18)
SaBE3





UGGGUCACAG









C1715Y
TGT
TAT
ACAGUCGGGU
765
(TAAGAAT)
20 (C2)
St1BE3





GGCUUACUGU









C1715Y
TGT
TAT
ACUUUUUUUG
766
(GGGTG)
20 (C16)
St3BE3





GGUCACAGUC









P1717L/S/F
CCA
YYA
GACCCAAAAA
767
(TGG)
20 (C4/5)
SpBE3





AAGUUCAUCC









P1717US/F
CCA
YYA
ACCCAAAAAA
768
(GGAA)
20 (C3/4)
VQR-





AGUUCAUCCU



SpBE3





P1717L7S/F
CCA
YYA
CCAAAAAAAG
769
(AAG)
20 (C1/2)
SpBE3





UUCAUCCUGG









P1717L/S/F
CCA
YYA
ACCCAAAAAA
770
(GGAAGT)
20 (C3/4)
KKH-





AGUUCAUCCU



SaBE3





P1722L/S/F
CCT
YYT
AAAAGUUCAU
771
(CAG)
20 (C11/12)
SpBE3





CCUGGAAGUU









P1722L/S/F
CCT
YYT
GUUCAUCCUG
772
(TGAA)
20 (C7/8)
VQR-





GAAGUUCAGU



SpBE3





P1722L7S/F
CCT
YYT
UCAUCCUGGA
773
(AAG)
20 (C5/6)
SpBE3





AGUUCAGUUG









P1722L7S/F
CCT
YYT
CAUCCUGGAA
774
(AGG)
20 (C4/5)
SpBE3





GUUCAGUUGA









P1722US/F
CCT
YYT
AUCCUGGAAG
775
(GGAG)
20 (C3/4)
EQR-





UUCAGUUGAA



SpBE3





P1722L7S/F
CCT
YYT
UCCUGGAAGU
776
(GAG)
20 (C2/3)
SpBE3





UCAGUUGAAG









P1722L7S/F
CCT
YYT
CCUGCAAGUU
777
(ACAC)
20 (C1/2)
VQR-





CACUUCAAGC



SpBE3





P1722L/S/F
CCT
YYT
AAAAAAGUUC
778
(TTCAGT)
20 (C13/14)
KKH-





AUCCUGGAAG



SaBE3





P1722L/S/F
CCT
YYT
CAUCCUGGAA
779
(AGGAG)
20 (C4/5)
St3BE3





GUUCAGUUGA









C1730Y
TGT
TAT
UUACCACAGU
780
(TGAA)
20 (C7)
VQR-





CUCCUUCAAC



SpBE3





P1733LVS/F
CCA
YYA
GACUGUGGUA
781
(TGG)
20 (C13/14)
SpBE3





ACCCAUCUGU









P1733L/S/F
CCA
YYA
ACUGUGGUAA
782
(GGAA)
20 (C12/13)
VQR-





CCCAUCUGUU



SpBE3





P1733L/S/F
CCA
YYA
GACUGUGGUA
783
(TGGAAT)
20 (C13/14)
SaBE3





ACCCAUCUGU









G1736R
GGA
ARA
UUCCAACAGA
784
(CAG)
20 (C3)
SpBE3





UGGGUUACCA









G1736R
GGA
ARA
AGUAGAAUAU
785
(GGG)
20 (C12)
SpBE3





UCCAACAGAU









G1736R
GGA
ARA
AAGUAGAAUA
786
(TGG)
20 (C13)
SpBE3





UUCCAACAGA









G1736R
GGA
ARA
UAUUCCAACA
787
(CACAGT)
20 (C5)
KKH-





GAUGGGUUAC



SaBE3





G1736R
GGA
ARA
AAAGUAGAAU
788
(ATGGGT)
20 (C14)
SaBE3





AUUCCAACAG









P1773I7S/F
CCT
YYT
GAAAGUACUG
789
(TGAG)
20 (C13/14)
EQR-





AACCUCUGAG



SpBE3





P1773L7S/F
CCT
YYT
AAAGUACUGA
790
(GAG)
20 (C12/13)
SpBE3





ACCUCUGAGU









P1773LVS/F
CCT
YYT
AAGUACUGAA
791
(AGG)
20 (C11/12)
SpBE3





CCUCUGAGUG









P1773L/S/F
CCT
YYT
AGUACUGAAC
792
(GGAT)
20 (C10/11)
VQR-





CUCUGAGUGA



SpBE3





P1773L7S/F
CCT
YYT
ACUGAACCUC
793
(TGAC)
20 (C7/8)
VQR-





UGAGUGAGGA













SpBE3





P1773IVS/F
CCT
YYT
CCUCUGAGUG
794
(TGAG)
20 (C1/2)
EQR-





AGGAUGACUU



SpBE3





P1773LVS/F
CCT
YYT
AAAGUACUGA
795
(GAGGAT)
20 (C12/13)
SaBE3





ACCUCUGAGU









P1773LVS/F
CCT
YYT
CCUCUGAGUG
796
(TGAGAT)
20 (C1/2)
KKH-





AGGAUGACUU



SaBE3





P1791LVS/F
CCC
YYC
AGUUUGAUCC
797
(CAG)
20 (C9/10)
SpBE3





CGAUGCGACC









P1791LVS/F
CCC
YYC
UCCCGAUGCG
798
(TAG)
20 (C2/3)
SpBE3





ACCCAGUUUA









P1791LVS/F
CCC
YYC
CCCGAUGCGA
799
(AGAG)
20 (C1/2)
EQR-





CCCAGUUUAU



SpBE3





P1791LVS/F
CCC
YYC
GAAGUUUGAU
800
(CCCAGT)
20 (C11/12)
KKH-





CCCGAUGCGA



SaBE3





P1791LVS/F
CCC
YYC
UCCCGAUGCG
801
(TAGAGT)
20 (C2/3)
SaBE3





ACCCAGUUUA









P1811/2LVS/
CCT
YYT
CCUGGAUCCU
802
(TAG)
20 (C8-12)
SpBE3


F


CCUCUUCUCA









P1818LVS/F
CCC
YYC
UCUCAUAGCA
803
(AAG)
20 (C14/15)
SpBE3





AAACCCAACA









P1818LVS/F
CCC
YYC
UAGCAAAACC
804
(CAG)
20 (C9/10)
SpBE3





CAACAAAGUC









P1818LVS/F
CCC
YYC
CUUCUCAUAG
805
(CAAAGT)
20 (C16/17)
KKH-





CAAAACCCAA



SaBE3





P1829LVS/F
CCC
YYC
GCCAUGGAUC
806
(TAG)
20 (C13/14)
SpBE3





UGCCCAUGGU









P1829LVS/F
CCC
YYC
CCAUGGAUCU
807
(AGTG)
20 (C12/13)
VQR-





GCCCAUGGUU



SpBE3





P1829LVS/F
CCC
YYC
AUGGAUCUGC
808
(TGG)
20 (C10/11)
SpBE3





CCAUGGUUAG









P1829IVS/F
CCC
YYC
UGGAUCUGCC
809
(GGTG)
20 (C9/10)
VQR-





CAUGGUUAGU



SpBE3





P1829LVS/F
CCC
YYC
GAUCUGCCCA
810
(TGAC)
20 (C7/8)
VQR-





UGGUUAGUGG



SpBE3





P1829LVS/F
CCC
YYC
UGCCCAUGGU
811
(CGG)
20 (C3/4)
SpBE3





UAGUGGUGAC









P1829LVS/F
CCC
YYC
GCCCAUGGUU
812
(GGAT)
20 (C2/3)
VQR-





AGUGGUGACC



SpBE3





P1829LVS/F
CCC
YYC
UUGCCAUGGA
813
(GTTAGT)
20 (C15/16)
KKH-





UCUGCCCAUG



SaBE3





P1829LVS/F
CCC
YYC
CCAUGGAUCU
814
(AGTGGT)
20 (C12/13)
KKH-





GCCCAUGGUU



SaBE3





P1829LVS/F
CCC
YYC
CUGCCCAUGG
815
(CCGGAT)
20 (C4/5)
SaBE3





UUAGUGGUGA









P1829LVS/F
CCC
YYC
AUGGAUCUGC
816
(TGGTG)
20 (C10/11)
St3BE3





CCAUGGUUAG









P1872LVS/F
CCT
YYT
AUGUCUGCAA
817
(AGTG)
20 (C13/14)
VQR-





AUCCUUCCAA



SpBE3





P1872LVS/F
CCT
YYT
AAUCCUUCCA
818
(TGAA)
20 (C4/5)
VQR-





AAGUGUCCUA



SpBE3





P1872LVS/F
CCT
YYT
UUCAUGUCUG
819
(CAAAGT)
20 (C16/17)
KKH-





CAAAUCCUUC



SaBE3





P1943LVS/F
CCA
YYA
GAACUCAAGU
820
(CAG)
20 (C11/12)
SpBE3





CCAGAAAAAA









P1943LVS/F
CCA
YYA
AACUCAAGUC
821
(AGAT)
20 (C10/11)
VQR-





CAGAAAAAAC



SpBE3





P1943LVS/F
CCA
YYA
AGAACUCAAG
822
(ACAGAT)
20 (C12/13)
KKH-





UCCAGAAAAA



SaBE3





P1955LVS/F
CCA
YYA
CCACCACCUC
823
(TATGAT)
20 (C12/13)
KKH-





UCCACCUUCA



SaBE3





P1955/6L/S/
CCA
YYA
ACCACCUCUC
824
(TGAT)
20 (C10-14)
VQR-


F


CACCUUCAUA



SpBE3





P1955/6LVS/
CCA
YYA
ACCUCUCCAC
825
(TAG)
20 (C7-11)
SpBE3


F


CUUCAUAUGA









P1955/6LVS/
CCA
YYA
CCUCUCCACC
826
(AGTG)
20 (C6-10)
VQR-


F


UUCAUAUGAU



SpBE3





P1955/6L/S/
CCA
YYA
CCACCUCUCC
827
(GATAGT)
20 (C9-13)
KKH-


F


ACCUUCAUAU



SaBE3





P1964LVS/F
CCA
YYA
AGUGUAACAA
828
(AGAG)
20 (C13/14)
EQR-








AGCCAGACAA



SpBE3


P1964LVS/F
CCA
YYA
GUGUAACAAA
829
(GAG)
20 (C12/13)
SpBE3





GCCAGACAAA









P1964LVS/F
CCA
YYA
UGUAACAAAG
830
(AGAA)
20 (C11/12)
VQR-





CCAGACAAAG



SpBE3





P1964LVS/F
CCA
YYA
AAGCCAGACA
831
(TGAA)
20 (C4/5)
VQR-





AAGAGAAAUA



SpBE3





P1964LVS/F
CCA
YYA
UGUAACAAAG
832
(AGAAAT)
20 (C11/12)
KKH-





CCAGACAAAG



SaBE3





P1964LVS/F
CCA
YYA
AGUGUAACAA
833
(AGAGAAA)
20 (C13/14)
St1BE3





AGCCAGACAA






aBE types: SpBE3 = APOBEC1-SpCas9n-UGI; VQR-SpBE3 = APOBEC1-VQR-SpCas9n-UGI: EQR-SpBE3 = APOBEC1-EQR-SpCas9n-UGI; VRER-SpBE3 = APOBEC1-VRER-SpCas9n-UGI; SaBE3 = APOBEC1-SaCas9n-UGI; KKH-SaBE3 = APOBEC1-KKH-SaCas9n-UGI; St3BE3 = APOBEC1-St3Cas9n-UGI; St1BE3 = APOBEC1-St1Cas9n-UGI.




bPhospho-serine site S1490.







In some embodiments, editing of an ion channel-encoding nucleotide results in a destabilized or misfolded ion channel protein. An ion channel mutant comprising one or more destabilizing mutations described herein may have reduced activity compared to the wild type ion channel protein. For example, the activity of an ion channel variant comprising one or more destabilizing mutations described herein may be reduced by at least about 20%, at least about 30%, at least about 40%, at least about 50%, at least about 60%, at least about 70%, at least about 80%, at least about 90%, at least about 95%, at least about 99%, or more.


Premature Stop Codons

Some aspects of the present disclosure provide strategies of editing an ion channel gene (e.g., SCN9A gene) to reduce the amount of full-length, functional ion channel protein (e.g., NaV1.7 protein) being produced. In some embodiments, stop codons may be introduced into the coding sequence of an ion channel gene upstream of the normal stop codon (referred to as a “premature stop codon”). Premature stop codons cause premature translation termination, in turn resulting in truncated and nonfunctional proteins and induces rapid degradation of the mRNA via the non-sense mediated mRNA decay pathway. See, e.g., Baker et al., Current Opinion in Cell Biology 16 (3): 293-299, 2004; Chang et al., Annual Review of Biochemistry 76: 51-74, 2007; and Behm-Ansmant et al., Genes & Development 20 (4): 391-398, 2006, each of which is incorporated herein by reference.


The nucleobase editors may be used to convert several amino acid codons to a stop codon (e.g., TAA, TAG, or TGA). For example, nucleobase editors including a cytosine deaminase domain are capable of converting a cytosine (C) base to a thymine (T) base via deamination. Thus, it is envisioned that, for amino acid codons containing a C base, the C base may be converted to T. For example, a CAG (Gln/Q) codon may be changed to a TAG (amber) codon via the deamination of the first C on the coding strand. For sense codons that contain a guanine (G) base, a C base is present on the complementary strand; and the G base may be converted to an adenosine (A) via the deamination of the C on the complementary strand. For example, a TGG (Trp/W) codon may be converted to a TAG (amber) codon via the deamination of the second C on the complementary strand. In some embodiments, two C to T changes are required to convert a codon to a nonsense codon. For example, a CGG (R) codon is converted to a TAG (amber) codon via the deamination of the first C on the coding strand and the deamination of the second C on the complementary strand. Non-limiting examples of codons that may be changed to stop codons via base editing are provided in Table 3.









TABLE 3







Conversion to Stop Codon









Target codon
Base-editing process
Edited codon






CAG (Gln/Q)

1st base C to T on coding strand

TAG (amber)



TGG (Trp/W)
2nd base C to T on complementary strand
TAG (amber)



CGA (Arg/R)

1st base C to T on coding strand

TGA (opal)




CAA (Gln/Q)

1st base C to T on coding strand

TAA (ochre)



TGG (Trp/W)
3rd base C to T on complementary strand
TGA (opal)


CGG (Arg/R)
1st base C to T on coding strand and 2nd base C to T
TAG (amber)



on complementary strand



CGA (Arg/R)
1st base C to T on coding strand and 2nd base C to T
TAA (orchre)



on complementary strand





* single underline: changes on the coding strand


double underline: changes on the complementary strand






Non-limiting examples of codons in the SCN9A gene that may be changed to stop codons by the nucleobase editor are provided in Table 4. In some embodiments, the introduction of stop codons may be efficacious in generating truncations when the target residue is located in a flexible loop. In some embodiments, two codons adjacent to each other may both be converted to stop codons, resulting in two stop codons adjacent to each other (also referred to as “tandem stop codons”). “Adjacent” means there are no more than 5 amino acids between the two stop codons. For example, the two stop codons may be immediately adjacent to each other (0 amino acids in between) or have 1, 2, 3, 4, or 5 amino acids in between. Non-limiting examples of tandem stop codons that may be introduced are listed in Table 4 (e.g., Q368X/Q369X, Q408X/Q410X. Q1539X/Q1541X, wherein X is a stop codon). In some embodiments, a stop codon is introduced adjacent to a structurally destabilizing mutation.









TABLE 4







Exemplary NaV1.7 (SNA9A) Protective Loss-of-Function Mutations via


Premature Stop Codons




















gRNA







SEQ

size



Residue
Codon
Resulting
Programmable guide-RNA
ID

(C



Change
Change
Codon(s)
sequence
NOs
(PAM)
edited)
BE typea

















Q18X
CAG
TAG
AAACAGUCUCUUGCCCUCAU
834
(TGAA)
20 (C4)
VQR-









SpBE3





Q25X
CAA
TAA
CUCAUUGAACAACGCAUUGC
835
(TGAA)
20
VQR-








(C10)
SpBE3





Q25X
CAA
TAA
AUUGAACAACGCAUUGCUGA
836
(AAG)
20 (C7)
SpBE3





Q25X
CAA
TAA
UUGAACAACGCAUUGCUGAA
837
(AGAA)
20 (C6)
VQR-









SpBE3





Q25X
CAA
TAA
UGAACAACGCAUUGCUGAAA
838
(GAAAAT)
20 (C5)
KKH-









SaBE3





Q25X
CAA
TAA
CAUUGAACAACGCAUUGCUG
839
(AAAGAAA)
20 (C8)
St1BE3





Q58X
CAG
TAG
AAACAGCUGCCCUUCAUCUA
840
(TGG)
20 (C4)
SpBE3





Q58X
CAG
TAG
AACAGCUGCCCUUCAUCUAU
841
(GGG)
20 (C3)
SpBE3





Q58X
CAG
TAG
ACAGCUGCCCUUCAUCUAUG
842
(GGG)
20 (C2)
SpBE3





Q58X
CAG
TAG
CAGCUGCCCUUCAUCUAUGG
843
(GGAC)
20(C1)
VQR-









SpBE3





Q58X
CAG
TAG
AAACAGCUGCCCUUCAUCUA
844
(TGGGG)
20 (C4)
St3BE3





W151X
TGG
TAR
CCAGUCCGGUGGGUUAUUCA
845
(TGG)
20(C2)
SpBE3





W151X
TGG
TAR
CAUUUUUGGUCCAGUCCGGU
846
(GGG)
20
SpBE3








(C12)






W151X
TGG
TAR
ACAUUUUUGGUCCAGUCCGG
847
(TGG)
20
SpBE3








(C13)






W151X
TGG
TAR
GUCCAGUCCGGUGGGUUAUU
848
(CATGGT)
20(C4)
KKH-









SaBE3





W151X
TGG
TAR
GACAUUUUUGGUCCAGUCCG
849
(GTGGGT)
20
SaBE3








(C14)






W188X
TGG
TAR
CCACGGGUCACGAAGAAAAG
850
(TGAA)
20 (C2)
VQR-









SpBE3





W188X
TGG
TAR
UUCCACGGGUCACGAAGAAA
851
(AGTG)
20(C4)
VQR-









SpBE3





W188X
TGG
TAR
GUUCCACGGGUCACGAAGAA
852
(AAG)
20 (C5)
SpBE3





W188X
TGG
TAR
GCCAGUUCCACGGGUCACGA
853
(AGAA)
20
VQR-








(C9/3)
SpBE3





W188X
TGG
TAR
AGCCAGUUCCACGGGUCACG
854
(AAG)
20
SpBE3








(C10/4)






W188X
TGG
TAR
CCAGCCAGUUCCACGGGUCA
855
(CGAA)
20
VQR-








(C12/6)
SpBE3





W188X
TGG
TAR
UCCACGGGUCACGAAGAAAA
856
(GTGAAT)
20 (C3)
SaBE3





W188X
TGG
TAR
CAGUUCCACGGGUCACGAAG
857
(AAAAGT)
20
KKH-








(C7/1)
SaBE3





W188X
TGG
TAR
CAGCCAGUUCCACGGGUCAC
858
(GAAGAAA)
20
St1BE3








(C11/5)






W190X
TGG
TAR
CAAAAUCCAGCCAGUUCCAC
859
(GGG)
20
SpBE3








(C12)






W190X
TGG
TAR
ACAAAAUCCAGCCAGUUCCA
860
(CGG)
20
SpBE3








(C13)






W190X
TGG
TAR
GACAAAAUCCAGCCAGUUCC
861
(ACGGGT)
20
SaBE3








(C14)






R214X
CGA
TGA
GUUUCAGCUCUUCGAACUUU
862
(CAG)
20
SpBE3








(C13)






R214X
CGA
TGA
UUUCAGCUCUUCGAACUUUC
863
(AGAG)
20
EQR-








(C12)
SpBE3





R214X
CGA
TGA
UUCAGCUCUUCGAACUUUCA
864
(GAG)
20
SpBE3








(C11)






R214X
CGA
TGA
UCUUCGAACUUUCAGAGUAU
865
(TGAG)
20(C5)
EQR-









SpBE3





R214X
CGA
TGA
CUUCGAACUUUCAGAGUAUU
866
(GAG)
20 (C4)
SpBE3





R214X
CGA
TGA
UUCGAACUUUCAGAGUAUUG
867
(AGAG)
20 (C3)
EQR-









SpBE3





R214X
CGA
TGA
UCGAACUUUCAGAGUAUUGA
868
(GAG)
20 (C2)
SpBE3





R214X
CGA
TGA
GUUUCAGCUCUUCGAACUUU
869
(CAGAGT)
20
SaBE3








(C13)






Q240X
CAG
TAG
GGGCUUUGAUCCAGUCAGUG
870
(AAG)
20
SpBE3








(C12)






Q240X
CAG
TAG
GGCUUUGAUCCAGUCAGUGA
871
(AGAA)
20
VQR-








(C11)
SpBE3





0240X
CAG
TAG
CUUUGAUCCAGUCAGUGAAG
872
(AAG)
20 (C9)
SpBE3





Q240X
CAG
TAG
CAGUCAGUGAAGAAGCUUUC
873
(TGAT)
20 (C1)
VQR-









SpBE3





Q240X
CAG
TAG
UCCAGUCAGUGAAGAAGCUU
874
(TCTGAT)
20 (C3)
KKH-









SaBE3





Q240X
CAG
TAG
GGGGCUUUGAUCCAGUCAGU
875
(GAAGAAG)
20
St1BE3








(C13)






Q265X
CAG
TAG
AAUUGGACUACAGCUGUUCA
876
(TGG)
20
SpBE3








(C11)






Q265X
CAG
TAG
AUUGGACUACAGCUGUUCAU
877
(GGG)
20
SpBE3








(C10)



Q265X
CAG
TAG
UUGGACUACAGCUGUUCAUG
878
(GGAA)
20 (C9)
VQR-












SpBE3


Q265X
CAG
TAG
ACAGCUGUUCAUGGGAAACC
879
(TGAA)
20 (C2)
VQR-









SpBE3





Q265X
CAG
TAG
AGCUGUUCAUGGGAAACCUG
880
(AAG)
20 (C-1)
SpBE3








R277X
CGA
TGA
AAAUGUUUUCGAAAUUCACU
881
(TGAA)
20
VQR-








(C10)
SpBE3





R277X
CGA
TGA
CGAAAUUCACUUGAAAAUAA
882
(TGAA)
20 (C1)
VQR-









SpBE3


R277X
CGA
TGA
AAUGUUUUCGAAAUUCACUU
883
(GAAAAT)
20 (C9)
KKH-









SaBE3





R277X
CGA
TGA
GUUUUCGAAAUUCACUUGAA
884
(AATAAT)
20 (C6)
KKH-









SaBE3





Q323X
CAG
TAG
CUCGUGUGUAGUCAGUGUCC
885
(AGAG)
20
EQR-








(C13)
SpBE3





Q323X
CAG
TAG
UCGUGUGUAGUCAGUGUCCA
886
(GAG)
20
SpBE3








(C12)






Q323X
CAG
TAG
CGUGUGUAGUCAGUGUCCAG
887
(AGG)
20
SpBE3








(C11)



Q323X
CAG
TAG
GUGUGUAGUCAGUGUCCAGA
888
(GGG)
20
SpBE3








(C10)






Q323X
CAG
TAG
UGUGUAGUCAGUGUCCAGAG
889
(GGG)
20 (C9)
SpBE3





Q323X
CAG
TAG
AGUGUCCAGAGGGGUACACC
890
(TGTG)
20 (C-1)
VQR-









SpBE3





Q323X
CAG
TAG
CGUGUGUAGUCAGUGUCCAG
891
(AGGGGT)
20
SaBE3








(C11)






Q323X
CAG
TAG
CGUGUGUAGUCAGUGUCCAG
892
(AGGGG)
20
St3BE3








(C11)






W349X
TGG
TAR
CAGCUGAAAGUGUCAAAGCU
893
(CGTG)
20 (C1)
VQR-









SpBE3





W349X
TGG
TAR
AGGCCCAGCUGAAAGUGUCA
894
(AAG)
20 (C6)
SpBE3





W349X
TGG
TAR
GCUAAGAAGGCCCAGCUGAA
895
(AGTG)
20
VQR-








(C13)
SpBE3





W349X
TGG
TAR
AAGGCUAAGAAGGCCCAGCU
896
(GAAAGT)
20
KKH-








(C16)
SaBE3





Q360X
CAA
TAA
GGCUAAUGACCCAAGAUUAC
897
(TGG)
20
SpBE3








(C12)






Q360X
CAA
TAA
GCUAAUGACCCAAGAUUACU
898
(GGG)
20
SpBE3








(C11)






Q360X
CAA
TAA
CUAAUGACCCAAGAUUACUG
899
(GGAA)
20
VQR-








(C10)
SpBE3





W363X
TGG
TAR
UCCCAGUAAUCUUGGGUCAU
900
(TAG)
20 (C4)
SpBE3





W363X
TGG
TAR
AAGGUUUUCCCAGUAAUCUU
901
(GGG)
20
SpBE3








(C11)






W363X
TGG
TAR
AAAGGUUUUCCCAGUAAUCU
902
(TGG)
20
SpBE3








(C12)






W363X
TGG
TAR
UAAAGGUUUUCCCAGUAAUC
903
(TTGGGT)
20
SaBE3








(C13)






Q368/9X
CAA
TAA
UUUACCAACAGGUGAGUACC
904
(AAG)
20 (C6)
SpBE3





Q368/9X
CAA
TAA
UUACCAACAGGUGAGUACCA
905
(AGAG)
20 (C5)
EQR-









SpBE3





Q368/9X
CAA
TAA
UACCAACAGGUGAGUACCAA
906
(GAG)
20 (C4)
SpBE3





Q368/9X
CAA
TAA
ACCAACAGGUGAGUACCAAG
907
(AGAA)
20 (C3)
VQR-









SpBE3





Q368/9X
CAA
TAA
UUACCAACAGGUGAGUACCA
908
(AGAGAAA)
20 (C5)
St1BE3





Q369X
CAG
TAG
UUUACCAACAGGUGAGUACC
909
(AAG)
20 (C9)
SpBE3





Q369X
CAG
TAG
UUACCAACAGGUGAGUACCA
910
(AGAG)
20 (C8)
EQR-









SpBE3





Q369X
CAG
TAG
UACCAACAGGUGAGUACCAA
911
(GAG)
20 (C7)
SpBE3





Q369X
CAG
TAG
ACCAACAGGUGAGUACCAAG
912
(AGAA)
20 (C6)
VQR-









SpBE3





Q369X
CAG
TAG
UUACCAACAGGUGAGUACCA
913
(AGAGAAA)
20 (C8)
St1BE3





Q408/10X
CAG
TAG
GAACAGAACCAGGCAAACAU
914
(TGAA)
20
VQR-








(C4/10)
SpBE3





Q408/10X
CAG
TAG
ACAGAACCAGGCAAACAUUG
915
(AAG)
20
SpBE3








(C2/8)






Q408/10X
CAG
TAG
CAGAACCAGGCAAACAUUGA
916
(AGAA)
20
VQR-








(C1/7)
SpBE3





Q408/10X
CAG
TAG
AACAGAACCAGGCAAACAUU
917
(GAAGAAG)
20
St1BE3








(C3/9)






Q410X
CAG
TAG
GAACCAGGCAAACAUUGAAG
918
(AAG)
20 (C5)
SpBE3





Q418X
CAG
TAG
AGAAGCUAAACAGAAAGAAU
919
(TAG)
20
SpBE3








(C11)






Q418X
CAG
TAG
GAAGCUAAACAGAAAGAAUU
920
(AGAA)
20
VQR-








(C10)
SpBE3





Q418X
CAG
TAG
AGAAAGAAUUAGAAUUUCAA
921
(CAG)
20 (C-1)
SpBE3





Q418X
CAG
TAG
AGAAGCUAAACAGAAAGAAU
922
(TAGAAT)
20
SaBE3








(C11)






Q418X
CAG
TAG
CAGAAAGAAUUAGAAUUUCA
923
(ACAGAT)
20 (C1)
KKH-









SaBE3





Q418X
CAG
TAG
AAGAAGCUAAACAGAAAGAA
924
(TTAGAAT)
20
St1BE3








(C12)






Q424X
CAA
TAA
AUUAGAAUUUCAACAGAUGU
925
(TAG)
20
SpBE3








(C11)






Q424X
CAA
TAA
UUAGAAUUUCAACAGAUGUU
926
(AGAC)
20
VQR-








(C10)
SpBE3





Q425X
CAG
TAG
UUAGAAUUUCAACAGAUGUU
927
(AGAC)
20
VQR-








(C13)
SpBE3





Q434X
CAA
TAA
AAAAAAGAGCAAGAAGAAGC
928
(TGAG)
20
EQR-








(C10)
SpBE3





Q434X
CAA
TAA
AAAAAGAGCAAGAAGAAGCU
929
(GAG)
20 (C9)
SpBE3





Q434X
CAA
TAA
AAAAGAGCAAGAAGAAGCUG
930
(AGG)
20 (C8)
SpBE3





Q434X
CAA
TAA
AAAAAAGAGCAAGAAGAAGC
931
(TGAGGT)
20
KKH-








(C10)
SaBE3





Q485X
CAA
TAA
AAGAAUCAAAAGAAGCUCUC
932
(CAG)
20 (C7)
SpBE3





Q485X
CAA
TAA
AGAAUCAAAAGAAGCUCUCC
933
(AGTG)
20 (C6)
VQR-









SpBE3





Q485X
CAA
TAA
AAUCAAAAGAAGCUCUCCAG
934
(TGG)
20 (C4)
SpBE3





Q485X
CAA
TAA
AUCAAAAGAAGCUCUCCAGU
935
(GGAG)
20 (C3)
EQR-









SpBE3





Q485X
CAA
TAA
UCAAAAGAAGCUCUCCAGUG
936
(GAG)
20 (C2)
SpBE3





Q485X
CAA
TAA
CAAAAGAAGCUCUCCAGUGG
937
(AGAG)
20 (C1)
EQR-









SpBE3





Q485X
CAA
TAA
AAAAGAAGCUCUCCAGUGGA
938
(GAG)
20 (C-1)
SpBE3





Q485X
CAA
TAA
AAAAGAAUCAAAAGAAGCUC
939
(TCCAGT)
20 (C9)
KKH-









SaBE3





Q485X
CAA
TAA
AAUCAAAAGAAGCUCUCCAG
940
(TGGAG)
20 (C4)
St3BE3





R523X
CGA
TGA
GAAGGGCAUAGGCGAGCACA
941
(TGAA)
20
VQR-








(C13)
SpBE3





R523X
CGA
TGA
GGCAUAGGCGAGCACAUGAA
942
(AAG)
20 (C9)
SpBE3





R523X
CGA
TGA
GCAUAGGCGAGCACAUGAAA
943
(AGAG)
20 (C8)
EQR-









SpBE3





R523X
CGA
TGA
CAUAGGCGAGCACAUGAAAA
944
(GAG)
20 (C7)
SpBE3





R523X
CGA
TGA
AUAGGCGAGCACAUGAAAAG
945
(AGG)
20 (C6)
SpBE3





R523X
CGA
TGA
GCAUAGGCGAGCACAUGAAA
946
(AGAGGT)
20 (C8)
KKH-









SaBE3





Q534X
CAG
TAG
UACCCCCAAUCAGGUACCAC
947
(CCAAAT)
20
KKH-








(C11)
SaBE3





Q534X
CAG
TAG
AUCAGGUACCACCCAAAUUG
948
(CTAAAT)
20 (C3)
KKH-









SaBE3





R548X
CGA
TGA
UUUUCUGCAAGGCGAAGCAG
949
(CAG)
20
SpBE3








(C13)






R548X
CGA
TGA
UUUCUGCAAGGCGAAGCAGC
950
(AGAA)
20
VQR-








(C12)
SpBE3





R548X
CGA
TGA
GCAAGGCGAAGCAGCAGAAC
951
(AAG)
20 (C7)
SpBE3





R548X
CGA
TGA
CUGCAAGGCGAAGCAGCAGA
952
(ACAAGT)
20 (C9)
KKH-









SaBE3





R548X
CGA
TGA
GAAGCAGCAGAACAAGUCUU
953
(TTTAGT)
20 (C-1)
KKH-









SaBE3





Q595X
CAG
TAG
GUUUGUGCCCCACAGACCCC
954
(AGG)
20
SpBE3








(C13)






Q595X
CAG
TAG
UUUGUGCCCCACAGACCCCA
955
(GGAG)
20
EQR-








(C12)
SpBE3





Q595X
CAG
TAG
UUGUGCCCCACAGACCCCAG
956
(GAG)
20
SpBE3








(C11)






Q595X
CAG
TAG
UGUGCCCCACAGACCCCAGG
957
(AGCG)
20
VRER-








(C10)
SpBE3





Q595X
CAG
TAG
UGCCCCACAGACCCCAGGAG
958
(CGAC)
20 (C8)
VQR-









SpBE3





Q595X
CAG
TAG
CACAGACCCCAGGAGCGACG
959
(CAG)
20 (C3)
SpBE3





Q595X
CAG
TAG
AGACCCCAGGAGCGACGCAG
960
(CAG)
20 (C-1)
SpBE3





Q595X
CAG
TAG
ACAGACCCCAGGAGCGACGC
961
(AGCAGT)
20 (C2)
KKH-









SaBE3





Q595X
CAG
TAG
GUUUGUGCCCCACAGACCCC
962
(AGGAG)
20
St3BE3








(C13)






R597X
CGA
TGA
AGACCCCAGGAGCGACGCAG
963
(CAG)
20
SpBE3








(C13)






R597X
CGA
TGA
GAGCGACGCAGCAGUAACAU
964
(CAG)
20 (C4)
SpBE3





Q604X
CAA
TAA
AGUAACAUCAGCCAAGCCAG
965
(TAG)
20
SpBE3








(C13)






Q604X
CAA
TAA
GUAACAUCAGCCAAGCCAGU
966
(AGG)
20
SpBE3








(C12)






Q604X
CAA
TAA
CAGUAACAUCAGCCAAGCCA
967
(GTAGGT)
20
KKH-








(C14)
SaBE3





Q604X
CAA
TAA
AGCCAAGCCAGUAGGUCCCC
968
(ACCAAT)
20 (C4)
KKH-









SaBE3





Q643X
CAG
TAG
CCCCAAUGGACAGCUUCUGC
969
(CAG)
20
SpBE3








(C11)






Q643X
CAG
TAG
CCCAAUGGACAGCUUCUGCC
970
(AGAG)
20
EQR-








(C10)
SpBE3





Q643X
CAG
TAG
CCAAUGGACAGCUUCUGCCA
971
(GAG)
20 (C9)
SpBE3





Q643X
CAG
TAG
CAAUGGACAGCUUCUGCCAG
972
(AGG)
20 (C8)
SpBE3





Q643X
CAG
TAG
AAUGGACAGCUUCUGCCAGA
973
(GGTG)
20 (C7)
VQR-









SpBE3





Q643X
CAG
TAG
UGGACAGCUUCUGCCAGAGG
974
(TGAT)
20 (C5)
VQR-









SpBE3





Q643X
CAG
TAG
CCCAAUGGACAGCUUCUGCC
975
(AGAGGT)
20
KKH-








(C10)
SaBE3





Q643X
CAG
TAG
AAUGGACAGCUUCUGCCAGA
976
(GGTGAT)
20 (C7)
KKH-









SaBE3





Q643X
CAG
TAG
GGACAGCUUCUGCCAGAGGU
977
(GATAAT)
20 (C4)
KKH-









SaBE3





Q643X
CAG
TAG
AGCUUCUGCCAGAGGUGAUA
978
(ATAGAT)
20 (C-1)
KKH-









SaBE3





Q643X
CAG
TAG
CAAUGGACAGCUUCUGCCAG
979
(AGGTG)
20 (C8)
St3BE3





Q663X
CAA
TAA
GCACGACCAAUCAAAUACAC
980
(AAG)
20 (C8)
SpBE3





Q663X
CAA
TAA
CACGACCAAUCAAAUACACA
981
(AGAA)
20 (C7)
VQR-









SpBE3





Q663X
CAA
TAA
ACCAAUCAAAUACACAAGAA
982
(AAG)
20 (C3)
SpBE3





Q663X
CAA
TAA
CCAAUCAAAUACACAAGAAA
983
(AGG)
20 (C2)
SpBE3





Q663X
CAA
TAA
CAAUCAAAUACACAAGAAAA
984
(GGCG)
20 (C1)
VRER-









SpBE3





Q663X
CAA
TAA
GGCACGACCAAUCAAAUACA
985
(CAAGAAA)
20 (C9)
St1BE3





Q663X
CAA
TAA
CCAAUCAAAUACACAAGAAA
986
(AGGCG)
20 (C2)
St3BE3





Q687X
CAG
TAG
CAACCUCAGACAGAGAGCAA
987
(TGAG)
20 (C7)
EQR-









SpBE3





Q687X
CAG
TAG
AACCUCAGACAGAGAGCAAU
988
(GAG)
20 (C6)
SpBE3





Q687X
CAG
TAG
CUCAGACAGAGAGCAAUGAG
989
(TAG)
20 (C3)
SpBE3





Q687X
CAG
TAG
UCAGACAGAGAGCAAUGAGU
990
(AGAG)
20 (C5)
EQR-









SpBE3





Q687X
CAG
TAG
CAGACAGAGAGCAAUGAGUA
991
(GAG)
20 (C1)
SpBE3





Q687X
CAG
TAG
GAUCCCAACCUCAGACAGAG
992
(AGCAAT)
20
KKH-








(C12)
SaBE3





Q687X
CAG
TAG
CCAACCUCAGACAGAGAGCA
993
(ATGAGT)
20 (C8)
SaBE3





Q708X
CAA
TAA
CCAGACAAAAAUGUCCACCU
994
(TGG)
20 (C6)
SpBE3





Q708X
CAA
TAA
CAGACAAAAAUGUCCACCUU
995
(GGTG)
20 (C5)
VQR-









SpBE3





Q708X
CAA
TAA
GACAAAAAUGUCCACCUUGG
996
(TGG)
20 (C3)
SpBE3








20 (C8)
KKH-





Q708X
CAA
TAA
GUCCAGACAAAAAUGUCCAC
997
(CTTGGT)

SaBE3





Q708X
CAA
TAA
CAGACAAAAAUGUCCACCUU
998
(GGTGGT)
20 (C5)
KKH-









SaBE3





Q708X
CAA
TAA
CCAGACAAAAAUGUCCACCU
999
(TGGTG)
20 (C6)
St3BE3





W713X
TGG
TAR
CAAGGUGGACAUUUUUGUCU
1000
(GGAC)
20(C1)
VQR-









SpBE3





W713X
TGG
TAR
CCAAGGUGGACAUUUUUGUC
1001
(TGG)
20(C2)
SpBE3





W714X
TGG
TAR
CAAAUCUGUACCACCAAGGU
1002
(GGAC)
20
VQR-








(C12)
SpBE3





W714X
TGG
TAR
GCAAAUCUGUACCACCAAGG
1003
(TGG)
20
SpBE3








(C13)






W724X
TGG
TAR
AAUUCCAGAUCAAGAAUUUG
1004
(TGTG)
20 (C6)
VQR-









SpBE3





W724X
TGG
TAR
GCAAUUCCAGAUCAAGAAUU
1005
(TGTG)
20 (C8)
VQR-









SpBE3





W724X
TGG
TAR
UCCAGAUCAAGAAUUUGUGU
1006
(GCAAAT)
20 (C3)
KKH-









SaBE3





W724X
TGG
TAR
UAUGGAGAGCAAUUCCAGAU
1007
(CAAGAAT)
20
St1BE3








(C16)






W730X
TGG
TAR
CCAAUAUGGAGAGCAAUUCC
1008
(AGAT)
20(C2)
VQR-









SpBE3





W730X
TGG
TAR
UCCAAUAUGGAGAGCAAUUC
1009
(CAG)
20 (C3)
SpBE3





W730X
TGG
TAR
UGAAUUUUAUCCAAUAUGGA
1010
(GAG)
20
SpBE3








(C12)






W730X
TGG
TAR
UUGAAUUUUAUCCAAUAUGG
1011
(AGAG)
20
EQR-








(C13)
SpBE3





W730X
TGG
TAR
AUCCAAUAUGGAGAGCAAUU
1012
(CCAGAT)
20(C4)
KKH-









SaBE3





W730X
TGG
TAR
GAAUUUUAUCCAAUAUGGAG
1013
(AGCAAT)
20
KKH-








(C11)
SaBE3





Q805X
CAA
TAA
AUGAGUAUUUCCAAGUAGGC
1014
(TGG)
20
SpBE3








(C12)






Q805X
CAA
TAA
UGAGUAUUUCCAAGUAGGCU
1015
(GGAA)
20
VQR-








(C11)
SpBE3





Q805X
CAA
TAA
CAAGUAGGCUGGAAUAUUUU
1016
(TGAC)
20 (C1)
VQR-









SpBE3





Q805X
CAA
TAA
AUGAGUAUUUCCAAGUAGGC
1017
(TGGAAT)
20
SaBE3








(C12)






W808X
TGG
TAR
AAAAAUAUUCCAGCCUACUU
1018
(GGAA)
20
VQR-








(C11)
SpBE3





W808X
TGG
TAR
CAAAAAUAUUCCAGCCUACU
1019
(TGG)
20
SpBE3








(C12)






W808X
TGG
TAR
AAAAAUAUUCCAGCCUACUU
1020
(GGAAAT)
20
KKH-








(C11)
SaBE3





R835X
CGA
TGA
UUGUCAGUUCUGCGAUCAUU
1021
(CAG)
20
SpBE3








(C13)






R835X
CGA
TGA
UGUCAGUUCUGCGAUCAUUC
1022
(AGAC)
20
VQR-








(C12)
SpBE3





R835X
CGA
TGA
AGUUCUGCGAUCAUUCAGAC
1023
(TGG)
20(C8)
SpBE3





R835X
CGA
TGA
UCAGUUCUGCGAUCAUUCAG
1024
(ACTGGT)
20
KKH-








(C10)
SaBE3





R841X
CGA
TGA
GCUUUUAGCUCCGAGUCUUC
1025
(AAG)
20
SpBE3








(C12)






R841X
CGA
TGA
UUAGCUCCGAGUCUUCAAGU
1026
(TGG)
20 (C8)
SpBE3





R841X
CGA
TGA
GCUCCGAGUCUUCAAGUUGG
1027
(CAAAAT)
20(C5)
KKH-









SaBE3





W849X
TGG
TAR
CCAGGAUUUUGCCAACUUGA
1028
(AGAC)
20(C2)
VQR-









SpBE3





W849X
TGG
TAR
GCCAGGAUUUUGCCAACUUG
1029
(AAG)
20 (C3)
SpBE3





W849X
TGG
TAR
UGGCCAGGAUUUUGCCAACU
1030
(TGAA)
20 (C5)
VQR-









SpBE3





Q886X
CAG
TAG
GUGGUCGGCAUGCAGCUCUU
1031
(TGG)
20
SpBE3








(C13)






Q886X
CAG
TAG
UCGGCAUGCAGCUCUUUGGU
1032
(AAG)
20 (C9)
SpBE3





Q886X
CAG
TAG
CGGCAUGCAGCUCUUUGGUA
1033
(AGAG)
20(C8)
EQR-









SpBE3





Q886X
CAG
TAG
GGCAUGCAGCUCUUUGGUAA
1034
(GAG)
20 (C7)
SpBE3





Q886X
CAG
TAG
AGCUCUUUGGUAAGAGCUAC
1035
(AAAGAAT)
20 (C-1)
St1BE3





W908X
TGG
TAR
UGUGCCACCGUGGGAGCGUA
1036
(CAG)
20(C6)
SpBE3





W908X
TGG
TAR
CGUUCAUGUGCCACCGUGGG
1037
(AGCG)
20
VRER-








(C12)
SpBE3





W908X
TGG
TAR
UCGUUCAUGUGCCACCGUGG
1038
(GAG)
20
SpBE3








(C13)






W908X
TGG
TAR
CAUGUGCCACCGUGGGAGCG
1039
(TACAGT)
20(C8)
KKH-









SaBE3





W908X
TGG
TAR
AGUCGUUCAUGUGCCACCGU
1040
(GGGAG)
20
St3BE3








(C15)






W928X
TGG
TAR
CCACUCUCCACACAGCACGC
1041
(GGAA)
20 (C2)
VQR-









SpBE3





W928X
TGG
TAR
UCCACUCUCCACACAGCACG
1042
(CGG)
20 (C3)
SpBE3





W928X
TGG
TAR
UAUCCACUCUCCACACAGCA
1043
(CGCG)
20(C5)
VRER-









SpBE3





W928X
TGG
TAR
GUCUCUAUCCACUCUCCACA
1044
(CAG)
20
SpBE3








(C10)






Q941X
CAA
TAA
GGAGGUCGCUGGUCAAGCUA
1045
(TGTG)
20
VQR-








(C14)
SpBE3





Q989X
CAG
TAG
GCAAACAACCUCCAGAUUGC
1046
(AGTG)
20
VQR-








(C13)
SpBE3





Q989X
CAG
TAG
AAACAACCUCCAGAUUGCAG
1047
(TGAC)
20
VQR-








(C11)
SpBE3





Q989X
CAG
TAG
AACCUCCAGAUUGCAGUGAC
1048
(TAG)
20 (C7)
SpBE3





Q989X
CAG
TAG
ACCUCCAGAUUGCAGUGACU
1049
(AGAA)
20 (C6)
VQR-









SpBE3





Q989X
CAG
TAG
AACCUCCAGAUUGCAGUGAC
1050
(TAGAAT)
20 (C7)
SaBE3





Q989X
CAG
TAG
CAACCUCCAGAUUGCAGUGA
1051
(CTAGAAT)
20 (C8)
St1BE3





Q1004X
CAA
TAA
AUUAUGUGAAACAAACCUUA
1052
(CGTG)
20
VQR-








(C12)
SpBE3





Q1004X
CAA
TAA
UAUGUGAAACAAACCUUACG
1053
(TGAA)
20
VQR-








(C10)
SpBE3





Q1004X
CAA
TAA
UUAUGUGAAACAAACCUUAC
1054
(GTGAAT)
20
SaBE3








(C11)






Q1026X
CAA
TAA
CAGGGAGAUAAGACAAGCAG
1055
(AAG)
20
SpBE3








(C14)






Q1026X
CAA
TAA
AGGGAGAUAAGACAAGCAGA
1056
(AGAT)
20
VQR-








(C13)
SpBE3





Q1026X
CAA
TAA
GAUAAGACAAGCAGAAGAUC
1057
(TGAA)
20 (C8)
VQR-









SpBE3





Q1026X
CAA
TAA
AAGCAGAAGAUCUGAAUACU
1058
(AAG)
20 (C-1)
SpBE3





Q1026X
CAA
TAA
AGAUAAGACAAGCAGAAGAU
1059
(CTGAAT)
20 (C9)
SaBE3





Q1077X
CAA
TAA
GUGAUGGUCAAUCAUUUAUU
1060
(CACAAT)
20 (C9)
KKH-









SaBE3





W1161X
TGG
TAR
CAUACACAACCUGACAAGAA
1061
(AGAC)
20 (C1)
VQR-









SpBE3





W1161X
TGG
TAR
CCAUACACAACCUGACAAGA
1062
(AAG)
20(C2)
SpBE3





W1161X
TGG
TAR
CCUCCAUACACAACCUGACA
1063
(AGAA)
20(C5)
VQR-









SpBE3





W1161X
TGG
TAR
ACCUCCAUACACAACCUGAC
1064
(AAG)
20(C6)
SpBE3





W1161X
TGG
TAR
GAGAACCUCCAUACACAACC
1065
(TGAC)
20
VQR-








(C10)
SpBE3





W1161X
TGG
TAR
AACCUCCAUACACAACCUGA
1066
(CAAGAAA)
20(C7)
St1BE3





Q1167X
CAA
TAA
CUCAUGCUGCCAAGUUAACA
1067
(TAG)
20
SpBE3








(C11)






Q1167X
CAA
TAA
CUCAUGCUGCCAAGUUAACA
1068
(TAGAGT)
20
SaBE3








(C11)






Q1167X
CAA
TAA
UCAUGCUGCCAAGUUAACAU
1069
(AGAG)
20
EQR-








(C10)
SpBE3





Q1167X
CAA
TAA
CAUGCUGCCAAGUUAACAUA
1070
(GAG)
20 (C9)
SpBE3





Q1167X
CAA
TAA
CUGCCAAGUUAACAUAGAGU
1071
(CAG)
20 (C5)
SpBE3





Q1167X
CAA
TAA
UGCCAAGUUAACAUAGAGUC
1072
(AGG)
20 (C4)
SpBE3





Q1167X
CAA
TAA
GCCAAGUUAACAUAGAGUCA
1073
(GGG)
20 (C3)
SpBE3





Q1167X
CAA
TAA
CCAAGUUAACAUAGAGUCAG
1074
(GGAA)
20 (C2)
VQR-









SpBE3





W1178/9X
TGG
TAR
CACCAGAUUUUUCCUUUCCC
1075
(TGAC)
20
VQR-








(C4/1)
SpBE3





W1193X
TGG
TAR
AACUGUGUUCAACAAUCUUG
1076
(TAG)
20(C-1)
SpBE3





W1193X
TGG
TAR
CUUUCAAACCAACUGUGUUC
1077
(AACAAT)
20
KKH-








(C10)
SaBE3





W1245X
TGG
TAR
UCCAUUUUAGAAGCAUUUCC
1078
(AGAA)
20(C3)
VQR-









SpBE3





W1245X
TGG
TAR
AUCCAUUUUAGAAGCAUUUC
1079
(CAG)
20(C4)
SpBE3





W1245X
TGG
TAR
CCAUAUGCUAUCCAUUUUAG
1080
(AAG)
20
SpBE3








(C13)






W1245X
TGG
TAR
AUCCAUUUUAGAAGCAUUUC
1081
(CAGAAT)
20 (C4)
SaBE3





W1245X
TGG
TAR
UAUCCAUUUUAGAAGCAUUU
1082
(CCAGAAT)
20 (C5)
St1BE3





W1245X
TGG
TAR
AUAACCAUAUGCUAUCCAUU
1083
(TTAGAAG)
20
St1BE3








(C17)






W1245X
TGG
TAR
CAGCCAACACCAGGCAUUGG
1084
(TGAA)
20
VQR-








(C9/3)
SpBE3





W1245X
TGG
TAR
UCCAGCCAACACCAGGCAUU
1085
(GGTG)
20
VQR-








(C11/5)
SpBE3





W1245X
TGG
TAR
CAGCCAACACCAGGCAUUGG
1086
(TGAAAT)
20
KKH-








(C9/3)
SaBE3





W1245X
TGG
TAR
AAAUCCAGCCAACACCAGGC
1087
(ATTGGT)
20
KKH-








(C14/8)
SaBE3





W1245X
TGG
TAR
AUCCAGCCAACACCAGGCAU
1088
(TGGTG)
20
St3BE3








(C12/6)






W1245X
TGG
TAR
AUCCAGCCAACACCAGGCAU
1089
(TGG)
20
SpBE3








(C12/6)






W1332X
TGG
TAR
CAGAAUAUAAGACACACAAG
1090
(TAG)
20 (C1)
SpBE3





W1332X
TGG
TAR
AGCCAGAAUAUAAGACACAC
1091
(AAG)
20 (C4)
SpBE3





W1332X
TGG
TAR
UGAAUAUCAGCCAGAAUAUA
1092
(AGAC)
20
VQR-








(C12)
SpBE3





W1332X
TGG
TAR
CUGAAUAUCAGCCAGAAUAU
1093
(AAG)
20
SpBE3








(C13)






W1332X
TGG
TAR
UCAGCCAGAAUAUAAGACAC
1094
(ACAAGT)
20 (C6)
KKH-









SaBE3





Q1363X
CAA
TAA
AGUCAAGUUCCAAAUCGUUC
1095
(CGAA)
20 (C4)
VQR-









SpBE3





Q1363X
CAA
TAA
AAGUCAAGUUCCAAAUCGUU
1096
(CCGAAT)
20 (C5)
SaBE3





Q1378X
CAA
TAA
UGAAUGUUAGUCAAAAUGUG
1097
(CGAT)
20
VQR-








(C12)
SpBE3





Q1378X
CAA
TAA
AUGUUAGUCAAAAUGUGCGA
1098
(TGG)
20(C9)
SpBE3





Q1378X
CAA
TAA
UGUUAGUCAAAAUGUGCGAU
1099
(GGAA)
20 (C8)
VQR-









SpBE3





Q1378X
CAA
TAA
UAUGAAUGUUAGUCAAAAUG
1100
(TGCGAT)
20
KKH-








(C14)
SaBE3





R1381X
CGA
TGA
AAAUGUGCGAUGGAAAAACC
1101
(TGAA)
20(C8)
VQR-









SpBE3





R1381X
CGA
TGA
UGUGCGAUGGAAAAACCUGA
1102
(AAG)
20(C5)
SpBE3





R1381X
CGA
TGA
GUGCGAUGGAAAAACCUGAA
1103
(AGTG)
20(C4)
VQR-









SpBE3





R1381X
CGA
TGA
GCGAUGGAAAAACCUGAAAG
1104
(TGAA)
20(C2)
VQR-









SpBE3





R1381X
CGA
TGA
AAUGUGCGAUGGAAAAACCU
1105
(GAAAGT)
20(C7)
KKH-









SaBE3





W1382X
TGG
TAR
GGUUUUUCCAUCGCACAUUU
1106
(TGAC)
20(C9)
VQR-









SpBE3





Q1401X
CAA
TAA
UAUUCUUAAAGGCAACUUUU
1107
(AAG)
20
SpBE3








(C13)






Q1401X
CAA
TAA
AUUCUUAAAGGCAACUUUUA
1108
(AGG)
20
SpBE3








(C12)






Q1401X
CAA
TAA
UUCUUAAAGGCAACUUUUAA
1109
(GGG)
20
SpBE3








(C11)






Q1401X
CAA
TAA
UCUUAAAGGCAACUUUUAAG
1110
(GGAT)
20
VQR-








(C10)
SpBE3





Q1401X
CAA
TAA
UAAAGGCAACUUUUAAGGGA
1111
(TGG)
20 (C7)
SpBE3





Q1401X
CAA
TAA
AAAGGCAACUUUUAAGGGAU
1112
(GGAC)
20 (C6)
VQR-









SpBE3





Q1401X
CAA
TAA
GGCAACUUUUAAGGGAUGGA
1113
(CGAT)
20 (C3)
VQR-









SpBE3





Q1401X
CAA
TAA
AUUCUUAAAGGCAACUUUUA
1114
(AGGGAT)
20
SaBE3








(C12)






Q1401X
CAA
TAA
AAGGCAACUUUUAAGGGAUG
1115
(GACGAT)
20 (C5)
KKH-









SaBE3





W1408X
TGG
TAR
AUCCCUUAAAAGUUGCCUUU
1116
(AAG)
20 (C-1)
SpBE3





W1408X
TGG
TAR
AAUAAUCGUCCAUCCCUUAA
1117
(AAG)
20
SpBE3








(C11)






W1408X
TGG
TAR
AUCCCUUAAAAGUUGCCUUU
1118
(AAGAAT)
20 (C-1)
SaBE3





W1408X
TGG
TAR
AUAAUAAUCGUCCAUCCCUU
1119
(AAAAGT)
20
KKH-








(C13)
SaBE3





W1408X
TGG
TAR
CAUCCCUUAAAAGUUGCCUU
1120
(TAAGAAT)
20 (C1)
St1BE3





Q1424X
CAG
TAG
GUAGACAAGCAGCCCAAAUA
1121
(TGAA)
20
VQR-








(C10)
SpBE3





Q1424X
CAG
TAG
AAGCAGCCCAAAUAUGAAUA
1122
(TAG)
20 (C4)
SpBE3





Q1462X
CAA
TAA
CAUAGAUAAUUUCAACCAAC
1123
(AGAA)
20
VQR-








(C13)
SpBE3





Q1462X
CAA
TAA
AUAAUUUCAACCAACAGAAA
1124
(AAG)
20 (C8)
SpBE3





Q1462X
CAA
TAA
UAAUUUCAACCAACAGAAAA
1125
(AGAA)
20 (C7)
VQR-









SpBE3





Q1462X
CAA
TAA
AUUUCAACCAACAGAAAAAG
1126
(AAG)
20 (C5)
SpBE3





Q1462X
CAA
TAA
UUUCAACCAACAGAAAAAGA
1127
(AGAT)
20 (C4)
VQR-









SpBE3





Q1462X
CAA
TAA
AACCAACAGAAAAAGAAGAU
1128
(AAG)
20 (C-1)
SpBE3





Q1462X
CAA
TAA
AAUUUCAACCAACAGAAAAA
1129
(GAAGAT)
20 (C6)
KKH-









SaBE3





Q1462X
CAA
TAA
UCAACCAACAGAAAAAGAAG
1130
(ATAAGT)
20 (C2)
KKH-









SaBE3





Q1462X
CAA
TAA
GAUAAUUUCAACCAACAGAA
1131
(AAAGAAG)
20 (C9)
St1BE3





Q1463X
CAG
TAG
AUUUCAACCAACAGAAAAAG
1132
(AAG)
20
SpBE3








(C12)






Q1463X
CAG
TAG
UUUCAACCAACAGAAAAAGA
1133
(AGAT)
20
VQR-








(C11)
SpBE3





Q1463X
CAG
TAG
AACCAACAGAAAAAGAAGAU
1134
(AAG)
20 (C7)
SpBE3





Q1463X
CAG
TAG
AAUUUCAACCAACAGAAAAA
1135
(GAAGAT)
20
KKH-








(C13)
SaBE3





Q1463X
CAG
TAG
UCAACCAACAGAAAAAGAAG
1136
(ATAAGT)
20(C9)
KKH-









SaBE3





Q1463X
CAG
TAG
AGAAAAAGAAGAUAAGUAUU
1137
(TCAAAT)
20 (C-1)
KKH-









SaBE3





Q1470X
CAA
TAA
UGGAGGUCAAGACAUCUUUA
1138
(TGAC)
20 (C8)
VQR-









SpBE3





Q1470X
CAA
TAA
AGGUCAAGACAUCUUUAUGA
1139
(CAG)
20 (C5)
SpBE3





Q1470X
CAA
TAA
GGUCAAGACAUCUUUAUGAC
1140
(AGAA)
20 (C4)
VQR-









SpBE3





Q1470X
CAA
TAA
UCAAGACAUCUUUAUGACAG
1141
(AAG)
20 (C2)
SpBE3





Q1470X
CAA
TAA
CAAGACAUCUUUAUGACAGA
1142
(AGAA)
20 (C1)
VQR-









SpBE3





Q1470X
CAA
TAA
GAGGUCAAGACAUCUUUAUG
1143
(ACAGAAG)
20 (C6)
St1BE3





Q1470X
CAA
TAA
GUCAAGACAUCUUUAUGACA
1144
(GAAGAAC)
20 (C3)
St1BE3





Q1478X
CAG
TAG
CAGAAGAACAGAAGAAAUAC
1145
(TATAAT)
20 (C9)
KKH-









SaBE3





Q1478X
CAG
TAG
GAACAGAAGAAAUACUAUAA
1146
(TGCAAT)
20 (C4)
KKH-









SaBE3





Q1494X
CAA
TAA
AGCCACAAAAGCCAAUUCCU
1147
(CGAC)
20 (C6)
VQR-









SpBE3





Q1494X
CAA
TAA
ACAAAAGCCAAUUCCUCGAC
1148
(CAG)
20 (C2)
SpBE3





Q1494X
CAA
TAA
CAAAAGCCAAUUCCUCGACC
1149
(AGG)
20 (C1)
SpBE3





Q1494X
CAA
TAA
AAAAGCCAAUUCCUCGACCA
1150
(GGG)
20 (C-1)
SpBE3





Q1494X
CAA
TAA
AAAGCCAAUUCCUCGACCAG
1151
(GGG)
20 (C-2)
SpBE3





R1499X
CGA
TGA
AAUUCCUCGACCAGGGGUAA
1152
(AAAAAT)
20 (C8)
KKH-









SaBE3





Q1505X
CAA
TAA
AAAAUCCAAGGAUGUAUAUU
1153
(TGAC)
20 (C7)
VQR-









SpBE3





01505X
CAA
TAA
CCAAGGAUGUAUAUUUGACC
1154
(TAG)
20(C2)
SpBE3





Q1505X
CAA
TAA
CAAGGAUGUAUAUUUGACCU
1155
(AGTG)
20 (C1)
VQR-









SpBE3





Q1505X
CAA
TAA
AUCCAAGGAUGUAUAUUUGA
1156
(CCTAGT)
20(C4)
KKH-









SaBE3





Q1515X
CAA
TAA
CUAGUGACAAAUCAAGCCUU
1157
(TGAT)
20 (C8)
VQR-









SpBE3





Q1515X
CAA
TAA
ACAAAUCAAGCCUUUGAUAU
1158
(TAG)
20 (C2)
SpBE3





Q1515X
CAA
TAA
ACCUAGUGACAAAUCAAGCC
1159
(TTTGAT)
20
KKH-








(C10)
SaBE3





Q1515X
CAA
TAA
UGACAAAUCAAGCCUUUGAU
1160
(ATTAGT)
20 (C4)
KKH-









SaBE3





Q1539/41
CAA
TAA
GGAGGGUCAAAGUCAACAUA
1161
(TGAC)
20 (C8)
VQR-


X






SpBE3





Q1539/41
CAA
TAA
GGUCAAAGUCAACAUAUGAC
1162
(TGAA)
20
VQR-


X





(C4/10)
SpBE3





Q1539/41
CAA
TAA
UCAAAGUCAACAUAUGACUG
1163
(AAG)
20
SpBE3


X





(C2/8)






Q1539/41
CAA
TAA
GGUCAAAGUCAACAUAUGAC
1164
(TGAAGT)
20
KKH-


X





(C4/10)
SaBE3





Q1541X
CAA
TAA
GGUCAAAGUCAACAUAUGAC
1165
(TGAA)
20
VQR-








(C10)
SpBE3





Q1541X
CAA
TAA
UCAAAGUCAACAUAUGACUG
1166
(AAG)
20 (C8)
SpBE3





Q1541X
CAA
TAA
GGUCAAAGUCAACAUAUGAC
1167
(TGAAGT)
20
KKH-








(C4/10)
SaBE3





W1549X
TGG
TAR
AUUUAUCCAAUAUAAAACUU
1168
(CAG)
20 (C8)
SpBE3





W1549X
TGG
TAR
ACAUUUAUCCAAUAUAAAAC
1169
(TTCAGT)
20
KKH-








(C10)
SaBE3





W1578X
TGG
TAR
CCAUCCUACAGUGAAGUAGU
1170
(AGTG)
20(C2)
VQR-









SpBE3





W1578X
TGG
TAR
UCCAUCCUACAGUGAAGUAG
1171
(TAG)
20(C3)
SpBE3





W1578X
TGG
TAR
UAUUCCAUCCUACAGUGAAG
1172
(TAG)
20(C6)
SpBE3





W1578X
TGG
TAR
AAAUAUUCCAUCCUACAGUG
1173
(AAG)
20(C9)
SpBE3





W1578X
TGG
TAR
AAAAAUAUUCCAUCCUACAG
1174
(TGAA)
20
VQR-








(C11)
SpBE3





W1578X
TGG
TAR
UCAAAAAUAUUCCAUCCUAC
1175
(AGTG)
20
VQR-








(C13)
SpBE3





W1578X
TGG
TAR
AUUCCAUCCUACAGUGAAGU
1176
(AGTAGT)
20(C5)
KKH-









SaBE3





W1578X
TGG
TAR
AAUAUUCCAUCCUACAGUGA
1177
(AGTAGT)
20(C8)
KKH-









SaBE3





W1578X
TGG
TAR
AAAAAUAUUCCAUCCUACAG
1178
(TGAAGT)
20
KKH-








(C11)
SaBE3





W1578X
TGG
TAR
AAAUCAAAAAUAUUCCAUCC
1179
(TACAGT)
20
KKH-








(C16)
SaBE3





R1610X
CGA
TGA
UUCCGAGUGAUCCGUCUUGC
1180
(CAG)
20(C4)
SpBE3





R1610X
CGA
TGA
UCCGAGUGAUCCGUCUUGCC
1181
(AGG)
20(C3)
SpBE3





R1610X
CGA
TGA
CCGAGUGAUCCGUCUUGCCA
1182
(GGAT)
20(C2)
VQR-









SpBE3





R1610X
CGA
TGA
UUCCGAGUGAUCCGUCUUGC
1183
(CAGGAT)
20(C4)
SaBE3





R1619X
CGA
TGA
GAUUGGCCGAAUCCUACGUC
1184
(TAG)
20(C8)
SpBE3





R1619X
CGA
TGA
CCGAAUCCUACGUCUAGUCA
1185
(AAG)
20(C2)
SpBE3





R1619X
CGA
TGA
CGAAUCCUACGUCUAGUCAA
1186
(AGG)
20(C1)
SpBE3





R1619X
CGA
TGA
GAAUCCUACGUCUAGUCAAA
1187
(GGAG)
20(C-1)
EQR-









SpBE3





R1619X
CGA
TGA
AGGAUUGGCCGAAUCCUACG
1188
(TCTAGT)
20
KKH-








(C10)
SaBE3





R1619X
CGA
TGA
CGAAUCCUACGUCUAGUCAA
1189
(AGGAG)
20 (C1)
St3BE3





Q1693X
CAA
TAA
UUCCAAAUUACAACCUCUGC
1190
(TGG)
20 (C4)
SpBE3





Q1693X
CAA
TAA
AAAUUACAACCUCUGCUGGC
1191
(TGG)
20 (C-1)
SpBE3





W1700X
TGG
TAR
AGCCAGCAGAGGUUGUAAUU
1192
(TGG)
20 (C1)
SpBE3





W1700X
TGG
TAR
CAAUCCAUCCCAGCCAGCAG
1193
(AGG)
20
SpBE3








(C11)






W1700X
TGG
TAR
GCAAUCCAUCCCAGCCAGCA
1194
(GAG)
20
SpBE3








(C12)






W1700X
TGG
TAR
AGCAAUCCAUCCCAGCCAGC
1195
(AGAG)
20
EQR-








(C13)
SpBE3





W1700X
TGG
TAR
CCAUCCCAGCCAGCAGAGGU
1196
(TGTAAT)
20(C7)
KKH-









SaBE3





W1700X
TGG
TAR
AGCAAUCCAUCCCAGCCAGC
1197
(AGAGGT)
20
KKH-








(C13)
SaBE3





W1786X
TGG
TAR
AAACCUCAUAGAACAUCUCA
1198
(AAG)
20 (C-1)
SpBE3





W1786X
TGG
TAR
AAACUUCUCCCAAACCUCAU
1199
(AGAA)
20
VQR-








(C11)
SpBE3





W1786X
TGG
TAR
CAAACUUCUCCCAAACCUCA
1200
(TAG)
20
SpBE3








(C12)






W1786X
TGG
TAR
CCAAACCUCAUAGAACAUCU
1201
(CAAAGT)
20 (C2)
KKH-









SaBE3





W1786X
TGG
TAR
UCAAACUUCUCCCAAACCUC
1202
(ATAGAAC)
20
St1BE3








(C13)






Q1795X
CAG
TAG
CCCGAUGCGACCCAGUUUAU
1203
(AGAG)
20
EQR-








(C13)
SpBE3





Q1795X
CAG
TAG
CCGAUGCGACCCAGUUUAUA
1204
(GAG)
20
SpBE3








(C12)






Q1822X
CAG
TAG
CAAAGUCCAGCUCAUUGCCA
1205
(TGG)
20(C8)
SpBE3





Q1822X
CAG
TAG
AAAGUCCAGCUCAUUGCCAU
1206
(GGAT)
20 (C7)
VQR-









SpBE3





Q1822X
CAG
TAG
ACAAAGUCCAGCUCAUUGCC
1207
(ATGGAT)
20(C9)
SaBE3





Q1862X
CAG
TAG
UCUCUUCGUUCACAGAUGGA
1208
(AGAA)
20
VQR-








(C13)
SpBE3





Q1862X
CAG
TAG
CUUCGUUCACAGAUGGAAGA
1209
(AAG)
20
SpBE3








(C10)






Q1862X
CAG
TAG
UUCGUUCACAGAUGGAAGAA
1210
(AGG)
20 (C9)
SpBE3





Q1862X
CAG
TAG
UCUUCGUUCACAGAUGGAAG
1211
(AAAGGT)
20
KKH-








(C11)
SaBE3





Q1888X
CAA
TAA
CUAAAACGGAAACAAGAGGA
1212
(TGTG)
20
VQR-








(C13)
SpBE3





Q1897X
CAG
TAG
ACUGUCAUUCAGCGUGCUUA
1213
(TAG)
20
SpBE3








(C10)






Q1897X
CAG
TAG
CUGUCAUUCAGCGUGCUUAU
1214
(AGAC)
20(C9)
VQR-









SpBE3





Q1907X
CAA
TAA
CAAAAUGUCAAAAAUAUAUC
1215
(AAG)
20 (C1)
SpBE3





Q1907X
CAA
TAA
ACCGCUUAAGGCAAAAUGUC
1216
(AAT)
20
KKH-








(C12)
SaBE3





Q1907X
CAA
TAA
GGCAAAAUGUCAAAAAUAUA
1217
(TCAAGT)
20 (C3)
KKH-









SaBE3





Q1971X
CAA
TAA
GAAAUAUGAACAAGACAGAA
1218
(CAG)
20
SpBE3








(C11)






Q1971X
CAA
TAA
AAAUAUGAACAAGACAGAAC
1219
(AGAA)
20
VQR-








(C10)
SpBE3





Q1971X
CAA
TAA
AUGAACAAGACAGAACAGAA
1220
(AAG)
20 (C6)
SpBE3





Q1971X
CAA
TAA
UGAACAAGACAGAACAGAAA
1221
(AGG)
20 (C5)
SpBE3





Q1971X
CAA
TAA
GAACAAGACAGAACAGAAAA
1222
(GGAA)
20 (C4)
VQR-









SpBE3





Q1971X
CAA
TAA
ACAAGACAGAACAGAAAAGG
1223
(AAG)
20 (C2)
SpBE3





Q1971X
CAA
TAA
CAAGACAGAACAGAAAAGGA
1224
(AGAC)
20 (C1)
VQR-









SpBE3





Q1971X
CAA
TAA
AGAAAUAUGAACAAGACAGA
1225
(ACAGAAA)
20
St1BE3








(C12)






aBE types: SpBE3 = APOBEC1-SpCas9n-UGI; VQR-SpBE3 = APOBEC1-VQR-SpCas9n-UGI; EQR-SpBE3 = APOBEC1-EQR-SpCas9n-UGI; VRER-SpBE3 = APOBEC1-VRER-SpCas9n-UGI; SaBE3 = APOBEC1-SaCas9n-UGI; KKH-SaBE3 = APOBEC1-KKH-SaCas9n-UGI; St3BE3 = APOBEC1-St3Cas9n-UGI; St1BE3 = APOBEC1-St1Cas9n-UGI.







Target Base in Non-Coding Region—Splicing Variants

Some aspects of the present disclosure provide strategies of reducing the activity of ion channels (e.g., ion channels in in DRG neurons) via preventing the ion channel mRNA maturation and production. In some embodiments, such strategies involve alterations of splicing sites in the ion channel gene. Altered splicing site may lead to altered splicing and maturation of the ion channel mRNA. For example, in some embodiments, an altered splicing site may lead to the skipping of an exon, in turn leading to a truncated protein product or an altered reading frame. In some embodiments, an altered splicing site may lead to translation of an intron sequence and premature translation termination when an in frame stop codon is encountered by the translating ribosome in the intron. In some embodiments, a start codon is edited and protein translation initiates at the next ATG codon, which may not be in the correct coding frame.


The splicing sites typically comprises an intron donor site, a Lariat branch point, and an intron acceptor site. The mechanism of splicing are familiar to those skilled in the art. As illustrated in FIG. 3, the intron donor site has a consensus sequence of GGGTRAGT, and the C bases paired with the G bases in the intron donor site consensus sequence may be targeted by a nucleobase editors described herein, thereby altering the intron donor site. The Lariat branch point also has consensus sequences, e.g., YTRAC, wherein Y is a pyrimidine, and R is a purine. The C base in the Lariat branch point consensus sequence may be targeted by the nucleobase editors, leading to the skipping of the following exon. The intron acceptor site has a consensus sequence of YNCAGG, wherein Y is a pyrimidine, and N is any nucleotide. The C base of the consensus sequence of the intron acceptor site, and the C base paired with the G bases in the consensus sequence of the intron acceptor site may be targeted by the nucleobase editors described herein, thereby altering the intron acceptor site, in turn leading the skipping of an exon. General strategies of altering the splicing sites of the ion channel gene are described in Table 5.









TABLE 5







Exemplary Alteration of Intron-Exon Junction via Base Editing












Consensus
Base-editing
Edited



Target site
Sequence
reaction (s)
sequence
Outcome





Intron
GGGTRAGT
2nd or 3rd base
GAGTRAGT
Intron sequence is


donor
(example)
C to T on
(example)
translated as exon, in frame




complementary

premature STOP codon




strand




Lariat
YTRAC
5th base
YTRAT
The following exon is


branch
(example)
C to T on
(example)
skipped from the mature


point

coding

mRNA, which may affect




strand

the coding frame


Intron
Y(rich)NCAGG
2nd to last base
Y(rich)NCAAG
The exon is skipped from


acceptor
(example)
C to T on
(example)
the mature mRNA, which




complementary

may affect the coding frame




strand




Start
ATG (Met/M)
3rd base
ATA (Ile/I)
The next ATG is used as


codon

C to T on

start codon, which may




complementary

affect the coding frame




strand









Provided in Table 6 are non-limiting examples of alterations that may be made to non-coding regions (e.g., splicing sites) in the SCN9A gene using nucleobase editors and the guide sequences that may be used for each alteration.









TABLE 6







Alteration of Intron/Exon Junctions in NaV1.7 (SCN9A) Gene via Base Editing













Target
Genome target seq./
Programmable guide-
SEQ ID

gRNA size



site*
junction
RNA sequence
NOs
(PAM)
(C edited)
BE typea





donor,
CTAGGTTGCAAgtaagtgccttt
UUACUUGCAACCUAGCCCGC
1226
(CGAT)
20(C4)
VQR-SpBE3


intron 1
(SEQ ID NO: 1457)









AAAGGCACUUACUUGCAACC
1227
(TAG)
20(C12)
SpBE3







ACUUACUUGCAACCUAGCCC
1228
(GCCGAT)
20(C6)
KKH-SaBE3





acceptor,
ctttgtttccatccagGCCTCTT
AGAGGCCUGGAUGGAAACAA
1229
(AGAA)
20(C6/7)
VQR-SpBE3


intron 1
(SEQ ID NO: 1458)












AAGAGGCCUGGAUGGAAACA
1230
(AAG)
20(C7/8)
SpBE3







AGAGGCCUGGAUGGAAACAA
1231
(AGAAAT)
20(C6/7)
KKH-SaBE3







UAAGAGGCCUGGAUGGAAAC
1232
(AAAGAAA)
20(C8/9)
St1BE3





donor,
CTATGCAGACAAAAAGgtgagtt
CCUUUUUGUCUGCAUAGUAG
1233
(GGG)
20(C1/2)
SpBE3


intron 2
(SEQ ID NO: 1459)












ACCUUUUUGUCUGCAUAGUA
1234
(GGG)
20(C2/3)
SpBE3







CACCUUUUUGUCUGCAUAGU
1235
(AGG)
20(C3/4)
SpBE3







UCACCUUUUUGUCUGCAUAG
1236
(TAG)
20(C4/5)
SpBE3







AACUCACCUUUUUGUCUGCA
1237
(TAG)
20(C7/8)
SpBE3







CACCUUUUUGUCUGCAUAGU
1238
(AGGGGT)
20(C3/4)
SaBE3







UAAACUCACCUUUUUGUCUG
1239
(CATAGT)
20(C9/10)
KKH-SaBE3







CACCUUUUUGUCUGCAUAGU
1240
(AGGGG)
20(C3/4)
St3BE3





acceptor,
ctttttcctcctgcagACTTTCA
UCUGCAGGAGGAAAAAGAAA
1241
(GGAT)
20(C2)
VQR-SpBE3


intron 2
(SEQ ID NO: 1460)












GUCUGCAGGAGGAAAAAGAA
1242
(AGG)
20(C3)
SpBE3







AGUCUGCAGGAGGAAAAAGA
1243
(AAG)
20(C4)
SpBE3







GAAAGUCUGCAGGAGGAAAA
1244
(AGAA)
20(C7)
VQR-SpBE3







UGAAAGUCUGCAGGAGGAAA
1245
(AAG)
20(C8)
SpBE3







UACUAUGAAAGUCUGCAGGA
1246
(GGAA)
20(C13)
VQR-SpBE3







AGUCUGCAGGAGGAAAAAGA
1247
(AAGGAT)
20(C4)
SaBE3







AUGAAAGUCUGCAGGAGGAA
1248
(AAAGAAA)
20(C9)
St1BE3





donor,
TAGTACACTCatatccttttaaaaat
CACUCAUAUCCUUUUAAAAA
1249
(TGAT)
20(C3/5)
VQR-SpBE3


intron 3
(SEQ ID NO: 1461)












UAGUACACUCAUAUCCUUUU
1250
(AAAAAT)
20(CE00)
KKH-SaBE3







UACACUCAUAUCCUUUUAAA
1251
(AATGAT)
20(C5/7)
KKH-SaBE3





acceptor,
tgattctaagctacCTTATTCAG
UGAUUCUAAGCUACCUUAUU
1252
(CAG)
20(C11/14)
SpBE3


intron 3
(SEQ ID NO: 1462)










donor,
CCAAAAATGTCGAgtaagtgggt
CUUACUCGACAUUUUUGGUC
1253
(CAG)
20(C5)
SpBE3


intron 4
(SEQ ID NO: 1463)












ACCCACUUACUCGACAUUUU
1254
(TGG)
20(C10)
SpBE3







ACUCGACAUUUUUGGUCCAG
1255
(TCCGGT)
20(C2)
KKH-SaBE3







CACUUACUCGACAUUUUUGG
1256
(TCCAGT)
20(C7)
KKH-SaBE3







AUACCCACUUACUCGACAUU
1257
(TTTGGT)
20(C12)
KKH-SaBE3





acceptor,
atcttgtgtttagGTACACTTTTA
CCUAAACACAAGAUUCCAUU
1258
(GGG)
20(C1/2)
SpBE3


intron 4
(SEQ ID NO: 1464)












ACCUAAACACAAGAUUCCAU
1259
(TGG)
20(C2/3)
SpBE3







UAAAAGUGUACCUAAACACA
1260
(AGAT)
20(C11/12)
VQR-SpBE3







GUAAAAGUGUACCUAAACAC
1261
(AAG)
20(C12/13)
SpBE3







ACCUAAACACAAGAUUCCAU
1262
(TGGGAT)
20(C2/3)
SaBE3







AGUAAAAGUGUACCUAAACA
1263
(CAAGAT)
20(C13/14)
KKH-SaBE3





donor,
ATTGTTTTTGCgtaagtactttcagc
UACUUACGCAAAAACAAUGA
1264
(CGAC)
20(C7)
VQR-SpBE3


intron 5
(SEQ ID NO: 1465)












AAGUACUUACGCAAAAACAA
1265
(TGAC)
20(C10)
VQR-SpBE3







UUACGCAAAAACAAUGACGA
1266
(CAAAAT)
20(C4)
KKH-SaBE3







GCUGAAAGUACUUACGCAAA
1267
(AACAAT)
20(C15)
KKH-SaBE3





acceptor,
atttaattctacagGTATTTAACAGA
AAUACCUGUAGAAUUAAAUC
1268
(AGAA)
20(C5/6)
VQR-SpBE3


intron 5
(SEQ ID NO: 1466)












AAAUACCUGUAGAAUUAAAU
1269
(CAG)
20(C6/7)
SpBE3







AAAUACCUGUAGAAUUAAAU
1270
(CAGAAT)
20(C6/7)
SaBE3







UCUGUUAAAUACCUGUAGAA
1271
(TTAAAT)
20(C12/13)
KKH-SaBE3







UAAAUACCUGUAGAAUUAAA
1272
(TCAGAAT)
20(C7/8)
St1BE3





donor,
CTGTAATCCCAGgtaagaagtaa
CUUACCUGGGAUUACAGAAA
1273
(TAG)
20(C5/6)
SpBE3


intron 6
(SEQ ID NO: 1467)












UACUUCUUACCUGGGAUUAC
1274
(AGAA)
20(C10/11)
VQR-SpBE3







UUACUUCUUACCUGGGAUUA
1275
(CAG)
20(C11/12)
SpBE3







UUCUUACCUGGGAUUACAGA
1276
(AATAGT)
20(C7/8)
KKH-SaBE3







UACUUCUUACCUGGGAUUAC
1277
(AGAAAT)
20(C10/11)
KKH-SaBE3







AUUACUUCUUACCUGGGAUU
1278
(ACAGAAA)
20(C12/13)
St1BE3





acceptor,
ctcccattttcagGCCTGAAGAC
GCCUGAAAAUGGGAGAAAAA
1279
(AGTG)
20(C2/3)
VQR-SpBE3


intron 6
(SEQ ID NO: 1468)












GGCCUGAAAAUGGGAGAAAA
1280
(AAG)
20(C3/4)
SpBE3







UCUUCAGGCCUGAAAAUGGG
1281
(AGAA)
20(C9/10)
VQR-SpBE3







GUCUUCAGGCCUGAAAAUGG
1282
(GAG)
20(C10/11)
SpBE3







UGUCUUCAGGCCUGAAAAUG
1283
(GGAG)
20(C11/12)
EQR-SpBE3







UUGUCUUCAGGCCUGAAAAU
1284
(GGG)
20(C12/13)
SpBE3







CAGGCCUGAAAAUGGGAGAA
1285
(AAAAGT)
20(C5/6)
KKH-SaBE3







UGUCUUCAGGCCUGAAAAUG
1286
(GGAGAAA)
20(C11/12)
St1BE3







UUGUCUUCAGGCCUGAAAAU
1287
(GGGAG)
20(C12/13)
St3BE3





acceptor,
ttcttcttcaacagAATATTTTTA
CUGUUGAAGAAGAAUUUGAA
1288
(CAG)
20(C1)
SpBE3


intron 7
(SEQ ID NO: 1469)












UAUUCUGUUGAAGAAGAAUU
1289
(TGAA)
20(C5)
VQR-SpBE3







UAAAAAUAUUCUGUUGAAGA
1290
(AGAA)
20(C11)
VQR-SpBE3







AUAAAAAUAUUCUGUUGAAG
1291
(AAG)
20(C12)
SpBE3







UUCUGUUGAAGAAGAAUUUG
1292
(AACAGT)
20(C3)
KKH-SaBE3







AUAAAAAUAUUCUGUUGAAG
1293
(AAGAAT)
20(C12)
SaBE3







AAUAAAAAUAUUCUGUUGAA
1294
(GAAGAAT)
20(C13)
St1BE3







AGUAAUAAAAAUAUUCUGUU
1295
(GAAGAAG)
20(C16)
St1BE3





donor,
CACAGATTCAGGgtatgtaatatt
UACAUACCCUGAAUCUGUGC
1296
(TGAA)
20(C7/8)
VQR-SpBE3


intron 8
(SEQ ID NO: 1470)












AAUAUUACAUACCCUGAAUC
1297
(TGTG)
20(C12/13)
VQR-SpBE3





acceptor,
ctttctcgtgtgtagTCAGTGTC
ACACUGACUACACACGAGAA
1298
(AGAA)
20(C8)
VQR-SpBE3


intron 8
(SEQ ID NO: 1471)












GACACUGACUACACACGAGA
1299
(AAG)
20(C9)
SpBE3







CUGGACACUGACUACACACG
1300
(AGAA)
20(C12)
VQR-SpBE3





donor,
CTTTACCAACAGgtgagtaccaa
CCUGUUGGUAAAGGUUUUCC
1301
(CAG)
20(C1/2)
SpBE3


intron 9
(SEQ ID NO: 1472)












UGGUACUCACCUGUUGGUAA
1302
(AGG)
20(C10/11)
SpBE3







UUGGUACUCACCUGUUGGUA
1303
(AAG)
20(C11/12)
SpBE3







CACCUGUUGGUAAAGGUUUU
1304
(CCCAGT)
20(C3/4)
KKH-SaBE3







CUUGGUACUCACCUGUUGGU
1305
(AAAGGT)
20(C12/13)
KKH-SaBE3





acceptor,
ccatttttccctagACGCTGCGT
CGCAGCGUCUAGGGAAAAAU
1306
(GGAA)
20(C9)
VQR-SpBE3


intron 9
(SEQ ID NO: 1473)












ACGCAGCGUCUAGGGAAAAA
1307
(TGG)
20(C10)
SpBE3







CGCAGCGUCUAGGGAAAAAU
1308
(GGAAAT)
20(C9)
KKH-SaBE3







GCAGCACGCAGCGUCUAGGG
1309
(AAAAAT)
20(C15)
KKH-SaBE3





acceptor,
cttggcccaaccagGCAATTGCA
GCAAUUGCCUGGUUGGGCCA
1310
(AGAC)
20(C8/9)
VQR-SpBE3


intron 10
(SEQ ID NO: 1474)












UGCAAUUGCCUGGUUGGGCC
1311
(AAG)
20(C9/10)
SpBE3





donor,
CCCCCAATCAGgtaccacccaaa
GGUGGUACCUGAUUGGGGGU
1312
(AGAC)
20(C8/9)
VQR-SpBE3


intron 11
(SEQ ID NO: 1475)












GGGUGGUACCUGAUUGGGGG
1313
(TAG)
20(C9/10)
SpBE3







UUUGGGUGGUACCUGAUUGG
1314
(GGG)
20(C12/13)
SpBE3







AAUUUGGGUGGUACCUGAUU
1315
(GGGGGT)
20(C14/15)
SaBE3







AAUUUGGGUGGUACCUGAUU
1316
(GGGGG)
20(C14/15)
St3BE3





acceptor,
atttttctgcagTCACCACTCAGCAT
AUGCUGAGUGGUGACUGCAG
1317
(AAAAAT)
20(C15)
KKH-SaBE3


intron 11
(SEQ ID NO: 1476)










donor,
TTCTGCCAGAGgtgataatagata
UCUAUUAUCACCUCUGGCAG
1318
(AAG)
20(C11/12)
SpBE3


intron 12a
(SEQ ID NO: 1477)












UAUCUAUUAUCACCUCUGGC
1319
(AGAA)
20(C13/14)
VQR-SpBE3







CUUAUCUAUUAUCACCUCUG
1320
(GCAGAAG)
20(C15/16)
St1BE3





donor,
CTGATGACAGCgtaaggacg
CGUCCUUACGCUGUCAUCAG
1321
(AAG)
20(C9)
SpBE3


intron 12b
(SEQ ID NO: 1478)












AACGUCCUUACGCUGUCAUC
1322
(AGAA)
20(C11)
VQR-SpBE3







AAACGUCCUUACGCUGUCAU
1323
(CAG)
20(C12)
SpBE3







AACGUCCUUACGCUGUCAUC
1324
(AGAAGT)
20(C11)
KKH-SaBE3







AAAACGUCCUUACGCUGUCA
1325
(TCAGAAG)
20(C13)
St1BE3





acceptor,
attgattttttttttagGGCACGACC
GUGCCCUAAAAAAAAAAUCA
1326
(ATTAAT)
20(C5/6)
KKH-SaBE3


intron 13
(SEQ ID NO: 1479)












GGUCGUGCCCUAAAAAAAAA
1327
(ATCAAT)
20(C9/10)
KKH-SaBE3







GAUUGGUCGUGCCCUAAAAA
1328
(AAAAAT)
20(C13/14)
KKH-SaBE3





donor,
CACTGTGGAAGgtatgtaataatc
GAUUAUUACAUACCUUCCAC
1329
(AGTG)
20(C13/14)
VQR-SpBE3


intron 13
(SEQ ID NO: 1480)












ACAUACCUUCCACAGUGUUU
1330
(GTTAAT)
20(C6/7)
KKH-SaBE3





acceptor,
cttttttctcccagAACTTGAAG
GUUCUGGGAGAAAAAAGCAG
1331
(AGAA)
20(C4)
VQR-SpBE3


intron 13
(SEQ ID NO: 1481)












AGUUCUGGGAGAAAAAAGCA
1332
(GAG)
20(C5)
SpBE3







AAGUUCUGGGAGAAAAAAGC
1333
(AGAG)
20(C6)
EQR-SpBE3







CAAGUUCUGGGAGAAAAAAG
1334
(CAG)
20(C7)
SpBE3







UCAAGUUCUGGGAGAAAAAA
1335
(GCAG)
20(C8)
FALSE







CUUCAAGUUCUGGGAGAAAA
1336
(AAG)
20(C10)
SpBE3







AAGUUCUGGGAGAAAAAAGC
1337
(AGAGAAC)
20(C6)
St1BE3





donor,
CTATAGGAAATTTGgtaagtctc
CUUACCAAAUUUCCUAUAGC
1338
(AAG)
20(C1/2)
SpBE3


intron 14
(SEQ ID NO: 1482)












GAGACUUACCAAAUUUCCUA
1339
(TAG)
20(C5/6)
SpBE3







GACUUACCAAAUUUCCUAUA
1340
(GCAAGT)
20(C7/8)
KKH-SaBE3





acceptor,
atttttctcacttagGTCTTTACTGG
UUCCAGUAAAGACCUAAGUG
1341
(AGAA)
20(C13/14)
VQR-SpBE3


intron 14
(SEQ ID NO: 1483)












GAUUCCAGUAAAGACCUAAG
1342
(TGAG)
20(C13/14)
EQR-SpBE3







GUAAAGACCUAAGUGAGAAA
1343
(AATAAT)
20(C8/9)
KKH-SaBE3







CCAGUAAAGACCUAAGUGAG
1344
(AAAAAT)
20(C11/12)
KKH-SaBE3







GAUUCCAGUAAAGACCUAAG
1345
(TGAGAAA)
20(C15/16)
St1BE3





donor,
ATCATTCAGACTGgtaaacataaa
UUACCAGUCUGAAUGAUCGC
1346
(AGAA)
20(C4/5)
VQR-SpBE3


intron 15
(SEQ ID NO: 1484)












UUUACCAGUCUGAAUGAUCG
1347
(CAG)
20(C5/6)
SpBE3







UUUAUGUUUACCAGUCUGAA
1348
(TGAT)
20(C11/12)
VQR-SpBE3







AGUUUAUGUUUACCAGUCUG
1349
(AATGAT)
20(C13/14)
KKH-SaBE3







GUUUACCAGUCUGAAUGAUC
1350
(GCAGAAC)
20(C6/7)
St1BE3





acceptor,
actttatatttgcttttagCTCCGAG
CGGAGCUAAAAGCAAAUAUA
1351
(AAG)
20(C6)
SpBE3


intron 15
(SEQ ID NO: 1485)












AGCUAAAAGCAAAUAUAAAG
1352
(TTTAAT)
20(C3)
KKH-SaBE3







CUCGGAGCUAAAAGCAAAUA
1353
(TAAAGT)
20(C8)
KKH-SaBE3







UUGAAGACUCGGAGCUAAAA
1354
(GCAAAT)
20(C15)
KKH-SaBE3





donor,
ATTGGAAACCTGGTGgtatgtaacca
CACCAGGUUUCCAAUGACCA
1355
(TGAC)
20(C1)
VQR-SpBE3


intron 16
(SEQ ID NO: 1486)












ACAUACCACCAGGUUUCCAA
1356
(TGAC)
20 (C7)
VQR-SpBE3







UGGUUACAUACCACCAGGUU
1357
(TCCAAT)
20(C12)
KKH-SaBE3





acceptor,
ccaccctgatatagGTCCTAAAC
CUAUAUCAGGGUGGGGAGAG
1358
(GGG)
20(C1/2)
SpBE3


intron 16
(SEQ ID NO: 1487)












CCUAUAUCAGGGUGGGGAGA
1359
(GGG)
20(C2/3)
SpBE3







ACCUAUAUCAGGGUGGGGAG
1360
(AGG)
20(C3/4)
SpBE3







GACCUAUAUCAGGGUGGGGA
1361
(GAG)
20(C4/5)
SpBE3







GGACCUAUAUCAGGGUGGGG
1362
(AGAG)
20(C5/6)
EQR-SpBE3







AGGACCUAUAUCAGGGUGGG
1363
(GAG)
20(C6/7)
SpBE3







UAGGACCUAUAUCAGGGUGG
1364
(GGAG)
20(C7/8)
EQR-SpBE3







UUAGGACCUAUAUCAGGGUG
1365
(GGG)
20(C8/9)
SpBE3







UUUAGGACCUAUAUCAGGGU
1366
(GGG)
20(C9/10)
SpBE3







GUUUAGGACCUAUAUCAGGG
1367
(TGG)
20(C10/11)
SpBE3







AGGUUUAGGACCUAUAUCAG
1368
(GGTG)
20(C12/13)
VQR-SpBE3







CCUAUAUCAGGGUGGGGAGA
1369
(GGGGGT)
20(C2/3)
SaBE3







AAUAGGUUUAGGACCUAUAU
1370
(CAGGGT)
20(C15/16)
SaBE3







CCUAUAUCAGGGUGGGGAGA
1371
(GGGGG)
20(C2/3)
St3BE3







ACCUAUAUCAGGGUGGGGAG
1372
(AGGGG)
20(C3/4)
St3BE3







UUAGGACCUAUAUCAGGGUG
1373
(GGGAG)
20(C8/9)
St3BE3







AGGACCUAUAUCAGGGUGGG
1374
(GAG)
20(C6/7)
SpBE3







GUUUAGGACCUAUAUCAGGG
1375
(TGGGG)
20(C10/11)
St3BE3







UAGGUUUAGGACCUAUAUCA
1376
(GGGTG)
20(C13/14)
St3BE3





donor,
CTGTTTCACAGATGgtaagacaa
CCAUCUGUGAAACAGGCCUC
1377
(TGG)
20(C1/2)
SpBE3


intron 18
(SEQ ID NO: 1488)












UGUCUUACCAUCUGUGAAAC
1378
(AGG)
20(C8/9)
SpBE3







UUGUCUUACCAUCUGUGAAA
1379
(CAG)
20(C9/10)
SpBE3





acceptor,
gtctttcttgtcagGTTGTGTATG
CAUACACAACCUGACAAGAA
1380
(AGAC)
20(C10/11)
VQR-SpBE3


intron 18
(SEQ ID NO: 1489)












CCAUACACAACCUGACAAGA
1381
(AAG)
20(C11/12)
SpBE3







AACCUCCAUACACAACCUGA
1382
(CAAGAAA)
20(C16/17)
St1BE3





donor,
CTCAGCAGTGGTGCCCTGgtaaat
CCAGGGCACCACUGCUGAGC
1383
(AGG)
20(C1/2)
SpBE3


intron 19
(SEQ ID NO: 1490)












ACCAGGGCACCACUGCUGAG
1384
(CAG)
20(C2/3)
SpBE3







UUUACCAGGGCACCACUGCU
1385
(GAG)
20(C5/6)
SpBE3







AUUUACCAGGGCACCACUGC
1386
(TGAG)
20(C6/7)
EQR-SpBE3







ACCAGGGCACCACUGCUGAG
1387
(CAGGAT)
20(C2/3)
SaBE3





acceptor,
attatttccacagGCTTTTGAAGATA
AGCCUGUGGAAAUAAUAUUC
1388
(AAG)
20(C3/4)
SpBE3


intron 19
(SEQ ID NO: 1491)












AAAGCCUGUGGAAAUAAUAU
1389
(TCAAGT)
20(C5/6)
KKH-SaBE3







UAUCUUCAAAAGCCUGUGGA
1390
(AATAAT)
20(C13/14)
KKH-SaBE3





donor,
CCTAATTGTTGATgtaggtactt
ACAUCAACAAUUAGGAAAUC
1391
(CAG)
20(C2)
SpBE3


intron 20
(SEQ ID NO: 1492)












AGUACCUACAUCAACAAUUA
1392
(GGAA)
20(C9)
VQR-SpBE3







AAGUACCUACAUCAACAAUU
1393
(AGG)
20(C10)
SpBE3







AAAGUACCUACAUCAACAAU
1394
(TAG)
20(C11)
SpBE3







AGUACCUACAUCAACAAUUA
1395
(GGAAAT)
20(C9)
KKH-SaBE3





donor,
ATTTGAAGGAATGAGGgtaagaaaat
ACCCUCAUUCCUUCAAAUCU
1396
(AGAT)
20(C2/3)
VQR-SpBE3


intron 21
(SEQ ID NO: 1493)












UACCCUCAUUCCUUCAAAUC
1397
(TAG)
20(C3/4)
SpBE3







UUACCCUCAUUCCUUCAAAU
1398
(CTAGAT)
20(C4/5)
KKH-SaBE3







AUUUUCUUACCCUCAUUCCU
1399
(TCAAAT)
20(C10/11)
KKH-SaBE3





acceptor,
cttttgaatactagGTCGTTGTG
CUAGUAUUCAAAAGAAAGAA
1400
(AAG)
20(C1)
SpBE3


intron 21
(SEQ ID NO: 1494)












CGACCUAGUAUUCAAAAGAA
1401
(AGAA)
20(C5)
VQR-SpBE3







ACGACCUAGUAUUCAAAAGA
1402
(AAG)
20(C6)
SpBE3







ACAACGACCUAGUAUUCAAA
1403
(AGAA)
20(C9)
VQR-SpBE3







CACAACGACCUAGUAUUCAA
1404
(AAG)
20(C10)
SpBE3







AACGACCUAGUAUUCAAAAG
1405
(AAAGAAA)
20(C7)
St1BE3







UCACAACGACCUAGUAUUCA
1406
(AAAGAAA)
20(C11)
St1BE3





donor,
CTGCTTCAAGTTgtaagtgtccc
UUACAACUUGAAGCAGAGAU
1407
(AGG)
20(C4)
SpBE3


intron 22
(SEQ ID NO: 1495)












CUUACAACUUGAAGCAGAGA
1408
(TAG)
20(C5)
SpBE3







ACACUUACAACUUGAAGCAG
1409
(AGAT)
20(C8)
VQR-SpBE3







GACACUUACAACUUGAAGCA
1410
(GAG)
20(C9)
SpBE3







GGACACUUACAACUUGAAGC
1411
(AGAG)
20(C9)
EQR-SpBE3







GGGACACUUACAACUUGAAG
1412
(CAG)
20(C11)
SpBE3







ACUUACAACUUGAAGCAGAG
1413
(ATAGGT)
20(C6)
KKH-SaBE3







GGACACUUACAACUUGAAGC
1414
(AGAGAT)
20(C10)
KKH-SaBE3





acceptor,
attaatgttattcttaaagGCAACTT
CCUUUAAGAAUAACAUUAAU
1415
(AGAA)
20(C1/2)
VQR-SpBE3


intron 22
(SEQ ID NO: 1496)












GCCUUUAAGAAUAACAUUAA
1416
(TAG)
20(C2/3)
SpBE3







GCCUUUAAGAAUAACAUUAA
1417
(TAGAAT)
20(C2/3)
SaBE3







AAGUUGCCUUUAAGAAUAAC
1418
(ATTAAT)
20(C7/8)
KKH-SaBE3







UGCCUUUAAGAAUAACAUUA
1419
(ATAGAAT)
20(C3/4)
St1BE3





donor,
ATTCTGTTAATgtaagtattgattat
AUAAUCAAUACUUACAUUAA
1420
(CAGAAT)
20(C15)
SaBE3


intron 23
(SEQ ID NO: 1497)












GAUAAUCAAUACUUACAUUA
1421
(ACAGAAT)
20(C16)
St1BE3





acceptor,
acttttgtaaattttatagGTAGACA
CCUAUAAAAUUUACAAAAGU
1422
(TAG)
20(C1/2)
SpBE3


intron 23
(SEQ ID NO: 1498)












UCUACCUAUAAAAUUUACAA
1423
(AAG)
20(C5/6)
SpBE3







UGUCUACCUAUAAAAUUUAC
1424
(AAAAGT)
20(C7/8)
KKH-SaBE3





donor,
ACCAACAGAAAAAGAAGataagtatt
UAUCUUCUUUUUCUGUUGGU
1425
(TGAA)
20(C4)
VQR-SpBE3


intron 24
(SEQ ID NO: 1499)












UACUUAUCUUCUUUUUCUGU
1426
(TGG)
20(C8)
SpBE3







UAUCUUCUUUUUCUGUUGGU
1427
(TGAAAT)
20(C4)
KKH-SaBE3







AAUACUUAUCUUCUUUUUCU
1428
(GTTGGT)
20(C10)
KKH-SaBE3





donor,
CTCGACCAGGGgtaaaaaaatata
UUUACCCCUGGUCGAGGAAU
1429
(TGG)
20(C10/11)
SpBE3


intron 25
(SEQ ID NO: 1500)












AUUUUUUUACCCCUGGUCGA
1430
(GGAA)
20(C9/10)
VQR-SpBE3







UAUUUUUUUACCCCUGGUCG
1431
(AGG)
20(C5/6)
SpBE3







AUAUUUUUUUACCCCUGGUC
1432
(GAG)
20(C10/11)
SpBE3







UAUAUUUUUUUACCCCUGGU
1433
(CGAG)
20(C11/12)
EQR-SpBE3







UAUUUUUUUACCCCUGGUCG
1434
(AGGAAT)
20(C12/13)
SaBE3





acceptor,
cttatttctttgcagAACAAAAT
UUUUGUUCUGCAAAGAAAUA
1435
(AGAA)
20(C13/14)
VQR-SpBE3


intron 25
(SEQ ID NO: 1501)












AUUUUGUUCUGCAAAGAAAU
1436
(AAG)
20(C11/12)
SpBE3







UUGUUCUGCAAAGAAAUAAG
1437
(AATAAT)
20(C8)
KKH-SaBE3







AUUUUGUUCUGCAAAGAAAU
1438
(AAGAAT)
20(C9)
SaBE3







CCUUGGAUUUUGUUCUGCAA
1439
(AGAAAT)
20(C6)
KKH-SaBE3







GAUUUUGUUCUGCAAAGAAA
1440
(TAAGAAT)
20(C9)
St1BE3





donor,
CTCCATTGTAGgtaagaatattt
AAUAUUCUUACCUACAAUGG
1441
(AGAT)
20(C15)
VQR-SpBE3


intron 26
(SEQ ID NO: 1502)












AAAUAUUCUUACCUACAAUG
1442
(GAG)
20(C10)
SpBE3







UAAAUAUUCUUACCUACAAU
1443
(GGAG)
20(C11/12)
EQR-SpBE3







AUAUUCUUACCUACAAUGGA
1444
(GATAAT)
20(C12/13)
KKH-SaBE3







UAAAUAUUCUUACCUACAAU
1445
(GGAGAT)
20(C13/14)
KKH-SaBE3







AUAAAUAUUCUUACCUACAA
1446
(TGGAG)
20(C10/11)
St3BE3





acceptor,
ctccacatacagGTATGTTTCTAG
CUGUAUGUGGAGGAAAAUAA
1447
(TAG)
20(C13/14)
SpBE3


intron 26
(SEQ ID NO: 1503)












GAAACAUACCUGUAUGUGGA
1448
(GGAA)
20(C14/15)
VQR-SpBE3







AGAAACAUACCUGUAUGUGG
1449
(AGG)
20(C1)
SpBE3







UAGAAACAUACCUGUAUGUG
1450
(GAG)
20(C10)
SpBE3







CUAGAAACAUACCUGUAUGU
1451
(GGAG)
20(C11)
EQR-SpBE3







CAUACCUGUAUGUGGAGGAA
1452
(AATAAT)
20(C12)
KKH-SaBE3







AAACAUACCUGUAUGUGGAG
1453
(GAAAAT)
20(C13)
KKH-SaBE3







CCUGUAUGUGGAGGAAAAUA
1454
(ATAGAAA)
20(C6)
St1BE3







GCUAGAAACAUACCUGUAUG
1455
(TGGAG)
20(C9)
St3BE3







CUAGAAACAUACCUGUAUGU
1456
(GGAG)
20(C2)
EQR-SpBE3






aBE types: SpBE3 = APOBEC1-SpCas9n-UGI; VQR-SpBE3 = APOBEC1-VQR-SpCas9n-UGI; EQR-SpBE3 = APOBEC1-EQR-SpCas9n-UGI; VRER-SpBE3 = APOBEC1-VRER-SpCas9n-UGI; SaBE3 = APOBEC1-SaCas9n-UGI; KKH-SaBE3 = APOBEC1-KKH-SaCas9n-UGI; St3BE3 = APOBEC1-St3Cas9n-UGI; St1BE3 = APOBEC1-St1Cas9n-UGI.



*Isoform 2 is expressed preferentially in the dorsal root ganglion.







Scoring of Guide RNA Sequences for Efficient Base Editing with High Specificity and Low Off-Target Binding


To achieve efficient and specific genome modifications using base editing requires judicious selection of a genomic sequence containing a target C, for which a specific complementary guide RNA sequence can be generated, and if required, a nearby PAM that matches the DNA-binding domain that is fused to the cytidine deaminase (e.g. Cas9, dCas9, Cas9n, Cpf1, NgAgo, etc.), as described in Komor et al., Nature, 533, 420-424 (2016), which is incorporated herein by reference. The guide RNA sequence and PAM preference define the genomic target sequence(s) of programmable DNA-binding domains (e.g. Cas9, dCas9, Cas9n, Cpf1, NgAgo, etc.). Because of the repetitive nature of some genomic sequences as well as the stochastic frequency of representation of short sequences throughout the genome it is necessary to identify guide RNAs for programming base editors that have the lowest number of potential off target sites, taking into consideration 1, 2, 3, 4, or more mismatches against all other sequences in the genome as described in Hsu et al (Nature Biotechnology, 2013, 31(9):827-832), Fusi et al. (bioRxiv 021568; doi: http://dx.doi.org/10.1101/021568), Chari et al. (Nature Methods, 2015, 12(9):823-6), Doench et al. (Nature Biotechnology, 2014, 32(12):1262-7), Wang et al. (Science. 2014, 343(6166): 80-4). Moreno-Mateos et al (Nature Methods, 2015, 12(10):982-8), Housden et al. (Science Signaling, 2015, 8(393):rs9), Haeussler et al., (Genome Biol. 2016; 17: 148), each of which is incorporated herein by reference. The potential for the formation of bulges between the guide RNA and the target DNA may also be considered as described in Bae et al. (Bioinformatics, 2014, 30, 1473-5), which is incorporated herein by reference. Non-limiting examples of calculated specificity scores for selected guide RNAs are shown in Tables 7-9. Other calculated parameters that may influence DNA-binding domains programming efficiency are shown, as described in Housden et al. (Science Signaling, 2015, 8(393):rs9), Farboud et al. (Genetics, 2015, 199(4):959-71), each of which is incorporated herein by reference.









TABLE 7







Exemplary Efficiency and Specificity Scores for gRNAs for NaV1.7 (SCN9A) Protective Loss-of-Function Mutations via


Premature Stop Codons
























Programmable
SEQ










Pro



Target
BE
guide-RNA
ID

gRNA size






M.-
Hous-
x/
Off


variants
typea
sequence
NOs
PAM
(C edited)
Effb
Hsuc
Fusi
Chari
Doench
Wang
M.
den
GC
targetsd

























Q687X
EQR-
CAACCUCAGACAG
1504
(TGAG)
20 (C7)
5.4
99
62
92
19
80
35
5

0-0-0-0-8



SpBE3
AGAGCAA


















Q687X
KKH-
GAUCCCAACCUCA
1505
(AGCAAT)
20 (C12)
6.2
92
66
99
39
77
26
6

0-0-0-2-13



SaBE3
GACAGAG


















W1245X
KKH-
AAAUCCAGCCAAC
1506
(ATTGGT)
20 (C14/8)
6.6
96
50
95
10
84
36
6
+
0-0-0-0-8



SaBE3
ACCAGGC


















Q323X
SaBE3
CGUGUGUAGUCAG
1507
(AGGGGT)
20 (C11)
8.2
96
60
93
36
78
69
8
+
0-0-0-2-5




UGUCCAG


















Q323X
St3BE3
CGUGUGUAGUCAG
1508
(AGGGG)
20 (C11)
8.2
96
60
93
36
78
69
8
+
0-0-0-1-16




UGUCCAG


















W188X
SpBE3
GUUCCACGGGUCA
1509
(AAG)
20 (C5)
5.3
95
51
92
13
55
51
5

0-0-0-2-45




CGAAGAA


















Q1494X
SpBE3
AAAGCCAAUUCCU
1510
(GGG)
20 (C-2)
4.9
88
68
96
40
84
64
4
+
0-0-1-9-68




CGACCAG


















R835X
KKH-
UCAGUUCUGCGAU
1511
(ACTGGT)
20 (C10)
6.8
98
60
85
51
71
58
6

0-0-0-0-5



SaBE3
CAUUCAG


















R841X
KKH-
GCUCCGAGUCUUC
1512
(CAAAAT)
20 (C5)
6.6
98
51
84
63
66
58
6

0-0-0-1-3



SaBE3
AAGUUGG


















Q485X
St3BE3
AAUCAAAAGAAGC
1513
(TGGAG)
20 (C4)
7.5
94
61
87
24
85
50
7
+
0-0-0-1-38




UCUCCAG


















Q643X
KKH-
AAUGGACAGCUUC
1514
(GGTGAT)
20 (C7)
9.9
95
60
85
65
67
54
9
+
0-0-0-2-8



SaBE3
UGCCAGA


















W730X
KKH-
GAAUUUUAUCCAA
1515
(AGCAAT)
20 (C11)
6.6
94
60
84
20
88
21
6

0-0-0-1-17



SaBE3
UAUGGAG


















Q1862X
KKH-
UCUUCGUUCACAG
1516
(AAAGGT)
20 (C11)
4.8
92
54
85
40
70
32
4

0-0-0-2-



SaBE3
AUGGAAG












44





Q595X
St3BE3
GUUUGUGCCCCAC
1517
(AGGAG)
20 (C13)
7.0
90
55
86
45
74
38
7
+
0-0-0-3-




AGACCCC












38





W151X
SpBE3
ACAUUUUUGGUCC
1518
(TGG)
20 (C13)
4.9
87
51
88
39
84
46
4
+
0-0-1-5-




AGUCCGG












85





R523X
SpBE3
AUAGGCGAGCACA
1519
(AGG)
20 (C6)
10.6
78
61
96
75
78
58
10

0-0-0-5-




UGAAAAG












86





Q534X
KKH-
UACCCCCAAUCAG
1520
(CCAAAT)
20 (C11)
4.7
96
56
77
5
47
48
4

0-0-0-0-



SaBE3
GUACCAC












3





W714X
SpBE3
GCAAAUCUGUACC
1521
(TGG)
20 (C13)
5.2
73
71
99
59
85
57
5
+
0-0-1-




ACCAAGG












14-113





Q1494X
SpBE3
AAAAGCCAAUUCC
1522
(GGG)
20 (C-1)
6.0
87
61
85
14
64
56
6
+
0-0-2-




UCGACCA












12-86





W188X
SaBE3
UCCACGGGUCACG
1523
(GTGAAT)
20 (C3)
6.9
96
56
75
55
51
57
6

0-0-0-0-




AAGAAAA












4





W1245X
KKH-
CAGCCAACACCAG
1524
(TGAAAT)
20 (C9/3)
7.0
91
50
80
9
60
48
7

0-0-0-1-



SaBE3
GCAUUGG












16





W188X
KKH-
CAGUUCCACGGGU
1525
(AAAAGT)
20 (C7/1)
4.3
99
-1
71
22
66
65
4

0-0-0-0-



SaBE3
CACGAAG












14





Q595X
SpBE3
CACAGACCCCAGG
1526
(CAG)
20 (C3)
7.7
75
61
95
65
87
69
5
+
0-0-4-




AGCGACG












22-140





Q1004X
VQR-
UAUGUGAAACAAA
1527
(TGAA)
20 (C10)
7.2
80
60
90
35
71
16
7
-
0-0-1-



SpBE3
CCUUACG












10-146





W1578X
KKH-
AAAAAUAUUCCAU
1528
(TGAAGT)
20 (C11)
5.2
86
62
83
13
81
35
5
-
0-0-0-4-



SaBE3
CCUACAG












22





Q368/9X
St1BE3
UUACCAACAGGUG
1529
(AGAGAAA)
20 (C5)
4.3
98
66
70
50
59
38
4
-
0-0-0-0-




AGUACCA












18





Q369X
St1BE3
UUACCAACAGGUG
1530
(AGAGAAA)
20 (C8)
4.3
98
66
70
50
59
38
4
-
0-0-0-0-




AGUACCA












18





W188X
VQR-
GCCAGUUCCACGG
1531
(AGAA)
20 (C9/3)
2.9
91
63
75
38
77
46
2
-
0-0-3-0-



SpBE3
GUCACGA












33





W151X
SaBE3
GACAUUUUUGGUC
1532
(GTGGGT)
20 (C14)
3.6
99
49
66
27
69
52
3
+
0-0-0-0-




CAGUCCG












4





W1332X
KKH-
UCAGCCAGAAUAU
1533
(ACAAGT)
20 (C6)
3.6
92
67
73
51
78
51
3
-
0-0-0-2-



SaBE3
AAGACAC












18





W908X
KKH-
CAUGUGCCACCGU
1534
(TACAGT)
20 (C8)
6.3
92
59
72
5
58
56
6
+
0-0-0-2-



SaBE3
GGGAGCG












8





Q534X
KKH-
AUCAGGUACCACC
1535
(CTAAAT)
20 (C3)
6.2
99
59
63
16
64
42
6
-
0-0-0-0-



SaBE3
CAAAUUG












5





Q1004X
SaBE3
UUAUGUGAAACAA
1536
(GTGAAT)
20 (C11)
4.8
96
44
65
13
28
37
4
-
0-0-0-2-




ACCUUAC












21





Q1907X
KKH-
ACCGCUUAAGGCA
1537
(AAAAAT)
20 (C12)
3.9
98
49
62
3
35
44
3
-
0-0-0-1-



SaBE3
AAAUGUC












3





Q663X
St1BE3
GGCACGACCAAUC
1538
(CAAGAAA)
20 (C9)
4.4
96
63
58
29
72
27
4
-
0-0-0-1-




AAAUACA












13





R1381X
KKH-
AAUGUGCGAUGGA
1539
(GAAAGT)
20 (C7)
4.0
91
67
68
49
81
64
4
-
0-0-0-2-



SaBE3
AAAACCU












17





R1619X
St3BE3
CGAAUCCUACGUC
1540
(AGGAG)
20 (C1)
8.5
99
60
54
32
49
54
8
-
0-0-3-0-




UAGUCAA












0





Q58X
St3BE3
AAACAGCUGCCCU
1541
(TGGGG)
20 (C4)
8.4
96
26
61
3
53
35
8
-
0-0-0-3-




UCAUCUA












29





Q708X
St3BE3
CCAGACAAAAAUG
1542
(TGGTG)
20 (C6)
7.2
90
67
55
13
73
47
7
+
0-0-1-4-




UCCACCU












35





Q25X
St1BE3
CAUUGAACAACGC
1543
(AAAGAAA)
20 (C8)
3.8
97
59
59
27
79
26
3
-
0-0-0-0-




AUUGCUG












16





Q1971X
St1BE3
AGAAAUAUGAACA
1544
(ACAGAAA)
20 (C12)
5.8
64
53
92
13
80
17
5
-
0-0-0-




AGACAGA












20-242





Q240X
St1BE3
GGGGCUUUGAUCC
1545
(GAAGAAG)
20 (C13)
5.4
95
60
50
8
62
48
5
-
0-0-1-3-




AGUCAGU












11





Q595X
KKH-
ACAGACCCCAGGA
1546
(AGCAGT)
20 (C2)
4.3
97
52
58
14
77
55
4
+
0-0-0-2-



SaBE3
GCGACGC












12





R597X
SpBE3
GAGCGACGCAGCA
1547
(CAG)
20 (C4)
4.1
91
64
58
48
76
63
4
-
0-0-1-0-




GUAACAU












43





R1619X
SpBE3
CGAAUCCUACGUC
1548
(AGG)
20 (C1)
8.5
95
60
54
32
49
54
8
-
0-0-3-1-




UAGUCAA












12





R1619X
EQR-
GAAUCCUACGUCU
1549
(GGAG)
20 (C-1)
4.1
78
47
76
19
45
27
4
-
0-0-3-9-



SpBE3
AGUCAAA












62





Q663X
SpBE3
GCACGACCAAUCA
1550
(AAG)
20 (C8)
3.3
86
67
54
68
77
37
3
-
0-0-0-3-




AAUACAC












36





Q1539/
KKH-
GGUCAAAGUCAAC
1551
(TGAAGT)
20 (C4/10)
6.7
90
56
63
22
57
14
6
-
0-0-1-1-


41X
SaBE3
AUAUGAC












6





Q604X
SpBE3
GUAACAUCAGCCA
1552
(AGG)
20 (C12)
3.8
68
61
84
76
61
33
3
+
0-0-2-




AGCCAGU












14-105





W1161X
SpBE3
ACCUCCAUACACA
1553
(AAG)
20 (C6)
7.5
82
54
70
28
27
35
7
+
0-0-2-5-




ACCUGAC












85





Q1378X
SpBE3
AUGUUAGUCAAAA
1554
(TGG)
20 (C9)
6.6
87
65
46
53
89
30
6
+
0-0-1-7-




UGUGCGA












78





W1786X
KKH-
CCAAACCUCAUAG
1555
(CAAAGT)
20 (C2)
4.4
91
61
52
20
51
34
4
-
0-0-0-4-



SaBE3
AACAUCU












16





R277X
KKH-
GUUUUCGAAAUUC
1556
(AATAAT)
20 (C6)
5.3
90
50
61
8
46
37
5
-
0-0-0-6-



SaBE3
ACUUGAA












48





Q604X
KKH-
AGCCAAGCCAGUA
1557
(ACCAAT)
20 (C4)
4.8
97
54
25
7
48
38
4
+
0-0-0-0-



SaBE3
GGUCCCC












8





Q643X
St3BE3
CAAUGGACAGCUU
1558
(AGGTG)
20 (C8)
4.2
90
61
61
15
67
54
4
+
0-0-0-5-




CUGCCAG












32





W151X
SpBE3
CAUUUUUGGUCCA
1559
(GGG)
20 (C12)
4.8
94
56
46
36
38
48
4
+
0-0-0-1-




GUCCGGU












48





W188X
St1BE3
CAGCCAGUUCCAC
1560
(GAAGAAA)
20 (C11/5)
6.9
98
42
52
1
27
59
6
+
0-0-1-0-




GGGUCAC












11





Q687X
SaBE3
CCAACCUCAGACA
1561
(ATGAGT)
20 (C8)
3.7
86
59
64
38
61
44
3
-
0-0-0-3-




GAGAGCA












19





Q1363X
SaBE3
AAGUCAAGUUCCA
1562
(CCGAAT)
20 (C5)
4.1
99
51
28
26
49
58
4
-
0-0-0-0-




AAUCGUU












7





Q1378X
VQR-
UGUUAGUCAAAAU
1563
(GGAA)
20 (C8)
4.3
89
61
15
9
41
48
4
-
0-0-0-6-



SpBE3
GUGCGAU












85





Q1515X
KKH-
ACCUAGUGACAAA
1564
(TTTGAT)
20 (C10)
7.6
93
47
57
11
60
1
7
+
0-0-0-1-



SaBE3
UCAAGCC












9





R1499X
KKH-
AAUUCCUCGACCA
1565
(AAAAAT)
20 (C8)
5.6
99
50
33
10
43
54
5
-
0-0-0-0-



SaBE3
GGGGUAA












2





Q643X
KKH-
cCCAAUGGACAGC
1566
(AGAGGT)
20 (C10)
7.9
88
36
60
11
35
34
7
+
0-0-2-1-



SaBE3
UUCUGCC












10





Q989X
St1BE3
CAACCUCCAGAUU
1567
(CTAGAAT)
20 (C8)
4.5
93
54
21
6
65
41
4
-
0-0-1-2-




GCAGUGA












15





Q1167X
SaBE3
CUCAUGCUGCCAA
1568
(TAGAGT)
20 (C11)
6.1
93
54
46
11
31
14
6
-
0-0-0-0-




GUUAACA












19





W1408X
KKH-
AUAAUAAUCGUCC
1569
(AAAAGT)
20 (C13)
4.1
94
51
53
62
46
41
4
-
0-0-0-0-



SaBE3
AUCCCUU












20





Q58X
SpBE3
ACAGCUGCCCUUC
1570
(GGG)
20 (C2)
6.7
69
71
77
39
52
44
6
-
0-0-4-




AUCUAUG












19-191





R523X
SpBE3
GGCAUAGGCGAGC
1571
(AAG)
20 (C9)
5.0
69
57
77
23
58
51
5
-
0-0-2-




ACAUGAA












14-83





R548X
KKH-
CUGCAAGGCGAAG
1572
(ACAAGT)
20 (C9)
5.2
74
56
72
35
65
75
5
-
0-0-1-2-



SaBE3
CAGCAGA












27





Q663X
St3BE3
CCAAUCAAAUACA
1573
(AGGCG)
20 (C2)
4.5
82
47
64
11
71
28
4
-
0-0-0-7-




CAAGAAA












63





W1700X
KKH-
CCAUCCCAGCCAG
1574
(TGTAAT)
20 (C7)
7.3
79
54
67
10
58
35
7
-
0-0-0-2-



SaBE3
CAGAGGU












35





R523X
KKH-
GCAUAGGCGAGCA
1575
(AGAGGT)
20 (C8)
4.3
92
48
53
23
83
41
4
-
0-0-0-2-



SaBE3
CAUGAAA












9





R835X
SpBE3
AGUUCUGCGAUCA
1576
(TGG)
20 (C8)
7.1
81
64
33
20
51
32
7
-
0-0-1-5-




UUCAGAC












42





R548X
KKH-
GAAGCAGCAGAAC
1577
(TTTAGT)
20 (C-1)
4.4
86
39
58
24
69
52
4
-
0-0-0-4-



SaBE3
AAGUCUU












12





Q360X
SpBE3
GCUAAUGACCCAA
1578
(GGG)
20 (C11)
6.0
71
55
72
25
36
15
6
-
0-0-3-8-




GAUUACU












74





Q643X
KKH-
GGACAGCUUCUGC
1579
(GATAAT)
20 (C4)
5.1
81
62
40
20
75
46
5
-
0-0-0-5-



SaBE3
CAGAGGU












14





R1381X
VQR-
GUGCGAUGGAAAA
1580
(AGTG)
20 (C4)
5.5
59
58
84
4
59
48
5
-
0-0-1-



SpBE3
ACCUGAA












21-169





W1578X
KKH-
AAUAUUCCAUCCU
1581
(AGTAGT)
20 (C8)
4.1
83
60
44
13
74
43
4
-
0-0-2-3-



SaBE3
ACAGUGA












37





Q25X
VQR-
UUGAACAACGCAU
1582
(AGAA)
20 (C6)
6.0
54
59
88
16
31
43
6
-
0-0-1-



SpBE3
UGCUGAA












31-326





Q368/9X
EQR-
UUACCAACAGGUG
1583
(AGAG)
20 (C5)
4.3
72
66
70
50
59
38
4
-
0-0-1-



SpBE3
AGUACCA












13-111





Q369X
EQR-
UUACCAACAGGUG
1584
(AGAG)
20 (C8)
4.3
72
66
70
50
59
38
4
-
0-0-1-



SpBE3
AGUACCA












13-111





Q941X
VQR-
GGAGGUCGCUGGU
1585
(TGTG)
20 (C14)
3.8
91
43
51
15
82
53
3
-
0-0-0-2-



SpBE3
CAAGCUA












44





Q1167X
SpBE3
GCCAAGUUAACAU
1586
(GGG)
20 (C3)
2.9
76
65
66
60
74
29
2
-
0-0-0-




AGAGUCA












13-103





Q989X
SaBE3
AACCUCCAGAUUG
1587
(TAGAAT)
20 (C7)
6.3
92
49
11
3
24
44
6
-
0-0-1-1-




CAGUGAC












9





W1578X
KKH-
AUUCCAUCCUACA
1588
(AGTAGT)
20 (C5)
4.4
89
51
15
15
37
35
4
-
0-0-0-1-



SaBE3
GUGAAGU












20





Q708X
SpBE3
GACAAAAAUGUCC
1589
(TGG)
20 (C3)
3.9
47
55
92
17
67
56
3
+
0-0-3-




ACCUUGG












25-208





Q708X
KKH-
GUCCAGACAAAAA
1590
(CTTGGT)
20 (C8)
6.0
76
54
63
28
71
34
6
+
0-0-0-



SaBE3
UGUCCAC












12-58





W724X
KKH-
UCCAGAUCAAGAA
1591
(GCAAAT)
20 (C3)
4.9
79
60
6
17
56
24
4
-
0-0-2-3-



SaBE3
UUUGUGU












32





Q805X
SaBE3
AUGAGUAUUUCCA
1592
(TGGAAT)
20 (C12)
4.4
88
51
39
7
51
32
4
+
0-0-1-4-




AGUAGGC












12





Q485X
EQR-
CAAAAGAAGCUCU
1593
(AGAG)
20 (C1)
6.8
62
57
75
5
83
50
6
+
0-0-2-



SpBE3
CCAGUGG












19-210





W1245X
St1BE3
AUAACCAUAUGCU
1594
(TTAGAAG)
20 (C17)
4.5
89
41
48
51
23
22
4
-
0-0-2-3-




AUCCAUU












17





Q1505X
KKH-
AUCCAAGGAUGUA
1595
(CCTAGT)
20 (C4)
5.8
87
50
20
16
29
44
5
-
0-0-0-4-



SaBE3
UAUUUGA












32





Q1363X
VQR-
AGUCAAGUUCCAA
1596
(CGAA)
20 (C4)
6.2
88
48
19
32
44
29
6
-
0-0-1-4-



SpBE3
AUCGUUC












92





Q58X
SpBE3
AAACAGCUGCCCU
1597
(TGG)
20 (C4)
8.4
74
26
61
3
53
35
8
-
0-0-2-




UCAUCUA












12-147





Q368/9X
SpBE3
UUUACCAACAGGU
1598
(AAG)
20 (C6)
4.8
81
54
44
5
23
34
4
-
0-0-1-9-




GAGUACC












88





Q1401X
KKH-
AAGGCAACUUUUA
1599
(GACGAT)
20 (C5)
5.2
83
52
38
2
62
62
5
+
0-0-1-6-



SaBE3
AGGGAUG












28





Q1515X
KKH-
UGACAAAUCAAGC
1600
(ATTAGT)
20 (C4)
4.2
92
43
14
32
34
29
4
-
0-0-0-1-



SaBE3
CUUUGAU












18





Q643X
KKH-
AGCUUCUGCCAGA
1601
(ATAGAT)
20 (C-1)
6.7
94
40
24
1
30
23
6
-
0-0-0-3-



SaBE3
GGUGAUA












16





Q25X
KKH-
UGAACAACGCAUU
1602
(GAAAAT)
20 (C5)
7.6
88
45
12
7
47
41
7
-
0-0-0-3-



SaBE3
GCUGAAA












14





Q368/9X
SpBE3
UACCAACAGGUGA
1603
(GAG)
20 (C4)
4.2
71
58
62
27
54
63
4
-
0-0-1-




GUACCAA












10-123





Q369X
SpBE3
UACCAACAGGUGA
1604
(GAG)
20 (C7)
4.2
71
58
62
27
54
63
4
-
0-0-1-




GUACCAA












10-123





W908X
VRER-
CGUUCAUGUGCCA
1605
(AGCG)
20 (C12)
4.8
50
52
83
6
55
56
4
+
1-0-0-0-



SpBE3
CCGUGGG












1





W1161X
St1BE3
AACCUCCAUACAC
1606
(CAAGAAA)
20 (C7)
3.4
49
61
84
25
77
29
3
-
1-0-0-0-




AACCUGA












10





W1245X
St1BE3
UAUCCAUUUUAGA
1607
(CCAGAAT)
20 (C5)
4.5
49
61
84
25
77
29
3
-
1-0-0-0-




AGCAUUU












10





W1408X
St1BE3
CAUCCCUUAAAAG
1608
(TAAGAAT)
20 (C1)
7.2
96
34
37
6
42
29
7
-
0-0-0-1-




UUGCCUU












28





Q1494X
SpBE3
ACAAAAGCCAAUU
1609
(CAG)
20 (C2)
5.1
85
48
8
14
50
38
5
+
0-0-0-




CCUCGAC












10-75





Q1494X
SpBE3
CAAAAGCCAAUUC
1610
(AGG)
20 (C1)
3.5
81
52
25
6
71
37
3
+
0-0-3-




CUCGACC












12-94





Q25X
SpBE3
AUUGAACAACGCA
1611
(AAG)
20 (C7)
8.3
61
58
70
11
65
26
8
-
01-1-




UUGCUGA












15-82





Q1462X
St1BE3
GAUAAUUUCAACC
1612
(AAAGAAG)
20 (C9)
3.4
43
47
88
35
76
14
3
-
0-2-2-9-




AACAGAA












143





Q240X
KKH-
UCCAGUCAGUGAA
1613
(TCTGAT)
20 (C3)
4.9
84
36
45
7
48
36
4
-
0-0-0-4-



SaBE3
GAAGCUU












15





Q408/
St1BE3
AACAGAACCAGGC
1614
(GAAGAAG)
20 (C3/9)
4.1
86
43
28
7
50
41
4
-
0-0-1-5-


10X

AAACAUU












65





Q643X
SpBE3
CAAUGGACAGCUU
1615
(AGG)
20 (C8)
4.2
68
61
61
15
67
54
4
+
0-0-0-




CUGCCAG












21-133





Q708X
SpBE3
CCAGACAAAAAUG
1616
(TGG)
20 (C6)
7.2
62
67
55
13
73
47
7
+
0-0-5-




UCCACCU












24-165





Q708X
KKH-
CAGACAAAAAUGU
1617
(GGTGGT)
20 (C5)
4.2
84
45
32
0
46
70
4
-
0-0-0-4-



SaBE3
CCACCUU












20





R841X
SpBE3
UUAGCUCCGAGUC
1618
(TGG)
20 (C8)
6.4
67
62
34
59
64
47
6
-
0-1-0-6-




UUCAAGU












44





Q1862X
SpBE3
UUCGUUCACAGAU
1619
(AGG)
20 (C9)
3.9
49
50
80
5
42
43
3
-
0-0-4-




GGAAGAA












24-228





W151X
SpBE3
CCAGUCCGGUGGG
1620
(TGG)
20 (C2)
7.9
87
41
41
2
43
43
7
-
0-0-1-4-




UUAUUCA












35





R523X
EQR-
GCAUAGGCGAGCA
1621
(AGAG)
20 (C8)
4.3
74
48
53
23
83
41
4
-
0-0-0-8-



SpBE3
CAUGAAA












92





Q1470X
St1BE3
GAGGUCAAGACAU
1622
(ACAGAAG)
20 (C6)
4.8
46
54
81
7
65
44
4
-
1-1-0-2-




CUUUAUG












25





W1578X
VQR-
CCAUCCUACAGUG
1623
(AGTG)
20 (C2)
5.2
78
48
35
25
37
44
5
-
0-0-0-



SpBE3
AAGUAGU












17-112





Q1026X
SaBE3
AGAUAAGACAAGC
1624
(CTGAAT)
20 (C9)
4.9
69
56
51
31
66
40
4
-
0-0-1-7-




AGAAGAU












40





Q1077X
KKH-
GUGAUGGUCAAUC
1625
(CACAAT)
20 (C9)
5.2
90
35
9
26
28
44
5
-
0-0-0-2-



SaBE3
AUUUAUU












21





Q58X
SpBE3
AACAGCUGCCCUU
1626
(GGG)
20 (C3)
6.2
74
49
3
7
24
25
6
-
0-0-1-




CAUCUAU












10-115





W151X
KKH-
GUCCAGUCCGGUG
1627
(CATGGT)
20 (C4)
4.9
100
23
7
4
9
53
4
-
0-0-0-1-



SaBE3
GGUUAUU












0





Q323X
SpBE3
UGUGUAGUCAGUG
1628
(GGG)
20 (C9)
7.9
43
75
80
69
68
76
7
+
0-1-2-62




UCCAGAG












35-1





Q485X
EQR-
AUCAAAAGAAGCU
1629
(GGAG)
20 (C3)
3.6
62
60
53
35
44
30
3
-
0-0-3-



SpBE3
CUCCAGU












14-187





Q1167X
SpBE3
UGCCAAGUUAACA
1630
(AGG)
20 (C4)
6.0
76
46
15
1
29
41
6
-
0-0-2-8-




UAGAGUC












89





Q1515X
VQR-
CUAGUGACAAAUC
1631
(TGAT)
20 (C8)
4.8
74
48
12
13
63
52
4
-
0-0-0-



SpBE3
AAGCCUU












17-129





Q1167X
EQR-
UCAUGCUGCCAAG
1632
(AGAG)
20 (C10)
8.6
64
53
57
43
69
27
8
-
0-0-1-



SpBE3
UUAACAU












27-191





Q805X
SpBE3
AUGAGUAUUUCCA
1633
(TGG)
20 (C12)
4.4
67
51
39
7
51
32
4
+
0-0-2-




AGUAGGC












25-177





Q360X
SpBE3
GGCUAAUGACCCA
1634
(TGG)
20 (C12)
6.1
83
28
33
5
28
10
6
-
0-0-1-7-




AGAUUAC












57





Q323X
EQR-
CUCGUGUGUAGUC
1635
(AGAG)
20 (C13)
4.4
75
40
5
1
34
46
4
+
0-0-1-



SpBE3
AGUGUCC












10-63





W730X
KKH-
AUCCAAUAUGGAG
1636
(CCAGAT)
20 (C4)
4.1
64
39
51
5
19
44
4
-
0-0-2-



SaBE3
AGCAAUU












11-36





R214X
EQR-
UUCGAACUUUCAG
1637
(AGAG)
20 (C3)
4.7
42
49
72
2
33
28
4
-
0-2-2-



SpBE3
AGUAUUG












14-188





Q265X
VQR-
ACAGCUGUUCAUG
1638
(TGAA)
20 (C2)
8.1
61
53
43
10
50
33
8
-
0-0-4-



SpBE3
GGAAACC












15-185





Q687X
EQR-
UCAGACAGAGAGC
1639
(AGAG)
20 (C5)
4.0
55
56
51
34
77
26
4
-
0-0-3-



SpBE3
AAUGAGU












30-285





W908X
St3BE3
AGUCGUUCAUGUG
1640
(GGGAG)
20 (C15)
5.7
48
63
24
22
54
63
5
+
1-0-1-3-




CCACCGU












7





W363X
SpBE3
AAGGUUUUCCCAG
1641
(GGG)
20 (C11)
8.2
64
46
28
10
55
46
8
-
0-0-5-




UAAUCUU












17-172





Q1401X
SpBE3
UAAAGGCAACUUU
1642
(TGG)
20 (C7)
7.3
53
49
49
14
83
37
7
-
0-0-3-




UAAGGGA












37-245





W908X
SpBE3
UGUGCCACCGUGG
1643
(CAG)
20 (C6)
5.5
48
52
41
33
34
77
5
-
1-0-0-2-




GAGCGUA












49





W730X
EQR-
UUGAAUUUUAUCC
1644
(AGAG)
20 (C13)
3.0
41
52
54
6
68
29
3
-
0-1-3-



SpBE3
AAUAUGG












33-405





W808X
SpBE3
CAAAAAUAUUCCA
1645
(TGG)
20 (C12)
3.8
61
34
31
1
22
34
3
-
0-1-4-




GCCUACU












18-174





Q1026X
VQR-
GAUAAGACAAGCA
1646
(TGAA)
20 (C8)
3.9
49
41
46
5
76
24
3
-
0-0-1-



SpBE3
GAAGAUC












32-348





R214X
EQR-
UCUUCGAACUUUC
1647
(TGAG)
20 (C5)
5.4
56
38
19
11
33
30
5
-
0-1-3-



SpBE3
AGAGUAU












10-139






aBE types: SpBE3 = APOBEC1-SpCas9n-UGI; VQR-SpBE3 = APOBEC1-VQR-SpCas9n-UGI; EQR-SpBE3 = APOBEC1-EQR-SpCas9n-UGI; VRER-SpBE3 = APOBEC1-VRER-SpCas9n-UGI; SaBE3 = APOBEC1-SaCas9n-UGI; KKH-SaBE3 = APOBEC1-KKH-SaCas9n-UGI; St3BE3 = APOBEC1-St3Cas9n-UGI; St1BE3 = APOBEC1-St1Cas9n-UGI.




bEfficiency score, based on Housden et al (Science Signaling, 2015, 8 (393):rs9).




cSpecificity scores based on Hsu et al (Nature biotechnology, 2013, 31 (9):827-832), Fusi et al (bioRxiv 021568; doi: http://dx.doi.org/10.1101/021568), Chari et al (Nature Methods, 2015, 12 (9):823-6), Doench et al (Nature Biotechnology, 2014, 32 (12):1262-7), Wang et al (Science, 2014, 343 (6166): 80-4), Moreno-Mateos et al (Nature Methods, 2015, 12 (10)982-8), Housden et al (Science Signaling, 2015, 8 (393):rs9), and the “Prox/GC” column shows “+” if the proximal 6 bp to the PAM has a GC count > = 4, and GG if the guide ends with GG, based on Farboud et al (Genetics, 2015, 199 (4):959-71).




dNumber of predicted off-target binding sites in the human genome allowing up to 0, 1, 2, 3 or 4 mismatches, respectively shown in the format 0-1-2-3-4. Algorithm used: Haeussler et al, Genome Biol. 2016; 17: 148.














TABLE 8







Exemplary Efficiency and Specificity Scores for gRNAs for NaV1.7 (SCN9A) Protective Loss-of-Function Mutations via Codon


Change
























Programmable
SEQ










Pro



Target
BE
guide-RNA
ID

gRNA size






M.-
Hous-
x/
Off


variants
typea
sequence
NOs
PAM
(C edited)
Effb
Hsuc
Fusi
Chari
Doench
Wang
M.
den
GC
targetsd

























C324Y
St1BE3
GGACACUGACUACA
1648
(AAAGAAC)
20 (C7/8)
6.2
99
68
99
61
84
36
6
+
0-0-0-




CACGAG












0-9





P613L/S/F
KKH-
CCAAUGCUGCCGGU
1649
(GAAAAT)
20 (C5)
9.2
100
63
97
70
88
71
9
+
0-0-0-



SaBE3
GAACGG












0-2





P591L/S/F
VRER-
UGUGCCCCACAGAC
1650
(AGCG)
20 (C8)
7.8
97
64
96
18
84
69
7
+
0-0-0-



SpBE3
CCCAGG












1-13





G785R
St1BE3
GAUUCCAGUAAAGA
1651
(TGAGAAA)
20 (C9)
6.3
94
59
99
24
78
42
6
-
0-0-0-




CCUAAG












1-52





P683L/S/F
KKH-
GAUCCCAACCUCAG
1652
(AGCAAT)
20 (C14)
6.2
92
66
99
39
77
26
6
-
0-0-0-



SaBE3
ACAGAG












2-13





C925Y
KKH-
UCUCCACACAGCAC
1653
(CACAAT)
20 (C2)
4.7
98
62
87
26
59
45
4
+
0-0-0-



SaBE3
GCGGAA












0-11





P1712/3L/
KKH-
CCACCCGACUGUGA
1654
(AAAAGT)
20 (C3/4/12)
6.1
99
57
86
18
39
61
6
-
0-0-0-


S/F
SaBE3
cCCAAA












0-5





P1606L/S/F
KKH-
GUGUCCCCUACCCU
1655
(AGTGAT)
20 (C13114)
6.4
93
56
92
50
76
41
6
+
0-0-0-



SaBE3
GUUCCG












1-13





P983L/S/F
KKH-
GACCCUGAUGCAAA
1656
(CCAGAT)
20 (C819)
3.5
96
58
82
9
74
24
3
-
0-0-0-



SaBE3
CAACCU












2-17





P591L/S/F
St3BE3
GUUUGUGCCCCACA
1657
(AGGAG)
20 (C7-14)
7.0
90
55
86
45
74
38
7
+
0-0-0-




GACCCC












3-38





P532L/S/F
KKH-
UACCCCCAAUCAGG
1658
(CCAAAT)
20 (C6-13)
4.7
96
56
77
5
47
48
4
-
0-0-0-



SaBE3
UACCAC












0-3





P1606L/S/F
VQR-
GUGUCCCCUACCCU
1659
(AGTG)
20 (C5-12)
6.4
81
56
92
50
76
41
6
+
0-0-1-



SpBE3
GUUCCG












7-62





P1496/8L/
SpBE3
AAAAGCCAAUUCCU
1660
(GGG)
20 (C5-12)
6.0
87
61
85
14
64
56
6
+
0-0-2-


S/F

CGACCA












12-86





P1133/5L/
St1BE3
AUAACCCUUUGCCU
1661
(GGAGAAG)
20 (C7-14)
6.5
90
53
81
33
46
53
6
-
0-0-0-


S/F

GGAGAA












4-44





P111L/S/F
SaBE3
UCUCCUUUCAGUCC
1662
(AAGAAT)
20 (C7-14)
4.4
88
47
81
69
37
24
4
-
0-0-1-




UCUAAG












4-27





P229L/S/F
KKH-
GUAAUCCCAGGUAA
1663
(ATTGGT)
20 (C5-12)
4.3
88
45
81
26
64
45
4
-
0-0-1-



SaBE3
GAAGUA












5-17





P1791L/S/F
KKH-
GAAGUUUGAUCCCG
1664
(CCCAGT)
20 (C11/12)
2.6
98
59
67
37
92
59
2
-
0-0-0-



SaBE3
AUGCGA












1-1





C315Y
SaBE3
AACCACAAAGGAGA
1665
(TTGGAT)
20 (C8)
4.6
89
47
76
1
40
14
4
-
0-0-0-




GCAUCU












2-21





C1154Y
SaBE3
GAAACAGGCCUCUG
1666
(CGGAAT)
20 (C15)
6.6
90
55
74
17
46
66
6
-
0-0-0-




GCUCAU












4-4





P1133/5L/
St1BE3
ACCCUUUGCCUGGA
1667
(GAAGAAG)
20 (C16)
5.8
93
60
70
39
51
40
5
-
0-0-1-


S/F

GAAGGA












2-17





G786R
EQR-
GAUUCCAGUAAAGA
1668
(TGAG)
20 (C4)
6.3
63
59
99
24
78
42
6
-
0-0-1-



SpBE3
CCUAAG












28-179





P1145L/S/F
SpBE3
CUGAACCUAUGAAU
1669
(GAG)
20 (C10)
6.4
94
68
59
82
45
24
6
-
0-0-0-




UCCGAU












1-117





P609/10L/
VQR-
GUCCCCACCAAUGC
1670
(TGAA)
20 (C17)
5.5
87
57
75
12
87
60
5
+
0-0-0-


S/F
SpBE3
UGCCGG












10-66





P609/10L/
VQR-
AGGUCCCCACCAAU
1671
(GGTG)
20 (C11)
8.7
84
49
78
14
43
13
8
+
0-0-0-


S/F
SpBE3
GCUGCC












9-85





P1093L/S/F
KKH-
CACCUGGGGAAUCC
1672
(GAAAAT)
20 (C12)
6.5
98
59
62
2
36
60
6
-
0-0-0-



SaBE3
GAUUUG












0-8





C944Y
VRER-
AUAAGGCACAUAGC
1673
(AGCG)
20 (C13)
4.8
100
60
48
12
66
21
4
-
0-0-0-



SpBE3
UUGACC












1-6





P337L/S/F
EQR-
AAACCCUGAUUAUG
1674
(CGAG)
20 (C13)
3.9
77
63
82
7
29
28
3
-
0-0-0-



SpBE3
GCUACA












13-121





P594L/S/F
SpBE3
CACAGACCCCAGGA
1675
(CAG)
20 (C5)
7.7
82
59
77
65
72
64
7
+
0-0-2-




GCGACG












17-142





P80L/S/F
KKH-
GACCCCUACUAUGC
1676
(AAAGGT)
20 (C6)
4.5
95
62
55
12
70
48
4
-
0-0-0-



SaBE3
AGACAA












2-7





P80L/S/F
St3BE3
CCCCUACUAUGCAG
1677
(AGGTG)
20 (C7)
3.5
92
37
65
27
24
42
3
-
0-0-0-




ACAAAA












4-31





P60L/S/F
St3BE3
AAACAGCUGCCCUU
1678
(TGGGG)
20 (C11)
8.4
96
26
61
3
53
35
8
-
0-0-0-




CAUCUA












3-29





P1490Sd
KKH-
GGGUCCAAGAAGCC
1679
(GCCAAT)
20 (C13)
5.0
75
57
81
64
74
57
5
-
0-0-0-



SaBE3
ACAAAA












2-28





P594L/S/F
KKH-
ACAGACCCCAGGAG
1680
(AGCAGT)
20 (C14)
4.3
97
52
58
14
77
55
4
+
0-0-0-



SaBE3
CGACGC












2-12





C324Y
VQR-
CUGGACACUGACUA
1681
(AGAA)
20 (C7)
5.5
85
69
69
75
67
61
5
+
0-0-1-



SpBE3
CACACG












7-86





G830R
St1BE3
UGACAAUCCUUCCA
1682
(CTAGAAA)
20 (C16)
4.1
96
58
58
15
54
36
4
-
0-0-0-




CAUCUG












2-13





C1526Y
KKH-
AGACAGAUAAGAAC
1683
(ACTAAT)
20 (C5)
4.5
87
54
67
41
53
20
4
-
0-0-0-



SaBE3
CAUGAU












3-26





P850L/S/F
KKH-
UCCUGGCCAACAUU
1684
(GCTGAT)
20 (C6)
5.4
94
58
52
31
55
43
5
-
0-0-0-



SaBE3
GAACAU












2-15





P67L/S/F
St3BE3
UGGGGACAUUCCUC
1685
(TGGTG)
20 (C9)
4.4
96
56
34
5
61
77
4
+
0-0-0-




CCGGCA












0-29





P148L/S/F
KKH-
AUAACCCACCGGAC
1686
(AAAAAT)
20 (C12)
6.5
99
52
46
17
52
28
6
+
0-0-0-



SaBE3
UGGACC












0-4





P1133/5L/
St1BE3
CAGUUGAUAACCCU
1687
(GGAGAAG)
20 (C14)
5.3
97
54
16
22
75
31
5
-
0-0-0-


S/F

UUGCCU












0-25





P325L/S/F
VQR-
AGUGUCCAGAGGGG
1688
(TGTG)
20 (C8)
6.9
90
54
60
3
54
47
6
-
0-0-0-



SpBE3
UACACC












5-64





P148L/S/F
SpBE3
CCAUGAAUAACCCA
1689
(TGG)
20 (C11)
4.4
98
52
46
18
56
43
4
+
0-0-0-




CCGGAC












3-24





P1090L/S/F
St3BE3
GUGACAGUGCCAAU
1690
(TGGGG)
20 (C14)
9.0
98
50
51
16
59
10
9
+
0-0-0-




UGCACC












1-20





P1498/1500
KKH-
AAUUCCUCGACCAG
1691
(AAAAAT)
20 (C9110)
5.6
99
50
33
10
43
54
5
-
0-0-0-


L/S/F
SaBE3
GGGUAA












0-2





S1490Fd
SpBE3
UGGGGUCCAAGAAG
1692
(AAG)
20 (C819)
4.2
63
64
85
16
74
64
4
-
0-0-3-




CCACAA












18-214





P1090L/S/F
SpBE3
UGACAGUGCCAAUU
1693
(GGG)
20 (C7/8)
7.4
80
63
68
42
71
30
7
+
0-0-1-




GCACCU












12-120





P1018L/S/F
St3BE3
CAAAAAGCCAAAGA
1694
(GGGAG)
20 (C5/6)
4.5
87
55
61
40
77
30
4
-
0-0-0-




UUUCCA












7-74





G1626R
SpBE3
UUGCUCCUUUGACU
1695
(AGG)
20 (C10/11)
5.6
86
62
42
43
59
56
5
-
0-0-4-




AGACGU












5-68





P711/2L/
KKH-
AAAAUGUCCACCUU
1696
(ACAGAT)
20 (C7/8)
5.6
91
57
29
6
47
29
5
+
0-0-1-


S/F
SaBE3
GGUGGU












2-28





C140Y
KKH-
AUAAAUAUGCAGUU
1697
(AATAGT)
20 (C-1)
9.0
77
60
70
35
60
54
9
-
0-0-0-



SaBE3
UGUCAG












5-34





P1083L/S/F
KKH-
CACAAUCCCAGCCU
1698
(GACAGT)
20 (C5)
6.0
85
62
50
18
62
45
6
-
0-0-0-



SaBE3
CACAGU












2-28





G1626R
SaBE3
UUUGCUCCUUUGAC
1699
(TAGGAT)
20 (C6)
4.4
91
56
43
49
70
29
4
-
0-0-3-




UAGACG












3-6





P609/10L/
KKH-
AGUAGGUCCCCACC
1700
(GCCGGT)
20 (C7)
6.1
97
50
39
21
61
48
6
-
0-0-0-


S/F
SaBE3
AAUGCU












1-7





P1496/8L/
SaBE3
CAAAAGCCAAUUCC
1701
(AGGGGT)
20 (C12)
3.5
95
52
25
6
71
37
3
+
0-0-0-


S/F

UCGACC












1-7





P60L/S/F
SpBE3
ACAGCUGCCCUUCA
1702
(GGG)
20 (C13)
6.7
69
71
77
39
52
44
6
-
0-0-4-




UCUAUG












19-191





P1133/5L/
St3BE3
ACAGUUGAUAACCC
1703
(TGGAG)
20 (C7)
4.7
94
52
29
12
62
11
4
-
0-0-1-


S/F

UUUGCC












3-20





P609/10L/
St3BE3
UAGGUCCCCACCAA
1704
(CGGTG)
20 (C3)
4.6
94
52
15
12
61
46
4
+
0-0-0-


S/F

UGCUGC












5-24





P1145L/S/F
EQR-
GCUGAACCUAUGAA
1705
(TGAG)
20 (C4)
3.4
87
58
55
32
90
29
3
-
0-0-1-



SpBE3
UUCCGA












2-79





P1151L/S/F
KKH-
AGCCAGAGGCCUGU
1706
(GATGGT)
20 (C8)
9.0
90
55
46
8
43
31
9
-
0-0-0-



SaBE3
UUCACA












1-20





P1090L/S/F
SpBE3
GACAGUGCCAAUUG
1707
(GGG)
20 (C4/5)
5.3
70
57
74
5
74
62
5
+
0-0-1-




CACCUG












20-184





P1133/5L/
St3BE3
GAUAACCCUUUGCC
1708
(AGGAG)
20 (C5)
3.7
93
51
42
12
82
33
3
-
0-0-0-


S/F

UGGAGA












3-35





P1955/6L/
KKH-
CCACCUCUCCACCU
1709
(GATAGT)
20 (C8)
8.1
92
52
42
63
37
38
8
-
0-0-0-


S/F
SaBE3
UCAUAU












1-12





P1496L/S/F
St3BE3
CAAAAGCCAAUUCC
1710
(AGGGG)
20 (C9)
3.5
92
52
25
6
71
37
3
+
0-0-2-




UCGACC












1-22





P1360L/S/F
KKH-
GGUUUCCUGCAAGU
1711
(CCAAAT)
20 (C13)
10.8
90
47
53
24
57
48
10
-
0-0-0-



SaBE3
CAAGUU












3-9





C1154Y
SpBE3
GAAACAGGCCUCUG
1712
(CGG)
20 (C10)
6.6
68
55
74
17
46
66
6
-
0-0-1-




GCUCAU












22-132





P1722L/S/F
St3BE3
CAUCCUGGAAGUUC
1713
(AGGAG)
20 (C14)
4.4
89
53
42
5
39
35
4
-
0-0-1-




AGUUGA












5-40





C1370Y
SpBE3
GCAAAACAUUCGGA
1714
(TGG)
20 (C2)
3.9
95
37
47
14
64
26
3
-
0-0-1-




ACGAUU












2-35





P1773L/S/F
KKH-
CCUCUGAGUGAGGA
1715
(TGAGAT)
20 (C3)
5.0
92
50
25
16
40
42
5
-
0-0-1-



SaBE3
UGACUU












3-12





P60L/S/F
VQR-
CAGCUGCCCUUCAU
1716
(GGAC)
20 (C4)
6.0
76
65
47
21
68
67
6
-
0-0-0-



SpBE3
CUAUGG












13-167





G1736R
KKH-
UAUUCCAACAGAUG
1717
(CACAGT)
20 (C10/11)
5.5
95
42
46
1
19
39
5
-
0-0-0-



SaBE3
GGUUAC












1-10





P1093L/S/F
VQR-
GCACCUGGGGAAUC
1718
(GGAA)
20 (C6/7)
5.4
93
36
48
6
36
59
5
-
0-0-1-



SpBE3
CGAUUU












2-54





P1133/5L/
EQR-
AUAACCCUUUGCCU
1719
(GGAG)
20 (C12/13)
6.5
59
53
81
33
46
53
6
-
0-0-2-


S/F
SpBE3
GGAGAA












22-182





P187L/S/F
SaBE3
UUCGUGACCCGUGG
1720
(CTGGAT)
20 (C12-14)
7.2
87
53
51
10
73
58
7
-
0-0-2-




AACUGG












2-5





C1690Y
KKH-
AGGCAAAUCAUACU
1721
(AAAGGT)
20 (C10/11)
6.3
91
49
43
19
36
33
6
+
0-0-1-



SaBE3
GUUGCC












1-19





P229L/S/F
St3BE3
AAUCCCAGGUAAGA
1722
(TGGTG)
20 (C1-5)
7.1
83
38
57
9
38
54
7
-
0-0-1-




AGUAAU












4-47





C330Y
VQR-
UCACACAGGUGUAC
1723
(GGAC)
20 (C213)
5.8
85
55
38
2
27
51
5
+
0-0-0-



SpBE3
cccucu












9-101





G1577R
KKH-
AUUCCAUCCUACAG
1724
(AGTAGT)
20 (C-1)
4.4
89
51
15
15
37
35
4
-
0-0-0-



SaBE3
UGAAGU












1-20


C324Y
St1BE3
CUCUGGACACUGAC
1725
(CGAGAAA)
20 (C1)
5.8
87
52
23
34
45
21
5
-
0-0-1-




UACACA












3-46





G1626R
VQR-
UGCUCCUUUGACUA
1726
(GGAT)
20 (C13)
4.8
89
49
48
50
26
51
4
-
0-0-3-



SpBE3
GACGUA












5-66





C275Y
KKH-
AUUUCGAAAACAUU
1727
(TCAGGT)
20 (C15)
5.8
83
45
55
7
52
14
5
-
0-0-0-



SaBE3
UAUGCU












3-48





P1093L/S/F
SpBE3
UGCACCUGGGGAAU
1728
(TGG)
20 (C16)
7.0
94
34
44
0
29
37
7
-
0-0-0-




CCGAUU












4-48





P683L/S/F
EQR-
AUGAUCCCAACCUC
1729
(AGAG)
20 (C1)
3.8
66
61
71
36
80
57
3
-
0-0-1-



SpBE3
AGACAG












18-162





P1018L/S/F
KKH-
AAAAAGCCAAAGAU
1730
(GGAGAT)
20 (C18)
5.8
49
57
88
27
91
43
5
-
0-0-1-



SaBE3
UUCCAG












12-27





P1090L/S/F
SpBE3
GUGACAGUGCCAAU
1731
(TGG)
20 (C2)
9.0
86
50
51
16
59
10
9
+
0-0-2-




UGCACC












8-82





P609/10L/
SpBE3
CCACCAAUGCUGCC
1732
(CGG)
20 (C16)
7.3
87
50
49
19
22
47
7
-
0-0-1-


S/F

GGUGAA












7-85





P1319L/S/F
VQR-
GCAAUUCCUUCCAU
1733
(TGTG)
20 (C415)
5.9
63
55
73
16
64
28
5
-
0-0-2-



SpBE3
CAUGAA












18-223





P536L/S/F
SpBE3
CAGUCACCACUCAG
1734
(TGG)
20 (C3/4)
7.0
81
43
55
9
45
39
7
-
0-0-1-




CAUUCG












12-123





P1297L/S/F
KKH-
AAGACCUCUAAGAG
1735
(CTAGAT)
20 (C112)
5.1
98
38
8
6
40
54
5
-
0-0-0-



SaBE3
CCUUAU












1-5





P60L/S/F
SpBE3
AAACAGCUGCCCUU
1736
(TGG)
20 (C314)
8.4
74
26
61
3
53
35
8
-
0-0-2-




CAUCUA












12-147





P35L/S/F
St1BE3
UCAAAGGAACCCAA
1737
(AAAGAAA)
20 (C11/12)
5.0
43
46
91
11
72
29
5
-
0-1-0-




AGAAGA












21-224





P67/8L/S/F
SpBE3
UGGGGACAUUCCUC
1738
(TGG)
20 (C7/8)
4.4
78
56
34
5
61
77
4
+
0-0-0-




CCGGCA












8-149





P646L/S/F
KKH-
AGCUUCUGCCAGAG
1739
(ATAGAT)
20 (C5/6)
6.7
94
40
24
1
30
23
6
-
0-0-0-



SaBE3
GUGAUA












3-16





P1829L/S/F
St3BE3
AUGGAUCUGCCCAU
1740
(TGGTG)
20 (C4/5)
10.0
68
49
65
10
39
59
10
-
0-2-3-




GGUUAG












2-39





C330Y
SpBE3
UUCACACAGGUGUA
1741
(TGG)
20 (C3/4)
5.0
87
42
46
4
29
50
5
+
0-0-0-




CCCCUC












8-88





G1577R
SpBE3
UCCAUCCUACAGUG
1742
(TAG)
20 (C2/3)
6.5
72
61
40
24
62
53
6
-
0-0-4-




AAGUAG












11-122





P1496/8L/
SpBE3
CAAAAGCCAAUUCC
1743
(AGG)
20 (C1/2)
3.5
81
52
25
6
71
37
3
+
0-0-3-


S/F

UCGACC












12-94





C1328Y
KKH-
AGACACACAAGUAG
1744
(CATGAT)
20 (C13/14)
5.1
90
43
22
5
29
29
5
-
0-0-0-



SaBE3
CACAUU












1-20





P1496L/S/F
SpBE3
ACAAAAGCCAAUUC
1745
(CAG)
20 (C415)
5.1
85
48
8
14
50
38
5
+
0-0-0-




CUCGAC












10-75





G1339R
St1BE3
CCCAUGAUGCUGAA
1746
(CCAGAAT)
20 (C7)
6.9
62
64
70
41
63
39
6
-
0-2-3-




UAUCAG












3-15





P1717L/S/F
SpBE3
GACCCAAAAAAAGU
1747
(TGG)
20 (C13114)
5.9
63
56
69
6
73
0
5
-
0-0-3-




UCAUCC












18-120





P591L/S/F
EQR-
UUUGUGCCCCACAG
1748
(GGAG)
20 (C12/13)
6.8
56
55
76
70
75
54
6
+
0-0-1-



SpBE3
ACCCCA












32-223





G1626R
SpBE3
UUUGCUCCUUUGAC
1749
(TAG)
20 (C13/14)
4.4
76
56
43
44
70
29
4
-
0-0-2-




UAGACG












24-72





P114L/S/F
KKH-
CCUCUAAGAAGAAU
1750
(TAAGAT)
20 (C3)
6.1
93
38
30
16
37
0
6
-
0-0-0-



SaBE3
AUCUAU












2-21





P800L/S/F
KKH-
AUGGAUCCAUAUGA
1751
(CCAAGT)
20 (C12)
5.8
90
41
3
3
22
62
5
-
0-0-0-



SaBE3
GUAUUU












2-18





P1285L/S/F
SpBE3
UUGGCCCCAUUAAA
1752
(CGG)
20 (C13)
4.5
77
52
46
51
45
39
4
-
0-0-1-




UCCCUU












10-123





G1626R
SpBE3
CUUUGACUAGACGU
1753
(CGG)
20 (C5)
7.9
81
48
9
41
28
52
7
-
0-0-3-




AGGAUU












2-53





P111L/S/F
St1BE3
UUCUCCUUUCAGUC
1754
(GAAGAAT)
20 (C14)
6.5
88
41
6
6
17
26
6
-
0-0-0-




CUCUAA












8-47





C944Y
SpBE3
AAUAAGGCACAUAG
1755
(CAG)
20 (C13/14)
7.7
75
53
19
12
34
35
7
-
0-0-3-




CUUGAC












7-76





C753Y
KKH-
AACUAUGCAAAUGG
1756
(CAAGAT)
20 (C12/13)
5.0
79
48
36
2
54
34
5
-
0-0-2-



SaBE3
UAAUUG












3-48





P610L/S/F
SpBE3
CACCAAUGCUGCCG
1757
(GGG)
20 (C11/12)
4.0
90
37
17
4
19
40
4
-
0-0-0-




GUGAAC












6-66





P1829L/S/F
SpBE3
AUGGAUCUGCCCAU
1758
(TGG)
20 (C10/11)
10.0
60
49
65
10
39
59
10
-
0-2-4-




GGUUAG












14-116





P1090/3L/
KKH-
UGCCAAUUGCACCU
1759
(TCCGAT)
20 (C7/8)
8.9
82
43
21
4
44
31
8
+
0-0-1-


S/F
SaBE3
GGGGAA












4-13





P711/2L/
VQR-
AAUGUCCACCUUGG
1760
(AGAT)
20 (C112)
8.2
82
43
7
5
36
56
8
-
0-0-0-


S/F
SpBE3
UGGUAC












12-94





P5/6/7L/S/F
EQR-
GUUGCCUCCCCCAG
1761
(AGAG)
20 (C1/2)
7.0
57
34
67
2
53
31
7
+
0-0-1-



SpBE3
GACCUC












23-184





P1829L/S/F
KKH-
CCAUGGAUCUGCCC
1762
(AGTGGT)
20 (C9/10)
4.3
94
30
17
8
44
50
4
-
0-0-1-



SaBE3
AUGGUU












3-8





C325Y
EQR-
CUCUGGACACUGAC
1763
(CGAG)
20 (C2/3)
5.8
71
52
23
34
45
21
5
-
0-0-2-



SpBE3
UACACA












14141





P60L/S/F
SpBE3
AACAGCUGCCCUUC
1764
(GGG)
20 (C1/2)
6.2
74
49
3
7
24
25
6
-
0-0-1-




AUCUAU












10-115





P111L/S/F
St1BE3
GCUUUCUCCUUUCA
1765
(TAAGAAG)
20 (C2/3)
4.9
93
28
14
11
38
34
4
+
00




GUCCUC












5-29





P187L/S/F
VQR-
CGUGACCCGUGGAA
1766
(GGAT)
20 (C8-12)
6.0
77
43
11
11
48
57
6
+
0-0-3-



SpBE3
CUGGCU












9-35





P744L/S/F
KKH-
AUGGAUCCUUUUGU
1767
(TGCAAT)
20 (C14/15)
6.6
91
28
0
0
38
59
6
-
0-0-0-



SaBE3
AGAUCU












2-22





P1722L/S/F
EQR-
AUCCUGGAAGUUCA
1768
(GGAG)
20 (C9/10)
4.7
63
55
53
16
23
44
4
-
0-0-3-



SpBE3
GUUGAA












13-230





G236R
SpBE3
AAGCCCCUACAAUU
1769
(AGG)
20 (C16/17)
9.1
75
43
42
20
26
35
9
-
0-0-2-




GUCUUC












9-84





P1829L/S/F
VQR-
UGGAUCUGCCCAUG
1770
(GGTG)
20 (C13/14)
6.3
77
41
34
9
23
37
6
-
0-0-2-



SpBE3
GUUAGU












11-102





G1662R
VRER-
AAGUUGGACAUUCC
1771
(GGCG)
20 (C12/13)
4.2
64
54
19
8
66
59
4
-
0-1-1-



SpBE3
AAAGAU












1-3





P1133/5L/
SpBE3
GAUAACCCUUUGCC
1772
(AGG)
20 (C10/11)
3.7
66
51
42
12
82
33
3
-
0-0-1-


S/F

UGGAGA












15-115





P1151L/S/F
KKH-
AUGAGCCAGAGGCC
1773
(ACAGAT)
20 (C9110)
6.0
93
24
18
1
16
51
6
-
0-0-0-



SaBE3
UGUUUC












1-18





P1722L/S/F
SpBE3
CAUCCUGGAAGUUC
1774
(AGG)
20 (C7/8)
4.4
63
53
42
5
39
35
4
-
0-0-2-




AGUUGA












21-161





C134Y
VQR-
AGUGCACAUGAUGA
1775
(TGAA)
20 (C2/3)
6.3
55
60
55
16
61
29
6
+
0-1-2-



SpBE3
GCAUGC












12-131





C1562Y
SpBE3
GCACACAUUCUCCA
1776
(AGG)
20 (C12/13)
6.0
45
47
69
21
61
24
6
-
0-1-2-




GUGAAA












23-147





C1159Y
SpBE3
CCAUACACAACCUG
1777
(AAG)
20 (C4/5)
2.7
43
57
70
14
67
24
2
-
1-0-1-




ACAAGA












8-88





P906L/S/F
VQR-
UACGCUCCCACGGU
1778
(TGAA)
20 (C10/11)
6.6
47
53
59
10
44
46
6
+
1-0-0-



SpBE3
GGCACA












2-33





C315Y
SpBE3
ACCACAAAGGAGAG
1779
(TGG)
20 (C13/14)
5.8
60
30
44
2
34
40
5
-
0-0-3-




CAUCUU












19-168





C1715Y
St1BE3
ACAGUCGGGUGGCU
1780
(TAAGAAT)
20 (C16/17)
7.4
50
53
33
2
70
36
7
-
1-0-0-




UACUGU












1-3





P850L/S/F
VQR-
CUGGCCAACAUUGA
1781
(TGAT)
200 ()
5.2
41
58
26
4
56
31
5
-
0-1-4-



SpBE3
ACAUGC












23-152





P1829L/S/F
SaBE3
CUGCCCAUGGUUAG
1782
(CCGGAT)
20 (C10-14)
5.5
47
46
6
5
41
71
5
-
0-2-1-




UGGUGA












1-13





C275Y
SpBE3
UUCGAAAACAUUUA
1783
(AGG)
20 (C11/12)
4.3
54
25
2
0
13
17
4
-
0-0-5-




UGCUUC












15-166






aBE types: SpBE3 = APOBEC1-SpCas9n-UGI; VQR-SpBE3 = APOBEC1-VQR-SpCas9n-UGI; EQR-SpBE3 = APOBEC1-EQR-SpCas9n-UGI; VRER-SpBE3 = APOBEC1-VRER-SpCas9n-UGI; SaBE3 = APOBEC1-SaCas9n-UGI; KKH-SaBE3 = APOBEC1-KKH-SaCas9n-UGI; St3BE3 = APOBEC1-St3Cas9n-UGI; St1BE3 = APOBEC1-St1Cas9n-UGI.




bEfficiency score, based on Housden et al (Science Signaling, 2015, 8 (393):rs9).




cSpecificity scores based on Hsu et al (Nature biotechnology, 2013, 31 (9):827-832), Fusi et al (bioRxiv 021568; doi: http://dx.doi.org/10.1101/021568), Chari et al (Nature Methods, 2015, 12 (9):823-6), Doench et al (Nature Biotechnology, 2014, 32 (12):1262-7), Wang et al (Science, 2014, 343 (6166): 80-4), Moreno-Mateos et al (Nature Methods, 2015, 12 (10)982-8), Housden et al (Science Signaling, 2015, 8 (393):rs9), and the “Prox/GC” column shows “+” if the proximal 6 bp to the PAM has a GC count > = 4, and GG if the guide ends with GG, based on Farboud et al (Genetics, 2015, 199 (4):959-71).




dNumber of predicted off-target binding sites in the human genome allowing up to 0, 1, 2, 3 or 4 mismatches, respectively shown in the format 0-1-2-3-4. Algorithm used: Haeussler et al, Genome Biol. 2016; 17: 148.




dPhospho-serine site S1490.














TABLE 9







Exemplary Efficiency and Specificity Scores for gRNAs for Alteration of Intron/Exon Junctions in NaV1.7 (SNA9A) Gene via


Base Editing
























Programmable
SEQ










Pro



Target
BE
guide-RNA
ID

gRNA size






M.-
Hous-
x/
Off


variants
typea
sequence
NOs
PAM
(C edited)
Effb
Hsuc
Fusi
Chari
Doench
Wang
M.
den
GC
targetsd

























acceptor,
KKH-
GCAGCACGCAGCGU
1784
(AAAAAT)
20 (C15)
6.6
98
60
99
52
91
67
6
+
0-0-0-


intron 9
SaBE3
CUAGGG












0-8





acceptor,
KKH-
GCAGCACGCAGCGU
1785
(AAT)
20 (C15)
6.6
98
60
99
52
91
67
6
+
0-0-0-


intron 9
SaBE3
CUAGGG












0-8





acceptor,
St3BE3
GUUUAGGACCUAUA
1786
(TGGGG)
20 (C10/11)
5.6
97
71
97
40
89
30
5
+
0-0-0-


intron 16

UCAGGG












0-18





acceptor,
St1BE3
GAUUCCAGUAAAGA
1787
(TGAGAAA)
20 (C15/16)
6.3
94
59
99
24
78
42
6
-
0-0-0-


intron 14

CCUAAG












1-52





donor, intron
KKH-
ACUUACAACUUGAA
1788
(ATAGGT)
20 (C6)
4.8
91
67
97
22
57
34
4
+
0-0-0-


22
SaBE3
GCAGAG












2-20





acceptor,
St3BE3
GCUAGAAACAUACC
1789
(TGGAG)
20 (C14)
4.6
96
58
90
19
53
44
4
-
0-0-0-


intron 26

UGUAUG












1-19





donor, intron
SaBE3
ACCAGGGCACCACU
1790
(CAGGAT)
20 (C2/3)
8.4
86
70
97
37
55
49
8
+
0-0-2-


19

GCUGAG












7-16





donor, intron
St1BE3
AACCUCCAUACACA
1791
(CAAGAAA)
20 (C16/17)
3.4
98
61
84
25
77
29
3
-
0-0-0-


19

ACCUGA












0-10





acceptor,
SpBE3
GUUUAGGACCUAUA
1792
(TGG)
20 (C10/11)
5.6
84
71
97
40
89
30
5
+
0-0-1-


intron 16

UCAGGG












6-63





acceptor,
St1BE3
AACGACCUAGUAUU
1793
(AAAGAAA)
20 (C7)
6.0
92
53
89
23
59
39
6
-
0-0-0-


intron 21

CAAAAG












2-28





donor, intron
KKH-
UUACGCAAAAACAA
1794
(CAAAAT)
20 (C4)
4.0
99
71
79
60
78
39
4
-
0-0-0-


5
SaBE3
UGACGA












0-10





acceptor,
KKH-
CCAGUAAAGACCUA
1795
(AAAAAT)
20 (C11/12)
5.0
95
64
80
40
62
47
5
-
0-0-0-


intron 14
SaBE3
AGUGAG












1-20





acceptor,
SpBE3
GACACUGACUACAC
1796
(AAG)
20 (C9)
4.0
87
60
87
17
87
30
4
-
0-0-1-


intron 8

ACGAGA












5-60





acceptor,
St1BE3
UGUCUUCAGGCCUG
1797
(GGAGAAA)
20 (C11/12)
4.8
89
54
83
1
43
53
4
-
0-0-1-


intron 6

AAAAUG












434





donor, intron
VQR-
UUACCAGUCUGAAU
1798
(AGAA)
20 (C4/5)
6.6
92
62
80
68
64
12
6
+
0-0-0-


15
SpBE3
GAUCGC












4-58





donor, intron
SpBE3
CGUCCUUACGCUGU
1799
(AAG)
20 (C9)
7.5
84
58
85
20
53
57
7
-
0-0-0-


12b

CAUCAG












449





donor, intron
KKH-
ACUCGACAUUUUUG
1800
(TCCGGT)
20 (C2)
5.4
99
55
67
8
51
52
5
+
0-0-0-


4
SaBE3
GUCCAG












2-3





acceptor,
VQR-
UUCCAGUAAAGACC
1801
(AGAA)
20 (C13/14)
2.7
74
68
91
13
62
33
2
-
0-0-1-


intron 14
SpBE3
UAAGUG












9-206





acceptor,
EQR-
GAUUCCAGUAAAGA
1802
(TGAG)
20 (C13/14)
6.3
63
59
99
24
78
42
6
-
0-0-1-


intron 14
SpBE3
CCUAAG












28-179





acceptor,
KKH-
GGUCGUGCCCUAAA
1803
(ATCAAT)
20 (C9/10)
6.1
85
32
76
59
69
25
6
-
0-0-0-


intron 12
SaBE3
AAAAAA












1-14





acceptor,
St3BE3
UAGGUUUAGGACCU
1804
(GGGTG)
20 (C13/14)
6.1
97
64
28
11
64
52
6
-
0-0-0-


intron 16

AUAUCA












0-13





acceptor,
EQR-
GGACCUAUAUCAGG
1805
(AGAG)
20 (C5/6)
4.7
60
46
98
25
87
43
4
+
0-0-3-


intron 16
SpBE3
GuGGGG












15-150





acceptor,
VQR-
AGGUUUAGGACCUA
1806
(GGTG)
20 (C12/13)
5.1
79
71
79
5
75
50
5
-
0-0-1-


intron 16
SpBE3
UAUCAG












5-100





acceptor,
VQR-
ACACUGACUACACA
1807
(AGAA)
20 (C8)
3.4
82
59
76
25
72
42
3
-
0-0-0-


intron 8
SpBE3
cGAGAA












10-130





acceptor,
KKH-
GUAAAGACCUAAGU
1808
(AATAAT)
20 (C8/9)
6.9
75
50
82
55
84
26
6
-
0-0-1-


intron 14
SaBE3
GAGAAA












7-59





acceptor,
SpBE3
ACGCAGCGUCUAGG
1809
(TGG)
20 (C10)
6.7
75
37
82
30
40
48
6
-
0-0-0-


intron 9

GAAAAA












2-73





donor, intron
VQR-
UUACUUGCAACCUA
1810
(CGAT)
20 (C4)
3.9
93
63
63
74
59
45
3
+
0-0-0-


1
SpBE3
GCCCGC
345

















donor, intron
KKH-
GGACACUUACAACU
1811
(AGAGAT)
20 (C10)
7.3
95
53
61
39
72
-6
7
-
0-0-0-


22
SaBE3
UGAAGC












0-8





acceptor,
KKH-
GAUUGGUCGUGCCC
1812
(AAAAAT)
20 (C13/14)
4.5
98
25
56
39
70
40
4
-
0-0-0-


intron 12
SaBE3
UAAAAA












0-4





acceptor,
VQR-
CUGGACACUGACUA
1813
(AGAA)
20 (C12)
5.5
85
69
69
75
67
61
5
+
0-0-1-


intron 8
SpBE3
CACACG












7-86





acceptor,
KKH-
AAACAUACCUGUAU
1814
(GAAAAT)
20 (C9)
6.2
90
63
62
15
70
43
6
+
0-0-0-


intron 26
SaBE3
GUGGAG












1-20





donor, intron
SpBE3
UUUACCAGUCUGAA
1815
(CAG)
20 (C5/6)
6.4
83
69
70
50
57
26
6
-
0-0-2-


15

UGAUCG












3-86





acceptor,
St3BE3
ACCUAUAUCAGGGU
1816
(AGGGG)
20 (C3/4)
6.9
72
44
80
9
53
40
6
+
0-0-0-


intron 16

GGGGAG












7-85





acceptor,
St3BE3
UUAGGACCUAUAUC
1817
(GGGAG)
20 (C8/9)
3.9
91
61
41
40
66
73
3
+
0-0-1-


intron 16

AGGGUG












7-60





acceptor,
St1BE3
UCACAACGACCUAG
1818
(AAAGAAA)
20 (C11)
5.7
99
50
52
1
31
15
5
-
0-0-0-


intron 21

UAUUCA












0-9





acceptor,
KKH-
UUGUUCUGCAAAGA
1819
(AATAAT)
20 (C6)
5.6
67
43
84
47
61
41
5
-
0-0-2-


intron 25
SaBE3
AAUAAG












9-62





acceptor,
St1BE3
CCUGUAUGUGGAGG
1820
(ATAGAAA)
20 (C2)
4.2
85
31
66
7
36
50
4
-
0-0-0-


intron 26

AAAAUA












749





donor, intron
St1BE3
AAAACGUCCUUACG
1821
(TCAGAAG)
20 (C13)
3.6
98
53
27
2
65
30
3
-
0-0-0-


12b

CUGUCA












1-8





acceptor,
VQR-
UCUUCAGGCCUGAA
1822
(AGAA)
20 (C9/10)
6.6
56
67
94
74
77
54
6
-
0-0-2-


intron 6
SpBE3
AAUGGG












23-213





donor, intron
SaBE3
UAUUUUUUUACCCC
1823
(AGGAAT)
20 (C11/12)
3.7
98
52
35
18
59
24
3
+
0-0-0-


25

UGGUCG












0-10





donor, intron
KKH-
ACUUACUUGCAACC
1824
(GCCGAT)
20 (C6)
7.2
97
52
36
31
74
14
7
+
0-0-0-


1
SaBE3
UAGCCC












2-9





donor, intron
VQR-
AUUUUUUUACCCCU
1825
(GGAA)
20 (C10/11)
8.0
83
60
66
49
47
32
8
+
0-0-1-


25
SpBE3
GGUCGA












12-133





acceptor,
VQR-
UACUAUGAAAGUCU
1826
(GGAA)
20 (C13)
5.3
62
63
86
28
64
37
5
+
0-0-5-


intron 2
SpBE3
GCAGGA












14-194





donor, intron
VQR-
AAUAUUCUUACCUA
1827
(AGAT)
20 (C11/12)
4.2
63
62
85
15
80
51
4
-
0-0-2-


26
SpBE3
CAAUGG












22-264





acceptor,
SaBE3
ACCUAAACACAAGA
1828
(TGGGAT)
20 (C2/3)
6.7
91
56
28
11
58
26
6
-
0-0-1-


intron 4

UUCCAU












1-18





acceptor,
KKH-
AGAGGCCUGGAUGG
1829
(AGAAAT)
20 (C6/7)
6.8
80
60
66
52
81
75
6
-
0-0-3-


intron 1
SaBE3
AAACAA












3-20





donor, intron
KKH-
AGUACCUACAUCAA
1830
(GGAAAT)
20 (C9)
4.6
87
41
59
9
46
33
4
-
0-0-1-


20
SaBE3
CAAUUA












4-23





donor, intron
SpBE3
GACACUUACAACUU
1831
(GAG)
20 (C9)
5.3
62
63
83
47
76
33
5
-
0-0-4-


22

GAAGCA












13-121





acceptor,
SpBE3
CCAUACACAACCUG
1832
(AAG)
20 (C11/12)
2.7
74
57
70
14
67
24
2
-
0-0-1-


intron 18

ACAAGA












8-88





acceptor,
KKH-
CGCAGCGUCUAGGG
1833
(GGAAAT)
20 (C9)
6.0
98
44
17
28
29
52
6
-
0-0-0-


intron 9
SaBE3
AAAAAU












0-2





donor, intron
SpBE3
GAGACUUACCAAAU
1834
(TAG)
20 (C5/6)
7.4
67
49
75
14
77
32
7
-
0-0-1-


14

UUCCUA












18-121





acceptor,
St3BE3
UUGUCUUCAGGCCU
1835
(GGGAG)
20 (C12/13)
5.8
92
49
33
25
32
59
5
-
0-0-1-


intron 6

GAAAAU












3-22





donor, intron
KKH-
UUCUUACCUGGGAU
1836
(AATAGT)
20 (C7/8)
5.3
89
52
37
17
49
45
5
-
0-0-1-


6
SaBE3
UACAGA












2-14





acceptor,
SpBE3
UUUAGGACCUAUAU
1837
(GGG)
20 (C9/10)
7.5
80
60
15
17
69
48
7
+
0-0-1-


intron 16

CAGGGU












11-87





donor, intron
KKH-
AACGUCCUUACGCU
1838
(AGAAGT)
20 (C11)
6.4
95
45
34
4
28
46
6
-
0-0-0-


12b
SaBE3
GUCAUC












1-4





acceptor,
SpBE3
AGGACCUAUAUCAG
1839
(GAG)
20 (C6/7)
5.1
50
53
89
8
64
72
5
+
0-0-3-


intron 16

GGUGGG












23-231





acceptor,
SpBE3
UUAGGACCUAUAUC
1840
(GGG)
20 (C8/9)
3.9
77
61
41
40
66
73
3
+
0-0-1-


intron 16

AGGGUG












19-153





acceptor,
EQR-
UGUCUUCAGGCCUG
1841
(GGAG)
20 (C11/12)
4.8
55
54
83
1
43
53
4
-
0-0-3-


intron 6
SpBE3
AAAAUG












26-246





donor, intron
St3BE3
AUAAAUAUUCUUAC
1842
(TGGAG)
20 (C14/15)
5.7
88
50
27
15
59
35
5
-
0-0-1-


26

CUACAA












5-55





acceptor,
KKH-
CAUACCUGUAUGUG
1843
(AATAAT)
20 (C6)
4.3
81
56
50
6
48
42
4
-
0-0-0-


intron 26
SaBE3
GAGGAA












1-28





donor, intron
St1BE3
GUUUACCAGUCUGA
1844
(GCAGAAC)
20 (C6/7)
6.1
94
43
23
1
42
38
6
-
0-0-0-


15

AUGAUC












3-14





donor, ntron
VQR-
GAUUAUUACAUACC
1845
(AGTG)
20 (C13/14)
3.4
76
55
60
7
73
28
3
-
0-0-0-


13
SpBE3
UUCCAC












7-137





donor, intron
SpBE3
UCACCUUUUUGUCU
1846
(TAG)
20 (C4/5)
5.9
65
45
71
6
42
16
5
-
0-0-1-


2

GCAUAG












21-176





acceptor,
St1BE3
AUGAAAGUCUGCAG
1847
(AAAGAAA)
20 (C9)
5.0
77
52
58
14
63
44
5
-
0-0-1-


intron 2

GAGGAA












4-118





donor, intron
SpBE3
AAACGUCCUUACGC
1848
(CAG)
20 (C12)
5.6
82
53
14
14
46
62
5
-
0-0-1-


12b

UGUCAU












14-25





donor, intron
KKH-
CACUUACUCGACAU
1849
(TCCAGT)
20 (C7)
6.5
91
44
39
51
51
39
6
-
0-0-0-


4
SaBE3
UUUUGG












1-7





donor, intron
KKH-
CUUGGUACUCACCU
1850
(AAAGGT)
20 (C12/13)
9.4
92
43
29
31
42
39
9
-
0-0-2-


9
SaBE3
GUUGGU












1-11





acceptor,
VQR-
GCAAUUGCCUGGUU
1851
(AGAC)
20 (C8/9)
5.6
79
54
55
36
82
49
5
+
0-0-2-


intron 10
SpBE3
GGGCCA












9-83





donor, intron
VQR-
AACGUCCUUACGCU
1852
(AGAA)
20 (C11)
6.4
89
45
34
4
28
46
6
-
0-0-0-


12b
SpBE3
GUCAUC












2-33





acceptor,
VQR-
CAUACACAACCUGA
1853
(AGAC)
20 (C10/11)
7.1
50
54
84
9
48
51
7
-
0-0-5-


intron 18
SpBE3
CAAGAA












39-478





acceptor,
St1BE3
AAGUUCUGGGAGAA
1854
(AGAGAAC)
20 (C6)
4.9
81
52
40
6
73
43
4
-
0-0-0-


intron 13

AAAAGC












13-84





donor, intron
KKH-
UGGUUACAUACCAC
1855
(TCCAAT)
20 (C12)
4.5
91
42
10
3
43
55
4
-
0-0-0-


16
SaBE3
CAGGUU












3-12





acceptor,
St1BE3
UGCCUUUAAGAAUA
1856
(ATAGAAT)
20 (C3/4)
2.9
84
21
48
4
33
14
2
-
0-0-0-


intron 22

ACAUUA












7-68





acceptor,
St1BE3
UAAGAGGCCUGGAU
1857
(AAAGAAA)
20 (C8/9)
6.2
93
36
37
6
53
50
6
-
0-0-0-


intron 1

GGAAAC











1
-38





donor, intron
EQR-
GGACACUUACAACU
1858
(AGAG)
20 (C9)
7.3
69
53
61
39
72
-6
7
-
0-0-2-


22
SpBE3
UGAAGC












11-129





donor, intron
SpBE3
UAUUUUUUUACCCC
1859
(AGG)
20 (C11/12)
3.7
78
52
35
18
59
24
3
+
0-0-1-


25

UGGUCG












12-87





donor, intron
KKH-
AUACCCACUUACUC
1860
(TTTGGT)
20 (C12)
5.4
99
30
18
16
27
33
5
-
0-0-0-


4
SaBE3
GACAUU












0-4





donor, intron
SpBE3
CUUACUCGACAUUU
1861
(CAG)
20 (C5)
8.7
80
48
9
12
32
31
8
-
0-0-0-


4

UUGGUC












5-56





donor, intron
SpBE3
UGGUACUCACCUGU
1862
(AGG)
20 (C10/11)
8.3
82
46
2
20
44
52
8
-
0-0-1-


9

UGGUAA












9-84





acceptor,
SaBE3
AAUAGGUUUAGGAC
1863
(CAGGGT)
20 (C15/16)
4.3
91
36
7
5
43
34
4
-
0-0-0-


intron 16

CUAUAU












6-11





acceptor,
VQR-
ACAACGACCUAGUA
1864
(AGAA)
20 (C9)
4.1
76
51
50
41
66
31
4
-
0-0-0-


intron 21
SpBE3
UUCAAA












4-113





acceptor,
SaBE3
GCCUUUAAGAAUAA
1865
(TAGAAT)
20 (C2/3)
5.9
89
24
38
3
42
26
5
-
0-0-0-


intron 22

CAUUAA












1-38





donor, intron
SpBE3
GGGUGGUACCUGAU
1866
(TAG)
20 (C9/10)
7.7
70
47
57
17
90
60
7
+
0-0-2-


11

UGGGGG












12-152





acceptor,
SpBE3
ACGACCUAGUAUUC
1867
(AAG)
20 (C6)
4.9
72
54
45
16
69
33
4
-
0-0-1-


intron 21

AAAAGA












6-79





acceptor,
VQR-
GAAACAUACCUGUA
1868
(GGAA)
20 (C10)
4.9
63
63
60
33
66
45
4
-
0-0-0-


intron 26
SpBE3
UGUGGA












21-206





donor, intron
KKH-
UAAACUCACCUUUU
1869
(CATAGT)
20 (C9/10)
8.0
57
57
68
6
42
37
8
-
0-0-1-


2
SaBE3
UGUCUG












5-21





donor, intron
VQR-
UACAUACCCUGAAU
1870
(TGAA)
20 (C7/8)
5.8
75
50
8
6
62
12
5
+
0-0-0-


8
SpBE3
CUGUGC












15-118





acceptor,
EQR-
CUAGAAACAUACCU
1871
(GGAG)
20 (C13)
6.2
66
58
16
18
50
34
6
-
0-0-0-


intron 26
SpBE3
GUAUGU












19-215





acceptor,
VQR-
CGACCUAGUAUUCA
1872
(AGAA)
20 (C5)
3.6
59
51
64
20
65
43
3
-
0-0-1-


intron 21
SpBE3
AAAGAA












10-143





acceptor,
KKH-
AAGUUGCCUUUAAG
1873
(ATTAAT)
20 (C7/8)
4.4
87
36
23
11
39
38
4
-
0-0-0-


intron 22
SaBE3
AAUAAC












735





donor, intron
VQR-
GGUGGUACCUGAUU
1874
(AGAC)
20 (C8/9)
6.8
73
50
43
22
78
63
6
+
0-0-5-


11
SpBE3
GGGGGu












13-84





donor, intron
St3BE3
CACCUUUUUGUCUG
1875
(AGGGG)
20 (C3/4)
3.8
91
32
7
1
13
41
3
-
0-0-0-


2

CAUAGU












2-31





acceptor,
SpBE3
ACCUAAACACAAGA
1876
(TGG)
20 (C2/3)
6.7
66
56
28
11
58
26
6
-
0-0-3-


intron 4

UUCCAU












17-119





acceptor,
VQR-
CGCAGCGUCUAGGG
1877
(GGAA)
20 (C9)
6.0
78
44
17
28
29
52
6
-
0-0-0-


intron 9
SpBE3
AAAAAU












4-61





donor, intron
St3BE3
AAUUUGGGUGGUAC
1878
(GGGGG)
20 (C14/15)
5.3
96
26
9
2
36
67
5
-
0-0-0-


11

CUGAUU












3-31





donor, intron
SpBE3
CCUUUUUGUCUGCA
1879
(GGG)
20 (C1/2)
6.0
66
56
38
61
59
37
6
-
0-0-3-


2

UAGUAG












22-194





donor, intron
SpBE3
UUUACCCCUGGUCG
1880
(TGG)
20 (C5/6)
5.1
89
33
8
13
26
52
5
-
0-0-0-


25

AGGAAU












8-52





donor, intron
VQR-
UACUUACGCAAAAA
1881
(CGAC)
20 (C7)
4.1
56
62
66
22
75
29
4
-
0-0-2-


5
SpBE3
CAAUGA












14-257





acceptor,
SaBE3
CCUAUAUCAGGGUG
1882
(GGGGGT)
20 (C2/3)
3.8
76
45
25
4
47
56
3
+
0-0-0-


intron 16

GGGAGA












1-30





donor, intron
SaBE3
AAUUUGGGUGGUAC
1883
(GGGGGT)
20 (C14/15)
5.3
95
26
9
2
36
67
5
-
0-0-0-


11

CUGAUU












2-5





donor, intron
SpBE3
UUGGUACUCACCUG
1884
(AAG)
20 (C11/12)
3.7
83
38
12
0
37
54
3
-
0-0-1-


9

UUGGUA


















donor, intron
EQR-
AUUUACCAGGGCAC
1885
(TGAG)
20 (C6/7)
6.4
67
40
53
1
55
10
6
+
0-0-3-


19
SpBE3
CACUGC












22-108





donor, intron
KKH-
ACAUACCUUCCACA
1886
(GTTAAT)
20 (C6/7)
6.3
79
41
30
13
33
31
6
-
0-0-0-


13
SaBE3
GUGUUU












3-38





donor, intron
KKH-
CACCUGUUGGUAAA
1887
(CCCAGT)
20 (C3/4)
5.2
93
26
7
3
7
27
5
-
0-0-0-


9
SaBE3
GGUUUU












1-14





donor, intron
KKH-
GACUUACCAAAUUU
1888
(GCAAGT)
20 (C7/8)
6.2
83
35
29
15
36
52
6
-
0-0-0-


14
SaBE3
CCUAUA












4-31





donor, intron
VQR-
ACACUUACAACUUG
1889
(AGAT)
20 (C8)
3.5
55
63
62
38
87
45
3
-
0-0-9-


22
SpBE3
AAGCAG












16-173





donor, intron
St1BE3
AUUACUUCUUACCU
1890
(ACAGAAA)
20 (C12/13)
7.0
91
27
13
3
29
37
7
-
0-0-1-


6

GGGAUU












4-30





acceptor,
SpBE3
UGCAAUUGCCUGGU
1891
(AAG)
20 (C9/10)
7.8
74
43
11
8
40
37
7
+
0-0-1-


intron 10

UGGGCC












15-146





acceptor,
SpBE3
CGGAGCUAAAAGCA
1892
(AAG)
20 (C6)
4.6
65
35
52
11
36
46
4
-
0-0-2-


intron 15

AAUAUA












16-105





acceptor,
KKH-
CUCGGAGCUAAAAG
1893
(TAAAGT)
20 (C8)
4.8
88
28
29
7
33
42
4
-
0-0-0-


intron 15
SaBE3
CAAAUA












1-16





donor, intron
SaBE3
CACCUUUUUGUCUG
1894
(AGGGGT)
20 (C3/4)
3.8
84
32
7
1
13
41
3
-
0-0-1-


2

CAUAGU












15-17





donor, intron
SpBE3
AACUCACCUUUUUG
1895
(TAG)
20 (C7/8)
3.7
65
49
12
13
29
20
3
-
0-0-0-


2

UCUGCA












20-206





acceptor,
VQR-
AGAGGCCUGGAUGG
1896
(AGAA)
20 (C6/7)
6.8
46
60
66
52
81
75
6
-
0-0-5-


intron 1
SpBE3
AAACAA












54-404





donor, intron
VQR-
AGUACCUACAUCAA
1897
(GGAA)
20 (C9)
4.6
52
41
59
9
46
33
4
-
0-0-3-


20
SpBE3
CAAUUA












53-739





acceptor,
SaBE3
AUAAAAAUAUUCUG
1898
(AAGAAT)
20 (C12)
3.8
58
53
50
8
53
22
3
-
0-0-8-


intron 7

UUGAAG












13-102





acceptor,
St3BE3
CCUAUAUCAGGGUG
1899
(GGGGG)
20 (C2/3)
3.8
64
45
25
4
47
56
3
+
0-0-0-


intron 16

GGGAGA












12-144





acceptor,
KKH-
UGUCUACCUAUAAA
1900
(AAAAGT)
20 (C7/8)
4.3
78
31
9
17
26
16
4
-
0-0-0-


intron 23
SaBE3
AUUUAC












3-55





acceptor,
St1BE3
UAAAUACCUGUAGA
1901
(TCAGAAT)
20 (C7/8)
4.1
68
16
41
10
40
39
4
-
0-0-1-


intron 5

AUUAAA












17-167





donor, intron
SpBE3
ACCCACUUACUCGA
1902
(TGG)
20 (C10)
7.1
86
20
8
4
7
12
7
-
0-0-1-


4

CAUUUU












4-58





acceptor,
St1BE3
GAUUUUGUUCUGCA
1903
(TAAGAAT)
20 (C10)
5.9
68
35
37
15
76
33
5
-
0-0-3-


intron 25

AAGAAA












16-104





donor, intron
KKH-
UUACCCUCAUUCCU
1904
(CTAGAT)
20 (C4/5)
5.2
64
40
20
51
30
21
5
-
0-1-1-


21
SaBE3
UCAAAU












3-19





donor, intron
EQR-
UAUAUUUUUUUACC
1905
(CGAG)
20 (C13/14)
4.1
51
53
36
12
37
25
4
+
0-0-3-


25
SpBE3
ccuGGu












38-413





donor, intron
KKH-
UAGUACACUCAUAU
1906
(AAAAAT)
20 (C8/10)
9.1
90
10
4
4
18
42
9
-
0-0-0-


3
SaBE3
ccuuuu












2-26





donor, intron
VQR-
ACCCUCAUUCCUUC
1907
(AGAT)
20 (C2/3)
5.6
62
36
3
1
28
12
5
-
0-0-4-


21
SpBE3
AAAUCU












22-199





donor, intron
VQR-
AAUAUUACAUACCC
1908
(TGTG)
20 (C12/13)
4.5
63
31
16
2
39
12
4
-
0-0-2-


8
SpBE3
UGAAUC












13-223





donor, intron
SpBE3
AAGUACCUACAUCA
1909
(AGG)
20 (C10)
6.6
53
40
36
16
43
42
6
-
0-0-8-


20

ACAAUU












38-315





donor, intron
SpBE3
CACCUUUUUGUCUG
1910
(AGG)
20 (C3/4)
3.8
60
32
7
1
13
41
3
-
0-0-3-


2

CAUAGU












25-159





donor, intron
SpBE3
UUACAACUUGAAGC
1911
(AGG)
20 (C4)
4.6
41
47
37
45
44
56
4
-
0-0-10-


22

AGAGAU












36-283






aBE types: SpBE3 = APOBEC1-SpCas9n-UGI; VQR-SpBE3 = APOBEC1-VQR-SpCas9n-UGI; EQR-SpBE3 = APOBEC1-EQR-SpCas9n-UGI; VRER-SpBE3 = APOBEC1-VRER-SpCas9n-UGI; SaBE3 = APOBEC1-SaCas9n-UGI; KKH-SaBE3 = APOBEC1-KKH-SaCas9n-UGI; St3BE3 = APOBEC1-St3Cas9n-UGI; St1BE3 = APOBEC1-St1Cas9n-UGI.




bEfficiency score, based on Housden et al (Science Signaling, 2015, 8 (393):rs9).




cSpecificity scores based on Hsu et al (Nature biotechnology, 2013, 31 (9):827-832), Fusi et al (bioRxiv 021568; doi: http://dx.doi.org/10.1101/021568), Chari et al (Nature Methods, 2015, 12 (9):823-6), Doench et al (Nature Biotechnology, 2014, 32 (12):1262-7), Wang et al (Science, 2014, 343 (6166): 80-4), Moreno-Mateos et al (Nature Methods, 2015, 12 (10)982-8), Housden et al (Science Signaling, 2015, 8 (393):rs9), and the “Prox/GC” column shows “+” if the proximal 6 bp to the PAM has a GC count > = 4, and GG if the guide ends with GG, based on Farboud et al (Genetics, 2015, 199 (4):959-71).




dNumber of predicted off-target binding sites in the human genome allowing up to 0, 1, 2, 3 or 4 mismatches, respectively shown in the format 0-1-2-3-4. Algorithm used: Haeussler et al, Genome Biol. 2016; 17: 148. Isoform 2 is expressed preferentially in the dorsal root ganglion.







Editing the SCN9A Gene Using Cas9 Nuclease or Cas9 Nickase Pairs

In some embodiments, the editing of an ion channel-encoding polynucleotide (e.g., SCN9A gene) may be achieved using Cas9 nucleases, or Cas9 nickase pairs (e.g., as described in Ran et al., Cell. 2013 Sep. 12; 154(6): 1380-1389, incorporated herein by reference. Cas9 nuclease or Cas9 nickase pairs introduce double stranded DNA break in the ion channel-encoding polynucleotide (e.g., SCN9A gene). Indels may be introduced when the double strand break is repaired by the cellular double strand break repair system, causing loss-of-function SCN9A mutants. The use of Cas9 nuclease to generate SCN9A mutation have been described in the art, e.g., in Sun et al., Transl Perioper Pain Med. 2016; 1(3): 22-33, incorporated herein by reference.


Nonetheless, provided herein are top-scoring guide-RNA target sites in SCN9A gene using these alternative genome editing agents (Table 10 and Table 11).









TABLE 10







Top-Scoring Guide-RNA Target Sites and PAM Sequences in SCN9A for


Cas9 Nuclease
















Guide-
SEQ ID
Specificity
Efficiency


Entry
Position
Strand
RNA target site (PAM)
NOs
score50
score28
















  1
   350
-1
GAGCACGGGCGAAAGACCGA(GGG)
1912
94
67





  2
   439
1
GTATTACGCCACCTGGAAAG(AAG)
1913
81
70





  3
   532
-1
ACAGAGTCAAAACCGCACAG(GAG)
1914
84
89





  4
   534
-1
CCACAGAGTCAAAACCGCAC(AGG)
1915
84
60





  5
   753
1
AGCTTAGCAGATACAACCTG(TGG)
1916
60
72





  6
   755
1
CTTAGCAGATACAACCTGTG(GGG)
1917
70
73





  7
   837
1
TCTGCCCCTATTTCTCAGCG(CAG)
1918
75
83





  8
  1555
-1
TCATGAAAATTTGCGACACA(GGG)
1919
84
66





  9
  2064
-1
CTACTTTTTTCCTTGCCACA(GAG)
1920
51
81





 10
  2380
-1
GCTGAAATGGAGTAATAAGG(AAG)
1921
61
85





 11
  2596
-1
ATAGAGAATGAATTGCAGGG(GAG)
1922
52
87





 12
  2846
-1
ATGTGTTTTAGCCACGACCT(GGG)
1923
90
62





 13
  3685
-1
AAACATCAATTTAGACCGTG(TGG)
1924
83
64





 14
  5589
-1
AAAACATTAGCCGGGCACGG(TGG)
1925
78
71





 15
  5724
-1
AGATAATGGGCTGAGCGCGG(TGG)
1926
88
65





 16
  6504
1
GGCCTACTCAGGGATCAACT(GGG)
1927
82
66





 17
  7409
1
GGAGTGCAGTGGTACGATGT(TGG)
1928
89
62





 18
  7790
-1
TGGTCATGAGGATTTAAACG(GAG)
1929
77
77





 19
  7963
1
CCCCACACAGATATACCTGG(TGG)
1930
69
76





 20
  7967
-1
TGCTTGGTAGCGTAACCACC(AGG)
1931
92
61





 21
  8465
1
ACGCCCGTAATCCAGCACTT(TGG)
1932
89
67





 22
 10500
1
GGGATTACTAACCTGCGTCG(AGG)
1933
95
65





 23
 10501
1
GGATTACTAACCTGCGTCGA(GGG)
1934
98
61





 24
 10501
-1
TTATCACGCAGCCCTCGACG(CAG)
1935
96
71





 25
 11027
1
CTAGCAAAACAGATACCAAG(GAG)
1936
59
81





 26
 11046
1
GGAGACACCGCATGTTGTCA(GGG)
1937
83
62





 27
 11105
-1
GTGTTTTGAGATCCGTAAGG(CAG)
1938
90
71





 28
 11108
-1
AGCGTGTTTTGAGATCCGTA(AGG)
1939
91
62





 29
 11121
1
TTACGGATCTCAAAACACGC(TAG)
1940
92
86





 30
 11466
-1
TTCTGATATATGCTACGACC(CGG)
1941
92
60





 31
 12273
-1
TGAATCACAGACCTAAACGT(CAG)
1942
79
79





 32
 12530
-1
GCAAGGATATTCTTTCCCAT(CAG)
1943
59
81





 33
 12956
-1
TAGGGGACTTAACCTCCACA(AGG)
1944
81
67





 34
 12973
-1
TGGGAAAAGGTATTGCCTAG(GGG)
1945
70
74





 35
 14409
-1
TGGATACACTGAACACACCG(AGG)
1946
85
73





 36
 14896
-1
AGTTCTTATATAGCAAACCG(GAG)
1947
88
82





 37
 14921
1
ATAAGAACTGAGCTTTAGAG(AAG)
1948
55
84





 38
 15045
1
GCTGTCTTACTATTTTACTG(CAG)
1949
56
83





 39
 15387
-1
GTAATAACTTTGGCACCAGG(CAG)
1950
67
91





 40
 15569
1
ATAAAGTCTTAACTAACAGA(GAG)
1951
52
89





 41
 15850
-1
GGAGAACTGCTTGAACCCGG(GAG)
1952
71
72





 42
 17006
1
TAGTTATCATTGGGACACCT(GGG)
1953
82
63





 43
 17865
1
AGTGAGCTGAGATCGCACCA(AGG)
1954
82
82





 44
 18150
-1
ATTGGGTCTCCAATACCAAA(CAG)
1955
75
75





 45
 18651
1
GGCCCTGTAGGCGTTACACT(AGG)
1956
92
62





 46
 18855
1
GGTGGGAACAACACACACTG(GGG)
1957
62
74





 47
 19346
1
CCACATGGATGGATACACAA(GGG)
1958
68
72





 48
 20999
1
AGTCAGCTATGATTGCACCA(CAG)
1959
75
88





 49
 21248
-1
GCTTGTACGCAAATAACAGG(GAG)
1960
83
86





 50
 23890
-1
AGCCCTAAACCCGTAAAATG(GGG)
1961
81
63





 51
 24449
1
GCTCAGCTGAACCAGAGCAA(GAG)
1962
58
89





 52
 24871
-1
AATCTGATTTGGCGACACAA(AGG)
1963
83
63





 53
 25247
-1
TTGCCCACTGGTGATCACCA(GGG)
1964
69
72





 54
 25468
-1
GTATGCATAGGGGTATACTT(TAG)
1965
83
78





 55
 25928
1
TATAGACAAGTCCACGAACC(AGG)
1966
87
64





 56
 25930
1
TAGACAAGTCCACGAACCAG(GAG)
1967
85
73





 57
 26295
-1
ATACCTCAGACCGGGCATGG(TGG)
1968
78
73





 58
 26495
1
AATGAAGTGGAAGTACACAG(TAG)
1969
55
81





 59
 26796
1
ATAAGATGGTCACAGCTTGG(GGG)
1970
63
74





 60
 26974
1
TCCTGCCTCAGCCTTCCGAG(GAG)
1971
55
84





 61
 27331
-1
GCTTATGGGATTAACCCACA(AGG)
1972
80
65





 62
 27917
1
GGAGCCACAGATTGTTAGCA(GAG)
1973
71
75





 63
 28255
-1
ACACGGAAAACAAATCCAGG(AAG)
1974
51
87





 64
 28522
-1
TGGGAGATCAACATGCCTAG(TGG)
1975
69
73





 65
 29289
1
GCACCTGCTCCATATTTAGT(AAG)
1976
73
75





 66
 29487
-1
CTTGAGCCGTCAAAGACACA(CAG)
1977
67
81





 67
 29862
-1
GTATTACCACTTCGTGAAAA(GAG)
1978
85
62





 68
 29864
1
GCTTGTTTACTCTTTTCACG(AAG)
1979
66
91





 69
 29990
1
CCATCTTTGTTGTTTCAAGG(CAG)
1980
58
83





 70
 30043
1
GAATACTCCCAAATTCAGGG(AGG)
1981
67
76





 71
 30500
1
AGAGCATACTGACCTCAACG(TGG)
1982
83
77





 72
 30917
1
TAGATACCCATCTTATACAC(AGG)
1983
82
60





 73
 31112
1
ACACTGCTGCTTCACATCAG(GGG)
1984
61
70





 74
 31620
-1
GATACCATTAACTATCACCT(GGG)
1985
73
71





 75
 33443
1
GAGACTCTATTCTAAACGTG(AGG)
1986
85
63





 76
 33616
1
TAACTGCAGTAGTTGACCAT(TGG)
1987
82
64





 77
 34247
-1
TTTGCTATGACACAGTACAG(AAG)
1988
66
80





 78
 34544
1
TCTTAGACGGTATAAAGTGG(GAG)
1989
80
72





 79
 35281
1
GAGGGTCACTTGAATCCCAG(AGG)
1990
68
74





 80
 36749
1
TTTTAAATTTGATTTCCGAA(GAG)
1991
56
85





 81
 37237
-1
TTCGTGACCTGACAATTGGG(CAG)
1992
83
72





 82
 37670
1
AAGCCCTAAATCAATGCCGA(GGG)
1993
84
61





 83
 37739
1
GGGCATGTCCCTTTCATACA(GAG)
1994
72
79





 84
 37955
-1
GCACTCTTCCCAGGATACAA(GAG)
1995
55
92





 85
 38493
-1
GGAATATTCCTAGTCCCAAG(AGG)
1996
77
72





 86
 38734
1
CCTCTCATAAGAAATCACTG(GAG)
1997
56
86





 87
 39328
-1
TACACTGTAAACGGCCTGAG(AGG)
1998
85
66





 88
 39329
-1
TTACACTGTAAACGGCCTGA(GAG)
1999
86
70





 89
 39457
-1
CCCCAAAATCGATTAAGCTG(AGG)
2000
84
66





 90
 39551
-1
CCTCCCTCATGGGAACATGG(AGG)
2001
62
70





 91
 40096
-1
GCACAGTCTGAGCATGTACA(GAG)
2002
66
90





 92
 40431
1
GGTGCTAGAGAACAGCCAAT(CAG)
2003
73
92





 93
 41623
-1
CGTCATGTAGAATATGGCAG(AAG)
2004
71
83





 94
 42582
1
AAGACATGTTACATTGTAGG(GGG)
2005
63
70





 95
 42636
1
AGTCAACTCTGCAAAACAAG(GAG)
2006
52
83





 96
 42662
1
TTAATGAAAGCCAATCATCG(AGG)
2007
74
74





 97
 42857
1
ACTCTGGTAACTCCACCTGG(AGG)
2008
66
76





 98
 43791
-1
AGCTATAGTAGAATCCTGTG(TGG)
2009
76
75





 99
 43824
1
TGTACATAGACCCAGCACAA(GGG)
2010
71
76





100
 45140
1
TTAGGAACCAGGCTGCACAG(CAG)
2011
60
89





101
 45255
1
TATTGTGAACTGCACATACG(AGG)
2012
81
65





102
 45256
1
ATTGTGAACTGCACATACGA(GGG)
2013
88
71





103
 45416
-1
GATAACACCTGGCAATCCAG(CAG)
2014
73
85





104
 45427
-1
GCTCTCTTAGTGATAACACC(TGG)
2015
81
60





105
 46134
1
AAACTGTTAACACAAGAGGG(AGG)
2016
65
71





106
 46321
1
CAACAGACTGTAAGCCCTAG(AGG)
2017
72
70





107
 46346
-1
GGGACACAATACTAACTAGG(TGG)
2018
81
72





108
 46675
-1
GATTTTAAGGTTTACCCCCG(CAG)
2019
87
79





109
 47862
-1
TGACACTCTGGAACATTAGA(GAG)
2020
71
73





110
 47868
1
TCACTCTCTCTAATGTTCCA(GAG)
2021
59
81





111
 47960
-1
TTAAGAGTATGAAATCCTAC(AAG)
2022
64
84





112
 48743
1
GGAGGTCGCTTGAGTGCACG(AGG)
2023
88
60





113
 48893
-1
ATATTGCGTTTATACCACAG(AAG)
2024
71
74





114
 49353
-1
TTACCATTGAGAGATCCTTG(GAG)
2025
71
72





115
 50070
1
AAGGTGATGTTATCGAACAT(AGG)
2026
88
63





116
 50074
1
TGATGTTATCGAACATAGGA(GAG)
2027
82
65





117
 50130
-1
GACAAGGATACGCTTAACCC(TGG)
2028
92
62





118
 50147
1
TTAAGCGTATCCTTGTCAGC(CAG)
2029
87
69





119
 50619
-1
GATCCATTAGAAATGCTGAT(CAG)
2030
57
88





120
 51722
-1
GCACTCCAGCCTGAACCAGA(GAG)
2031
67
81





121
 51778
-1
GGAGAATTACTTGAACCCAG(CAG)
2032
54
82





122
 53493
-1
GTTAATAATCATGCTCCGAA(GAG)
2033
87
74





123
 53495
-1
GAGTTAATAATCATGCTCCG(AAG)
2034
82
86





124
 53560
1
GAGGTTATGTCATCTCCACA(GGG)
2035
66
73





125
 54056
1
TCTTGCTTATTGCTTGACAA(CAG)
2036
64
81





126
 54511
-1
GAGCCATGATCACACCACTG(CGG)
2037
69
84





127
 54692
-1
AAGGCGGGTGAATCACTTGA(GGG)
2038
81
65





128
 54693
-1
CAAGGCGGGTGAATCACTTG(AGG)
2039
84
62





129
 55118
1
ACCCTGGTCAATAGCCACAG(TGG)
2040
70
72





130
 55121
-1
AATGCAGGTATACTCCACTG(TGG)
2041
79
79





131
 55162
1
ATACACTCTTGACAACCATA(GAG)
2042
74
78





132
 56004
1
CCCCATTCTCAAATTCCAAG(CAG)
2043
57
87





133
 56439
-1
GATGTGTTCTTCAAGTAGCA(GAG)
2044
66
86





134
 57073
1
GAGACTAATGTCGAACAACA(TGG)
2045
81
67





135
 57802
-1
TTTTAGCTAGAACCAGGGTG(GAG)
2046
71
79





136
 60122
1
CTGACTAATGAAAACTCCTG(TGG)
2047
62
70





137
 60257
-1
TAGGCTGACAGGGTTACAGA(GGG)
2048
66
70





138
 60516
-1
ATGCTAGTGGTACCATGCAT(GGG)
2049
81
61





139
 60808
-1
GCCTCACTAGACTTTCAGTG(TAG)
2050
76
79





140
 61932
-1
GCACCCCAAAACAATTACCA(CAG)
2051
66
85





141
 62404
1
TTAAGCCAAAGCCTAATCCA(CAG)
2052
74
71





142
 62737
-1
GCTGCATTATCCCCTAACAA(GAG)
2053
81
94





143
 63063
-1
CTATTTATAGAGCACAGGCA(GAG)
2054
56
85





144
 63147
-1
TGAGCTATAAGTATCAACAC(TGG)
2055
80
63





145
 63203
-1
CCAGGCACATTGTCAATAGG(CAG)
2056
79
75





146
 63236
1
GTCACTCAAGAGCTCTAACG(GAG)
2057
87
68





147
 63239
1
ACTCAAGAGCTCTAACGGAG(AGG)
2058
89
68





148
 63307
1
TCTGTAGCCTATGGGCCAAA(GAG)
2059
71
72





149
 66208
1
TTAGGATTGACTTGGCGATG(CGG)
2060
84
61





150
 66433
1
GTTTGTAGTTCTCCTCGAAG(AGG)
2061
84
62





151
 66811
-1
AGGGAGACTTTATAAACCGG(AGG)
2062
85
73





152
 67111
-1
AGTGAGCCAAAATCGCGCCA(CGG)
2063
95
69





153
 67288
-1
AGGTGGGCAGAACACAACGT(CAG)
2064
79
74





154
 67480
1
AAACTTACAATCATGGTCGA(AGG)
2065
89
61





155
 67959
-1
GGCTTTTTATTTGTATGCGG(CAG)
2066
79
72





156
 67997
-1
CATTTCTCACCGTATTCAGG(AGG)
2067
82
62





157
 67998
-1
GCATTTCTCACCGTATTCAG(GAG)
2068
83
65





158
 68003
1
ACTTACCTCCTGAATACGGT(GAG)
2069
90
67





159
 68307
-1
GATTCCTCACTTACTAACCA(CGG)
2070
75
73





160
 68314
1
ATTACCGTGGTTAGTAAGTG(AGG)
2071
88
60





161
 68419
-1
CCTAAGTTGAAGGAACGTCA(GAG)
2072
83
63





162
 68756
-1
CGCATCTATCAATGTCACCT(TGG)
2073
80
62





163
 69363
-1
GGAACAAAAGAGACGACAGT(GGG)
2074
69
72





164
 69460
1
TATGACCATGAATAACCCAC(CGG)
2075
68
71





165
 69464
-1
CATTTTTGGTCCAGTCCGGT(GGG)
2076
92
61





166
 69955
1
AGGGTGTGTCCATAACCCAA(CAG)
2077
80
69





167
 70069
-1
GTAAAAGTGTACCTAAACAC(AAG)
2078
73
74





168
 70165
1
TCACTTTTCTTCGTGACCCG(TGG)
2079
86
70





169
 70656
-1
TTAATCTTAGGCTTAGTAAG(CAG)
2080
69
83





170
 70888
1
GAGCCACCTAGACAATACAG(AAG)
2081
74
74





171
 70890
1
GCCACCTAGACAATACAGAA(GGG)
2082
69
75





172
 71166
1
TCACCACTACCTAATTAGAG(AAG)
2083
80
79





173
 71983
1
GAGAGTGGGGTTAAACACCA(GGG)
2084
73
76





174
 72722
1
TGTAGGGGCTTTGATCCAGT(CAG)
2085
79
74





175
 73080
-1
CTGCTAGATAGCTTAGAACC(AGG)
2086
83
61





176
 73091
1
CCTGGTTCTAAGCTATCTAG(CAG)
2087
82
62





177
 73609
1
TCATCTGTATGCACTCTCAG(AAG)
2088
64
81





178
 74688
-1
GCTGTCTCAGCCAATCACAG(CAG)
2089
63
82





179
 75558
-1
GCTTAAATGCCATCACCTCA(GAG)
2090
64
83





180
 76917
-1
TCTTTCCTCCTGTTTCGGTG(GAG)
2091
74
72





181
 77252
1
GCCAGATTATGTGTAGACTG(TGG)
2092
76
74





182
 77679
-1
GTTTTAGCCCAATATAACCA(CAG)
2093
71
87





183
 77846
-1
GCACATGATACTCTACACTC(TGG)
2094
81
62





184
 77927
-1
GAAGAGTATATCCCCAACGA(AGG)
2095
89
66





185
 78181
-1
GGAATGCAGCATAACGGCAA(AGG)
2096
90
61





186
 78444
-1
CCATGTATATTAAATCTACA(GAG)
2097
56
80





187
 79522
-1
AACACTCCTGAACCTCGGGA(AGG)
2098
85
61





188
 80328
1
TACTGAGTCTGCCTCTTCCG(GAG)
2099
75
74





189
 80331
-1
TATGTGGTACAATACTCCGG(AAG)
2100
96
74





190
 80539
1
TAGGCTATACCACATAGCCT(AGG)
2101
81
63





191
 80545
-1
GTATAGGCTACCATACACCT(AGG)
2102
88
69





192
 80585
1
GGTTTGTATAAGTGCACCCT(AGG)
2103
82
60





193
 80970
-1
GAAAATAAATTAAGGCAACG(TGG)
2104
66
72





194
 81615
1
GTGCTCGAATTAACACAAGA(CAG)
2105
83
66





195
 81715
1
TCTTCTTTCTGGAAAACGAA(GAG)
2106
51
88





196
 82630
1
CGTGTGTAGTCAGTGTCCAG(AGG)
2107
74
70





197
 82993
-1
TGATATACTCAGGAAGGCGA(GAG)
2108
74
72





198
 83017
-1
GTACTTAACTAGGACCCCAT(GGG)
2109
87
69





199
 84026
-1
CCAAACCATGAAAACCCTAG(AAG)
2110
71
74





200
 84279
-1
GCATGGTAGTGGTACCCAAA(CAG)
2111
81
79





201
 85965
1
GACAACTACCTAATGCATGC(AGG)
2112
84
61





202
 86012
1
ATAGGTGGAGCAAACCACCA(TAG)
2113
72
75





203
 86606
1
GGTGGGCAATGAGAACACAT(GGG)
2114
61
74





204
 86633
1
GAGAAGATCATCACACACTG(GGG)
2115
65
74





205
 86724
1
ATGGGTGCAGCAAACCACCA(TGG)
2116
64
73





206
 86730
-1
ACATGGGTAGACACGTGCCA(TGG)
2117
83
75





207
 87379
-1
TACGACAAAGAAGATCATGT(AGG)
2118
67
72





208
 87621
1
CGGTTACAACAGAGGCTCTG(CGG)
2119
63
71





209
 87627
-1
AGAAGGCCAAGCATATACCG(CAG)
2120
85
94





210
 88070
1
ACACACAATGGATTTCCCCA(GAG)
2121
58
88





211
 88144
-1
ACTGTTTTAGTCATACCCCA(TAG)
2122
71
89





212
 88422
1
GGAGTCTAATGTATTAGGGG(AGG)
2123
83
64





213
 88874
1
ACTACCTAGGGAATTCCCAG(AAG)
2124
68
83





214
 89604
-1
TATGCCCTTCGACACCAAGG(TGG)
2125
78
72





215
 89611
1
GTTTCCACCTTGGTGTCGAA(GGG)
2126
86
64





216
 89689
1
TGCTAAATGTGTATCACCCG(AGG)
2127
88
68





217
 89738
1
TTTAGGGTAAGAGAACTCGG(GAG)
2128
83
74





218
 90216
-1
TTATAAGCAGGGAGGCCTGA(GAG)
2129
54
81





219
 90645
-1
GAAGTTGCCCAATACCAAAG(AGG)
2130
70
72





220
 90646
-1
AGAAGTTGCCCAATACCAAA(GAG)
2131
64
82





221
 91214
1
TTTTCTGCAAGGCGAAGCAG(CAG)
2132
72
76





222
 91444
1
TGCTGTGGACTGCAACGGTG(TGG)
2133
82
68





223
 91457
-1
CTGAGCGTCCATCAACCAGG(GAG)
2134
81
69





224
 92139
1
GTAGCTCCTAAGTTGAAACG(GAG)
2135
90
85





225
 92140
1
TAGCTCCTAAGTTGAAACGG(AGG)
2136
87
72





226
 92408
1
AAGGTCTACGAGTCACTAAG(TGG)
2137
88
64





227
 93703
1
GTAAGAGACAACCATTACAG(GAG)
2138
67
81





228
 94028
-1
ACTGGCTGTATATCATAGGA(GAG)
2139
79
74





229
 94038
1
GCTCTCCTATGATATACAGC(CAG)
2140
83
68





230
 94204
1
GCACGACCAATCAAATACAC(AAG)
2141
87
70





231
 95047
1
TGTCATGGGACTAAAAACAC(AGG)
2142
60
71





232
 95431
-1
GCAAATCTGTACCACCAAGG(TGG)
2143
73
73





233
 95434
-1
TGTGCAAATCTGTACCACCA(AGG)
2144
72
77





234
 95600
1
GGAACACCACCCAATGACTG(AGG)
2145
74
74





235
 95871
1
ATAAAAGGTTACCATCTTGG(GAG)
2146
61
82





236
 96250
-1
CTATATGCCAGGCTAATAAG(CAG)
2147
71
81





237
 96762
-1
TGCTAACTCAGCGAGCACAT(GGG)
2148
82
61





238
 97850
1
AGTTCTGCGATCATTCAGAC(TGG)
2149
81
60





239
 98726
-1
GGTTACCTAGAGCCCCTACT(GAG)
2150
83
66





240
 98747
-1
TGATGGCCAACACTAAGGTG(AGG)
2151
69
73





241
 99300
-1
TTACTAGTATAGCTTCAAGA(GAG)
2152
64
88





242
 99408
-1
ATAGAGGCTAGTCTTACACA(TGG)
2153
72
72





243
 99426
1
TAAGACTAGCCTCTATAGCA(AGG)
2154
80
63





244
 99753
-1
CACGCGATGCTATAGGCCAG(TGG)
2155
87
63





245
 99765
1
CACTGGCCTATAGCATCGCG(TGG)
2156
97
66





246
 99940
-1
ACTGTGACAAGTCAACGTGG(CAG)
2157
81
77





247
 99943
-1
CCAACTGTGACAAGTCAACG(TGG)
2158
86
75





248
101373
-1
GTAGTTCCTCCATTAGTCAA(GAG)
2159
74
92





249
101609
1
TCTATATCAGGAAACTTGCG(AAG)
2160
82
65





250
102970
-1
ACACGGATAAGACCACATGA(GAG)
2161
72
74





251
103743
-1
TTACCAGATGAATCTTCAGG(AAG)
2162
60
88





252
104091
1
TGATGTATCCATGATCCGCA(AAG)
2163
92
85





253
105545
-1
TACTCGCCCATAGATATCGA(GGG)
2164
96
70





254
105546
-1
CTACTCGCCCATAGATATCG(AGG)
2165
97
62





255
108599
1
CTCAACTGGAAATCGTCCCA(GGG)
2166
85
64





256
108829
1
AGCTAACATGATACTAACCA(GGG)
2167
76
79





257
109542
1
ATAAAGCTATAGTAACCAAA(CAG)
2168
58
93





258
110187
1
CTCAACATCACTAATCACCA(GGG)
2169
69
72





259
110646
1
GGCAACATGAATGAACCTGG(AGG)
2170
65
78





260
110720
-1
CTACTTCTATGACAACCCTT(TAG)
2171
71
72





261
110756
1
AGTAGAATAGTGGTTATCGG(AGG)
2172
87
66





262
110856
-1
CTAGTCATCCAACGATTCAA(TAG)
2173
91
73





263
112186
1
TCTCTGGCCCGGTACTCACG(TAG)
2174
92
61





264
112189
-1
ACACAGGGAGAAAACTACGT(GAG)
2175
72
71





265
112238
-1
GTCCAAATCCAATATAACTG(GGG)
2176
68
74





266
112970
1
TGCCACGATAAGGCCCAAAG(AGG)
2177
80
68





267
113933
-1
AATTTCATCAACAAGCCAGG(GAG)
2178
56
83





268
114417
1
CCACAGATCAGCAGTCCACG(TGG)
2179
77
73





269
114563
1
GTAGAGAAAGAAATAGAACG(AAG)
2180
51
94





270
114615
1
GGAAGGGCAAAACTTTCCCA(GAG)
2181
52
86





271
119671
1
AAGATTGTAGAGACCTCAAG(GGG)
2182
60
76





272
124929
-1
ACAGATGGTGATGACCAATG(GGG)
2183
72
77





273
126886
1
GGGGCCGTGCAAATATATGG(AGG)
2184
90
63





274
126887
1
GGGCCGTGCAAATATATGGA(GGG)
2185
82
63





275
127078
-1
CCTCAAGTGATCGCCCACCT(CGG)
2186
87
60





276
127540
1
GGGAGCTTAGACTAGTATGG(TAG)
2187
89
68





277
131325
1
AGAGTTGCACAGTAGCCCAA(TAG)
2188
70
82





278
131352
-1
TCTGGATTATTCTCTCTGGA(CAG)
2189
55
83





279
131411
1
AGAGATGCACAATAGCCCGA(CAG)
2190
86
91





280
131432
-1
CTATTCCGTTTGAATAGCAG(AAG)
2191
72
85





281
131938
-1
AGGATCCCAGGACTACCAGG(TGG)
2192
68
74





282
132160
-1
GATGTCTCCACGGTACATGG(AGG)
2193
84
72





283
132164
1
AACTTATCCTCCATGTACCG(TGG)
2194
85
66





284
132166
1
CTTATCCTCCATGTACCGTG(GAG)
2195
88
68





285
132402
-1
AGTTTGGGTGGAATTCCAGG(CAG)
2196
51
91





286
132545
-1
ACTAAAGTGACAGATAGTCA(GGG)
2197
64
70





287
135192
1
TCACTGCAAACACAACCCTG(AGG)
2198
65
77





288
135662
-1
TAGGTAAACACGTGTCATGG(GGG)
2199
77
71





289
135663
-1
ATAGGTAAACACGTGTCATG(GGG)
2200
83
64





290
138647
1
GTTTACATATTATTTTAACG(AAG)
2201
54
90





291
140378
1
GGTCTCAAAACTGAAAACGT(TGG)
2202
68
71





292
140459
-1
ATTTGCCACATCCAACCCCA(GAG)
2203
51
87





293
140907
1
TTAAAGTTCTGGAAGCTGGG(AAG)
2204
52
86





294
141052
-1
GAGTGAGTTAGATATCACAA(GAG)
2205
71
75





295
144206
1
AAAAAGACGGACGGATCATG(AGG)
2206
85
62





296
144318
1
TGTAGTCTCAGCTACTAGGG(AGG)
2207
60
74





297
145243
1
GTACAGTGGTACATAGACCC(CGG)
2208
90
72





298
145249
-1
TACTCACTCTTTGGGGACCG(GGG)
2209
84
64





299
145337
1
CAGTAGGGAGTGGCTATCCG(GGG)
2210
87
66





300
145363
1
TCTGGGAAGACATCACAAGG(AGG)
2211
60
76





301
145431
1
AGGCAGATAGGCATTCAAGG(CAG)
2212
56
85





302
145518
-1
CCCTACTATGTTTATCACGT(AGG)
2213
92
65





303
145524
1
GAGTGCCTACGTGATAAACA(TAG)
2214
84
75





304
145883
1
AGAGTTGAATAGTTGCAACG(GAG)
2215
80
64





305
148450
-1
ACCACTAGGCTACTATCAGG(TGG)
2216
88
63





306
148460
1
TCCACCTGATAGTAGCCTAG(TGG)
2217
88
74





307
148475
1
CCTAGTGGTTGTGAGTACAG(CAG)
2218
76
81





308
149832
-1
TCAGGAACCATATCTTACGT(TGG)
2219
87
66





309
150045
-1
TCTAACCTCCAAAAGTGTGA(GAG)
2220
67
82





310
150239
-1
ACTGGCATCCTTACTAGTAG(AGG)
2221
84
61





311
152488
1
CCATTTTAGTTACTTCACCG(AAG)
2222
83
86





312
153443
-1
GGAGAATCACTTGAACCAGG(GAG)
2223
54
88





313
154133
-1
GGGGTGCCAAGAATACACAA(TAG)
2224
75
76





314
154336
1
TTATAATCCCAGCAACTCGG(GAG)
2225
80
68





315
154500
1
GGAGGATCACTGAAGCCCAA(GAG)
2226
59
83





316
154992
1
ATTGTTAGTGTATAGAAACG(CAG)
2227
76
76





317
155184
-1
ACAGCACTAGAAGTCCTAGC(CAG)
2228
81
68





318
155293
1
ATTGAATACGATGTTAGCTG(TGG)
2229
80
60





319
155374
1
GCTACTATAACAGAATACCA(CAG)
2230
66
91





320
155448
1
ATGGAAAGTTCATGACTGAG(GGG)
2231
62
70





321
155658
-1
GCAATTGTGACAGAATTGGG(AGG)
2232
63
74





322
155913
-1
CATGTACTACGACCAAGTGG(GAG)
2233
84
81





323
155915
-1
ATCATGTACTACGACCAAGT(GGG)
2234
92
69





324
155916
-1
GATCATGTACTACGACCAAG(TGG)
2235
92
63





325
155918
1
GGACAACTCCCACTTGGTCG(TAG)
2236
88
62





326
156439
-1
AAGGGTAACAACACACACTG(GGG)
2237
67
74





327
157217
-1
CTATCAACAGAGTAAGCAGA(CAG)
2238
54
81





328
157656
-1
ATGGGTGCCGCACACCAACA(TGG)
2239
82
65





329
159943
1
GCATCCCTCAGATAAATCCC(AAG)
2240
71
82





330
160831
-1
TTGAACAACTCATAATTACG(TGG)
2241
83
70





331
161670
1
GTAGCCTAATGGTTTCCATG(GGG)
2242
68
77





332
161744
-1
CAAGTACAAAAAACGATGGG(GGG)
2243
85
66





333
162012
1
ATAGTTTCTCAACCCTTGGG(AAG)
2244
70
77





334
162135
-1
GAAAAACTCATGCACACCAG(AGG)
2245
63
71





335
163457
-1
TGCAGCAACACCATAACAGT(AGG)
2246
78
70





336
163882
-1
GTAACCAAAAGAGAGCAATG(GGG)
2247
53
82





337
164242
-1
ATTGCCTCATGATAACCACA(AGG)
2248
64
72





338
164558
-1
CATGGTAAAGAGCAACACAA(GAG)
2249
53
83





339
164789
1
GCTCTTTTAAAGTTTCCACT(GAG)
2250
55
84





340
166597
-1
TGAAGTTTAGCAAAGTACCA(GAG)
2251
61
80





341
166686
-1
AAAGGGATAAAAGAAATCCG(CAG)
2252
56
83





342
168072
-1
GCATGCCAAGAACTTGACAG(AAG)
2253
62
95





343
169562
1
CTTATGAGTGAGAACATGCA(GAG)
2254
57
80





344
170590
-1
CCTCACAAAAACAAGCAACG(GGG)
2255
72
73





345
175111
-1
TCAAGTGATTTCGCCCACCT(CGG)
2256
85
64





346
180157
-1
GTAGGAACACTTGAAGCCAG(GAG)
2257
61
84





*Searching was based on WT Cas9 PAMs, 347 solutions out of ~34,500 possible guide-RNA sequences are shown.













TABLE 11







Top-Scoring Guide-RNA Target Sites and PAM Sequences in SCN9A for


Programmed Cas9-Nickase Pairs

















SEQ








ID
Specificity
Efficiency


Pair
Position
Strand
Guide-RNA target site (PAM)
NOs
score50
score28
















1
6112
1
CAGGAGTTCTAGATCAGCCT(GGG)
2258
66
60



6050
−1
CCAAAGTGATGGGATTGCAG(GGG)
2259
62
70





2
14921
1
ATAAGAACTGAGCTTTAGAG(AAG)
2260
55
84



14896
−1
AGTTCTTATATAGCAAACCG(GAG)
2261
88
82





3
24369
1
AAGACTGATGAATCCAGCCA(GGG)
2262
61
68



24306
−1
ATCCAAGTCATTAGTCTTGG(GGG)
2263
74
64





4
26796
1
ATAAGATGGTCACAGCTTGG(GGG)
2264
63
74



26751
−1
CTCCCATATTTAGCCCAATG(GGG)
2265
76
68





5
26974
1
TCCTGCCTCAGCCTTCCGAG(GAG)
2266
55
84



26943
−1
GGAGAATCGCTTGAACCCAG(GAG)
2267
59
75





6
27276
1
TTGAGTCCTAGATAGGTGGG(TGG)
2268
71
61



27249
−1
GACTCAAGATCCTAGATAGG(TGG)
2269
79
61





7
27277
1
TGAGTCCTAGATAGGTGGGT(GGG)
2270
74
64



27249
−1
GACTCAAGATCCTAGATAGG(TGG)
2271
79
61





8
27313
1
AAATTGGGCTGGGACCACTT(AGG)
2272
78
60



27249
−1
GACTCAAGATCCTAGATAGG(TGG)
2273
79
61





9
28567
1
TGCATGAAAACCTATCCCCT(GGG)
2274
77
66



28522
−1
TGGGAGATCAACATGCCTAG(TGG)
2275
69
73





10
29897
1
AATTACCTCCCACAGCAGCA(CAG)
2276
50
76



29862
−1
GTATTACCACTTCGTGAAAA(GAG)
2277
85
62





11
29916
1
ACAGGTTACTCAAAAGCCCA(GAG)
2278
60
62



29862
−1
GTATTACCACTTCGTGAAAA(GAG)
2279
85
62





12
29919
1
GGTTACTCAAAAGCCCAGAG(GAG)
2280
58
73



29862
−1
GTATTACCACTTCGTGAAAA(GAG)
2281
85
62





13
30917
1
TAGATACCCATCTTATACAC(AGG)
2282
82
60



30869
−1
GTCTTTAACTATCATCCATG(TGG)
2283
67
67





14
30917
1
TAGATACCCATCTTATACAC(AGG)
2284
82
60



30864
−1
TAACTATCATCCATGTGGAA(GGG)
2285
62
60





15
31268
1
TTTGCACAAAGGATTGTAGG(TGG)
2286
63
64



31215
−1
CAAGATACCAAACTAAGAGG(TGG)
2287
62
63





16
32326
1
TAGCTGAGATCCACTCCCCT(CGG)
2288
72
69



32274
−1
GATGTTTGCTTGAGCCCCTG(GGG)
2289
66
65





17
32400
1
CTTTTTCAATGAGGAAACCG(TGG)
2290
64
62



32338
−1
TATAATCCCAGCACTTTGGG(AGG)
2291
8
64





18
36029
1
AATAGGAGACATAGTTCCTG(AGG)
2292
61
68



35994
−1
CACTGGTGAGGAAGTTACAC(GGG)
2293
79
63





19
36029
1
AATAGGAGACATAGTTCCTG(AGG)
2294
61
68



35976
−1
ACGGGTAGTCTGTTAGAAAG(AGG)
2295
67
60





20
39372
1
TTAGAGCCAAAGGAGCAAGT(AAG)
2296
58
62



39329
−1
TTACACTGTAAACGGCCTGA(GAG)
2297
86
70





21
39469
1
CTCAGCTTAATCGATTTTGG(GGG)
2298
77
60



39418
−1
TAGACCACAATTTCACCTGG(AGG)
2299
66
64





22
39847
1
TAAGGGAACACCAAAAGCAC(AGG)
2300
62
61



39815
−1
TAGCCAAACCTGCTAGAAAG(AGG)
2301
61
64





23
40326
1
CTATGCTTCTGAAAGTTAGC(AAG)
2302
58
61



40298
−1
GCATAGTTACTGGAGTGAGG(CAG)
2303
61
75





24
40326
1
CTATGCTTCTGAAAGTTAGC(AAG)
2304
58
61



40298
−1
GCATAGTTACTGGAGTGAGG(CAG)
2305
61
75





25
43824
1
TGTACATAGACCCAGCACAA(GGG)
2306
71
76



43791
−1
AGCTATAGTAGAATCCTGTG(TGG)
2307
76
75





26
44028
1
TCCATCACCACTACACACAA(TGG)
2308
60
60



43991
−1
CAGAGCCTTGACACCTGCCG(TGG)
2309
70
68





27
45061
1
GATCTGTTTATAGGCCACAG(TGG)
2310
61
66



45014
−1
TCTGTGGCTTATACAACTGG(GGG)
2311
75
70





28
45061
1
GATCTGTTTATAGGCCACAG(TGG)
2312
61
66



45015
−1
ATCTGTGGCTTATACAACTG(GGG)
2313
65
64





29
45113
1
CAGTGACAGATACTGGTCCA(TGG)
2314
66
60



45064
−1
ACCCCTGATCTAACCCACTG(TGG)
2315
73
68





30
45255
1
TATTGTGAACTGCACATACG(AGG)
2316
81
65



45194
−1
GCCAAGGCTGATCTAACAGG(AGG)
2317
75
69





31
45255
1
TATTGTGAACTGCACATACG(AGG)
2318
81
65



45210
−1
TCTCTGAGAGTCTAATGCCA(AGG)
2319
62
64





32
45256
1
ATTGTGAACTGCACATACGA(GGG)
2320
88
71



45194
−1
GCCAAGGCTGATCTAACAGG(AGG)
2321
75
69





33
45256
1
ATTGTGAACTGCACATACGA(GGG)
2322
88
71



45210
−1
TCTCTGAGAGTCTAATGCCA(AGG)
2323
62
64





34
50918
1
AATGGTGCAGATAGTAAGGA(CAG)
2324
65
60



50879
−1
ATAAATCTATTCCAAGACAA(AAG)
2325
51
73





35
53558
1
GAGAGGTTATGTCATCTCCA(CAG)
2326
64
69



53495
−1
GAGTTAATAATCATGCTCCG(AAG)
2327
82
86





36
57832
1
AAAATGGACATGGATACCCT(AGG)
2328
70
65



57804
−1
CATTTTAGCTAGAACCAGGG(TGG)
2329
71
68





37
57832
1
AAAATGGACATGGATACCCT(AGG)
2330
70
65



57807
−1
GTCCATTTTAGCTAGAACCA(GGG)
2331
71
65





38
63236
1
GTCACTCAAGAGCTCTAACG(GAG)
2332
87
68



63203
−1
CCAGGCACATTGTCAATAGG(CAG)
2333
79
75





39
63246
1
AGCTCTAACGGAGAGGTACA(AGG)
2334
78
62



63221
−1
GTTAGAGCTCTTGAGTGACC(AGG)
2335
75
61





40
63247
1
GCTCTAACGGAGAGGTACAA(GGG)
2336
78
64



63221
−1
GTTAGAGCTCTTGAGTGACC(AGG)
2337
75
61





41
66136
1
TTTGGGTTACTGTAGCCTTG(TAG)
2338
67
68



66100
−1
GCATGGTACTGGTACCAAAA(CAG)
2339
74
63





42
68003
1
ACTTACCTCCTGAATACGGT(GAG)
2340
90
67



67959
−1
GGCTTTTTATTTGTATGCGG(CAG)
2341
79
72





43
70978
1
TTTTGAGGTCACATATGATG(GGG)
2342
63
66



70933
−1
GATGGAAAAGAGGTTAGGCA(GGG)
2343
64
67





44
76923
1
GACAGCTCCACCGAAACAGG(AGG)
2344
76
65



76882
−1
TTTACTCTTTCACTTTCACG(AGG)
2345
61
62





45
79521
1
TACCAGGCCCATCCTTCCCG(AGG)
2346
68
64



79497
−1
GGGCCTGGTAGAGTGAGTAT(GGG)
2347
77
68





46
80585
1
GGTTTGTATAAGTGCACCCT(AGG)
2348
82
60



80545
−1
GTATAGGCTACCATACACCT(AGG)
2349
88
69





47
80599
1
CACCCTAGGATGTTTGCACA(AGG)
2350
73
60



80545
−1
GTATAGGCTACCATACACCT(AGG)
2351
88
69





48
89635
1
ATAGGCGAGCACATGAAAAG(AGG)
2352
73
70



89604
−1
TATGCCCTTCGACACCAAGG(TGG)
2353
78
72





49
89689
1
TGCTAAATGTGTATCACCCG(AGG)
2354
88
68



89654
−1
TTTGGGTGGTACCTGATTGG(GGG)
2355
77
66





50
89689
1
TGCTAAATGTGTATCACCCG(AGG)
2356
88
68



89655
−1
ATTTGGGTGGTACCTGATTG(GGG)
2357
76
60





51
90246
1
ATAATTCTGCACAAATCCCC(AAG)
2358
64
66



90216
−1
TTATAAGCAGGGAGGCCTGA(GAG)
2359
54
81





52
91383
1
GTAACATCAGCCAAGCCAGT(AGG)
2360
63
69



91353
−1
TTACTGCTGCGTCGCTCCTG(GGG)
2361
76
69





53
91402
1
TAGGTCCCCACCAATGCTGC(CGG)
2362
75
65



91353
−1
TTACTGCTGCGTCGCTCCTG(GGG)
2363
76
69





54
91444
1
TGCTGTGGACTGCAACGGTG(TGG)
2364
82
68



91396
−1
GTTCACCGGCAGCATTGGTG(GGG)
2365
78
62





55
91444
1
TGCTGTGGACTGCAACGGTG(TGG)
2366
82
68



91382
−1
TTGGTGGGGACCTACTGGCT(TGG)
2367
75
62





56
92524
1
TGCATTACCAATATCAGCAA(GGG)
2368
63
64



92494
−1
TGCAGCATAGCATAGTGAGT(GGG)
2369
73
65





57
92524
1
TGCATTACCAATATCAGCAA(GGG)
2370
63
64



92495
−1
ATGCAGCATAGCATAGTGAG(TGG)
2371
68
66





58
93703
1
GTAAGAGACAACCATTACAG(GAG)
2372
67
81



93663
−1
GGAAGACCTCATGAACTGAG(CAG)
2373
61
70





59
94847
1
CCCCCACATTCCCATTGTGG(GGG)
2374
66
64



94784
−1
GACCTGGGGCATATTGTCAG(GGG)
2375
77
69





60
94847
1
CCCCCACATTCCCATTGTGG(GGG)
2376
66
64



94816
−1
GGGGTGAAGTGTTAGACCCA(GGG)
2377
73
67





61
94847
1
CCCCCACATTCCCATTGTGG(GGG)
2378
66
64



94806
−1
GTTAGACCCAGGGACCAGGT(GGG)
2379
62
69





62
99426
1
TAAGACTAGCCTCTATAGCA(AGG)
2380
80
63



99395
−1
TTACACATGGCTATAAGGTG(CGG)
2381
76
62





63
99993
1
TCTCTCATCAGGTATCCAGA(AGG)
2382
70
69



99943
−1
CCAACTGTGACAAGTCAACG(TGG)
2383
86
75





64
111569
1
GTTATCTCAAAGGTACCCAT(GAG)
2384
74
71



111513
−1
CACTGACTATCTCTTCAGAG(AAG)
2385
59
67





65
112933
1
GGAGAAGGGTATAACCTTGG(GGG)
2386
72
66



112878
−1
CCTGCATCCAATGAATGGTG(TGG)
2387
70
68





66
131392
1
AGACCACCGTCCAGAAAGAA(GAG)
2388
55
69



131349
−1
GGATTATTCTCTCTGGACAG(TAG)
2389
61
70





67
131392
1
AGACCACCGTCCAGAAAGAA(GAG)
2390
55
69



131352
−1
TCTGGATTATTCTCTCTGGA(CAG)
2391
55
83





68
131411
1
AGAGATGCACAATAGCCCGA(CAG)
2392
86
91



131349
−1
GGATTATTCTCTCTGGACAG(TAG)
2393
61
70





69
131411
1
AGAGATGCACAATAGCCCGA(CAG)
2394
86
91



131352
−1
TCTGGATTATTCTCTCTGGA(CAG)
2395
55
83





70
134360
1
TCAGGGTCTAGAAAGACGAA(CAG)
2396
68
69



134315
−1
TACGTTTCTGAAATTGCAAG(CAG)
2397
55
78





71
135192
1
TCACTGCAAACACAACCCTG(AGG)
2398
65
77



135158
−1
GCAACCTTGAGACATGAGGT(AGG)
2399
70
64





72
135192
1
TCACTGCAAACACAACCCTG(AGG)
2400
65
77



135162
−1
GTGAGCAACCTTGAGACATG(AGG)
2401
69
67





73
138647
1
GTTTACATATTATTTTAACG(AAG)
2402
54
90



138593
−1
TCCATCATCCAAGTATTCAA(CAG)
2403
65
67





74
140490
1
AATCATTGTAACAAGCCCTA(CAG)
2404
71
64



140459
−1
ATTTGCCACATCCAACCCCA(GAG)
2405
51
87





75
140966
1
TTGCTGGTGGGCACACCAGA(GAG)
2406
63
68



140940
−1
ACCAGCAAGAAAGTTCCCAC(CAG)
2407
68
67





76
141112
1
CTATATTCCATTCATGAAGG(CAG)
2408
56
64



141052
−1
GAGTGAGTTAGATATCACAA(GAG)
2409
71
75





77
144318
1
TGTAGTCTCAGCTACTAGGG(AGG)
2410
60
74



144285
−1
AGGTGAGCACCACTATGCCC(GGG)
2411
78
62





78
156887
1
CACTCCCATCAACAGTGTGT(AGG)
2412
72
69



156842
−1
AACCATAATGGAAGACTGTG(TGG)
2413
60
64





79
161670
1
GTAGCCTAATGGTTTCCATG(GGG)
2414
68
77



161635
−1
CGTTTTCCAGCCGCTCCCTG(TGG)
2415
62
63





80
163858
1
CATGACCCTGTAGATACTGA(AGG)
2416
68
65



163829
−1
TCATGGTTTCAGAACCCCAA(GGG)
2417
65
70





81
168112
1
TTTCAGTCCCCATTAATGAA(CAG)
2418
59
64



168072
−1
GCATGCCAAGAACTTGACAG(AAG)
2419
62
95





82
168112
1
TTTCAGTCCCCATTAATGAA(CAG)
2420
59
64



168075
−1
ACAGCATGCCAAGAACTTGA(CAG)
2421
58
72





83
170725
1
TTTTGGTTACTGTAGCCTTG(TAG)
2422
65
63



170689
−1
GCATGGTACTGGTACCAAAA(CAG)
2423
74
63





84
180194
1
CATGACCTGCCAACATGCTG(GGG)
2424
65
63



180140
−1
CAGGAGTTTGAGACTAGCCT(GGG)
2425
63
69





*Searching was based on WT Cas9 PAMs, 84 solutions out of ~37,500 possible pairs shown.






Nucleobase Editors for Use in the Invention

The methods of editing ion channel-encoding genes in neurons (e.g., DRG neurons) for pain suppression are enabled by the use of the nucleobase editors. As described herein, a nucleobase editor is a fusion protein comprising: (i) a programmable DNA binding protein domain; and (ii) a deaminase domain. Any programmable DNA binding domain may be used in the based editors.


In some embodiments, the programmable DNA binding protein domain comprises the DNA binding domain of a zinc finger nuclease (ZFN) or a transcription activator-like effector domain (TALE). In some embodiments, the programmable DNA binding protein domain may be programmed by a guide nucleotide sequence and is thus referred as a “guide nucleotide sequence-programmable DNA binding-protein domain.” In some embodiments, the guide nucleotide sequence-programmable DNA binding protein is a nuclease inactive Cas9, or dCas9. A dCas9 as used herein, encompasses a Cas9 that is completely inactive with respect to its nuclease activity, or partially inactive with respect to its nuclease activity (e.g., a Cas9 nickase). Thus, in some embodiments, the guide nucleotide sequence-programmable DNA binding protein is a Cas9 nickase. In some embodiments, the guide nucleotide sequence-programmable DNA binding protein is a nuclease inactive Cpf1. In some embodiments, the guide nucleotide sequence-programmable DNA binding protein is a nuclease inactive Argonaute.


In some embodiments, the guide nucleotide sequence-programmable DNA binding protein is a dCas9 domain. In some embodiments, the guide nucleotide sequence-programmable DNA binding protein is a Cas9 nickase. In some embodiments, the dCas9 domain comprises the amino acid sequence of SEQ ID NO: 2 or SEQ ID NO: 3. In some embodiments, the dCas9 domain comprises an amino acid sequence that is at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to any one of the Cas9 domains provided herein (e.g., SEQ ID NOs: 11-260), and comprises mutations corresponding to D10X (X is any amino acid except for D) and/or H840X (X is any amino acid except for H) in SEQ ID NO: 1. In some embodiments, the dCas9 domain comprises an amino acid sequence that is at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to any one of the Cas9 domains provided herein (e.g., SEQ ID NOs: 11-260), and comprises mutations corresponding to D10A and/or H840A in SEQ ID NO: 1. In some embodiments, the Cas9 nickase comprises an amino acid sequence that is at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to any one of the Cas9 domains provided herein (e.g., SEQ ID NOs: 11-260), and comprises mutations corresponding to D10X (X is any amino acid except for D) in SEQ ID NO: 1 and a histidine at the position corresponding to position 840 in SEQ ID NO: 1. In some embodiments, the Cas9 nickase comprises an amino acid sequence that is at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to any one of the Cas9 domains provided herein (e.g., SEQ ID NOs: 11-260), and comprises mutations corresponding to D10A in SEQ ID NO: 1 and a histidine at the position corresponding to position 840 in SEQ ID NO: 1. In some embodiments, variants or homologues of dCas9 or Cas9 nickase (e.g., variants of SEQ ID NO: 2 or SEQ ID NO: 3, respectively) are provided which are at least about 70% identical, at least about 80% identical, at least about 90% identical, at least about 95% identical, at least about 98% identical, at least about 99% identical, at least about 99.5% identical, or at least about 99.9% to SEQ ID NO: 2 or SEQ ID NO: 3, respectively, and comprises mutations corresponding to D10A and/or H840A in SEQ ID NO: 1. In some embodiments, variants of Cas9 (e.g., variants of SEQ ID NO: 2) are provided having amino acid sequences which are shorter, or longer than SEQ ID NO: 2, by about 5 amino acids, by about 10 amino acids, by about 15 amino acids, by about 20 amino acids, by about 25 amino acids, by about 30 amino acids, by about 40 amino acids, by about 50 amino acids, by about 75 amino acids, by about 100 amino acids, or more, provided that the dCas9 variants comprise mutations corresponding to D10A and/or H840A in SEQ ID NO: 1. In some embodiments, variants of Cas9 nickase (e.g., variants of SEQ ID NO: 3) are provided having amino acid sequences which are shorter, or longer, than SEQ ID NO: 3, by about 5 amino acids, by about 10 amino acids, by about 15 amino acids, by about 20 amino acids, by about 25 amino acids, by about 30 amino acids, by about 40 amino acids, by about 50 amino acids, by about 75 amino acids, by about 100 amino acids, or more, provided that the dCas9 variants comprise mutations corresponding to D10A and comprises a histidine at the position corresponding to position 840 in SEQ ID NO: 1.


Additional suitable nuclease-inactive dCas9 domains will be apparent to those of skill in the art based on this disclosure and knowledge in the field, and are within the scope of this disclosure. Such additional exemplary suitable nuclease-inactive Cas9 domains include, but are not limited to, D10A/H840A, D10A/D839A/H840A, and D10A/D839A/H840A/N863A mutant domains (See, e.g., Prashant et al., Nature Biotechnology. 2013; 31(9): 833-838, which are incorporated herein by reference), or K603R (See, e.g., Chavez et al., Nature Methods 12, 326-328, 2015, which is incorporated herein by reference.


In some embodiments, the nucleobase editors described herein comprise a Cas9 domain with decreased electrostatic interactions between the Cas9 domain and the sugar-phosphate backbone of a target DNA, as compared to a wild-type Cas9 domain. In some embodiments, a Cas9 domain comprises one or more mutations that decreases the association between the Cas9 domain and a sugar-phosphate backbone of a DNA. In some embodiments, the nucleobase editors useful in the present disclosure comprises a dCas9 (e.g., with D10A and H840A mutations) or a Cas9 nickase (e.g., with D10A mutation), wherein the dCas9 or the Cas9 nickase further comprises one or more of a N497X, a R661X, a Q695X. and/or a Q926X mutation of the amino acid sequence provided in SEQ ID NO: 1, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11-260, wherein X is any amino acid. In some embodiments, the nucleobase editors described herein comprises a dCas9 (e.g., with D10A and H840A mutations) or a Cas9 nickase (e.g., with D10A mutation), wherein the dCas9 or the Cas9 nickase further comprises one or more of a N497A, a R661A, a Q695A, and/or a Q926A mutation of the amino acid sequence provided in SEQ ID NO: 1, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11-260. In some embodiments, the dCas9 domain (e.g., of any of the nucleobase editors provided herein) comprises the amino acid sequence as set forth in any one of SEQ ID NOs: 2-9. In some embodiments, the nucleobase editor comprises the amino acid sequence as set forth in any one of SEQ ID NOs: 10 or 293-302.










Cas9 variant with decreased electrostatic interactions between the Cas9



and DNA backbone


DKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETALATRLKRTARR





RYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRK





KLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAK





AILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLL





AQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYK





EIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGE





LHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASA





QSFIERMTAFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTN





RKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFE





DREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGALSRKLINGIRDKQSGKTILDFLKSDGFANRNFM







A
LIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVIEM






ARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDIN





RLSDYDVDHIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFD





NLTKAERGGLSELDKAGFIKRQLVETRAITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFR





KDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATA





KYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTG





GFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERS





SFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASH





YEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIH





LFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGD (SEQ ID NO: 9,


mutations relative to SEQ ID NO: 1 are bolded and underlined)





High fidelity nucleobase editor


(SEQ ID NO: 321)



msSETGPVAVDPTLRRRIEPHEFEVFFDPRELRKETCLLYEINWGGRHSIWRHTSQNTNKHVEVNFIEKF






TTERYFCPNTRCSITWFLSWSPCGECSRAITEFLSRYPHVTLFIYIARLYHHADPRNRQGLRDLISSGVTI





QIMTEQESGYCWRNFVNYSPSNEAHWPRYPHLWVRLYVLELYCIILGLPPCLNILRRKQPQLTFFTIALQ





SCHYQRLPPHILWATGLKSGSETPGTSESATPESDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLG





NTDRHSIKKNLIGALLFDSGETALATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFL





VEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLN





PDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALS





LGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITK





APLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKM





DGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGP





LARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTAFDKNLPNEKVLPKHSLLYEYFTVYN





ELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASL





GTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWG





ALSRKLINGIRDKQSGKTILDFLKSDGFANRNFMALIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGS





PAIKKGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEH





PVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDDSIDNKVLTRSDKNRGKS





DNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRAITKHVAQIL





DSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPK





LESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIV





WDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVA





YSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGR





KRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKR





VILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIH





QSITGLYETRIDLSQLGGD






In some embodiments, the guide nucleotide sequence-programmable DNA binding protein is a single effector of a microbial CRISPR-Cas system. Single effectors of microbial CRISPR-Cas systems include, without limitation, Cas9, Cpf1, C2c1, C2c2, and C2c3. Typically, microbial CRISPR-Cas systems are divided into Class 1 and Class 2 systems. Class 1 systems have multisubunit effector complexes, while Class 2 systems have a single protein effector. Cas9 and Cpf1 are Class 2 effectors. In addition to Cas9 and Cpf1, three distinct Class 2 CRISPR-Cas systems (C2c1, C2c2, and C2c3) have been described by Shmakov et al., “Discovery and Functional Characterization of Diverse Class 2 CRISPR Cas Systems”, Mol. Cell, 2015 Nov. 5; 60(3): 385-397, the entire contents of which are herein incorporated by reference. Effectors of two of the systems, C2c1 and C2c3, contain RuvC-like endonuclease domains related to Cpf1. A third system, C2c2 contains an effector with two predicted HEPN RNase domains. Production of mature CRISPR RNA is tracrRNA-independent, unlike production of CRISPR RNA by C2c1. C2c1 depends on both CRISPR RNA and tracrRNA for DNA cleavage. Bacterial C2c2 has been shown to possess a unique RNase activity for CRISPR RNA maturation distinct from its RNA-activated single-stranded RNA degradation activity. These RNase functions are different from each other and from the CRISPR RNA-processing behavior of Cpf1. See, e.g., East-Seletsky, et al., “Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection”, Nature, 2016 Oct. 13; 538(7624):270-273, the entire contents of which are hereby incorporated by reference. In vitro biochemical analysis of C2c2 in Leptotrichia shahii has shown that C2c2 is guided by a single CRISPR RNA and can be programmed to cleave ssRNA targets carrying complementary protospacers. Catalytic residues in the two conserved HEPN domains mediate cleavage. Mutations in the catalytic residues generate catalytically inactive RNA-binding proteins. See e.g., Abudayyeh et al., “C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector,” Science, 2016 Aug. 5; 353(6299), the entire contents of which are hereby incorporated by reference.


The crystal structure of Alicyclobaccillus acidoterrastris C2c1 (AacC2c1) has been reported in complex with a chimeric single-molecule guide RNA (sgRNA). See, e.g., Liu et al., “C2c1-sgRNA Complex Structure Reveals RNA-Guided DNA Cleavage Mechanism”, Mol. Cell, 2017 Jan. 19; 65(2):310-322, incorporated herein by reference. The crystal structure has also been reported for Alicyclobacillus acidoterrestris C2c1 bound to target DNAs as ternary complexes. See, e.g., Yang et al., “PAM-dependent Target DNA Recognition and Cleavage by C2C1 CRISPR-Cas endonuclease”, Cell, 2016 Dec. 15; 167(7):1814-1828, the entire contents of which are hereby incorporated by reference. Catalytically competent conformations of AacC2c1, both with target and non-target DNA strands, have been captured independently positioned within a single RuvC catalytic pocket, with C2c1-mediated cleavage resulting in a staggered seven-nucleotide break of target DNA. Structural comparisons between C2c1 ternary complexes and previously identified Cas9 and Cpf1 counterparts demonstrate the diversity of mechanisms used by CRISPR-Cas9 systems.


In some embodiments, the nucleobase editors described herein comprise a C2c1, a C2c2, or a C2c3 protein. In some embodiments, the guide nucleotide sequence-programmable DNA binding protein is a C2c1 protein. In some embodiments, the guide nucleotide sequence-programmable DNA binding protein is a C2c2 protein. In some embodiments, the guide nucleotide sequence-programmable DNA binding protein is a C2c3 protein. In some embodiments, the guide nucleotide sequence-programmable DNA binding protein comprises an amino acid sequence that is at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to a naturally-occurring C2c1, C2c2, or C2c3 protein. In some embodiments, the guide nucleotide sequence-programmable DNA binding protein is a naturally-occurring C2c1, C2c2, or C2c3 protein. In some embodiments, the guide nucleotide sequence-programmable DNA binding protein comprises an amino acid sequence that is at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to any one of SEQ ID NOs: 756-758. In some embodiments, the guide nucleotide sequence-programmable DNA binding protein comprises an amino acid sequence of any one SEQ ID NOs: 756-758. It should be appreciated that C2c1, C2c2, or C2c3 from other bacterial species may also be used in accordance with the present disclosure.










C2c1 (uniprot.org/uniprot/T0D7A2#)



sp|T0D7A2|C2C1_ALIAG CRISPR-associated endonuclease C2c1 OS = Alicyclobacillus



acidoterrestris (strain ATCC 49025 / DSM 3922 / CIP 106132 / NCIMB 13137 / GD3B)



GN = c2c1 PE = 1 SV = 1


(SEQ ID NO: 2470)



MAVKSIKVKLRLDDMPEIRAGLWKLHKEVNAGVRYYTEWLSLLRQENLYRRSPNGDGEQECDKTAE






ECKAELLERLRARQVENGHRGPAGSDDELLQLARQLYELLVPQAIGAKGDAQQIARKFLSPLADKDAV





GGLGIAKAGNKPRWVRMREAGEPGWEEEKEKAETRKSADRTADVLRALADFGLKPLMRVYTDSEMS





SVEWKPLRKGQAVRTWDRDMFQQAIERMMSWESWNQRVGQEYAKLVEQKNRFEQKNFVGQEHLV





HLVNQLQQDMKEASPGLESKEQTAHYVTGRALRGSDKVFEKWGKLAPDAPFDLYDALIKNVQRRNT





RRFGSHDLFAKLAEPEYQALWREDASFLTRYAVYNSILRKLNHAKMFATFTLPDATAHPIWTRFDKLG





GNLHQYTFLFNEFGERRHAIRFHKLLKVENGVAREVDDVTVPISMSEQLDNLLPRDPNEPIALYFRDYG





AEQHFTGEFGGAKIQCRRDQLAHMHRRRGARDVYLNVSVRVQSQSEARGERRPPYAAVFRLVGDNH





RAFVHFDKLSDYLAEHPDDGKLGSEGLLSGLRVMSVDLGLRTSASISVFRVARKDELKPNSKGRVPFFF





PIKGNDNLVAVHERSQLLKLPGETESKDLRAIREERQRTLRQLRTQLAYLRLLVRCGSEDVGRRERSW





AKLIEQPVDAANHMTPDWREAFENELQKLKSLHGICSDKEWMDAVYESVRRVWRHMGKQVRDWRK





DVRSGERPKIRGYAKDVVGGNSIEQIEYLERQYKFLKSWSFFGKVSGQVIRAEKGSRFAITLREHIDHAK





EDRLKKLADRIIMEALGYVYALDERGKGKWVAKYPPCQLILLEELSEYQFNNDRPPSENNQLMQWSH





RGVFQELINQAQVHDLLVGTMYAAFSSRFDARTGAPGIRCRRVPARCTQEHNPEPFPWWLNKFVVEHT





LDACPLRADDLIPTGEGEIFVSPFSAEEGDFHQIHADLNAAQNLQQRLWSDFDISQIRERCDWGEVDGE





LVLIPRLTGKRTADSYSNKVFYTNTGVTYYERERGKKRRKVFAQEKLSEEEAELLVEADEAREKSVVL





MRDPSGIINRGNWTRQKEFWSMVNQRIEGYLVKQIRSRVPLQDSACENTGDI





C2c2 (uniprot.org/uniprot/P0DOC6)


>sp|P0DOC6|C2C2_LEPSD CRISPR-associated endoribonuclease C2c2 OS = Leptotrichia



shahii (strain DSM 19757 / CCUG 47503 / CIP 107916 / JCM 16776 / LB37) GN = c2c2



PE = 1 SV = 1


(SEQ ID NO: 2471)



MGNLFGHKRWYEVRDKKDFKIKRKVKVKRNYDGNKYILNINENNNKEKIDNNKFIRKYINYKKNDNI






LKEFTRKFHAGNILFKLKGKEGIIRIENNDDFLETEEVVLYIEAYGKSEKLKALGITKKKIIDEAIRQGITK





DDKKIEIKRQENEEEIEIDIRDEYTNKTLNDCSIILRIIENDELETKKSIYEIFKNINMSLYKIIEKIIENETEK





VFENRYYEEHLREKLLKDDKIDVILTNFMEIREKIKSNLEILGFVKFYLNVGGDKKKSKNKKMLVEKIL





NINVDLTVEDIADFVIKELEFWNITKRIEKVKKVNNEFLEKRRNRTYIKSYVLLDKHEKFKIERENKKDK





IVKFFVENIKNNSIKEKIEKILAEFKIDELIKKLEKELKKGNCDTEIFGIFKKHYKVNFDSKKFSKKSDEEK





ELYKIIYRYLKGRIEKILVNEQKVRLKKMEKIEIEKILNESILSEKILKRVKQYTLEHIMYLGKLRHNDID





MTTVNTDDFSRLHAKEELDLELITFFASTNMELNKIFSRENINNDENIDFFGGDREKNYVLDKKILNSKI





KIIRDLDFIDNKNNITNNFIRKFTKIGTNERNRILHAISKERDLQGTQDDYNKVINIIQNLKISDEEVSKAL





NLDVVFKDKKNIITKINDIKISEENNNDIKYLPSFSKVLPEILNLYRNNPKNEPFDTIETEKIVLNALIYVN





KELYKKLILEDDLEENESKNIFLQELKKTLGNIDEIDENIIENYYKNAQISASKGNNKAIKKYQKKVIECY





IGYLRKNYEELFDFSDFKMNIQEIKKQIKDINDNKTYERITVKTSDKTIVINDDFEYIISIFALLNSNAVIN





KIRNRFFATSVWLNTSEYQNIIDILDEIMQLNTLRNECITENWNLNLEEFIQKMKEIEKDFDDFKIQTKKE





IFNNYYEDIKNNILTEFKDDINGCDVLEKKLEKIVIFDDETKFEIDKKSNILQDEQRKLSNINKKDLKKKV





DQYIKDKDQEIKSKILCRIIFNSDFLKKYKKEIDNLIEDMESENENKFQEIYYPKERKNELYIYKKNLFLNI





GNPNFDKIYGLISNDIKMADAKFLFNIDGKNIRKNKISEIDAILKNLNDKLNGYSKEYKEKYIKKLKEND





DFFAKNIQNKNYKSFEKDYNRVSEYKKIRDLVEFNYLNKIESYLIDINWKLAIQMARFERDMHYIVNGL





RELGIIKLSGYNTGISRAYPKRNGSDGFYTTTAYYKFFDEESYKKFEKICYGFGIDLSENSEINKPENESIR





NYISHFYIVRNPFADYSIAEQIDRVSNLLSYSTRYNNSTYASVFEVFKKDVNLDYDELKKKFKLIGNNDI





LERLMKPKKVSVLELESYNSDYIKNLIIELLTKIENTNDTL





C2c3, translated from >CEPX01008730.1 marine metagenome genome assembly


TARA_037_MES_0.1-0.22, contig TARA_037_MES_0.1-0.22_scaffold22115_1, whole


genome shotgun sequence.


(SEQ ID NO: 2472)



MRSNYHGGRNARQWRKQISGLARRTKETVFTYKFPLETDAAEIDFDKAVQTYGIAEGVGHGSLIGLVC






AFHLSGFRLFSKAGEAMAFRNRSRYPTDAFAEKLSAIMGIQLPTLSPEGLDLIFQSPPRSRDGIAPVWSE





NEVRNRLYTNWTGRGPANKPDEHLLEIAGEIAKQVFPKFGGWDDLASDPDKALAAADKYFQSQGDFP





SIASLPAAIMLSPANSTVDFEGDYIAIDPAAETLLHQAVSRCAARLGRERPDLDQNKGPFVSSLQDALVS





SQNNGLSWLFGVGFQHWKEKSPKELIDEYKVPADQHGAVTQVKSFVDAIPLNPLFDTTHYGEFRASVA





GKVRSWVANYWKRLLDLKSLLATTEFTLPESISDPKAVSLFSGLLVDPQGLKKVADSLPARLVSAEEAI





DRLMGVGIPTAADIAQVERVADEIGAFIGQVQQFNNQVKQKLENLQDADDEEFLKGLKIELPSGDKEPP





AINRISGGAPDAAAEISELEEKLQRLLDARSEHFQTISEWAEENAVTLDPIAAMVELERLRLAERGATGD





PEEYALRLLLQRIGRLANRVSPVSAGSIRELLKPVFMEEREFNLFFHNRLGSLYRSPYSTSRHQPFSIDVG





KAKAIDWIAGLDQISSDIEKALSGAGEALGDQLRDWINLAGFAISQRLRGLPDTVPNALAQVRCPDDVR





IPPLLAMLLEEDDIARDVCLKAFNLYVSAINGCLFGALREGFIVRTRFQRIGTDQIHYVPKDKAWEYPDR





LNTAKGPINAAVSSDWIEKDGAVIKPVETVRNLSSTGFAGAGVSEYLVQAPHDWYTPLDLRDVAHLVT





GLPVEKNITKLKRLTNRTAFRMVGASSFKTHLDSVLLSDKIKLGDFTIIIDQHYRQSVTYGGKVKISYEP





ERLQVEAAVPVVDTRDRTVPEPDTLFDHIVAIDLGERSVGFAVFDIKSCLRTGEVKPIHDNNGNPVVGT





VAVPSIRRLMKAVRSHRRRRQPNQKVNQTYSTALQNYRENVIGDVCNRIDTLMERYNAFPVLEFQIKN





FQAGAKQLEIVYGS






The Cas9 protein recognizes a short motif (PAM motif) in the CRISPR repeat sequences in the target DNA sequence. A “PAM motif.” or “protospacer adjacent motif.” as used herein, refers to a DNA sequence immediately following the DNA sequence targeted by the Cas9 nuclease in the CRISPR bacterial adaptive immune system. PAM is a component of the invading virus or plasmid but is not a component of the bacterial CRISPR locus. Wild-type Streptococcus pyogenes Cas9 recognizes a canonical PAM sequence (5′-NGG-3′). Other Cas9 nucleases (e.g., Cas9 from Streptococcus thermophiles, Staphylococcus aureus, Neisseria meningitidis, or Treponema denticolaor) and Cas9 variants thereof have been described in the art to have different, or more relaxed PAM requirements. For example, in Kleinstiver et al., Nature 523, 481-485, 2015; Klenstiver et al., Nature 529, 490-495, 2016; Ran et al., Nature, April 9; 520(7546): 186-191, 2015; Kleinstiver et al., Nat Biotechnol, 33(12):1293-1298, 2015; Hou et al., Proc Natl Acad Sci USA, 110(39):15644-9, 2014; Prykhozhij et al., PLoS One, 10(3): e0119372, 2015: Zetsche et al., Cell 163, 759-771, 2015; Gao et al., Nature Biotechnology, doi:10.1038/nbt.3547, 2016; Want et al., Nature 461, 754-761, 2009; Chavez et al., doi: dx.doi.org/10.1101/058974; Fagerlund et al., Genome Biol. 2015; 16: 25, 2015; Zetsche et al., Cell, 163, 759-771, 2015; and Swarts et al., Nat Struct Mol Biol. 21(9):743-53, 2014, each of which is incorporated herein by reference.


Thus, the guide nucleotide sequence-programmable DNA-binding proteins useful in the present disclosure may recognize a variety of PAM sequences including, without limitation: NGG, NGAN, NGNG, NGAG, NGCG, NNGRRT, NGRRN, NNNRRT, NNNGATT, NNAGAAW, NAAAC, TTN, TTTN, and YTN, wherein Y is a pyrimidine, and N is any nucleobase. In some embodiments, the PAM is located 3′ of the target base. In some embodiments, the PAM is located 5′ of the target base.


One example of an RNA-programmable DNA-binding protein that has different PAM specificity is Clustered Regularly Interspaced Short Palindromic Repeats from Prevotella and Francisella 1 (Cpf1). Similar to Cas9, Cpf1 is also a class 2 CRISPR effector. It has been shown that Cpf1 mediates robust DNA interference with features distinct from Cas9. Cpf1 is a single RNA-guided endonuclease lacking tracrRNA, and it utilizes a T-rich protospacer-adjacent motif (TTN, TTTN, or YTN). Moreover, Cpf1 cleaves DNA via a staggered DNA double-stranded break. Out of 16 Cpf1-family proteins, two enzymes from Acidaminococcus and Lachnospiraceae are shown to have efficient genome-editing activity in human cells.


Also useful in the present disclosure are nuclease-inactive Cpf1 (dCpf1) variants that may be used as a guide nucleotide sequence-programmable DNA-binding protein domain. The Cpf1 protein has a RuvC-like endonuclease domain that is similar to the RuvC domain of Cas9 but does not have a HNH endonuclease domain, and the N-terminal of Cpf1 does not have the alfa-helical recognition lobe of Cas9. It was shown in Zetsche et al., Cell, 163, 759-771, 2015 (which is incorporated herein by reference) that, the RuvC-like domain of Cpf1 is responsible for cleaving both DNA strands and inactivation of the RuvC-like domain inactivates Cpf1 nuclease activity. For example, mutations corresponding to D917A, E1006A, or D1255A in Francisella novicida Cpf1 (SEQ ID NO: 10) inactivates Cpf1 nuclease activity. In some embodiments, the dCpf1 of the present disclosure comprises mutations corresponding to D917A, E1006A, D1255A, D917A/E1006A, D917A/D1255A, E1006A/D1255A, or D917A/E1006A/D1255A in SEQ ID NO: 10. It is to be understood that any mutations, e.g., substitution mutations, deletions, or insertions that inactivate the RuvC domain of Cpf1 may be used in accordance with the present disclosure.


Thus, in some embodiments, the guide nucleotide sequence-programmable DNA binding protein is a nuclease inactive Cpf1 (dCpf1). In some embodiments, the dCpf1 comprises the amino acid sequence of any one SEQ ID NOs: 261-267. In some embodiments, the dCpf1 comprises an amino acid sequence that is at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to SEQ ID NO: 10, and comprises mutations corresponding to D917A. E1006A, D1255A, D917A/E1006A, D917A/D1255A, E1006A/D1255A. or D917A/E1006A/D1255A in SEQ ID NO: 10. Cpf1 from other bacterial species may also be used in accordance with the present disclosure.










Wild type Francisellanovicida Cpf1 (D917, E1006, and D1255 are



bolded and underlined)


(SEQ ID NO: 10)



MSIYQEFVNKYSLSKTLRFELIPQGKTLENIKARGLILDDEKRAKDYKKAKQIIDKYHQFFIEEILSSVCIS






EDLLQNYSDVYFKLKKSDDDNLQKDFKSAKDTIKKQISEYIKDSEKFKNLFNQNLIDAKKGQESDLILW





LKQSKDNGIELFKANSDITDIDEALEIIKSFKGWTTYFKGFHENRKNVYSSNDIPTSIIYRIVDDNLPKFLE





NKAKYESLKDKAPEAINYEQIKKDLAELLTFDIDYKTSEVNQRVFSLDEVFEIANFNNYLNQSGITKFNT





IIGGKFVNGENTKRKGINEYINLYSQQINDKTLKKYKMSVLFKQILSDTESKSFVIDKLEDDSDVVTTMQ





SFYEQIAAFKTVEEKSIKETLSLLFDDLKAQKLDLSKIYFKNDKSLTDLSQQVFDDYSVIGTAVLEYITQ





QIAPKNLDNPSKKEQELIAKKTEKAKYLSLETIKLALEEFNKHRDIDKQCRFEEILANFAAIPMIFDEIAQ





NKDNLAQISIKYQNQGKKDLLQASAEDDVKAIKDLLDQTNNLLHKLKIFHISQSEDKANILDKDEHFYL





VFEECYFELANIVPLYNKIRNYITQKPYSDEKFKLNFENSTLANGWDKNKEPDNTAILFIKDDKYYLGV





MNKKNNKIFDDKAIKENKGEGYKKIVYKLLPGANKMLPKVFFSAKSIKFYNPSEDILRIRNHSTHTKNG





SPQKGYEKFEFNIEDCRKFIDFYKQSISKHPEWKDFGFRFSDTQRYNSIDEFYREVENQGYKLTFENISES





YIDSVVNQGKLYLFQIYNKDFSAYSKGRPNLHTLYWKALFDERNLQDVVYKLNGEAELFYRKQSIPKK





ITHPAKEAIANKNKDNPKKESVFEYDLIKDKRFTEDKFFFHCPITINFKSSGANKFNDEINLLLKEKAND





VHILSIDRGERHLAYYTLVDGKGNIIKQDTFNIIGNDRMKTNYHDKLAAIEKDRDSARKDWKKINNIKE





MKEGYLSQVVHEIAKLVIEYNAIVVFEDLNFGFKRGRFKVEKQVYQKLEKMLIEKLNYLVFKDNEFDK





TGGVLRAYQLTAPFETFKKMGKQTGIIYYVPAGFTSKICPVTGFVNQLYPKYESVSKSQEFFSKFDKICY





NLDKGYFEFSFDYKNFGDKAAKGKWTIASFGSRLINFRNSDKNHNWDTREVYPTKELEKLLKDYSIEY





GHGECIKAAICGESDKKFFAKLTSVLNTILQMRNSKTGTELDYLISPVADVNGNFFDSRQAPKNMPQDA







D
ANGAYHIGLKGLMLLGRIKNNQEGKKLNLVIKNEEYFEFVQNRNN







Francisellanovicida Cpf1 D917A (A917, E1006, and D1255 are



bolded and underlined)


(SEQ ID NO: 261)



MSIYQEFVNKYSLSKTLRFELIPQGKTLENIKARGLILDDEKRAKDYKKAKQIIDKYHQFFIEEILSSVCIS






EDLLQNYSDVYFKLKKSDDDNLQKDFKSAKDTIKKQISEYIKDSEKFKNLFNQNLIDAKKGQESDLILW





LKQSKDNGIELFKANSDITDIDEALEIIKSFKGWTTYFKGFHENRKNVYSSNDIPTSIIYRIVDDNLPKFLE





NKAKYESLKDKAPEAINYEQIKKDLAELLTFDIDYKTSEVNQRVFSLDEVFEIANFNNYLNQSGITKFNT





IIGGKFVNGENTKRKGINEYINLYSQQINDKTLKKYKMSVLFKQILSDTESKSFVIDKLEDDSDVVTTMQ





SFYEQIAAFKTVEEKSIKETLSLLFDDLKAQKLDLSKIYFKNDKSLTDLSQQVFDDYSVIGTAVLEYITQ





QIAPKNLDNPSKKEQELIAKKTEKAKYLSLETIKLALEEFNKHRDIDKQCRFEEILANFAAIPMIFDEIAQ





NKDNLAQISIKYQNQGKKDLLQASAEDDVKAIKDLLDQTNNLLHKLKIFHISQSEDKANILDKDEHFYL





VFEECYFELANIVPLYNKIRNYITQKPYSDEKFKLNFENSTLANGWDKNKEPDNTAILFIKDDKYYLGV





MNKKNNKIFDDKAIKENKGEGYKKIVYKLLPGANKMLPKVFFSAKSIKFYNPSEDILRIRNHSTHTKNG





SPQKGYEKFEFNIEDCRKFIDFYKQSISKHPEWKDFGFRFSDTQRYNSIDEFYREVENQGYKLTFENISES





YIDSVVNQGKLYLFQIYNKDFSAYSKGRPNLHTLYWKALFDERNLQDVVYKLNGEAELFYRKQSIPKK





ITHPAKEAIANKNKDNPKKESVFEYDLIKDKRFTEDKFFFHCPITINFKSSGANKFNDEINLLLKEKAND





VHILSIARGERHLAYYTLVDGKGNIIKQDTFNIIGNDRMKTNYHDKLAAIEKDRDSARKDWKKINNIKE





MKEGYLSQVVHEIAKLVIEYNAIVVFEDLNFGFKRGRFKVEKQVYQKLEKMLIEKLNYLVFKDNEFDK





TGGVLRAYQLTAPFETFKKMGKQTGIIYYVPAGFTSKICPVTGFVNQLYPKYESVSKSQEFFSKFDKICY





NLDKGYFEFSFDYKNFGDKAAKGKWTIASFGSRLINFRNSDKNHNWDTREVYPTKELEKLLKDYSIEY





GHGECIKAAICGESDKKFFAKLTSVLNTILQMRNSKTGTELDYLISPVADVNGNFFDSRQAPKNMPQDA







D
ANGAYHIGLKGLMLLGRIKNNQEGKKLNLVIKNEEYFEFVQNRNN







Francisellanovicida Cpf1 E1006A (D917, A1006, and D1255 are



bolded and underlined)


(SEQ ID NO: 262)



MSIYQEFVNKYSLSKTLRFELIPQGKTLENIKARGLILDDEKRAKDYKKAKQIIDKYHQFFIEEILSSVCIS






EDLLQNYSDVYFKLKKSDDDNLQKDFKSAKDTIKKQISEYIKDSEKFKNLFNQNLIDAKKGQESDLILW





LKQSKDNGIELFKANSDITDIDEALEIIKSFKGWTTYFKGFHENRKNVYSSNDIPTSIIYRIVDDNLPKFLE





NKAKYESLKDKAPEAINYEQIKKDLAELLTFDIDYKTSEVNQRVFSLDEVFEIANFNNYLNQSGITKFNT





IIGGKFVNGENTKRKGINEYINLYSQQINDKTLKKYKMSVLFKQILSDTESKSFVIDKLEDDSDVVTTMQ





SFYEQIAAFKTVEEKSIKETLSLLFDDLKAQKLDLSKIYFKNDKSLTDLSQQVFDDYSVIGTAVLEYITQ





QIAPKNLDNPSKKEQELIAKKTEKAKYLSLETIKLALEEFNKHRDIDKQCRFEEILANFAAIPMIFDEIAQ





NKDNLAQISIKYQNQGKKDLLQASAEDDVKAIKDLLDQTNNLLHKLKIFHISQSEDKANILDKDEHFYL





VFEECYFELANIVPLYNKIRNYITQKPYSDEKFKLNFENSTLANGWDKNKEPDNTAILFIKDDKYYLGV





MNKKNNKIFDDKAIKENKGEGYKKIVYKLLPGANKMLPKVFFSAKSIKFYNPSEDILRIRNHSTHTKNG





SPQKGYEKFEFNIEDCRKFIDFYKQSISKHPEWKDFGFRFSDTQRYNSIDEFYREVENQGYKLTFENISES





YIDSVVNQGKLYLFQIYNKDFSAYSKGRPNLHTLYWKALFDERNLQDVVYKLNGEAELFYRKQSIPKK





ITHPAKEAIANKNKDNPKKESVFEYDLIKDKRFTEDKFFFHCPITINFKSSGANKFNDEINLLLKEKAND





VHILSIDRGERHLAYYTLVDGKGNIIKQDTFNIIGNDRMKTNYHDKLAAIEKDRDSARKDWKKINNIKE





MKEGYLSQVVHEIAKLVIEYNAIVVFADLNFGFKRGRFKVEKQVYQKLEKMLIEKLNYLVFKDNEFDK





TGGVLRAYQLTAPFETFKKMGKQTGIIYYVPAGFTSKICPVTGFVNQLYPKYESVSKSQEFFSKFDKICY





NLDKGYFEFSFDYKNFGDKAAKGKWTIASFGSRLINFRNSDKNHNWDTREVYPTKELEKLLKDYSIEY





GHGECIKAAICGESDKKFFAKLTSVLNTILQMRNSKTGTELDYLISPVADVNGNFFDSRQAPKNMPQDA







D
ANGAYHIGLKGLMLLGRIKNNQEGKKLNLVIKNEEYFEFVQNRNN







Francisellanovicida Cpf1 D1255A (D917, E1006, and A1255 are



bolded and underlined)


(SEQ ID NO: 263)



MSIYQEFVNKYSLSKTLRFELIPQGKTLENIKARGLILDDEKRAKDYKKAKQIIDKYHQFFIEEILSSVCIS






EDLLQNYSDVYFKLKKSDDDNLQKDFKSAKDTIKKQISEYIKDSEKFKNLFNQNLIDAKKGQESDLILW





LKQSKDNGIELFKANSDITDIDEALEIIKSFKGWTTYFKGFHENRKNVYSSNDIPTSIIYRIVDDNLPKFLE





NKAKYESLKDKAPEAINYEQIKKDLAELLTFDIDYKTSEVNQRVFSLDEVFEIANFNNYLNQSGITKFNT





IIGGKFVNGENTKRKGINEYINLYSQQINDKTLKKYKMSVLFKQILSDTESKSFVIDKLEDDSDVVTTMQ





SFYEQIAAFKTVEEKSIKETLSLLFDDLKAQKLDLSKIYFKNDKSLTDLSQQVFDDYSVIGTAVLEYITQ





QIAPKNLDNPSKKEQELIAKKTEKAKYLSLETIKLALEEFNKHRDIDKQCRFEEILANFAAIPMIFDEIAQ





NKDNLAQISIKYQNQGKKDLLQASAEDDVKAIKDLLDQTNNLLHKLKIFHISQSEDKANILDKDEHFYL





VFEECYFELANIVPLYNKIRNYITQKPYSDEKFKLNFENSTLANGWDKNKEPDNTAILFIKDDKYYLGV





MNKKNNKIFDDKAIKENKGEGYKKIVYKLLPGANKMLPKVFFSAKSIKFYNPSEDILRIRNHSTHTKNG





SPQKGYEKFEFNIEDCRKFIDFYKQSISKHPEWKDFGFRFSDTQRYNSIDEFYREVENQGYKLTFENISES





YIDSVVNQGKLYLFQIYNKDFSAYSKGRPNLHTLYWKALFDERNLQDVVYKLNGEAELFYRKQSIPKK





ITHPAKEAIANKNKDNPKKESVFEYDLIKDKRFTEDKFFFHCPITINFKSSGANKFNDEINLLLKEKAND





VHILSIDRGERHLAYYTLVDGKGNIIKQDTFNIIGNDRMKTNYHDKLAAIEKDRDSARKDWKKINNIKE





MKEGYLSQVVHEIAKLVIEYNAIVVFEDLNFGFKRGRFKVEKQVYQKLEKMLIEKLNYLVFKDNEFDK





TGGVLRAYQLTAPFETFKKMGKQTGIIYYVPAGFTSKICPVTGFVNQLYPKYESVSKSQEFFSKFDKICY





NLDKGYFEFSFDYKNFGDKAAKGKWTIASFGSRLINFRNSDKNHNWDTREVYPTKELEKLLKDYSIEY





GHGECIKAAICGESDKKFFAKLTSVLNTILQMRNSKTGTELDYLISPVADVNGNFFDSRQAPKNMPQDA







A
ANGAYHIGLKGLMLLGRIKNNQEGKKLNLVIKNEEYFEFVQNRNN







Francisellanovicida Cpf1 D917A/E1006A (A917, A1006, and



D1255 are bolded and underlined)


(SEQ ID NO: 264)



MSIYQEFVNKYSLSKTLRFELIPQGKTLENIKARGLILDDEKRAKDYKKAKQIIDKYHQFFIEEILSSVCIS






EDLLQNYSDVYFKLKKSDDDNLQKDFKSAKDTIKKQISEYIKDSEKFKNLFNQNLIDAKKGQESDLILW





LKQSKDNGIELFKANSDITDIDEALEIIKSFKGWTTYFKGFHENRKNVYSSNDIPTSIIYRIVDDNLPKFLE





NKAKYESLKDKAPEAINYEQIKKDLAELLTFDIDYKTSEVNQRVFSLDEVFEIANFNNYLNQSGITKFNT





IIGGKFVNGENTKRKGINEYINLYSQQINDKTLKKYKMSVLFKQILSDTESKSFVIDKLEDDSDVVTTMQ





SFYEQIAAFKTVEEKSIKETLSLLFDDLKAQKLDLSKIYFKNDKSLTDLSQQVFDDYSVIGTAVLEYITQ





QIAPKNLDNPSKKEQELIAKKTEKAKYLSLETIKLALEEFNKHRDIDKQCRFEEILANFAAIPMIFDEIAQ





NKDNLAQISIKYQNQGKKDLLQASAEDDVKAIKDLLDQTNNLLHKLKIFHISQSEDKANILDKDEHFYL





VFEECYFELANIVPLYNKIRNYITQKPYSDEKFKLNFENSTLANGWDKNKEPDNTAILFIKDDKYYLGV





MNKKNNKIFDDKAIKENKGEGYKKIVYKLLPGANKMLPKVFFSAKSIKFYNPSEDILRIRNHSTHTKNG





SPQKGYEKFEFNIEDCRKFIDFYKQSISKHPEWKDFGFRFSDTQRYNSIDEFYREVENQGYKLTFENISES





YIDSVVNQGKLYLFQIYNKDFSAYSKGRPNLHTLYWKALFDERNLQDVVYKLNGEAELFYRKQSIPKK





ITHPAKEAIANKNKDNPKKESVFEYDLIKDKRFTEDKFFFHCPITINFKSSGANKFNDEINLLLKEKAND





VHILSIARGERHLAYYTLVDGKGNIIKQDTFNIIGNDRMKTNYHDKLAAIEKDRDSARKDWKKINNIKE





MKEGYLSQVVHEIAKLVIEYNAIVVFADLNFGFKRGRFKVEKQVYQKLEKMLIEKLNYLVFKDNEFDK





TGGVLRAYQLTAPFETFKKMGKQTGIIYYVPAGFTSKICPVTGFVNQLYPKYESVSKSQEFFSKFDKICY





NLDKGYFEFSFDYKNFGDKAAKGKWTIASFGSRLINFRNSDKNHNWDTREVYPTKELEKLLKDYSIEY





GHGECIKAAICGESDKKFFAKLTSVLNTILQMRNSKTGTELDYLISPVADVNGNFFDSRQAPKNMPQDA







D
ANGAYHIGLKGLMLLGRIKNNQEGKKLNLVIKNEEYFEFVQNRNN







Francisellanovicida Cpf1 D917A/D1255A (A917, E1006, and



A1255 are bolded and underlined)


(SEQ ID NO: 265)



MSIYQEFVNKYSLSKTLRFELIPQGKTLENIKARGLILDDEKRAKDYKKAKQIIDKYHQFFIEEILSSVCIS






EDLLQNYSDVYFKLKKSDDDNLQKDFKSAKDTIKKQISEYIKDSEKFKNLFNQNLIDAKKGQESDLILW





LKQSKDNGIELFKANSDITDIDEALEIIKSFKGWTTYFKGFHENRKNVYSSNDIPTSIIYRIVDDNLPKFLE





NKAKYESLKDKAPEAINYEQIKKDLAELLTFDIDYKTSEVNQRVFSLDEVFEIANFNNYLNQSGITKFNT





IIGGKFVNGENTKRKGINEYINLYSQQINDKTLKKYKMSVLFKQILSDTESKSFVIDKLEDDSDVVTTMQ





SFYEQIAAFKTVEEKSIKETLSLLFDDLKAQKLDLSKIYFKNDKSLTDLSQQVFDDYSVIGTAVLEYITQ





QIAPKNLDNPSKKEQELIAKKTEKAKYLSLETIKLALEEFNKHRDIDKQCRFEEILANFAAIPMIFDEIAQ





NKDNLAQISIKYQNQGKKDLLQASAEDDVKAIKDLLDQTNNLLHKLKIFHISQSEDKANILDKDEHFYL





VFEECYFELANIVPLYNKIRNYITQKPYSDEKFKLNFENSTLANGWDKNKEPDNTAILFIKDDKYYLGV





MNKKNNKIFDDKAIKENKGEGYKKIVYKLLPGANKMLPKVFFSAKSIKFYNPSEDILRIRNHSTHTKNG





SPQKGYEKFEFNIEDCRKFIDFYKQSISKHPEWKDFGFRFSDTQRYNSIDEFYREVENQGYKLTFENISES





YIDSVVNQGKLYLFQIYNKDFSAYSKGRPNLHTLYWKALFDERNLQDVVYKLNGEAELFYRKQSIPKK





ITHPAKEAIANKNKDNPKKESVFEYDLIKDKRFTEDKFFFHCPITINFKSSGANKFNDEINLLLKEKAND





VHILSIARGERHLAYYTLVDGKGNIIKQDTFNIIGNDRMKTNYHDKLAAIEKDRDSARKDWKKINNIKE





MKEGYLSQVVHEIAKLVIEYNAIVVFEDLNFGFKRGRFKVEKQVYQKLEKMLIEKLNYLVFKDNEFDK





TGGVLRAYQLTAPFETFKKMGKQTGIIYYVPAGFTSKICPVTGFVNQLYPKYESVSKSQEFFSKFDKICY





NLDKGYFEFSFDYKNFGDKAAKGKWTIASFGSRLINFRNSDKNHNWDTREVYPTKELEKLLKDYSIEY





GHGECIKAAICGESDKKFFAKLTSVLNTILQMRNSKTGTELDYLISPVADVNGNFFDSRQAPKNMPQDA







A
ANGAYHIGLKGLMLLGRIKNNQEGKKLNLVIKNEEYFEFVQNRNN







Francisellanovicida Cpf1 E1006A/D1255A (D917, A1006, and



A1255 are bolded and underlined)


(SEQ ID NO: 266)



MSIYQEFVNKYSLSKTLRFELIPQGKTLENIKARGLILDDEKRAKDYKKAKQIIDKYHQFFIEEILSSVCIS






EDLLQNYSDVYFKLKKSDDDNLQKDFKSAKDTIKKQISEYIKDSEKFKNLFNQNLIDAKKGQESDLILW





LKQSKDNGIELFKANSDITDIDEALEIIKSFKGWTTYFKGFHENRKNVYSSNDIPTSIIYRIVDDNLPKFLE





NKAKYESLKDKAPEAINYEQIKKDLAELLTFDIDYKTSEVNQRVFSLDEVFEIANFNNYLNQSGITKFNT





IIGGKFVNGENTKRKGINEYINLYSQQINDKTLKKYKMSVLFKQILSDTESKSFVIDKLEDDSDVVTTMQ





SFYEQIAAFKTVEEKSIKETLSLLFDDLKAQKLDLSKIYFKNDKSLTDLSQQVFDDYSVIGTAVLEYITQ





QIAPKNLDNPSKKEQELIAKKTEKAKYLSLETIKLALEEFNKHRDIDKQCRFEEILANFAAIPMIFDEIAQ





NKDNLAQISIKYQNQGKKDLLQASAEDDVKAIKDLLDQTNNLLHKLKIFHISQSEDKANILDKDEHFYL





VFEECYFELANIVPLYNKIRNYITQKPYSDEKFKLNFENSTLANGWDKNKEPDNTAILFIKDDKYYLGV





MNKKNNKIFDDKAIKENKGEGYKKIVYKLLPGANKMLPKVFFSAKSIKFYNPSEDILRIRNHSTHTKNG





SPQKGYEKFEFNIEDCRKFIDFYKQSISKHPEWKDFGFRFSDTQRYNSIDEFYREVENQGYKLTFENISES





YIDSVVNQGKLYLFQIYNKDFSAYSKGRPNLHTLYWKALFDERNLQDVVYKLNGEAELFYRKQSIPKK





ITHPAKEAIANKNKDNPKKESVFEYDLIKDKRFTEDKFFFHCPITINFKSSGANKFNDEINLLLKEKAND





VHILSIDRGERHLAYYTLVDGKGNIIKQDTFNIIGNDRMKTNYHDKLAAIEKDRDSARKDWKKINNIKE





MKEGYLSQVVHEIAKLVIEYNAIVVFADLNFGFKRGRFKVEKQVYQKLEKMLIEKLNYLVFKDNEFDK





TGGVLRAYQLTAPFETFKKMGKQTGIIYYVPAGFTSKICPVTGFVNQLYPKYESVSKSQEFFSKFDKICY





NLDKGYFEFSFDYKNFGDKAAKGKWTIASFGSRLINFRNSDKNHNWDTREVYPTKELEKLLKDYSIEY





GHGECIKAAICGESDKKFFAKLTSVLNTILQMRNSKTGTELDYLISPVADVNGNFFDSRQAPKNMPQDA







A
ANGAYHIGLKGLMLLGRIKNNQEGKKLNLVIKNEEYFEFVQNRNN







Francisellanovicida Cpf1 D917A/E1006A/D1255A (A917,



A1006, and A1255 are bolded and underlined)


(SEQ ID NO: 267)



MSIYQEFVNKYSLSKTLRFELIPQGKTLENIKARGLILDDEKRAKDYKKAKQIIDKYHQFFIEEILSSVCIS






EDLLQNYSDVYFKLKKSDDDNLQKDFKSAKDTIKKQISEYIKDSEKFKNLFNQNLIDAKKGQESDLILW





LKQSKDNGIELFKANSDITDIDEALEIIKSFKGWTTYFKGFHENRKNVYSSNDIPTSIIYRIVDDNLPKFLE





NKAKYESLKDKAPEAINYEQIKKDLAELLTFDIDYKTSEVNQRVFSLDEVFEIANFNNYLNQSGITKFNT





IIGGKFVNGENTKRKGINEYINLYSQQINDKTLKKYKMSVLFKQILSDTESKSFVIDKLEDDSDVVTTMQ





SFYEQIAAFKTVEEKSIKETLSLLFDDLKAQKLDLSKIYFKNDKSLTDLSQQVFDDYSVIGTAVLEYITQ





QIAPKNLDNPSKKEQELIAKKTEKAKYLSLETIKLALEEFNKHRDIDKQCRFEEILANFAAIPMIFDEIAQ





NKDNLAQISIKYQNQGKKDLLQASAEDDVKAIKDLLDQTNNLLHKLKIFHISQSEDKANILDKDEHFYL





VFEECYFELANIVPLYNKIRNYITQKPYSDEKFKLNFENSTLANGWDKNKEPDNTAILFIKDDKYYLGV





MNKKNNKIFDDKAIKENKGEGYKKIVYKLLPGANKMLPKVFFSAKSIKFYNPSEDILRIRNHSTHTKNG





SPQKGYEKFEFNIEDCRKFIDFYKQSISKHPEWKDFGFRFSDTQRYNSIDEFYREVENQGYKLTFENISES





YIDSVVNQGKLYLFQIYNKDFSAYSKGRPNLHTLYWKALFDERNLQDVVYKLNGEAELFYRKQSIPKK





ITHPAKEAIANKNKDNPKKESVFEYDLIKDKRFTEDKFFFHCPITINFKSSGANKFNDEINLLLKEKAND





VHILSIARGERHLAYYTLVDGKGNIIKQDTFNIIGNDRMKTNYHDKLAAIEKDRDSARKDWKKINNIKE





MKEGYLSQVVHEIAKLVIEYNAIVVFADLNFGFKRGRFKVEKQVYQKLEKMLIEKLNYLVFKDNEFDK





TGGVLRAYQLTAPFETFKKMGKQTGIIYYVPAGFTSKICPVTGFVNQLYPKYESVSKSQEFFSKFDKICY





NLDKGYFEFSFDYKNFGDKAAKGKWTIASFGSRLINFRNSDKNHNWDTREVYPTKELEKLLKDYSIEY





GHGECIKAAICGESDKKFFAKLTSVLNTILQMRNSKTGTELDYLISPVADVNGNFFDSRQAPKNMPQDA







A
ANGAYHIGLKGLMLLGRIKNNQEGKKLNLVIKNEEYFEFVQNRNN







In some embodiments, the guide nucleotide sequence-programmable DNA binding protein is a Cpf1 protein from a Acidaminococcus species (AsCpf1). Cpf1 proteins form Acidaminococcus species have been described previously and would be apparent to the skilled artisan. Exemplary Acidaminococcus Cpf1 proteins (AsCpf1) include, without limitation, any of the AsCpf1 proteins provided herein.









Wild-type AsCpf1-Residue R912 is indicated in bold


underlining and residues 661-667 are indicated


in italics and underlining.


(SEQ ID NO: 2473)


TQFEGFTNLYQVSKTLRFELIPQGKTLKHIQEQGFIEEDKARNDHYKELK





PIIDRIYKTYADQCLQLVQLDWENLSAAIDSYRKEKTEETRNALIELQAT





YRNAIHDYFIGRTDNLTDAINKRHAEIYKGLFKAELFNGKVLKQLGTVTT





TEHENALLRSFDKFTTYFSGFYENRKNVFSAEDISTAIPHRIVQDNFPKF





KENCHIFTRLITAVPSLREHFENVKKAIGIFVSTSIEEVFSFPFYNQLLT





QTQIDLYNQLLGGISREAGTEKIKGLNEVLNLAIQKNDETAHIIASLPHR





FIPLFKQILSDRNTLSFILEEFKSDEEVIQSFCKYKTLLRNENVLETAEA





LFNELNSIDLTHIFISHKKLETISSALCDHWDTLRNALYERRISELTGKI





TKSAKEKVQRSLKHEDINLQEIISAAGKELSEAFKQKTSEILSHAHAALD





QPLPTTMLKKQEEKEILKSQLDSLLGLYHLLDWFAVDESNEVDPEFSARL





TGIKLEMEPSLSFYNKARNYATKKPYSVEKFKLNFQMPTLASGWDVNKEK





NNGAILFVKNGLYYLGIMPKQKGRYKALSFEPTEKTSEGFDKMYYDYFPD





AAKMIPKCSTQLKAVTAHFQTHTTPILLSNNFIEPLEITKEIYDLNNPEK





EPKKFQTAYAKKTGDQKGYREALCKWIDFTRDFLSKYTKTTSIDLSSLRP





SSQYKDLGEYYAELNPLLYHISFQRIAEKEIMDAVETGKLYLFQIYNKDF





AKGHHGKPNLHTLYWTGLFSPENLAKTSIKLNGQAELFYRPKSRMKRMAH





RLGEKMLNKKLKDQKTPIPDTLYQELYDYVNHRLSHDLSDEARALLPNVI





TKEVSHEIIKDRRFTSDKFFFHVPITLNYQAANSPSKFNQRVNAYLKEHP





ETPIIGIDRGERNLIYITVIDSTGKILEQRSLNTIQQFDYQKKLDNREKE





RVAARQAWSVVGTIKDLKQGYLSQVIHEIVDLMIHYQAVVVLENLNFGFK





SKRTGIALKAVYQQFEKMLIDKLNCLVLKDYPAEKVGGVLNPYQLTDQFT





SFAKMGTQSGFLFYVPAPYTSKIDPLTGFVDPFVWKTIKNHESRKHFLEG





FDFLHYDVKTGDFILHFKMNRNLSFQRGLPGFMPAWDIVFEKNETQFDAK





GTPFIAGKRIVPVIENHRFTGRYRDLYPANELIALLEEKGIVFRDGSNIL





PKLLENDDSHAIDTMVALIRSVLQMRNSNAATGEDYINSPVRDLNGVCFD





SRFQNPEWPMDADANGAYHIALKGQLLLNHLKESKDLKLQNGISNQDWLA





YIQELRN






AsCpf1(R912A)-Residue A912 is indicated in bold underlining and residues 661-667 are indicated in italics and underlining.









(SEQ ID NO: 2474)


TQFEGFTNLYQVSKTLRFELIPQGKTLKHIQEQGFIEEDKARNDHYKELK





PIIDRIYKTYADQCLQLVQLDWENLSAAIDSYRKEKTEETRNALIELQAT





YRNAIHDYFIGRTDNLTDAINKRHAEIYKGLFKAELFNGKVLKQLGTVTT





TEHENALLRSFDKFTTYFSGFYENRKNVFSAEDISTAIPHRIVQDNFPKF





KENCHIFTRLITAVPSLREHFENVKKAIGIFVSTSIEEVFSFPFYNQLLT





QTQIDLYNQLLGGISREAGTEKIKGLNEVLNLAIQKNDETAHIIASLPHR





FIPLFKQILSDRNTLSFILEEFKSDEEVIQSFCKYKTLLRNENVLETAEA





LFNELNSIDLTHIFISHKKLETISSALCDHWDTLRNALYERRISELTGKI





TKSAKEKVQRSLKHEDINLQEIISAAGKELSEAFKQKTSEILSHAHAALD





QPLPTTMLKKQEEKEILKSQLDSLLGLYHLLDWFAVDESNEVDPEFSARL





TGIKLEMEPSLSFYNKARNYATKKPYSVEKFKLNFQMPTLASGWDVNKEK





NNGAILFVKNGLYYLGIMPKQKGRYKALSFEPTEKTSEGFDKMYYDYFPD





AAKMIPKCSTQLKAVTAHFQTHTTPILLSNNFIEPLEITKEIYDLNNPEK





EPKKFQTAYAKKTGDQKGYREALCKWIDFTRDFLSKYTKTTSIDLSSLRP





SSQYKDLGEYYAELNPLLYHISFQRIAEKEIMDAVETGKLYLFQIYNKDF





AKGHHGKPNLHTLYWTGLFSPENLAKTSIKLNGQAELFYRPKSRMKRMAH





RLGEKMLNKKLKDQKTPIPDTLYQELYDYVNHRLSHDLSDEARALLPNVI





TKEVSHEIIKDRRFTSDKFFFHVPITLNYQAANSPSKFNQRVNAYLKEHP





ETPIIGIDRGEANLIYITVIDSTGKILEQRSLNTIQQFDYQKKLDNREKE





RVAARQAWSVVGTIKDLKQGYLSQVIHEIVDLMIHYQAVVVLENLNFGFK





SKRTGIALKAVYQQFEKMLIDKLNCLVLKDYPAEKVGGVLNPYQLTDQFT





SFAKMGTQSGFLFYVPAPYTSKIDPLTGFVDPFVWKTIKNHESRKHFLEG





FDFLHYDVKTGDFILHFKMNRNLSFQRGLPGFMPAWDIVFEKNETQFDAK





GTPFIAGKRIVPVIENHRFTGRYRDLYPANELIALLEEKGIVFRDGSNIL





PKLLENDDSHAIDTMVALIRSVLQMRNSNAATGEDYINSPVRDLNGVCFD





SRFQNPEWPMDADANGAYHIALKGQLLLNHLKESKDLKLQNGISNQDWLA





YIQELRN






In some embodiments, the nucleic acid programmable DNA binding protein is a Cpf1 protein from a Lachnospiraceae species (LbCpf1). Cpf1 proteins form Lachnospiraceae species have been described previously have been described previously and would be apparent to the skilled artisan. Exemplary Lachnospiraceae Cpf1 proteins (LbCpf1) include, without limitation, any of the LbCpf1 proteins provided herein.










Wild-type LbCpf1



(SEQ ID NO: 2475)



MSKLEKFTNCYSLSKTLRFKAIPVGKTQENIDNKRLLVEDEKRAEDYKGVKKLLDRYYLSFINDVLHSI






KLKNLNNYISLFRKKTRTEKENKELENLEINLRKEIAKAFKGNEGYKSLFKKDIIETILPEFLDDKDEIAL





VNSFNGFTTAFTGFFDNRENMFSEEAKSTSIAFRCINENLTRYISNMDIFEKVDAIFDKHEVQEIKEKILN





SDYDVEDFFEGEFFNFVLTQEGIDVYNAIIGGFVTESGEKIKGLNEYINLYNQKTKQKLPKFKPLYKQVL





SDRESLSFYGEGYTSDEEVLEVFRNTLNKNSEIFSSIKKLEKLFKNFDEYSSAGIFVKNGPAISTISKDIFG





EWNVIRDKWNAEYDDIHLKKKAVVTEKYEDDRRKSFKKIGSFSLEQLQEYADADESVVEKLKEIIIQK





VDEIYKVYGSSEKLFDADFVLEKSLKKNDAVVAIMKDLLDSVKSFENYIKAFFGEGKETNRDESFYGD





FVLAYDILLKVDHIYDAIRNYVTQKPYSKDKFKLYFQNPQFMGGWDKDKETDYRATILRYGSKYYLAI





MDKKYAKCLQKIDKDDVNGNYEKINYKLLPGPNKMLPKVFFSKKWMAYYNPSEDIQKIYKNGTFKK





GDMFNLNDCHKLIDFFKDSISRYPKWSNAYDFNFSETEKYKDIAGFYREVEEQGYKVSFESASKKEVD





KLVEEGKLYMFQIYNKDFSDKSHGTPNLHTMYFKLLFDENNHGQIRLSGGAELFMRRASLKKEELVVH





PANSPIANKNPDNPKKTTTLSYDVYKDKRFSEDQYELHIPIAINKCPKNIFKINTEVRVLLKHDDNPYVI





GIDRGERNLLYIVVVDGKGNIVEQYSLNEIINNFNGIRIKTDYHSLLDKKEKERFEARQNWTSIENIKELK





AGYISQVVHKICELVEKYDAVIALEDLNSGFKNSRVKVEKQVYQKFEKMLIDKLNYMVDKKSNPCAT





GGALKGYQITNKFESFKSMSTQNGFIFYIPAWLTSKIDPSTGFVNLLKTKYTSIADSKKFISSFDRIMYVP





EEDLFEFALDYKNFSRTDADYIKKWKLYSYGNRIRIFRNPKKNNVFDWEEVCLTSAYKELFNKYGINY





QQGDIRALLCEQSDKAFYSSFMALMSLMLQMRNSITGRTDVDFLISPVKNSDGIFYDSRNYEAQENAIL





PKNADANGAYNIARKVLWAIGQFKKAEDEKLDKVKIAISNKEWLEYAQTSVKH





LbCpf1 (R836A)


(SEQ ID NO: 2476)



MSKLEKFTNCYSLSKTLRFKAIPVGKTQENIDNKRLLVEDEKRAEDYKGVKKLLDRYYLSFINDVLHSI






KLKNLNNYISLFRKKTRTEKENKELENLEINLRKEIAKAFKGNEGYKSLFKKDIIETILPEFLDDKDEIAL





VNSFNGFTTAFTGFFDNRENMFSEEAKSTSIAFRCINENLTRYISNMDIFEKVDAIFDKHEVQEIKEKILN





SDYDVEDFFEGEFFNFVLTQEGIDVYNAIIGGFVTESGEKIKGLNEYINLYNQKTKQKLPKFKPLYKQVL





SDRESLSFYGEGYTSDEEVLEVFRNTLNKNSEIFSSIKKLEKLFKNFDEYSSAGIFVKNGPAISTISKDIFG





EWNVIRDKWNAEYDDIHLKKKAVVTEKYEDDRRKSFKKIGSFSLEQLQEYADADLSVVEKLKEIIIQK





VDEIYKVYGSSEKLFDADFVLEKSLKKNDAVVAIMKDLLDSVKSFENYIKAFFGEGKETNRDESFYGD





FVLAYDILLKVDHIYDAIRNYVTQKPYSKDKFKLYFQNPQFMGGWDKDKETDYRATILRYGSKYYLAI





MDKKYAKCLQKIDKDDVNGNYEKINYKLLPGPNKMLPKVFFSKKWMAYYNPSEDIQKIYKNGTFKK





GDMFNLNDCHKLIDFFKDSISRYPKWSNAYDFNFSETEKYKDIAGFYREVEEQGYKVSFESASKKEVD





KLVEEGKLYMFQIYNKDFSDKSHGTPNLHTMYFKLLFDENNHGQIRLSGGAELFMRRASLKKEELVVH





PANSPIANKNPDNPKKTTTLSYDVYKDKRFSEDQYELHIPIAINKCPKNIFKINTEVRVLLKHDDNPYVI





GIDRGEANLLYIVVVDGKGNIVEQYSLNEIINNFNGIRIKTDYHSLLDKKEKERFEARQNWTSIENIKEL





KAGYISQVVHKICELVEKYDAVIALEDENSGFKNSRVKVEKQVYQKFEKMLIDKLNYMVDKKSNPCA





TGGALKGYQITNKFESFKSMSTQNGFIFYIPAWLTSKIDPSTGFVNLLKTKYTSIADSKKFISSFDRIMYV





PEEDLFEFALDYKNFSRTDADYIKKWKLYSYGNRIRIFRNPKKNNVFDWEEVCLTSAYKELFNKYGIN





YQQGDIRALLCEQSDKAFYSSFMALMSLMLQMRNSITGRTDVDFLISPVKNSDGIFYDSRNYEAQENAI





LPKNADANGAYNIARKVLWAIGQFKKAEDEKLDKVKIAISNKEWLEYAQTSVKH





LbCpf1 (R1138A)


(SEQ ID NO: 2477)



MSKLEKFTNCYSLSKTERFKAIPVGKTQENIDNKRLLVEDEKRAEDYKGVKKLLDRYYLSFINDVLHSI






KLKNLNNYISLFRKKTRTEKENKELENLEINLRKEIAKAFKGNEGYKSLFKKDIIETILPEFLDDKDEIAL





VNSFNGFTTAFTGFFDNRENMFSEEAKSTSIAFRCINENLTRYISNMDIFEKVDAIFDKHEVQEIKEKILN





SDYDVEDFFEGEFFNFVLTQEGIDVYNAIIGGFVTESGEKIKGLNEYINLYNQKTKQKLPKFKPLYKQVL





SDRESLSFYGEGYTSDEEVLEVFRNTLNKNSEIFSSIKKLEKLFKNFDEYSSAGIFVKNGPAISTISKDIFG





EWNVIRDKWNAEYDDIHLKKKAVVTEKYEDDRRKSFKKIGSFSLEQLQEYADADLSVVEKLKEIIIQK





VDEIYKVYGSSEKLFDADFVLEKSLKKNDAVVAIMKDLLDSVKSFENYIKAFFGEGKETNRDESFYGD





FVLAYDILLKVDHIYDAIRNYVTQKPYSKDKFKLYFQNPQFMGGWDKDKETDYRATILRYGSKYYLAI





MDKKYAKCLQKIDKDDVNGNYEKINYKLLPGPNKMLPKVFFSKKWMAYYNPSEDIQKIYKNGTFKK





GDMFNLNDCHKLIDFFKDSISRYPKWSNAYDFNFSETEKYKDIAGFYREVEEQGYKVSFESASKKEVD





KLVEEGKLYMFQIYNKDFSDKSHGTPNLHTMYFKLLFDENNHGQIRLSGGAELFMRRASLKKEELVVH





PANSPIANKNPDNPKKTTTLSYDVYKDKRFSEDQYELHIPIAINKCPKNIFKINTEVRVLLKHDDNPYVI





GIDRGERNLLYIVVVDGKGNIVEQYSLNEIINNFNGIRIKTDYHSLLDKKEKERFEARQNWTSIENIKELK





AGYISQVVHKICELVEKYDAVIALEDLNSGFKNSRVKVEKQVYQKFEKMLIDKLNYMVDKKSNPCAT





GGALKGYQITNKFESFKSMSTQNGFIFYIPAWLTSKIDPSTGFVNLLKTKYTSIADSKKFISSFDRIMYVP





EEDLFEFALDYKNFSRTDADYIKKWKLYSYGNRIRIFRNPKKNNVFDWEEVCLTSAYKELFNKYGINY





QQGDIRALLCEQSDKAFYSSFMALMSLMLQMANSITGRTDVDFLISPVKNSDGIFYDSRNYEAQENAIL





PKNADANGAYNIARKVLWAIGQFKKAEDEKLDKVKIAISNKEWLEYAQTSVKH






In some embodiments, the Cpf1 protein is a crippled Cpf1 protein. As used herein a “crippled Cpf1” protein is a Cpf1 protein having diminished nuclease activity as compared to a wild-type Cpf1 protein. In some embodiments, the crippled Cpf1 protein preferentially cuts the target strand more efficiently than the non-target strand. For example, the Cpf1 protein preferentially cuts the strand of a duplexed nucleic acid molecule in which a nucleotide to be edited resides. In some embodiments, the crippled Cpf1 protein preferentially cuts the non-target strand more efficiently than the target strand. For example, the Cpf1 protein preferentially cuts the strand of a duplexed nucleic acid molecule in which a nucleotide to be edited does not reside. In some embodiments, the crippled Cpf1 protein preferentially cuts the target strand at least 5% more efficiently than it cuts the non-target strand. In some embodiments, the crippled Cpf1 protein preferentially cuts the target strand at least 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 50%, 60%, 70%, 80%, 90%, or at least 100% more efficiently than it cuts the non-target strand.


In some embodiments, a crippled Cpf1 protein is a non-naturally occurring Cpf1 protein. In some embodiments, the crippled Cpf1 protein comprises one or more mutations relative to a wild-type Cpf1 protein. In some embodiments, the crippled Cpf1 protein comprises 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 mutations relative to a wild-type Cpf1 protein. In some embodiments, the crippled Cpf1 protein comprises an R836A mutation as set forth in SEQ ID NO: 763, or in a corresponding amino acid in another Cpf1 protein. It should be appreciated that a Cpf1 comprising a homologous residue (e.g., a corresponding amino acid) to R836A of SEQ ID NO: 763 could also be mutated to achieve similar results. In some embodiments, the crippled Cpf1 protein comprises a R1138A mutation as set forth in SEQ ID NO: 763, or in a corresponding amino acid in another Cpf1 protein. In some embodiments, the crippled Cpf1 protein comprises an R912A mutation as set forth in SEQ ID NO: 762, or in a corresponding amino acid in another Cpf1 protein. Without wishing to be bound by any particular theory, residue R838 of SEQ ID NO: 763 (LbCpf1) and residue R912 of SEQ ID NO: 762 (AsCpf1) are examples of corresponding (e.g., homologous) residues. For example, a portion of the alignment between SEQ ID NO: 762 and 763 shows that R912 and R838 are corresponding residues.


In some embodiments, any of the Cpf1 proteins provided herein comprises one or more amino acid deletions. In some embodiments, any of the Cpf1 proteins provided herein comprises 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 amino acid deletions. Without wishing to be bound by any particular theory, there is a helical region in Cpf1, which includes residues 661-667 of AsCpf1 (SEQ ID NO: 762), that may obstruct the function of a deaminase (e.g., APOBEC) that is fused to the Cpf1. This region comprises the amino acid sequence KKTGDQK. Accordingly, aspects of the disclosure provide Cpf1 proteins comprising mutations (e.g., deletions) that disrupt this helical region in Cpf1. In some embodiments, the Cpf1 protein comprises one or more deletions of the following residues in SEQ ID NO: 762, or one or more corresponding deletions in another Cpf1 protein: K661, K662, T663, G664, D665, Q666, and K667. In some embodiments, the Cpf1 protein comprises a T663 and a D665 deletion in SEQ ID NO: 762, or corresponding deletions in another Cpf1 protein. In some embodiments, the Cpf1 protein comprises a K662, T663, D665, and Q666 deletion in SEQ ID NO: 762, or corresponding deletions in another Cpf1 protein. In some embodiments, the Cpf1 protein comprises a K661, K662, T663, D665, Q666 and K667 deletion in SEQ ID NO: 762, or corresponding deletions in another Cpf1 protein.










AsCpf1 (deleted T663 and D665)



(SEQ ID NO: 2478)



TQFEGFTNLYQVSKTLRFELIPQGKTLKHIQEQGFIEEDKARNDHYKELKPIIDRIYKTYADQCLQLVQL






DWENLSAAIDSYRKEKTEETRNALIELQATYRNAIHDYFIGRTDNLTDAINKRHAEIYKGLFKAELFNG





KVLKQLGTVTTTEHENALLRSFDKFTTYFSGFYENRKNVFSAEDISTAIPHRIVQDNFPKFKENCHIFTRL





ITAVPSLREHFENVKKAIGIFVSTSIEEVFSFPFYNQLLTQTQIDLYNQLLGGISREAGTEKIKGLNEVLNL





AIQKNDETAHIIASLPHRFIPLFKQILSDRNTLSFILEEFKSDEEVIQSFCKYKTLLRNENVLETAEALFNEL





NSIDLTHIFISHKKLETISSALCDHWDTLRNALYERRISELTGKITKSAKEKVQRSLKHEDINLQEIISAAG





KELSEAFKQKTSEILSHAHAALDQPLPTTMLKKQEEKEILKSQLDSLLGLYHLLDWFAVDESNEVDPEF





SARLTGIKLEMEPSLSFYNKARNYATKKPYSVEKFKLNFQMPTLASGWDVNKEKNNGAILFVKNGLY





YLGIMPKQKGRYKALSFEPTEKTSEGFDKMYYDYFPDAAKMIPKCSTQLKAVTAHFQTHTTPILLSNNF





IEPLEITKEIYDLNNPEKEPKKFQTAYAKKGQKGYREALCKWIDFTRDFLSKYTKTTSIDLSSLRPSSQY





KDLGEYYAELNPLLYHISFQRIAEKEIMDAVETGKLYLFQIYNKDFAKGHHGKPNLHTLYWTGLFSPEN





LAKTSIKLNGQAELFYRPKSRMKRMAHRLGEKMLNKKLKDQKTPIPDTLYQELYDYVNHRLSHDLSD





EARALLPNVITKEVSHEIIKDRRFTSDKFFFHVPITLNYQAANSPSKFNQRVNAYLKEHPETPIIGIDRGER





NLIYITVIDSTGKILEQRSLNTIQQFDYQKKLDNREKERVAARQAWSVVGTIKDLKQGYLSQVIHEIVDL





MIHYQAVVVLENLNFGFKSKRTGIALKAVYQQFEKMLIDKLNCLVLKDYPAEKVGGVLNPYQLTDQF





TSFAKMGTQSGFLFYVPAPYTSKIDPLTGFVDPFVWKTIKNHESRKHFLEGFDFLHYDVKTGDFILHFK





MNRNLSFQRGLPGFMPAWDIVFEKNETQFDAKGTPFIAGKRIVPVIENHRFTGRYRDLYPANELIALLE





EKGIVFRDGSNILPKLLENDDSHAIDTMVALIRSVLQMRNSNAATGEDYINSPVRDLNGVCFDSRFQNP





EWPMDADANGAYHIALKGQLLLNHLKESKDLKLQNGISNQDWLAYIQELRN





AsCpf1 (deleted K662, T663, D665, and Q666)


(SEQ ID NO: 2479)



TQFEGFTNLYQVSKTLRFELIPQGKTLKHIQEQGFIEEDKARNDHYKELKPIIDRIYKTYADQCLQLVQL






DWENLSAAIDSYRKEKTEETRNALIELQATYRNAIHDYFIGRTDNLTDAINKRHAEIYKGLFKAELFNG





KVLKQLGTVTTTEHENALLRSFDKFTTYFSGFYENRKNVFSAEDISTAIPHRIVQDNFPKFKENCHIFTRL





ITAVPSLREHFENVKKAIGIFVSTSIEEVFSFPFYNQLLTQTQIDLYNQLLGGISREAGTEKIKGLNEVLNL





AIQKNDETAHIIASLPHRFIPLFKQILSDRNTLSFILEEFKSDEEVIQSFCKYKTLLRNENVLETAEALFNEL





NSIDLTHIFISHKKLETISSALCDHWDTLRNALYERRISELTGKITKSAKEKVQRSLKHEDINLQEIISAAG





KELSEAFKQKTSEILSHAHAALDQPLPTTMLKKQEEKEILKSQLDSLLGLYHLLDWFAVDESNEVDPEF





SARLTGIKLEMEPSLSFYNKARNYATKKPYSVEKFKLNFQMPTLASGWDVNKEKNNGAILFVKNGLY





YLGIMPKQKGRYKALSFEPTEKTSEGFDKMYYDYFPDAAKMIPKCSTQLKAVTAHFQTHTTPILLSNNF





IEPLEITKEIYDLNNPEKEPKKFQTAYAKGKGYREALCKWIDFTRDFLSKYTKTTSIDLSSLRPSSQYKDL





GEYYAELNPLLYHISFQRIAEKEIMDAVETGKLYLFQIYNKDFAKGHHGKPNLHTLYWTGLFSPENLAK





TSIKLNGQAELFYRPKSRMKRMAHRLGEKMLNKKLKDQKTPIPDTLYQELYDYVNHRLSHDLSDEAR





ALLPNVITKEVSHEIIKDRRFTSDKFFFHVPITLNYQAANSPSKFNQRVNAYLKEHPETPIIGIDRGERNLI





YITVIDSTGKILEQRSLNTIQQFDYQKKLDNREKERVAARQAWSVVGTIKDLKQGYLSQVIHEIVDLMI





HYQAVVVLENLNFGFKSKRTGIAEKAVYQQFEKMLIDKLNCLVLKDYPAEKVGGVLNPYQLTDQFTS





FAKMGTQSGFLFYVPAPYTSKIDPLTGFVDPFVWKTIKNHESRKHFLEGFDFLHYDVKTGDFILHFKMN





RNLSFQRGLPGFMPAWDIVFEKNETQFDAKGTPFIAGKRIVPVIENHRFTGRYRDLYPANELIALLEEKG





IVFRDGSNILPKLLENDDSHAIDTMVALIRSVLQMRNSNAATGEDYINSPVRDLNGVCFDSRFQNPEWP





MDADANGAYHIALKGQLLLNHLKESKDLKLQNGISNQDWLAYIQELRN





AsCpf1 (deleted K661, K662, T663, D665, Q666, and K667)


(SEQ ID NO: 2480)



TQFEGFTNLYQVSKTLRFELIPQGKTLKHIQEQGFIEEDKARNDHYKELKPIIDRIYKTYADQCLQLVQL






DWENLSAAIDSYRKEKTEETRNALIEEQATYRNAIHDYFIGRTDNLTDAINKRHAEIYKGLFKAELFNG





KVLKQLGTVTTTEHENALLRSFDKFTTYFSGFYENRKNVFSAEDISTAIPHRIVQDNFPKFKENCHIFTRL





ITAVPSLREHFENVKKAIGIFVSTSIEEVFSFPFYNQLLTQTQIDLYNQLLGGISREAGTEKIKGLNEVLNL





AIQKNDETAHIIASLPHRFIPLFKQILSDRNTLSFILEEFKSDEEVIQSFCKYKTLLRNENVLETAEALFNEL





NSIDLTHIFISHKKLETISSALCDHWDTLRNALYERRISELTGKITKSAKEKVQRSLKHEDINLQEIISAAG





KELSEAFKQKTSEILSHAHAALDQPLPTTMLKKQEEKEILKSQLDSLLGLYHLLDWFAVDESNEVDPEF





SARLTGIKLEMEPSLSFYNKARNYATKKPYSVEKFKLNFQMPTLASGWDVNKEKNNGAILFVKNGLY





YLGIMPKQKGRYKALSFEPTEKTSEGFDKMYYDYFPDAAKMIPKCSTQLKAVTAHFQTHTTPILLSNNF





IEPLEITKEIYDLNNPEKEPKKFQTAYAGGYREALCKWIDFTRDFLSKYTKTTSIDLSSLRPSSQYKDLGE





YYAELNPLLYHISFQRIAEKEIMDAVETGKLYLFQIYNKDFAKGHHGKPNLHTLYWTGLFSPENLAKTS





IKLNGQAELFYRPKSRMKRMAHRLGEKMLNKKLKDQKTPIPDTLYQELYDYVNHRLSHDLSDEARAL





LPNVITKEVSHEIIKDRRFTSDKFFFHVPITLNYQAANSPSKFNQRVNAYLKEHPETPIIGIDRGERNLIYIT





VIDSTGKILEQRSLNTIQQFDYQKKLDNREKERVAARQAWSVVGTIKDLKQGYLSQVIHEIVDLMIHYQ





AVVVLENLNFGFKSKRTGIAEKAVYQQFEKMLIDKLNCLVLKDYPAEKVGGVLNPYQLTDQFTSFAK





MGTQSGFLFYVPAPYTSKIDPLTGFVDPFVWKTIKNHESRKHFLEGFDFLHYDVKTGDFILHFKMNRNL





SFQRGLPGFMPAWDIVFEKNETQFDAKGTPFIAGKRIVPVIENHRFTGRYRDLYPANELIALLEEKGIVF





RDGSNILPKLLENDDSHAIDTMVALIRSVLQMRNSNAATGEDYINSPVRDLNGVCFDSRFQNPEWPMD





ADANGAYHIALKGQLLLNHLKESKDLKLQNGISNQDWLAYIQELRN






In some embodiments, the guide nucleotide sequence-programmable DNA-binding protein domain of the present disclosure has no requirements for a PAM sequence. One example of such a guide nucleotide sequence-programmable DNA-binding protein may be an Argonaute protein from Natronobacterium gregoryi (NgAgo). NgAgo is a ssDNA-guided endonuclease. NgAgo binds 5′ phosphorylated ssDNA of ˜24 nucleotides (gDNA) to guide it to its target site and will make DNA double-strand breaks at gDNA site. In contrast to Cas9, the NgAgo-gDNA system does not require a protospacer-adjacent motif (PAM). Using a nuclease inactive NgAgo (dNgAgo) can greatly expand the bases or codons that may be targeted. The characterization and use of NgAgo have been described in Gao et al., Nat Biotechnol. Epub 2016 May 2. PubMed PMID: 27136078; Swarts et al., Nature. 507(7491) (2014):258-61; and Swarts et al., Nucleic Acids Res. 43(10) (2015):5120-9, each of which are incorporated herein by reference. The sequence of Natronobacterium gregoryi Argonaute is provided in SEQ ID NO: 270.









Wild type Natronobacterium gregoryi Argonaute


(SEQ ID NO: 270)


MTVIDLDSTTTADELTSGHTYDISVTLTGVYDNTDEQHPRMSLAFEQDNG





ERRYITLWKNTTPKDVFTYDYATGSTYIFTNIDYEVKDGYENLTATYQTT





VENATAQEVGTTDEDETFAGGEPLDHHLDDALNETPDDAETESDSGHVMT





SFASRDQLPEWTLHTYTLTATDGAKTDTEYARRTLAYTVRQELYTDHDAA





PVATDGLMLLTPEPLGETPLDLDCGVRVEADETRTLDYTTAKDRLLAREL





VEEGLKRSLWDDYLVRGIDEVLSKEPVLTCDEFDLHERYDLSVEVGHSGR





AYLHINFRHRFVPKLTLADIDDDNIYPGLRVKTTYRPRRGHIVWGLRDEC





ATDSLNTLGNQSVVAYHRNNQTPINTDLLDAIEAADRRVVETRRQGHGDD





AVSFPQELLAVEPNTHQIKQFASDGFHQQARSKTRLSASRCSEKAQAFAE





RLDPVRLNGSTVEFSSEFFTGNNEQQLRLLYENGESVLTFRDGARGAHPD





ETFSKGIVNPPESFEVAVVLPEQQADTCKAQWDTMADLLNQAGAPPTRSE





TVQYDAFSSPESISLNVAGAIDPSEVDAAFVVLPPDQEGFADLASPTETY





DELKKALANMGIYSQMAYFDRFRDAKIFYTRNVALGLLAAAGGVAFTTEH





AMPGDADMFIGIDVSRSYPEDGASGQINIAATATAVYKDGTILGHSSTRP





QLGEKLQSTDVRDIMKNAILGYQQVTGESPTHIVIHRDGFMNEDLDPATE





FLNEQGVEYDIVEIRKQPQTRLLAVSDVQYDTPVKSIAAINQNEPRATVA





TFGAPEYLATRDGGGLPRPIQIERVAGETDIETLTRQVYLLSQSHIQVHN





STARLPITTAYADQASTHATKGYLVQTGAFESNVGFL






Also provided herein are Cas9 variants that have relaxed PAM requirements (PAMless Cas9). PAMless Cas9 exhibits an increased activity on a target sequence that does not include a canonical PAM (e.g., NGG) at its 3′-end as compared to Streptococcus pyogenes Cas9 as provided by SEQ ID NO: 1, e.g., increased activity by at least 5-fold, at least 10-fold, at least 50-fold, at least 100-fold, at least 500-fold, at least 1,000-fold, at least 5,000-fold, at least 10,000-fold, at least 50,000-fold, at least 100,000-fold, at least 500,000-fold, or at least 1,000,000-fold. Such Cas9 variants that have relaxed PAM requirements are described in U.S. Provisional Applications, U.S. Ser. No. 62/245,828, 62/279,346, 62/311,763, 62/322,178, and 62/357,332, each of which is incorporated herein by reference. In some embodiments, the dCas9 or Cas9 nickase useful in the present disclosure may further comprise mutations that relax the PAM requirements, e.g., mutations that correspond to A262T, K294R, S4091, E480K, E543D, M694I, or E1219V in SEQ ID NO: 1.


Other non-limiting, exemplary Cas9 variants (including dCas9, Cas9 nickase, and Cas9 variants with alternative PAM requirements) suitable for use in the nucleobase editors useful in the present disclosure and their respective sequences are provided below.










VRER-nCas9 (D10A/D1135V/G1218R/R1335E/T1337R) S. pyogenes Cas9 Nickase



(SEQ ID NO: 2426)



MDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTAR






RRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLR





KKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDA





KAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDN





LLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEK





YKEIFFDQSKNGYAGYIDGGASQLEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHL





GELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGA





SAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFK





TNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLT





LFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRN





FMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVI






EMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQEL







DINRLSDYDVDHIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRK







FDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSD







FRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKA







TAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQ







TGGFSKESILPKRNSDKLIARKKDWDPKKYGGFVSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIME






RSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASARELQKGNELALPSKYVNFLYLA





SHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENI





IHLFTLTNLGAPAAFKYFDTTIDRKEYRSTKEVLDATLIHQSITGLYETRIDLSQLGGD


(single underline: HNH domain; double underline: RuvC domain)





VQR-nCas9 (D10A/D1135V/R1335Q/T1337R) S. pyogenes Cas9 Nickase


(SEQ ID NO: 2427)



MDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTAR






RRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLR





KKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDA





KAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDN





LLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEK





YKEIFFDQSKNGYAGYIDGGASQLEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHL





GELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGA





SAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFK





TNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLT





LFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRN





FMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVI






EMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQEL







DINRLSDYDVDHIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRK







FDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSD







FRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKA







TAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQ







TGGFSKESILPKRNSDKLIARKKDWDPKKYGGFVSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIME






RSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLA





SHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENI





IHLFTLTNLGAPAAFKYFDTTIDRKQYRSTKEVLDATLIHQSITGLYETRIDLSQLGGD


(single underline: HNH domain; double underline: RuvC domain)





EQR-nCas9 (D10A/D1135E/R1335Q/T1337R) S. pyogenes Cas9 Nickase


(SEQ ID NO: 2428)



MDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTAR






RRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLR





KKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDA





KAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDN





LLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEK





YKEIFFDQSKNGYAGYIDGGASQLEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHL





GELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGA





SAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFK





TNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLT





LFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRN





FMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVI






EMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQEL







DINRLSDYDVDHIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRK






FDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSD






FRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKA







TAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQ







TGGFSKESILPKRNSDKLIARKKDWDPKKYGGFESPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIME






RSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLA





SHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENI





IHLFTLTNLGAPAAFKYFDTTIDRKQYRSTKEVLDATLIHQSITGLYETRIDLSQLGGD


(single underline: HNH domain; double underline: RuvC domain)





KKH-nCas9 (D10A/E782K/N968K/R1015H) S. aureus Cas9 Nickase


(SEQ ID NO: 268)



MKRNYILGLAIGITSVGYGIIDYETRDVIDAGVRLFKEANVENNEGRRSKRGARRLKRRRRHRIQRVKK






LLFDYNLLTDHSELSGINPYEARVKGLSQKLSEEEFSAALLHLAKRRGVHNVNEVEEDTGNELSTKEQI





SRNSKALEEKYVAELQLERLKKDGEVRGSINRFKTSDYVKEAKQLLKVQKAYHQLDQSFIDTYIDLLE





TRRTYYEGPGEGSPFGWKDIKEWYEMLMGHCTYFPEELRSVKYAYNADLYNALNDLNNLVITRDENE





KLEYYEKFQIIENVFKQKKKPTLKQIAKEILVNEEDIKGYRVTSTGKPEFTNLKVYHDIKDITARKEIIEN





AELLDQIAKILTIYQSSEDIQEELTNLNSELTQEEIEQISNLKGYTGTHNLSLKAINLILDELWHTNDNQIA





IFNRLKLVPKKVDLSQQKEIPTTLVDDFILSPVVKRSFIQSIKVINAIIKKYGLPNDIIIELAREKNSKDAQK





MINEMQKRNRQTNERIEEIIRTTGKENAKYLIEKIKLHDMQEGKCLYSLEAIPLEDLLNNPFNYEVDHIIP





RSVSFDNSFNNKVLVKQEENSKKGNRTPFQYLSSSDSKISYETFKKHILNLAKGKGRISKTKKEYLLEER





DINRFSVQKDFINRNLVDTRYATRGLMNLLRSYFRVNNLDVKVKSINGGFTSFLRRKWKFKKERNKGY





KHHAEDALIIANADFIFKEWKKLDKAKKVMENQMFEEKQAESMPEIETEQEYKEIFITPHQIKHIKDFK





DYKYSHRVDKKPNRKLINDTLYSTRKDDKGNTLIVNNLNGLYDKDNDKLKKLINKSPEKLLMYHHDP





QTYQKLKLIMEQYGDEKNPLYKYYEETGNYLTKYSKKDNGPVIKKIKYYGNKLNAHLDITDDYPNSR





NKVVKLSLKPYRFDVYLDNGVYKFVTVKNLDVIKKENYYEVNSKCYEEAKKLKKISNQAEFIASFYKN





DLIKINGELYRVIGVNNDLLNRIEVNMIDITYREYLENMNDKRPPHIIKTIASKTQSIKKYSTDILGNLYE





VKSKKHPQIIKKG






Streptococcus thermophilus CRISPR1 Cas9 (St1Cas9) Nickase (D9A)



(SEQ ID NO: 269)



MSDLVLGLAIGIGSVGVGILNKVTGEIIHKNSRIFPAAQAENNLVRRTNRQGRRLTRRKKHRRVRLNRL






FEESGLITDFTKISINLNPYQLRVKGLTDELSNEELFIALKNMVKHRGISYLDDASDDGNSSIGDYAQIVK





ENSKQLETKTPGQIQLERYQTYGQLRGDFTVEKDGKKHRLINVFPTSAYRSEALRILQTQQEFNPQITDE





FINRYLEILTGKRKYYHGPGNEKSRTDYGRYRTSGETLDNIFGILIGKCTFYPDEFRAAKASYTAQEFNL





LNDLNNLTVPTETKKLSKEQKNQIINYVKNEKAMGPAKLFKYIAKLLSCDVADIKGYRIDKSGKAEIHT





FEAYRKMKTLETLDIEQMDRETLDKLAYVLTLNTEREGIQEALEHEFADGSFSQKQVDELVQFRKANS





SIFGKGWHNFSVKLMMELIPELYETSEEQMTILTRLGKQKTTSSSNKTKYIDEKLLTEEIYNPVVAKSVR





QAIKIVNAAIKEYGDFDNIVIEMARETNEDDEKKAIQKIQKANKDEKDAAMLKAANQYNGKAELPHSV





FHGHKQLATKIRLWHQQGERCLYTGKTISIHDLINNSNQFEVDHILPLSITFDDSLANKVLVYATANQE





KGQRTPYQALDSMDDAWSFRELKAFVRESKTLSNKKKEYLLTEEDISKFDVRKKFIERNLVDTRYASR





VVLNALQEHFRAHKIDTKVSVVRGQFTSQLRRHWGIEKTRDTYHHHAVDALIIAASSQLNLWKKQKN





TLVSYSEDQLLDIETGELISDDEYKESVFKAPYQHFVDTLKSKEFEDSILFSYQVDSKFNRKISDATIYAT





RQAKVGKDKADETYVLGKIKDIYTQDGYDAFMKIYKKDKSKFLMYRHDPQTFEKVIEPILENYPNKQI





NEKGKEVPCNPFLKYKEEHGYIRKYSKKGNGPEIKSLKYYDSKLGNHIDITPKDSNNKVVLQSVSPWR





ADVYFNKTTGKYEILGLKYADLQFEKGTGTYKISQEKYNDIKKKEGVDSDSEFKFTLYKNDLLLVKDT





ETKEQQLFRFLSRTMPKQKHYVELKPYDKQKFEGGEALIKVLGNVANSGQCKKGLGKSNISIYKVRTD





VLGNQHIIKNEGDKPKLDF






Streptococcus thermophilus CRISPR3Cas9 (St3Cas9) Nickase (D10A)



(SEQ ID NO: 2429)



MTKPYSIGLAIGTNSVGWAVITDNYKVPSKKMKVLGNTSKKYIKKNLLGVLLFDSGITAEGRRLKRTA






RRRYTRRRNRILYLQEIFSTEMATLDDAFFQRLDDSFLVPDDKRDSKYPIFGNLVEEKVYHDEFPTIYHL





RKYLADSTKKADLRLVYLALAHMIKYRGHFLIEGEFNSKNNDIQKNFQDFLDTYNAIFESDLSLENSKQ





LEEIVKDKISKLEKKDRILKLFPGEKNSGIFSEFLKLIVGNQADFRKCFNLDEKASLHFSKESYDEDLETL





LGYIGDDYSDVFLKAKKLYDAILLSGFLTVTDNETEAPLSSAMIKRYNEHKEDLALLKEYIRNISLKTYN





EVFKDDTKNGYAGYIDGKTNQEDFYVYLKNLLAEFEGADYFLEKIDREDFLRKQRTFDNGSIPYQIHLQ





EMRAILDKQAKFYPFLAKNKERIEKILTFRIPYYVGPLARGNSDFAWSIRKRNEKITPWNFEDVIDKESS





AEAFINRMTSFDLYLPEEKVLPKHSLLYETFNVYNELTKVRFIAESMRDYQFLDSKQKKDIVRLYFKDK





RKVTDKDIIEYLHAIYGYDGIELKGIEKQFNSSLSTYHDLLNIINDKEFLDDSSNEAIIEEIIHTLTIFEDRE





MIKQRLSKFENIFDKSVLKKLSRRHYTGWGKLSAKLINGIRDEKSGNTILDYLIDDGISNRNFMQLIHDD





ALSFKKKIQKAQIIGDEDKGNIKEVVKSLPGSPAIKKGILQSIKIVDELVKVMGGRKPESIVVEMARENQ





YTNQGKSNSQQRLKRLEKSLKELGSKILKENIPAKLSKIDNNALQNDRLYLYYLQNGKDMYTGDDLDI





DRLSNYDIDHIIPQAFLKDNSIDNKVLVSSASNRGKSDDFPSLEVVKKRKTFWYQLLKSKLISQRKFDNL





TKAERGGLLPEDKAGFIQRQLVETRQITKHVARLLDEKFNNKKDENNRAVRTVKIITLKSTLVSQFRKD





FELYKVREINDFHHAHDAYLNAVIASALLKKYPKLEPEFVYGDYPKYNSFRERKSATEKVYFYSNIMNI





FKKSISLADGRVIERPLIEVNEETGESVWNKESDLATVRRVLSYPQVNVVKKVEEQNHGLDRGKPKGL





FNANLSSKPKPNSNENLVGAKEYLDPKKYGGYAGISNSFAVLVKGTIEKGAKKKITNVLEFQGISILDRI





NYRKDKLNFLLEKGYKDIELIIELPKYSLFELSDGSRRMLASILSTNNKRGEIHKGNQIFLSQKFVKLLYH





AKRISNTINENHRKYVENHKKEFEELFYYILEFNENYVGAKKNGKLLNSAFQSWQNHSIDELCSSFIGPT





GSERKGLFELTSRGSAADFEFLGVKIPRYRDYTPSSLLKDATLIHQSVTGLYETRIDLAKLGEG






In some embodiments, the nucleobase editors useful in the present disclosure comprises: (i) a guide nucleotide sequence-programmable DNA-binding protein domain; and (ii) a deaminase domain. In some embodiments, the deaminase domain of the fusion protein is a cytosine deaminase. In some embodiments, the deaminase is an APOBEC1 deaminase. In some embodiments, the deaminase is a rat APOBEC1. In some embodiments, the deaminase is a human APOBEC1. In some embodiments, the deaminase is an APOBEC2 deaminase. In some embodiments, the deaminase is an APOBEC3A deaminase. In some embodiments, the deaminase is an APOBEC3B deaminase. In some embodiments, the deaminase is an APOBEC3C deaminase. In some embodiments, the deaminase is an APOBEC3D deaminase. In some embodiments, is an APOBEC3F deaminase. In some embodiments, the deaminase is an APOBEC3G deaminase. In some embodiments, the deaminase is an APOBEC3H deaminase. In some embodiments, the deaminase is an APOBEC4 deaminase. In some embodiments, the deaminase is an activation-induced deaminase (AID). In some embodiments, the deaminase is a Lamprey CDA1 (pmCDA1). In some embodiments, the deaminase is a human APOBEC3G or a functional fragment thereof. In some embodiments, the deaminase is an APOBEC3G variant comprising mutations corresponding to the D316R/D317R mutations in the human APOBEC3G. Exemplary, non-limiting cytosine deaminase sequences that may be used in accordance with the methods of the present disclosure are provided in Example 1 below.


In some embodiments, the cytosine deaminase is a wild type deaminase or a deaminase as set forth in SEQ ID NOs: 271-292, 303, and 2483-2494. In some embodiments, the cytosine deaminase domains of the fusion proteins provided herein include fragments of deaminases or proteins homologous to a deaminase. For example, in some embodiments, a deaminase domain comprises a fragment of any of the amino acid sequences set forth in any of SEQ ID NOs: 271-292, 303, and 2483-2494. In some embodiments, a deaminase domain comprises an amino acid sequence homologous to the amino acid sequence set forth in any of SEQ ID NOs: 271-292, 303, and 2483-2494, or an amino acid sequence homologous to a fragment of the amino acid sequence set forth in any of SEQ ID NOs: 271-292, 303, and 2483-2494. In some embodiments, proteins comprising a deaminase, fragments of a deaminase, or homologs of a deaminase are referred to as “deaminase variants.” A deaminase variant shares homology to a deaminase, or a fragment thereof. For example, a deaminase variant is at least about 70% identical, at least about 80% identical, at least about 90% identical, at least about 95% identical, at least about 96% identical, at least about 97% identical, at least about 98% identical, at least about 99% identical, at least about 99.5% identical, or at least about 99.9% to a wild type deaminase or a deaminase as set forth in any of SEQ ID NOs: 271-292, 303, and 2483-2494. In some embodiments, the deaminase variant comprises a fragment of the deaminase, such that the fragment is at least about 70% identical, at least about 80% identical, at least about 90% identical, at least about 95% identical, at least about 96% identical, at least about 97% identical, at least about 98% identical, at least about 99% identical, at least about 99.5% identical, or at least about 99.9% identical to the corresponding fragment of a wild type deaminase or a deaminase as set forth in any of SEQ ID NOs: 271-292, 303, and 2483-2494. In some embodiments, the cytosine deaminase is at least at least about 70% identical, at least about 80% identical, at least about 90% identical, at least about 95% identical, at least about 96% identical, at least about 97% identical, at least about 98% identical, at least about 99% identical, at least about 99.5% identical, or at least about 99.9% identical to an APOBEC3G variant as set forth in SEQ ID NO: 291 or SEQ ID NO: 292, and comprises mutations corresponding to the D316E/D317R mutations in SEQ ID NO: 290.


In some embodiments, the cytosine deaminase domain is fused to the N-terminus of the guide nucleotide sequence-programmable DNA-binding protein domain. For example, the fusion protein may have an architecture of NH2-[cytosine deaminase]-[guide nucleotide sequence-programmable DNA-binding protein domain]-COOH. The “]-[” used in the general architecture above indicates the presence of an optional linker sequence. The term “linker,” as used herein, refers to a chemical group or a molecule linking two molecules or moieties, e.g., two domains of a fusion protein, such as, for example, a dCas9 domain and a cytosine deaminase domain. Typically, the linker is positioned between, or flanked by, two groups, molecules, or other moieties and connected to each one via a covalent bond, thus connecting the two. In some embodiments, the linker is an amino acid or a plurality of amino acids (e.g., a peptide or protein). In some embodiments, the linker is an organic molecule, group, polymer, or chemical moiety. In some embodiments, the linker is 5-100 amino acids in length, for example, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 30-35, 35-40, 40-45.45-50, 50-60, 60-70, 70-80, 80-90, 90-100, 100-150, or 150-200 amino acids in length. Longer or shorter linkers are also contemplated.


In some embodiments, the cytosine deaminase domain and the Cas9 domain are fused to each other via a linker. Various linker lengths and flexibilities between the deaminase domain (e.g., APOBEC1) and the Cas9 domain can be employed (e.g., ranging from very flexible linkers of the form (GGGS)n (SEQ ID NO: 2430), (GGGGS)n (SEQ ID NO: 308), (GGS)n (SEQ ID NO: 2467), and (G)n (SEQ ID NO: 2498) to more rigid linkers of the form (EAAAK)n (SEQ ID NO: 309), SGSETPGTSESATPES (SEQ ID NO: 310)) (see, e.g., Guilinger et, al., Nat. Biotechnol. 2014; 32(6): 577-82; the entire contents are incorporated herein by reference), (SGGS)nSGSETPGTSESATPES(SGGS)n (SEQ ID NO: 2481), (XP)n, or a combination of any of these, wherein X is any amino acid, and n is independently an integer between 1 and 30, in order to achieve the optimal length for deaminase activity for the specific application. In some embodiments, n is independently 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30, or, if more than one linker or more than one linker motif is present, any combination thereof. In some embodiments, the linker comprises a (GGS)n (SEQ ID NO: 2467) motif, wherein n is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15. In some embodiments, the linker comprises a (GGS)n (SEQ ID NO: 2467) motif, wherein n is 1, 3, or 7. In some embodiments, the linker comprises the amino acid sequence SGSETPGTSESATPES (SEQ ID NO: 310), also referred to as the XTEN linker. In some embodiments, the linker comprises an amino acid sequence selected from the group including, but not limited to, AGVF (SEQ ID NO: 2499), GFLG (SEQ ID NO: 2500), FK, AL, ALAL (SEQ ID NO: 2501), and ALALA (SEQ ID NO: 2502). In some embodiments, suitable linker motifs and configurations include those described in Chen et al., Fusion protein linkers: property, design and functionality. Adv Drug Deliv Rev. 2013; 65(10):1357-69, which is incorporated herein by reference. In some embodiments, the linker comprises any of the following amino acid sequences: VPFLLEPDNINGKTC (SEQ ID NO: 311), GSAGSAAGSGEF (SEQ ID NO: 312). SIVAQLSRPDPA (SEQ ID NO: 313), MKIIEQLPSA (SEQ ID NO: 314), VRHKLKRVGS (SEQ ID NO: 315), GHGTGSTGSGSS (SEQ ID NO: 316), MSRPDPA (SEQ ID NO: 317), GSAGSAAGSGEF (SEQ ID NO: 312), SGSETPGTSESA (SEQ ID NO: 318), SGSETPGTSESATPEGGSGGS (SEQ ID NO: 319), or GGSM (SEQ ID NO: 320). Any linker provided under the “Linkers” section may be used.


In some embodiments, the nucleobase editor comprises a guide nucleotide sequence-programmable DNA-binding protein domain and an apolipoprotein B mRNA-editing complex 1 (APOBEC1) deaminase domain, where the deaminase domain is fused to the N-terminus of the napDNAbp domain via a linker comprising the amino acid sequence SGSETPGTSESATPES (SEQ ID NO: 310). In some embodiments, the a guide nucleotide sequence-programmable DNA-binding protein domain comprises the amino acid sequence of any of the a guide nucleotide sequence-programmable DNA-binding protein domains provided herein. In some embodiments, the deaminase is rat APOBEC1 (SEQ ID NO: 288). In some embodiments, the deaminase is human APOBEC1 (SEQ ID NO: 286). In some embodiments, the deaminase is pmCDA1 (SEQ ID NO: 289). In some embodiments, the deaminase is human APOBEC3G (SEQ ID NO: 279). In some embodiments, the deaminase is a human APOBEC3G variant of any one of (SEQ ID NOs: 290-292). In some embodiments, the fusion protein comprises a guide nucleotide sequence-programmable DNA-binding protein domain and an apolipoprotein B mRNA-editing complex 1 catalytic polypeptide-like 3G (APOBEC3G) deaminase domain, wherein the deaminase domain is fused to the N-terminus of the a guide nucleotide sequence-programmable DNA-binding protein domain via a linker of any length or composition (e.g., an amino acid sequence, a peptide, a polymer, or a bond). In some embodiments, the linker comprises the amino acid sequence SGSETPGTSESATPES (SEQ ID NO: 310). In some embodiments, the linker comprises the amino acid sequence (SGGS)2SGSETPGTSESATPES(SGGS)2 (SEQ ID NO: 2482).


In some embodiments, the fusion protein comprises a guide nucleotide sequence-programmable DNA-binding protein domain and a cytidine deaminase 1 (CDA1) deaminase domain, wherein the deaminase domain is fused to the N-terminus of the guide nucleotide sequence-programmable DNA-binding protein domain via a linker comprising the amino acid sequence SGSETPGTSESATPES (SEQ ID NO: 310). In some embodiments, the linker comprises the amino acid sequence (SGGS)2SGSETPGTSESATPES(SGGS)2 (SEQ ID NO: 2482). In some embodiments, the guide nucleotide sequence-programmable DNA-binding protein domain comprises the amino acid sequence of any of the guide nucleotide sequence-programmable DNA-binding protein domains provided herein.


In some embodiments, the fusion protein comprises a guide nucleotide sequence-programmable DNA-binding protein and an activation-induced cytidine deaminase (AID) deaminase domain, where the deaminase domain is fused to the N-terminus of the guide nucleotide sequence-programmable DNA-binding protein domain via a linker comprising the amino acid sequence SGSETPGTSESATPES (SEQ ID NO: 310). In some embodiments, the linker comprises the amino acid sequence (SGGS)2SGSETPGTSESATPES(SGGS)2 (SEQ ID NO: 2482). In some embodiments, the guide nucleotide sequence-programmable DNA-binding protein comprises the amino acid sequence of any of the guide nucleotide sequence-programmable DNA-binding protein domains provided herein.


Some aspects of the disclosure are based on the recognition that certain configurations of a guide nucleotide sequence-programmable DNA-binding protein, and a cytidine deaminase domain fused by a linker are useful for efficiently deaminating target cytidine residues. Other aspects of this disclosure relate to the recognition that a nucleobase editing fusion protein with an apolipoprotein B mRNA-editing complex 1 (APOBEC1) deaminase domain fused to the N-terminus of a guide nucleotide sequence-programmable DNA-binding protein via a linker comprising the amino acid sequence SGSETPGTSESATPES (SEQ ID NO: 310) was capable of efficiently deaminating target nucleic acids in a double stranded DNA target molecule. In some embodiments, the fusion protein comprises a guide nucleotide sequence-programmable DNA-binding protein domain and an apolipoprotein B mRNA-editing complex 1 (APOBEC1) deaminase domain, where the deaminase domain is fused to the N-terminus of the napDNAbp via a linker comprising the amino acid sequence SGSETPGTSESATPES (SEQ ID NO: 310). In some embodiments, the fusion protein comprises a guide nucleotide sequence-programmable DNA-binding protein domain and an apolipoprotein B mRNA-editing complex 1 (APOBEC1) deaminase domain, where the deaminase domain is fused to the N-terminus of the napDNAbp via a linker comprising the amino acid sequence (SGGS)2SGSETPGTSESATPES(SGGS)2 (SEQ ID NO: 2482).


To successfully edit the desired target C base, the linker between Cas9 and APOBEC may be optimized, as described in Komor et al., Nature, 533, 420-424 (2016), which is incorporated herein by reference. The numbering scheme for base editing is based on the predicted location of the target C within the single-stranded stretch of DNA (R-loop) displaced by a programmable guide RNA sequence occurring when a DNA-binding domain (e.g. Cas9, nCas9, dCas9) binds a genomic site. Conveniently, the sequence immediately surrounding the target C also matches the sequence of the guide RNA. The numbering scheme for base editing is based on a standard 20-mer programmable sequence, and defines position “21” as the first DNA base of the PAM sequence, resulting in position “1” assigned to the first DNA base matching the 5′-end of the 20-mer programmable guide RNA sequence. Therefore, for all Cas9 variants, position “21” is defined as the first base of the PAM sequence (e.g. NGG, NGAN, NGNG, NGAG, NGCG, NNGRRT, NGRRN, NNNRRT, NNNGAT, NNAGAA, NAAAC). When a longer programmable guide RNA sequence is used (e.g. 21-mer) the 5′-end bases are assigned a decreasing negative number starting at “−1”. For other DNA-binding domains that differ in the position of the PAM sequence, or that require no PAM sequence, the programmable guide RNA sequence is used as a reference for numbering. A 3-aa linker results in a 2-5 base editing window (e.g., positions 2, 3, 4, or 5 relative to the PAM sequence at position 21). A 9-aa linker results in a 3-6 base editing window (e.g., positions 3, 4, 5, or 6 relative to the PAM sequence at position 21). A 16-aa linker (e.g., the SGSETPGTSESATPES (SEQ ID NO: 310) linker) results in a 4-7 base editing window (e.g., positions 4, 5, 6, or 7 relative to the PAM sequence at position 21). A 21-aa linker results in a 5-8 base editing window (e.g., positions 5, 6, 7, or 8 relative to the PAM sequence at position 21). Each of these windows can be useful for editing different targeted C bases. For example, the targeted C bases may be at different distances from the adjacent PAM sequence, and by varying the linker length, the precise editing of the desired C base is ensured. One skilled in the art, based on the teachings of CRISPR/Cas9 technology in the art, and in particular the teachings of e.g., in U.S. Pat. No. 9,068,179. US Patent Application Publications US 2015/0166980, published Jul. 18, 2015, US 2015/0166981, published Jul. 18, 2015; US 2015/0166982, published Jul. 18, 2015; US 2015/0166984, published Jul. 18, 2015; and US 2015/0165054, published Jul. 18, 2015; and US Provisional Applications. U.S. Ser. No. 62/245,828, filed Oct. 23, 2015; 62/279,346, filed Jan. 15, 2016; 62/311,763, filed Mar. 22, 2016; 62/322,178, filed Apr. 13, 2016, 62/357,352, filed Jun. 30, 2016, 62,370,700, filed Aug. 3, 2016; 62/398,490, filed Sep. 22, 2016; 62/408,686, filed Oct. 14, 2016; PCT Application PCT/US2016/058344, filed Oct. 22, 2016. U.S. patent application Ser. No. 15/311,852, filed Oct. 22, 2016; and in Komor et al., Nature, Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage, 533, 420-424 (2016), the entire contents of each of which are incorporated herein by reference, will be able to determine the window of editing for his/her purpose, and properly design the linker of the cytosine deaminase-dCas9 protein for the precise targeting of the desired C base.


To successfully edit the desired target C base, appropriate Cas9 domain may be selected to attach to the deaminase domain (e.g., APOBEC1), since different Cas9 domains may lead to different editing windows. For example, APOBEC1-XTEN-SaCas9n-UGI gives a 1-12 base editing window (e.g., positions 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12 relative to the NNNRRT PAM sequence in positions 20-26). One skilled in the art, based on the teachings of CRISPR/Cas9 technology in the art, will be able to determine the editing window and properly determine the required Cas9 homolog and linker attached to the cytosine deaminase for the precise targeting of the desired C base.


In some embodiments, the fusion protein useful in the present disclosure further comprises a uracil glycosylase inhibitor (UGI) domain. A “uracil glycosylase inhibitor” refers to a protein that inhibits the activity of uracil-DNA glycosylase. The C to T base change induced by deamination results in a U:G heteroduplex, which triggers cellular DNA-repair response. Uracil DNA glycosylase (UDG) catalyzes removal of U from DNA in cells and initiates base excision repair, with reversion of the U:G pair to a C:G pair as the most common outcome. Thus, such cellular DNA-repair response may be responsible for the decrease in nucleobase editing efficiency in cells. Uracil DNA Glycosylase Inhibitor (UGI) is known in the art to block UDG activity. As described in Komor et al., Nature (2016), fusing a UGI domain to the cytidine deaminase-dCas9 fusion protein reduced the activity of UDG and significantly enhanced editing efficiency.


Suitable UGI protein and nucleotide sequences are provided herein and additional suitable UGI sequences are known to those in the art, and include, for example, those published in Wang et al., Uracil-DNA glycosylase inhibitor gene of bacteriophage PBS2 encodes a binding protein specific for uracil-DNA glycosylase. J. Biol. Chem. 264:1163-1171(1989); Lundquist et al., Site-directed mutagenesis and characterization of uracil-DNA glycosylase inhibitor protein. Role of specific carboxylic amino acids in complex formation with Escherichia coli uracil-DNA glycosylase. J. Biol. Chem. 272:21408-21419(1997); Ravishankar et al., X-ray analysis of a complex of Escherichia coli uracil DNA glycosylase (EcUDG) with a proteinaceous inhibitor. The structure elucidation of a prokaryotic UDG. Nucleic Acids Res. 26:4880-4887(1998); and Putnam et al., Protein mimicry of DNA from crystal structures of the uracil-DNA glycosylase inhibitor protein and its complex with Escherichia coli uracil-DNA glycosylase. J. Mol. Biol. 287:331-346(1999), each of which is incorporated herein by reference. In some embodiments, the UGI domain comprises the amino acid sequence of SEQ ID NO: 304 without the N-terminal methionine (M). In some embodiments, the UGI protein comprises the following amino acid sequence:










Bacillus phage PBS2 (Bacteriophage PBS2)



Uracil-DNA glycosylase inhibitor


(SEQ ID NO: 304)


MTNLSDIIEKETGKQLVIQESILMLPEEVEEVIGNKPESDILVHTAYDES





TDENVMLLTSDAPEYKPWALVIQDSNGENKIKML






In some embodiments, the UGI protein comprises a wild type UGI or a UGI as set forth in SEQ ID NO: 304. In some embodiments, the UGI proteins useful in the present disclosure include fragments of UGI and proteins homologous to a UGI or a UGI fragment. For example, in some embodiments, a UGI protein comprises a fragment of the amino acid sequence set forth in SEQ ID NO: 304. In some embodiments, a UGI comprises an amino acid sequence homologous to the amino acid sequence set forth in SEQ ID NO: 304 or an amino acid sequence homologous to a fragment of the amino acid sequence set forth in SEQ ID NO: 304. In some embodiments, proteins comprising UGI or fragments of UGI or homologs of UGI or UGI fragments are referred to as “UGI variants.” A UGI variant shares homology to UGI, or a fragment thereof. For example a UGI variant is at least about 70% identical, at least about 80% identical, at least about 90% identical, at least about 95% identical, at least about 96% identical, at least about 97% identical, at least about 98% identical, at least about 99% identical, at least about 99.5% identical, or at least about 99.9% to a wild type UGI or a UGI as set forth in SEQ ID NO: 304. In some embodiments, the UGI variant comprises a fragment of UGI, such that the fragment is at least about 70% identical, at least about 80% identical, at least about 90% identical, at least about 95% identical, at least about 96% identical, at least about 97% identical, at least about 98% identical, at least about 99% identical, at least about 99.5% identical, or at least about 99.9% identical to the corresponding fragment of wild type UGI or the UGI as set forth in SEQ ID NO: 304.


It should be appreciated that additional proteins may be uracil glycosylase inhibitors. For example, other proteins that are capable of inhibiting (e.g., sterically blocking) a uracil-DNA glycosylase base-excision repair enzyme are within the scope of this disclosure. In some embodiments, a uracil glycosylase inhibitor is a protein that binds DNA. In some embodiments, a uracil glycosylase inhibitor is a protein that binds single-stranded DNA. For example, a Erwinia tasmaniensis single-stranded binding protein may also inhibit the activity of uracil glycosylase. In some embodiments, the single-stranded binding protein comprises the amino acid sequence (SEQ ID NO: 305). In some embodiments, a uracil glycosylase inhibitor is a protein that binds uracil. In some embodiments, a uracil glycosylase inhibitor is a protein that binds uracil in DNA. In some embodiments, a uracil glycosylase inhibitor is a catalytically inactive uracil DNA-glycosylase protein. In some embodiments, a uracil glycosylase inhibitor is a catalytically inactive uracil DNA-glycosylase protein that does not excise uracil from the DNA. For example, a uracil glycosylase inhibitor is a UdgX. In some embodiments, the UdgX comprises the amino acid sequence (SEQ ID NO: 306). As another example, a uracil glycosylase inhibitor is a catalytically inactive UDG. In some embodiments, a catalytically inactive UDG comprises the amino acid sequence (SEQ ID NO: 307). It should be appreciated that other uracil glycosylase inhibitors would be apparent to the skilled artisan and are within the scope of this disclosure.











Erwinia tasmaniensis SSB (themostable single-stranded DNA binding




protein)


(SEQ ID NO: 305)



MASRGVNKVILVGNLGQDPEVRYMPNGGAVANITLATSESWRDKQTGETKEKTEWHRVVLFGKLAE






VAGEYLRKGSQVYIEGALQTRKWTDQAGVEKYTTEVVVNVGGTMQMLGGRSQGGGASAGGQNGGS





NNGWGQPQQPQGGNQFSGGAQQQARPQQQPQQNNAPANNEPPIDFDDDIP





UdgX (binds to uracil in DNA but does not excise)


(SEQ ID NO: 306)



MAGAQDFVPHTADLAELAAAAGECRGCGLYRDATQAVFGAGGRSARIMMIGEQPGDKEDLAGLPFV






GPAGRLLDRALEAADIDRDALYVTNAVKHFKFTRAAGGKRRIHKTPSRTEVVACRPWLIAEMTSVEPD





VVVLLGATAAKALLGNDFRVTQHRGEVLHVDDVPGDPALVATVHPSSLLRGPKEERESAFAGLVDDL





RVAADVRP





UDG (catalytically inactive human UDG, binds to uracil in DNA but does


not excise)


(SEQ ID NO: 307)



MIGQKTLYSFFSPSPARKRHAPSPEPAVQGTGVAGVPLESGDAAAIPAKKAPAGQEEPGTPPSSPLSALQ






LDRIQRNKAAALLRLAARNVPVGFGESWKKHLSGEFGKPYFIKLMGFVAEERKHYTVYPPPHQVFTW





TQMCDIKDVKVVILGQEPYHGPNQAHGLCFSVQRPVPPPPSLENIYKELSTDIEDFVHPGHGDLSGWAK





QGVLLLNAVLTVRAHQANSHKERGWEQFTDAVVSWLNQNSNGLVFLLWGSYAQKKGSAIDRKRHH





VLQTAHPSPLSVYRGFFGCRHFSKTNELLQKSGKKPIDWKEL






In some embodiments, the UGI domain is fused to the C-terminus of the dCas9 domain in the fusion protein. Thus, the fusion protein would have an architecture of NH2-[cytosine deaminase]-[guide nucleotide sequence-programmable DNA-binding protein domain]-[UGI]-COOH. In some embodiments, the UGI domain is fused to the N-terminus of the cytosine deaminase domain. As such, the fusion protein would have an architecture of NH2-[UGI]-[cytosine deaminase]-[guide nucleotide sequence-programmable DNA-binding protein domain]-COOH. In some embodiments, the UGI domain is fused between the guide nucleotide sequence-programmable DNA-binding protein domain and the cytosine deaminase domain. As such, the fusion protein would have an architecture of NH2-[cytosine deaminase]-[UGI]-[guide nucleotide sequence-programmable DNA-binding protein domain]-COOH. The linker sequences useful in the present disclosure may also be used for the fusion of the UGI domain to the cytosine deaminase-dCas9 fusion proteins.


In some embodiments, the fusion protein comprises the structure: [cytosine deaminase]-[optional linker sequence]-[guide nucleotide sequence-programmable DNA binding protein]-[optional linker sequence]-[UGI]; [cytosine deaminase]-[optional linker sequence]-[UGI]-[optional linker sequence]-[guide nucleotide sequence-programmable DNA binding protein]; [UGI]-[optional linker sequence]-[cytosine deaminase]-[optional linker sequence]-[guide nucleotide sequence-programmable DNA binding protein]; [UGI]-[optional linker sequence]-[guide nucleotide sequence-programmable DNA binding protein]-[optional linker sequence]-[cytosine deaminase]; [guide nucleotide sequence-programmable DNA binding protein]-[optional linker sequence]-[cytosine deaminase]-[optional linker sequence]-[UGI]; or [guide nucleotide sequence-programmable DNA binding protein]-[optional linker sequence]-[UGI]-[optional linker sequence]-[cytosine deaminase].


In some embodiments, the fusion protein used in the present disclosure comprises the structure:

    • [cytosine deaminase]-[optional linker sequence]-[Cas9 nickase]-[optional linker sequence]-[UGI];
    • [cytosine deaminase]-[optional linker sequence]-[UGI]-[optional linker sequence]-[Cas9 nickase];
    • [UGI]-[optional linker sequence]-[cytosine deaminase]-[optional linker sequence]-[Cas9 nickase];
    • [UGI]-[optional linker sequence]-[Cas9 nickase]-[optional linker sequence]-[cytosine deaminase];
    • [Cas9 nickase]-[optional linker sequence]-[cytosine deaminase]-[optional linker sequence]-[UGI]; or
    • [Cas9 nickase]-[optional linker sequence]-[UGI]-[optional linker sequence]-[cytosine deaminase].


In some embodiments, fusion proteins useful in the present disclosure further comprise a nuclear localization sequence (NLS). In some embodiments, the NLS is fused to the N-terminus of the fusion protein. In some embodiments, the NLS is fused to the C-terminus of the fusion protein. In some embodiments, the NLS is fused to the N-terminus of the UGI protein. In some embodiments, the NLS is fused to the C-terminus of the UGI protein. In some embodiments, the NLS is fused to the N-terminus of the guide nucleotide sequence-programmable DNA-binding protein domain. In some embodiments, the NLS is fused to the C-terminus of the guide nucleotide sequence-programmable DNA-binding protein domain. In some embodiments, the NLS is fused to the N-terminus of the cytosine deaminase. In some embodiments, the NLS is fused to the C-terminus of the deaminase. In some embodiments, the NLS is fused to the fusion protein via one or more linkers. In some embodiments, the NLS is fused to the fusion protein without a linker. Non-limiting, exemplary NLS sequences may be PKKKRKV (SEQ ID NO: 2431) or MDSLLMNRRKFLYQFKNVRWAKGRRETYLC (SEQ ID NO: 2432).


In some embodiments, any of the fusion proteins provided herein comprise a second UGI domain. Fusion proteins comprising two UGI domains are described in U.S. Provisional Application No., U.S. Ser. No. 62/475,830, filed Mar. 23, 2017; 62/490,587; 62/511,934, filed May 26, 2017; 62/551,951, filed Aug. 30, 2017; and Komor et al. (2017) Improved Base Excision Repair Inhibition and Bateriophage Mu Gam Protein Yields C:G-to-T:A base editors with higher efficiency and product purity. Sci Adv, 3: eaao4774; the entire contents of which is incorporated by reference herein. In some embodiments, the second UGI domain comprises a wild-type UGI or a UGI as set forth in SEQ ID NO: 304. In some embodiments, the UGI proteins provided herein include fragments of UGI and proteins homologous to a UGI or a UGI fragment. For example, in some embodiments, the second UGI domain comprises a fragment of the amino acid sequence set forth in SEQ ID NO: 304. In some embodiments, a UGI fragment comprises an amino acid sequence that comprises at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% of the amino acid sequence as set forth in SEQ ID NO: 304. In some embodiments, the second UGI domain comprises an amino acid sequence homologous to the amino acid sequence set forth in SEQ ID NO: 304 or an amino acid sequence homologous to a fragment of the amino acid sequence set forth in SEQ ID NO: 304. In some embodiments, proteins comprising UGI or fragments of UGI or homologs of UGI or UGI fragments are referred to as “UGI variants.” A UGI variant shares homology to UGI, or a fragment thereof. For example a UGI variant is at least 70% identical, at least 75% identical, at least 80% identical, at least 85% identical, at least 90% identical, at least 95% identical, at least 96% identical, at least 97% identical, at least 98% identical, at least 99% identical, at least 99.5% identical, or at least 99.9% identical to a wild type UGI or a UGI as set forth in SEQ ID NO: 304. In some embodiments, the UGI variant comprises a fragment of UGI, such that the fragment is at least 70% identical, at least 80% identical, at least 90% identical, at least 95% identical, at least 96% identical, at least 97% identical, at least 98% identical, at least 99% identical, at least 99.5% identical, or at least 99.9% to the corresponding fragment of wild-type UGI or a UGI as set forth in SEQ ID NO: 304.


In some embodiments, the fusion protein comprises the structure:

    • [deaminase]-[optional linker sequence]-[dCas9]-[optional linker sequence]-[first UGI]-[optional linker sequence]-[second UGI];
    • [deaminase]-[optional linker sequence]-[Cas9 nickase]-[optional linker sequence]-[first UGI]-[optional linker sequence]-[second UGI]; or
    • [deaminase]-[optional linker sequence]-[Cas9]-[optional linker sequence]-[first UGI]-[optional linker sequence]-[second UGI].


In some embodiments, the nucleobase editor comprises a guide nucleotide sequence-programmable DNA-binding protein domain and an apolipoprotein B mRNA-editing complex 1 (APOBEC1) deaminase domain, wherein the deaminase domain is fused to the N-terminus of the guide nucleotide sequence-programmable DNA-binding protein domain via a linker comprising the amino acid sequence (SGGS)2SGSETPGTSESATPES(SGGS)2 (SEQ ID NO: 2482). In some embodiments, the a guide nucleotide sequence-programmable DNA-binding protein domain comprises the amino acid sequence of any of the a guide nucleotide sequence-programmable DNA-binding protein domains provided herein. In some embodiments, the deaminase is rat APOBEC1 (SEQ ID NO: 288). In some embodiments, the deaminase is human APOBEC1 (SEQ ID NO: 286). In some embodiments, the deaminase is a human APOBEC3G variant of any one of (SEQ ID NOs: 290-292). In some embodiments, the nucleobase editor comprises a first UGI domain fused to the C-terminus of a guide nucleotide sequence-programmable DNA-binding protein domain via a linker comprising the amino acid sequence (GGS)n (SEQ ID NO: 2467), wherein n is 3. In some embodiments, the nucleobase editor comprises a second UGI domain fused to the C-terminus of a first UGI domain via a linker comprising the amino acid sequence (GGS)n (SEQ ID NO: 2467), wherein n is 3.


In some embodiments, the fusion protein comprises the amino acid sequence of SEQ ID NO: 2495. In some embodiments, the fusion protein comprises an amino acid sequence that is at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to the amino acid sequence as set forth in SEQ ID NO: 2495.


In some embodiments, any of the fusion proteins provided herein may further comprise a Gam protein. The term “Gam protein,” as used herein, refers generally to proteins capable of binding to one or more ends of a double strand break of a double stranded nucleic acid (e.g., double stranded DNA). In some embodiments, the Gam protein prevents or inhibits degradation of one or more strands of a nucleic acid at the site of the double strand break. In some embodiments, a Gam protein is a naturally-occurring Gam protein from bacteriophage Mu, or a non-naturally occurring variant thereof. Fusion proteins comprising Gam proteins are described in Komor et al. (2017) Improved Base Excision Repair Inhibition and Bateriophage Mu Gam Protein Yields C:G-to-T:A base editors with higher efficiency and product purity. Sci Adv, 3: eaao4774; the entire contents of which is incorporated by reference herein. In some embodiments, the Gam protein comprises an amino acid sequence that is at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 92%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to the amino acid sequence provided by SEQ ID NO: 2496. In some embodiments, the Gam protein comprises the amino acid sequence of SEQ ID NO: 2496. In some embodiments, the fusion protein (e.g., BE4-Gam of SEQ ID NO: 2497) comprises a Gam protein, wherein the Cas9 domain of BE4 is replaced with any of the Cas9 domains provided herein.










Gam from bacteriophage Mu:



(SEQ ID NO: 2496)



AKPAKRIKSAAAAYVPQNRDAVIIDIKRIGDLQREASRLETEMNDAIAEITEKFAARIAPIKIDIETLSKGVQGWCE



ANRDELINGGKVKTANLVTGDVSWRVRPPSVSIRGMDAVMETLERLGLQRFIRTKQEINKEAILLEPKAVAGVAGIT


VKSGIEDFSIIPFEQEAGI





BE4-Gam:


(SEQ ID NO: 2497)




MAKPAKRIKSAAAAYVPQNRDAVITDIKRIGDLQREASRLETEMNDAIAEITEKFAARIAPIKTDIETLSKGVQGWC





EANRDELINGGKVKTANLVTGDVSWRVRPPSVSIRGMDAVMETLERLGLQRFIRTKQEINKEAILLEPKAVAGVAGI





embedded image




NWGGRHSIWRHISQNINKHVEVNFIEKFTTERYFCPNTRCSITWFLSWSPCGECSRAITEFLSRYPHVTLFIYIARL


YHHADPRNRQGLRDLISSGVTIQIMTEQESGYCWRNFVNYSPSNEAHWPRYPHLWVRLYVLELYCIILGLPPCLNIL




embedded image




NSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEM


AKVDDSFFERLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSIDKADLRLIYLALAHMIKFRGH


FLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIAL


SLGLTPNEKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASM


IKRYDEHHQDLILLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDL


LRKQRTEDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMIRKSEETITP


WNFEEVVDKGASAQSFIERMINEDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLL


FKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRENASLGTYHDLLKIIKDKDELDNEENEDILEDIVLTLILFEDR


EMIEERLKTYAHLEDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDELKSDGFANRNFMQLIHDDSLTFKE


DIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKR


IEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDDSIDNKVLTRS


DKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDS


RMNTKYDENDKLIREVKVITLKSKLVSDERKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYK


VYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIEINGETGEIVWDKGRDFATVRKVLSMPQ


VNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITI


MERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKL


KGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLINLGAPA


AFKYEDITIDRKRYISTKEVLDATLIHQSITGLYETRIDLSQLGGDSGGSGGSGGSINLSDIIEKETGKQLVIQESI


LMLPEEVEEVIGNKPESDILVHIAYDESTDENVMLLTSDAPEYKPWALVIQDSNGENKIKMLSGGSGGSGGSINLSD


IIEKETGKQLVIQESILMLPEEVEEVIGNKPESDILVHIAYDESTDENVMLLTSDAPEYKPWALVIQDSNGENKIKM


LSGGSPKKKRK






Linkers

In certain embodiments, linkers may be used to link any of the protein or protein domains described herein. The linker may be as simple as a covalent bond, or it may be a polymeric linker many atoms in length. In certain embodiments, the linker is a polypeptide or based on amino acids. In other embodiments, the linker is not peptide-like. In certain embodiments, the linker is a covalent bond (e.g., a carbon-carbon bond, disulfide bond, carbon-heteroatom bond, etc.). In certain embodiments, the linker is a carbon-nitrogen bond of an amide linkage. In certain embodiments, the linker is a cyclic or acyclic, substituted or unsubstituted, branched or unbranched aliphatic or heteroaliphatic linker. In certain embodiments, the linker is polymeric (e.g., polyethylene, polyethylene glycol, polyamide, polyester, etc.). In certain embodiments, the linker comprises a monomer, dimer, or polymer of aminoalkanoic acid. In certain embodiments, the linker comprises an aminoalkanoic acid (e.g., glycine, ethanoic acid, alanine, beta-alanine, 3-aminopropanoic acid, 4-aminobutanoic acid, 5-pentanoic acid, etc.). In certain embodiments, the linker comprises a monomer, dimer, or polymer of aminohexanoic acid (Ahx). In certain embodiments, the linker is based on a carbocyclic moiety (e.g., cyclopentane, cyclohexane). In other embodiments, the linker comprises a polyethylene glycol moiety (PEG). In other embodiments, the linker comprises amino acids. In certain embodiments, the linker comprises a peptide. In certain embodiments, the linker comprises an aryl or heteroaryl moiety. In certain embodiments, the linker is based on a phenyl ring. The linker may include functionalized moieties to facilitate attachment of a nucleophile (e.g., thiol, amino) from the peptide to the linker. Any electrophile may be used as part of the linker. Exemplary electrophiles include, but are not limited to, activated esters, activated amides, Michael acceptors, alkyl halides, aryl halides, acyl halides, and isothiocyanates.


In some embodiments, the linker is an amino acid or a plurality of amino acids (e.g., a peptide or protein). In some embodiments, the linker is a bond (e.g., a covalent bond), an organic molecule, group, polymer, or chemical moiety. In some embodiments, the linker is 5-100 amino acids in length, for example, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 30-35, 35-40, 40-45, 45-50, 50-60, 60-70, 70-80, 80-90, 90-100, 100-110, 110-120, 120-130, 130-140, 140-150, or 150-200 amino acids in length. Longer or shorter linkers are also contemplated. In some embodiments, a linker comprises the amino acid sequence SGSETPGTSESATPES (SEQ ID NO: 310), which may also be referred to as the XTEN linker. In some embodiments, a linker comprises the amino acid sequence SGGS (SEQ ID NO: 37). In some embodiments, a linker comprises (SGGS)n (SEQ ID NO: 2468), (GGGS)n (SEQ ID NO: 2430)n (GGGGS)n (SEQ ID NO: 308)n (G)n (SEQ ID NO: 2498)n (EAAAK)n (SEQ ID NO: 40), (GGS)n (SEQ ID NO: 2467), SGSETPGTSESATPES (SEQ ID NO: 310), or (XP)n motif, or a combination of any of these, wherein n is independently an integer between 1 and 30, and wherein X is any amino acid. In some embodiments, n is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15. In some embodiments, a linker comprises SGSETPGTSESATPES (SEQ ID NO: 10), and SGGS (SEQ ID NO: 37). In some embodiments, a linker comprises SGGSSGSETPGTSESATPESSGGS (SEQ ID NO: 384). In some embodiments, a linker comprises SGGSSGGSSGSETPGTSESATPESSGGSSGGS (SEQ ID NO: 385). In some embodiments, a linker comprises









(SEQ ID NO: 386)


GGSGGSPGSPAGSPTSTEEGTSESATPESGPGTSTEPSEGSAPGSPAGSP





TSTEEGTSTEPSEGSAPGTSTEPSEGSAPGTSESATPESGPGSEPATSGG





SGGS.






Nucleobase Editor/gRNA Complexes

Some aspects of the present disclosure provide nucleobase editors associated with a guide nucleotide sequence (e.g., a guide RNA or gRNA), gRNAs can exist as a complex of two or more RNAs, or as a single RNA molecule, gRNAs that exist as a single RNA molecule may be referred to as single-guide RNAs (sgRNAs), though “gRNA” is used interchangeably to refer to guide RNAs that exist as either single molecules or as a complex of two or more molecules. Typically, gRNAs that exist as a single RNA species comprise two domains: (1) a domain that shares homology to a target nucleic acid (e.g., and directs binding of the Cas9 complex to the target); and (2) a domain that binds the Cas9 protein. In some embodiments, domain (2) corresponds to a sequence known as a tracrRNA and comprises a stem-loop structure. For example, in some embodiments, domain (2) is identical or homologous to a tracrRNA as provided in Jinek et al., Science 337:816-821(2012), which is incorporated herein by reference. Other examples of gRNAs (e.g., those including domain 2) can be found in U.S. Provisional Patent Application, U.S. Ser. No. 61/874,682, filed Sep. 6, 2013, entitled “Switchable Cas9 Nucleases And Uses Thereof,” and U.S. Provisional Patent Application, U.S. Ser. No. 61/874,746, filed Sep. 6, 2013, entitled “Delivery System For Functional Nucleases,” each of which is incorporated herein by reference. The gRNA comprises a nucleotide sequence that complements a target site, which mediates binding of the nuclease/RNA complex to said target site, providing the sequence specificity of the nuclease:RNA complex. These proteins are able to be targeted, in principle, to any sequence specified by the guide RNA. Methods of using RNA-programmable nucleases, such as Cas9, for site-specific cleavage (e.g., to modify a genome) are known in the art (see e.g., Cong, L. et al. Science 339, 819-823 (2013): Mali. P. et al. Science 339, 823-826 (2013); Hwang, W. Y. et al. Nature Biotechnology 31, 227-229 (2013); Jinek, M. et al. eLife 2, e00471 (2013); Dicarlo, J. E. et al. Nucleic acids research (2013): Jiang, W. et al. Nature biotechnology 31, 233-239 (2013); each of which is incorporated herein by reference). In particular, examples of guide nucleotide sequences (e.g., sgRNAs) that may be used to target the fusion proteins useful in the present disclosure to its target sequence to deaminate the targeted C bases are described in Komor et al., Nature, 533, 420-424 (2016), which is incorporated herein by reference.


The specific structure of the guide nucleotide sequences (e.g., sgRNAs) depends on its target sequence and the relative distance of a PAM sequence downstream of the target sequence. One skilled in the art will understand that no unifying structure of guide nucleotide sequence is given, because the target sequences are different for each and every C targeted to be deaminated.


However, the present disclosure provides guidance on how to design the guide nucleotide sequence, e.g., a sgRNA, so that one skilled in the art may use such teachings to target a sequence of interest. A gRNA typically comprises a tracrRNA framework allowing for Cas9 binding, and a guide sequence, which confers sequence specificity to fusion proteins disclosed herein. In some embodiments, the guide RNA comprises a structure 5′-[guide sequence]-tracrRNA-3′. Non-limiting, exemplary tracrRNA sequences are shown in Table 13.









TABLE 13







tracrRNA othologues and sequences











SEQ




ID


Organism
tracrRNA sequence
NO.






S. pyogenes

GUUUAAGAGCUAUGCUGGAAAGCCACGGUGAAAAAGUUCA
322



ACUAUUGCCUGAUCGGAAUAAAUUUGAACGAUACGACAGU




CGGUGCUUUUUUU







S. pyogenes

GUUUAAGAGCUAGAAAUAGCAAGUUUAAAUAAGGCUAGUC
323



CGUUAUCAACUUGAAAAAGUGGCACCGAGUCGGUGCUUUU




UU






S. thermophilus
GUUUUUGUACUCUCAAGAUUCAAUAAUCUUGCAGAAGCUA
324


CRISPR1
CAAAGAUAAGGCUUCAUGCCGAAAUCAACACCCUGUCAUUU




UAUGGCAGGGUGUUUU







S. thermophilus

GUUUUAGAGCUGUGUUGUUUGUUAAAACAACACAGCGAGU
325


CRISPR3
UAAAAUAAGGCUUAGUCCGUACUCAACUUGAAAAGGUGGC




ACCGAUUCGGUGUUUUU







C. jejuni

AAGAAAUUUAAAAAGGGACUAAAAUAAAGAGUUUGCGGGA
326



CUCUGCGGGGUUACAAUCCCCUAAAACCGCUUUU







F. novicida

AUCUAAAAUUAUAAAUGUACCAAAUAAUUAAUGCUCUGUA
327



AUCAUUUAAAAGUAUUUUGAACGGACCUCUGUUUGACACG




UCUGAAUAACUAAAA






S. thermophilus2
UGUAAGGGACGCCUUACACAGUUACUUAAAUCUUGCAGAA
328



GCUACAAAGAUAAGGCUUCAUGCCGAAAUCAACACCCUGUC




AUUUUAUGGCAGGGUGUUUUCGUUAUUU







M. mobile

UGUAUUUCGAAAUACAGAUGUACAGUUAAGAAUACAUAAG
329



AAUGAUACAUCACUAAAAAAAGGCUUUAUGCCGUAACUAC




UACUUAUUUUCAAAAUAAGUAGUUUUUUUU







L. innocua

AUUGUUAGUAUUCAAAAUAACAUAGCAAGUUAAAAUAAGG
330



CUUUGUCCGUUAUCAACUUUUAAUUAAGUAGCGCUGUUUC




GGCGCUUUUUUU







S. pyogenes

GUUGGAACCAUUCAAAACAGCAUAGCAAGUUAAAAUAAGG
331



CUAGUCCGUUAUCAACUUGAAAAAGUGGCACCGAGUCGGU




GCUUUUUUU







S. mutans

GUUGGAAUCAUUCGAAACAACACAGCAAGUUAAAAUAAGG
332



CAGUGAUUUUUAAUCCAGUCCGUACACAACUUGAAAAAGU




GCGCACCGAUUCGGUGCUUUUUUAUUU






S. thermophilus
UUGUGGUUUGAAACCAUUCGAAACAACACAGCGAGUUAAA
333



AUAAGGCUUAGUCCGUACUCAACUUGAAAAGGUGGCACCG




AUUCGGUGUUUUUUUU







N. meningitidis

ACAUAUUGUCGCACUGCGAAAUGAGAACCGUUGCUACAAU
334



AAGGCCGUCUGAAAAGAUGUGCCGCAACGCUCUGCCCCUUA




AAGCUUCUGCUUUAAGGGGCA







P. multocida

GCAUAUUGUUGCACUGCGAAAUGAGAGACGUUGCUACAAU
335



AAGGCUUCUGAAAAGAAUGACCGUAACGCUCUGCCCCUUGU




GAUUCUUAAUUGCAAGGGGCAUCGUUUUU









The guide sequence of the gRNA comprises a sequence that is complementary to the target sequence. The guide sequence is typically about 20 nucleotides long. For example, the guide sequence may be approximately 15-25 nucleotides long. In some embodiments, the guide sequence is 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25 nucleotides long. In some embodiments, the guide sequence is more than 25 nucleotides long. Such suitable guide RNA sequences typically comprise guide sequences that are complementary to a nucleic sequence within 50 nucleotides upstream or downstream of the target nucleotide to be edited.


In some embodiments, the guide RNA is about 15-100 nucleotides long and comprises a sequence of at least 10 contiguous nucleotides that is complementary to a target sequence. In some embodiments, the guide RNA is 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, or 50 nucleotides long. In some embodiments, the guide RNA comprises a sequence of 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, or 40 contiguous nucleotides that is complementary to a target sequence.


To edit the genes involved in pain propagation (e.g., ion channels in DRG neurons) using the methods described herein, the nucleobase editor and/or the guide nucleotide sequence is introduced into the cell (e.g., a DRG neuron) where the editing is to occur. In some embodiments, nucleic acid molecules (e.g., expression vectors) encoding the nucleobase editors and/or the guide nucleotide sequences are delivered into the cell, resulting in co-expression of the nucleobase editor(s) and/or the guide nucleotide sequence(s) in the cell. The nucleic acid molecules encoding the nucleobase editors and/or the guide nucleotide sequences may be delivered into the cell using any methods known in the art, e.g., transfection (e.g., transfection mediated by cationic liposomes), and transduction (e.g., via viral infection). In some embodiments, a nucleobase editor/gRNA complex is delivered. Methods of delivering a protein to a cell are familiar to those skilled in the art. For example, the nucleobase editor in complex with a gRNA may be associated with a supercharged or cell-penetrating protein or peptide, which facilitates its entry into a cell (e.g., as described in PCT Application Publication WO 2010/129023, published Nov. 11, 2010, and US Patent Application Publication US 2015/0071906, published Mar. 12, 2015, each of which is incorporated herein by reference). In some embodiments, the isolated nucleobase editor in complex with a gRNA is delivered to a cell using a cationic transfection reagent, e.g., the Lipofectamine CRISPRMAX Cas9 Transfection Reagent from Thermofisher Scientific. In some embodiments, the nucleobase editor and the gRNA may be delivered separately. Other suitable delivery methods may also be used. e.g., AAV mediated gene transfer. Strategies for delivery a genome editing agent (e.g., the nucleobase editor) using AAV have been described. e.g., in Zetsche et al., Nature Biotechnology 33, 139-142 (2015), incorporated herein by reference. Delivery of a split Cas9 using AAV has also been described, e.g., in Truong et al., Nucl. Acids Res. 43, 6450 (2016), and U.S. Provisional Application 62/408,575, filed Oct. 14, 2016, each of which is incorporated herein by reference.


In some embodiments, the genome editing agents (e.g., nucleobase editors) are delivered to neurons (e.g., DRG neurons) using neurotropic viral delivery vectors. Using neurotropic viral delivery vectors to deliver the genome editing agent enables genome editing treatments aimed at the site(s) of pain, despite the fact that the genetic material within the nuclei of DRG neurons is quite distant and indistinguishable from unrelated cells within each ganglion (e.g., as shown in FIG. 2).


In some embodiments, the neurotropic viral delivery vector is derived from a Herpes Simplex Virus 1 (HSV-1), which targets nerve endings in vivo and usurps retrograde axon transport to move the viral DNA up to the cell body of DRG neurons (e.g., as described in Smith et al., Annual Review of Microbiology, 66, 153-176, 2012, which is incorporated herein by reference). In addition, HSV-1 derived vectors allows packaging a large double-stranded DNA genome (>150 kbp), which can easily accommodate an expression construct for any programmable genome-editing enzyme (4-5 kbp), multiple guide-RNAs, and regulatory sequences. In some embodiments, the nucleotide sequences encoding the nucleobase editor and/or the gRNA is inserted into a neurotropic viral delivery vector (e.g., a HSV-1 derived vector) by replacing non-essential genes of the virus (e.g., HSV-1). Non-limiting examples of neurotropic viruses that may be used for the delivery of the genome editing agents described herein include the broader herpesviridae group, varicella-zoster, pseudorabies, cytomegalovirus, Epstein-Barr viruses, encephalitis viruses, polio, coxsackie, echo, mumps, measles, and rabies viruses. Evolved AAV that are neurotropic have also been described (e.g., Nature Biotechnology 34, 204-209 (2016), which is incorporated herein by reference) and may be used in accordance with the present disclosure. Delivery of a split Cas9 using AAV has also been described, e.g., in Truong et al., Nucl. Acids Res. 43, 6450 (2016), and US Provisional Application, U.S. Ser. No. 62/408,575, filed Oct. 14, 2016, each of which is incorporated herein by reference.


In some embodiments, the expression of the genome editing agents (e.g., nucleobase editors and/or gRNAs) is driven by a neuron-specific promoter, such that the genome editing agent is expressed specifically in neurons. Non-limiting examples of neuron-specific promoters that may be used in accordance with the present disclosure include: human synapsin I (SYN) promoter (e.g., as described in Li et al., Proc Natl Acad Sci USA 1993; 90: 1460-1464, incorporated herein by reference), mouse calcium/calmodulin-dependent protein kinase II (CaMKII) promoter (e.g., as described in Mayford et al., Proc Natl Acad Sci USA 1996; 93: 13250-13255, incorporated herein by reference), rat tubulin alpha I (Ta1) promoter (e.g., as described in Gloster et al., J Neurosci 1994; 14: 7319-7330, incorporated herein by reference), rat neuron-specific enolase (NSE) promoter (e.g., as described in Forss-Petter et al, Neuron 1990; 5: 187-197, incorporated herein by reference), and human platelet-derived growth factor-beta chain (PDGF) promoter (e.g., as described in Sasahara et al, Cell 1991; 64: 217-227, incorporated herein by reference). In some embodiments, the gRNA sequence is engineered such that it targets the genome editing agent (e.g., the nucleobase editor) to a target gene encoding an ion channel that is only expressed in neurons, thus minimizing or eliminating the effect on other types of tissues (i.e., enhanced specificity).


Compositions

Aspects of the present disclosure relate to compositions that may be used for pain suppression. Such compositions comprise any of the genome editing agents (e.g., the nucleobase editor and/or gRNA) or nucleic acids (e.g., DNA, RNA) encoding the genome editing agent (e.g., a neurotropic viral delivery vector) described herein. In some embodiments, the composition is administered to a subject for pain suppression.


In some embodiments, the composition further comprises a pharmaceutically acceptable carrier. As used here, the term “pharmaceutically acceptable carrier” means a pharmaceutically acceptable material, composition or vehicle, such as a liquid or solid filler, diluent, excipient, manufacturing aid (e.g., lubricant, tale magnesium, calcium or zinc stearate, or steric acid), or solvent encapsulating material, involved in carrying or transporting the compound from one site (e.g., the delivery site) of the body, to another site (e.g., organ, tissue or portion of the body). A pharmaceutically acceptable carrier is “acceptable” in the sense of being compatible with the other ingredients of the formulation and not injurious to the tissue of the subject (e.g., physiologically compatible, sterile, physiologic pH, etc.). Some examples of materials which can serve as pharmaceutically acceptable carriers include: (1) sugars, such as lactose, glucose and sucrose; (2) starches, such as corn starch and potato starch; (3) cellulose, and its derivatives, such as sodium carboxymethyl cellulose, methylcellulose, ethyl cellulose, microcrystalline cellulose and cellulose acetate; (4) powdered tragacanth; (5) malt; (6) gelatin; (7) lubricating agents, such as magnesium stearate, sodium lauryl sulfate and talc; (8) excipients, such as cocoa butter and suppository waxes; (9) oils, such as peanut oil, cottonseed oil, safflower oil, sesame oil, olive oil, corn oil and soybean oil; (10) glycols, such as propylene glycol; (11) polyols, such as glycerin, sorbitol, mannitol and polyethylene glycol (PEG); (12) esters, such as ethyl oleate and ethyl laurate; (13) agar; (14) buffering agents, such as magnesium hydroxide and aluminum hydroxide; (15) alginic acid; (16) pyrogen-free water; (17) isotonic saline; (18) Ringer's solution; (19) ethyl alcohol; (20) pH buffered solutions; (21) polyesters, polycarbonates and/or polyanhydrides; (22) bulking agents, such as polypeptides, carbohydrates, and amino acids; (23) serum component, such as serum albumin, HDL, and LDL; (22) C2-C12 alcohols, such as ethanol; and (23) other non-toxic compatible substances employed in pharmaceutical formulations. Wetting agents, coloring agents, release agents, coating agents, sweetening agents, flavoring agents, perfuming agents, preservative and antioxidants can also be present in the formulation. The terms such as “excipient”, “carrier”, “pharmaceutically acceptable carrier” or the like are used interchangeably herein.


Suitable routes of administrating the composition for pain suppression include, without limitation: topical, subcutaneous, transdermal, intradermal, intralesional, intraarticular, intraperitoneal, intravesical, transmucosal, gingival, intradental, intracochlear, transtympanic, intraorgan, epidural, intrathecal, intramuscular, intravenous, intravascular, intraosseus, periocular, intratumoral, intracerebral, and intracerebroventricular administration.


In some embodiments, the composition for pain suppression is administered locally to the site of pain (e.g., via tropical administration or injection). In some embodiments, the localized volume of treatment is 1 μm3 to 1 dm3 (e.g., 1, 10 μm3, 100 μm3, 1000 μm3, 10000 μm3, or 1 dm3).


In some embodiments, the composition for pain suppression is administered to a subject by injection, by means of a catheter, by means of a suppository, or by means of an implant, the implant being of a porous, non-porous, or gelatinous material, including a membrane, such as a sialastic membrane, or a fiber.


In other embodiments, the compositions for pain suppression are delivered in a controlled release system. In one embodiment, a pump may be used (see. e.g., Langer, 1990, Science 249:1527-1533; Sefton, 1989, CRC Crit. Ref. Biomed. Eng. 14:201; Buchwald et al., 1980, Surgery 88:507; Saudek et al., 1989, N. Engl. J. Med. 321:574). In another embodiment, polymeric materials can be used. (See, e.g., Medical Applications of Controlled Release (Langer and Wise eds., CRC Press, Boca Raton, Fla., 1974); Controlled Drug Bioavailability, Drug Product Design and Performance (Smolen and Ball eds., Wiley. New York, 1984); Ranger and Peppas, 1983, Macromol. Sci. Rev. Macromol. Chem. 23:61. See also Levy et al., 1985, Science 228:190; During et al., 1989, Ann. Neurol. 25:351; Howard et al., 1989. J. Neurosurg. 71:105.) Other controlled release systems are discussed, for example, in Langer, supra.


In some embodiments, the composition is formulated in accordance with routine procedures as a composition adapted for intravenous or subcutaneous administration to a subject, e.g., a human. In some embodiments, compositions for administration by injection are solutions in sterile isotonic aqueous buffer. Where necessary, the pharmaceutical can also include a solubilizing agent and a local anesthetic such as lignocaine to ease pain at the site of the injection. Generally, the ingredients are supplied either separately or mixed together in unit dosage form, for example, as a dry lyophilized powder or water free concentrate in a hermetically sealed container such as an ampoule or sachette indicating the quantity of active agent. Where the pharmaceutical is to be administered by infusion, it can be dispensed with an infusion bottle containing sterile pharmaceutical grade water or saline. Where the pharmaceutical is administered by injection, an ampoule of sterile water for injection or saline can be provided so that the ingredients can be mixed prior to administration.


A composition for systemic administration may be a liquid. e.g., sterile saline, lactated Ringer's or Hank's solution. In addition, the pharmaceutical composition can be in solid forms and re-dissolved or suspended immediately prior to use. Lyophilized forms are also contemplated.


The pharmaceutical composition can be contained within a lipid particle or vesicle, such as a liposome or microcrystal, which is also suitable for parenteral administration. The particles can be of any suitable structure, such as unilamellar or plurilamellar, so long as compositions are contained therein. Compounds can be entrapped in “stabilized plasmid-lipid particles” (SPLP) containing the fusogenic lipid dioleoylphosphatidylethanolamine (DOPE), low levels (5-10 mol %) of cationic lipid, and stabilized by a polyethyleneglycol (PEG) coating (Zhang Y. P. et al., Gene Ther. 1999, 6:1438-47). Positively charged lipids such as N-[1-(2,3-dioleoyloxi)propyl]-N,N,N-trimethyl-amoniummethylsulfate, or “DOTAP,” are particularly preferred for such particles and vesicles. The preparation of such lipid particles is well known. See, e.g., U.S. Pat. Nos. 4,880,635; 4,906,477; 4,911,928; 4,917,951; 4,920,016; and 4,921.757; each of which is incorporated herein by reference.


The compositions of this disclosure may be administered or packaged as a unit dose, for example. The term “unit dose” when used in reference to a pharmaceutical composition of the present disclosure refers to physically discrete units suitable as unitary dosage for the subject, each unit containing a predetermined quantity of active material calculated to produce the desired therapeutic effect in association with the required diluent; i.e., carrier, or vehicle.


Further, the compositions of the present disclosure may be assembled into kits. In some embodiments, the kit comprises nucleic acid vectors for the expression of the genome-editing agents useful in the present disclosure. In some embodiments, the kit further comprises appropriate guide nucleotide sequences (e.g., gRNAs), or nucleic acid vectors for the expression of such guide nucleotide sequences, for targeting the nucleobase editor to the desired target sequence.


The kit described herein may include one or more containers housing components for performing the methods described herein and optionally instructions of uses. Any of the kit described herein may further comprise components needed for performing the assay methods. Each component of the kits, where applicable, may be provided in liquid form (e.g., in solution), or in solid form. (e.g., a dry powder). In certain cases, some of the components may be reconstitutable or otherwise processible (e.g., to an active form), for example, by the addition of a suitable solvent or other species (for example, water or certain organic solvents), which may or may not be provided with the kit.


In some embodiments, the kits may optionally include instructions and/or promotion for use of the components provided. As used herein, “instructions” can define a component of instruction and/or promotion, and typically involve written instructions on or associated with packaging of the disclosure. Instructions also can include any oral or electronic instructions provided in any manner such that a user will clearly recognize that the instructions are to be associated with the kit, for example, audiovisual (e.g., videotape, DVD, etc.), Internet. and/or web-based communications, etc. The written instructions may be in a form prescribed by a governmental agency regulating the manufacture, use, or sale of pharmaceuticals or biological products, which can also reflect approval by the agency of manufacture, use or sale for animal administration. As used herein, “promoted” includes all methods of doing business including methods of education, hospital and other clinical instruction, scientific inquiry, drug discovery or development, academic research, pharmaceutical industry activity including pharmaceutical sales, and any advertising or other promotional activity including written, oral and electronic communication of any form, associated with the disclosure. Additionally, the kits may include other components depending on the specific application, as described herein.


The kits may contain any one or more of the components described herein in one or more containers. The components may be prepared sterilely, packaged in a syringe and shipped refrigerated. Alternatively it may be housed in a vial or other container for storage. A second container may have other components prepared sterilely. Alternatively the kits may include the active agents premixed and shipped in a vial, tube, or other container.


The kits may have a variety of forms, such as a blister pouch, a shrink wrapped pouch, a vacuum sealable pouch, a sealable thermoformed tray, or a similar pouch or tray form, with the accessories loosely packed within the pouch, one or more tubes, containers, a box or a bag. The kits may be sterilized after the accessories are added, thereby allowing the individual accessories in the container to be otherwise unwrapped. The kits can be sterilized using any appropriate sterilization techniques, such as radiation sterilization, heat sterilization, or other sterilization methods known in the art. The kits may also include other components, depending on the specific application, for example, containers, cell media, salts, buffers, reagents, syringes, needles, a fabric, such as gauze, for applying or removing a disinfecting agent, disposable gloves, a support for the agents prior to administration, etc.


Therapeutics

The compositions described herein, may be administered to a subject in need thereof, in a therapeutically effective amount, for the suppression of pain. In some embodiments, the pain is chronic pain. “Chronic pain” is pain that lasts a long time. Types of pain that may be treated using the pain suppression strategies described herein include, without limitation: pain associated with a condition such as cancer pain, tumor pressure, bone metastasis, chemotherapy peripheral neuropathy, radiculopathy (sciatica, lumbar, cervical, failed back surgery syndrome), piriformis syndrome, phantom pain, arachnoiditis, fibromyalgia, facet joint mediated pain, sympathetically-mediated pain syndrome such as complex regional pain syndromes (crps), sacroiliac (si) joint mediated pain, meralgia paresthetica, localized myofacial pain syndromes-myofacial trigger points, diffuse myofacial pain syndrome, post-herpetic neuralgia, trigeminal neuralgia, glossopharyngeal neuralgia, scar pain (post-epesiotomy, post-hernia repair, post-surgery, post-radiotherapy), vulvodynia, vaginismus, levator ani syndrome, chronic prostatitis, interstitial cystitis, first bite syndrome, rheumatoid arthritis pain, osteoarthritis pain, atypical odontalgia, phantom tooth pain, neuropathic orofacial pain, and atypical facial pain, nerve block procedures (alternative to neurolytic, neurectomy, radiation, radiofrequency ablation). In some embodiments, the pain is neuropathic pain, allodynia, hyperalgesia, dysesthesia, causalgia, neuralgia, primary erythermalgia, or arthralgia.


A “therapeutically effective amount” as used herein refers to the amount of each therapeutic agent of the present disclosure required to confer therapeutic effect on the subject, either alone or in combination with one or more other therapeutic agents. Effective amounts vary, as recognized by those skilled in the art, depending on the particular condition being treated, the severity of the condition, the individual subject parameters including age, physical condition, size, gender and weight, the duration of the treatment, the nature of concurrent therapy (if any), the specific route of administration and like factors within the knowledge and expertise of the health practitioner. These factors are well known to those of ordinary skill in the art and can be addressed with no more than routine experimentation. It is generally preferred that a maximum dose of the individual components or combinations thereof be used, that is, the highest safe dose according to sound medical judgment. It will be understood by those of ordinary skill in the art, however, that a subject may insist upon a lower dose or tolerable dose for medical reasons, psychological reasons or for virtually any other reasons. Empirical considerations, such as the half-life, generally will contribute to the determination of the dosage.


Frequency of administration may be determined and adjusted over the course of therapy, and is generally, but not necessarily, based on treatment and/or suppression and/or amelioration and/or delay of a disease. Alternatively, sustained continuous release formulations of a genome-editing may be appropriate. Various formulations and devices for achieving sustained release are known in the art. In some embodiments, dosage is daily, every other day, every three days, every four days, every five days, or every six days. In some embodiments, dosing frequency is once every week, every 2 weeks, every 4 weeks, every 5 weeks, every 6 weeks, every 7 weeks, every 8 weeks, every 9 weeks, or every 10 weeks; or once every month, every 2 months, or every 3 months, or longer. The progress of this therapy is easily monitored by conventional techniques and assays.


The dosing regimen can vary over time. In some embodiments, for an adult subject of normal weight, doses ranging from about 0.01 to 1000 mg/kg may be administered. In some embodiments, the dose is between 1 to 200 mg. The particular dosage regimen. i.e., dose, timing and repetition, will depend on the particular subject and that subject's medical history, as well as the properties of the agents.


For the purpose of the present disclosure, the appropriate dosage of a genome-editing agent as described herein will depend on the specific agent (or compositions thereof) employed, the formulation and route of administration, the type and severity of the disease, whether the genome-editing agent is administered for preventive or therapeutic purposes, previous therapy, the subject's clinical history and response to the antagonist, and the discretion of the attending physician. Typically the clinician will administer a genome-editing agent until a dosage is reached that achieves the desired result.


As used herein, the term “treating” refers to the application or administration of a genome-editing agent described herein or a composition comprising such genome-editing agent to a subject in need thereof. Alleviating a disease includes delaying the development or progression of the disease, or reducing disease severity. Alleviating the disease does not necessarily require curative results.


“Development” or “progression” of a disease means initial manifestations and/or ensuing progression of the disease. Development of the disease can be detectable and assessed using standard clinical techniques as well known in the art. However, development also refers to progression that may be undetectable. For purpose of this disclosure, development or progression refers to the biological course of the symptoms. “Development” includes occurrence, recurrence, and onset. As used herein “onset” or “occurrence” of a disease includes initial onset and/or recurrence.


The term “parenteral” as used herein includes subcutaneous, intracutaneous, intravenous, intramuscular, intraarticular, intraarterial, intrasynovial, intrasternal, intrathecal, intralesional, and intracranial injection or infusion techniques. In addition, it can be administered to the subject via injectable depot routes of administration such as using 1-, 3-, or 6-month depot injectable or biodegradable materials and methods.


Without further elaboration, it is believed that one skilled in the art can, based on the above description, utilize the present disclosure to its fullest extent. The following specific embodiments are, therefore, to be construed as merely illustrative, and not limitative of the remainder of the disclosure in any way whatsoever. All publications cited herein are incorporated by reference for the purposes or subject matter referenced herein.


EXAMPLES

In order that the invention described herein may be more fully understood, the following examples are set forth. The synthetic examples described in this application are offered to illustrate the compounds and methods provided herein and are not to be construed in any way as limiting their scope.


Example 1: Guide Nucleotide Sequence-Programmable DNA-Binding Protein Domains, Deaminases, and Base Editors

Non-limiting examples of suitable guide nucleotide sequence-programmable DNA-binding protein domain s are provided. The disclosure provides Cas9 variants, for example, Cas9 proteins from one or more organisms, which may comprise one or more mutations (e.g., to generate dCas9 or Cas9 nickase). In some embodiments, one or more of the amino acid residues, identified below by an asterisk, of a Cas9 protein may be mutated. In some embodiments, the D10 and/or H840 residues of the amino acid sequence provided in SEQ ID NO: 1, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11-260, are mutated. In some embodiments, the D10 residue of the amino acid sequence provided in SEQ ID NO: 1, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11-260, is mutated to any amino acid residue, except for D. In some embodiments, the D10 residue of the amino acid sequence provided in SEQ ID NO: 1, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11-260, is mutated to an A. In some embodiments, the H840 residue of the amino acid sequence provided in SEQ ID NO: 1, or a corresponding residue in any of the amino acid sequences provided in SEQ ID NOs: 11-260, is an H. In some embodiments, the H840 residue of the amino acid sequence provided in SEQ ID NO: 1, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11-260, is mutated to any amino acid residue, except for H. In some embodiments, the H840 residue of the amino acid sequence provided in SEQ ID NO: 1, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11-260, is mutated to an A. In some embodiments, the D10 residue of the amino acid sequence provided in SEQ ID NO: 1, or a corresponding residue in any of the amino acid sequences provided in SEQ ID NOs: 11-260, is a D.


A number of Cas9 sequences from various species were aligned to determine whether corresponding homologous amino acid residues of D10 and H840 of SEQ ID NO: 1 or SEQ ID NO: 11 can be identified in other Cas9 proteins, allowing the generation of Cas9 variants with corresponding mutations of the homologous amino acid residues. The alignment was carried out using the NCBI Constraint-based Multiple Alignment Tool (COBALT (accessible at st-va.ncbi.nlm.nih.gov/tools/cobalt), with the following parameters. Alignment parameters: Gap penalties −11, −1; End-Gap penalties −5, −1. CDD Parameters: Use RPS BLAST on; Blast E-value 0.003; Find Conserved columns and Recompute on. Query Clustering Parameters: Use query clusters on; Word Size 4; Max cluster distance 0.8; Alphabet Regular.


An exemplary alignment of four Cas9 sequences is provided below. The Cas9 sequences in the alignment are: Sequence 1 (S1): SEQ ID NO: 11|WP_010922251|gi 4992247111 type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes]; Sequence 2 (S2): SEQ ID NO: 12|WP_039695303|gi 746743737|type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus gallolyticus]; Sequence 3 (S3): SEQ ID NO: 13|WP_045635197|gi 782887988|type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mitis]; Sequence 4 (S4): SEQ ID NO: 14|5AXW_A|gi 924443546|Staphylococcus Aureus Cas9. The HNH domain (bold and underlined) and the RuvC domain (boxed) are identified for each of the four sequences. Amino acid residues 10 and 840 in S1 and the homologous amino acids in the aligned sequences are identified with an asterisk following the respective amino acid residue.













S1
1
--MDKK-YSIGLD*IGTNSVGWAVITDEYKVESKKFKVLGNTDRESIKENLI--GALLEDSG--ETAEATRLKRTARRRYT
73



S2
1
--MTKKNYSIGLD*IGTNSVGWAVITDDYKVPAKKMKVIGNTDKKYIKENLL--GALLFDSG--ETAEATRLKRTARRRYT
74


S3
1
--M-KKGYSIGLD*IGTNSVGFAVITDDYKVESKEMEVLGNTDKRFIKKNLI--GALLFDEG--TTAEARRLKRTARRRYT
73


S4
1
GSHMKRNYILGLD*IGITSVGYGII--DYET-----------------RDVIDAGVRIFKEANVENNEGRRSKRGARRLKR 
61





S1
74
RRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRL
153


S2
75
RRKNRLRYLQEIFANEIAKVDESFFQRLDESFLTDDDKTEDSHPIFGNKAEEDAYHQKFPTIYHLRKHLADSSEKADLRL
154


S3
74
RRKNRLRYLQEIFSEEMSKVDSSFFHRLDDSFLIPEDKRESKYPIFATLTEEKEYHKQFPTIYHLRKQLADSKEKTDLRL
153


S4
62
RRRHRIQRVKKLL--------------FDYNLLTD--------------------HSELSGINPYEARVKGLSQKLSEEE 
107





S1
154
TYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEK
233


S2
155
VYLALAHMIKFRGHFLIEGELNAENTDVQKIFADFVGVYNRTFDDSHLSEITVDVASILTEKISKSRRLENLIKYYPTEK
234


S3
154
TYLALAHMIKYRGHFLYEEAFDIKNNDIQKIFNEFISIYDNTFEGSSLSGQNAQVEAIFTDKISKSAKRERVLKLFPDEK
233


S4
108
FSAALLHLAKRRG----------------------VHNVNEVEEDT---------------------------------- 
131





S1
234
KNGLFGNLIALSLGLTPNEKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEIT
313


S2
235
KNTLFGNLIALALGLQPNEKTNFKLSEDAKLQFSKDTYEEDLEELLGKIGDDYADLFTSAKNLYDAILLSGILTVDDNST
314


S3
234
STGLFSEFLKLIVGNQADFKKHFDLEDKAPLQFSKDTYDEDLENLLGQIGDDFTDLFVSAKKLYDAILLSGILTVTDPST
313


S4
132
-----GNELS-------------------TKEQISRN-------------------------------------------
144





S1
314
KAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKM--DGTEELLV
391


S2
315
KAPLSASMIKRYVEHHEDLEKLKEFIKANKSELYHDIFKDKNKNGYAGYIENGVKQDEFYKYLKNILSKIKIDGSDYFLD
394


S3
314
KAPLSASMIERYENHQNDLAALKQFIKNNLPEKYDEVFSDQSKDGYAGYIDGKTTQETFYKYIKNLLSKF--EGTDYFLD
391


S4
145
----SKALEEKYVAELQ--------------------------------------------------LERLKKDG-----
165





S1
392
KLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEE
471


S2
395
KIEREDFLRKQRTFDNGSIPHQIHLQEMHAILRRQGDYYPFLKEKQDRIEKILTFRIPYYVGPLVRKDSRFAWAEYRSDE
474


S3
392
KIEREDFLRKQRTFDNGSIPHQIHLQEMNAILRRQGEYYPFLKDNKEKIEKILTFRIPYYVGPLARGNRDFAWLTRNSDE
471


S4
166
--EVRGSINRFKTSD--------YVKEAKQLLKVQKAYHQLDQSFIDTYIDLLETRRTYYEGP--GEGSPFGW------K
227





S1
472
TITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDL
551


S2
475
KITPWNFDKVIDKEKSAEKFITRMTLNDLYLPEEKVLPKHSHVYETYAVYNELTKIKYVNEQGKE-SFFDSNMKQEIFDH
553


S3
472
AIRPWNFEEIVDKASSAEDFINKMTNYDLYLPEEKVLPKHSLLYETFAVYNELTKVKFIAEGLRDYQFLDSGQKKQIVNQ
551


S4
228
DIKEW---------------YEMLMGHCTYFPEELRSVKYAYNADLYNALNDLNNLVITRDENEK---LEYYEKFQIIEN
289





S1
552
LFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDR---FNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFED
628


S2
554
VFKENRKVTKEKLLNYLNKEFPEYRIKDLIGLDKENKSFNASLGTYHDLKKIL-DKAFLDDKVNEEVIEDIIKTLTLFED
632


S3
552
LFKENRKVTEKDIIHYLHN-VDGYDGIELKGIEKQ---FNASLSTYHDLLKIIKDKEEMDDAKNEAILENIVHTLTIFED
627


S4
290
VFKQKKKPTLKQIAKEILVNEEDIKGYRVTSTGKPEF---TNLKVYHDIKDITARKEII---ENAELLDQIAKILTIYQS
363





S1
629
REMIEERLKTYAHLFDDKVMKQLKR-RRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDSLTFKED
707


S2
633
KDMIHERLQKYSDIFTANQLKKLER-RHYTGWGRLSYKLINGIRNKENNKTILDYLIDDGSANRNFMQLINDDTLPFKQI
711


S3
628
REMIKQRLAQYDSLFDEKVIKALTR-RHYTGWGKLSAKLINGICDKQTGNTILDYLIDDGKINRNFMQLINDDGLSFKEI
706


S4
364
SEDIQEELTNLNSELTQEEIEQISNLKGYTGTHNLSLKAINLILDE------LWHTNDNQIAIFNRLKLVP---------
428





S1
708


embedded image


781


S2
712


embedded image


784


S3
707


embedded image


779


S4
429


embedded image


505


S1
782


KRIEEGIKELGSQIL-------KEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSD----YDVDH*IVPQSFLKDD


850


S2
785


KKLQNSLKELGSNILNEEKPSYIEDKVENSHLQNDQLFLYYIQNGKDMYTGDELDIDHLSD----YDIDH*IIPQAFIKDD


860


S3
780


KRIEDSLKILASGL---DSNILKENPTDNNQLQNDRLFLYYLQNGKDMYTGEALDINQLSS----YDIDH*IIPQAFIKDD


852


S4
506


ERIEEIIRTTGK---------------ENAKYLIEKIKLHDMQEGKCLYSLEAIPLEDLLNNPFNYEVDH*IIPRSVSFDN


570





S1
851


embedded image


922


S2
861


embedded image


932


S3
853


embedded image


924


S4
571


embedded image


650


S1
923


embedded image


1002


S2
933


embedded image


1012


S3
925


embedded image


1004


S4
651


embedded image


712


S1
1003


embedded image


1077


S2
1013


embedded image


1083


S3
1005


embedded image


1081


S4
713


embedded image


764


S1
1078


embedded image


1149


S2
1084


embedded image


1158


S3
1082


embedded image


1156


S4
765


embedded image


835


S1
1150
EKGKSKKLKSVKELLGITIMERSSFEKNPI-DFLEAKG-----YKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKG
1223


S2
1159
EKGKAKKLKTVKELVGISIMERSFFEENPV-EFLENKG-----YHNIREDKLIKLPKYSLFEFEGGRRRLLASASELQKG
1232


S3
1157
EKGKAKKLKTVKTLVGITIMEKAAFEENPI-TFLENKG-----YHNVRKENILCLPKYSLFELENGRRRLLASAKELQKG
1230


S4
836
DPQTYQKLK--------LIMEQYGDEKNPLYKYYEETGNYLTKYSKKDNGPVIKKIKYYGNKLNAHLDITDDYPNSRNKV
907





S1
1224
NELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEITEQISEFSKRVILADANLDKVLSAYNKH------
1297


S2
1233
NEMVLPGYLVELLYHAHRADNF-----NSTEYLNYVSEHKKEFEKVLSCVEDFANLYVDVEKNLSKIRAVADSM------
1301


S3
1231
NEIVLPVYLTTLLYHSKNVHKL-----DEPGHLEYIQKHRNEFKDLLNLVSEFSQKYVLADANLEKIKSLYADN------
1299


S4
908
VKLSLKPYRFD-VYLDNGVYKFV-----TVKNLDVIK--KENYYEVNSKAYEEAKKLKKISNQAEFIASFYNNDLIKING
979





S1
1298
RDKPIREQAENITHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSIT--------GLYETRI----DLSQL 
1365


S2
1302
DNFSIEEISNSFINLLTLTALGAPADFNFLGEKIPRKRYTSTKECLNATLIHQSIT--------GLYETRI----DLSKL 
1369


S3
1300
EQADIEILANSFINLLTFTALGAPAAFKFFGKDIDRKRYTTVSEILNATLIHQSIT--------GLYETWI----DLSKL 
1367


S4
980
ELYRVIGVNNDLLNRIEVNMIDITYR-EYLENMNDKRPPRIIKTIASKT---QSIKKYSTDILGNLYEVKSKKHPQIIKK
1055





S1
1366
GGD
1368


S2
1370
GEE
1372


S3
1368
GED
1370


S4
1056
G--
1056






The alignment demonstrates that amino acid sequences and amino acid residues that are homologous to a reference Cas9 amino acid sequence or amino acid residue can be identified across Cas9 sequence variants, including, but not limited to Cas9 sequences from different species, by identifying the amino acid sequence or residue that aligns with the reference sequence or the reference residue using alignment programs and algorithms known in the art. This disclosure provides Cas9 variants in which one or more of the amino acid residues identified by an asterisk in SEQ ID NOs: 11-14 (e.g., S1, S2, S3, and S4, respectively) are mutated as described herein. The residues D10 and H840 in Cas9 of SEQ ID NO: 1 that correspond to the residues identified in SEQ ID NOs: 11-14 by an asterisk are referred to herein as “homologous” or “corresponding” residues. Such homologous residues can be identified by sequence alignment, e.g., as described above, and by identifying the sequence or residue that aligns with the reference sequence or residue. Similarly, mutations in Cas9 sequences that correspond to mutations identified in SEQ ID NO: 1 herein, e.g., mutations of residues 10, and 840 in SEQ ID NO: 1, are referred to herein as “homologous” or “corresponding” mutations. For example, the mutations corresponding to the D10A mutation in SEQ ID NO: 1 or S1 (SEQ ID NO: 11) for the four aligned sequences above are Dl 1A for S2, D10A for S3, and D13A for S4; the corresponding mutations for H840A in SEQ ID NO: 1 or S1 (SEQ ID NO: 11) are H850A for S2, H842A for S3, and H560A for S4.


A total of 250 Cas9 sequences (SEQ ID NOs: 11-260) from different species are provided. Amino acid residues homologous to residues 10, and 840 of SEQ ID NO: 1 may be identified in the same manner as outlined above. All of these Cas9 sequences may be used in accordance with the present disclosure.















WP_010922251.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes] SEQ ID NO: 11


WP_039695303.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus gallolyticus] SEQ ID NO: 12


WP_045635197.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mitis] SEQ ID NO: 13


5AXW_A
Cas9, Chain A, Crystal Structure [Staphylococcus Aureus] SEQ ID NO: 14


WP_009880683.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes] SEQ ID NO: 15


WP_010922251.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes] SEQ ID NO: 16


WP_011054416.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes] SEQ ID NO: 17


WP_011284745.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes] SEQ ID NO: 18


WP_011285506.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes] SEQ ID NO: 19


WP_011527619.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes] SEQ ID NO: 20


WP_012560673.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes] SEQ ID NO: 21


WP_014407541.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes] SEQ ID NO: 22


WP_020905136.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes] SEQ ID NO: 23


WP_023080005.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes] SEQ ID NO: 24


WP_023610282.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes] SEQ ID NO: 25


WP_030125963.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes] SEQ ID NO: 26


WP_030126706.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes] SEQ ID NO: 27


WP_031488318.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes] SEQ ID NO: 28


WP_032460140.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes] SEQ ID NO: 29


WP_032461047.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes] SEQ ID NO: 30


WP_032462016.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes] SEQ ID NO: 31


WP_032462936.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes] SEQ ID NO: 32


WP_032464890.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes] SEQ ID NO: 33


WP_033888930.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes] SEQ ID NO: 34


WP_038431314.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes] SEQ ID NO: 35


WP_038432938.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes] SEQ ID NO: 36


WP_038434062.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes] SEQ ID NO: 37


BAQ51233.1
CRISPR-associated protein, Csn1 family [Streptococcus pyogenes] SEQ ID NO: 38


KGE60162.1
hypothetical protein MGAS2111_0903 [Streptococcus pyogenes MGAS2111] SEQ ID NO: 39


KGE60856.1
CRISPR-associated endonuclease protein [Streptococcus pyogenes SS1447] SEQ ID NO: 40


WP_002989955.1
MULTISPECIES: type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus] SEQ ID NO: 41


WP_003030002.1
MULTISPECIES: type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus] SEQ ID NO: 42


WP_003065552.1
MULTISPECIES: type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus] SEQ ID NO: 43


WP_001040076.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 44


WP_001040078.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 45


WP_001040080.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 46


WP_001040081.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 47


WP_001040083.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 48


WP_001040085.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 49


WP_001040087.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 50


WP_001040088.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 51


WP_001040089.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 52


WP_001040090.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 53


WP_001040091.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 54


WP_001040092.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 55


WP_001040094.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 56


WP_001040095.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 57


WP_001040096.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 58


WP_001040097.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 59


WP_001040098.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 60


WP_001040099.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 61


WP_001040100.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 62


WP_001040104.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 63


WP_001040105.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 64


WP_001040106.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 65


WP_001040107.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 66


WP_001040108.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 67


WP_001040109.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 68


WP_001040110.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 69


WP_015058523.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 70


WP_017643650.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 71


WP_017647151.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 72


WP_017648376.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 73


WP_017649527.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 74


WP_017771611.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 75


WP_017771984.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 76


CFQ25032.1
CRISPR-associated protein [Streptococcus agalactiae] SEQ ID NO: 77


CFV16040.1
CRISPR-associated protein [Streptococcus agalactiae] SEQ ID NO: 78


KLJ37842.1
CRISPR-associated protein Csn1 [Streptococcus agalactiae] SEQ ID NO: 79


KLJ72361.1
CRISPR-associated protein Csn1 [Streptococcus agalactiae] SEQ ID NO: 80


KLL20707.1
CRISPR-associated protein Csn1 [Streptococcus agalactiae] SEQ ID NO: 81


KLL42645.1
CRISPR-associated protein Csn1 [Streptococcus agalactiae] SEQ ID NO: 82


WP_047207273.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 83


WP_047209694.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 84


WP_050198062.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 85


WP_050201642.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 86


WP_050204027.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 87


WP_050881965.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 88


WP_050886065.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 89


AHN30376.1
CRISPR-associated protein Csn1 [Streptococcus agalactiae 138P] SEQ ID NO: 90


EAO78426.1
reticulocyte binding protein [Streptococcus agalactiae H36B] SEQ ID NO: 91


CCW42055.1
CRISPR-associated protein, SAG0894 family [Streptococcus agalactiae ILRI112] SEQ ID NO: 92


WP_003041502.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus anginosus] SEQ ID NO: 93


WP_037593752.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus anginosus] SEQ ID NO: 94


WP_049516684.1
CRISPR-associated protein Csn1 [Streptococcus anginosus] SEQ ID NO: 95


GAD46167.1
hypothetical protein ANG6_0662 [Streptococcus anginosus T5] SEQ ID NO: 96


WP_018363470.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus caballi] SEQ ID NO: 97


WP_003043819.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus canis] SEQ ID NO: 98


WP_006269658.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus constellatus] SEQ ID NO: 99


WP_048800889.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus constellatus] SEQ ID NO: 100


WP_012767106.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus dysgalactiae] SEQ ID NO: 101


WP_014612333.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus dysgalactiae] SEQ ID NO: 102


WP_015017095.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus dysgalactiae] SEQ ID NO: 103


WP_015057649.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus dysgalactiae] SEQ ID NO: 104


WP_048327215.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus dysgalactiae] SEQ ID NO: 105


WP_049519324.1
CRISPR-associated protein Csn1 [Streptococcus dysgalactiae] SEQ ID NO: 106


WP_012515931.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus equi] SEQ ID NO: 107


WP_021320964.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus equi] SEQ ID NO: 108


WP_037581760.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus equi] SEQ ID NO: 109


WP_004232481.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus equinus] SEQ ID NO: 110


WP_009854540.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus gallolyticus] SEQ ID NO: 111


WP_012962174.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus gallolyticus] SEQ ID NO: 112


WP_039695303.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus gallolyticus] SEQ ID NO: 113


WP_014334983.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus infantarius] SEQ ID NO: 114


WP_003099269.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus iniae] SEQ ID NO: 115


AHY15608.1
CRISPR-associated protein Csn1 [Streptococcus iniae] SEQ ID NO: 116


AHY17476.1
CRISPR-associated protein Csn1 [Streptococcus iniae] SEQ ID NO: 117


ESR09100.1
hypothetical protein IUSA1_08595 [Streptococcus iniae IUSA1] SEQ ID NO: 118


AGM98575.1
CRISPR-associated protein Cas9/Csn1, subtype II/NMEMI [Streptococcus iniae SF1] SEQ ID NO: 119


ALF27331.1
CRISPR-associated protein Csn1 [Streptococcus intermedius] SEQ ID NO: 120


WP_018372492.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus massiliensis] SEQ ID NO: 121


WP_045618028.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mitis] SEQ ID NO: 122


WP_045635197.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mitis] SEQ ID NO: 123


WP_002263549.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 124


WP_002263887.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 125


WP_002264920.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 126


WP_002269043.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 127


WP_002269448.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 128


WP_002271977.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 129


WP_002272766.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 130


WP_002273241.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 131


WP_002275430.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 132


WP_002276448.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 133


WP_002277050.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 134


WP_002277364.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 135


WP_002279025.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 136


WP_002279859.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 137


WP_002280230.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 138


WP_002281696.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 139


WP_002282247.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 140


WP_002282906.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 141


WP_002283846.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 142


WP_002287255.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 143


WP_002288990.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 144


WP_002289641.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 145


WP_002290427.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 146


WP_002295753.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 147


WP_002296423.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 148


WP_002304487.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 149


WP_002305844.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 150


WP_002307203.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 151


WP_002310390.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 152


WP_002352408.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 153


WP_012997688.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 154


WP_014677909.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 155


WP_019312892.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 156


WP_019313659.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 157


WP_019314093.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 158


WP_019315370.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 159


WP_019803776.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 160


WP_019805234.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 161


WP_024783594.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 162


WP_024784288.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 163


WP_024784666.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 164


WP_024784894.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 165


WP_024786433.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 166


WP_049473442.1
CRISPR-associated protein Csn1 [Streptococcus mutans] SEQ ID NO: 167


WP_049474547.1
CRISPR-associated protein Csn1 [Streptococcus mutans] SEQ ID NO: 168


EMC03581.1
hypothetical protein SMU69_09359 [Streptococcus mutans NLML4] SEQ ID NO: 169


WP_000428612.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus oralis] SEQ ID NO: 170


WP_000428613.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus oralis] SEQ ID NO: 171


WP_049523028.1
CRISPR-associated protein Csn1 [Streptococcus parasanguinis] SEQ ID NO: 172


WP_003107102.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus parauberis] SEQ ID NO: 173


WP_054279288.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus phocae] SEQ ID NO: 174


WP_049531101.1
CRISPR-associated protein Csn1 [Streptococcus pseudopneumoniae] SEQ ID NO: 175


WP_049538452.1
CRISPR-associated protein Csn1 [Streptococcus pseudopneumoniae] SEQ ID NO: 176


WP_049549711.1
CRISPR-associated protein Csn1 [Streptococcus pseudopneumoniae] SEQ ID NO: 177


WP_007896501.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pseudoporcinus] SEQ ID NO: 178


EFR44625.1
CRISPR-associated protein, Csn1 family [Streptococcus pseudoporcinus SPIN 20026] SEQ ID NO: 179


WP_002897477.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus sanguinis] SEQ ID NO: 180


WP_002906454.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus sanguinis] SEQ ID NO: 181


WP_009729476.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcussp. F0441] SEQ ID NO: 182


CQR24647.1
CRISPR-associated protein [Streptococcus sp. FF10] SEQ ID NO: 183


WP_000066813.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus sp. M334] SEQ ID NO: 184


WP_009754323.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus sp. taxon 056] SEQ ID NO: 185


WP_044674937.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus suis] SEQ ID NO: 186


WP_044676715.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus suis] SEQ ID NO: 187


WP_044680361.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus suis] SEQ ID NO: 188


WP_044681799.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus suis] SEQ ID NO: 189


WP_049533112.1
CRISPR-associated protein Csn1 [Streptococcus suis] SEQ ID NO: 190


WP_029090905.1
type II CRISPR RNA-guided endonuclease Cas9 [Brochothrix thermosphacta] SEQ ID NO: 191


WP_006506696.1
type II CRISPR RNA-guided endonuclease Cas9 [Catenibacterium mitsuokai] SEQ ID NO: 192


AIT42264.1
Cas9hc:NLS:HA [Cloning vector pYB196] SEQ ID NO: 193


WP_034440723.1
type II CRISPR endonuclease Cas9 [Clostridiales bacterium S5-A11] SEQ ID NO: 194


AKQ21048.1
Cas9 [CRISPR-mediated gene targeting vector p(bhsp68-Cas9)] SEQ ID NO: 195


WP_004636532.1
type II CRISPR RNA-guided endonuclease Cas9 [Dolosigranulum pigrum] SEQ ID NO: 196


WP_002364836.1
MULTISPECIES: type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus] SEQ ID NO: 197


WP_016631044.1
MULTISPECIES: type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus] SEQ ID NO: 198


EMS75795.1
hypothetical protein H318_06676 [Enterococcus durans IPLA 655] SEQ ID NO: 199


WP_002373311.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus faecalis] SEQ ID NO: 200


WP_002378009.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus faecalis] SEQ ID NO: 201


WP_002407324.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus faecalis] SEQ ID NO: 202


WP_002413717.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus faecalis] SEQ ID NO: 203


WP_010775580.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus faecalis] SEQ ID NO: 204


WP_010818269.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus faecalis] SEQ ID NO: 205


WP_010824395.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus faecalis] SEQ ID NO: 206


WP_016622645.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus faecalis] SEQ ID NO: 207


WP_033624816.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus faecalis] SEQ ID NO: 208


WP_033625576.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus faecalis] SEQ ID NO: 209


WP_033789179.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus faecalis] SEQ ID NO: 210


WP_002310644.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus faecium] SEQ ID NO: 211


WP_002312694.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus faecium] SEQ ID NO: 212


WP_002314015.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus faecium] SEQ ID NO: 213


WP_002320716.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus faecium] SEQ ID NO: 214


WP_002330729.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus faecium] SEQ ID NO: 215


WP_002335161.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus faecium] SEQ ID NO: 216


WP_002345439.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus faecium] SEQ ID NO: 217


WP_034867970.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus faecium] SEQ ID NO: 218


WP_047937432.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus faecium] SEQ ID NO: 219


WP_010720994.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus hirae] SEQ ID NO: 220


WP_010737004.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus hirae] SEQ ID NO: 221


WP_034700478.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus hirae] SEQ ID NO: 222


WP_007209003.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus italicus] SEQ ID NO: 223


WP_023519017.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus mundtii] SEQ ID NO: 224


WP_010770040.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus phoeniculicola] SEQ ID NO: 225


WP_048604708.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus sp. AM1] SEQ ID NO: 226


WP_010750235.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus villorum] SEQ ID NO: 227


AII16583.1
Cas9 endonuclease [Expression vector pCas9] SEQ ID NO: 228


WP_029073316.1
type II CRISPR RNA-guided endonuclease Cas9 [Kandleria vitulina] SEQ ID NO: 229


WP_031589969.1
type II CRISPR RNA-guided endonuclease Cas9 [Kandleria vitulina] SEQ ID NO: 230


KDA45870.1
CRISPR-associated protein Cas9/Csn1, subtype II/NMEMI [Lactobacillus animalis] SEQ ID NO: 231


WP_039099354.1
type II CRISPR RNA-guided endonuclease Cas9 [Lactobacillus curvatus] SEQ ID NO: 232


AKP02966.1
hypothetical protein ABB45_04605 [Lactobacillus farciminis] SEQ ID NO: 233


WP_010991369.1
type II CRISPR RNA-guided endonuclease Cas9 [Listeria innocua] SEQ ID NO: 234


WP_033838504.1
type II CRISPR RNA-guided endonuclease Cas9 [Listeria innocua] SEQ ID NO: 235


EHN60060.1
CRISPR-associated protein, Csn1 family [Listeria innocua ATCC 33091] SEQ ID NO: 236


EFR89594.1
crispr-associated protein, Csn1 family [Listeria innocua FSL S4-378] SEQ ID NO: 237


WP_038409211.1
type II CRISPR RNA-guided endonuclease Cas9 [Listeria ivanovii] SEQ ID NO: 238


EFR95520.1
crispr-associated protein Csn1 [Listeria ivanovii FSL F6-596] SEQ ID NO: 239


WP_003723650.1
type II CRISPR RNA-guided endonuclease Cas9 [Listeria monocytogenes] SEQ ID NO: 240


WP_003727705.1
type II CRISPR RNA-guided endonuclease Cas9 [Listeria monocytogenes] SEQ ID NO: 241


WP_003730785.1
type II CRISPR RNA-guided endonuclease Cas9 [Listeria monocytogenes] SEQ ID NO: 242


WP_003733029.1
type II CRISPR RNA-guided endonuclease Cas9 [Listeria monocytogenes] SEQ ID NO: 243


WP_003739838.1
type II CRISPR RNA-guided endonuclease Cas9 [Listeria monocytogenes] SEQ ID NO: 244


WP_014601172.1
type II CRISPR RNA-guided endonuclease Cas9 [Listeria monocytogenes] SEQ ID NO: 245


WP_023548323.1
type II CRISPR RNA-guided endonuclease Cas9 [Listeria monocytogenes] SEQ ID NO: 246


WP_031665337.1
type II CRISPR RNA-guided endonuclease Cas9 [Listeria monocytogenes] SEQ ID NO: 247


WP_031669209.1
type II CRISPR RNA-guided endonuclease Cas9 [Listeria monocytogenes] SEQ ID NO: 248


WP_033920898.1
type II CRISPR RNA-guided endonuclease Cas9 [Listeria monocytogenes] SEQ ID NO: 249


AKI42028.1
CRISPR-associated protein [Listeria monocytogenes] SEQ ID NO: 250


AKI50529.1
CRISPR-associated protein [Listeria monocytogenes] SEQ ID NO: 251


EFR83390.1
crispr-associated protein Csn1 [Listeria monocytogenes FSL F2-208] SEQ ID NO: 252


WP_046323366.1
type II CRISPR RNA-guided endonuclease Cas9 [Listeria seeligeri] SEQ ID NO: 253


AKE81011.1
Cas9 [Plant multiplex genome editing vector pYLCRISPR/Cas9Pubi-H] SEQ ID NO: 254


CUO82355.1
Uncharacterized protein conserved in bacteria [Roseburia hominis] SEQ ID NO: 255


WP_033162887.1
type II CRISPR RNA-guided endonuclease Cas9 [Sharpea azabuensis] SEQ ID NO: 256


AGZ01981.1
Cas9 endonuclease [synthetic construct] SEQ ID NO: 257


AKA60242.1
nuclease deficient Cas9 [synthetic construct] SEQ ID NO: 258


AKS40380.1
Cas9 [Synthetic plasmid pFC330] SEQ ID NO: 259


4UN5_B
Cas9, Chain B, Crystal Structure SEQ ID NO: 260









Non-limiting examples of suitable deaminase domains are provided.










Human AID



(SEQ ID NO: 303)





embedded image





LDPGRCYRVTWFTSWSPCYDCARHVADFLRGNPNLSLRIFTARLYFCEDRKAEPEGLRRLHRAGVQIAIMT


FKDYFYCWNTFVENHERTFKAWEGLHENSVRLSRQLRRILLPLYEVDDLRDAFRTLGL


(underline: nuclear localization signal; double underline: nuclear export signal)





Mouse AID


(SEQ ID NO: 271)




MDSLLMKQKKFLYHFKNVRWAKGRHETYLCYVVKRRDSATSCSLDFGHLRNKSGCHVELLFLRYISDWD




LDPGRCYRVTWFTSWSPCYDCARHVAEFLRWNPNLSLRIFTARLYFCEDRKAEPEGLRRLHRAGVQIGIMT


FKDYFYCWNTFVENRERTFKAWEGLHENSVRLTRQLRRILLPLYEVDDLRDAFRMLGE


(underline: nuclear localization signal; double underline: nuclear export signal)





Dog AID


(SEQ ID NO: 272)





embedded image





LDPGRCYRVTWFTSWSPCYDCARHVADFLRGYPNLSLRIFAARLYFCEDRKAEPEGLRRLHRAGVQIAIMT


FKDYFYCWNTFVENREKTFKAWEGLHENSVRLSRQLRRILLPLYEVDDLRDAFRTLGL


(underline: nuclear localization signal; double underline: nuclear export signal)





Bovine AID


(SEQ ID NO: 273)





embedded image





LDPGRCYRVTWFTSWSPCYDCARHVADFLRGYPNLSLRIFTARLYFCDKERKAEPEGLRRLHRAGVQIAIM




embedded image




(underline: nuclear localization signal; double underline: nuclear export signal)





Rat AID


(SEQ ID NO: 2483)



MAVGSKPKAALVGPHWERERIWCFLCSTGLGTQQTGQTSRWLRPAATQDPVSPPRSLLMKQRKFLYHFK



NVRWAKGRHETYLCYVVKRRDSATSFSLDFGYLRNKSGCHVELLFLRYISDWDLDPGRCYRVTWFTSWS


PCYDCARHVADFLRGNPNLSLRIFTARLTGWGALPAGLMSPARPSDYFYCWNTFVENHERTFKAWEGLHE


NSVRLSRRLRRILLPLYEVDDLRDAFRTLGL





Mouse APOBEC-3


(SEQ ID NO: 274)



MGPFCLGCSHRKCYSPIRNLISQETFKFHFKNLGYAKGRKDTFLCYEVTRKDCDSPVSLHHGVFKNKDNIH




AEICFLYWFHDKVLKVLSPREEFKITWYMSWSPCFECAEQIVRFLATHHNLSLDIFSSRLYNVQDPETQQNLCR



LVQEGAQVAAMDLYEFKKCWKKFVDNGGRRFRPWKRLLTNFRYQDSKLQEILRPCYIPVPSSSSSTLSNIC


LTKGLPETRFCVEGRRMDPLSEEEFYSQFYNQRVKHLCYYHRMKPYLCYQLEQFNGQAPLKGCLLSEKGK


QHAEILFLDKIRSMELSQVTITCYLTWSPCPNCAWQLAAFKRDRPDLILHIYTSRLYFHWKRPFQKGLCSLWQ


SGILVDVMDLPQFTDCWTNFVNPKRPFWPWKGLEIISRRTQRRLRRIKESWGLQDLVNDFGNLQLGPPMS


(italic: nucleic acid editing domain)





Rat APOBEC-3


(SEQ ID NO: 275)



MGPFCLGCSHRKCYSPIRNLISQETFKFHFKNLRYAIDRKDTFLCYEVTRKDCDSPVSLHHGVFKNKDNIHA




EICFLYWFHDKVLKVLSPREEFKITWYMSWSPCFECAEQVLRFLATHHNLSLDIFSSRLYNIRDPENQQNLCRL



VQEGAQVAAMDLYEFKKCWKKFVDNGGRRFRPWKKLLTNFRYQDSKLQEILRPCYIPVPSSSSSTLSNICL


TKGLPETRFCVERRRVHLLSEEEFYSQFYNQRVKHLCYYHGVKPYLCYQLEQFNGQAPLKGCLLSEKGKQ



HAEILFLDKIRSMELSQVIITCYLTWSPCPNCAWQLAAFKRDRPDLILHIYTSRLYFHWKRPFQKGLCSLWQSG



ILVDVMDLPQFTDCWTNFVNPKRPFWPWKGLEISRRTQRRLHRIKESWGLQDLVNDFGNLQLGPPMS


(italic: nucleic acid editing domain)





Rhesus macaque APOBEC-3G


(SEQ ID NO: 276)





embedded image






RQLHHDQEYKVTWYVSWSPCTRCANSVATFLAKDPKVTLTIFVARLYYFWKPDYQQALRILCQKRGGPHAT



MKIMNYNEFQDCWNKFVDGRGKPFKPRNNLPKHYTLLQATLGELLRHLMDPGTFTSNFNNKPWVSGQHE


TYLCYKVERLHNDTWVPLNQHRGFLRNQAPNIHGFPKGRHAELCFLDLIPFWKLDGQQYRVTCFTSWSPCFS



CAQEMAKFISNNEHVSLCIFAARIYDDQGRYQEGLRALHRDGAKIAMMNYSEFEYCWDTFVDRQGRPFQP



WDGLDEHSQALSGRLRAI (italic: nucleic acid editing domain; underline: cytoplasmic


localization signal)





Chimpanzee APOBEC-3G


(SEQ ID NO: 277)




MKPHERNPVERMYQDTESDNFYNRPILSHRNTVWLCYEVKTKGPSRPPLDAKIERGQVYSKLKYHPEMRF





FHWFSKWRKLHRDQEYEVTWYISWSPCTKCTRDVATFLAEDPKVTLTIFVARLYYFWDPDYQEALRSLCQKR



DGPRATMKIMNYDEFQHCWSKFVYSQRELFEPWNNLPKYYILLHIMLGEILRHSMDPPTFTSNENNELWVR


GRHETYLCYEVERLHNDTWVLLNQRRGFLCNQAPHKHGFLEGRHAELCFLDVIPFWKLDLHQDYRVTCFTS



WSPCFSCAQEMAKFISNNKHVSLCIFAARIYDDQGRCQEGLRTLAKAGAKISIMTYSEFKHCWDTFVDHQG



CPFQPWDGLEEHSQALSGRLRAILQNQGN (italic: nucleic acid editing domain; underline:


cytoplasmic localization signal)





Green monkey APOBEC-3G


(SEQ ID NO: 278)




MNPQIRNMVEQMEPDIFVYYENNRPILSGRNTVWLCYEVKTKDPSGPPLDANIFQGKLYPEAKDHPEMKEL





HWFRKWRQLHRDQEYEVTWYVSWSPCTRCANSVATFLAEDPKVTLTIFVARLYYFWKPDYQQALRILCQER



GGPHATMKIMNYNEFQHCWNEFVDGQGKPFKPRKNLPKHYTLLHATLGELLRHVMDPGTFTSNFNNKPW


VSGQRETYLCYKVERSHNDTWVLLNQHRGFLRNQAPDRHGFPKGRHAELCFLDLIPFWKLDDQQYRVTCFT



SWSPCFSCAQKMAKFISNNKHVSLCIFAARIYDDQGRCQEGLRTLHRDGAKIAVMNYSEFEYCWDTFVDR



QGRPFQPWDGLDEHSQALSGRLRAI (italic: nucleic acid editing domain; underline:


cytoplasmic localization signal)





Human APOBEC-3G


(SEQ ID NO: 279)





embedded image






HWFSKWRKLHRDQEYEVTWYISWSPCTKCTRDMATFLAEDPKVTLTIFVARLYYFWDPDYQEALRSLCQKR



DGPRATMKIMNYDEFQHCWSKFVYSQRELFEPWNNLPKYYILLHIMLGEILRHSMDPPTFTFNFNNEPWVR


GRHETYLCYEVERMHNDTWVLLNQRRGFLCNQAPHKHGFLEGRHAELCFLDVIPFWKLDLDQDYRVTCFTS



WSPCFSCAQEMAKFISKNKHVSLCIFTARIYDDQGRCQEGLRTLAEAGAKISIMTYSEFKHCWDTFVDHQG



CPFQPWDGLDEHSQDLSGRLRAILQNQEN (italic: nucleic acid editing domain; underline:


cytoplasmic localization signal)





Human APOBEC-3F


(SEQ ID NO: 280)



MKPHFRNTVERMYRDTFSYNFYNRPILSRRNTVWLCYEVKTKGPSRPRLDAKIFRGQVYSQPEHHAEMCFL




SWFCGNQLPAYKCFQITWFVSWTPCPDCVAKLAEFLAEHPNVTLTISAARLYYYWERDYRRALCRLSQAGA



RVKIMDDEEFAYCWENFVYSEGQPFMPWYKFDDNYAFLHRTLKEILRNPMEAMYPHIFYFHFKNLRKAY


GRNESWLCFTMEVVKHHSPVSWKRGVFRNQVDPETHCHAERCFLSWFCDDILSPNTNYEVTWYTSWSPCPE



CAGEVAEFLARHSNVNLTIFTARLYYFWDTDYQEGLRSLSQEGASVEIMGYKDFKYCWENFVYNDDEPFK



PWKGLKYNFLFLDSKLQEILE (italic: nucleic acid editing domain)





Human APOBEC-3B


(SEQ ID NO: 281)



MNPQIRNPMERMYRDTFYDNFENEPILYGRSYTWLCYEVKIKRGRSNLLWDTGVFRGQVYFKPQYHAEM




CFLSWFCGNQLPAYKCFQITWFVSWTPCPDCVAKLAEFLSEHPNVTLTISAARLYYYWERDYRRALCRLSQA



GARVTIMDYEEFAYCWENFVYNEGQQFMPWYKEDENYAFLHRTLKEILRYLMDPDTFTFNENNDPLVLRR


RQTYLCYEVERLDNGTWVLMDQHMGFLCNEAKNLLCGFYGRHAELRFLDLVPSLQLDPAQIYRVTWFISWS



PCFSWGCAGEVRAFLQENTHVRLRIFAARIYDYDPLYKEALQMLRDAGAQVSIMTYDEFEYCWDTFVYRQ



GCPFQPWDGLEEHSQALSGRLRAILQNQGN (italic: nucleic acid editing domain)





Rat APOBEC-3B:


(SEQ ID NO: 2484)



MQPQGLGPNAGMGPVCLGCSHRRPYSPIRNPLKKLYQQTFYFHFKNVRYAWGRKNNFLCYEVNGMDCAL



PVPLRQGVFRKQGHIHAELCFIYWFHDKVLRVLSPMEEFKVTWYMSWSPCSKCAEQVARFLAAHRNLSLA


IFSSRLYYYLRNPNYQQKLCRLIQEGVHVAAMDLPEFKKCWNKFVDNDGQPFRPWMRLRINESFYDCKLQ


EIFSRMNLLREDVFYLQFNNSHRVKPVQNRYYRRKSYLCYQLERANGQEPLKGYLLYKKGEQHVEILFLE


KMRSMELSQVRITCYLTWSPCPNCARQLAAFKKDHPDLILRIYTSRLYFYWRKKFQKGLCTLWRSGIHVD


VMDLPQFADCWTNFVNPQRPFRPWNELEKNSWRIQRRLRRIKESWGL





Bovine APOBEC-3B:


(SEQ ID NO: 2485)



DGWEVAFRSGTVLKAGVLGVSMTEGWAGSGHPGQGACVWTPGTRNTMNLLREVLFKQQFGNQPRVPAP



YYRRKTYLCYQLKQRNDLTLDRGCFRNKKQRHAEIRFIDKINSLDLNPSQSYKIICYITWSPCPNCANELVN


FITRNNHLKLEIFASRLYFHWIKSFKMGLQDLQNAGISVAVMTHTEFEDCWEQFVDNQSRPFQPWDKLEQY


SASIRRRLQRILTAPI





Chimpanzee APOBEC-3B:


(SEQ ID NO: 2486)



MNPQIRNPMEWMYQRTFYYNFENEPILYGRSYTWLCYEVKIRRGHSNLLWDTGVFRGQMYSQPEHHAEM



CFLSWFCGNQLSAYKCFQITWFVSWTPCPDCVAKLAKFLAEHPNVTLTISAARLYYYWERDYRRALCRLS


QAGARVKIMDDEEFAYCWENFVYNEGQPFMPWYKFDDNYAFLHRTLKEHRHLMDPDTFTENENNDPLVL


RRHQTYLCYEVERLDNGTWVLMDQHMGFLCNEAKNLLCGFYGRHAELRELDLVPSLQLDPAQIYRVTWF


ISWSPCFSWGCAGQVRAFLQENTHVRLRIFAARIYDYDPLYKEALQMLRDAGAQVSIMTYDEFEYCWDTF


VYRQGCPFQPWDGLEEHSQALSGRLRAILQVRASSLCMVPHRPPPPPQSPGPCLPLCSEPPLGSLLPTGRPAP


SLPFLLTASFSFPPPASLPPLPSLSLSPGHLPVPSFHSLTSCSIQPPCSSRIRETEGWASVSKEGRDLG





Human APOBEC-3C:


(SEQ ID NO: 282)



MNPQIRNPMKAMYPGTFYFQFKNLWEANDRNETWLCFTVEGIKRRSVVSWKTGVFRNQVDSETHCHAER




CFLSWFCDDILSPNTKYQVTWYTSWSPCPDCAGEVAEFLARHSNVNLTIFTARLYYFQYPCYQEGLRSLSQEG



VAVEIMDYEDFKYCWENFVYNDNEPFKPWKGLKTNFRLLKRRLRESLQ (italic: nucleic


acid editing domain)





Gorilla APOBEC3C:


(SEQ ID NO: 2487)



MNPQIRNPMKAMYPGTFYFQFKNLWEANDRNETWLCFTVEGIKRRSVVSWKTGVFRNQVDSETHCHAER



CFLSWFCDDILSPNTNYQVTWYTSWSPCPECAGEVAEFLARHSNVNLTIFTARLYYFQDTDYQEGLRSLSQ


EGVAVKIMDYKDFKYCWENFVYNDDEPFKPWKGLKYNFRFLKRRLQEILE





Human APOBEC-3A:


(SEQ ID NO: 283)



MEASPASGPRHLMDPHIFTSNFNNGIGRHKTYLCYEVERLDNGTSVKMDQHRGFLHNQAKNLLCGFYGRH




AELRFLDLVPSLQLDPAQIYRVTWFISWSPCFSWGCAGEVRAFLQENTHVRLRIFAARIYDYDPLYKEALQML



RDAGAQVSIMTYDEFKHCWDTFVDHQGCPFQPWDGLDEHSQALSGRLRAILQNQGN


(italic: nucleic acid editing domain)





Rhesus macaque APOBEC-3A:


(SEQ ID NO: 2488)



MDGSPASRPRHLMDPNTFTFNENNDLSVRGRHQTYLCYEVERLDNGTWVPMDERRGFLCNKAKNVPCGD



YGCHVELRFLCEVPSWQLDPAQTYRVTWFISWSPCFRRGCAGQVRVFLQENKHVRLRIFAARIYDYDPLY


QEALRTLRDAGAQVSIMTYEEFKHCWDTFVDRQGRPFQPWDGLDEHSQALSGRLRAILQNQGN





Bovine APOBEC-3A:


(SEQ ID NO: 2489)



MDEYTFTENFNNQGWPSKTYLCYEMERLDGDATIPLDEYKGFVRNKGLDQPEKPCHAELYFLGKIHSWNL



DRNQHYRLTCFISWSPCYDCAQKLTTFLKENHHISLHILASRIYTHNRFGCHQSGLCELQAAGARITIMTFED


FKHCWETFVDHKGKPFQPWEGLNVKSQALCTELQAILKTQQN





Human APOBEC-3H:


(SEQ ID NO: 284)



MALLTAETFRLQFNNKRRLRRPYYPRKALLCYQLTPQNGSTPTRGYFENKKKCHAEICFINEIKSMGLDETQ




CYQVTCYLTWSPCSSCAWELVDFIKAHDHLNLGIFASRLYYHWCKPQQKGLRLLCGSQVPVEVMGFPKFAD



CWENFVDHEKPLSFNPYKMLEELDKNSRAIKRRLERIKIPGVRAQGRYMDILCDAEV


(italic: nucleic acid editing domain)





Rhesus macaque APOBEC-3H:


(SEQ ID NO: 2490)



MALLTAKTFSLQFNNKRRVNKPYYPRKALLCYQLTPQNGSTPTRGHLKNKKKDHAEIRFINKIKSMGLDET



QCYQVTCYLTWSPCPSCAGELVDFIKAHRHLNLRIFASRLYYHWRPNYQEGLLLLCGSQVPVEVMGLPEFT


DCWENFVDHKEPPSFNPSEKLEELDKNSQAIKRRLERIKSRSVDVLENGLRSLQLGPVTPSSSIRNSR





Human APOBEC-3D


(SEQ ID NO: 285)



MNPQIRNPMERMYRDTFYDNFENEPILYGRSYTWLCYEVKIKRGRSNLLWDTGVFRGPVLPKRQSNHRQE



VYFRFENHAEMCFLSWFCGNRLPANRRFQITWFVSWNPCLPCVVKVTKFLAEHPNVTLTISAARLYYYRDRD


WRWVLLRLHKAGARVKIMDYEDFAYCWENFVCNEGQPFMPWYKFDDNYASLHRTLKEILRNPMEAMYP


HIFYFHFKNLLKACGRNESWLCFTMEVTKHHSAVFRKRGVFRNQVDPETHCHAERCFLSWFCDDILSPNTN



YEVTWYTSWSPCPECAGEVAEFLARHSNVNLTIFTARLCYFWDTDYQEGLCSLSQEGASVKIMGYKDFVSC



WKNFVYSDDEPFKPWKGLQTNFRLLKRRLREILQ (italic: nucleic acid editing domain)





Human APOBEC-1


(SEQ ID NO: 286)



MTSEKGPSTGDPTLRRRIEPWEFDVFYDPRELRKEACLLYEIKWGMSRKIWRSSGKNTTNHVEVNFIKKFTS



ERDFHPSMSCSITWFLSWSPCWECSQAIREFLSRHPGVTLVIYVARLFWHMDQQNRQGLRDLVNSGVTIQI


MRASEYYHCWRNFVNYPPGDEAHWPQYPPLWMMLYALELHCIILSLPPCLKISRRWQNHLTFFRLHLQNC


HYQTIPPHILLATGLIHPSVAWR





Mouse APOBEC-1


(SEQ ID NO: 287)



MSSETGPVAVDPTLRRRIEPHEFEVFFDPRELRKETCLLYEINWGGRHSVWRHTSQNTSNHVEVNFLEKFTT



ERYFRPNTRCSITWFLSWSPCGECSRAITEFLSRHPYVTLFIYIARLYHHTDQRNRQGLRDLISSGVTIQIMTE


QEYCYCWRNFVNYPPSNEAYWPRYPHLWVKLYVLELYCHILGLPPCLKILRRKQPQLTFFTITLQTCHYQRI


PPHLLWATGLK





Rat APOBEC-1


(SEQ ID NO: 288)



MSSETGPVAVDPTLRRRIEPHEFEVFFDPRELRKETCLLYEINWGGRHSIWRHTSQNTNKHVEVNFIEKFTTE



RYFCPNTRCSITWFLSWSPCGECSRAITEFLSRYPHVTLFIYIARLYHHADPRNRQGLRDLISSGVTIQIMTEQ


ESGYCWRNFVNYSPSNEAHWPRYPHLWVRLYVLELYCULGLPPCLNILRRKQPQLTFFTIALQSCHYQRLP


PHILWATGLK





Human APOBEC-2:


(SEQ ID NO: 2491)



MAQKEEAAVATEAASQNGEDLENLDDPEKLKELIELPPFEIVTGERLPANFFKFQFRNVEYSSGRNKTFLCY



VVEAQGKGGQVQASRGYLEDEHAAAHAEEAFFNTILPAFDPALRYNVTWYVSSSPCAACADRIIKTLSKTK


NLRLLILVGRLFMWEEPEIQAALKKLKEAGCKLRIMKPQDFEYVWQNFVEQEEGESKAFQPWEDIQENFLY


YEEKLADILK





Mouse APOBEC-2:


(SEQ ID NO: 2492)



MAQKEEAAEAAAPASQNGDDLENLEDPEKLKELIDLPPFEIVTGVRLPVNFFKFQFRNVEYSSGRNKTFLC



YVVEVQSKGGQAQATQGYLEDEHAGAHAEEAFFNTILPAFDPALKYNVTWYVSSSPCAACADRILKTLSK


TKNLRLLILVSRLFMWEEPEVQAALKKLKEAGCKLRIMKPQDFEYIWQNFVEQEEGESKAFEPWEDIQENF


LYYEEKLADILK





Rat APOBEC-2:


(SEQ ID NO: 2493)



MAQKEEAAEAAAPASQNGDDLENLEDPEKLKELIDLPPFEIVTGVRLPVNFFKFQFRNVEYSSGRNKTFLC



YVVEAQSKGGQVQATQGYLEDEHAGAHABEAFFNTILPAFDPALKYNVTWYVSSSPCAACADRILKTLSK


TKNLRLLILVSRLFMWEEPEVQAALKKLKEAGCKLRIMKPQDFEYLWQNFVEQEEGESKAFEPWEDIQENF


LYYEEKLADILK





Bovine APOBEC-2:


(SEQ ID NO: 2494)



MAQKEEAAAAAEPASQNGEEVENLEDPEKLKELIELPPFEIVTGERLPAHYFKFQFRNVEYSSGRNKTFLCY



VVEAQSKGGQVQASRGYLEDEHATNHAREAFFNSIMPTFDPALRYMVTWYVSSSPCAACADRIVKTLNKT


KNLRLLILVGRLFMWEEPEIQAALRKLKEAGCRLRIMKPQDFEYIWQNFVEQEEGESKAFEPWEDIQENEL


YYEEKLADILK





Petromyzon marinus CDA1 (pmCDA1)


(SEQ ID NO: 289)



MTDAEYVRIHEKLDIYTFKKQFFNNKKSVSHRCYVLFELKRRGERRACFWGYAVNKPQSGTERGIHAEIFSI



RKVEEYLRDNPGQFTINWYSSWSPCADCAEKILEWYNQELRGNGHTLKIWACKLYYEKNARNQIGLWNL


RDNGVGLNVMVSEHYQCCRKIFIQSSHNQLNENRWLEKTLKRAEKRRSELSIMIQVKILHTTKSPAV





Human APOBEC3G D316R_D317R


(SEQ ID NO: 290)



MKPHFRNTVERMYRDTFSYNFYNRPILSRRNTVWLCYEVKTKGPSRPPLDAKIFRGQVYSELKYHPEMRFF



HWFSKWRKLHRDQEYEVTWYISWSPCTKCTRDMATFLAEDPKVTLTIFVARLYYFWDPDYQEALRSLCQ


KRDGPRATMKIMNYDEFQHCWSKFVYSQRELFEPWNNLPKYYILLHIMLGEILRHSMDPPTFTFNENNEPW


VRGRHETYLCYEVERMHNDTWVLLNQRRGFLCNQAPHKHGFLEGRHAELCFLDVIPFWKLDLDQDYRVT


CFTSWSPCFSCAQEMAKFISKNKHVSLCIFTARIYRRQGRCQEGLRTLAEAGAKISIMTYSEFKHCWDTFVD


HQGCPFQPWDGLDEHSQDLSGRLRAILQNQEN 





Human APOBEC3G chain A


(SEQ ID NO: 291)



MDPPTFTFNFNNEPWVRGRHETYLCYEVERMHNDTWVLLNQRRGFLCNQAPHKHGFLEGRHAELCFLDV



IPFWKLDLDQDYRVTCFTSWSPCFSCAQEMAKFISKNKHVSLCIFTARIYDDQGRCQEGLRTLAEAGAKISI


MTYSEFKHCWDTFVDHQGCPFQPWDGLDEHSQDLSGRLRAILQ





Human APOBEC3G chain A D120R_D121R


(SEQ ID NO: 292)



MDPPTFTFNFNNEPWVRGRHETYLCYEVERMHNDTWVLLNQRRGFLCNQAPHKHGFLEGRHAELCFLDV



IPFWKLDLDQDYRVTCFTSWSPCFSCAQEMAKFISKNKHVSLCIFTARIYRRQGRCQEGLRTLAEAGAKISI


MTYSEFKHCWDTFVDHQGCPFQPWDGLDEHSQDLSGRLRAILQ






Non-limiting examples of fusion proteins/nucleobase editors are provided.










His6-rAPOBEC1-XTEN-dCas9 for Escherichia coli expression



(SEQ ID NO: 293)



MGSSHHHHHHMSSETGPVAVDPTLRRRIEPHEFEVFFDPRELRKETCLLYEINWGGRHSIWRHTSQNTNKH






VEVNFIEKFTTERYFCPNTRCSITWFLSWSPCGECSRAITEFLSRYPHVTLFIYIARLYHHADPRNRQGLRDLI





SSGVTIQIMTEQESGYCWRNFVNYSPSNEAHWPRYPHLWVRLYVLELYCIILGLPPCLNILRRKQPQLTFFTI





ALQSCHYQRLPPHILWATGLKSGSETPGTSESATPESDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLG





NTDRHSIKKNLIGALLFDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVE





EDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSD





VDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLEGNLIALSLGLTPNEK





SNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRY





DEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNRE





DLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKS





EETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFL





SGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEEN





EDILEDIVLTLTLFEDREMIEERLKTYAHLEDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLK





SDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRH





KPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVD





QELDINRLSDYDVDAIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQR





KFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFR





KDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYF





FYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESI





LPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDF





LEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDN





EQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFK





YFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDSGGSPKKKRKV





rAPOBEC1-XTEN-dCas9-NLS for mammalian expression


(SEQ ID NO: 294)



MSSETGPVAVDPTLRRRIEPHEFEVFFDPRELRKETCLLYEINWGGRHSIWRHTSQNTNKHVEVNFIEKFTT






ERYFCPNTRCSITWFLSWSPCGECSRAITEFLSRYPHVTLFIYIARLYHHADPRNRQGLRDLISSGVTIQIMTE





QESGYCWRNFVNYSPSNEAHWPRYPHLWVRLYVLELYCIILGLPPCLNILRRKQPQLTFFTIALQSCHYQRL





PPHILWATGLKSGSETPGTSESATPESDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKN





LIGALLFDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESELVEEDKKHERHPIF





GNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQT





YNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKL





QLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLK





ALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDN





GSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEV





VDKGASAQSFIERMTNEDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDL





LFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLT





LFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFM





QLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVIEMARE





NQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDY





DVDAIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERG





GLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREI





NNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKT





EITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIA





RKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVK





KDLIIKLPKYSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQH





KHYLDEHEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYEDTTIDRKRY





TSTKEVLDATLIHQSITGLYETRIDLSQLGGDSGGSPKKKRKV





hAPOBEC1-XTEN-dCas9-NLS for mammalian expression


(SEQ ID NO: 295)



MTSEKGPSTGDPTLRRRIEPWEFDVFYDPRELRKEACLLYEIKWGMSRKIWRSSGKNTTNHVEVNFIKKFTS






ERDFHPSMSCSITWFLSWSPCWECSQAIREFLSRHPGVTLVIYVARLFWHMDQQNRQGLRDLVNSGVTIQI





MRASEYYHCWRNFVNYPPGDEAHWPQYPPLWMMLYALELHCIILSLPPCLKISRRWQNHLTFFRLHLQNC





HYQTIPPHILLATGLIHPSVAWRSGSETPGTSESATPESDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVL





GNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLV





EEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKERGHFLIEGDLNPDNS





DVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNF





KSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKR





YDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNR





EDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRK





SEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAF





LSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRENASLGTYHDLLKIIKDKDFLDNEE





NEDILEDIVLTLTLFEDREMIEERLKTYAHLEDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFL





KSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGR





HKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYV





DQELDINRLSDYDVDAIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQ





RKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDF





RKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAK





YFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSK





ESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPI





DFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPE





DNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAA





FKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDSGGSPKKKRKV





rAPOBEC1-XTEN-dCas9-UGI-NLS


(SEQ ID NO: 296)



MSSETGPVAVDPTLRRRIEPHEFEVFFDPRELRKETCLLYEINWGGRHSIWRHTSQNTNKHVEVNFIEKFTT






ERYFCPNTRCSITWFLSWSPCGECSRAITEFLSRYPHVTLFIYIARLYHHADPRNRQGLRDLISSGVTIQIMTE





QESGYCWRNFVNYSPSNEAHWPRYPHLWVRLYVLELYCIILGLPPCLNILRRKQPQLTFFTIALQSCHYQRL





PPHILWATGLKSGSETPGTSESATPESDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKN





LIGALLFDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIF





GNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQT





YNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKL





QLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLK





ALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDN





GSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEV





VDKGASAQSFIERMTNEDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDL





LFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRENASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLT





LFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNEM





QLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVIEMARE





NQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDY





DVDAIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERG





GLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREI





NNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKT





EITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIA





RKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVK





KDLIIKLPKYSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQH





KHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRY





TSTKEVLDATLIHQSITGLYETRIDLSQLGGDSGGSTNLSDIIEKETGKQLVIQESILMLPEEVEEVIGNKPESD





ILVHTAYDESTDENVMLLTSDAPEYKPWALVIQDSNGENKIKMLSGGSPKKKRKV





rAPOBEC1-XTEN-Cas9 nickase-UGI-NLS


(BE3, SEQ ID NO: 297)



MSSETGPVAVDPTLRRRIEPHEFEVFFDPRELRKETCLLYEINWGGRHSIWRHTSQNTNKHVEVNFIEKFTT






ERYFCPNTRCSITWFLSWSPCGECSRAITEFLSRYPHVTLFIYIARLYHHADPRNRQGLRDLISSGVTIQIMTE





QESGYCWRNFVNYSPSNEAHWPRYPHLWVRLYVLELYCIILGLPPCLNILRRKQPQLTFFTIALQSCHYQRL





PPHILWATGLKSGSETPGTSESATPESDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKN





LIGALLFDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIF





GNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQT





YNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNEDLAEDAKL





QLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLK





ALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTEDN





GSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEV





VDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDL





LFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDELDNEENEDILEDIVLTITL





FEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQ





LIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVIEMAREN





QTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYD





VDHIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKEDNLTKAERGG





LSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREIN





NYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTE





ITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIAR





KKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKK





DLIIKLPKYSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHK





HYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYT





STKEVLDATLIHQSITGLYETRIDLSQLGGDSGGSTNLSDIIEKETGKQLVIQESILMLPEEVEEVIGNKPESDI





LVHTAYDESTDENVMLLTSDAPEYKPWALVIQDSNGENKIKMLSGGSPKKKRKV





pmCDA1-XTEN-dCas9-UGI (bacteria)


(SEQ ID NO: 298)



MTDAEYVRIHEKLDIYTFKKQFFNNKKSVSHRCYVLFELKRRGERRACFWGYAVNKPQSGTERGIHAEIFSI






RKVEEYLRDNPGQFTINWYSSWSPCADCAEKILEWYNQELRGNGHTLKIWACKLYYEKNARNQIGLWNL





RDNGVGLNVMVSEHYQCCRKIFIQSSHNQLNENRWLEKTLKRAEKRRSELSIMIQVKILHTTKSPAVSGSET





PGTSESATPESDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEAT





RLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPT





IYHLRKKLVDSTDKADLRLIYLALAHMIKERGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGV





DAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNL





LAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEI





FFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAIL





RRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERM





TNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLK





EDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTY





AHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQK





AQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRER





MKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDAIVPQSFLKDDSI





DNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQL





VETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDERKDFQFYKVREINNYHHAHDAYLNAV





VGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIET





NGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFD





SPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELEN





GRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKR





VILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSI





TGLYETRIDLSQLGGDSGGSMTNLSDIIEKETGKQLVIQESILMLPEEVEEVIGNKPESDILVHTAYDESTDEN





VMLLTSDAPEYKPWALVIQDSNGENKIKML





pmCDA1-XTEN-nCas9-UGI-NLS (mammalian construct)


(SEQ ID NO: 299)



MTDAEYVRIHEKLDIYTFKKQFFNNKKSVSHRCYVLFELKRRGERRACFWGYAVNKPQSGTERGIHAEIFSI






RKVEEYLRDNPGQFTINWYSSWSPCADCAEKILEWYNQELRGNGHTLKIWACKLYYEKNARNQIGLWNL





RDNGVGLNVMVSEHYQCCRKIFIQSSHNQLNENRWLEKTLKRAEKRRSELSIMIQVKILHTTKSPAVSGSET





PGTSESATPESDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEAT





RLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPT





IYHLRKKLVDSTDKADLRLIYLALAHMIKERGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGV





DAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNL





LAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEI





FFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAIL





RRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERM





TNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLK





EDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTY





AHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQK





AQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRER





MKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDDSI





DNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQL





VETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAV





VGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIET





NGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFD





SPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELEN





GRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKR





VILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSI





TGLYETRIDLSQLGGDSGGSTNLSDIIEKETGKQLVIQESILMLPEEVEEVIGNKPESDILVHTAYDESTDENV





MLLTSDAPEYKPWALVIQDSNGENKIKMLSGGSPKKKRKV





huAPOBEC3G-XTEN-dCas9-UGI (bacteria)


(SEQ ID NO: 300)



MDPPTFTFNFNNEPWVRGRHETYLCYEVERMHNDTWVLLNQRRGFLCNQAPHKHGFLEGRHAELCFLDV






IPFWKLDLDQDYRVTCFTSWSPCFSCAQEMAKFISKNKHVSLCIFTARIYDDQGRCQEGLRTLAEAGAKISI





MTYSEFKHCWDTFVDHQGCPFQPWDGLDEHSQDLSGRLRAILQSGSETPGTSESATPESDKKYSIGLAIGTN





SVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRRYTRRKNRICYLQEIF





SNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLAL





AHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPG





EKKNGLFGNLIALSLGLTPNFKSNEDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILL





SDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYK





FIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIP





YYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFT





VYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRENAS





LGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGR





LSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIK





KGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQ





LQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDAIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEV





VKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDE





NDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKV





YDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIEINGETGEIVWDKGRDFATVRKVL





SMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKL





KSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNELALPS





KYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPI





REQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDSGGSMTN





LSDIIEKETGKQLVIQESILMLPEEVEEVIGNKPESDILVHTAYDESTDENVMLLTSDAPEYKPWALVIQDSN





GENKIKML





huAPOBEC3G-XTEN-nCas9-UGI-NLS (mammalian construct)


(SEQ ID NO: 301)



MDPPTFTFNENNEPWVRGRHETYLCYEVERMHNDTWVLLNQRRGFLCNQAPHKHGFLEGRHAELCFLDV






IPFWKLDLDQDYRVTCFTSWSPCFSCAQEMAKFISKNKHVSLCIFTARIYDDQGRCQEGLRTLAEAGAKISI





MTYSEFKHCWDTFVDHQGCPFQPWDGLDEHSQDLSGRLRAILQSGSETPGTSESATPESDKKYSIGLAIGTN





SVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLEDSGETAEATRLKRTARRRYTRRKNRICYLQEIF





SNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLAL





AHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPG





EKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILL





SDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYK





FIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIP





YYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFT





VYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRENAS





LGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGR





LSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIK





KGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQ





LQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEV





VKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDE





NDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKV





YDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVL





SMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKL





KSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNELALPS





KYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPI





REQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDSGGSTNLS





DIIEKETGKQLVIQESILMLPEEVEEVIGNKPESDILVHTAYDESTDENVMLLTSDAPEYKPWALVIQDSNGE





NKIKMLSGGSPKKKRKV





huAPOBEC3G (D316R_D317R)-XTEN-nCas9-UGI-NLS (mammalian construct)


(SEQ ID NO: 302)



MDPPTFTFNFNNEPWVRGRHETYLCYEVERMHNDTWVLLNQRRGFLCNQAPHKHGFLEGRHAELCFLDV






IPFWKLDLDQDYRVTCFTSWSPCFSCAQEMAKFISKNKHVSLCIFTARIYRRQGRCQEGLRTLAEAGAKISI





MTYSEFKHCWDTFVDHQGCPFQPWDGLDEHSQDLSGRLRAILQSGSETPGTSESATPESDKKYSIGLAIGTN





SVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLEDSGETAEATRLKRTARRRYTRRKNRICYLQEIF





SNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLAL





AHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPG





EKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILL





SDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYK





FIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIP





YYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFT





VYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRENAS





LGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLEDDKVMKQLKRRRYTGWGR





LSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIK





KGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQ





LQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEV





VKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDE





NDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKV





YDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVL





SMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKL





KSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNELALPS





KYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPI





REQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDSGGSTNLS





DIIEKETGKQLVIQESILMLPEEVEEVIGNKPESDILVHTAYDESTDENVMLLTSDAPEYKPWALVIQDSNGE





NKIKMLSGGSPKKKRKV





Base Editor 4 (BE4; APOBEC1-linker(32 aa)-Cas9n(D10A)-linker(9 aa)-


UGI-linker(9 aa)-UGI)


(SEQ ID NO: 2495)



MSSETGPVAVDPTLRRRIEPHEFEVFFDPRELRKETCLLYEINWGGRHSIWRHTSQNTNKHVEVNFIEKFTT






ERYFCPNTRCSITWFLSWSPCGECSRAITEFLSRYPHVTLFIYIARLYHHADPRNRQGLRDLISSGVTIQIMTE





QESGYCWRNFVNYSPSNEAHWPRYPHLWVRLYVLELYCIILGLPPCLNILRRKQPQLTFFTIALQSCHYQRL





PPHILWATGLKSGGSSGGSSGSETPGTSESATPESSGGSSGGSDKKYSIGLAIGTNSVGWAVITDEYKVPSKK





FKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEE





SFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLN





PDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGL





TPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSAS





MIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLV





KLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAW





MTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGM





RKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDF





LDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGK





TILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVK





VMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGR





DMYVDQELDINRLSDYDVDHIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNA





KLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSK





LVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGK





ATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTG





GFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFE





KNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLK





GSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLG





APAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDSGGSGGSGGSTNLSDIIEKETGKQ





LVIQESILMLPEEVEEVIGNKPESDILVHTAYDESTDENVMLLTSDAPEYKPWALVIQDSNGENKIKMLSGG





SGGSGGSTNLSDIIEKETGKQLVIQESILMLPEEVEEVIGNKPESDILVHTAYDESTDENVMLLTSDAPEYKP





WALVIQDSNGENKIKMLSGGSPKKKRK






Example 2: CRISPR/Cas9 Genome/Base-Editing Methods for Modifying Ion Channels in Dorsal Root Ganglia (DRG)

Long-term chronic pain due to trauma and associated with advanced cancer remains an unmet medical need. Management of pain using painkillers is inherently limited by the development of tolerance, physiological dependence, progressive addiction, and potential for overdose. Current health policies in response to the massive demand for painkillers (˜80-100 million patients/year in the US) have led to extensive prescription of opioids, inadvertently contributing to broader public challenges associated with substance abuse and drug-related crime. Fundamentally, there is a pressing need for an innovative solution to address chronic pain that is non-addictive, generalizable, and permanent.


A normal physiological outcome of trauma, inflammation, and nerve injury is the induction of gene expression changes in neighboring nociceptive neurons during the period required for healing, for example by facilitating the firing of action potentials by neurons at a lower activation threshold. These gene expression changes underlie the sensations of hyperalgesia (increased pain sensitivity) and allodynia (pain following a normally innocuous stimulus). Chronic pain develops when the enhanced sensitization of sensory neurons becomes irreversibly established and becomes a persistent maladaptive condition. The functional specialization of sensory neurons is driven by the expression of dedicated ion channel genes that fine-tune the membrane polarization to trigger and propagate action potentials in response to stimuli (Table 12).1 Therefore, in simple terms the etiology of chronic pain can be described as the dysregulated expression of just a few genes in just a few neurons. However, to date, genetic treatments of chronic pain have not been successfully translated into human therapeutics.2,3


In general, the types of chronic pain that occur in most parts of the body and the extremities involve afferent neurons of the dorsal root ganglia (DRG), which reside in clusters of nerve cells near the spinal cord and have long axons extending towards the skin, muscles, and organs, etc. (FIG. 1).1,4 The mechanism of enhanced excitability involves voltage-gated ion channels and background/leak channels that set the resting membrane potential and firing threshold of DRG neurons (Table 12).1 Under normal conditions, chemical, mechanical, or thermal stimuli are required to activate receptors and ion channels in peripheral nerve endings to initiate action potentials that propagate along the axons of DRG neurons (FIG. 1). Finally, the dendritic termini of the DRG neurons liberate glutamate and substance-P at synapses in the spinal cord dorsal horn, activating second-order neurons that communicate pain signals to the brain.1


Described herein is a novel approach to address chronic pain by deploying various genome-editing agents to modify the genes responsible for propagation of pain signals in dysregulated DRG neurons, by selectively targeting the local nerve endings at the sites of pain using neuron-specific viral vectors (FIG. 2). The genome editing reactions described herein can be achieved by any of the major types of genome editing tools: (i) base-editors that catalyze chemical reactions on nucleobases (e.g., cytidine deaminase-Cas9 fusion5); (ii) programmable nucleases with DNA cutting activity (e.g., WT Cas9,6-8 paired Cas9 nickases9 or Fok1-nuclease-dCas9 fusions,10,11 or compatible analogs such as Cpf1,12 NgAgo,13 etc.); as well as (iii) TALENs, zinc-finger nucleases, etc.14,15 The best studied example of a neurotropic virus that has potential as a delivery vector for genome editing constructs is Herpes Simplex Virus 1 (HSV-1),16 which targets nerve endings in vivo and usurps retrograde axon transport to move the viral DNA up to the cell body of DRG neurons.17 Therefore, using a neurotropic virus as a delivery strategy enables genome editing treatments aimed at the sites of pain, despite the fact that the genetic material within the nuclei of DRG neurons is quite distant and indistinguishable from unrelated cells within each ganglion (FIG. 2).4 HSV-1 vectors have the additional advantage of packaging a large double-stranded DNA genome (>150 kbp),18 which can easily accommodate an expression construct for any programmable genome-editing enzyme (4-5 kbp),19 multiple guide-RNAs, and regulatory sequences. Constructs up to 30 to 40 kbp can be inserted by replacing non-essential genes of HSV-1,16 and alternatively a designed 100 kbp amplicon can be packaged into helper HSV-1 capsids.20 Examples of other potentially useful neurotropic viruses include the broader herpesviridae group,21 varicella-zoster, pseudorabies, cytomegalovirus. Epstein-Barr viruses, encephalitis viruses, polio, coxsackie, echo, mumps, measles, and rabies viruses.22,23


This genome editing treatment incorporates multiple design elements that achieve precise and selective targeting of genome editing agents to pain-causative neurons, arising from: 1) localized delivery of a non-replicative viral vector that requires synaptic terminals, sparing the bulk of somatic tissues near the pain site, 2) neuron-specific promoters that drive expression of the genome editing construct, and 3) guide-RNA programmed targeting of non-essential ion channel genes exclusively expressed by DRG neurons to spare other types of neurons (efferent neurons, interneurons, etc.). Safety can be further enhanced using high-specificity Cas9 nuclease variants9,10,24,25 and guide-RNAs without off-target matches in the human genome,26,27 as well as limiting the stability, activity, or expression of the construct, etc.28,29 By contrast, traditional pharmacological modulation of localized DRG neuron signaling would be challenging to achieve using small molecules or antibodies,30,31 because these spread systemically and must be optimized for selectivity among many similar ion channel isoforms.32 Therefore, such strategies are still in early development.33 Pharmacological analgesics and opioids act rapidly but reversibly, while genome editing is essentially permanent, therefore, standard medications may be co-administered over the period required for the delivery vector and the expression construct to take action.


Human DRG neurons constitutively express specific and specialized ion channels that have been implicated in afferent pain signaling,1 and fulfill the required criteria as targets for modulation of chronic pain conditions. Three sodium channels (NaV1.7, NaV1.8, and NaV1.9) are constitutively expressed in DRG neurons, and a fourth gene (NaV1.3) displays elevated expression after nerve injury (Table 12).1 Genetic evidence from spontaneous mutations of NaV1.7 (SCN9A) in humans.34-37 and animal models,38 strongly suggests that the phenotypic outcome of gene ablation, loss-of-function, destabilization of the transcript and/or protein folding will be the eradication of pain transmission.34-36 without compromising the normal function of the DRG neurons in triggering action potentials reaching a normal membrane depolarization threshold (FIG. 1). Disruption of SCN9A is only desirable at a localized level, because nociception is essentially a protective mechanism from overextension and deformation for our joints and muscles,34-36 and it is also necessary for our sense of smell.39 In the extreme, humans presenting homozygous SCN9A loss-of-function mutations present Congenital Insensitivity to Pain (CIP).34-36 Conversely, gain-of-function mutations in the sodium channels NaV1.7 (SCN9A) or NaV1.8 (SCN10A) cause congenital pain syndromes such as Primary Erythermalgia.37 Moreover, the SCN9A gene is also involved in itching.30,40


Guide sequences for programming the disruption of SCN9A gene using cytidine deaminase base-editors are shown in Tables 2, 4, and 6. Top scoring guide sequences are listed in Tables 7-9. Top-scoring guide-RNAs for Cas9 nuclease and paired nickases are shown in Table 10 and 11. Interestingly, gain-of-function mutations in the sodium channel NaV1.9 (SCN11A) are known to reduce pain transmission,38,41 which can be potentially replicated using cytosine deamination base-editors. These strategies can be extended to other ion channels expressed in DRG neurons (FIG. 3). Alternative target genes include the voltage-gated calcium channel CaV3.2 (CACNA1H),42 the calcium-activated chloride channel (ANO1),43,44 and the hyperpolarization-activated cation channels (HCN1 and HCN2) (Table 12).45,46 Moreover, these concepts can be further extended by implementing functional genomic screening of guide-RNA libraries in cell lines,47,48 towards the unbiased identification of new target genes and genomic locations that indirectly modulate the DRG neuron ion channels and other mechanisms.1


In conclusion, chronic pain could be permanently suppressed with unprecedented anatomical precision by genome editing treatment of a small number of DRG neurons, which are the root cause of the condition. This new treatment exploits numerous design elements for specificity and safety, and in principle, can be curative. By engaging the distal axon projections of DRG neurons in the region of chronic pain, this approach is both specific and potentially generalizable to theoretically any location in the body to treat dysregulated neuronal firing established by countless sources of trauma, and regardless of the time that may have elapsed since the onset of chronic pain.









TABLE 12







Ion Channel Genes in DRG Neurons Responsible for Pain Propagation











Channel
Gene
Channel type and

Target validation


name
name
function
Expression evidence
evidence





Nav1.7
SCN9A
Tetrodotoxin (TTX)-
Peripheral neuron specific.
Loss-of-function and




sensitive rapidly
Constitutive, and elevated
gain-of-function




inactivating sodium
after nerve injury
mutations




current
and inflammation



Nav1.8
SCN10A
TTX-resistant slowly
DRG specific.
Loss-of-function




inactivating sodium
Constitutive, and elevated
mutations




current
after nerve injury






and inflammation



Nav1.9
SCN11A
TTX-resistant
DRG specific.
Gain-of-function




persistent sodium
Constitutive, and elevated
mutations




current
after nerve injury






and inflammation



Nav1.3
SCN3A
TTX-sensitive rapidly
Elevated expression after





inactivating sodium
axotomy and nerve injury





current




Cav3.2
CACNA1H
T-type calcium current
Constitutive, and elevated
KO mice and genetic





after nerve injury
models





and inflammation



HCN1
HCN1
Hyperpolarization-
Constitutive, and elevated





activated cation
after inflammation





current
and chemotherapy



HCN2
HCN2
Hyperpolarization-
Constitutive, and elevated





activated cation
after inflammation





current




Ano1
ANO1
Calcium-activated
Constitutive, and elevated





chloride current
after nerve injury.









Human SCN9A primary protein and cDNA sequence alignment. Underlined: examples of residues and codons predicted to produce a premature stop codon, inactivation, loss-of-function, or destabilization of protein folding, as a result of base-editing using a cytidine deaminase-Cas9 construct.










(SEQ ID NO: 2434)



gaggagctgaagaggaattaaaatatacaggatgaaaagatggcaatgttgcctccccca



                   ..                   M  A  M  L  P  P  P





ggacctcagagctttgtccatttcacaaaacagtctcttgccctcattgaacaacgcatt




embedded image




gctgaaagaaaatcaaaggaacccaaagaagaaaagaaagatgatgatgaagaagcccca


 A  E  P  K  S  K  E  P  K  E  E  K  K  D  D  D  E  E  A  P





aagccaagcagtgacttggaagctggcaaacagctgcccttcatctatggggacattcct




embedded image




cccggcatggtgtcagagcccctggaggacttggacccctactatgcagacaaaaagact


 P  G  M  V  S  E  P  L  E  D  L  D  P  Y  Y  A  D  K  K  I





ttcatagtattgaacaaagggaaaacaatcttccgtttcaatgccacacctgctttatat


 F  I  V  L  N  K  G  K  T  I  F  R  F  N  A  I  P  A  L  Y





atgctttctcctttcagtcctctaagaagaatatctattaagattttagtacactcctta


 M  L  S  P  F  S  P  L  P  R  I  S  I  K  I  L  V  H  S  L





ttcagcatgctcatcatgtgcactattctgacaaactgcatatttatgaccatgaataac




embedded image




ccaccggactggaccaaaaatgtcgagtacacttttactggaatatatacttttgaatca




embedded image




cttgtaaaaatccttgcaagaggcttctgtgtaggagaattcacttttcttcgtgacccg




embedded image




tggaactggctggattttgtcgtcattgtttttgagtatttaacagaatttgtaaaccta




embedded image




ggcaatgtttcagctcttcgaactttcagagtattgagagctttgaaaactatttctgta


 G  N  V  S  A  L  P  T  F  R  V  L  R  A  L  K  T  I  S  V





atcccaggcctgaagacaattgtaggggctttgatccagtcagtgaagaagctttctgat




embedded image




gtcatgatcctgactgtgttctgtctgagtgtgtttgcactaattggactacagctgttc




embedded image




atgggaaacctgaagcataaatgttttcgaaattcacttgaaaataatgaaacattagaa




embedded image




agcataatgaataccctagagagtgaagaagactttagaaaatatttttattacttggaa


 S  I  M  N  T  L  E  S  E  E  D  F  R  K  Y  F  Y  Y  L  E





ggatccaaagatgctctcctttgtggtttcagcacagattcaggtcagtgtccagagggg




embedded image




tacacctgtgtgaaaattggcagaaaccctgattatggctacacgagctttgacactttc




embedded image




agctgggccttcttagccttgtttaggctaatgacccaagattactgggaaaacctttac




embedded image




caacagacgctgcgtgctgctggcaaaacctacatgatcttctttgtcgtagtgattttc




embedded image




ctgggctccttttatctaataaacttgatcctggctgtggttgccatggcatatgaagaa


 L  G  S  F  Y  L  I  N  L  I  L  A  V  V  A  M  A  Y  E  E





cagaaccaggcaaacattgaagaagctaaacagaaagaattagaatttcaacagatgtta




embedded image




gaccgtcttaaaaaagagcaagaagaagctgaggcaattgcagcggcagcggctgaatat




embedded image




acaagtattaggagaagcagaattatgggcctctcagagagttcttctgaaacatccaaa


 T  S  I  R  R  S  R  I  M  G  L  S  E  S  S  S  E  T  S  K





ctgagctctaaaagtgctaaagaaagaagaaacagaagaaagaaaaagaatcaaaagaag




embedded image




ctctccagtggagaggaaaagggagatgctgagaaattgtcgaaatcagaatcagaggac


 L  S  S  G  E  E  K  G  D  A  E  K  L  S  K  S  E  S  E  D





agcatcagaagaaaaagtttccaccttggtgtcgaagggcataggcgagcacatgaaaag


 S  I  P  R  K  S  F  H  L  G  V  E  G  H  R  R  A  H  E  K





aggttgtctacccccaatcagtcaccactcagcattcgtggctccttgttttctgcaagg




embedded image




cgaagcagcagaacaagtctttttagtttcaaaggcagaggaagagatataggatctgag


 P  S  S  R  T  S  L  F  S  P  K  G  R  G  P  D  I  G  S  E





actgaatttgccgatgatgagcacagcatttttggagacaatgagagcagaaggggctca


 T  E  F  A  D  D  E  H  S  I  F  G  D  N  E  S  R  R  G  S





ctgtttgtgccccacagaccccaggagcgacgcagcagtaacatcagccaagccagtagg




embedded image




tccccaccaatgctgccggtgaacgggaaaatgcacagtgctgtggactgcaacggtgtg




embedded image




gtctccctggttgatggacgctcagccctcatgctccccaatggacagcttctgccagag




embedded image




ggcacgaccaatcaaatacacaagaaaaggcgttgtagttcctatctcctttcagaggat




embedded image




atgctgaatgatcccaacctcagacagagagcaatgagtagagcaagcatattaacaaac




embedded image




actgtggaagaacttgaagagtccagacaaaaatgtccaccttggtggtacagatttgca




embedded image




cacaaattcttgatctggaattgctctccatattggataaaattcaaaaagtgtatctat




embedded image




tttattgtaatggatccttttgtagatcttgcaattaccatttgcatagttttaaacaca




embedded image




ttatttatggctatggaacaccacccaatgactgaggaattcaaaaatgtacttgctata


 L  F  M  A  M  E  H  H  P  M  T  E  E  F  K  N  V  L  A  I





ggaaatttggtctttactggaatctttgcagctgaaatggtattaaaactgattgccatg


 G  N  L  V  F  T  G  I  F  A  A  E  M  V  L  K  L  I  A  M





gatccatatgagtatttccaagtaggctggaatatttttgacagccttattgtgacttta




embedded image




agtttagtggagctctttctagcagatgtggaaggattgtcagttctgcgatcattcaga


 S  L  V  K  L  F  L  A  D  V  E  G  L  S  V  L  P  S  F  K





ctgctccgagtcttcaagctggcaaaatcctggccaacattgaacatgctgattaagatc




embedded image




attggtaactcagtaggggctctaggtaacctcaccttagtgttggccatcatcgtcttc


 I  G  N  S  V  G  A  L  G  N  L  T  L  V  L  A  I  I  V  F





atttttgctgtggtcggcatgcagctctttggtaagagctacaaagaatgtgtctgcaag




embedded image




atcaatgatgactgtacgctcccacggtggcacatgaacgacttcttccactccttcctg




embedded image




attgtgttccgcgtgctgtgtggagagtggatagagaccatgtgggactgtatggaggtc




embedded image




gctggtcaagctatgtgccttattgtttacatgatggtcatggtcattggaaacctggtg




embedded image




gtcctaaacctatttctggccttattattgagctcatttagttcagacaatcttacagca


 V  L  N  L  F  L  A  L  L  L  S  S  F  S  S  D  N  L  T  A





attgaagaagaccctgatgcaaacaacctccagattgcagtgactagaattaaaaaggga




embedded image




ataaattatgtgaaacaaaccttacgtgaatttattctaaaagcattttccaaaaagcca




embedded image




aagatttccagggagataagacaagcagaagatctgaatactaagaaggaaaactatatt




embedded image




tctaaccatacacttgctgaaatgagcaaaggtcacaatttcctcaaggaaaaagataaa


 S  N  H  T  L  A  E  M  S  K  G  H  N  F  L  K  E  K  D  K





atcagtggttttggaagcagcgtggacaaacacttgatggaagacagtgatggtcaatca




embedded image




tttattcacaatcccagcctcacagtgacagtgccaattgcacctggggaatccgatttg


 F  I  H  N  P  S  L  I  V  I  V  P  I  A  P  G  E  S  D  L





gaaaatatgaatgctgaggaacttagcagtgattcggatagtgaatacagcaaagtgaga


 E  N  M  N  A  E  E  L  S  S  D  S  D  S  E  Y  S  K  V  R





ttaaaccggtcaagctcctcagagtgcagcacagttgataaccctttgcctggagaagga




embedded image




gaagaagcagaggctgaacctatgaattccgatgagccagaggcctgtttcacagatggt




embedded image




tgtgtatggaggttctcatgctgccaagttaacatagagtcagggaaaggaaaaatctgg




embedded image




tggaacatcaggaaaacctgctacaagattgttgaacacagttggtttgaaagcttcatt




embedded image




gtcctcatgatcctgctcagcagtggtgccctggcttttgaagatatttatattgaaagg


 V  L  M  I  L  L  S  S  G  A  L  A  F  E  D  I  Y  I  E  R





aaaaagaccattaagattatcctggagtatgcagacaagatcttcacttacatcttcatt


 K  K  T  I  K  I  I  L  E  Y  A  D  E  I  F  I  Y  I  F  I





ctggaaatgcttctaaaatggatagcatatggttataaaacatatttcaccaatgcctgg




embedded image




tgttggctggatttcctaattgttgatgtttctttggttactttagtggcaaacactctt




embedded image




ggctactcagatcttggccccattaaatcccttcggacactgagagctttaagacctcta


 G  Y  S  D  L  G  P  I  K  S  L  R  I  L  P  A  L  R  P  L





agagccttatctagatttgaaggaatgagggtcgttgtgaatgcactcataggagcaatt


 R  A  L  S  P  F  E  G  M  R  V  V  V  N  A  L  I  G  A  I





ccttccatcatgaatgtgctacttgtgtgtcttatattctggctgatattcagcatcatg




embedded image




ggagtaaatttgtttgctggcaagttctatgagtgtattaacaccacagatgggtcacgg




embedded image




tttcctgcaagtcaagttccaaatcgttccgaatgttttgcccttatgaatgttagtcaa




embedded image




aatgtgagatggaaaaacctgaaagtgaactttgataatgtcggacttggttacctatct




embedded image




ctgcttcaagttgcaacttttaagggatggacgattattatgtatgcagcagtggattct




embedded image




gttaatgtagacaagcagcccaaatatgaatatagcctctacatgtatatttattttgtc




embedded image




gtctttatcatctttgggtcattcttcactttgaacttgttcattggtgtcatcatagat


 V  F  I  I  F  G  S  F  F  T  L  N  L  F  I  G  V  I  I  D





aatttcaaccaacagaaaaagaagcttggaggtcaagacatctttatgacagaagaacag




embedded image




aagaaatactataatgcaatgaaaaagctggggtccaagaagccacaaaagccaattcct




embedded image




cgaccagggaacaaaatccaaggatgtatatttgacctagtgacaaatcaagcctttgat




embedded image




attagtatcatggttcttatctgtctcaacatggtaaccatgatggtagaaaaggagggt




embedded image




caaagtcaacatatgactgaagttttatattggataaatgtggtttttataatccttttc




embedded image




actggagaatgtgtgctaaaactgatctccctcagacactactacttcactgtaggatgg




embedded image




aatatttttgattttgtggttgtgattatctccattgtaggtatgtttctagctgatttg


 N  I  F  D  F  V  V  V  I  I  S  I  V  G  M  F  L  A  D  L





attgaaacgtattttgtgtcccctaccctgttccgagtgatccgtcttgccaggattggc


 I  E  T  Y  F  V  S  P  T  L  F  P  V  I  R  L  A  R  I  G





cgaatcctacgtctagtcaaaggagcaaaggggatccgcacgctgctctttgctttgatg


 R  I  L  R  L  V  K  G  A  K  G  I  R  I  L  L  F  A  L  M





atgtcccttcctgcgttgtttaacatcggcctcctgctcttcctggtcatgttcatctac


 M  S  L  P  A  L  F  N  I  G  L  L  L  F  L  V  M  F  I  Y





gccatctttggaatgtccaactttgcctatgttaaaaaggaagatggaattaatgacatg


 A  I  F  G  M  S  N  F  A  Y  V  K  K  E  D  G  I  N  D  M





ttcaattttgagacctttggcaacagtatgatttgcctgttccaaattacaacctctgct




embedded image




ggctgggatggattgctagcacctattcttaacagtaagccacccgactgtgacccaaaa




embedded image




aaagttcatcctggaagttcagttgaaggagactgtggtaacccatctgttggaatattc




embedded image




tactttgttagttatatcatcatatccttcctggttgtggtgaacatgtacattgcagtc


 Y  F  V  S  Y  I  I  I  S  F  L  V  V  V  N  M  Y  I  A  V





atactggagaattttagtgttgccactgaagaaagtactgaacctctgagtgaggatgac


 I  L  E  N  F  S  V  A  T  E  E  S  T  E  P  L  S  E  D  S





tttgagatgttctatgaggtttgggagaagtttgatcccgatgcgacccagtttatagag




embedded image




ttctctaaactctctgattttgcagctgccctggatcctcctcttctcatagcaaaaccc


 P  S  K  L  S  D  F  A  A  A  L  D  P  P  L  L  I  A  K  P





aacaaagtccagctcattgccatggatctgcccatggttagtggtgaccggatccattgt




embedded image




cttgacatcttatttgcttttacaaagcgtgttttgggtgagagtggggagatggattct


 L  D  I  L  F  A  F  T  K  R  V  L  G  E  S  G  E  M  D  S





cttcgttcacagatggaagaaaggttcatgtctgcaaatccttccaaagtgtcctatgaa




embedded image




cccatcacaaccacactaaaacggaaacaagaggatgtgtctgctactgtcattcagcgt




embedded image




gcttatagacgttaccgcttaaggcaaaatgtcaaaaatatatcaagtatatacataaaa




embedded image




gatggagacagagatgatgatttactcaataaaaaagatatggcttttgataatgttaat


 D  G  D  R  D  D  D  L  L  N  K  K  D  M  A  F  D  N  V  N





gagaactcaagtccagaaaaaacagatgccacttcatccaccacctctccaccttcatat


 E  N  S  S  P  E  K  T  D  A  T  S  S  T  T  S  P  P  S  Y





gatagtgtaacaaagccagacaaagagaaatatgaacaagacagaacagaaaaggaagac


 D  S  V  T  K  P  D  K  E  K  Y  E  Q  D  R  T  E  K  E  D





aaagggaaagacagcaaggaaagcaaaaaatagagcttcatttttgatatattgtttaca


 K  G  K  D  S  K  E  S  K  K  -






Human SCN9A gene sequence. Includes open reading frames (capitalized) and introns (lowercase, abridged). Underlined bases are predicted to disrupt the splicing of the RNA transcript, leading to diminished expression of functional protein. The start codon is also highlighted in bold.










(SEQ ID NO: 2435)



CGGGGCTGCTACCTCCACGGGCGCGCCCTGGCAGGAGGGGCGCAGTCTGC



TTGCAGGCGGTCGCCAGCGCTCCAGCGGCGGCTGTCGGCTTTCCAATTCC


GCCAGCTCGGCTGAGGCTGGGCTAGCCTGGGTGCCAGTGGCTGCTAGCGG


CAGGCGTCCCCTGAGCAACAGGAGCCCAGAGAAAAAGAAGCAGCCCTGAG


AGAGCGCCGGGGAAGGAGAGGCCCGCGCCCTCTCCTGGAGCCAGATTCTG




embedded image




ttttcttttgctgcttctgtggggaggggaggagaagccctcggtctttc


. . . intron 1 . . .


tttatgttgttattattagtttttaatgggcctttcttggcaggcaaata




embedded image




GAAGAGGAATTAAAATATACAGGATGAAAAGATGGCAATGTTGCCTCCCC


CAGGACCTCAGAGCTTTGTCCATTTCACAAAACAGTCTCTTGCCCTCATT


GAACAACGCATTGCTGAAAGAAAATCAAAGGAACCCAAAGAAGAAAAGAA


AGATGATGATGAAGAAGCCCCAAAGCCAAGCAGTGACTTGGAAGCTGGCA


AACAGCTGCCCTTCATCTATGGGGACATTCCTCCCGGCATGGTGTCAGAG




embedded image




ttgacttcagtggtcagtttctgttggcttccttctgtataaaaattatt


. . . intron 2 . . .


atattgatgtgaaaaattgatattttggattctcaatttcatcctttctt




embedded image




GTTTCAATGCCACACCTGCTTTATATATGCTTTCTCCTTTCAGTCCTCTA




embedded image




ttacatccagtggcactttatggtgtaatttttgctattttattcaaata


. . . intron 3 . . .


cccactgtcgtctcttttgttccttgattctaagctacCTTATTCAGCAT


GCTCATCATGTGCACTATTCTGACAAACTGCATATTTATGACCATGAATA




embedded image




taatatagttttggtattatcatttcatcctttccttttcctgccaggaa


. . . intron 4 . . .


ttataaagatttacatggtggttgtattcttttcacatctagtatcccaa


tggaatcttgtgtttagGTACACTTTTACTGGAATATATACTTTTGAATC


ACTTGTAAAAATCCTTGCAAGAGGCTTCTGTGTAGGAGAATTCACTTTTC




embedded image




gtactttcagctttttgaaacggcaaatttatgaaaatctcaggcagcac


. . . intron 5 . . .


tcaggtaagtatcatagactctatctaaattctgaataattctgatttaa




embedded image






embedded image






embedded image




. . . intron 6 . . .




embedded image




TAGGGGCTTTGATCCAGTCAGTGAAGAAGCTTTCTGATGTCATGATCCTG


ACTGTGTTCTGTCTGAGTGTGTTTGCACTAATTGGACTACAGCTGTTCAT


GGGAAACCTGAAGCATAAATGTTTTCGAAATTCACTTGAAAATAATGAAA




embedded image




aagaatgtccttgcatttgttattaggttgaaataatgctaaaaacattg


. . . intron 7 . . .


attaatttacctcctttatcacaatcacagattaaagtctgtgatgttat




embedded image






embedded image




ttgttttctttttagtctaaaggctgaaagagaaggaaaagaatgttcag


. . . intron 8 . . .


cagtaaggctatttagcttgtgtcctgaagacactctcacctataatgtt




embedded image




GCAGAAACCCTGATTATGGCTACACGAGCTTTGACACTTTCAGCTGGGCC


TTCTTAGCCTTGTTTAGGCTAATGACCCAAGATTACTGGGAAAACCTTTA




embedded image




. . . intron 9 . . .


tgtacctggtgtatgttaagagcctgtattaggaggttttttatttattt




embedded image




CGTGCTGCTGGCAAAACCTACATGATCTTCTTTGTCGTAGTGATTTTCCT


GGGCTCCTTTTATCTAATAAACTTGATCCTGGCTGTGGTTGCCATGGCAT


ATGAAGAACAGAACCAGGCAAACATTGAAGAAGCTAAACAGAAAGAATTA


GAATTTCAACAGATGTTAGACCGTCTTAAAAAAGAGCAAGAAGAAGCTGA




embedded image




. . . intron 10 . . .


tgtcctagggtttcctaggatttggaaatgactcatttaagtgttaacgt




embedded image




AGGAGAAGCAGAATTATGGGCCTCTCAGAGAGTTCTTCTGAAACATCCAA


ACTGAGCTCTAAAAGTGCTAAAGAAAGAAGAAACAGAAGAAAGAAAAAGA


ATCAAAAGAAGCTCTCCAGTGGAGAGGAAAAGGGAGATGCTGAGAAATTG


TCGAAATCAGAATCAGAGGACAGCATCAGAAGAAAAAGTTTCCACCTTGG


TGTCGAAGGGCATAGGCGAGCACATGAAAAGAGGTTGTCTACCCCCAATC




embedded image




. . . intron 11 . . .


atatgaagtgtacttctatcagtaggtgcttcagcaaccacgtttttttt




embedded image




GGCGAAGCAGCAGAACAAGTCTTTTTAGTTTCAAAGGCAGAGGAAGAGAT


ATAGGATCTGAGACTGAATTTGCCGATGATGAGCACAGCATTTTTGGAGA


CAATGAGAGCAGAAGGGGCTCACTGTTTGTGCCCCACAGACCCCAGGAGC


GACGCAGCAGTAACATCAGCCAAGCCAGTAGGTCCCCACCAATGCTGCCG


GTGAACGGGAAAATGCACAGTGCTGTGGACTGCAACGGTGTGGTCTCCCT


GGTTGATGGACGCTCAGCCCTCATGCTCCCCAATGGACAGCTTCTGCCAG




embedded image




ctatataagcaagattttatcttatacctacaatttattaggattctgtt


. . . intron 12 . . .




embedded image




AAGAAAAGGCGTTGTAGTTCCTATCTCCTTTCAGAGGATATGCTGAATGA


TCCCAACCTCAGACAGAGAGCAATGAGTAGAGCAAGCATATTAACAAACA




embedded image




. . . intron 13 . . .




embedded image




GAGTCCAGACAAAAATGTCCACCTTGGTGGTACAGATTTGCACACAAATT


CTTGATCTGGAATTGCTCTCCATATTGGATAAAATTCAAAAAGTGTATCT


ATTTTATTGTAATGGATCCTTTTGTAGATCTTGCAATTACCATTTGCATA


GTTTTAAACACATTATTTATGGCTATGGAACACCACCCAATGACTGAGGA




embedded image




ttatgtactcatagtttctctttttagttgtcatcattgtcatttcatat


. . . intron 14 . . .


aacagtgattattatcattgtgttgatttcctgttttctaatattaacag




embedded image




AATGGTATTAAAACTGATTGCCATGGATCCATATGAGTATTTCCAAGTAG


GCTGGAATATTTTTGACAGCCTTATTGTGACTTTAAGTTTAGTGGAGCTC




embedded image




aaacataaactaaggttgccattatattctataataaaggggtatttctt


. . . intron 15 . . .




embedded image




CCGAGTCTTCAAGTTGGCAAAATCCTGGCCAACATTGAACATGCTGATTA


AGATCATTGGTAACTCAGTAGGGGCTCTAGGTAACCTCACCTTAGTGTTG


GCCATCATCGTCTTCATTTTTGCTGTGGTCGGCATGCAGCTCTTTGGTAA


GAGCTACAAAGAATGTGTCTGCAAGATCAATGATGACTGTACGCTCCCAC


GGTGGCACATGAACGACTTCTTCCACTCCTTCCTGATTGTGTTCCGCGTG


CTGTGTGGAGAGTGGATAGAGACCATGTGGGACTGTATGGAGGTCGCTGG


TCAAGCTATGTGCCTTATTGTTTACATGATGGTCATGGTCATTGGAAACC




embedded image




. . . intron 16 . . .


attttattttttatatttcctgtctccctatttctctaccccctctcccc




embedded image




TAGTTCAGACAATCTTACAGCAATTGAAGAAGACCCTGATGCAAACAACC


TCCAGATTGCAGTGACTAGAATTAAAAAGGGAATAAATTATGTGAAACAA


ACCTTACGTGAATTTATTCTAAAAGCATTTTCCAAAAAGCCAAAGATTTC


CAGGGAGATAAGACAAGCAGAAGATCTGAATACTAAGAAGGAAAACTATA


TTTCTAACCATACACTTGCTGAAATGAGCAAAGGTCACAATTTCCTCAAG


GAAAAAGATAAAATCAGTGGTTTTGGAAGCAGCGTGGACAAACACTTGAT


GGAAGACAGTGATGGTCAATCATTTATTCACAATCCCAGCCTCACAGTGA


CAGTGCCAATTGCACCTGGGGAATCCGATTTGGAAAATATGAATGCTGAG




embedded image




tcatatactttgtgtttcatattaacaattagtatgaaatgaatgaaaat


. . . intron 17 . . .


tttgaatgaactctaaatgaactacctggtggggtggtgaattcctttct


agAGATTAAACCGGTCAAGCTCCTCAGAGTGCAGCACAGTTGATAACCCT


TTGCCTGGAGAAGGAGAAGAAGCAGAGGCTGAACCTATGAATTCCGATGA




embedded image




gcattccttaattagtgttetggggtttgtcttaacgcctaatacttacc


. . . intron 18 . . .




embedded image




ATGCTGCCAAGTTAACATAGAGTCAGGGAAAGGAAAAATCTGGTGGAACA


TCAGGAAAACCTGCTACAAGATTGTTGAACACAGTTGGTTTGAAAGCTTC




embedded image




acctaagtcaatatattgattaagtcaatattctttaaaatgagctaaaa


. . . intron 19 . . .


tcctgttttttttaaatgaatcatgaagcttaagttgtgcatgattgaaa




embedded image




AAGACCATTAAGATTATCCTGGAGTATGCAGACAAGATCTTCACTTACAT


CTTCATTCTGGAAATGCTTCTAAAATGGATAGCATATGGTTATAAAACAT


ATTTCACCAATGCCTGGTGTTGGCTGGATTTCCTAATTGTTGATgtaggt


acttttgagtacattttaaaagaggatttattcttactgtgtgttgtgaa


. . . intron 20 . . .


agtttcagaattgactttttccttttatgcttcatcattttattgacaca




embedded image




ACACTCTTGGCTACTCAGATCTTGGCCCCATTAAATCCCTTCGGACACTG




embedded image




aagaaaatactaaactttataatgttcttattttttaatggggtttaaaa


. . . intron 21 . . .


ctttcatgttgcctatttaacatcttactaatcctaatcatgcttttctt




embedded image




CATCATGAATGTGCTACTTGTGTGTCTTATATTCTGGCTGATATTCAGCA


TCATGGGAGTAAATTTGTTTGCTGGCAAGTTCTATGAGTGTATTAACACC


ACAGATGGGTCACGGTTTCCTGCAAGTCAAGTTCCAAATCGTTCCGAATG


TTTTGCCCTTATGAATGTTAGTCAAAATGTGCGATGGAAAAACCTGAAAG




embedded image




agtgtcccatttcatgagtgcttggtattttaatagatattggacgaagg


. . . intron 22 . . .


tctgtttatggctattttagaatatgagcttaacattcaaattctattaa




embedded image






embedded image




tttttaaaagcttcttagtttatttcagtgatttccaaactataacttca


. . . intron 23 . . .




embedded image




ATATGAATATAGCCTCTACATGTATATTTATTTTGTCGTCTTTATCATCT


TTGGGTCATTCTTCACTTTGAACTTGTTCATTGGTGTCATCATAGATAAT




embedded image




. . . intron 24 . . .


tttagtaatctatagaaagatgtagacaatgattctggttttaactacat


ttattttttgtttgtttctttacCTTGGAGGTCAAGACATCTTTATGACA


GAAGAACAGAAGAAATACTATAATGCAATGAAAAAGCTGGGGTCCAAGAA




embedded image




agcatatagattttcaaattatttctaattcatttttaatgcacatcttt


. . . intron 25 . . .


aatttctggataatacttgaaaagtttactctgcattegatattattctt




embedded image




TCAAGCCTTTGATATTAGTATCATGGTTCTTATCTGTCTCAACATGGTAA


CCATGATGGTAGAAAAGGAGGGTCAAAGTCAACATATGACTGAAGTTTTA


TATTGGATAAATGTGGTTTTTATAATCCTTTTCACTGGAGAATGTGTGCT


AAAACTGATCTCCCTCAGACACTACTACTTCACTGTAGGATGGAATATTT




embedded image




tcagattttattttttgagtaaagctaaacttcacttatgctcaaggaag


. . . intron 26 . . .


ctgtttagagtcatcatttcaggtagcatacatctttaaatattttattt




embedded image




CGTATTTTGTGTCCCCTACCCTGTTCCGAGTGATCCGTCTTGCCAGGATT


GGCCGAATCCTACGTCTAGTCAAAGGAGCAAAGGGGATCCGCACGCTGCT


CTTTGCTTTGATGATGTCCCTTCCTGCGTTGTTTAACATCGGCCTCCTGC


TCTTCCTGGTCATGTTCATCTACGCCATCTTTGGAATGTCCAACTTTGCC


TATGTTAAAAAGGAAGATGGAATTAATGACATGTTCAATTTTGAGACCTT


TGGCAACAGTATGATTTGCCTGTTCCAAATTACAACCTCTGCTGGCTGGG


ATGGATTGCTAGCACCTATTCTTAACAGTAAGCCACCCGACTGTGACCCA


AAAAAAGTTCATCCTGGAAGTTCAGTTGAAGGAGACTGTGGTAACCCATC


TGTTGGAATATTCTACTTTGTTAGTTATATCATCATATCCTTCCTGGTTG


TGGTGAACATGTACATTGCAGTCATACTGGAGAATTTTAGTGTTGCCACT


GAAGAAAGTACTGAACCTCTGAGTGAGGATGACTTTGAGATGTTCTATGA


GGTTTGGGAGAAGTTTGATCCCGATGCGACCCAGTTTATAGAGTTCTCTA


AACTCTCTGATTTTGCAGCTGCCCTGGATCCTCCTCTTCTCATAGCAAAA


CCCAACAAAGTCCAGCTCATTGCCATGGATCTGCCCATGGTTAGTGGTGA


CCGGATCCATTGTCTTGACATCTTATTTGCTTTTACAAAGCGTGTTTTGG


GTGAGAGTGGGGAGATGGATTCTCTTCGTTCACAGATGGAAGAAAGGTTC


ATGTCTGCAAATCCTTCCAAAGTGTCCTATGAACCCATCACAACCACACT


AAAACGGAAACAAGAGGATGTGTCTGCTACTGTCATTCAGCGTGCTTATA


GACGTTACCGCTTAAGGCAAAATGTCAAAAATATATCAAGTATATACATA


AAAGATGGAGACAGAGATGATGATTTACTCAATAAAAAAGATATGGCTTT


TGATAATGTTAATGAGAACTCAAGTCCAGAAAAAACAGATGCCACTTCAT


CCACCACCTCTCCACCTTCATATGATAGTGTAACAAAGCCAGACAAAGAG


AAATATGAACAAGACAGAACAGAAAAGGAAGACAAAGGGAAAGACAGCAA


GGAAAGCAAAAAATAGAGCTTCATTTTTGATATATTGTTTACAGCCTGTG


AAAGTGATTTATTTGTGTTAATAAAACTCTTTTGAGGAAGTCTATGCCAA


AATCCTTTTTATCAAAATATTCTCGAAGGCAGTGCAGTCACTAACTCTGA


TTTCCTAAGAAAGGTGGGCAGCATTAGCAGATGGTTATTTTTGCACTGAT


GATTCTTTAAGAATCGTAAGAGAACTCTGTAGGAATTATTGATTATAGCA


TACAAAAGTGATTCAGTTTTTTGGTTTTTAATAAATCAGAAGACCATGTA


GAAAACTTTTACATCTGCCTTGTCATCTTTTCACAGGATTGTAATTAGTC


TTGTTTCCCATGTAAATAAACAACACACGCATACAGAAAAATCTATTATT


TATCTATTATTTGGAAATCAACAAAAGTATTTGCCTTGGCTTTGCAATGA


AATGCTTGATAGAAGTAATGGACATTAGTTATGAATGTTTAGTTAAAATG


CATTATTAGGGAGCTTGACTTTTTATCAATGTACAGAGGTTATTCTATAT


TTTGAGGTGCTTAAATTTATTCTACATTGCATCAGAACCAATTTATATGT


GCCTATAAAATGCCATGGGATTAAAAATATATGTAGGCTATTCATTTCTA


CAAATGTTTTTCATTCATCTTGACTCACATGCCAACAAGGATAAGACTTA


CCTTTAGAGTATTGTGTTTCATAGCCTTTCTTCTTTCATATCCCTTTTTG


TTCATAGAATAACCACAGAACTTGAAAAATTATTCTAAGTACATATTACA


CTCCTCAAAAAAAACAAAGATAACTGAGAAAAAAGTTATTGACAGAAGTT


CTATTTGCTATTATTTACATAGCCTAACATTTGACTGTGCTGCCCAAAAT


ACTGATAATAGTCTCTTAAACTCTTTTGTCAAATTTTCCTGCTTTCTTAT


GCAGTATTGTTTAGTCATCCTTTCGCTGTAAGCAAAGTTGATGAAATCCT


TCCTGATATGCAGTTAGTTGTTTGACCACGGTACATACTTGAGCAGATAA


TAACTTGGGCACAGTATTTATTGCATCACTTGTATACAATCCCGTGTTTG


GCAAGCTTTCAAATCATGTAATATGACAGACTTTACACAGATATGTGTTT


AGTATGAATAAAAAAGCATTGAAATAGGGATTCTTGCCAACTTGCTCTCT


TGCCACCAACTTACTTTCCTAAATTATGGAAGTAATCTTTTTTGGATATA


CTTCAATGTATACAATGAGGAAGATGTCACCTTCTCCTTAAAATTCTATG


ATGTGAAATATATTTTGCCTCAATCAACACAGTACCATGGGCTTCTAATT


TATCAAGCACATATTCATTTTGCATTAGCTGTAGACATCTAGTTTTTTGA


AAACACCTATTAATAGTAATTTGAAAAGAAATAACCATAATGCTTTTTTT


CGTGAGTTTATTTCAGGAATATGAGATCTTTCTTCTATAAAGTTATTCAT


GCACAGGCAAAAATTGAGCTACACAGGTAGAATGTAGTTTTACTTAGAAG


ATTTTTGTGGGAGGTTTTGAAGCAAATATATAAAACAACTTTCACTAATT


TGCTTTCCATATTTAAAAAATAATAAATTACATTTATATAATAAATGTTT


AAAGCACATATTTTTTGTTGTTCTGGCAATTTAAAAAGAAAGAGGATTTA


AACGTACCTATAGAAACAAAGATTTATGGTTAAAGAATGAGATCAGAAGT


CTAGAATGTTTTTAAATTGTGATATATTTTACAACATCCGTTATTACTTT


GAGACATTTGTCCTAATCTACGTATAAAACTCAATCTAGGGCTAAAGATT


CTTTATACCATCTTAGGTTCATTCATCTTAGGCTATTTGAACCACTTTTT


AATTTAATATGAAAGACACCATGCAGTGTTTTCCGAGACTACATAGATCA


TTTTATCACATACCTACCAAGCCTGTTGGAAATAGGTTTTGATAATTTAA


GTAGGGACCTATACAAAATATATTACATTTATCAGATTTTTAAATACATT


CAATTAAGAATTTAACATCACCTTAAATTTGAATTCAATCTACCGTTATT


TCAAACTCACAAATATAACTGCATTATGAATACTTACATAATGTAGTAAG


ACAAGATGTTTGACAGGTTCGTGTGTAATTTTCTATTAATGTTTTTACAT


TGCCTTGTTTTTATGTAAAATAAAAAATATGGGCAACTGGTTTGTTAACA


ACACAATTTCTTCTTAGCATTTCAAAAATATATATAAAGTTGTTCTTTTT


CCTATTTCATGAACTATGTTTTTTTTTAAAATAACATGGTTAAGTTTTAT


ATATATTTACGTTTGTTTCAGGAATGTCTACTTGTGACTTTTTATCAATT


AAAAATAATATTTGGAAGAAAGAGCTTATTAAGTATAAGCTTGAAGTAAA


ATTAGACCTCTCTTTCCATGTAGATTACTGTTTGTACTGATGGTTTCACC


CTTCAGAAGGCACTGTCATATTAATATTTAAATTTTATAATCGCTGAACT


TATTACACCCAACAATACAGAAAGGCAGTTACACTGAAGAACTTAACTTA


GAATAAAATGGAAGCAAACAGGTTTTCTAAAAACTTTTTTAAGTGACCAG


GTCTCGCTCTGTCACCCAGGCTAGAGTGCAATGGCATGATCATAGCTCTC


TGCAGCCTCAACTCTGGGCTCAAGCAACCCTCCTGCCTCAGCCTCCCAAG


TAGCTAAGACTACAGGTACATGCCACCATGCCTGGCTAATATTTAAATTT


TTGTAGATAAGGGGTCTTGCTATGTTGCCCAGGCTAGTCTCAAACTCCTG


GCTTCAAGTGTTCCTACTGTCATGACCTGCCAACATGCTGGGGTTACAGG


CATGAGCCACCATGCCCCAAACAGGTTTGAACACAAATCTTTCGGATGAA


AATTAGAGAACCTAATTTTAGCTTTTTGATAGTTACCTAGTTTGCAAAAG


ATTTGGGTGACTTGTGAGCTGTTTTTAAATGCTGATTGTTGAACATCACA


ACCCAAAATACTTAGCATGATTTTATAGAGTTTTGATAGCTTTATTAAAA


AGAGTGAAAATAAAATGCATATGTAAATAAAGCAGTTCTAAATAGCTATT


TCAGAGAAATGTTAATAGAAGTGCTGAAAGAAGGGCCAACTAAATTAGGA


TGGCCAGGGAATTGGCCTGGGTTTAGGACCTATGTATGAAGGCCACCAAT


TTTTTAAAAATATCTGTGGTTTATTATGTTATTATCTTCTTGAGGAAAAC


AATCAAGAATTGCTTCATGAAAATAAATAAATAGCCATGAATATCATAAA


GCTGTTTACATAGGATTCTTTACAAATTTCATAGATCTATGAATGCTCAA


AATGTTTGAGTTTGCCATAAATTATATTGTAGTTATATTGTAGTTATACT


TGAGACTGACACATTGTAATATAATCTAAGAATAAAAGTTATACAAAATA


A





SCN10A (Uniprot #: Q9Y5Y9)


Synonyms: NaV1.8, PN3, hPN3


(SEQ ID NO: 2436)



MEFPIGSLETNNFRRFTPESLVEIEKQTAAKQGTKKAREKHREQKDQEEKPRPQLDLKACNQLPKFYGELPA



ELIGEPLEDLDPFYSTHRTFMVLNKGRTTSRFSATRALWLESPENLIRRTAIKVSVHSWFSLFITVTILVNCVC


MTRTDLPEKIEYVFTVIYTFEALIKILARGFCLNEFTYLRDPWNWLDFSVITLAYVGTAIDLRGISGLRTFRV


LRALKTVSVIPGLKVIVGALIHSVKKLADVTILTIFCLSVFALVGLQLFKGNLKNKCVKNDMAVNETTNYSS


HRKPDIYINKRGTSDPLLCGNGSDSGHCPDGYICLKTSDNPDFNYTSFDSFAWAFLSLFRLMTQDSWERLY


QQTLRTSGKIYMIFFVLVIFLGSFYLVNLILAVVTMAYEEQNQATTDEIEAKEKKFQEALEMLRKEQEVLAA


LGIDTTSLHSHNGSPLTSKNASERRHRIKPRVSEGSTEDNKSPRSDPYNQRRMSFLGLASGKRRASHGSVFH


FRSPGRDISLPEGVTDDGVFPGDHESHRGSLLLGGGAGQQGPLPRSPLPQPSNPDSRHGEDEHQPPPTSELAP


GAVDVSAFDAGQKKTFLSAEYLDEPFRAQRAMSVVSIITSVLEELEESEQKCPPCLTSLSQKYLIWDCCPM


WVKLKTILFGLVTDPFAELTITLCIVVNTIFMAMEHHGMSPTFEAMLQIGNIVFTIFFTAEMVFKIIAFDPYYY


FQKKWNIFDCIIVTVSLLELGVAKKGSLSVLRSFRLLRVFKLAKSWPTLNTLIKIIGNSVGALGNLTIILAIIVF


VFALVGKQLLGENYRNNRKNISAPHEDWPRWHMHDFFHSFLIVFRILCGEWIENMWACMEVGQKSICLILF


LTVMVLGNLVVLNLFIALLLNSFSADNLTAPEDDGEVNNLQVALARIQVFGHRTKQALCSFFSRSCPFPQPK


AEPELVVKLPLSSSKAENHIAANTARGSSGGLQAPRGPRDEHSDFIANPTVWVSVPIAEGESDLDDLEDDGG


EDAQSFQQEVIPKGQQEQLQQVERCGDHLTPRSPGTGTSSEDLAPSLGETWKDESVPQVPAEGVDDTSSSE


GSTVDCLDPEEILRKIPELADDLEEPDDCFTEGCIRHCPCCKLDTTKSPWDVGWQVRKTCYRIVEHSWFESF


IIFMILLSSGSLAFEDYYLDQKPTVKALLEYTDRVFTFIFVFEMLLKWVAYGFKKYFTNAWCWLDFLIVNIS


LISLTAKILEYSEVAPIKALRTLRALRPLRALSRFEGMRVVVDALVGAIPSIMNVLLVCLIFWLIFSIMGVNLF


AGKFWRCINYTDGEFSLVPLSIVNNKSDCKIQNSTGSFFWVNVKVNFDNVAMGYLALLQVATFKGWMDI


MYAAVDSREVNMQPKWEDNVYMYLYFVIFIIFGGFFTLNLFVGVIIDNFNQQKKKLGGQDIFMTEEQKKY


YNAMKKLGSKKPQKPIPRPLNKFQGFVFDIVTRQAFDITIMVLICLNMITMMVETDDQSEEKTKILGKINQF


FVAVFTGECVMKMFALRQYYFINGWNVFDFIVVVLSIASLIFSAILKSLQSYFSPTLFRVIRLARIGRILRLIR


AAKGIRTLLFALMMSLPALFNIGLLLFLVMFIYSIFGMSSFPHVRWEAGIDDMFNFQTFANSMLCLFQITTSA


GWDGLLSPILNTGPPYCDPNLPNSNGTRGDCGSPAVGIIFFTTYHISFLIMVNMYIAVILENENVATEESTEPL


SEDDFDMFYETWEKFDPEATQFITFSALSDFADTLSGPLRIPKPNRNILIQMDLPLVPGDKIHCLDILFAFTKN


VLGESGELDSLKANMEEKFMATNLSKSSYEPIATTLRWKQEDISATVIQKAYRSYVLHRSMALSNTPCVPR


AEEEAASLPDEGFVAFTANENCVLPDKSETASATSFPPSYESVTRGLSDRVNMRTSSSIQNEDEATSMELIAP


GP





SCN11A (Uniprot #: Q9UI33)


Synonyms: NaV1.9, PN5, SCN12A, SNS2, hNaN


(SEQ ID NO: 2437)



MDDRCYPVIFPDERNFRPFTSDSLAAIEKRIAIQKEKKKSKDQTGEVPQPRPQLDLKASRKLPKLYGDIPREL



IGKPLEDLDPFYRNHKTFMVLNRKRTIYRFSAKHALFIFGPENSIRSLAIRVSVHSLFSMFIIGTVIINCVFMAT


GPAKNSNSNNTDIAECVFTGIYIFEALIKILARGFILDEFSFLRDPWNWLDSIVIGIAIVSYIPGITIKLLPLRTFR


VFRALKAISVVSRLKVIVGALLRSVKKLVNVIILTFFCLSIFALVGQQLFMGSLNLKCISRDCKNISNPEAYD


HCFEKKENSPEFKMCGIWMGNSACSIQYECKHTKINPDYNYTNFDNFGWSFLAMFRLMTQDSWEKLYQQ


TLRTTGLYSVFFFIVVIFLGSFYLINLTLAVVTMAYEEQNKNVAAEIEAKEKMFQEAQQLLKEEKEALVAM


GIDRSSLTSLETSYFTPKKRKLFGNKKRKSFFLRESGKDQPPGSDSDEDCQKKPQLLEQTKRLSQNLSLDHF


DEHGDPLQRQRALSAVSILTITMKEQEKSQEPCLPCGENLASKYLVWNCCPQWLCVKKVLRTVMTDPFTE


LAITICHIINTVFLAMEHHKMEASFEKMLNIGNLVFTSIFIAEMCLKIIALDPYHYFRRGWNIFDSIVALLSFAD


VMNCVLQKRSWPFLRSFRVLRVFKLAKSWPTLNTLIKIIGNSVGALGSLTVVLVIVIFIFSVVGMQLFGRSEN


SQKSPKLCNPTGPTVSCLRHWHMGDFWHSFLVVFRILCGEWIENMWECMQEANASSSLCVIVFILITVIGKL


VVLNLFIALLLNSFSNEERNGNLEGEARKTKVQLALDRFRRAFCFVRHTLEHFCHKWCRKQNLPQQKEVA


GGCAAQSKDIIPLVMEMKRGSETQEELGILTSVPKTLGVRHDWTWLAPLAEEEDDVEFSGEDNAQRITQPE


PEQQAYELHQENKKPTSQRVQSVEIDMFSEDEPHLTIQDPRKKSDVTSILSECSTIDLQDGFGWLPEMVPKK


QPERCLPKGFGCCFPCCSVDKRKPPWVIWWNLRKTCYQIVKHSWFESFIIFVILLSSGALIFEDVHLENQPKI


QELLNCTDIIFTHIFILEMVLKWVAFGFGKYFTSAWCCLDFIIVIVSVTTLINLMELKSFRTLRALRPLRALSQ


FEGMKVVVNALIGAIPAILNVLLVCLIFWLVFCILGVYFFSGKFGKCINGTDSVINYTIITNKSQCESGNESWI


NQKVNFDNVGNAYLALLQVATFKGWMDIIYAAVDSTEKEQQPEFESNSLGYIYFVVFUIFGSFFTLNLFIGVI


IDNENQQQKKLGGQDIFMTEEQKKYYNAMKKLGSKKPQKPIPRPLNKCQGLVEDIVTSQIFDIHUISLIILNM


ISMMAESYNQPKAMKSILDHLNWVFVVIFTLECLIKIFALRQYYFINGWNLFDCVVVLLSIVSTMISTLENQ


EHIPFPPTLFRIVRLARIGRILRLVRAARGIRTLLFALMMSLPSLFNIGLLLFLIMFIYAILGMNWFSKVNPESGI


DDIFNFKTFASSMLCLFQISTSAGWDSLLSPMLRSKESCNSSSENCHLPGIATSYFVSYHUSFLIVVNMYIAVIL


ENENTATEESEDPLGEDDFDIFYEVWEKFDPEATQFIKYSALSDFADALPEPLRVAKPNKYQFLVMDLPMV


SEDRLHCMDILFAFTARVLGGSDGLDSMKAMMEEKFMEANPLKKLYEPIVTTTKRKEEERGAAIIQKAFRK


YMMKVTKGDQGDQNDLENGPHSPLQTLCNGDLSSFGVAKGKVHCD





SCN3A (Uniprot #: Q9NY46)


Synonyms: NaV1.3, KIAA1356, NAC3


(SEQ ID NO: 2438)



MAQALLVPPGPESFRLFTRESLAAIEKRAAEEKAKKPKKEQDNDDENKPKPNSDLEAGKNLPFIYGDIPPEM



VSEPLEDLDPYYINKKTFIVMNKGKAIFRFSATSALYILTPLNPVRKIAIKILVHSLFSMLIMCTILTNCVFMTL


SNPPDWTKNVEYTFTGIYTFESLIKILARGFCLEDFTFLRDPWNWLDFSVIVMAYVTEFVSLGNVSALRTFR


VLRALKTISVIPGLKTIVGALIQSVKKLSDVMILTVFCLSVFALIGLQLFMGNLRNKCLQWPPSDSAFETNTT


SYFNGTMDSNGTFVNVTMSTFNWKDYIGDDSHFYVLDGQKDPLLCGNGSDAGQCPEGYICVKAGRNPNY


GYTSFDTFSWAFLSLFRLMTQDYWENLYQLTLRAAGKTYMIFFVLVIFLGSFYLVNLILAVVAMAYEEQN


QATLEEAEQKEAEFQQMLEQLKKQQEEAQAVAAASAASRDFSGIGGLGELLESSSEASKLSSKSAKEWRN


RRKKRRQREHLEGNNKGERDSFPKSESEDSVKRSSFLFSMDGNRLTSDKKFCSPHQSLLSIRGSLFSPRRNS


KTSIFSFRGRAKDVGSENDFADDEHSTFEDSESRRDSLFVPHRHGERRNSNVSQASMSSRMVPGLPANGKM


HSTVDCNGVVSLVGGPSALTSPTGQLPPEGTTTETEVRKRRLSSYQISMEMLEDSSGRQRAVSIASILTNTM


EELEESRQKCPPCWYRFANVFLIWDCCDAWLKVKHLVNLIVMDPFVDLAITICIVLNTLFMAMEHYPMTE


QFSSVLTVGNLVFTGIFTAEMVLKIIAMDPYYYFQEGWNIFDGIIVSLSLMELGLSNVEGLSVLRSFRLLRVF


KLAKSWPTLNMLIKIIGNSVGALGNLTLVLAIIVFIFAVVGMQLFGKSYKECVCKINDDCTLPRWHMNDFF


HSFLIVFRVLCGEWIETMWDCMEVAGQTMCLIVEMLVMVIGNLVVLNLFLALLLSSFSSDNLAATDDDNE


MNNLQIAVGRMQKGIDYVKNKMRECFQKAFFRKPKVIEIHEGNKIDSCMSNNTGIEISKELNYLRDGNGTT


SGVGTGSSVEKYVIDENDYMSFINNPSLTVTVPIAVGESDFENLNTEEFSSESELEESKEKLNATSSSEGSTV


DVVLPREGEQAETEPEEDLKPEACFTEGCIKKFPFCQVSTEEGKGKIWWNLRKTCYSIVEHNWFETFIVFMI


LLSSGALAFEDIYIEQRKTIKTMLEYADKVFTYIFILEMLLKWVAYGFQTYFTNAWCWLDFLIVDVSLVSLV


ANALGYSELGAIKSLRTLRALRPLRALSRFEGMRVVVNALVGAIPSIMNVLLVCLIFWLIFSIMGVNLFAGK


FYHCVNMTTGNMFDISDVNNLSDCQALGKQARWKNVKVNFDNVGAGYLALLQVATFKGWMDIMYAAV


DSRDVKLQPVYEENLYMYLYFVIFIIFGSFFTLNLFIGVIIDNFNQQKKKFGGQDIFMTEEQKKYYNAMKKL


GSKKPQKPIPRPANKFQGMVFDFVTRQVFDISIMILICLNMVTMMVETDDQGKYMTLVLSRINLVFIVLFTG


EFVLKLVSLRHYYFTIGWNIFDFVVVILSIVGMFLAEMIEKYFVSPTLFRVIRLARIGRILRLIKGAKGIRTLLF


ALMMSLPALFNIGLLLFLVMFIYAIFGMSNFAYVKKEAGIDDMENFETFGNSMICLFQITTSAGWDGLLAPI


LNSAPPDCDPDTIHPGSSVKGDCGNPSVGIFFFVSYIIISELVVVNMYIAVILENFSVATEESAEPLSEDDFEMF


YEVWEKFDPDATQFIEFSKLSDFAAALDPPLLIAKPNKVQLIAMDLPMVSGDRIHCLDILFAFTKRVLGESG


EMDALRIQMEDRFMASNPSKVSYEPITTTLKRKQEEVSAAIIQRNFRCYLLKQRLKNISSNYNKEAIKGRIDL


PIKQDMIIDKLNGNSTPEKTDGSSSTTSPPSYDSVTKPDKEKFEKDKPEKESKGKEVRENQK





CACNAIH (Uniprot #: 095180)


Synonyms: CaV3.2, CACIH


(SEQ ID NO: 2439)



MTEGARAADEVRVPLGAPPPGPAALVGASPESPGAPGREAERGSELGVSPSESPAAERGAELGADEEQRVP



YPALAATVFFCLGQTTRPRSWCLRLVCNPWFEHVSMLVIMLNCVTLGMFRPCEDVECGSERCNILEAFDAF


IFAFFAVEMVIKMVALGLFGQKCYLGDTWNRLDFFIVVAGMMEYSLDGHNVSLSAIRTVRVLRPLRAINR


VPSMRILVTLLLDTLPMLGNVLLLCFFVFFIFGIVGVQLWAGLLRNRCFLDSAFVRNNNLTFLRPYYQTEEG


EENPFICSSRRDNGMQKCSHIPGRRELRMPCTLGWEAYTQPQAEGVGAARNACINWNQYYNVCRSGDSNP


HNGAINFDNIGYAWIAIFQVITLEGWVDIMYYVMDAHSFYNFIYFILLIIVGSFFMINLCLVVIATQFSETKQR


ESQLMREQRARHLSNDSTLASFSEPGSCYEELLKYVGHIFRKVKRRSLRLYARWQSRWRKKVDPSAVQGQ


GPGHRQRRAGRHTASVHHLVYHHHHHHHHHYHFSHGSPRRPGPEPGACDTRLVRAGAPPSPPSPGRGPPD


AESVHSIYHADCHIEGPQERARVAHAAATAAASLRLATGLGTMNYPTILPSGVGSGKGSTSPGPKGKWAG


GPPGTGGHGPLSLNSPDPYEKIPHVVGEHGLGQAPGHLSGLSVPCPLPSPPAGTLTCELKSCPYCTRALEDPE


GELSGSESGDSDGRGVYEFTQDVRHGDRWDPTRPPRATDTPGPGPGSPQRRAQQRAAPGEPGWMGRLWV


TFSGKLRRIVDSKYFSRGIMMAILVNTLSMGVEYHEQPEELTNALEISNIVFTSMFALEMLLKLLACGPLGYI


RNPYNIFDGIIVVISVWEIVGQADGGLSVLRTFRLLRVLKLVRFLPALRRQLVVLVKTMDNVATFCTLLMLF


IFIFSILGMHLFGCKFSLKTDTGDTVPDRKNFDSLLWAIVTVFQILTQEDWNVVLYNGMASTSSWAALYFV


ALMTFGNYVLENLLVAILVEGFQAEGDANRSDTDEDKTSVHFEEDFHKLRELQTTELKMCSLAVTPNGHL


EGRGSLSPPLIMCTAATPMPTPKSSPFLDAAPSLPDSRRGSSSSGDPPLGDQKPPASLRSSPCAPWGPSGAWS


SRRSSWSSLGRAPSLKRRGQCGERESLLSGEGKGSTDDEAEDGRAAPGPRATPLRRAESLDPRPLRPAALPP


TKCRDRDGQVVALPSDFFLRIDSHREDAAELDDDSEDSCCLRLHKVLEPYKPQWCRSREAWALYLFSPQN


RFRVSCQKVITHKMFDHVVLVFIFLNCVTIALERPDIDPGSTERVFLSVSNYIFTAIFVAEMMVKVVALGLLS


GEHAYLQSSWNLLDGLLVLVSLVDIVVAMASAGGAKILGVLRVLRLLRTLRPLRVISRAPGLKLVVETLISS


LRPIGNIVLICCAFFIIFGILGVQLFKGKFYYCEGPDTRNISTKAQCRAAHYRWVRRKYNFDNLGQALMSLF


VLSSKDGWVNIMYDGLDAVGVDQQPVQNHNPWMLLYFISFLLIVSFFVLNMFVGVVVENFHKCRQHQEA


EEARRREEKRLRRLERRRRSTFPSPEAQRRPYYADYSPTRRSIHSLCTSHYLDLFITFIICVNVITMSMEHYNQ


PKSLDEALKYCNYVFTIVFVFEAALKLVAFGFRRFFKDRWNQLDLAIVLLSLMGITLEEIEMSAALPINPTIIR


IMRVLRIARVLKLLKMATGMRALLDTVVQALPQVGNLGLLFMLLFFIYAALGVELFGRLECSEDNPCEGLS


RHATFSNFGMAFLTLFRVSTGDNWNGIMKDTLRECSREDKHCLSYLPALSPVYFVTFVLVAQFVLVNVVV


AVLMKHLEESNKEAREDAELDAEIELEMAQGPGSARRVDADRPPLPQESPGARDAPNLVARKVSVSRMLS


LPNDSYMFRPVVPASAPHPRPLQEVEMETYGAGTPLGSVASVHSPPAESCASLQIPLAVSSPARSGEPLHAL


SPRGTARSPSLSRLLCRQEAVHTDSLEGKIDSPRDTLDPAEPGEKTPVRPVTQGGSLQSPPRSPRPASVRTRK


HTFGQRCVSSRPAAPGGEEAEASDPADEEVSHITSSACPWQPTAEPHGPEASPVAGGERDLRRLYSVDAQG


FLDKPGRADEQWRPSAELGSGEPGEAKAWGPEAEPALGARRKKKMSPPCISVEPPAEDEGSARPSAAEGGS


TTLRRRTPSCEATPHRDSLEPTEGSGAGGDPAAKGERWGQASCRAEHLTVPSFAFEPLDLGVPSGDPFLDGS


HSVTPESRASSSGAIVPLEPPESEPPMPVGDPPEKRRGLYLTVPQCPLEKPGSPSATPAPGGGADDPV





HCN1 (Uniprot #: 060741)


Synonyms: BCNG1


(SEQ ID NO: 2440)



MEGGGKPNSSSNSRDDGNSVFPAKASATGAGPAAAEKRLGTPPGGGGAGAKEHGNSVCFKVDGGGGGG



GGGGGGEEPAGGFEDAEGPRRQYGFMQRQFTSMLQPGVNKFSLRMFGSQKAVEKEQERVKTAGFWIIHP


YSDFRFYWDLIMLIMMVGNLVIIPVGITFFTEQTTTPWIIFNVASDTVFLLDLIMNFRTGTVNEDSSEIILDPK


VIKMNYLKSWFVVDFISSIPVDYIFLIVEKGMDSEVYKTARALRIVRFTKILSLLRLLRLSRLIRYIHQWEEIF


HMTYDLASAVVRIFNLIGMMLLLCHWDGCLQFLVPLLQDFPPDCWVSLNEMVNDSWGKQYSYALFKAM


SHMLCIGYGAQAPVSMSDLWITMLSMIVGATCYAMFVGHATALIQSLDSSRRQYQEKYKQVEQYMSFHK


LPADMRQKIHDYYEHRYQGKIFDEENILNELNDPLREEIVNFNCRKLVATMPLFANADPNFVTAMLSKLRF


EVFQPGDYIIREGAVGKKMYFIQHGVAGVITKSSKEMKLTDGSYFGEICLLTKGRRTASVRADTYCRLYSLS


VDNFNEVLEEYPMMRRAFETVAIDRLDRIGKKNSILLQKFQKDLNTGVENNQENEILKQIVKHDREMVQAI


APINYPQMTTLNSTSSTTTPTSRMRTQSPPVYTATSLSHSNLHSPSPSTQTPQPSAILSPCSYTTAVCSPPVQSP


LAARTFHYASPTASQLSLMQQQPQQQVQQSQPPQTQPQQPSPQPQTPGSSTPKNEVHKSTQALHNTNLTRE


VRPLSASQPSLPHEVSTLISRPHPTVGESLASIPQPVTAVPGTGLQAGGRSTVPQRVTLFRQMSSGAIPPNRG


VPPAPPPPAAALPRESSSVLNTDPDAEKPRFASNL





HCN2 (Uniprot #: Q9UL51)


Synonyms:BCNG2


(SEQ ID NO: 2441)



MDARGGGGRPGESPGATPAPGPPPPPPPAPPQQQPPPPPPPAPPPGPGPAPPQHPPRAEALPPEAADEGGPRG



RLRSRDSSCGRPGTPGAASTAKGSPNGECGRGEPQCSPAGPEGPARGPKVSFSCRGAASGPAPGPGPAEEA


GSEEAGPAGEPRGSQASFMQRQFGALLQPGVNKFSLRMFGSQKAVEREQERVKSAGAWIIHPYSDFRFYW


DFTMLLFMVGNLIIIPVGITFFKDETTAPWIVENVVSDTFFLMDLVLNFRTGIVIEDNTEIILDPEKIKKKYLRT


WFVVDFVSSIPVDYIFLIVEKGIDSEVYKTARALRIVRFTKILSLLRLLRLSRLIRYIHQWEEIFHMTYDLASA


VMRICNLISMMLLLCHWDGCLQFLVPMLQDFPRNCWVSINGMVNHSWSELYSFALFKAMSHMLCIGYGR


QAPESMTDIWLTMLSMIVGATCYAMFIGHATALIQSLDSSRRQYQEKYKQVEQYMSFHKLPADFRQKIHD


YYEHRYQGKMFDEDSILGELNGPLREEIVNFNCRKLVASMPLFANADPNFVTAMLTKLKFEVFQPGDYIIR


EGTIGKKMYFIQHGVVSVLTKGNKEMKLSDGSYFGEICLLTRGRRTASVRADTYCRLYSLSVDNFNEVLEE


YPMMRRAFETVAIDRLDRIGKKNSILLHKVQHDLNSGVFNNQENAIIQEIVKYDREMVQQAELGQRVGLFP


PPPPPPQVTSAIATLQQAAAMSFCPQVARPLVGPLALGSPRLVRRPPPGPAPAAASPGPPPPASPPGAPASPR


APRTSPYGGLPAAPLAGPALPARRLSRASRPLSASQPSLPHGAPGPAASTRPASSSTPRLGPTPAARAAAPSP


DRRDSASPGAAGGLDPQDSARSRLSSNL





ANO1 (Uniprot #: Q5XXA6)


Synonyms: DOG1, ORAOV2, TAOS2, TMEM16A


(SEQ ID NO: 2442)



MRVNEKYSTLPAEDRSVHIINICAIEDIGYLPSEGTLLNSLSVDPDAECKYGLYFRDGRRKVDYILVYHHKR



PSGNRTLVRRVQHSDTPSGARSVKQDHPLPGKGASLDAGSGEPPMDYHEDDKRFRREEYEGNLLEAGLEL


ERDEDTKIHGVGFVKIHAPWNVLCREAEFLKLKMPTKKMYHINETRGLLKKINSVLQKITDPIQPKVAEHR


PQTMKRLSYPFSREKQHLEDLSDKDSFFDSKTRSTIVYEILKRTTCTKAKYSMGITSLLANGVYAAAYPLHD


GDYNGENVEFNDRKLLYEEWARYGVFYKYQPIDLVRKYFGEKIGLYFAWLGVYTQMLIPASIVGIVFLYG


CATMDENIPSMEMCDQRHNITMCPLCDKTCSYWKMSSACATARASHLFDNPATVFFSVFMALWAATFME


HWKRKQMRLNYRWDLTGFEEEEEAVKDHPRAEYEARVLEKSLKKESRNKEKRRHIPEESTNKWKQRVKT


AMAGVKLTDKVKLTWRDRFPAYLINLVSIIFMIAVTFAIVLGVIIYRISMAAALAMNSSPSVRSNIRVTVTA


TAVIINLVVIILLDEVYGCIARWLTKIEVPKTEKSFEERLIFKAFLLKFVNSYTPIFYVAFFKGRFVGRPGDYV


YIFRSFRMEECAPGGCLMELCIQLSIIMLGKQLIQNNLFEIGIPKMKKLIRYLKLKQQSPPDHEECVKRKQRY


EVDYNLEPFAGLTPEYMEMIIQFGFVTLFVASFPLAPLFALLNNIIEIRLDAKKFVTELRRPVAVRAKDIGIW


YNILRGIGKLAVIINAFVISFTSDFIPRLVYLYMYSKNGTMHGFVNHTLSSENVSDFQNGTAPNDPLDLGYEV


QICRYKDYREPPWSENKYDISKDFWAVLAARLAFVIVFQNLVMFMSDFVDWVIPDIPKDISQQIHKEKVLM


VELFMREEQDKQQLLETWMEKERQKDEPPCNHHNTKACPDSLGSPAPSHAYHGGVL






Example 3: C to T Base Editing to Introduce a Premature Stop Codon in Mouse Neuro-2a Cells

On day 1, a culture of mouse Neuro-2a cells (ATCC) was resuspended using trypsin (TrypLE), and diluted to 1.25×105 cells/mL with DMEM supplemented with 10% FBS and no antibiotics. This suspension of cells (250 μL) was used to seed a 48-well plate coated with poly-D-Lysine, and incubated at 37° C. with 5% CO2 for 24 hours. On day 2, each well was treated with a cationic lipid-DNA complex comprising 1.5 μL Lipofectamine 3000 and 1 μL of P3000 Reagent (ThermoFisher Scientific), 750 ng of base editor and 250 ng of sgRNA expression plasmids prepared as per the manufacturer's recommendation in a total volume of 25 μL DMEM. The base editing expression vector used the base editor 4 (BE4) architecture as described in Komor et al. 2017.51 The sgRNA expression plasmid contained the protospacer RNA sequence and the S. pyogenes guide-RNA scaffold driven by a U6 promoter. The transfected Neuro-2a cells were incubated for 72 hours in the same media. On day 5, the cells were resuspended with trypsin (TrypLE), centrifuged, and the cell pellets were washed three times with PBS. The cells were treated with 75 μL of lysis buffer (comprising: 10 mM Tris-HCl pH 8, 0.05% sodium dodecyl sulfate, 25 ug/mL Proteinase K) and incubated at 37° C. for 1 hour in a thermocycler, followed by 80° C. for 20 minutes. The lysate was diluted 1:25 in water, and the target genomic loci were PCR amplified for high-throughput DNA sequencing as described in Komor et al. 2016.52 See FIGS. 4-6 for non-limiting examples of the results obtained from C→T base editing treatments using guide-RNAs targeted to the NaV1.7/SCN9A gene in the mouse Neuro-2a cell line.


REFERENCES



  • 1 Waxman, S. G. & Zamponi, G. W. Regulating excitability of peripheral afferents: emerging ion channel targets. Nature neuroscience 17, 153-163, (2014).

  • 2 Guedon. J. M. et al. Current gene therapy using viral vectors for chronic pain. Molecular pain 11, 27, (2015).

  • 3 Kumar. S., Ruchi, R., James, S. R. & Chidiac, E. J. Gene therapy for chronic neuropathic pain: how does it work and where do we stand today? Pain Med 12, 808-822, (2011).

  • 4 Sapunar, D., Kostic, S., Banozic, A. & Puljak, L. Dorsal root ganglion—a potential new therapeutic target for neuropathic pain. Journal of pain research 5, 31-38, (2012).

  • 5 Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A. & Liu, D. R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420-424, (2016).

  • 6 Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819-823, (2013).

  • 7 Jinek. M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816-821, (2012).

  • 8 Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823-826, (2013).

  • 9 Ran, F. A. et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154, 1380-1389, (2013).

  • 10 Guilinger, J. P., Thompson, D. B. & Liu, D. R. Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nature biotechnology 32, 577-582, (2014).

  • 11 Tsai, S. Q. et al. Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nature Biotechnology 32, 569-576. (2014).

  • 12 Zetsche, B. et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163, 759-771, (2015).

  • 13 Gao, F., Shen, X. Z., Jiang, F., Wu, Y. & Han, C. DNA-guided genome editing using the Natronobacterium gregoryi Argonaute. Nature Biotechnology 34, 768-773, (2016).

  • 14 Cradick, T. J., Fine, E. J., Antico, C. J. & Bao, G. CRISPR/Cas9 systems targeting β-globin and CCR5 genes have substantial off-target activity. Nucleic acids research, (2013).

  • 15 Holt, N. et al. Human hematopoietic stem/progenitor cells modified by zinc-finger nucleases targeted to CCR5 control HIV-1 in vivo. Nature Biotechnology 28, 839-847, (2010).

  • 16 Shen, Y. & Nemunaitis, J. Herpes simplex virus 1 (HSV-1) for cancer treatment. Cancer gene therapy 13, 975-992, (2006).

  • 17 Smith, G. Herpesvirus transport to the nervous system and back again. Annual review of microbiology 66, 153-176, (2012).

  • 18 Burton, E. A., Fink, D. J. & Glorioso, J. C. Gene delivery using herpes simplex virus vectors. DNA and cell biology 21, 915-936, (2002).

  • 19 Kay, M. A., Glorioso, J. C. & Naldini, L. Viral vectors for gene therapy: the art of turning infectious agents into vehicles of therapeutics. Nature medicine 7, 33-40, (2001).

  • 20 Epstein, A. L. HSV-1-based amplicon vectors: design and applications. Gene therapy 12 Suppl 1, S154-158, (2005).

  • 21 Steiner. I., Kennedy, P. G. & Pachner, A. R. The neurotropic herpes viruses: herpes simplex and varicella-zoster. The Lancet. Neurology 6, 1015-1028, (2007).

  • 22 Lancaster. K. Z. & Pfeiffer, J. K. Limited trafficking of a neurotropic virus through inefficient retrograde axonal transport and the type I interferon response. PLoS pathogens 6, e1000791, (2010).

  • 23 Hotta, H. [Neurotropic viruses—classification, structure and characteristics]. Nihon rinsho. Japanese journal of clinical medicine 55, 777-782, (1997).

  • 24 Kleinstiver, B. P. et al. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529, 490-495, (2016).

  • 25 Slaymaker. I. M. et al. Rationally engineered Cas9 nucleases with improved specificity. Science 351, 84-88, (2016).

  • 26 Pattanayak, V. et al. High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nature biotechnology 31, 839-843. (2013).

  • 27 Wu, X. et al. Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells. Nature Biotechnology 32, 670-676, (2014).

  • 28 Hsu, P. D. et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nature biotechnology 31, 827-832, (2013).

  • 29 Davis, K. M., Pattanayak, V., Thompson, D. B., Zuris, J. A. & Liu, D. R. Small Molecule-Triggered Cas9 Protein With Improved Genome-Editing Specificity. Nature Chemical Biology in press, (2015).

  • 30 Lee, J. H. et al. A monoclonal antibody that targets a NaV1.7 channel voltage sensor for pain and itch relief. Cell 157, 1393-1404, (2014).

  • 31 Bagal, S. K. et al. Recent progress in sodium channel modulators for pain. Bioorganic & medicinal chemistry letters 24, 3690-3699, (2014).

  • 32 King, G. F. & Vetter, I. No gain, no pain: NaV1.7 as an analgesic target. ACS chemical neuroscience 5, 749-751, (2014).

  • 33 Martz, L. Targeting Nav1.7 in pain and itch. Science-Business eXchange 7, (2014, doi:10.1038/scibx.2014.662).

  • 34 Cox, J. J. et al. An SCN9A channelopathy causes congenital inability to experience pain. Nature 444, 894-898, (2006).

  • 35 Cox, J. J. et al. Congenital insensitivity to pain: novel SCN9A missense and in-frame deletion mutations. Human mutation 31, E1670-1686, (2010).

  • 36 Goldberg, Y. P. et al. Loss-of-function mutations in the Nav1.7 gene underlie congenital indifference to pain in multiple human populations. Clinical genetics 71, 311-319, (2007).

  • 37 Yang, Y. et al. Mutations in SCN9A, encoding a sodium channel alpha subunit, in patients with primary erythermalgia. Journal of medical genetics 41, 171-174, (2004).

  • 38 Leipold, E. et al. A de novo gain-of-function mutation in SCN11A causes loss of pain perception. Nature genetics 45, 1399-1404, (2013).

  • 39 Weiss, J. et al. Loss-of-function mutations in sodium channel Nav1.7 cause anosmia. Nature 472, 186-190, (2011).

  • 40 Devigili, G. et al. Paroxysmal itch caused by gain-of-function Nav 1.7 mutation. Pain 155, 1702-1707. (2014).

  • 41 Woods, C. G., Babiker, M. O., Horrocks, I., Tolmie. J. & Kurth, I. The phenotype of congenital insensitivity to pain due to the NaV1.9 variant p.L811P. European journal of human genetics: EJHG 23, 561-563. (2015).

  • 42 Bourinet, E. et al. Silencing of the Cav3.2 T-type calcium channel gene in sensory neurons demonstrates its major role in nociception. The EMBO journal 24, 315-324. (2005).

  • 43 Cho, H. et al. The calcium-activated chloride channel anoctamin 1 acts as a heat sensor in nociceptive neurons. Nature neuroscience 15, 1015-1021. (2012).

  • 44 Andre, S. et al. Axotomy-induced expression of calcium-activated chloride current in subpopulations of mouse dorsal root ganglion neurons. Journal of neurophysiology 90, 3764-3773, (2003).

  • 45 Benarroch, E. E. HCN channels: function and clinical implications. Neurology 80, 304-310. (2013).

  • 46 Emery, E. C., Young, G. T., Berrocoso, E. M., Chen, L. & McNaughton, P. A. HCN2 ion channels play a central role in inflammatory and neuropathic pain. Science 333, 1462-1466, (2011).

  • 47 Shalem. O., Sanjana. N. E. & Zhang, F. High-throughput functional genomics using CRISPR-Cas9. Nature reviews. Genetics 16, 299-311, (2015).

  • 48 Chen, S. et al. Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis. Cell 160, 1246-1260, (2015).

  • 49 Kleinstiver. B. P. et al. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 523, 481-485, (2015).

  • 50 Doench, J. G. et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nature biotechnology 34, 184-191, (2016).

  • 51 Komor, A. C. et al. Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C:G-toT:A base editors with higher efficiency and product purity. Science Advances 3, eaao4774, (2017).

  • 52 Komor, A. C. et al. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420-424 (2016).



EQUIVALENTS AND SCOPE

In the claims articles such as “a,” “an,” and “the” may mean one or more than one unless indicated to the contrary or otherwise evident from the context. Claims or descriptions that include “or” between one or more members of a group are considered satisfied if one, more than one, or all of the group members are present in, employed in, or otherwise relevant to a given product or process unless indicated to the contrary or otherwise evident from the context. The invention includes embodiments in which exactly one member of the group is present in, employed in, or otherwise relevant to a given product or process. The invention includes embodiments in which more than one, or all of the group members are present in, employed in, or otherwise relevant to a given product or process.


Furthermore, the invention encompasses all variations, combinations, and permutations in which one or more limitations, elements, clauses, and descriptive terms from one or more of the listed claims is introduced into another claim. For example, any claim that is dependent on another claim can be modified to include one or more limitations found in any other claim that is dependent on the same base claim. Where elements are presented as lists, e.g., in Markush group format, each subgroup of the elements is also disclosed, and any element(s) can be removed from the group. It should it be understood that, in general, where the invention, or aspects of the invention, is/are referred to as comprising particular elements and/or features, certain embodiments of the invention or aspects of the invention consist, or consist essentially of, such elements and/or features. For purposes of simplicity, those embodiments have not been specifically set forth in haec verba herein.


It is also noted that the terms “comprising” and “containing” are intended to be open and permits the inclusion of additional elements or steps. Where ranges are given, endpoints are included. Furthermore, unless otherwise indicated or otherwise evident from the context and understanding of one of ordinary skill in the art, values that are expressed as ranges can assume any specific value or sub-range within the stated ranges in different embodiments of the invention, to the tenth of the unit of the lower limit of the range, unless the context clearly dictates otherwise.


This application refers to various issued patents, published patent applications, journal articles, and other publications, all of which are incorporated herein by reference. If there is a conflict between any of the incorporated references and the instant specification, the specification shall control. In addition, any particular embodiment of the present invention that falls within the prior art may be explicitly excluded from any one or more of the claims. Because such embodiments are deemed to be known to one of ordinary skill in the art, they may be excluded even if the exclusion is not set forth explicitly herein. Any particular embodiment of the invention can be excluded from any claim, for any reason, whether or not related to the existence of prior art.


Those skilled in the art will recognize or be able to ascertain using no more than routine experimentation many equivalents to the specific embodiments described herein. The scope of the present embodiments described herein is not intended to be limited to the above Description, but rather is as set forth in the appended claims. Those of ordinary skill in the art will appreciate that various changes and modifications to this description may be made without departing from the spirit or scope of the present invention, as defined in the following claims.

Claims
  • 1-62. (canceled)
  • 63. A composition comprising: (i) a fusion protein comprising: (a) a guide nucleotide sequence-programmable DNA binding protein domain; and (b) a cytosine deaminase domain; and(ii) a guide nucleotide sequence targeting the fusion protein of (i) to a target cytosine (C) base in an ion channel-encoding polynucleotide.
  • 64. A composition comprising a neurotropic viral delivery vector comprising a nucleic acid encoding: (i) a fusion protein comprising: (a) a guide nucleotide sequence-programmable DNA binding protein domain; and (b) a cytosine deaminase domain; and(ii) a guide nucleotide sequence targeting the fusion protein of (i) to a target cytosine (C) base in an ion channel-encoding polynucleotide.
  • 65. The composition of claim 63, wherein the guide nucleotide sequence comprises the nucleotide sequence of any one of SEQ ID NOs: 339-1456 or 1504-2425.
  • 66. The composition of claim 63, wherein the composition further comprises a pharmaceutically acceptable carrier.
  • 67. (canceled)
  • 68. A method of suppressing pain, the method comprising administering to a subject in need thereof a therapeutically effective amount of the composition of claim 63.
  • 69-79. (canceled)
  • 80. The composition of claim 63, wherein when the fusion protein of (i) targets the cytosine (C) base in an ion channel-encoding polynucleotide, a C to T change occurs in the coding region of the ion channel-encoding polynucleotide.
  • 81. The composition of claim 63, wherein when the fusion protein of (i) targets the cytosine (C) base in an ion channel-encoding polynucleotide, a premature stop codon is introduced in the ion channel-coding sequence that leads to a truncated or non-functional ion channel.
  • 82. The composition of claim 63, wherein when the fusion protein of (i) targets the cytosine (C) base in an ion channel-encoding polynucleotide, a mutation occurs that destabilizes ion-channel protein folding.
  • 83. The composition of claim 63, wherein when the fusion protein of (i) targets the cytosine (C) base in an ion channel-encoding polynucleotide, a C to T change occurs at a C base-paired with the G base in a start codon (AUG).
  • 84. The composition of claim 63, wherein when the fusion protein of (i) targets the cytosine (C) base in an ion channel-encoding polynucleotide, a C to T change occurs in the non-coding region of the ion channel-encoding polynucleotide.
  • 85. The composition of claim 63, wherein the ion channel-encoding polynucleotide is selected from the group consisting of: NaV1.7, NaV1.8, NaV1.9, NaV1.3, CaV3.2, HCN1, HCN2, and Ano1.
  • 86. The composition of claim 63, wherein the ion channel-encoding polynucleotide is NaV1.7 encoded by the SCN9A gene.
  • 87. The composition of claim 63, wherein the guide nucleotide sequence-programmable DNA binding protein domain is selected from the group consisting of: nuclease inactive Cas9 (dCas9) domains, nuclease inactive Cpf1 domains, nuclease inactive Argonaute domains, and variants thereof.
  • 88. The composition of claim 63, wherein the cytosine deaminase domain comprises an apolipoprotein B mRNA-editing complex (APOBEC) family deaminase.
  • 89. The composition of claim 63, wherein the cytosine deaminase domain is selected from the group consisting of APOBEC1, APOBEC2, APOBEC3A, APOBEC3B, APOBEC3C, APOBEC3D, APOBEC3F, APOBEC3G deaminase, APOBEC3H deaminase, APOBEC4 deaminase, activation-induced deaminase (AID), and pmCDA1.
  • 90. The composition of claim 63, wherein the cytosine deaminase domain comprises an amino acid sequence having at least 95% sequence identity to any one of SEQ ID NOs: 271-292, 303, and 2483-2494.
  • 91. The composition of claim 63, wherein the fusion protein further comprises a uracil glycosylase inhibitor (UGI) domain.
  • 92. The composition of claim 91, wherein the UGI domain comprises an amino acid sequence having at least 95% sequence identity to SEQ ID NO: 304.
  • 93. The composition of claim 63, wherein the fusion protein comprises an amino acid sequence having at least 95% sequence identity to any one of SEQ ID NOs: 296-302 and 2495.
  • 94. A method of editing a polynucleotide encoding an ion channel in a dorsal root ganglion (DRG) neuron, the method comprising contacting the ion channel-encoding polynucleotide with the composition of claim 63; wherein the guide nucleic acid molecule is selected from the nucleic acid sequence having at least 95% sequence identity to any one of SEQ ID NOs: 339-1456; and whereby the contacting results in deamination of the target C base by the fusion protein, resulting in a C to T change in the ion channel-encoding polynucleotide.
RELATED APPLICATIONS

The present application is a national stage filing under 35 U.S.C. § 371 of international PCT application, PCT/US2018/021664, filed Mar. 9, 2018, which claims priority under 35 U.S.C. § 119(e) to U.S. provisional application, U.S. Ser. No. 62/469,408, filed Mar. 9, 2017, each of which is incorporated herein by reference.

Provisional Applications (1)
Number Date Country
62469408 Mar 2017 US
Continuations (1)
Number Date Country
Parent 16492548 Sep 2019 US
Child 18545977 US