Suppression of pain by gene editing

Information

  • Patent Grant
  • 11898179
  • Patent Number
    11,898,179
  • Date Filed
    Friday, March 9, 2018
    6 years ago
  • Date Issued
    Tuesday, February 13, 2024
    3 months ago
Abstract
Provided herein are systems, compositions, kits, and methods for the suppression of pain (e.g., chronic pain). Genes encoding ion channels (e.g., SCN9A) responsible for the propagation pain signals in neurons (e.g., DRG neurons) may be edited using a genome editing agent (e.g., a nucleobase editor). In some embodiments, loss-of-function ion channel mutants are generated, leading to pain suppression. In some embodiments, the genome editing agent is administered locally to the site of pain or to the nerves responsible for propagation of the pain signal.
Description
REFERENCE TO A SEQUENCE LISTING SUBMITTED AS A TEXT FILE VIA EFS-WEB

This application contains a Sequence Listing which has been submitted in ASCII format via EFS-Web and is hereby incorporated by reference in its entirety. Said ASCII copy, created on Jul. 17, 2023, is named H082470245US02-SUBSEQ-AZW and is 4,153,363 bytes in size.


BACKGROUND OF THE INVENTION

Long-term chronic pain due to trauma and associated with advanced cancer as well as other causes remains an unmet medical need. Management of pain using painkillers is inherently limited by the development of tolerance, physiological dependence, progressive addiction, and potential for overdose. Current health care policies in response to the massive demand for painkillers have led to extensive prescription of opioids, inadvertently contributing to broader public challenges associated with substance abuse and drug-related crime. Fundamentally, there is a pressing need for an innovative solution to address chronic pain that is non-addictive, generalizable, and/or permanent.


SUMMARY OF THE INVENTION

Described herein are systems, compositions, kits, and methods for the suppression of pain (e.g., chronic pain). The strategies rely, at least in part, on the targeted editing of genes encoding proteins (e.g., ion channels such as Nav1.7 encoded by the SCN9A gene) responsible for the propagation of pain signals in sensory neurons that display dysregulated excitability, e.g., in dorsal root ganglia (DRG) neurons. The targeted genome editing may be achieved, in some embodiments, using a genome editing agent, e.g., a nucleobase editor comprising a catalytically inactive Cas9 or a Cas9 nickase and a cytosine deaminase. The nucleobase editor introduces cytosine (C) to thymine (T) mutations in the targeted gene. In some embodiments, loss-of-function ion channel mutants are generated, leading to pain suppression. In some embodiments, the genome editing agent is administered locally to the site of pain. The pain suppression strategies provided herein are effective in long-term pain suppression and have high safety profiles. In some embodiments, neurotropic viral delivery vectors are used to specifically deliver the genome editing agent to neurons. In some embodiments, neuron-specific promoters are used to drive the expression of the genome editing agents specifically in neurons.


Some aspects of the present disclosure provide methods of editing a polynucleotide encoding an ion channel in a dorsal root ganglia (DRG) neuron, the method comprising contacting the ion channel-encoding polynucleotide with: (i) a fusion protein comprising: (a) a guide nucleotide sequence-programmable DNA binding protein domain; and (b) a cytosine deaminase domain; and (ii) a guide nucleotide sequence targeting the fusion protein of (i) to a target cytosine (C) base in the ion channel-encoding polynucleotide, whereby the contacting results in deamination of the target C base by the fusion protein, resulting in a cytosine (C) to thymine (T) change in the ion channel-encoding polynucleotide. In some embodiments, the guide nucleotide sequence-programmable DNA binding protein domain is selected from the group consisting of: nuclease inactive Cas9 (dCas9) domains, nuclease inactive Cpf1 domains, nuclease inactive Argonaute domains, and variants thereof.


In some embodiments, the guide nucleotide sequence-programmable DNA-binding protein domain is a nuclease inactive Cas9 (dCas9) domain. In some embodiments, the dCas9 domain is from Streptococcus pyogenes. In some embodiments, the amino acid sequence of the dCas9 domain includes mutations corresponding to a D10A and/or H840A mutation in SEQ ID NO: 1. In some embodiments, the amino acid sequence of the dCas9 domain includes a mutation corresponding to a D10A mutation in SEQ ID NO: 1, and wherein the dCas9 domain includes a histidine at the position corresponding to amino acid 840 of SEQ ID NO: 1. In some embodiments, the guide nucleotide sequence-programmable DNA-binding protein domain comprises a nuclease inactive Cpf1 (dCpf1) domain. In some embodiments, the dCpf1 domain is from a species of Acidaminococcus or Lachnospiraceae. In some embodiments, the guide nucleotide sequence-programmable DNA-binding protein domain comprises a nuclease inactive Argonaute (dAgo) domain. In some embodiments, the dAgo domain is from Natronobacterium gregoryi (dNgAgo).


In some embodiments, the cytosine deaminase domain comprises an apolipoprotein B mRNA-editing complex (APOBEC) family deaminase. In some embodiments, the cytosine deaminase is selected from the group consisting of APOBEC1, APOBEC2, APOBEC3A, APOBEC3B, APOBEC3C, APOBEC3D, APOBEC3F, APOBEC3G deaminase, APOBEC3H deaminase, APOBEC4 deaminase, activation-induced deaminase (AID), and pmCDA1. In some embodiments, the cytosine deaminase comprises the amino acid sequence of any one of SEQ ID NOs: 271-292 and 303.


In some embodiments, the fusion protein further comprises a uracil glycosylase inhibitor (UGI) domain. In some embodiments, the UGI domain comprises the amino acid sequence of SEQ ID NO: 304.


In some embodiments, the cytosine deaminase domain is fused to the N-terminus of the guide nucleotide sequence-programmable DNA-binding protein domain. In some embodiments, the UGI domain is fused to the C-terminus of the guide nucleotide sequence-programmable DNA-binding protein domain.


In some embodiments, the cytosine deaminase and the guide nucleotide sequence-programmable DNA-binding protein domain are fused via an optional linker. In some embodiments, the UGI domain is fused to the dCas9 domain via an optional linker.


In some embodiments, the fusion protein has the structure NH2-[cytosine deaminase domain]-[optional linker sequence]-[guide nucleotide sequence-programmable DNA-binding protein domain]-[optional linker sequence]-[UGI domain]-COOH. In some embodiments, the fusion protein has the structure NH2-[UGI domain]-[optional linker sequence]-[cytosine deaminase domain]-[optional linker sequence]-[guide nucleotide sequence-programmable DNA-binding protein domain]-COOH. In some embodiments, the fusion protein has the structure NH2-[cytosine deaminase domain]-[optional linker sequence]-[guide nucleotide sequence-programmable DNA-binding protein domain]-COOH.


In some embodiments, the linker comprises (GGGS)n (SEQ ID NO: 2430), (GGGGS)n (SEQ ID NO: 308), (G)n(SEQ ID NO: 2498), (EAAAK)n (SEQ ID NO: 309), (GGS)n(SEQ ID NO: 2467), SGSETPGTSESATPES (SEQ ID NO: 310), or (XP)n motif, or a combination of any of these, wherein n is independently an integer between 1 and 30, and wherein X is any amino acid. In some embodiments, the linker comprises the amino acid sequence SGSETPGTSESATPES (SEQ ID NO: 310). In some embodiments, the linker is (GGS)n (SEQ ID NO: 2467), and wherein n is 1, 3, or 7.


In some embodiments, the fusion protein comprises the amino acid sequence of any one of SEQ ID NO: 10, 293-302, and 2495.


In some embodiments, the polynucleotide encoding the ion channel comprises a coding strand and a complementary strand. In some embodiments, the polynucleotide encoding the ion channel comprises a coding region and a non-coding region. In some embodiments, the C to T change occurs in the coding region of the ion channel-encoding polynucleotide. In some embodiments, the C to T change leads to a mutation in the ion channel.


In some embodiments, the mutation introduces a premature stop codon in the ion channel-coding sequence that leads to a truncated or non-functional ion channel. In some embodiments, the premature stop codon is TAG (Amber), TGA (Opal), or TAA (Ochre). In some embodiments, the mutation destabilizes ion-channel protein folding. In some embodiments, the C to T change occurs at a C base-paired with the G base in a start codon (AUG).


In some embodiments, the C to T change occurs at the non-coding region of the ion channel-encoding polynucleotide. In some embodiments, the C to T change occurs at a splicing site in the non-coding region of the ion channel-encoding polynucleotide. In some embodiments, the C to T change occurs at an intron-exon junction. In some embodiments, the C to T change occurs at a splicing donor site. In some embodiments, the C to T change occurs at a splicing acceptor site.


In some embodiments, the ion channel is selected from the group consisting of: NaV1.7, NaV1.8, NaV1.9, NaV1.3, CaV3.2, HCN1, HCN2, and Ano1. In some embodiments, the ion channel is NaV1.7 encoded by the SCN9A gene.


In some embodiments, the mutation is a loss-of-function mutation. In some embodiments, the C to T change occurs in a target codon selected from Tables 2, 4, and 6. In some embodiments, the guide nucleotide sequence is selected from SEQ ID NOs: 339-1456.


In some embodiments, a PAM sequence is located 3′ of the C being changed. In some embodiments, a PAM sequence is located 5′ of the C being changed. In some embodiments, the PAM sequence is selected from the group consisting of: NGG, NGAN, NGNG, NGAG, NGCG, NNGRRT, NGGNG, NGRRN, NNNRRT, NNNGATT, NNAGAA, and NAAAC, wherein Y is pyrimidine, R is purine, and N is any nucleobase. In some embodiments, the PAM sequence is selected from the group consisting of: NNT, NNNT, and YNT, wherein Y is pyrimidine, and N is any nucleobase. In some embodiments, no PAM sequence is located 3′ of the target C base. In some embodiments, no PAM sequence is located 5′ of the target C base.


In some embodiments, at least 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 mutations are introduced into the ion channel-encoding polynucleotide. In some embodiments, the guide nucleotide sequence is RNA (gRNA). In some embodiments, the guide nucleotide sequence is ssDNA (gDNA).


In some embodiments, the DRG neuron is in a mammal. In some embodiments, the mammal is a rodent. In some embodiments, the rodent is a mouse. In some embodiments, the rodent is a rat. In some embodiments, the mammal is a human.


In some embodiments, a nucleic acid construct encoding the fusion protein is delivered to the DRG neuron via a neurotropic viral delivery vector. In some embodiments, the neurotropic viral delivery vector is derived from Herpesviridae, varicella zoster virus, pseudorabies virus, cyromegalovirus, Epstein-barr virus, encephalitis virus, polio virus, coxsackie virus, echo virus, mumps virus, measles virus, and rabies virus. In some embodiments, the neurotropic viral delivery vector is derived from Herpes Simplex Virus 1 (HSV-1). In some embodiments, the neurotropic viral delivery vector is derived from a recombinant adeno-associated virus (AAV).


Other aspects of the present disclosure provide compositions comprising: (i) a fusion protein comprising: (a) a guide nucleotide sequence-programmable DNA binding protein domain; and (b) a cytosine deaminase domain; and (ii) a guide nucleotide sequence targeting the fusion protein of (i) to a target cytosine (C) base in an ion channel-encoding polynucleotide.


Further provided herein are compositions comprising a neurotropic viral delivery vector comprising a nucleic acid encoding: (i) a fusion protein comprising: (a) a guide nucleotide sequence-programmable DNA binding protein domain; and (b) a cytosine deaminase domain; and (ii) a guide nucleotide sequence targeting the fusion protein of (i) to a target cytosine (C) base in an ion channel-encoding polynucleotide.


In some embodiments, the guide nucleotide sequence comprises the nucleotide sequence of any one of SEQ ID NOs: 339-1456, 1504-2425, and 2443-2445. In some embodiments, the composition further comprises a pharmaceutically acceptable carrier. Kits comprising the compositions described herein are also provided.


Other aspects of the present disclosure provide methods of suppressing pain, the method comprising administering to a subject in need thereof a therapeutically effective amount of the composition described herein.


In some embodiments, the pain is chronic pain. In some embodiments, the pain is selected from the group consisting of: neuropathic pain, allodynia, hyperalgesia, dysesthesia, causalgia, neuralgia, and arthralgia. In some embodiments, the pain is associated with cancer, tumor pressure, bone metastasis, chemotherapy peripheral neuropathy, radiculopathy (sciatica, lumbar, cervical, failed back surgery syndrome), piriformis syndrome, phantom pain, arachnoiditis, fibromyalgia, facet joint mediated pain, sympathetically-mediated pain syndrome such as complex regional pain syndromes (crps), sacroiliac (si) joint mediated pain, meralgia paresthetica, localized myofacial pain syndromes-myofacial trigger points, diffuse myofacial pain syndrome, post-herpetic neuralgia, trigeminal neuralgia, glossopharyngeal neuralgia, scar pain (post-epesiotomy, post-hernia repair, post-surgery, post-radiotherapy), vulvodynia, vaginismus, levator ani syndrome, chronic prostatitis, interstitial cystitis, first bite syndrome, rheumatoid arthritis pain, osteoarthritis pain, atypical odontalgia, phantom tooth pain, neuropathic orofacial pain, primary erythermalgia and atypical facial pain.


In some embodiments, the subject is a mammal. In some embodiments, the mammal is a rodent. In some embodiments, the rodent is a mouse. In some embodiments, the rodent is a rat. In some embodiments, the mammal is a human. In some embodiments, the mammal is a companion animal. In some embodiments, the companion animal is a dog, a cat, a horses, a cattle, a pig, a sheep, a goat, a chicken, a mouse, a rat, a guinea pig, or a hamster. In some embodiments, the composition is administered orally or parenterally.


The details of certain embodiments of the invention are set forth in the Detailed Description of Certain Embodiments, as described below. Other features, objects, and advantages of the invention will be apparent from the Definitions, Examples, Figures, and Claims.





BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which constitute a part of this specification, illustrate several embodiments of the invention and together with the description, serve to explain the principles of the invention.



FIGS. 1A-1C show schematic representations of exemplary ion channels and signal transmission in doral root ganglion (DRG) neurons. FIG. 1A is a schematic representing a DRG neuron extending an axonal projection that expresses specialized ion channels for triggering and propagating action potentials (AP) in response to stimuli. The body of the neuron resides in a ganglion near the spinal cord together with thousands of other neurons. The output from the dendrites of this neuron inside the spinal cord involve the release of the neurotransmitters, such as glutamate and substance P, and become the pain signals propagated by the spinal cord that are interpreted as signals of pain by the brain. Adapted from Reference 1 in the “References” section. FIG. 1B is a schematic representing a programmable genome editing treatment with a localized neurotropic viral vector to deliver an expression construct into the axon, exploiting the retrograde transport mechanisms to the nucleus of a dorsal root ganglion (DRG) neuron to modify one of the specialized genes that mediate the threshold or transmission of action potentials that are interpreted as pain (Table 12). FIG. 1C is a schematic representing the outcome (green arrows) of programmable genome editing treatment with a topologically localized neurotropic viral vector, for example, targeting the NaV1.7/SCN9a gene.



FIG. 2 shows exemplary, non-limiting representative examples of genome modifications using cytidine deaminase base editing, which can be applied to modify DRG neuron genes and afferent pain signals.



FIG. 3 shows a two-dimensional representation of the primary amino acid sequence of an isoform of NaV1.7/SCN9A, highlighting the transmembrane regions. The circles show non-limiting examples of variants that can be generated by genome modifications using cytidine deaminase base editing, which can be applied to modify the NaV1.7/SCN9A gene and afferent pain signals. The NaV1.7/Scn9A ion channel is shown as a non-limiting example of ion channels of DRG neurons. Other possible modifications, such as intron/exon junctions are not shown for clarity (see, e.g., FIG. 4).



FIGS. 4A-4B. FIG. 4A shows non-limiting examples of the results obtained from C→T base editing treatments using guide-RNAs targeted to the NaV1.7/SCN9A gene in the mouse Neuro-2a cell line, analysed using Illumina MiSeq high-throughput DNA sequencing. The treatments shown generate premature STOP codons or modify intron/exon junctions involved in mRNA splicing. FIG. 4B is a two-dimensional representation of the primary amino acid sequence of an isoform of mouse NaV1.7/SCN9A highlighting the sites targeted in panel A and other representative sites that can be targeted in the same manner (black). Additional possible modifications are not shown for clarity (see, e.g., FIG. 3).



FIGS. 5A-5B show representative plots obtained from C→T base editing treatments targeted to the NaV1.7/SCN9A gene in the mouse Neuro-2a cell line, analysed using Illumina MiSeq high-throughput DNA sequencing. FIG. 5A shows the S. pyogenes Cas9 DNA-binding domain fused to APOBEC and UGI (SpBE4), and FIG. 5B shows the KKH variant of the S. aureus Cas9 DNA-binding domain fused to APOBEC and UGI (KKH-SaBE3). The X axis sequence is underlined at the PAM and the end of the protospacer-targeting region is marked with a horizontal line. A dashed box highlights a target codon that is modified to a premature STOP codon by C to T base-editors acting on either the forward (coding) or reverse (template) strand of genomic DNA. The protospacer sequences in FIG. 5A correspond from top to bottom to SEQ ID NOs: 2447-2457, with 2457 repeated twice at the end.



FIGS. 6A-6C. FIG. 6A shows representative examples of the results obtained from active wild-type S. pyogenes Cas9 treatments using guide-RNAs targeted to the NaV1.7/SCN9A gene in the mouse Neuro-2a cell line, analysed using Illumina MiSeq high-throughput DNA sequencing. FIG. 6B is a gel electrophoresis analysis of PCR products following wild-type S. pyogenes Cas9 treatment using two or more guide-RNAs targeted to the NaV1.7/SCN9A gene in the mouse Neuro-2a cell line, which generate indels and longer deletions between the predicted target sites. The uncut genomic site (plus small indels) are seen as a high molecular-weight band, and large deletions are seen as the lower molecular-weight bands. FIG. 6C shows a representative analysis by Illumina MiSeq high-throughput DNA showing the large deletion product following wild-type S. pyogenes Cas9 treatment using two guide-RNAs, g3 and g12 from FIG. 6B, targeted to the NaV1.7/SCN9A gene in the mouse Neuro-2a cell line sequencing. The protospacer sequences in FIG. 6A correspond from top to bottom to SEQ ID NOs: 2458-2466 and 2457.





DEFINITIONS

As used herein and in the claims, the singular forms “a,” “an,” and “the” include the singular and the plural reference unless the context clearly indicates otherwise. Thus, for example, a reference to “an agent” includes a single agent and a plurality of such agents.


A “dorsal root ganglion (DRG),” also referred to as a “spinal ganglion” or “posterior root ganglion,” is a cluster of nerve cell bodies (a ganglion) in the posterior root of a spinal nerve. A neuron in the DRG is referred to herein as a “dorsal root ganglia (DRG) neuron.” The dorsal root ganglia contain the cell bodies of sensory neurons.


A “neuron” is an electrically excitable cell that processes and transmits information through electrical and chemical signals. These signals between neurons occur via synapses, specialized connections with other cells. Neurons can connect to each other to form neural networks. Neurons are the core components of the brain and spinal cord of the central nervous system (CNS), and of the ganglia of the peripheral nervous system (PNS).


There are several types of specialized neurons: sensory neurons, motor neurons, and interneurons. A “sensory neuron” is a neuron that responds to stimuli such as touch, sound, or light, and all other stimuli affecting the cells of the sensory organs that then send signals to the spinal cord and brain. A “motor neuron” is a neuron that receives signals from the brain and spinal cord to cause muscle contractions and affect glandular outputs. A “interneuron” is a neuron that connects neurons to other neurons within the same region of the brain or spinal cord in neural networks.


In the PNS, an afferent nerve fiber is the axon of an afferent sensory neuron. It is a long process extending far from the nerve cell body that carries nerve impulses from sensory receptors or sense organs toward the central nervous system. The opposite direction of neural activity is termed efferent conduction.


Neurons are electrically excitable, maintaining voltage gradients across their membranes by means of metabolically driven ion pumps, which combine with ion channels embedded in the membrane to generate intracellular-versus-extracellular concentration differences of ions, such as sodium, potassium, chloride, and calcium. Changes in the cross-membrane voltage can alter the function of voltage-dependent ion channels. If the voltage changes by a large enough amount, an all-or-none electrochemical pulse called an action potential is generated, which travels rapidly along the cell's axon, and activates synaptic connections with other cells when it arrives.


An “ion channel” is a pore-forming membrane protein expressed on the surface of a cell (e.g., a DRG neuron). Ion channels on the surface of a cell (e.g., a DRG neuron) have various biological functions including: establishing a resting membrane potential, shaping action potentials and other electrical signals by gating the flow of ions across the cell membrane, controlling the flow of ions across secretory and epithelial cells, and regulating cell volume. Activated transmembrane ion channels allow ions into or out of cells. Genes encoding ion channels in DRG neurons that are responsible for propagation of pain are provided in Example 2.


“Hyperalgesia” is an increased sensitivity to pain, which may be caused by damage to nociceptors or peripheral nerves. Temporary increased sensitivity to pain also occurs as part of sickness behavior, the evolved response to infection. Long-term opioid (e.g. heroin, morphine) users and those on high-dose opioid medications for the treatment of chronic pain may experience hyperalgesia and experience pain out of proportion to physical findings, which is a common cause for loss of efficacy of these medications over time.


“Allodynia” refers to central pain sensitization (increased response of neurons) following normally non-painful, often repetitive, stimulation. Allodynia can lead to the triggering of a pain response from stimuli which do not normally provoke pain. Temperature or physical stimuli can provoke allodynia, which may feel like a burning sensation. Allodynia often occurs after injury to a site. Allodynia is different from hyperalgesia, an extreme, exaggerated reaction to a stimulus which is normally painful.


The term “loss-of-function mutation” or “inactivating mutation” refers to a mutation that results in the gene product having less or no function (being partially or wholly inactivated). When the allele has a complete loss of function (null allele), it is often called an amorphic mutation in the Muller's morphs schema. Phenotypes associated with such mutations are most often recessive. Exceptions are when the organism is haploid, or when the reduced dosage of a normal gene product is not enough for a normal phenotype (this is called haploinsufficiency).


The term “gain-of-function mutation” or “activating mutation” refers to a mutation that changes the gene product such that its effect gets stronger (enhanced activation) or even is superseded by a different and abnormal function. A gain of function mutation may also be referred to as a neomorphic mutation. When the new allele is created, a heterozygote containing the newly created allele as well as the original will express the new allele, genetically defining the mutations as dominant phenotypes.


The term “genome” refers to the genetic material of a cell or organism. It typically includes DNA (or RNA in the case of RNA viruses). The genome includes both the genes, the coding regions, the noncoding DNA, and the genomes of the mitochondria and chloroplasts. A genome does not typically include genetic material that is artificially introduced into a cell or organism, e.g., a plasmid that is transformed into a bacteria is not a part of the bacterial genome.


A “programmable DNA-binding protein” refers to DNA binding proteins that can be programmed to target to any desired nucleotide sequence within a genome. To program the DNA-binding protein to bind a desired nucleotide sequence, the DNA binding protein may be modified to change its binding specificity, e.g., zinc finger DNA-binding domain, zinc finger nuclease (ZFN), or transcription activator-like effector proteins (TALE). ZFNs are artificial restriction enzymes generated by fusing a zinc finger DNA-binding domain to a DNA-cleavage domain. Zinc finger domains can be engineered to target specific desired DNA sequences, and this enables zinc-fingers to bind unique sequences within complex genomes. Transcription activator-like effector nucleases (TALEN) are engineered restriction enzymes that can be engineered to cut specific sequences of DNA. They are made by fusing a TAL effector DNA-binding domain to a nuclease domain (e.g. Fok1). Transcription activator-like effectors (TALEs) can be engineered to bind practically any desired DNA sequence. Methods for programming ZFNs and TALEs are familiar to one skilled in the art. For example, such methods are described in Maeder et al., Mol. Cell 31 (2): 294-301, 2008; Carroll et al., Genetics Society of America, 188 (4): 773-782, 2011; Miller et al., Nature Biotechnology 25 (7): 778-785, 2007; Christian et al., Genetics 186 (2): 757-61, 2008; Li et al., Nucleic Acids Res. 39 (1): 359-372, 2010; and Moscou et al., Science 326 (5959): 1501, 2009, each of which are incorporated herein by reference.


A “guide nucleotide sequence-programmable DNA-binding protein” refers to a protein, a polypeptide, or a domain that is able to bind DNA, and the binding to its target DNA sequence is mediated by a guide nucleotide sequence. Thus, it is appreciated that the guide nucleotide sequence-programmable DNA-binding protein binds a guide nucleotide sequence. The “guide nucleotide” may be an RNA or DNA molecule (e.g., a single-stranded DNA or ssDNA molecule) that is complementary to the target sequence and can guide the DNA binding protein to the target sequence. As such, a guide nucleotide sequence-programmable DNA-binding protein may be a RNA-programmable DNA-binding protein (e.g., a Cas9 protein), or an ssDNA-programmable DNA-binding protein (e.g., an Argonaute protein). “Programmable” means the DNA-binding protein may be programmed to bind any DNA sequence that the guide nucleotide targets.


In some embodiments, the guide nucleotide sequence exists as a single nucleotide molecule and comprises two domains: (1) a domain that shares homology to a target nucleic acid (e.g., and directs binding of a guide nucleotide sequence-programmable DNA-binding protein to the target); and (2) a domain that binds a guide nucleotide sequence-programmable DNA-binding protein. In some embodiments, domain (2) corresponds to a sequence known as a tracrRNA and comprises a stem-loop structure. For example, in some embodiments, domain (2) is identical or homologous to a tracrRNA as provided in Jinek et al., Science 337:816-821(2012), which is incorporated herein by reference. Other examples of gRNAs (e.g., those including domain 2) can be found in U.S. Patent Application Publication US 2016/0208288 and U.S. Patent Application Publication US 2016/0200779, each of which is incorporated herein by reference.


Because the guide nucleotide sequence hybridizes to a target DNA sequence, the guide nucleotide sequence-programmable DNA-binding proteins are able to specifically bind, in principle, to any sequence complementary to the guide nucleotide sequence. Methods of using guide nucleotide sequence-programmable DNA-binding protein, such as Cas9, for site-specific editing of the genome (with or without cleaving the double stranded DNA) are known in the art (see e.g., Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819-823 (2013); Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823-826 (2013); Hwang, W. Y. et al. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nature Biotechnology 31, 227-229 (2013); Jinek, M. et al. RNA-programmed genome editing in human cells. eLife 2, e00471 (2013); Dicarlo, J. E. et al. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Research (2013); Jiang, W. et al. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nature Biotechnology 31, 233-239 (2013); each of which is incorporated herein by reference).


As used herein, the term “Cas9” or “Cas9 nuclease” refers to an RNA-guided nuclease comprising a Cas9 protein, a fragment, or a variant thereof. A Cas9 nuclease is also referred to sometimes as a casn1 nuclease or a CRISPR (clustered regularly interspaced short palindromic repeat)-associated nuclease. CRISPR is an adaptive immune system that provides protection against mobile genetic elements (viruses, transposable elements and conjugative plasmids). CRISPR clusters contain spacers, sequences complementary to antecedent mobile elements, and target invading nucleic acids. CRISPR clusters are transcribed and processed into CRISPR RNA (crRNA). In type II CRISPR systems correct processing of pre-crRNA requires a trans-encoded small RNA (tracrRNA), endogenous ribonuclease 3 (rnc), and a Cas9 protein. The tracrRNA serves as a guide for ribonuclease 3-aided processing of pre-crRNA. Subsequently, Cas9/crRNA/tracrRNA endonucleolytically cleaves a linear or circular dsDNA target complementary to the spacer. The target strand not complementary to the crRNA is first cut endonucleolytically, then trimmed 3′-5′ exonucleolytically. In nature, DNA-binding and cleavage typically requires protein and both RNAs. However, single guide RNAs (“sgRNA”, or simply “gNRA”) can be engineered so as to incorporate aspects of both the crRNA and tracrRNA into a single RNA species. See, e.g., Jinek et al., Science 337:816-821(2012), which is incorporated herein by reference.


Cas9 nuclease sequences and structures are well known to those of skill in the art (see, e.g., Ferretti et al., Proc. Natl. Acad. Sci. 98:4658-4663(2001); Deltcheva E. et al., Nature 471:602-607(2011); and Jinek et al., Science 337:816-821(2012), each of which is incorporated herein by reference). Cas9 orthologs have been described in various species. Additional suitable Cas9 nucleases and sequences will be apparent to those of skill in the art based on this disclosure, and such Cas9 nucleases and sequences include Cas9 sequences from the organisms and loci disclosed in Chylinski et al., (2013) RNA Biology 10:5, 726-737; which are incorporated herein by reference. In some embodiments, wild type Cas9 corresponds to Cas9 from Streptococcus pyogenes (NCBI Reference Sequence: NC_002737.2, SEQ ID NO: 5 (nucleotide); and Uniport Reference Sequence: Q99ZW2, SEQ ID NO: 1 (amino acid).










(SEQ ID NO: 5)



ATGGATAAGAAATACTCAATAGGCTTAGATATCGGCACAAATAGCGTCGGATGGGCGGTGATCAC






TGATGAATATAAGGTTCCGTCTAAAAAGTTCAAGGTTCTGGGAAATACAGACCGCCACAGTATCA





AAAAAAATCTTATAGGGGCTCTTTTATTTGACAGTGGAGAGACAGCGGAAGCGACTCGTCTCAAA





CGGACAGCTCGTAGAAGGTATACACGTCGGAAGAATCGTATTTGTTATCTACAGGAGATTTTTTCA





AATGAGATGGCGAAAGTAGATGATAGTTTCTTTCATCGACTTGAAGAGTCTTTTTTGGTGGAAGAA





GACAAGAAGCATGAACGTCATCCTATTTTTGGAAATATAGTAGATGAAGTTGCTTATCATGAGAAA





TATCCAACTATCTATCATCTGCGAAAAAAATTGGTAGATTCTACTGATAAAGCGGATTTGCGCTTA





ATCTATTTGGCCTTAGCGCATATGATTAAGTTTCGTGGTCATTTTTTGATTGAGGGAGATTTAAATC





CTGATAATAGTGATGTGGACAAACTATTTATCCAGTTGGTACAAACCTACAATCAATTATTTGAAG





AAAACCCTATTAACGCAAGTGGAGTAGATGCTAAAGCGATTCTTTCTGCACGATTGAGTAAATCAA





GACGATTAGAAAATCTCATTGCTCAGCTCCCCGGTGAGAAGAAAAATGGCTTATTTGGGAATCTCA





TTGCTTTGTCATTGGGTTTGACCCCTAATTTTAAATCAAATTTTGATTTGGCAGAAGATGCTAAATT





ACAGCTTTCAAAAGATACTTACGATGATGATTTAGATAATTTATTGGCGCAAATTGGAGATCAATA





TGCTGATTTGTTTTTGGCAGCTAAGAATTTATCAGATGCTATTTTACTTTCAGATATCCTAAGAGTA





AATACTGAAATAACTAAGGCTCCCCTATCAGCTTCAATGATTAAACGCTACGATGAACATCATCAA





GACTTGACTCTTTTAAAAGCTTTAGTTCGACAACAACTTCCAGAAAAGTATAAAGAAATCTTTTTT





GATCAATCAAAAAACGGATATGCAGGTTATATTGATGGGGGAGCTAGCCAAGAAGAATTTTATAA





ATTTATCAAACCAATTTTAGAAAAAATGGATGGTACTGAGGAATTATTGGTGAAACTAAATCGTGA





AGATTTGCTGCGCAAGCAACGGACCTTTGACAACGGCTCTATTCCCCATCAAATTCACTTGGGTGA





GCTGCATGCTATTTTGAGAAGACAAGAAGACTTTTATCCATTTTTAAAAGACAATCGTGAGAAGAT





TGAAAAAATCTTGACTTTTCGAATTCCTTATTATGTTGGTCCATTGGCGCGTGGCAATAGTCGTTTT





GCATGGATGACTCGGAAGTCTGAAGAAACAATTACCCCATGGAATTTTGAAGAAGTTGTCGATAA





AGGTGCTTCAGCTCAATCATTTATTGAACGCATGACAAACTTTGATAAAAATCTTCCAAATGAAAA





AGTACTACCAAAACATAGTTTGCTTTATGAGTATTTTACGGTTTATAACGAATTGACAAAGGTCAA





ATATGTTACTGAAGGAATGCGAAAACCAGCATTTCTTTCAGGTGAACAGAAGAAAGCCATTGTTG





ATTTACTCTTCAAAACAAATCGAAAAGTAACCGTTAAGCAATTAAAAGAAGATTATTTCAAAAAA





ATAGAATGTTTTGATAGTGTTGAAATTTCAGGAGTTGAAGATAGATTTAATGCTTCATTAGGTACC





TACCATGATTTGCTAAAAATTATTAAAGATAAAGATTTTTTGGATAATGAAGAAAATGAAGATATC





TTAGAGGATATTGTTTTAACATTGACCTTATTTGAAGATAGGGAGATGATTGAGGAAAGACTTAAA





ACATATGCTCACCTCTTTGATGATAAGGTGATGAAACAGCTTAAACGTCGCCGTTATACTGGTTGG





GGACGTTTGTCTCGAAAATTGATTAATGGTATTAGGGATAAGCAATCTGGCAAAACAATATTAGAT





TTTTTGAAATCAGATGGTTTTGCCAATCGCAATTTTATGCAGCTGATCCATGATGATAGTTTGACAT





TTAAAGAAGACATTCAAAAAGCACAAGTGTCTGGACAAGGCGATAGTTTACATGAACATATTGCA





AATTTAGCTGGTAGCCCTGCTATTAAAAAAGGTATTTTACAGACTGTAAAAGTTGTTGATGAATTG





GTCAAAGTAATGGGGCGGCATAAGCCAGAAAATATCGTTATTGAAATGGCACGTGAAAATCAGAC





AACTCAAAAGGGCCAGAAAAATTCGCGAGAGCGTATGAAACGAATCGAAGAAGGTATCAAAGAA





TTAGGAAGTCAGATTCTTAAAGAGCATCCTGTTGAAAATACTCAATTGCAAAATGAAAAGCTCTAT





CTCTATTATCTCCAAAATGGAAGAGACATGTATGTGGACCAAGAATTAGATATTAATCGTTTAAGT





GATTATGATGTCGATCACATTGTTCCACAAAGTTTCCTTAAAGACGATTCAATAGACAATAAGGTC





TTAACGCGTTCTGATAAAAATCGTGGTAAATCGGATAACGTTCCAAGTGAAGAAGTAGTCAAAAA





GATGAAAAACTATTGGAGACAACTTCTAAACGCCAAGTTAATCACTCAACGTAAGTTTGATAATTT





AACGAAAGCTGAACGTGGAGGTTTGAGTGAACTTGATAAAGCTGGTTTTATCAAACGCCAATTGG





TTGAAACTCGCCAAATCACTAAGCATGTGGCACAAATTTTGGATAGTCGCATGAATACTAAATACG





ATGAAAATGATAAACTTATTCGAGAGGTTAAAGTGATTACCTTAAAATCTAAATTAGTTTCTGACT





TCCGAAAAGATTTCCAATTCTATAAAGTACGTGAGATTAACAATTACCATCATGCCCATGATGCGT





ATCTAAATGCCGTCGTTGGAACTGCTTTGATTAAGAAATATCCAAAACTTGAATCGGAGTTTGTCT





ATGGTGATTATAAAGTTTATGATGTTCGTAAAATGATTGCTAAGTCTGAGCAAGAAATAGGCAAA





GCAACCGCAAAATATTTCTTTTACTCTAATATCATGAACTTCTTCAAAACAGAAATTACACTTGCA





AATGGAGAGATTCGCAAACGCCCTCTAATCGAAACTAATGGGGAAACTGGAGAAATTGTCTGGGA





TAAAGGGCGAGATTTTGCCACAGTGCGCAAAGTATTGTCCATGCCCCAAGTCAATATTGTCAAGAA





AACAGAAGTACAGACAGGCGGATTCTCCAAGGAGTCAATTTTACCAAAAAGAAATTCGGACAAGC





TTATTGCTCGTAAAAAAGACTGGGATCCAAAAAAATATGGTGGTTTTGATAGTCCAACGGTAGCTT





ATTCAGTCCTAGTGGTTGCTAAGGTGGAAAAAGGGAAATCGAAGAAGTTAAAATCCGTTAAAGAG





TTACTAGGGATCACAATTATGGAAAGAAGTTCCTTTGAAAAAAATCCGATTGACTTTTTAGAAGCT





AAAGGATATAAGGAAGTTAAAAAAGACTTAATCATTAAACTACCTAAATATAGTCTTTTTGAGTTA





GAAAACGGTCGTAAACGGATGCTGGCTAGTGCCGGAGAATTACAAAAAGGAAATGAGCTGGCTCT





GCCAAGCAAATATGTGAATTTTTTATATTTAGCTAGTCATTATGAAAAGTTGAAGGGTAGTCCAGA





AGATAACGAACAAAAACAATTGTTTGTGGAGCAGCATAAGCATTATTTAGATGAGATTATTGAGC





AAATCAGTGAATTTTCTAAGCGTGTTATTTTAGCAGATGCCAATTTAGATAAAGTTCTTAGTGCAT





ATAACAAACATAGAGACAAACCAATACGTGAACAAGCAGAAAATATTATTCATTTATTTACGTTG





ACGAATCTTGGAGCTCCCGCTGCTTTTAAATATTTTGATACAACAATTGATCGTAAACGATATACG





TCTACAAAAGAAGTTTTAGATGCCACTCTTATCCATCAATCCATCACTGGTCTTTATGAAACACGC





ATTGATTTGAGTCAGCTAGGAGGTGACTGA





(SEQ ID NO: 1) 



MDKKYSIGLDIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARR






RYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLR





KKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDA





KAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDN





LLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEK





YKEIFFDQSKNGYAGYIDGGASQLEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIH





LGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDK





GASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLF





KTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLT





LTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANR





NFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVI






EMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQEL







DINRLSDYDVDHIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRK







FDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSD







FRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKA







TAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQ







TGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIME






RSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLA





SHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAEN





IIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGD 


(single underline: HNH domain; double underline: RuvC domain)






In some embodiments, wild type Cas9 corresponds to Cas9 from Streptococcus Aureus. S. aureus Cas9 wild type (SEQ ID NO: 6)











MKRNYILGLDIGITSVGYGIIDYETRDVIDAGVRLFKEANVENNE







GRRSKRGARRLKRRRRHRIQRVKKLLFDYNLLTDHSELSGINPYE







ARVKGLSQKLSEEEFSAALLHLAKRRGVHNVNEVEEDTGNELSTK







EQISRNSKALEEKYVAELQLERLKKDGEVRGSINRFKTSDYVKEA







KQLLKVQKAYHQLDQSFIDTYIDLLETRRTYYEGPGEGSPFGWKD







IKEWYEMLMGHCTYFPEELRSVKYAYNADLYNALNDLNNLVITRD







ENEKLEYYEKFQIIENVFKQKKKPTLKQIAKEILVNEEDIKGYRV







TSTGKPEFTNLKVYHDIKDITARKEIIENAELLDQIAKILTIYQS







SEDIQEELTNLNSELTQLEIEQISNLKGYTGTHNLSLKAINLILD







ELWHTNDNQIAIFNRLKLVPKKVDLSQQKEIPTTLVDDFILSPVV







KRSFIQSIKVINAIIKKYGLPNDIIIELAREKNSKDAQKMINEMQ







KRNRQTNERIEEIIRTTGKENAKYLIEKIKLHDMQEGKCLYSLEA







IPLEDLLNNPFNYEVDHIIPRSVSFDNSFNNKVLVKQEENSKKGN







RTPFQYLSSSDSKISYETFKKHILNLAKGKGRISKTKKEYLLEER







DINRFSVQKDFINRNLVDTRYATRGLMNLLRSYFRVNNLDVKVKS







INGGFTSFLRRKWKFKKERNKGYKHHAEDALIIANADFIFKEWKK







LDKAKKVMENQMFEEKQAESMPEIETEQEYKEIFITPHQIKHIKD







FKDYKYSHRVDKKPNRELINDTLYSTRKDDKGNTLIVNNLNGLYD







KDNDKLKKLINKSPEKLLMYHHDPQTYQKLKLIMEQYGDEKNPLY







KYYEETGNYLTKYSKKDNGPVIKKIKYYGNKLNAHLDITDDYPNS







RNKVVKLSLKPYRFDVYLDNGVYKFVTVKNLDVIKKENYYLVNSK







CYLEAKKLKKISNQAEFIASFYNNDLIKINGELYRVIGVNNDLLN







RIEVNMIDITYREYLENMNDKRPPRIIKTIASKTQSIKKYSTDIL







GNLYEVKSKKHPQIIKKG 






In some embodiments, wild type Cas9 corresponds to Cas9 from Streptococcus thermophilus.












Streptococcusthermophilus wild type




CRISPR3 Cas9 (St3Cas9)



(SEQ ID NO: 7)



MTKPYSIGLDIGTNSVGWAVITDNYKVPSKKMKVLGNTSKKYIKKN







LLGVLLFDSGITAEGRRLKRTARRRYTRRRNRILYLQEIFSTEMAT







LDDAFFQRLDDSFLVPDDKRDSKYPIFGNLVEEKVYHDEFPTIYHL







RKYLADSTKKADLRLVYLALAHMIKYRGHFLIEGEFNSKNNDIQKN







FQDFLDTYNAIFESDLSLENSKQLEEIVKDKISKLEKKDRILKLFP







GEKNSGIFSEFLKLIVGNQADFRKCFNLDEKASLHFSKESYDEDLE







TLLGYIGDDYSDVFLKAKKLYDAILLSGFLTVTDNETEAPLSSAMI







KRYNEHKEDLALLKEYIRNISLKTYNEVFKDDTKNGYAGYIDGKTN







QEDFYVYLKNLLAEFEGADYFLEKIDREDFLRKQRTFDNGSIPYQI







HLQEMRAILDKQAKFYPFLAKNKERIEKILTFRIPYYVGPLARGNS







DFAWSIRKRNEKITPWNFEDVIDKESSAEAFINRMTSFDLYLPEEK







VLPKHSLLYETFNVYNELTKVRFIAESMRDYQFLDSKQKKDIVRLY







FKDKRKVTDKDIIEYLHAIYGYDGIELKGIEKQFNSSLSTYHDLLN







IINDKEFLDDSSNEAIIEEIIHTLTIFEDREMIKQRLSKFENIFDK







SVLKKLSRRHYTGWGKLSAKLINGIRDEKSGNTILDYLIDDGISNR







NFMQLIHDDALSFKKKIQKAQIIGDEDKGNIKEVVKSLPGSPAIKK







GILQSIKIVDELVKVMGGRKPESIVVEMARENQYTNQGKSNSQQRL







KRLEKSLKELGSKILKENIPAKLSKIDNNALQNDRLYLYYLQNGKD







MYTGDDLDIDRLSNYDIDHIIPQAFLKDNSIDNKVLVSSASNRGKS







DDFPSLEVVKKRKTFWYQLLKSKLISQRKFDNLTKAERGGLLPEDK







AGFIQRQLVETRQITKHVARLLDEKFNNKKDENNRAVRTVKIITLK







STLVSQFRKDFELYKVREINDFHHAHDAYLNAVIASALLKKYPKLE







PEFVYGDYPKYNSFRERKSATEKVYFYSNIMNIFKKSISLADGRVI







ERPLIEVNEETGESVWNKESDLATVRRVLSYPQVNVVKKVEEQNHG







LDRGKPKGLFNANLSSKPKPNSNENLVGAKEYLDPKKYGGYAGISN







SFAVLVKGTIEKGAKKKITNVLEFQGISILDRINYRKDKLNFLLEK







GYKDIELIIELPKYSLFELSDGSRRMLASILSTNNKRGEIHKGNQI







FLSQKFVKLLYHAKRISNTINENHRKYVENHKKEFEELFYYILEFN







ENYVGAKKNGKLLNSAFQSWQNHSIDELCSSFIGPTGSERKGLFEL







TSRGSAADFEFLGVKIPRYRDYTPSSLLKDATLIHQSVTGLYETRI







DLAKLGEG








Streptococcusthermophilus CRISPR1 Cas9




wild type (St1Cas9)



(SEQ ID NO: 8)



MSDLVLGLDIGIGSVGVGILNKVTGEIIHKNSRIFPAAQAENNLV







RRTNRQGRRLTRRKKHRRVRLNRLFEESGLITDFTKISINLNPYQ







LRVKGLTDELSNEELFIALKNMVKHRGISYLDDASDDGNSSIGDY







AQIVKENSKQLETKTPGQIQLERYQTYGQLRGDFTVEKDGKKHRL







INVFPTSAYRSEALRILQTQQEFNPQITDEFINRYLEILTGKRKY







YHGPGNEKSRTDYGRYRTSGETLDNIFGILIGKCTFYPDEFRAAK







ASYTAQEFNLLNDLNNLTVPTETKKLSKEQKNQIINYVKNEKAMG







PAKLFKYIAKLLSCDVADIKGYRIDKSGKAEIHTFEAYRKMKTLE







TLDIEQMDRETLDKLAYVLTLNTEREGIQEALEHEFADGSFSQKQ







VDELVQFRKANSSIFGKGWHNFSVKLMMELIPELYETSEEQMTIL







TRLGKQKTTSSSNKTKYIDEKLLTEEIYNPVVAKSVRQAIKIVNA







AIKEYGDFDNIVIEMARETNEDDEKKAIQKIQKANKDEKDAAMLK







AANQYNGKAELPHSVFHGHKQLATKIRLWHQQGERCLYTGKTISI







HDLINNSNQFEVDHILPLSITFDDSLANKVLVYATANQEKGQRTP







YQALDSMDDAWSFRELKAFVRESKTLSNKKKEYLLTEEDISKFDV







RKKFIERNLVDTRYASRVVLNALQEHFRAHKIDTKVSVVRGQFTS







QLRRHWGIEKTRDTYHHHAVDALIIAASSQLNLWKKQKNTLVSYS







EDQLLDIETGELISDDEYKESVFKAPYQHFVDTLKSKEFEDSILF







SYQVDSKFNRKISDATIYATRQAKVGKDKADETYVLGKIKDIYTQ







DGYDAFMKIYKKDKSKFLMYRHDPQTFEKVIEPILENYPNKQINE







KGKEVPCNPFLKYKEEHGYIRKYSKKGNGPEIKSLKYYDSKLGNH







IDITPKDSNNKVVLQSVSPWRADVYFNKTTGKYEILGLKYADLQF







EKGTGTYKISQEKYNDIKKKEGVDSDSEFKFTLYKNDLLLVKDTE







TKEQQLFRFLSRTMPKQKHYVELKPYDKQKFEGGEALIKVLGNVA







NSGQCKKGLGKSNISIYKVRTDVLGNQHIIKNEGDKPKLDF






In some embodiments, the Cas9 domain of any of the fusion proteins provided herein is a Cas9 from archaea (e.g. nanoarchaea), which constitute a domain and kingdom of single-celled prokaryotic microbes. In some embodiments, the Cas9 domain is CasX or CasY, which have been described in, for example, Burstein et al., “New CRISPR-Cas systems from uncultivated microbes.” Cell Res. 2017 Feb. 21. doi: 10.1038/cr.2017.21, which is incorporated herein by reference. Using genome-resolved metagenomics, a number of CRISPR-Cas systems were identified, including the first reported Cas9 in the archaeal domain of life. This divergent Cas9 protein was found in nanoarchaea as part of an active CRISPR-Cas system. In bacteria, two previously unknown systems were discovered, CRISPR-CasX and CRISPR-CasY, which are among the most compact systems yet discovered. In some embodiments, Cas9 refers to CasX, or a variant of CasX. In some embodiments, Cas9 refers to a CasY, or a variant of CasY. It should be appreciated that other RNA-guided DNA binding proteins may be used as a nucleic acid programmable DNA binding protein (napDNAbp) and are within the scope of this disclosure.


In some embodiments, the Cas9 domain comprises an amino acid sequence that is at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to a naturally-occurring CasX or CasY protein. In some embodiments, the Cas9 domain is a naturally-occurring CasX or CasY protein. In some embodiments, the Cas9 domain comprises an amino acid sequence that is at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to any one of SEQ ID NOs: 336-337. In some embodiments, the Cas9 domain comprises an amino acid sequence of any one SEQ ID NOs: 336-337. It should be appreciated that CasX and CasY from other bacterial species may also be used in accordance with the present disclosure.


In some embodiments, wild-type Cas9 refers to CasX from Sulfolobus islandicus (strain REY15A).











(SEQ ID NO: 336)



MEVPLYNIFGDNYIIQVATEAENSTIYNNKVEIDDEELRNVLNLAY







KIAKNNEDAAAERRGKAKKKKGLEGETTTSNIILPLSGNDKNPWTE







TLKCYNFPTTVALSEVFKNFSQVKECEEVSAPSFVKPEFYKFGRSP







GMVERTRRVKLEVEPHYLIMAAAGWVLTRLGKAKVSEGDYVGVNVF







TPTRGILYSLIQNVNGIVPGIKPETAFGLWIARKVVSSVTNPNVSV







VSIYTISDAVGQNPTTINGGFSIDLTKLLEKRDLLSERLEAIARNA







LSISSNMRERYIVLANYIYEYLTGSKRLEDLLYFANRDLIMNLNSD







DGKVRDLKLISAYVNGELIRGEG






In some embodiments, wild-type Cas9 refers to CasX from Sulfolobus islandicus (strain REY15A).











(SEQ ID NO: 337)



MEVPLYNIFGDNYIIQVATEAENSTIYNNKVEIDDEELRNVLNLAY







KIAKNNEDAAAERRGKAKKKKGLEGETTTSNIILPLSGNDKNPWTE







TLKCYNFPTTVALSEVFKNFSQVKECEEVSAPSFVKPEFYEFGRSP







GMVERTRRVKLEVEPHYLIIAAAGWVLTRLGKAKVSEGDYVGVNVF







TPTRGILYSLIQNVNGIVPGIKPETAFGLWIARKVVSSVTNPNVSV







VRIYTISDAVGQNPTTINGGFSIDLTKLLEKRYLLSERLEAIARNA







LSISSNMRERYIVLANYIYEYLTGSKRLEDLLYFANRDLIMNLNSD







DGKVRDLKLISAYVNGELIRGEG






In some embodiments, wild-type Cas9 refers to CasY from a Parcubacteria group bacterium.









CasY (ncbi.nlm.nih.gov/protein/APG80656.1)


>APG80656.1 CRISPR-associated protein CasY


[uncultured Parcubacteria group bacterium]


(SEQ ID NO: 2469)


MSKRHPRISGVKGYRLHAQRLEYTGKSGAMRTIKYPLYSSPSGGRTV





PREIVSAINDDYVGLYGLSNFDDLYNAEKRNEEKVYSVLDFWYDCVQ





YGAVFSYTAPGLLKNVAEVRGGSYELTKTLKGSHLYDELQIDKVIKF





LNKKEISRANGSLDKLKKDIIDCFKAEYRERHKDQCNKLADDIKNAK





KDAGASLGERQKKLFRDFFGISEQSENDKPSFTNPLNLTCCLLPFDT





VNNNRNRGEVLFNKLKEYAQKLDKNEGSLEMWEYIGIGNSGTAFSNF





LGEGFLGRLRENKITELKKAMMDITDAWRGQEQEEELEKRLRILAAL





TIKLREPKFDNHWGGYRSDINGKLSSWLQNYINQTVKIKEDLKGHKK





DLKKAKEMINRFGESDTKEEAVVSSLLESIEKIVPDDSADDEKPDIP





AIAIYRRFLSDGRLTLNRFVQREDVQEALIKERLEAEKKKKPKKRKK





KSDAEDEKETIDFKELFPHLAKPLKLVPNFYGDSKRELYKKYKNAAI





YTDALWKAVEKIYKSAFSSSLKNSFFDTDFDKDFFIKRLQKIFSVYR





RFNTDKWKPIVKNSFAPYCDIVSLAENEVLYKPKQSRSRKSAAIDKN





RVRLPSTENIAKAGIALARELSVAGFDWKDLLKKEEHEEYIDLIELH





KTALALLLAVTETQLDISALDFVENGTVKDFMKTRDGNLVLEGRFLE





MFSQSIVFSELRGLAGLMSRKEFITRSAIQTMNGKQAELLYIPHEFQ





SAKITTPKEMSRAFLDLAPAEFATSLEPESLSEKSLLKLKQMRYYPH





YFGYELTRTGQGIDGGVAENALRLEKSPVKKREIKCKQYKTLGRGQN





KIVLYVRSSYYQTQFLEWFLHRPKNVQTDVAVSGSFLIDEKKVKTRW





NYDALTVALEPVSGSERVFVSQPFTIFPEKSAELEGQRYLGIDIGEY





GIAYTALEITGDSAKILDQNFISDPQLKTLREEVKGLKLDQRRGTFA





MPSTKIARIRESLVHSLRNRIHHLALKHKAKIVYELEVSRFEEGKQK





IKKVYATLKKADVYSEIDADKNLQTTVWGKLAVASEISASYTSQFCG





ACKKLWRAEMQVDETITTQELIGTVRVIKGGTLIDAIKDFMRPPIFD





ENDTPFPKYRDFCDKHHISKKMRGNSCLFICPFCRANADADIQASQT





IALLRYVKEEKKVEDYFERFRKLKNIKVLGQMKKI 






In some embodiments, Cas9 refers to Cas9 from: Corynebacterium ulcerans (NCBI Refs: NC_015683.1, NC_017317.1); Corynebacterium diphtheria (NCBI Refs: NC_016782.1, NC_016786.1); Spiroplasma syrphidicola (NCBI Ref: NC_021284.1); Prevotella intermedia (NCBI Ref: NC_017861.1); Spiroplasma taiwanense (NCBI Ref: NC_021846.1); Streptococcus iniae (NCBI Ref: NC_021314.1); Belliella baltica (NCBI Ref: NC_018010.1); Psychroflexus torquisI (NCBI Ref: NC_018721.1); Listeria innocua (NCBI Ref: NP_472073.1); Campylobacter jejuni (NCBI Ref: YP_002344900.1); or Neisseria. meningitidis (NCBI Ref: YP_002342100.1) or to a Cas9 from any of the organisms listed in Example 1 (SEQ ID NOs: 11-260).


To be used as in the fusion protein of the present disclosure as the guide nucleotide sequence-programmable DNA binding protein domain, a Cas9 protein needs to be nuclease inactive. A nuclease-inactive Cas9 protein may interchangeably be referred to as a “dCas9” protein (for nuclease-“dead” Cas9). Methods for generating a Cas9 protein (or a fragment thereof) having an inactive DNA cleavage domain are known (See, e.g., Jinek et al., Science. 337:816-821(2012); Qi et al., (2013) Cell. 28; 152(5):1173-83, each of which are incorporated herein by reference). For example, the DNA cleavage domain of Cas9 is known to include two subdomains, the HNH nuclease subdomain and the RuvC1 subdomain. The HNH subdomain cleaves the strand complementary to the gRNA, whereas the RuvC1 subdomain cleaves the non-complementary strand. Mutations within these subdomains can silence the nuclease activity of Cas9. For example, the mutations D10A and H840A completely inactivate the nuclease activity of S. pyogenes Cas9 (Jinek et al., Science. 337:816-821(2012); Qi et al., Cell. 28; 152(5):1173-83 (2013)).










dCas9 (D10A and H840A)



(SEQ ID NO: 2)



MDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTAR






RRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLR





KKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDA





KAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDN





LLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEK





YKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHL





GELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGA





SAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFK





TNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLT





LFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRN





FMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVI






EMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQEL







DINRLSDYDVDAIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRK







FDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSD







FRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKA







TAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQ






TGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIME





RSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLA





SHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENI





IHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGD


(single underline: HNH domain; double underline: RuvC domain)






The dCas9 of the present disclosure encompasses completely inactive Cas9 or partially inactive Cas9. For example, the dCas9 may have one of the two nuclease domain inactivated, while the other nuclease domain remains active. Such a partially active Cas9 may also be referred to as a Cas9 nickase, due to its ability to cleave one strand of the targeted DNA sequence. The Cas9 nickase suitable for use in accordance with the present disclosure has an active HNH domain and an inactive RuvC domain and is able to cleave only the strand of the target DNA that is bound by the sgRNA (which is the opposite strand of the strand that is being edited via cytidine deamination). The Cas9 nickase of the present disclosure may comprise mutations that inactivate the RuvC domain, e.g., a D10A mutation. It is to be understood that any mutation that inactivates the RuvC domain may be included in a Cas9 nickase, e.g., insertion, deletion, or single or multiple amino acid substitution in the RuvC domain. In a Cas9 nickase useful in the present disclosure, while the RuvC domain is inactivated, the HNH domain remains activate. Thus, while the Cas9 nickase may comprise mutations other than those that inactivate the RuvC domain (e.g., D10A), those mutations do not affect the activity of the HNH domain. In a non-limiting Cas9 nickase example, the histidine at position 840 remains unchanged. The sequence of an exemplary Cas9 nickase suitable for the present disclosure is provided below.











S.pyogenes Cas9 Nickase (D10A)




(SEQ ID NO: 3) 



MDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTAR






RRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLR





KKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDA





KAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDN





LLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKY





KEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHL





GELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGA





SAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKT





NRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLT





LFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRN





FMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVI






EMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQEL







DINRLSDYDVDHIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRK







FDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSD







FRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKA







TAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQ







TGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIM






ERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNELALPSKYVNFLY





LASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQ





AENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGD 





(single underline: HNH domain; double underline: RuvC domain)



S.aureus Cas9 Nickase (D10A)



(SEQ ID NO: 4)



MKRNYILGLAIGITSVGYGIIDYETRDVIDAGVRLFKEANVENNEGRRSKRGARRLKRRRRHRIQRVKK






LLFDYNLLTDHSELSGINPYEARVKGLSQKLSEEEFSAALLHLAKRRGVHNVNEVEEDTGNELSTKEQI





SRNSKALEEKYVAELQLERLKKDGEVRGSINRFKTSDYVKEAKQLLKVQKAYHQLDQSFIDTYIDLLE





TRRTYYEGPGEGSPFGWKDIKEWYEMLMGHCTYFPEELRSVKYAYNADLYNALNDLNNLVITRDENEKL





EYYEKFQIIENVFKQKKKPTLKQIAKEILVNEEDIKGYRVTSTGKPEFTNLKVYHDIKDITARKEIIEN





AELLDQIAKILTIYQSSEDIQEELTNLNSELTQLEIEQISNLKGYTGTHNLSLKAINLILDELWHTNDNQ





IAIFNRLKLVPKKVDLSQQKEIPTTLVDDFILSPVVKRSFIQSIKVINAIIKKYGLPNDIIIELAREKNS





KDAQKMINEMQKRNRQTNERIEEIIRTTGKENAKYLIEKIKLHDMQEGKCLYSLEAIPLEDLLNNPFNYL





VDHIIPRSVSFDNSFNNKVLVKQEENSKKGNRTPFQYLSSSDSKISYETFKKHILNLAKGKGRISKTKKE





YLLEERDINRFSVQKDFINRNLVDTRYATRGLMNLLRSYFRVNNLDVKVKSINGGFTSFLRRKWKFKKER





NKGYKHHAEDALIIANADFIFKEWKKLDKAKKVMENQMFEEKQAESMPEIETEQEYKEIFITPHQIKHI





KDFKDYKYSHRVDKKPNRELINDTLYSTRKDDKGNTLIVNNLNGLYDKDNDKLKKLINKSPEKLLMYHH





DPQTYQKLKLIMEQYGDEKNPLYKYYEETGNYLTKYSKKDNGPVIKKIKYYGNKLNAHLDITDDYPNSR





NKVVKLSLKPYRFDVYLDNGVYKFVTVKNLDVIKKENYYLVNSKCYLEAKKLKKISNQAEFIASFYNND





LIKINGELYRVIGVNNDLLNRIEVNMIDITYREYLENMNDKRPPRIIKTIASKTQSIKKYSTDILGNLY





EVKSKKHPQIIKKG 






It is appreciated that when the term “dCas9” or “nuclease-inactive Cas9” is used herein, it refers to Cas9 variants that are inactive in both HNH and RuvC domains as well as Cas9 nickases. For example, the dCas9 may include the amino acid sequence set forth in SEQ ID NO: 2 or SEQ ID NO: 3. In some embodiments, the dCas9 may comprise other mutations that inactivate RuvC or HNH domain. Additional suitable mutations that inactivate Cas9 will be apparent to those of skill in the art based on this disclosure and knowledge in the field, and are within the scope of this disclosure. Such additional exemplary suitable nuclease-inactive Cas9 domains include, but are not limited to, D839A and/or N863A (See, e.g., Prashant et al., Nature Biotechnology. 2013; 31(9): 833-838, which are incorporated herein by reference), or K603R (See, e.g., Chavez et al., Nature Methods 12, 326-328, 2015, which is incorporated herein by reference). The term Cas9, dCas9, or Cas9 variant also encompasses Cas9, dCas9, or Cas9 variants from any organism. Also appreciated is that dCas9, Cas9 nickase, or other appropriate Cas9 variants from any organisms may be used in accordance with the present disclosure.


A “deaminase” refers to an enzyme that catalyzes the removal of an amine group from a molecule, or deamination, for example through hydrolysis. In some embodiments, the deaminase is a cytidine deaminase, catalyzing the deamination of cytidine (C) to uridine (U), deoxycytidine (dC) to deoxyuridine (dU), or 5-methyl-cytidine to thymidine (T, 5-methyl-U), respectively. Subsequent DNA repair mechanisms ensure that a dU is replaced by T, as described in Komor et al (Nature, Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage, 533, 420-424 (2016), which is incorporated herein by reference). In some embodiments, the deaminase is a cytosine deaminase, catalyzing and promoting the conversion of cytosine to uracil (e.g., in RNA) or thymine (e.g., in DNA). In some embodiments, the deaminase is a naturally-occurring deaminase from an organism, such as a human, chimpanzee, gorilla, monkey, cow, dog, rat, or mouse. In some embodiments, the deaminase is a variant of a naturally-occurring deaminase from an organism, and the variants do not occur in nature. For example, in some embodiments, the deaminase or deaminase domain is at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75% at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to a naturally-occurring deaminase from an organism.


A “cytosine deaminase” refers to an enzyme that catalyzes the chemical reaction “cytosine+H2O→uracil→NH3” or “5-methyl-cytosine+H2O→thymine+NH3.” As it may be apparent from the reaction formula, such chemical reactions result in a C to U/T nucleobase change. In the context of a gene, such nucleotide change, or mutation, may in turn lead to an amino acid change in the protein, which may affect the protein's function, e.g., loss-of-function or gain-of-function. Subsequent DNA repair mechanisms ensure that uracil bases in DNA are replaced by T, as described in Komor et al (Nature, Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage, 533, 420-424 (2016), which is incorporated herein by reference).


One exemplary suitable class of cytosine deaminases is the apolipoprotein B mRNA-editing complex (APOBEC) family of cytosine deaminases encompassing eleven proteins that serve to initiate mutagenesis in a controlled and beneficial manner. The apolipoprotein B editing complex 3 (APOBEC3) enzyme provides protection to human cells against a certain HIV-1 strain via the deamination of cytosines in reverse-transcribed viral ssDNA. These cytosine deaminases all require a Zn2+-coordinating motif (His-X-Glu-X23-26-Pro-Cys-X2-4-Cys; SEQ ID NO: 1996) and bound water molecule for catalytic activity. The glutamic acid residue acts to activate the water molecule to a zinc hydroxide for nucleophilic attack in the deamination reaction. Each family member preferentially deaminates at its own particular “hotspot,” for example, WRC (W is A or T, R is A or G) for hAID, or TTC for hAPOBEC3F. A recent crystal structure of the catalytic domain of APOBEC3G revealed a secondary structure comprising a five-stranded j-sheet core flanked by six α-helices, which is believed to be conserved across the entire family. The active center loops have been shown to be responsible for both ssDNA binding and in determining “hotspot” identity. Overexpression of these enzymes has been linked to genomic instability and cancer, thus highlighting the importance of sequence-specific targeting. Another suitable cytosine deaminase is the activation-induced cytidine deaminase (AID), which is responsible for the maturation of antibodies by converting cytosines in ssDNA to uracils in a transcription-dependent, strand-biased fashion.


The term “base editors” or “nucleobase editors,” as used herein, broadly refer to any of the fusion proteins described herein. In some embodiments, the nucleobase editors are capable of precisely deaminating a target base to convert it to a different base, e.g., the base editor may target C bases in a nucleic acid sequence and convert the C to T base. For example, in some embodiments, the base editor may be a cytosine deaminase-dCas9 fusion protein. In some embodiments, the base editor may be a cytosine deaminase-Cas9 nickase fusion protein. In some embodiments, the base editor may be a deaminase-dCas9-UGI fusion protein. In some embodiments, the base editor may be an UGI-deaminase-dCas9 fusion protein. In some embodiments, the base editor may be an UGI-deaminase-Cas9 nickase fusion protein. In some embodiments, the base editor may be an APOBEC1-dCas9-UGI fusion protein. In some embodiments, the base editor may be an APOBEC1-Cas9 nickase-UGI fusion protein. In some embodiments, the base editor may be an APOBEC1-dCpf1-UGI fusion protein. In some embodiments, the base editor may be an APOBEC1-dNgAgo-UGI fusion protein. In some embodiments, the base editor may comprise a second UGI domain. Non-limiting exemplary sequences of the nucleobase editors useful in the present disclosure are provided in Example 1, SEQ ID NOs: 293-302 and 2495. Such nucleobase editors and methods of using them for genome editing have been described in the art, e.g., in U.S. Pat. No. 9,068,179, US Patent Application Publications US 2015/0166980, US 2015/0166981, US 2015/0166982, US20150166984, and US20150165054, and US Provisional Applications, U.S. Ser. No. 62/245,828, filed Oct. 23, 2015; 62/279,346, filed Jan. 15, 2016; 62/311,763, filed Mar. 22, 2016; 62/322,178, filed Apr. 13, 2016, 62/357,352, filed Jun. 30, 2016, U.S. Pat. No. 62,370,700, filed Aug. 3, 2016; 62/398,490, filed Sep. 22, 2016; 62/408,686, filed Oct. 14, 2016; PCT Application PCT/US2016/058344, filed Oct. 22, 2016; U.S. patent application Ser. No. 15/311,852, filed Oct. 22, 2016; Komor et al. (2017) Improved Base Excision Repair Inhibition and Bateriophage Mu Gam Protein Yields C:G-to-T:A base editors with higher efficiency and product purity. Sci Adv, 3: eaao4774; and in Komor et al., Nature, Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage, 533, 420-424 (2016), the entire contents of each of which is incorporated herein by reference.


The term “target site” or “target sequence” refers to a sequence within a nucleic acid molecule (e.g., a DNA molecule) that is deaminated by the fusion protein provided herein. In some embodiments, the target sequence is a polynucleotide (e.g., a DNA), wherein the polynucleotide comprises a coding strand and a complementary strand. The meaning of a “coding strand” and “complementary strand,” as used herein, is the same as the common meaning of the terms in the art. In some embodiments, the target sequence is a sequence in the genome of a mammal. In some embodiments, the target sequence is a sequence in the genome of a human. In some embodiments, the target sequence is a sequence in the genome of a non-human animal The term “target codon” refers to the amino acid codon that is edited by the base editor and converted to a different codon via deamination. The term “target base” refers to the nucleotide base that is edited by the base editor and converted to a different base via deamination. In some embodiments, the target codon in the coding strand is edited (e.g., deaminated). In some embodiments, the target codon in the complimentary strand is edited (e.g., deaminated).


The term “linker,” as used herein, refers to a chemical group or a molecule linking two molecules or moieties, e.g., two domains of a fusion protein, such as, for example, a nuclease-inactive Cas9 domain and a nucleic acid editing domain (e.g., a deaminase domain). Typically, the linker is positioned between, or flanked by, two groups, molecules, domains, or other moieties and connected to each one via a covalent bond, thus connecting the two. In some embodiments, the linker is an amino acid or a plurality of amino acids (e.g., a peptide or protein). In some embodiments, the linker is an organic molecule, group, polymer (e.g. a non-natural polymer, non-peptidic polymer), or chemical moiety. In some embodiments, the linker is 2-100 amino acids in length, for example, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 30-35, 35-40, 40-45, 45-50, 50-60, 60-70, 70-80, 80-90, 90-100, 100-150, or 150-200 amino acids in length. Longer or shorter linkers are also contemplated.


The term “mutation,” as used herein, refers to a substitution of a residue within a sequence, e.g., a nucleic acid or amino acid sequence, with another residue, or a deletion or insertion of one or more residues within a sequence. Mutations are typically described herein by identifying the original residue followed by the position of the residue within the sequence and by the identity of the newly substituted residue. Various methods for making the amino acid substitutions (mutations) provided herein are well known in the art, and are provided by, for example, Green and Sambrook, Molecular Cloning: A Laboratory Manual (4th ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (2012)).


The terms “nucleic acid,” and “polynucleotide,” as used herein, refer to a compound comprising a nucleobase and an acidic moiety, e.g., a nucleoside, a nucleotide, or a polymer of nucleotides. Typically, polymeric nucleic acids, e.g., nucleic acid molecules comprising three or more nucleotides are linear molecules, in which adjacent nucleotides are linked to each other via a phosphodiester linkage. In some embodiments, “nucleic acid” refers to individual nucleic acid residues (e.g. nucleotides and/or nucleosides). In some embodiments, “nucleic acid” refers to an oligonucleotide chain comprising three or more individual nucleotide residues. As used herein, the terms “oligonucleotide” and “polynucleotide” can be used interchangeably to refer to a polymer of nucleotides (e.g., a string of at least three nucleotides). In some embodiments, “nucleic acid” encompasses RNA as well as single and/or double-stranded DNA. Nucleic acids may be naturally occurring, for example, in the context of a genome, a transcript, an mRNA, tRNA, rRNA, siRNA, snRNA, a plasmid, cosmid, chromosome, chromatid, or other naturally occurring nucleic acid molecule. On the other hand, a nucleic acid molecule may be a non-naturally occurring molecule, e.g., a recombinant DNA or RNA, an artificial chromosome, an engineered genome, or fragment thereof, or a synthetic DNA, RNA, DNA/RNA hybrid, or including non-naturally occurring nucleotides or nucleosides. Furthermore, the terms “nucleic acid,” “DNA,” “RNA,” and/or similar terms include nucleic acid analogs, e.g., analogs having other than a phosphodiester backbone. Nucleic acids can be purified from natural sources, produced using recombinant expression systems and optionally purified, chemically synthesized, etc. Where appropriate, e.g., in the case of chemically synthesized molecules, nucleic acids can comprise nucleoside analogs such as analogs having chemically modified bases or sugars, and backbone modifications. A nucleic acid sequence is presented in the 5′ to 3′ direction unless otherwise indicated. In some embodiments, a nucleic acid is or comprises natural nucleosides (e.g. adenosine, thymidine, guanosine, cytidine, uridine, deoxyadenosine, deoxythymidine, deoxyguanosine, and deoxycytidine); nucleoside analogs (e.g., 2-aminoadenosine, 2-thiothymidine, inosine, pyrrolo-pyrimidine, 3-methyl adenosine, 5-methylcytidine, 2-aminoadenosine, C5-bromouridine, C5-fluorouridine, C5-iodouridine, C5-propynyl-uridine, C5-propynyl-cytidine, C5-methylcytidine, 2-aminoadenosine, 7-deazaadenosine, 7-deazaguanosine, 8-oxoadenosine, 8-oxoguanosine, 0(6)-methylguanine, and 2-thiocytidine); chemically modified bases; biologically modified bases (e.g., methylated bases); intercalated bases; modified sugars (e.g., 2′-fluororibose, ribose, 2′-deoxyribose, arabinose, and hexose); and/or modified phosphate groups (e.g., phosphorothioates and 5′-N-phosphoramidite linkages).


The terms “protein,” “peptide,” and “polypeptide” are used interchangeably herein, and refer to a polymer of amino acid residues linked together by peptide (amide) bonds. The terms refer to a protein, peptide, or polypeptide of any size, structure, or function. Typically, a protein, peptide, or polypeptide will be at least three amino acids long. A protein, peptide, or polypeptide may refer to an individual protein or a collection of proteins. One or more of the amino acids in a protein, peptide, or polypeptide may be modified, for example, by the addition of a chemical entity such as a carbohydrate group, a hydroxyl group, a phosphate group, a farnesyl group, an isofarnesyl group, a fatty acid group, a linker for conjugation, functionalization, or other modification, etc. A protein, peptide, or polypeptide may also be a single molecule or may be a multi-molecular complex. A protein, peptide, or polypeptide may be just a fragment of a naturally occurring protein or peptide. A protein, peptide, or polypeptide may be naturally occurring, recombinant, or synthetic, or any combination thereof. The term “fusion protein” as used herein refers to a hybrid polypeptide which comprises protein domains from at least two different proteins. One protein may be located at the amino-terminal (N-terminal) portion of the fusion protein or at the carboxy-terminal (C-terminal) protein thus forming an “amino-terminal fusion protein” or a “carboxy-terminal fusion protein,” respectively. A protein may comprise different domains, for example, a nucleic acid binding domain (e.g., the gRNA binding domain of Cas9 that directs the binding of the protein to a target site) and a nucleic acid cleavage domain or a catalytic domain of a nucleic-acid editing protein. In some embodiments, a protein is in a complex with, or is in association with, a nucleic acid, e.g., RNA. Any of the proteins provided herein may be produced by any method known in the art. For example, the proteins provided herein may be produced via recombinant protein expression and purification, which is especially suited for fusion proteins comprising a peptide linker. Methods for recombinant protein expression and purification are well known, and include those described by Green and Sambrook, Molecular Cloning: A Laboratory Manual (4th ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (2012)), which are incorporated herein by reference.


The term “subject,” as used herein, refers to an individual organism, for example, an individual mammal. A “subject in need thereof”, refers to an individual who has a disease, a symptom of the disease, or a predisposition toward the disease, with the purpose to cure, heal, alleviate, relieve, alter, remedy, ameliorate, improve, or affect the disease, the symptom of the disease, or the predisposition toward the disease. In some embodiments, the subject is a mammal. In some embodiments, the subject is a non-human primate. In some embodiments, the subject is human. In some embodiments, the mammal is a rodent. In some embodiments, the rodent is a mouse. In some embodiments, the rodent is a rat. In some embodiments, the mammal is a companion animal. A “companion animal” refers to pets and other domestic animals. Non-limiting examples of companion animals include dogs and cats; livestock such as horses, cattle, pigs, sheep, goats, and chickens; and other animals such as mice, rats, guinea pigs, and hamsters.


The term “recombinant” as used herein in the context of proteins or nucleic acids refers to proteins or nucleic acids that do not occur in nature, but are the product of human engineering. For example, in some embodiments, a recombinant protein or nucleic acid molecule comprises an amino acid or nucleotide sequence that comprises at least one, at least two, at least three, at least four, at least five, at least six, or at least seven mutations as compared to any naturally occurring sequence. The fusion proteins (e.g., base editors) useful in the present disclosure are made recombinantly. Recombinant technology is familiar to those skilled in the art.


An “intron” refers to any nucleotide sequence within a gene that is removed by RNA splicing during maturation of the final RNA product. The term intron refers to both the DNA sequence within a gene and the corresponding sequence in RNA transcripts. Sequences that are joined together in the final mature RNA after RNA splicing are exons. Introns are found in the genes of most organisms and many viruses, and can be located in a wide range of genes, including those that generate proteins, ribosomal RNA (rRNA), and transfer RNA (tRNA). When proteins are generated from intron-containing genes, RNA splicing takes place as part of the RNA processing pathway that follows transcription and precedes translation.


An “exon” refers to any part of a gene that will become a part of the final mature RNA produced by that gene after introns have been removed by RNA splicing. The term exon refers to both the DNA sequence within a gene and to the corresponding sequence in RNA transcripts. In RNA splicing, introns are removed and exons are covalently joined to one another as part of generating the mature messenger RNA.


“Splicing” refers to the processing of a newly synthesized messenger RNA transcript (also referred to as a primary mRNA transcript). After splicing, introns are removed and exons are joined together (ligated) for form mature mRNA molecule containing a complete open reading frame that is decoded and translated into a protein. For nuclear-encoded genes, splicing takes place within the nucleus either co-transcriptionally or immediately after transcription. The molecular mechanism of RNA splicing has been extensively described, e.g., in Pagani et al., Nature Reviews Genetics 5, 389-396, 2004; Clancy et al., Nature Education 1 (1): 31, 2011; Cheng et al., Molecular Genetics and Genomics 286 (5-6): 395-410, 2014; Taggart et al., Nature Structural & Molecular Biology 19 (7): 719-2, 2012, the contents of each of which are incorporated herein by reference. One skilled in the art is familiar with the mechanism of RNA splicing.


“Alternative splicing” refers to a regulated process during gene expression that results in a single gene coding for multiple proteins. In this process, particular exons of a gene may be included within or excluded from the final, processed messenger RNA (mRNA) produced from that gene. Consequently, the proteins translated from alternatively spliced mRNAs will contain differences in their amino acid sequence and, often, in their biological functions. Notably, alternative splicing allows the human genome to direct the synthesis of many more proteins than would be expected from its 20,000 protein-coding genes. Alternative splicing is sometimes also termed differential splicing. Alternative splicing occurs as a normal phenomenon in eukaryotes, where it greatly increases the biodiversity of proteins that can be encoded by the genome; in humans, ˜95% of multi-exonic genes are alternatively spliced. There are numerous modes of alternative splicing observed, of which the most common is exon skipping. In this mode, a particular exon may be included in mRNAs under some conditions or in particular tissues, and omitted from the mRNA in others. Abnormal variations in splicing are also implicated in disease; a large proportion of human genetic disorders result from splicing variants. Abnormal splicing variants are also thought to contribute to the development of cancer, and splicing factor genes are frequently mutated in different types of cancer. The regulation of alternative splicing is also described in the art, e.g., in Douglas et al., Annual Review of Biochemistry 72 (1): 291-336, 2003; Pan et al., Nature Genetics 40 (12): 1413-1415, 2008; Martin et al., Nature Reviews 6 (5): 386-398, 2005; Skotheim et al., The international journal of biochemistry & cell biology 39 (7-8): 1432-49, 2007, each of which is incorporated herein by reference.


A “coding frame” or “open reading frame” refers to a stretch of codons that encodes a polypeptide. Since DNA is interpreted in groups of three nucleotides (codons), a DNA strand has three distinct reading frames. The double helix of a DNA molecule has two anti-parallel strands so, with the two strands having three reading frames each, there are six possible frame translations. A functional protein may be produced when translation proceeds in the correct coding frame. An insertion or a deletion of one or two bases in the open reading frame causes a shift in the coding frame that is also referred to as a “frameshift mutation.” A frameshift mutation typical results in premature translation termination and/or truncated or non-functional protein.


A “neurotropic virus” is a virus that is capable of accessing or entering the nervous system and neurovirulent if it is capable of causing disease within the nervous system (e.g., CNS or PNS). Important neuroinvasive viruses include poliovirus, which is highly neurovirulent but weakly neuroinvasive, and rabies virus, which is highly neurovirulent but requires tissue trauma (often resulting from an animal bite) to become neuroinvasive. Neurotropic viral delivery vectors may be derived from neurotropic virus to facilitate the delivery of agents (e.g., therapeutic agents for neurological diseases) to neurons. Non-limiting, exemplary neurotropic viruses that may be used to develop neurotropic viral delivery vectors include: Japanese encephalitis virus, Venezuelan equine encephalitis virus, California encephalitis viruses; polio virus, coxsackie virus, echo virus, mumps virus, measles virus, influenza virus, rabies virus, herpes simplex virus, varicella-zoster virus, Epstein-Barr virus, cytomegalo virus, and HHV-6 virus. Methods of using neurotropic viral delivery vectors to delivery therapeutic agents to neurons have been described in the art, e.g., in Lim et al., Pharmacol Res. 2010 January; 61(1): 14-26; Berges et al., Molecular Therapy, Volume 15, Issue 1, January 2007, Pages 20-29; and Beverly et al., Nature Reviews Neuroscience 4, 353-364, 2003, each of which in incorporated herein by reference.


Other viruses that are known to be suitable for gene transfer may also be used to deliver agents to neurons, e.g., adeno-associated virus (AAV), lentivirus, and retrovirus. An AAV-based neurotropic viral delivery system has recently been described in Deverman et al., Nature Biotechnology 34, 204-209 (2016), incorporated herein by reference. Delivery of a split Cas9 using AAV has also been described, e.g., in Truong et al., Nucl. Acids Res. 43, 6450 (2016), and U.S. Provisional Application 62/408,575, filed Oct. 14, 2016, each of which is incorporated herein by reference.


These and other exemplary substituents are described in more detail in the Detailed Description, Examples, and Claims. The invention is not intended to be limited in any manner by the above exemplary listing of substituents.


DETAILED DESCRIPTION OF CERTAIN EMBODIMENTS

A normal physiological outcome of trauma, inflammation, and/or nerve injury is the induction of gene expression changes in neighboring nociceptive neurons during the period required for healing. Such changes in gene expression, for example, may facilitate the firing of action potentials by neurons at a lower activation threshold and in turn underlie the sensations of pain (e.g., hyperalgesia (increased pain sensitivity) and allodynia (pain following a normally innocuous stimulus)). Chronic pain develops when the enhanced sensitization of sensory neurons becomes irreversibly established and becomes a persistent maladaptive condition. The functional specialization of sensory neurons is driven by the expression of dedicated ion channel genes (e.g., the ion channel genes listed in Table 12) that fine-tune the membrane polarization to trigger and propagate action potentials in response to stimuli. Accordingly, the etiology of chronic pain can be attributed to, at least in part, the dysregulated expression of one or more genes in one or more neurons.


In general, the types of chronic pain that occur in most parts of the body and the extremities involve afferent neurons of the dorsal root ganglia (DRG), which reside in clusters of nerve cells near the spinal cord and have long axons extending towards, for example, the skin, muscles, and organs (FIG. 1). The mechanism of enhanced excitability involves voltage-gated ion channels and background/leak channels that set the resting membrane potential and firing threshold of DRG neurons. Under normal conditions, chemical, mechanical, or thermal stimuli are required to activate receptors and ion channels in peripheral nerve endings to initiate action potentials that propagate along the axons of DRG neurons. In some instances, the dendritic termini of the DRG neurons liberate glutamate and substance-P at synapses in the spinal cord dorsal horn, activating second-order neurons that communicate pain signals to the brain.


Human DRG neurons constitutively express specific and specialized ion channels that have been implicated in afferent pain signaling, which may be targeted for modulation of chronic pain conditions. Three sodium channels (NaV1.7, NaV1.8, and NaV1.9) are constitutively expressed in DRG neurons, and a fourth gene (NaV1.3) displays elevated expression after nerve injury (Table 12). In some embodiments, targeting the ion channels using the strategies described herein leads to gene ablation, loss-of-function, destabilization of the transcript and/or protein folding of the targeted ion channels, which in turn leads to reduced pain transmission. In some embodiments, the normal function of the DRG neurons in triggering action potentials and reaching a normal membrane depolarization threshold is not comprised post editing.


Thus, in some embodiments, a polynucleotide encoding any one of NaV1.7, NaV1.8, NaV1.9, NaV1.3, CaV3.2, HCN1, HCN2, or Ano1 ion-channels is targeted by a genome editing agent (e.g., a nucleobase editor, nuclease). In some embodiments, a polynucleotide (e.g., DNA) encoding NaV1.7 ion channel is targeted.


In a human genome, the NaV1.7 ion channel is encoded by the SCN9A gene. Thus, in some embodiments, the nucleobase editor targets the SCN9A gene in a genome, e.g., a human genome. Disruption of SCN9A is only desirable at a localized level, because nociception is essentially a protective mechanism from overextension and deformation of our joints and muscles, and it is also necessary for our sense of smell. Humans presenting homozygous SCN9A loss-of-function mutations may suffer from congenital insensitivity to pain (CIP). Conversely, gain-of-function mutations in the sodium channels NaV1.7 (SCN9A) or NaV1.8 (SCN10A) cause congenital pain syndromes, such as primary erythermalgia. In some embodiments, the SCN9A gene is involved in itching.


Various genome-editing agents useful in the present disclosure may be deployed to the DRG neurons (e.g., dysregulated DRG neurons to modify the genes responsible for propagation of pain signals in DRG neurons. The strategies for pain (e.g., chronic pain) suppression described herein are superior to traditional methods of pain management due to their high specificity, efficacy, and safety profile. In some embodiments, one or more design elements may be utilized in the strategies described herein that achieves precise and selective targeting of pain-causative neurons. Such design elements include, for example: 1) localized delivery of a non-replicative viral vector that requires synaptic terminals, sparing the bulk of somatic tissues near the pain site, 2) neuron-specific promoters that drive expression of the genome editing construct; and/or 3) guide-RNA programmed targeting of non-essential ion channel genes exclusively expressed by DRG neurons to spare other types of neurons (efferent neurons, interneurons, etc.).


Some aspects of the present disclosure relate to editing a polynucleotide encoding an ion channel in a DRG neuron, the method comprising contacting the ion channel-encoding polynucleotide with a nucleobase editor described herein and a guide nucleotide sequence targeting the nucleobase editor to a target site in the ion channel-encoding polynucleotide. The nucleobase editors described herein target C bases. Contacting the nucleobase editor with a target C base (e.g., a target C base in a ion channel-encoding polynucleotide) results in a cytosine (C) to thymine (T) change in the ion channel-encoding polynucleotide. Such C to T base change ultimately leads to a C:G to T:A base pair change.


Strategies for Targeting Ion Channels in DRG Neurons


The targeted editing of polynucleotides encoding ion channels in neurons (e.g., DRG neurons) may be achieved, in some embodiments, using nucleobase editors as described in, e.g., U.S. Pat. No. 9,068,179, issued Jun. 30, 2015, US Patent Application Publications US 2015/0166980, US 2015/0166981, US 2015/0166982, US 2015/0166984, and US 2015/0165054, and US Provisional Applications, U.S. Ser. No. 62/245,828, filed Oct. 23, 2015; 62/279,346, filed Jan. 15, 2016; 62/311,763, filed Mar. 22, 2016; 62/322,178, filed Apr. 13, 2016, 62/357,352, filed Jun. 30, 2016, U.S. Pat. No. 62,370,700, filed Aug. 3, 2016; 62/398,490, filed Sep. 22, 2016; and 62/408,686, filed Oct. 14, 2016; PCT Application PCT/US2016/058344, filed Oct. 22, 2016; US patent application U.S. Ser. No. 15/311,852, filed Oct. 22, 2016; and in Komor et al., Nature, Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage, 533, 420-424 (2016), the entire contents of each of which are incorporated herein by reference.


The nucleobase editors can precisely edit a target base in an ion channel-encoding polynucleotide without introducing a DNA double stand break, thus reducing genome instability and preventing possible oncogenic modifications that may be caused by other genome editing methods. The nucleobase editors described herein may be programmed to target and modify a single base. In some embodiments, the target base is a cytosine (C) base and may be converted to a thymine (T) base via deamination by the nucleobase editor.


In some embodiments, the ion channel-encoding polynucleotide is a DNA molecule comprising a coding strand and a complementary strand, e.g., a gene locus for the ion channel in a genome. The target base may be on either the coding-strand or the complementary strand of an ion channel-encoding polynucleotide. In some embodiments, the ion channel-encoding polynucleotide includes coding regions (e.g., exons) and non-coding regions (e.g., introns or splicing sites). In some embodiments, the target base (e.g., a C base) is located in the coding region (e.g., an exon) of the ion channel-encoding polynucleotide (e.g., the ion channel gene locus). In some embodiments, the conversion of a base in the coding region results in an amino acid change in the ion channel protein sequence, i.e., a mutation. In some embodiments, editing the ion channel-encoding polynucleotide results in a loss-of-function mutant (e.g., for SCN9A). In some embodiments, editing the ion channel-encoding polynucleotide results in a gain-of-function mutant (e.g., for SCN11A).


In some embodiments, the target base is located in a non-coding region of the ion channel-encoding polynucleotide, e.g., in an intron or a splicing site. In some embodiments, a target base is located in a splicing site and the editing of such target base causes alternative splicing of the ion channel mRNA. In some embodiments, the alternative splicing leads to loss-of-function ion-channel mutants. In some embodiments, the alternative splicing leads to the introduction of a premature stop codon in an ion channel mRNA, resulting in truncated and/or unstable ion channel proteins. In some embodiments, ion channel mutants that are defective in folding are produced.


In some embodiments, the activity of a loss-of-function ion channel variant may be reduced by at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 99%, or more. In some embodiments, the loss-of-function ion channel variant has no more than 50%, no more than 40%, no more than 30%, no more than 20%, no more than 10%, no more than 5%, no more than 1%,or less activity compared to a wild type ion channel protein.


In some embodiments, the activity of a gain-of-function ion channel variant may be elevated by at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 99%, or more. In some embodiments, the loss-of-function ion channel variant has no more than 50%, no more than 40%, no more than 30%, no more than 20%, no more than 10%, no more than 5%, no more than 1%, or less activity compared to a wild type ion channel protein.


To edit the ion channel-encoding polynucleotide gene, the ion channel-encoding nucleotide may contacted with a genome-editing agent (e.g., a programmable nuclease or a nucleobase editor), wherein the genome-editing agent binds to its target sequence and edits the target site. For example, the genome-editing agent (e.g., a nucleobase editor) may be expressed in a cell where editing is desired (e.g., a DRG neuron), to thereby allow contacting of the ion channel gene with the agent. In some embodiments, the binding of the genome editing agent (e.g., a nucleobase editor) to its target sequence in the ion channel-encoding polynucleotide is mediated by a guide nucleotide sequence, e.g., a guide RNA (gRNA). The guide nucleotide sequence is designed to be complementary to one of the strands of the target sequence in the ion channel-encoding polynucleotide. The guide nucleotide sequence may be engineered to guide the nucleobase editor to any target base (e.g., target bases listed in Table 2) in an ion channel gene (e.g., SCN9A), provided that a PAM is located 3′ of the target base. In some embodiments, the guide nucleotide sequence is co-expressed with the programmable nuclease or nucleobase editor in a cell where editing is desired (e.g., a DRG neuron). In some embodiments, a programmable nuclease or a nucleobase editor in complex with a gRNA is delivered to a cell where editing is desired (e.g., a DRG neuron). Strategies of editing the ion channel genes using nucleobase editors are provided.


Codon Change


Using the nucleobase editors, an amino acid codon may be converted to a different codon via deamination of a target base within the codon. For example, in some embodiments, a cytosine (C) base is converted to a thymine (T) base via deamination by a nucleobase editor comprising a cytosine deaminase domain (e.g., APOBEC1 or AID). It is worth noting that during a C to T change via deamination (e.g., by a cytosine deaminase such as APOBEC1 or AID), the cytosine is first converted to a uridine (U), leading to a G:U mismatch. The G:U mismatch is then converted by DNA repair machinery and replication pathways to T:A pair, thus introducing the thymine at the position of the original cytosine. In some embodiments, conversion of a base in an amino acid codon may lead to a change of the amino acid the codon encodes. Cytosine deaminases are capable of converting a cytosine (C) base to a thymine (T) base via deamination. Thus, it is envisioned that, for amino acid codons containing a C base, the C base may be directly converted to T. For example, codon (CTC) for leucine may be changed to a TTC (phenylalanine) codon via the deamination of the first C on the coding strand. For amino acid codons that contain a guanine (G) base, a C base is present on the complementary strand; and the G base may be converted to an adenosine (A) via the deamination of the C on the complementary strand. For example, an ATG (Met/M) codon may be converted to a ATA (IIe/I) codon via the deamination of the third C on the complementary strand. In some embodiments, two C to T changes are required to convert a codon to a different codon. Non-limiting examples of possible mutations that may be made (e.g., in the ion channel-encoding polynucleotide) by the nucleobase editors of the present disclosure are summarized in Table 1.









TABLE 1







Exemplary Codon Changes via Base Editing











Target codon
Base-editing reaction (s)
Edited codon







CTT (Leu/L)
1st base C to T on coding strand
TTT (Phe/F)



CTC (Leu/L)
1st base C to T on coding strand
TTC (Phe/F)



ATG (Met/M)
3rd base C to T on complementary strand
ATA (Ile/I)



GTT (Val/V)
1st base C to T on complementary stand
ATT (Ile/I)



GTA (Val/V)
1st base C to T on complementary stand
ATA (Ile/I)



GTC (Val/V)
1st base C to T on complementary strand
ATC (Ile/I)



GTG (Val/V)
1st base C to T on complementary strand
ATG (Met/M)



TCT (Ser/S)
2nd base C to T on coding strand
TTT (Phe/F)



TCC (Ser/S)
2nd base C to T on coding strand
TTC (Phe/F)



TCA (Ser/S)
2nd base C to T on coding strand
TTA (Leu/L)



TCG (Ser/S)
2nd base C to T on coding strand
TTG (Leu/L)



AGT (Ser/S)
2nd base C to T on complementary strand
AAT (Asp/N)



AGC (Ser/S)
2nd base C to T on complementary strand
AAC (Aps/N)



CCT (Pro/P)
1st base C to T on coding strand
TCT (Ser/S)



CCC (Pro/P)
1st base C to T on coding strand
TCC (Ser/S)



CCA (Pro/P)
1st base C to T on coding strand
TCA (Ser/S)



CCG (Pro/P)
1st base C to T on coding strand
TCG (Ser/S)



CCT (Pro/P)
2nd base C to T on coding strand
CTT (Leu/L)



CCC (Pro/P)
2nd base C to T on coding strand
CTC (Leu/L)



CCA (Pro/P)
2nd base C to T on coding strand
CTA (Leu/L)



CCG (Pro/P)
2nd base C to T on coding strand
CTG (Leu/L)



ACT (Thr/T)
2nd base C to T on coding strand
ATT (Leu/L)



ACC (Thr/T)
2nd base C to T on coding strand
ATC (Leu/L)



ACA (Thr/T)
2nd base C to T on coding strand
ATA (Leu/L)



ACG (Thr/T)
2nd base C to T on coding strand
ATG (Met/M)



GCT (Ala/A)
2nd base C to T on coding strand
GTT (Val/V)



GCC (Ala/A)
2nd base C to T on coding strand
GTC (Val/V)



GCA (Ala/A)
2nd base C to T on coding strand
GTA (Val/V)



GCG (Ala/A)
2nd base C to T on coding strand
GTG (Val/V)



GCT (Ala/A)
1st base C to T on complementary stand
ACT (Thr/T)



GCC (Ala/A)
1st base C to T on complementary stand
ACC (Thr/T)



GCA (Ala/A)
1st base C to T on complementary stand
ACA (Thr/T)



GCG (Ala/A)
1st base C to T on complementary stand
ACG (Thr/T)



CAT (His/H)
1st base C to T on complementary stand
TAT (Tyr/Y)



CAC (His/H)
1st base C to T on complementary stand
TAC (Tyr/Y)



GAT (Asp/D)
1st base C to T on complementary stand
AAT (Asp/N)



GAC (Asp/D)
1st base C to T on complementary stand
AAC (Asp/N)



GAA (Glu/E)
1st base C to T on complementary stand
AAA (Lys/K)



GAG (Glu/E)
1st base C to T on complementary stand
AAG (Lys/K)



TGT (Cys/C)
2nd base C to T on complementary stand
TAT (Tyr/Y)



TGC (Cys/C)
2nd base C to T on complementary stand
TAC (Tyr/Y)



CGT (Arg/R)
1st base C to T on coding strand
TGT (Cys/C)



CGC (Arg/R)
1st base C to T on coding strand
TGC (Cys/C)



AGA (Arg/R)
2nd base C to T on complementary stand
AAA (Lys/K)



AGG (Arg/R)
2nd base C to T on complementary stand
AAG (Lys/K)



CGG (Arg/R)
2nd base C to T on complementary stand
CAG (Gln/Q)



CGG (Arg/R)
1st base C to T on coding strand
TGG (Trp/W)



GGT (Gly/G)
2nd base C to T on complementary stand
GAT (Asp/D)



GGC (Gly/G)
2nd base C to T on complementary stand
GAC (Asp/D)



GGA (Gly/G)
2nd base C to T on complementary stand
GAA (Glu/E)



GGG (Gly/G)
2nd base C to T on complementary stand
GAG (Glu/E)



GGT (Gly/G)
1st base C to T on complementary stand
AGT (Ser/S)



GGC (Gly/G)
1st base C to T on complementary stand
AGC (Ser/S)



GGA (Gly/G)
1st base C to T on complementary stand
AGA (Arg/R)



GGG (Gly/G)
1st base C to T on complementary stand
AGG (Arg/R)










In some embodiments, nucleobase editor is guided by a guide nucleotide sequence to its target sequence that it binds. In some embodiments, the guide nucleotide sequence is a gRNA sequence. An gRNA typically comprises a tracrRNA framework allowing for Cas9 binding, and a guide sequence, which confers sequence specificity to fusion proteins disclosed herein. In some embodiments, the guide RNA comprises a structure 5′-[guide sequence]-guuuuagagcuagaaauagcaaguuaaaauaaaggcuaguccguuaucaacuugaaaaaguggcaccgagucggugcuuuuu-3′ (SEQ ID NO: 338), wherein the guide sequence comprises a sequence that is complementary to the target sequence. The guide sequence is typically about 20 nucleotides long. For example, the guide sequence may be 15-25 nucleotides long. In some embodiments, the guide sequence is 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25 nucleotides long. Such suitable guide RNA sequences typically comprise guide sequences that are complementary to a nucleic sequence within 50 (e.g., 50, 45, 40, 35, 30, 25, 20, 15, or 10) nucleotides upstream or downstream of the target nucleotide to be edited.


In some embodiments, at least 1 mutation is introduced into the ion channel-encoding polynucleotide. In some embodiments, at least 2, 3, 4, 5, 6, 7, 8, 9, 10 or more mutations are introduced into the ion channel-encoding polynucleotide.


Target sites for nucleobase editors in the SCN9A gene encoding the ion channel NaV1.7 are provided in Table 2. The mutations presented herein are for illustration purpose only and are not meant to be limiting.









TABLE 2







Exemplary NaV1.7 (SNA9A) Protective Loss-of-Function Mutations


via Codon Changes

















Program-









mable
SEQ





Residue
Codon
Resulting
guide-RNA
ID

gRNA size
BE


Change
Change
Codon(s)
sequence
NOs
(PAM)
(C edited)
typea





P5L/S/F
CCT
YYT
GAUGGCAAUG
339
(CAG)
20 (C14/15)
SpBE3





UUGCCUCCCC









P5L/S/F
CCN
YYN
AUGGCAAUGU
340
(AGG)
20 (C13/14)
SpBE3





UGCCUCCCCC









P5/6L/S/F
CCN
YYN
UGGCAAUGUU
341
(GGAC)
20 (C12/13)
VQR-





GCCUCCCCCA



SpBE3





P5/6L/S/F
CCN
YYN
UGUUGCCUCC
342
(CAG)
20 (C6/7)
SpBE3





CCCAGGACCU









P5/6/7L/S/F
CCN
YYN
GUUGCCUCCC
343
(AGAG)
20 (C5/6)
EQR-





CCAGGACCUC



SpBE3





P5/6/7L7S/F
CCN
YYN
UUGCCUCCCC
344
(GAG)
20 (C4/5)
SpBE3





CAGGACCUCA









P35L/S/F
CCC
YYC
AAAAUCAAAG
345
(AAG)
20 (C14/15)
SpBE3








GAACCCAAAG






P35L/S/F
CCC
YYC
AAAUCAAAGG
346
(AGAA)
20 (C13/14)
VQR-





AACCCAAAGA



SpBE3





P35L/S/F
CCC
YYC
CAAAGGAACC
347
(AAG)
20 (C9/10)
SpBE3





CAAAGAAGAA









P35LVS/F
CCC
YYC
AAAGGAACCC
348
(AGAA)
20 (C8/9)
VQR-





AAAGAAGAAA



SpBE3





P35L/S/F
CCC
YYC
GGAACCCAAA
349
(AAG)
20 (C5/6)
SpBE3





GAAGAAAAGA









P35L/S/F
CCC
YYC
GAACCCAAAG
350
(AGAT)
20 (C4/5)
VQR-





AAGAAAAGAA



SpBE3





P35L7S/F
CCC
YYC
CCCAAAGAAG
351
(TGAT)
20 (C1/2)
VQR-





AAAAGAAAGA



SpBE3





P35L/S/F
CCC
YYC
AGGAACCCAA
352
(AAAGAT)
20 (C6/7)
KKH-





AGAAGAAAAG



SaBE3





P35L/S/F
CCC
YYC
AACCCAAAGA
353
(GATGAT)
20 (C3/4)
KKH-





AGAAAAGAAA



SaBE3





P35LVS/F
CCC
YYC
GAAAAUCAAA
354
(GAAGAAA)
20 (C15/16)
St1BE3





GGAACCCAAA









P35LVS/F
CCC
YYC
UCAAAGGAAC
355
(AAAGAAA)
20 (C10/11)
St1BE3





CCAAAGAAGA









P47L/S/F
CCA
YYA
GAUGAAGAAG
356
(AAG)
20 (C13/14)
SpBE3





CCCCAAAGCC









P47L/S/F
CCA
YYA
GAAGAAGCCC
357
(CAG)
20 (C10/11)
SpBE3





CAAAGCCAAG









P47L/S/F
CCA
YYA
AAGAAGCCCC
358
(AGTG)
20 (C9/10)
VQR-





AAAGCCAAGC



SpBE3





P47L/S/F
CCA
YYA
GAAGCCCCAA
359
(TGAC)
20 (C7/8)
VQR-





AGCCAAGCAG



SpBE3





P47/49L7S/F
CCA
YYA
CCCAAAGCCA
360
(TGG)
20 (C2/3/
SpBE3





AGCAGUGACU


8/9)






P47/49L/S/F
CCA
YYA
CCAAAGCCAA
361
(GGAA)
20 (C1/2/
VQR-





GCAGUGACUU


7/8)
SpBE3





P47L/S/F
CCA
YYA
AUGAAGAAGC
362
(AGCAGT)
20 (C12/13)
KKH-





CCCAAAGCCA



SaBE3





P49LVS/F
CCA
YYA
AAAGCCAAGC
363
(AAG)
20 (C5/6)
SpBE3





AGUGACUUGG









P49L/S/F
CCA
YYA
CCAAGCAGUG
364
(TGG)
20 (C1/2)
SpBE3





ACUUGGAAGC









P60L/S/F
CCC
YYC
AAACAGCUGC
365
(TGG)
20 (C10/11)
SpBE3





CCUUCAUCUA









P60LVS/F
CCC
YYC
AACAGCUGCC
366
(GGG)
20 (C9/10)
SpBE3





CUUCAUCUAU









P60LVS/F
CCC
YYC
ACAGCUGCCC
367
(GGG)
20 (C8/9)
SpBE3





UUCAUCUAUG









P60L/S/F
CCC
YYC
CAGCUGCCCU
368
(GGAC)
20 (C7/8)
VQR-





UCAUCUAUGG



SpBE3





P60L7S/F
CCC
YYC
AAACAGCUGC
369
(TGGGG)
20 (C10/11)
St3BE3





CCUUCAUCUA









P67/8L/S/F
CCT
YYT
UGGGGACAUU
370
(TGG)
20 (Cl 1 -15)
SpBE3





CCUCCCGGCA









P67/8L7S/F
CCT
YYT
GGGGACAUUC
371
(GGTG)
20 (C10-14)
VQR-





CUCCCGGCAU



SpBE3





P67/8L/S/F
CCT
YYT
CAUUCCUCCC
372
(CAG)
20 (C5-9)
SpBE3





GGCAUGGUGU









P67/8L/S/F
CCT
YYT
AUUCCUCCCG
373
(AGAG)
20 (C4-8)
EQR*





GCAUGGUGUC



SpBE3





P67/8L7S/F
CCT
YYT
UUCCUCCCGG
374
(GAG)
20 (C3-7)
SpBE3





CAUGGUGUCA









P67L/S/F
CCT
YYT
UAUGGGGACA
375
(CATGGT)
20 (C13-17)
KKH-





UUCCUCCCGG



SaBE3





P67L/S/F
CCT
YYT
UGGGGACAUU
376
(TGGTG)
20 (C11-15)
St3BE3





CCUCCCGGCA









P74L/S/F
CCC
YYC
CAUGGUGUCA
377
(AGG)
20 (C14/15)
SpBE3





GAGCCCCUGG









P74LVS/F
CCC
YYC
AUGGUGUCAG
378
(GGAC)
20 (C13/14)
VQR-





AGCCCCUGGA



SpBE3





P74L/S/F
CCC
YYC
GUCAGAGCCC
379
(TGG)
20 (C8/9)
SpBE3





CUGGAGGACU









P74L/S/F
CCC
YYC
UCAGAGCCCC
380
(GGAC)
20 (C7/8)
VQR-





UGGAGGACUU



SpBE3





P80L7S/F
CCC
YYC
GGACUUGGAC
381
(CAG)
20 (C11/12)
SpBE3





CCCUACUAUG









P80L/S/F
CCC
YYC
GACUUGGACC
382
(AGAC)
20 (C10/11)
VQR-





CCUACUAUGC



SpBE3





P80LVS/F
CCC
YYC
ACCCCUACUA
383
(AAG)
20 (C3/4)
SpBE3





UGCAGACAAA









P80L/S/F
CCC
YYC
CCCCUACUAU
387
(AGG)
20 (C2/3)
SpBE3





GCAGACAAAA









P80LVS/F
CCC
YYC
CCCUACUAUG
388
(GGTG)
20 (C1/2)
VQR-





CAGACAAAAA



SpBE3





P80LVS/F
CCC
YYC
GACCCCUACU
389
(AAAGGT)
20 (C4/5)
KKH-





AUGCAGACAA



SaBE3





P80L/S/F
CCC
YYC
CCCCUACUAU
390
(AGGTG)
20 (C2/3)
St3BE3





GCAGACAAAA









P111L7S/F
CCT
YYT
CUUUCUCCUU
391
(AAG)
20 (C7/8)
SpBE3





UCAGUCCUCU









P111L/S/F
CCT
YYT
UUUCUCCUUU
392
(AGAA)
20 (C6/7)
VQR-





CAGUCCUCUA



SpBE3





P111L7S/F
CCT
YYT
UCUCCUUUCA
393
(AAG)
20 (C4/5)
SpBE3





GUCCUCUAAG









P111/4L/S/F
CCT
YYT
CUCCUUUCAG
394
(AGAA)
20
VQR-





UCCUCUAAGA


(C3/4/12)
SpBE3





P111L/S/F
CCT
YYT
UCUCCUUUCA
395
(AAGAAT)
20 (C4/5)
SaBE3





GUCCUCUAAG









P111L/S/F
CCT
YYT
GCUUUCUCCU
396
(TAAGAAG)
20 (C8/9)
St1BE3





UUCAGUCCUC









P111L/S/F
CCT
YYT
UUCUCCUUUC
397
(GAAGAAT)
20 (C5/6)
St1BE3





AGUCCUCUAA









P114L/S/F
CCT
YYT
CCUCUAAGAA
398
(TAAGAT)
20
KKH-





GAAUAUCUAU


(C1/2/12)
SaBE3





C134Y
TGC
TAC
AGUGCACAUG
399
(TGAA)
20 (C5)
VQR-





AUGAGCAUGC



SpBE3





C134Y
TGC
TAC
GUCAGAAUAG
400
(GAG)
20 (C13)
SpBE3





UGCACAUGAU









C134Y
TGC
TAC
CACAUGAUGA
401
(TAAGGT)
20 (C1)
KKH-





GCAUGCUGAA



SaBE3





C134Y
TGC
TAC
UAGUGCACAU
402
(CTGAAT)
20 (C6)
SaBE3





GAUGAGCAUG









C140Y
TGC
TAC
AAUAUGCAGU
403
(AGTG)
20 (C7)
VQR-





UUGUCAGAAU



SpBE3





C140Y
TGC
TAC
AAAUAUGCAG
404
(TAG)
20 (C8)
SpBE3





UUUGUCAGAA









C140Y
TGC
TAC
UCAUAAAUAU
405
(AGAA)
20 (C12)
VQR-





GCAGUUUGUC



SpBE3





C140Y
TGC
TAC
GUCAUAAAUA
406
(CAG)
20 (C13)
SpBE3





UGCAGUUUGU









C140Y
TGC
TAC
CAGUUUGUCA
407
(CATGAT)
20 (C1)
KKH-





GAAUAGUGCA



SaBE3





C140Y
TGC
TAC
AUAAAUAUGC
408
(AATAGT)
20 (C10)
KKH-





AGUUUGUCAG



SaBE3





C140Y
TGC
TAC
GUCAUAAAUA
409
(CAGAAT)
20 (C13)
SaBE3





UGCAGUUUGU









C140Y
TGC
TAC
GGUCAUAAAU
410
(TCAGAAT)
20 (C14)
St1BE3





AUGCAGUUUG









P148L7S/F
CCA
YYA
CCAUGAAUAA
411
(TGG)
20 (C12/13)
SpBE3





CCCACCGGAC









P148L7S/F
CCA
YYA
CAUGAAUAAC
412
(GGAC)
20 (C11/12)
VQR-





CCACCGGACU



SpBE3





P148L/S/F
CCA
YYA
AUAACCCACC
413
(AAAAAT)
20 (C6-10)
KKH-





GGACUGGACC



SaBE3





P149US/F
CCG
YYG
ACCGGACUGG
414
(TCGAGT)
20 (C2/3)
SaBE3





ACCAAAAAUG









G161R
GGA
ARR
AAAGUAUAUA
415
(AGTG)
20 (C13)
VQR-





UUCCAGUAAA



SpBE3





G161R
GGA
ARR
UCAAAAGUAU
416
(AAAAGT)
20 (C16)
KKH-





AUAUUCCAGU



SaBE3





G179R
GGA
ARR
CUACACAGAA
417
(AGG)
20 (C-1)
SpBE3





GCCUCUUGCA









G179R
GGA
ARR
CCUACACAGA
418
(AAG)
20 (C1)
SpBE3





AGCCUCUUGC









G179R
GGA
ARR
AAGUGAAUUC
419
(AAG)
20 (C12)
SpBE3





UCCUACACAG









G179R
GGA
ARR
AAAAGUGAAU
420
(AGAA)
20 (C14)
VQR-





UCUCCUACAC



SpBE3





G179R
GGA
ARR
CCUACACAGA
421
(AAGGAT)
20 (C1)
SaBE3





AGCCUCUUGC









G179R
GGA
ARR
AGAAAAGUGA
422
(ACAGAAG)
20 (C16)
St1BE3





AUUCUCCUAC









P187L/S/F
CCG
YYG
UUCUUCGUGA
423
(TGG)
20 (C12/13)
SpBE3





CCCGUGGAAC









P187L/S/F
CCG
YYG
UCGUGACCCG
424
(TGG)
20 (C8/9)
SpBE3





UGGAACUGGC









P187L/S/F
CCG
YYG
CGUGACCCGU
425
(GGAT)
20 (C7/8)
VQR-





GGAACUGGCU



SpBE3





P187L/S/F
CCG
YYG
UUCGUGACCC
426
(CTGGAT)
20 (C9/10)
SaBE3





GUGGAACUGG









P229L/S/F
CCA
YYA
UUUCUGUAAU
427
(AAG)
20 (C12/13)
SpBE3





CCCAGGUAAG









P229L7S/F
CCA
YYA
AAUCCCAGGU
428
(TGG)
20 (C5/6)
SpBE3





AAGAAGUAAU









P229L/S/F
CCA
YYA
AUCCCAGGUA
429
(GGTG)
20 (C4/5)
VQR-





AGAAGUAAUU



SpBE3





P229L/S/F
CCA
YYA
CCCAGGUAAG
430
(TGTG)
20 (C2/3)
VQR-





AAGUAAUUGG



SpBE3





P229US/F
CCA
YYA
UAUUUCUGUA
431
(AGAAGT)
20 (C14/15)
KKH-





AUCCCAGGUA



SaBE3





P229L/S/F
CCA
YYA
UUCUGUAAUC
432
(AGTAAT)
20 (C11/12)
KKH-





CCAGGUAAGA



SaBE3





P229US/F
CCA
YYA
GUAAUCCCAG
433
(ATTGGT)
20 (C7/8)
KKH-





GUAAGAAGUA



SaBE3





P229L/S/F
CCA
YYA
AAUCCCAGGU
434
(TGGTG)
20 (C5/6)
St3BE3





AAGAAGUAAU









G236R
GGG
ARR
CCUACAAUUG
435
(TGAA)
20 (C1)
VQR-





UCUUCAGGCC



SpBE3





G236R
GGG
ARR
AAGCCCCUAC
436
(AGG)
20 (C6)
SpBE3





AAUUGUCUUC









G236R
GGG
ARR
AAAGCCCCUA
437
(CAG)
20 (C7)
SpBE3





CAAUUGUCUU









G236R
GGG
ARR
CUACAAUUGU
438
(GAAAAT)
20 (C-1)
KKH-





CUUCAGGCCU



SaBE3





C255Y
TGT
TAT
ACAGAACACA
439
(TGAC)
20 (C2)
VQR-





GUCAGGAUCA



SpBE3





C255Y
TGT
TAT
ACUCAGACAG
440
(GGAT)
20 (C8)
VQR-





AACACAGUCA



SpBE3





C255Y
TGT
TAT
CACUCAGACA
441
(AGG)
20 (C9)
SpBE3





GAACACAGUC









C255Y
TGT
TAT
ACACUCAGAC
442
(CAG)
20 (C10)
SpBE3





AGAACACAGU









C255Y
TGT
TAT
ACACUCAGAC
443
(CAGGAT)
20 (C10)
SaBE3





AGAACACAGU









G263R
GGA
ARR
CAAUUAGUGC
444
(AGAC)
20 (C-1)
VQR-





AAACACACUC



SpBE3





G263R
GGA
ARR
CCAAUUAGUG
445
(CAG)
20 (C1)
SpBE3





CAAACACACU









C275Y
TGT
TAT
UUCGAAAACA
446
(AGG)
20 (C9)
SpBE3





UUUAUGCUUC









C275Y
TGT
TAT
UUUCGAAAAC
447
(CAG)
20 (C10)
SpBE3





AUUUAUGCUU









C275Y
TGT
TAT
AUUUCGAAAA
448
(TCAGGT)
20 (C11)
KKH-





CAUUUAUGCU



SaBE3





C315Y
TGT
TAT
CCACAAAGGA
449
(GGAT)
20 (C4)
VQR-





GAGCAUCUUU



SpBE3





C315Y
TGT
TAT
ACCACAAAGG
450
(TGG)
20 (C5)
SpBE3





AGAGCAUCUU









C315Y
TGT
TAT
UGUGCUGAAA
451
(GAG)
20 (C14)
SpBE3





CCACAAAGGA









C315Y
TGT
TAT
AACCACAAAG
452
(TTGGAT)
20 (C6)
SaBE3





GAGAGCAUCU









C324Y
TGT
TAT
ACACUGACUA
453
(AGAA)
20 (C2)
VQR-





CACACGAGAA



SpBE3





C324Y
TGT
TAT
GACACUGACU
454
(AAG)
20 (C3)
SpBE3





ACACACGAGA









C324Y
TGT
TAT
CUGGACACUG
455
(AGAA)
20 (C6)
VQR-





ACUACACACG



SpBE3





C324Y
TGT
TAT
UCUGGACACU
456
(GAG)
20 (C7)
SpBE3





GACUACACAC









C324Y
TGT
TAT
GGACACUGAC
457
(AAAGAAC)
20 (C4)
St1BE3





UACACACGAG









C324Y
TGT
TAT
CUCUGGACAC
458
(CGAGAAA)
20 (C8)
St1BE3





UGACUACACA









C325Y
TGT
TAT
CUCUGGACAC
459
(CGAG)
20 (C8)
EQR-





UGACUACACA



SpBE3





P325L/S/F
CCA
YYA
AGUGUCCAGA
460
(TGTG)
20 (C6/7)
VQR-





GGGGUACACC



SpBE3





P325L/S/F
CCA
YYA
UGUCCAGAGG
461
(TGTG)
20 (C4/5)
VQR-





GGUACACCUG



SpBE3





P325LVS/F
CCA
YYA
UCCAGAGGGG
462
(TGAA)
20 (C2/3)
VQR-





UACACCUGUG



SpBE3





P325L/S/F
CCA
YYA
CCAGAGGGGU
463
(GAAAAT)
20 (C1/2)
KKH-





ACACCUGUGU



SaBE3





C330Y
TGT
TAT
AGGUGUACCC
464
(TGAC)
20 (C-1)
VQR-





CUCUGGACAC



SpBE3





C330Y
TGT
TAT
UCACACAGGU
465
(GGAC)
20 (C6)
VQR-





GUACCCCUCU



SpBE3





C330Y
TGT
TAT
UUCACACAGG
466
(TGG)
20 (C7)
SpBE3





UGUACCCCUC









P337L/S/F
CCT
YYT
AUUGGCAGAA
467
(TGG)
20 (C13/14)
SpBE3





ACCCUGAUUA









P337L/S/F
CCT
YYT
AAACCCUGAU
468
(CGAG)
20 (C5/6)
EQR-





UAUGGCUACA



SpBE3





P337L/S/F
CCT
YYT
AACCCUGAUU
469
(GAG)
20 (C4/5)
SpBE3





AUGGCUACAC









P532L/S/F
CCC
YYC
UACCCCCAAU
470
(CCAAAT)
20 (C5/6)
KKH-





CAGGUACCAC



SaBE3





P536L/S/F
CCA
YYA
UGCAGUCACC
471
(CGTG)
20 (C9/10)
VQR-





ACUCAGCAUU



SpBE3





P536L/S/F
CCA
YYA
CAGUCACCAC
472
(TGG)
20 (C7/8)
SpBE3





UCAGCAUUCG









P591L/S/F
CCC
YYC
GCUCACUGUU
473
(AGAC)
20 (C15/16)
VQR-





UGUGCCCCAC



SpBE3





P591L/S/F
CCC
YYC
UGUUUGUGCC
474
(CAG)
20 (C9/10)
SpBE3





CCACAGACCC









P591L7S/F
CCC
YYC
GUUUGUGCCC
475
(AGG)
20 (Ca8/9)
SpBE3





CACAGACCCC









P591L/S/F
CCC
YYC
UUUGUGCCCC
476
(GGAG)
20 (C7/8)
EQR-





ACAGACCCCA



SpBE3





P591L/S/F
CCC
YYC
UUGUGCCCCA
477
(GAG)
20 (C6/7)
SpBE3





CAGACCCCAG









P591L/S/F
CCC
YYC
UGUGCCCCAC
478
(AGCG)
20 (C5/6)
VRER-





AGACCCCAGG



SpBE3





P591L/S/F
CCC
YYC
UGCCCCACAG
479
(CGAC)
20
VQR-





ACCCCAGGAG


(C3/4/12)
SpBE3





P591L/S/F
CCC
YYC
GUUUGUGCCC
480
(AGGAG)
20 (C8/9)
St3BE3





CACAGACCCC









P594L7S/F
CCC
YYC
CACAGACCCC
481
(CAG)
20 (C7/8)
SpBE3





AGGAGCGACG









P594LVS/F
CCC
YYC
AGACCCCAGG
482
(CAG)
20 (C4/5)
SpBE3





AGCGACGCAG









P594L7S/F
CCC
YYC
ACAGACCCCA
483
(AGCAGT)
20 (C6/7)
KKH-





GGAGCGACGC



SaBE3





P609/10L/S/
CCA
YYA
UAGGUCCCCA
484
(CGG)
20 (C8-12)
SpBE3


F


CCAAUGCUGC









P609/10L/S/
CCA
YYA
AGGUCCCCAC
485
(GGTG)
20 (C7-11)
VQR-


F


CAAUGCUGCC



SpBE3





P609/10L/S/
CCA
YYA
GUCCCCACCA
486
(TGAA)
20 (C5-9)
VQR-


F


AUGCUGCCGG



SpBE3





P609/10L/S/
CCA
YYA
CCACCAAUGC
487
(CGG)
20 (C1-4)
SpBE3


F


UGCCGGUGAA









P609/10L/S/
CCA
YYA
AGUACCUCCC
488
(GCCGGT)
20 (C10-14)
KKH-


F


CACCAAUGCU



SaBE3





P609/10L7S/
CCA
YYA
UAGGUCCCCA
489
(CGGTG)
20 (C8-12)
St3BE3


F


CCAAUGCUGC









P610L/S/F
CCA
YYA
CACCAAUGCU
490
(GGG)
20 (C3/4)
SpBE3





GCCGGUGAAC









P610L/S/F
CCA
YYA
ACCAAUGCUG
491
(GGAA)
20 (C2/3)
VQR-





CCGGUGAACG



SpBE3





P613L7S/F
CCG
YYG
CACCAAUGCU
492
(GGG)
20 (C12/13)
SpBE3





GCCGGUGAAC









P613L7S/F
CCG
YYG
ACCAAUGCUG
493
(GGAA)
20 (C11/12)
VQR-





CCGGUGAACG



SpBE3





P613L/S/F
CCG
YYG
CCGGUGAACG
494
(CAG)
20 (C1/2)
SpBE3





GGAAAAUGCA









P613L7S/F
CCG
YYG
CCAAUGCUGC
495
(GAAAAT)
20 (C10/11)
KKH-





CGGUGAACGG



SaBE3





P640L/S/F
CCC
YYC
CCCUCAUGCU
496
(CAG)
20 (C12/13)
SpBE3





CCCCAAUGGA









P640US/F
CCC
YYC
CCCCAAUGGA
497
(CAG)
20 (C2/3)
SpBE3





CAGCUUCUGC









P640L7S/F
CCC
YYC
CCCAAUGGAC
498
(AGAG)
20 (C1/2)
EQR-





AGCUUCUGCC



SpBE3





P640L/S/F
CCC
YYC
CCCAAUGGAC
499
(AGAGGT)
20 (C1/2)
KKH-





AGCUUCUGCC



SaBE3





P646L7S/F
CCA
YYA
GCUUCUGCCA
500
(TAG)
20 (C8/9)
SpBE3





GAGGUGAUAA









P646L7S/F
CCA
YYA
CUUCUGCCAG
501
(AGAT)
20 (C7/8)
VQR-





AGGUGAUAAU



SpBE3





P646L/S/F
CCA
YYA
UGCCAGAGGU
502
(AAG)
20 (C3/4)
SpBE3





GAUAAUAGAU









P646L7S/F
CCA
YYA
GCCAGAGGUG
503
(AGG)
20 (C2/3)
SpBE3





AUAAUAGAUA









P646L/S/F
CCA
YYA
GGACAGCUUC
504
(GATAAT)
20 (C13/14)
KKH-





UGCCAGAGGU



SaBE3





P646L/S/F
CCA
YYA
AGCUUCUGCC
505
(ATAGAT)
20 (C9/10)
KKH-





AGAGGUGAUA



SaBE3





P683L7S/F
CCC
YYC
AUGCUGAAUG
506
(CAG)
20 (C13/14)
SpBE3





AUCCCAACCU









P683L/S/F
CCC
YYC
UGCUGAAUGA
507
(AGAC)
20 (02/13)
VQR-





UCCCAACCUC



SpBE3





P683LVS/F
CCC
YYC
UGAAUGAUCC
508
(CAG)
20 (C9/10)
SpBE3





CAACCUCAGA









P683L7S/F
CCC
YYC
GAAUGAUCCC
509
(AGAG)
20 (C8/9)
EQR-





AACCUCAGAC



SpBE3





P683L/S/F
CCC
YYC
AAUGAUCCCA
510
(GAG)
20 (C7/8)
SpBE3





ACCUCAGACA









P683L7S/F
CCC
YYC
AUGAUCCCAA
511
(AGAG)
20 (C6/7)
EQR-





CCUCAGACAG



SpBE3





P683L7S/F
CCC
YYC
UGAUCCCAAC
512
(GAG)
20 (C5/6)
SpBE3





CUCAGACAGA









P683L/S/F
CCC
YYC
GAUCCCAACC
513
(AGCAAT)
20 (C4/5)
KKH-





UCAGACAGAG



SaBE3





P711US/F
CCA
YYA
CAGACAAAAA
514
(GGTG)
20 (04/15)
VQR-





UGUCCACCUU



SpBE3





P711US/F
CCA
YYA
GACAAAAAUG
515
(TGG)
20 (02/13)
SpBE3





UCCACCUUGG









P711/2L/S/F
CCA
YYA
AAAUGUCCAC
516
(CAG)
20 (C7-11)
SpBE3





CUUGGUGGUA









P711/2L/S/F
CCA
YYA
AAUGUCCACC
517
(AGAT)
20 (C6-10)
VQR-





UUGGUGGUAC



SpBE3





P711LVS/F
CCA
YYA
CAGACAAAAA
518
(GGTGGT)
20 (04/15)
KKH-





UGUCCACCUU



SaBE3





P711/2L/S/F
CCA
YYA
AAAAUGUCCA
519
(ACAGAT)
20 (C8-12)
KKH-





CCUUGGUGGU



SaBE3





P711L7S/F
CCA
YYA
CCAGACAAAA
520
(TGGTG)
20 (C15/16)
St3BE3





AUGUCCACCU









P728L/S/F
CCA
YYA
GAAUUGCUCU
521
(TAAAAT)
20 (C11/12)
KKH-





CCAUAUUGGA



SaBE3





P728L/S/F
CCA
YYA
UCCAUAUUGG
522
(AAAAGT)
20 (C2/3)
KKH-





AUAAAAUUCA



SaBE3





P744L/S/F
CCT
YYT
AUUGUAAUGG
523
(AGAT)
20 (C13/14)
VQR-





AUCCUUUUGU



SpBE3





P744L/S/F
CCT
YYT
UUAUUGUAAU
524
(GTAGAT)
20 (C15/16)
KKH-





GGAUCCUUUU



SaBE3





P744L/S/F
CCT
YYT
AUGGAUCCUU
525
(TGCAAT)
20 (C7/8)
KKH-





UUGUAGAUCU



SaBE3





C753V
TGC
TAC
CUAUGCAAAU
526
(AGAT)
20 (C6)
VQR-





GGUAAUUGCA



SpBE3





C753Y
TGC
TAC
ACUAUGCAAA
527
(AAG)
20 (C7)
SpBE3





UGGUAAUUGC









C753Y
TGC
TAC
AACUAUGCAA
528
(CAAGAT)
20 (C8)
KKH-





AUGGUAAUUG



SaBE3





P767L/S/F
CCA
YYA
AUGGAACACC
529
(TGAG)
20 (C13/14)
EQR-





ACCCAAUGAC



SpBE3





P767L/S/F
CCA
YYA
UGGAACACCA
530
(GAG)
20 (C12/13)
SpBE3





CCCAAUGACU









P767L/S/F
CCA
YYA
GGAACACCAC
531
(AGG)
20 (C11/12)
SpBE3





CCAAUGACUG









P767US/F
CCA
YYA
GAACACCACC
532
(GGAA)
20 (C10/11)
VQR-





CAAUGACUGA



SpBE3





P767L/S/F
CCA
YYA
GGAACACCAC
533
(AGGAAT)
20 (C11/12)
SaBE3





CCAAUGACUG









P767LVS/F
CCA
YYA
ACCCAAUGAC
534
(AAAAAT)
20 (C3/4)
KKH-





UGAGGAAUUC



SaBE3





G779R
GGA
ARR
UCCUAUAGCA
535
(TGAA)
20 (C2)
VQR-





AGUACAUUUU



SpBE3





G779R
GGA
ARR
CUUACCAAAU
536
(AAG)
20 (C13)
SpBE3





UUCCUAUAGC









G779R
GGA
ARR
UUCCUAUAGC
537
(TTGAAT)
20 (C3)
SaBE3





AAGUACAUUU









G779R
GGA
ARR
GACUUACCAA
538
(GCAAGT)
20 (C15)
KKH-





AUUUCCUAUA



SaBE3





G785R
GGA
ARR
UUCCAGUAAA
539
(AGAA)
20 (C3)
VQR-





GACCUAAGUG



SpBE3





G785R
GGA
ARR
AUUCCAGUAA
540
(GAG)
20 (C4)
SpBE3





AGACCUAAGU









G785R
GGA
ARA
AAGAUUCCAG
541
(AGTG)
20 (C7)
VQR-





UAAAGACCUA



SpBE3





G785R
GGA
ARA
AAAGAUUCCA
542
(AAG)
20 (C8)
SpBE3





GUAAAGACCU









G785R
GGA
ARA
AGCUGCAAAG
543
(AGAC)
20 (C14)
VQR-





AUUCCAGUAA



SpBE3





G785R
GGA
ARA
CCAGUAAAGA
544
(AAAAAT)
20 (C1)
KKH-





CCUAAGUGAG



SaBE3





G785R
GGA
ARA
GCAAAGAUUC
545
(CTAAGT)
20 (C10)
KKH-





CAGUAAAGAC



SaBE3





G785R
GGA
ARA
GAUUCCAGUA
546
(TGAGAAA)
20 (C5)
St1BE3





AAGACCUAAG









G786R
GGA
ARR
GAUUCCAGUA
547
(TGAG)
20 (C5)
EQR-








AAGACCUAAG



SpBE3


P800US/F
CCA
YYA
GGAUCCAUAU
548
(AAG)
20 (C5/6)
SpBE3





GAGUAUUUCC









P800L/S/F
CCA
YYA
UCCAUAUGAG
549
(TAG)
20 (C2/3)
SpBE3





UAUUUCCAAG









P800L/S/F
CCA
YYA
CCAUAUGAGU
550
(AGG)
20 (C1/2)
SpBE3





AUUUCCAAGU









P800L7S/F
CCA
YYA
AUGGAUCCAU
551
(CCAAGT)
20 (C7/8)
KKH-





AUGAGUAUUU



SaBE3





G830R
GGA
ARA
CCUUCCACAU
552
(GAG)
20 (Cl)
SpBE3





CUGCUAGAAA









G830R
GGA
ARA
AUCCUUCCAC
553
(AAG)
20 (C3)
SpBE3





AUCUGCUAGA









G830R
GGA
ARA
ACAAUCCUUC
554
(AGAA)
20 (C6)
VQR-





CACAUCUGCU



SpBE3





G830R
GGA
ARA
GACAAUCCUU
555
(TAG)
20 (C7)
SpBE3





CCACAUCUGC









G830R
GGA
ARA
UGACAAUCCU
556
(CTAGAAA)
20 (C8)
St1BE3





UCCACAUCUG









G831R
GGA
ARA
UCCUUCCACA
557
(AGAG)
20 (C2)
EQR-





UCUGCUAGAA



SpBE3





P850US/F
CCA
YYA
CUGGCCAACA
558
(TGAT)
20 (C5/6)
VQR-





UUGAACAUGC



SpBE3





P850LVS/F
CCA
YYA
UCCUGGCCAA
559
(GCTGAT)
20 (C7/8)
KKH-





CAUUGAACAU













SaBE3





P850L/S/F
CCA
YYA
CCAACAUUGA
560
(TAAGAT)
20 (C1/2)
KKH-





ACAUGCUGAU



SaBE3





C895Y
TGT
TAT
AUUCUUUGUA
561
(AAG)
20 (C-1)
SpBE3





GCUCUUACCA









C895Y
TGT
TAT
UCUUGCAGAC
562
(TAG)
20 (C12)
SpBE3





ACAUUCUUUG









C897Y
TGC
TAC
UCUUGCAGAC
563
(TAG)
20 (C6)
SpBE3





ACAUUCUUUG









C903Y
TGT
TAT
ACAGUCAUCA
564
(AGAC)
20 (C2)
VQR-





UUGAUCUUGC



SpBE3





C903Y
TGT
TAT
UACAGUCAUC
565
(CAG)
20 (C3)
SpBE3





AUUGAUCUUG









C903Y
TGT
TAT
UGGGAGCGUA
566
(TGAT)
20 (C11)
VQR-





CAGUCAUCAU



SpBE3





P906L/S/F
CCA
YYA
UACGCUCCCA
567
(TGAA)
20 (C8/9)
VQR-





CGGUGGCACA



SpBE3





P906L/S/F
CCA
YYA
CUCCCACGGU
568
(CGAC)
20 (C4/5)
VQR-





GGCACAUGAA



SpBE3





C925Y
TGT
TAT
ACAGCACGCG
569
(AGG)
20 (C2)
SpBE3





GAACACAAUC









C925Y
TGT
TAT
CACAGCACGC
570
(CAG)
20 (C3)
SpBE3





GGAACACAAU









C925Y
TGT
TAT
CCACUCUCCA
571
(GGAA)
20 (C13)
VQR-





CACAGCACGC



SpBE3





C925Y
TGT
TAT
UCCACUCUCC
572
(CGG)
20 (C14)
SpBE3





ACACAGCACG









C925Y
TGT
TAT
UAUCCACUCU
573
(CGCG)
20 (C16)
VRER-





CCACACAGCA



SpBE3





C925Y
TGT
TAT
UCUCCACACA
574
(CACAAT)
20 (C9)
KKH-





GCACGCGGAA



SaBE3





C935Y
TGT
TAT
GACCUCCAUA
575
(TGG)
20 (C13)
SpBE3





CAGUCCCACA









C935Y
TGT
TAT
GCGACCUCCA
576
(CATGGT)
20 (C15)
KKH-





UACAGUCCCA



SaBE3





C944Y
TGC
TAC
AAGGCACAUA
577
(CGAC)
20 (C5)
VQR-





GCUUGACCAG



SpBE3





C944Y
TGC
TAC
AUAAGGCACA
578
(AGCG)
20 (C7)
VRER-





UAGCUUGACC



SpBE3





C944Y
TGC
TAC
AAUAAGCCAC
579
(CAG)
20 (C8)
SpBE3





AUAGCUUGAC









C944Y
TGC
TAC
AAACAAUAAG
580
(TGAC)
20 (C12)
VQR-





GCACAUAGCU



SpBE3





G955R
GGA
ARA
CACCAGGUUU
581
(TGAC)
20 (C11)
VQR-





CCAAUGACCA



SpBE3





P983L7S/F
CCT
YYT
ACCCUGAUGC
582
(CAG)
20 (C3/4)
SpBE3





AAACAACCUC









P983L7S/F
CCT
YYT
CCCUGAUGCA
583
(AGAT)
20 (C2/3)
VQR-





AACAACCUCC



SpBE3





P983L/S/F
CCT
YYT
GACCCUGAUG
584
(CCAGAT)
20 (C4/5)
KKH-





CAAACAACCU



SaBE3





P1018LVS/F
CCA
YYA
UCCAAAAAGC
585
(CAG)
20 (C10/11)
SpBE3





CAAAGAUUUC









P1018LVS/F
CCA
YYA
CCAAAAAGCC
586
(AGG)
20 (C9/10)
SpBE3





AAAGAUUUCC









P1018LVS/F
CCA
YYA
CAAAAAGCCA
587
(GGG)
20 (C8/9)
SpBE3





AAGAUUUCCA









P1018L7S/F
CCA
YYA
AAAAAGCCAA
588
(GGAG)
20 (C7/8)
EQR-





AGAUUUCCAG



SpBE3





P1018L7S/F
CCA
YYA
AAAAGCCAAA
589
(GAG)
20 (C6/7)
SpBE3





GAUUUCCAGG









P1018LVS/F
CCA
YYA
AAAGCCAAAG
590
(AGAT)
20 (C5/6)
VQR-





AUUUCCAGGG



SpBE3





P1018LVS/F
CCA
YYA
CCAAAGAUUU
591
(AAG)
20 (C1/2)
SpBE3





CCAGGGAGAU









P1018LVS/F
CCA
YYA
AAAAAGCCAA
592
(GGAGAT)
20 (C7/8)
KKH-





AGAUUUCCAG



SaBE3





P1018LVS/F
CCA
YYA
CAAAAAGCCA
593
(GGGAG)
20 (C8/9)
St3BE3





AAGAUUUCCA









P1083L7S/F
CCC
YYC
UAUUCACAAU
594
(CAG)
20 (C11/12)
SpBE3





CCCAGCCUCA









P1083LVS/F
CCC
YYC
AUUCACAAUC
595
(AGTG)
20 (C10/11)
VQR-





CCAGCCUCAC



SpBE3





P1083L7S/F
CCC
YYC
UCACAAUCCC
596
(TGAC)
20 (C8/9)
VQR-





AGCCUCACAG



SpBE3





P1083LVS/F
CCC
YYC
CAAUCCCAGC
597
(CAG)
20 (C5/6)
SpBE3





CUCACAGUGA









P1083L/S/F
CCC
YYC
AAUCCCAGCC
598
(AGTG)
20 (C4/5)
VQR-





UCACAGUGAC



SpBE3





P1083L7S/F
CCC
YYC
UUUAUUCACA
599
(CACAGT)
20 (C13/14)
KKH-





AUCCCAGCCU



SaBE3





P1083L/S/F
CCC
YYC
CACAAUCCCA
600
(GACAGT)
20 (C7/8)
KKH-





GCCUCACAGU



SaBE3





P1083L/S/F
CCC
YYC
CCCAGCCUCA
601
(GCCAAT)
20 (C1/2)
KKH-





CAGUGACAGU



SaBE3





P1090US/F
CCA
YYA
GUGACAGUGC
602
(TGG)
20 (C10/11)
SpBE3





CAAUUGCACC









P1090LVS/F
CCA
YYA
UGACACUCCC
603
(GGG)
20 (C9/10)
SpBE3





AAUUGCACCU









P1090L7S/F
CCA
YYA
GACAGUGCCA
604
(GGG)
20 (C8/9)
SpBE3





AUUGCACCUG









P1090L/S/F
CCA
YYA
ACACUGCCAA
605
(GGAA)
20 (C7/8)
VQR-





UUGCACCUGG



SpBE3





P1090/3L/S/
CCA
YYA
CCAAUUGCAC
606
(CGAT)
20
VQR-


F


CUGGGGAAUC


(C1/2/10/11
SpBE3








)






P1090LVS/F
CCA
YYA
GACAGUGCCA
607
(GGGAAT)
20 (C8/9)
SaBE3





AUUGCACCUG









P1090/3L/S/
CCA
YYA
UGCCAAUUGC
608
(TCCGAT)
20
KKH-


F


ACCUGGGGAA


(C3/4/13)
SaBE3





P1090L7S/F
CCA
YYA
GUGACAGUGC
609
(TGGGG)
20 (C10/11)
St3BE3





CAAUUGCACC









P1093LVS/F
CCT
YYT
UGCACCUGGG
610
(TGG)
20 (C5/6)
SpBE3





GAAUCCGAUU









P1093L/S/F
CCT
YYT
GCACCUGGGG
611
(GGAA)
20 (C4/5)
VQR-





AAUCCGAUUU



SpBE3





P1093LVS/F
CCT
YYT
CACCUGGGGA
612
(GAAAAT)
20 (C3/4)
KKH-





AUCCGAUUUG



SaBE3





P1133US/F
CCT
YYT
ACAGUUGAUA
613
(TGG)
20 (C13/14)
SpBE3





ACCCUUUGCC









P1133L/S/F
CCT
YYT
CAGUUGAUAA
614
(GGAG)
20 (Cl 2/13)
EQR-





CCCUUUGCCU



SpBE3





P1133LVS/F
CCT
YYT
AGUUGAUAAC
615
(GAG)
20 (C11/12)
SpBE3





CCUUUGCCUG









P1133L7S/F
CCT
YYT
GUUGAUAACC
616
(AGAA)
20 (C10/11)
VQR-





CUUUGCCUGG



SpBE3





P1133/5L/S/
CCT
YYT
UGAUAACCCU
617
(AAG)
20 (C8-14)
SpBE3


F


UUGCCUGGAG









P1133/5L/S/
CCT
YYT
GAUAACCCUU
618
(AGG)
20 (C7-14)
SpBE3


F


UGCCUGGAGA









P1133/5L/S/
CCT
YYT
AUAACCCUUU
619
(GGAG)
20 (C6-13)
EQR-


F


GCCUGGAGAA



SpBE3





P1133/5L/S/
CCT
YYT
UAACCCUUUG
620
(GAG)
20 (C5-12)
SpBE3


F


CCUGGAGAAG









P1133/5L/S/
CCT
YYT
AACCCUUUGC
621
(AGAA)
20 (C4-11)
VQR-


F


CUGGAGAAGG



SpBE3





P1133/5L/S/
CCT
YYT
CCCUUUGCCU
622
(AAG)
20 (C2-9)
SpBE3


F


GGAGAAGGAG









P1133/5L/S/
CCT
YYT
CCUUUGCCUG
623
(AGAA)
20 (C1-8)
VQR-


F


GAGAAGGAGA



SpBE3





P1133/5L/S/
CCT
YYT
ACAGUUGAUA
624
(TGGAG)
20 (C13/14)
St3BE3


F


ACCCUUUGCC









P1133/5L/S/
CCT
YYT
CAGUUGAUAA
625
(GGAGAAG)
20 (C12/13)
SHBE3


F


CCCUUUGCCU









P1133/5L/S/
CCT
YYT
GAUAACCCUU
626
(AGGAG)
20 (C7-14)
St3BE3


F


UGCCUGGAGA









P1133/5L/S/
CCT
YYT
AUAACCCUUU
627
(GGAGAAG)
20 (C6-13)
St1BE3


F


GCCUGGAGAA









P1133/5L/S/
CCT
YYT
ACCCUUUGCC
628
(GAAGAAG)
20 (C3-10)
St1BE3


F


UGGAGAAGGA









P1135L/S/F
CCT
YYT
UUUGCCUGGA
629
(AAG)
20 (C5/6)
SpBE3





GAAGGAGAAG









P1135LVS/F
CCT
YYT
GCCUGGAGAA
630
(CAG)
20 (C2/3)
SpBE3





GGAGAAGAAG









P1135IVS/F
CCT
YYT
CCUGGAGAAG
631
(AGAG)
20 (C1/2)
EQR-





GAGAAGAAGC



SpBE3





P1145L7S/F
CCT
YYT
GAGGCUGAAC
632
(CGAT)
20 (C10/11)
VQR-





CUAUGAAUUC



SpBE3





P1145US/F
CCT
YYT
GCUGAACCUA
633
(TGAG)
20 (C7/8)
EQR-





UGAAUUCCGA



SpBE3





P1145L7S/F
CCT
YYT
CUGAACCUAU
634
(GAG)
20 (C6/7)
SpBE3





GAAUUCCGAU









P1145LVS/F
CCT
YYT
ACCUAUGAAU
635
(CAG)
20 (C2/3)
SpBE3





UCCGAUGAGC









P1145LVS/F
CCT
YYT
CCUAUGAAUU
636
(AGAG)
20 (C1/2)
EQR-





CCGAUGAGCC



SpBE3





P1145LVS/F
CCT
YYT
CAGAGGCUGA
637
(TCCGAT)
20 (C12/13)
KKH-





ACCUAUGAAU



SaBE3





P1151L/S/F
CCA
YYA
UGAGCCAGAG
638
(CAG)
20 (C5/6)
SpBE3





GCCUGUUUCA









P1151LVS/F
CCA
YYA
GAGCCAGAGG
639
(AGAT)
20 (C4/5)
VQR-





CCUGUUUCAC



SpBE3





P1151LVS/F
CCA
YYA
CCAGAGGCCU
640
(TGG)
20 (C1/2)
SpBE3





GUUUCACAGA









P1151LVS/F
CCA
YYA
AUGAGCCAGA
641
(ACAGAT)
20 (C6/7)
KKH-





GGCCUGUUUC



SaBE3





P1151LVS/F
CCA
YYA
AGCCAGAGGC
642
(GATGGT)
20 (C3/4)
KKH-





CUGUUUCACA



SaBE3





C1154Y
TGT
TAT
AAACAGGCCU
643
(GGAA)
20 (C6)
VQR-





CUGGCUCAUC



SpBE3





C1154Y
TGT
TAT
GAAACAGGCC
644
(CGG)
20 (C7)
SpBE3





UCUGGCUCAU









C1154Y
TGT
TAT
CCAUCUGUGA
645
(TGG)
20 (C15)
SpBE3





AACAGGCCUC









C1154Y
TGT
TAT
GAAACAGGCC
646
(CGGAAT)
20 (C7)
SaBE3





UCUGGCUCAU









C1159Y
TGT
TAT
CAUACACAAC
647
(AGAC)
20 (C7)
VQR-





CUGACAAGAA



SpBE3





C1159Y
TGT
TAT
CCAUACACAA
648
(AAG)
20 (C8)
SpBE3





CCUGACAAGA









C1159Y
TGT
TAT
CCUCCAUACA
649
(AGAA)
20 (C11)
VQR-





CAACCUGACA



SpBE3





C1159Y
TGT
TAT
ACCUCCAUAC
650
(AAG)
20 (C12)
SpBE3





ACAACCUGAC









C1159Y
TGT
TAT
AACCUCCAUA
651
(CAAGAAA)
20 (C13)
St1BE3





CACAACCUGA









P1285LVS/F
CCC
YYC
UUGGCCCCAU
652
(CGG)
20 (C6/7)
SpBE3





UAAAUCCCUU









P1285LVS/F
CCC
YYC
UGGCCCCAUU
653
(GGAC)
20 (C5/6)
VQR-





AAAUCCCUUC



SpBE3





P1297LVS/F
CCT
YYT
AGACCUCUAA
654
(TAG)
20 (C4/5)
SpBE3





GAGCCUUAUC









P1297LVS/F
CCT
YYT
UACCUCUAAG
655
(AGAT)
20 (C3/4)
VOR-





AGCCUUAUCU



SpBE3





P1297LVS/F
CCT
YYT
AAGACCUCUA
656
(CTAGAT)
20 (C5/6)
KKH-





AGAGCCUUAU



SaBE3





P1319LVS/F
CCT
YYT
AGGAGCAAUU
657
(TGAA)
20 (C11/12)
VQR-





CCUUCCAUCA



SpBE3





P1319LVS/F
CCT
YYT
GCAAUUCCUU
658
(TGTG)
20 (C7/8)
VQR-





CCAUCAUGAA



SpBE3





P1319LVS/F
CCT
YYT
UAGGAGCAAU
659
(ATGAAT)
20 (C12/13)
SaBE3





UCCUUCCAUC









C1328Y
TGT
TAT
ACACACAAGU
660
(TGAT)
20 (C4)
VQR-





AGCACAUUCA



SpBE3





C1328Y
TGT
TAT
AGACACACAA
661
(CATGAT)
20 (C6)
KKH-





GUAGCACAUU



SaBE3





G1339R
GGA
ARA
CCAUGAUGCU
662
(CAG)
20 (C-1)
SpBE3





GAAUAUCAGC









G1339R
GGA
ARA
ACUCCCAUGA
663
(CAG)
20 (C4)
SpBE3





UGCUGAAUAU









G1339R
GGA
ARA
CAAAUUUACU
664
(TGAA)
20 (C11)
VQR-





CCCAUGAUGC



SpBE3





G1339R
GGA
ARA
CCAUGAUGCU
665
(CAGAAT)
20 (C1)
SaBE3





GAAUAUCAGC









G1339R
GGA
ARA
ACAAAUUUAC
666
(CTGAAT)
20 (C12)
SaBE3





UCCCAUGAUG









G1339R
GGA
ARA
CCCAUGAUGC
667
(CCAGAAT)
20 (C1)
St1BE3





UGAAUAUCAG









C1350Y
TGT
TAT
AAUACACUCA
668
(CAG)
20 (C7)
SpBE3





UAGAACUUGC









P1360LVS/F
CCT
YYT
GUCACGGUUU
669
(AAG)
20 (C11/12)
SpBE3





CCUGCAAGUC









P1360LVS/F
CCT
YYT
GGGUCACGGU
670
(TCAAGT)
20 (C13/14)
KKH-





UUCCUGCAAG



SaBE3





P1360LVS/F
CCT
YYT
GGUUUCCUGC
671
(CCAAAT)
20 (C6/7)
KKH-





AAGUCAAGUU



SaBE3





P1365LVS/F
CCA
YYA
AGUCAAGUUC
672
(CGAA)
20 (C10/11)
VQR-





CAAAUCGUUC



SpBE3





P1365LVS/F
CCA
YYA
AAGUCAAGUU
673
(CCGAAT)
20 (C11/12)
SaBE3





CCAAAUCGUU









C1370Y
TGT
TAT
AUUCGGAACG
674
(TGAC)
20 (C2)
VQR-





AUUUGGAACU



SpBE3





C1370V
TGT
TAT
CAAAACAUUC
675
(GGAA)
20 (C8)
VQR-





GGAACGAUUU



SpBE3





C1370Y
TGT
TAT
GCAAAACAUU
676
(TGG)
20 (C9)
SpBE3





CGGAACGAUU









C1370Y
TGT
TAT
UAAGGGCAAA
677
(CGAT)
20 (C14)
VQR-





ACAUUCGGAA



SpBE3





C1370Y
TGT
TAT
CAUAAGGGCA
678
(AACGAT)
20 (C16)
KKH-





AAACAUUCGG



SaBE3





P1425L7S/F
CCC
YYC
GUAGACAAGC
679
(TGAA)
20 (C13/14)
VQR-





AGCCCAAAUA



SpBE3





P1425L7S/F
CCC
YYC
AAGCAGCCCA
680
(TAG)
20 (C7/8)
SpBE3





AAUAUGAAUA









G1444R
GGG
ARR
UGACCCAAAG
681
(CGAC)
20 (C5)
VQR-





AUGAUAAAGA



SpBE3





G1444R
GGG
ARR
GAAUGACCCA
682
(AGAC)
20 (C8)
VQR-





AAGAUGAUAA



SpBE3





G1444R
GGG
ARR
AGAAUGACCC
683
(AAG)
20 (C9)
SpBE3





AAAGAUGAUA









G1444R
GGG
ARR
AGUGAAGAAU
684
(TGAT)
20 (C14)
VQR-





GACCCAAAGA



SpBE3





G1444R
GGG
ARR
CCCAAAGAUG
685
(CAAAAT)
20 (C2)
KKH-





AUAAAGACGA



SaBE3





S1490Fb
TCC
TTY
UGGGGUCCAA
686
(AAG)
20 (C7/8)
SpBE3





GAAGCCACAA









S1490Fb
TCC
TTY
GGGUCCAAGA
687
(GCCAAT)
20 (C5/6)
KKH-





AGCCACAAAA



SaBE3





P1493/6L/S/
CCA
YYA
AGCCACAAAA
688
(CGAC)
20
VQR-


F


GCCAAUUCCU


(C3/4/12)
SpBE3





P1493US/F
CCA
YYA
GGGUCCAAGA
689
(GCCAAT)
20 (C13/14)
KKH-





AGCCACAAAA



SaBE3





P1496L7S/F
CCA
YYA
ACAAAAGCCA
690
(CAG)
20 (C8/9)
SpBE3





AUUCUUCGAC









P1496/8L/S/
CCA
YYA
CAAAAGCCAA
691
(AGG)
20 (C7-14)
SpBE3


F


UUCCUCGACC









P1496/8L/S/
CCA
YYA
AAAAGCCAAU
692
(GGG)
20 (C6-13)
SpBE3


F


UCCUCGACCA









P1496/8L/S/
CCA
YYA
AAAGCCAAUU
693
(GGG)
20 (C5-12)
SpBE3


F


CCUCGACCAG









P1496/8L/S/
CCA
YYA
AAAGCCAAUU
694
(GGG)
20 (C5-12)
SpBE3


F


CCUCGACCAG









P1496/8USI
CCA
YYA
CAAAAGCCAA
695
(AGGGGT)
20 (C7-14)
SaBE3


F


UUCCUCGACC









P1496L7S/F
CCA
YYA
CAAAAGCCAA
696
(AGGGG)
20 (C7-14)
St3BE3





UUCCUCGACC









P1498/1500
CCT
YYT
AAUUCCUCGA
697
(AAAAAT)
20 (C5-12)
KKH-


L/S/F


CCAGGGGUAA



SaBE3





P1500L7S/F
CCA
YYA
AAUUCCUCGA
698
(AAAAAT)
20 (C11/12)
KKH-





CCAGGGGUAA



SaBE3





C1526Y
TGT
TAT
GUUGAGACAG
699
(TGAT)
20 (C8)
VQR-





AUAAGAACCA



SpBE3





C1526Y
TGT
TAT
UUACCAUGUU
700
(AGAA)
20 (C15)
VQR-





GAGACAGAUA



SpBE3





C1526Y
TGT
TAT
GUUACCAUGU
701
(AAG)
20 (C16)
SpBE3





UGAGACAGAU









C1526Y
TGT
TAT
AGACAGAUAA
702
(ACTAAT)
20 (C4)
KKH-





GAACCAUGAU



SaBE3





C1526Y
TGT
TAT
AUGUUGAGAC
703
(CATGAT)
20 (C10)
KKH-





AGAUAAGAAC



SaBE3





C1526Y
TGT
TAT
GGUUACCAUG
704
(TAAGAAC)
20 (C17)
St1BE3





UUGAGACAGA









G1560R
GGA
ARA
CACACAUUCU
705
(GGAT)
20 (C11)
VQR-





CCAGUGAAAA



SpBE3





G1560R
GGA
ARA
GCACACAUUC
706
(AGG)
20 (C12)
SpBE3





UCCAGUGAAA









G1560R
GGA
ARA
AGCACACAUU
707
(AAG)
20 (C13)
SpBE3





CUCCAGUGAA









G1560R
GGA
ARA
AGCACACAUU
708
(AAGGAT)
20 (C13)
SaBE3





CUCCAGUGAA









C1562Y
TGT
TAT
CACACAUUCU
709
(GGAT)
20 (C5)
VQR-





CCAGUGAAAA



SpBE3





C1562Y
TGT
TAT
GCACACAUUC
710
(AGG)
20 (C6)
SpBE3





UCCAGUGAAA









C1562Y
TGT
TAT
AGCACACAUU
711
(AAG)
20 (C7)
SpBE3





CUCCAGUGAA









C1562Y
TGT
TAT
UUUUAGCACA
712
(TGAA)
20 (C11)
VQR-





CAUUCUCCAG



SpBE3





C1562Y
TGT
TAT
AGUUUUAGCA
713
(AGTG)
20 (C13)
VQR-





CACAUUCUCC



SpBE3





C1562Y
TGT
TAT
CAGUUUUAGC
714
(CAG)
20 (C14)
SpBE3





ACACAUUCUC









C1562Y
TGT
TAT
AGCACACAUU
715
(AAGGAT)
20 (CT)
SaBE3





CUCCAGUGAA









C1562Y
TGT
TAT
AUCAGUUUUA
716
(TCCAGT)
20 (C16)
KKH-





GCACACAUUC



SaBE3





G1577R
GGA
ARA
CCAUCCUACA
717
(AGTG)
20 (C5)
VQR-





GUGAAGUAGU



SpBE3





G1577R
GGA
ARA
UCCAUCCUAC
718
(TAG)
20 (C6)
SpBE3





AGUGAAGUAG









G1577R
GGA
ARA
UAUUCCAUCC
719
(TAG)
20 (C9)
SpBE3





UACAGUGAAG









G1577R
GGA
ARA
AAAUAUUCCA
720
(AAG)
20 (C12)
SpBE3





UCCUACAGUG









G1577R
GGA
ARA
AAAAAUAUUC
721
(TGAA)
20 (C14)
VQR-





CAUCCUACAG



SpBE3





G1577R
GGA
ARA
AUUCCAUCCU
722
(AGTAGT)
20 (C8)
KKH-





ACAGUGAAGU



SaBE3





G1577R
GGA
ARA
AAUAUUCCAU
723
(AGTAGT)
20 (C11)
KKH-





CCUACAGUGA



SaBE3





G1577R
GGA
ARA
AAAAAUAUUC
724
(TGAAGT)
20 (C14)
KKH-





CAUCCUACAG



SaBE3





P1606L7S/F
CCT
YYT
UUGUGUCCCC
725
(CGAG)
20 (C9/10)
EQR-





UACCCUGUUC



SpBE3





P1606LVS/F
CCT
YYT
UGUGUCCCCU
726
(GAG)
20 (C8/9)
SpBE3





ACCCUGUUCC









P1606L7S/F
CCT
YYT
GUGUCCCCUA
727
(AGTG)
20 (C7/8)
VQR-





CCCUGUUCCG



SpBE3





P1606LVS/F
CCT
YYT
GUCCCCUACC
728
(TGAT)
20 (C5/6)
VQR-





CUGUUCCGAG



SpBE3





P1606LVS/F
CCT
YYT
UUUGUGUCCC
729
(CCGAGT)
20 (C10/11)
SaBE3





CUACCCUGUU









P1606LVS/F
CCT
YYT
GUGUCCCCUA
730
(AGTGAT)
20 (C7/8)
KKH-





CCCUGUUCCG



SaBE3





G1626R
GGA
ARA
CUUUGACUAG
731
(CGG)
20 (C-1)
SpBE3





ACGUAGGAUU









G1626R
GGA
ARA
UGCUCCUUUG
732
(GGAT)
20 (C5)
VQR-





ACUAGACGUA



SpBE3





G1626R
GGA
ARA
UUGCUCCUUU
733
(AGG)
20 (C6)
SpBE3





GACUAGACGU









G1626R
GGA
ARA
UUUGCUCCUU
734
(TAG)
20 (CT)
SpBE3





UGACUAGACG









G1626R
GGA
ARA
UCCCCUUUGC
735
(AGAC)
20 (C12)
VQR-





UCCUUUGACU



SpBE3





G1626R
GGA
ARA
AUCCCCUUUG
736
(TAG)
20 (C13)
SpBE3





CUCCUUUGAC









G1626R
GGA
ARA
UUUGCUCCUU
737
(TAGGAT)
20 (CT)
SaBE3





UGACUAGACG









G1629R
GGG
ARR
UCCCCUUUGC
738
(AGAC)
20 (C3)
VQR-





UCCUUUGACU



SpBE3





G1629R
GGG
ARR
AUCCCCUUUG
739
(TAG)
20 (C4)
SpBE3





CUCCUUUGAC









G1629R
GGG
ARR
GCGGAUCCCC
740
(TGAC)
20 (C8)
VQR-





UUUGCUCCUU



SpBE3





P1642LVS/F
CCT
YYT
CUUCCUGCGU
741
(CGG)
20 (C4/5)
SpBE3





UGUUUAACAU









G1662R
GGA
ARA
CAUUCCAAAG
742
(TGAA)
20 (C5)
VQR-





AUGGCGUAGA



SpBE3





G1662R
GGA
ARA
GGACAUUCCA
743
(AGAT)
20 (C8)
VQR-





AAGAUGGCGU



SpBE3





G1662R
GGA
ARA
UGGACAUUCC
744
(TAG)
20 (C9)
SpBE3





AAAGAUGGCG









G1662R
GGA
ARA
AAGUUGGACA
745
(GGCG)
20 (C13)
VRER-





UUCCAAAGAU



SpBE3





G1662R
GGA
ARA
UUGGACAUUC
746
(GTAGAT)
20 (C10)
KKH-





CAAAGAUGGC



SaBE3





G1662R
GGA
ARA
AAAGUUGGAC
747
(TGGCG)
20 (C14)
St3BE3





AUUCCAAAGA









C1690Y
TGC
TAC
GCAAAUCAUA
748
(AGG)
20 (C2)
SpBE3





CUGUUGCCAA









C1690Y
TGC
TAC
GGCAAAUCAU
749
(AAG)
20 (C3)
SpBE3





ACUGUUGCCA









C1690Y
TGC
TAC
AGGCAAAUCA
750
(AAAGGT)
20 (C4)
KKH-





UACUGUUGCC



SaBE3





P1706LVS/F
CCT
YYT
UUGCUAGCAC
751
(CAG)
20 (C10/11)
SpBE3





CUAUUCUUAA









P1706LVS/F
CCT
YYT
UAGCACCUAU
752
(AAG)
20 (C6/7)
SpBE3





UCUUAACAGU









P1706L7S/F
CCT
YYT
GAUUGCUAGC
753
(AACAGT)
20 (C12/13)
KKH-





ACCUAUUCUU



SaBE3





P1712LVS/F
CCA
YYA
UUAACAGUAA
754
(TGTG)
20 (C12-14)
VQR-





GCCACCCGAC



SpBE3





P1712L7S/F
CCA
YYA
AACAGUAAGC
755
(TGAC)
20 (C10/11)
VQR-





CACCCGACUG



SpBE3





P1712/3L/S/
CCA
YYA
CCACCCGACU
756
(AAAAGT)
20 (C1-5)
KKH-


F


GUGACCCAAA



SaBE3





P1713L/S/F
CCC
YYC
ACCCGACUGU
757
(AAG)
20 (C2/3)
SpBE3





GACCCAAAAA









C1715Y
TGT
TAT
AGUCGGGUGG
758
(AGAA)
20 (C-1)
VQR-





CUUACUGUUA



SpBE3





C1715Y
TGT
TAT
CAGUCGGGUG
759
(AAG)
20 (C1)
SpBE3





GCUUACUGUU









C1715Y
TGT
TAT
UUUUUUGGGU
760
(TGG)
20 (C13)
SpBE3





CACAGUCGGG









C1715Y
TGT
TAT
CUUUUUUUGG
761
(GGTG)
20 (C15)
VQR-





GUCACAGUCG



SpBE3





C1715Y
TGT
TAT
ACUUUUUUUG
762
(GGG)
20 (C16)
SpBE3





GGUCACAGUC









C1715Y
TGT
TAT
CAGUCGGGUG
763
(AAGAAT)
20 (C1)
SaBE3





GCUUACUGUU









C1715Y
TGT
TAT
GAACUUUUUU
764
(TCGGGT)
20 (C18)
SaBE3





UGGGUCACAG









C1715Y
TGT
TAT
ACAGUCGGGU
765
(TAAGAAT)
20 (C2)
St1BE3





GGCUUACUGU









C1715Y
TGT
TAT
ACUUUUUUUG
766
(GGGTG)
20 (C16)
St3BE3





GGUCACAGUC









P1717L/S/F
CCA
YYA
GACCCAAAAA
767
(TGG)
20 (C4/5)
SpBE3





AAGUUCAUCC









P1717US/F
CCA
YYA
ACCCAAAAAA
768
(GGAA)
20 (C3/4)
VQR-





AGUUCAUCCU



SpBE3





P1717L7S/F
CCA
YYA
CCAAAAAAAG
769
(AAG)
20 (C1/2)
SpBE3





UUCAUCCUGG









P1717L/S/F
CCA
YYA
ACCCAAAAAA
770
(GGAAGT)
20 (C3/4)
KKH-





AGUUCAUCCU



SaBE3





P1722L/S/F
CCT
YYT
AAAAGUUCAU
771
(CAG)
20 (C11/12)
SpBE3





CCUGGAAGUU









P1722L/S/F
CCT
YYT
GUUCAUCCUG
772
(TGAA)
20 (C7/8)
VQR-





GAAGUUCAGU



SpBE3





P1722L7S/F
CCT
YYT
UCAUCCUGGA
773
(AAG)
20 (C5/6)
SpBE3





AGUUCAGUUG









P1722L7S/F
CCT
YYT
CAUCCUGGAA
774
(AGG)
20 (C4/5)
SpBE3





GUUCAGUUGA









P1722US/F
CCT
YYT
AUCCUGGAAG
775
(GGAG)
20 (C3/4)
EQR-





UUCAGUUGAA



SpBE3





P1722L7S/F
CCT
YYT
UCCUGGAAGU
776
(GAG)
20 (C2/3)
SpBE3





UCAGUUGAAG









P1722L7S/F
CCT
YYT
CCUGCAAGUU
777
(ACAC)
20 (C1/2)
VQR-





CACUUCAAGC



SpBE3





P1722L/S/F
CCT
YYT
AAAAAAGUUC
778
(TTCAGT)
20 (C13/14)
KKH-





AUCCUGGAAG



SaBE3





P1722L/S/F
CCT
YYT
CAUCCUGGAA
779
(AGGAG)
20 (C4/5)
St3BE3





GUUCAGUUGA









C1730Y
TGT
TAT
UUACCACAGU
780
(TGAA)
20 (C7)
VQR-





CUCCUUCAAC



SpBE3





P1733LVS/F
CCA
YYA
GACUGUGGUA
781
(TGG)
20 (C13/14)
SpBE3





ACCCAUCUGU









P1733L/S/F
CCA
YYA
ACUGUGGUAA
782
(GGAA)
20 (C12/13)
VQR-





CCCAUCUGUU



SpBE3





P1733L/S/F
CCA
YYA
GACUGUGGUA
783
(TGGAAT)
20 (C13/14)
SaBE3





ACCCAUCUGU









G1736R
GGA
ARA
UUCCAACAGA
784
(CAG)
20 (C3)
SpBE3





UGGGUUACCA









G1736R
GGA
ARA
AGUAGAAUAU
785
(GGG)
20 (C12)
SpBE3





UCCAACAGAU









G1736R
GGA
ARA
AAGUAGAAUA
786
(TGG)
20 (C13)
SpBE3





UUCCAACAGA









G1736R
GGA
ARA
UAUUCCAACA
787
(CACAGT)
20 (C5)
KKH-





GAUGGGUUAC



SaBE3





G1736R
GGA
ARA
AAAGUAGAAU
788
(ATGGGT)
20 (C14)
SaBE3





AUUCCAACAG









P1773I7S/F
CCT
YYT
GAAAGUACUG
789
(TGAG)
20 (C13/14)
EQR-





AACCUCUGAG



SpBE3





P1773L7S/F
CCT
YYT
AAAGUACUGA
790
(GAG)
20 (C12/13)
SpBE3





ACCUCUGAGU









P1773LVS/F
CCT
YYT
AAGUACUGAA
791
(AGG)
20 (C11/12)
SpBE3





CCUCUGAGUG









P1773L/S/F
CCT
YYT
AGUACUGAAC
792
(GGAT)
20 (C10/11)
VQR-





CUCUGAGUGA



SpBE3





P1773L7S/F
CCT
YYT
ACUGAACCUC
793
(TGAC)
20 (C7/8)
VQR-





UGAGUGAGGA













SpBE3





P1773IVS/F
CCT
YYT
CCUCUGAGUG
794
(TGAG)
20 (C1/2)
EQR-





AGGAUGACUU



SpBE3





P1773LVS/F
CCT
YYT
AAAGUACUGA
795
(GAGGAT)
20 (C12/13)
SaBE3





ACCUCUGAGU









P1773LVS/F
CCT
YYT
CCUCUGAGUG
796
(TGAGAT)
20 (C1/2)
KKH-





AGGAUGACUU



SaBE3





P1791LVS/F
CCC
YYC
AGUUUGAUCC
797
(CAG)
20 (C9/10)
SpBE3





CGAUGCGACC









P1791LVS/F
CCC
YYC
UCCCGAUGCG
798
(TAG)
20 (C2/3)
SpBE3





ACCCAGUUUA









P1791LVS/F
CCC
YYC
CCCGAUGCGA
799
(AGAG)
20 (C1/2)
EQR-





CCCAGUUUAU



SpBE3





P1791LVS/F
CCC
YYC
GAAGUUUGAU
800
(CCCAGT)
20 (C11/12)
KKH-





CCCGAUGCGA



SaBE3





P1791LVS/F
CCC
YYC
UCCCGAUGCG
801
(TAGAGT)
20 (C2/3)
SaBE3





ACCCAGUUUA









P1811/2LVS/
CCT
YYT
CCUGGAUCCU
802
(TAG)
20 (C8-12)
SpBE3


F


CCUCUUCUCA









P1818LVS/F
CCC
YYC
UCUCAUAGCA
803
(AAG)
20 (C14/15)
SpBE3





AAACCCAACA









P1818LVS/F
CCC
YYC
UAGCAAAACC
804
(CAG)
20 (C9/10)
SpBE3





CAACAAAGUC









P1818LVS/F
CCC
YYC
CUUCUCAUAG
805
(CAAAGT)
20 (C16/17)
KKH-





CAAAACCCAA



SaBE3





P1829LVS/F
CCC
YYC
GCCAUGGAUC
806
(TAG)
20 (C13/14)
SpBE3





UGCCCAUGGU









P1829LVS/F
CCC
YYC
CCAUGGAUCU
807
(AGTG)
20 (C12/13)
VQR-





GCCCAUGGUU



SpBE3





P1829LVS/F
CCC
YYC
AUGGAUCUGC
808
(TGG)
20 (C10/11)
SpBE3





CCAUGGUUAG









P1829IVS/F
CCC
YYC
UGGAUCUGCC
809
(GGTG)
20 (C9/10)
VQR-





CAUGGUUAGU



SpBE3





P1829LVS/F
CCC
YYC
GAUCUGCCCA
810
(TGAC)
20 (C7/8)
VQR-





UGGUUAGUGG



SpBE3





P1829LVS/F
CCC
YYC
UGCCCAUGGU
811
(CGG)
20 (C3/4)
SpBE3





UAGUGGUGAC









P1829LVS/F
CCC
YYC
GCCCAUGGUU
812
(GGAT)
20 (C2/3)
VQR-





AGUGGUGACC



SpBE3





P1829LVS/F
CCC
YYC
UUGCCAUGGA
813
(GTTAGT)
20 (C15/16)
KKH-





UCUGCCCAUG



SaBE3





P1829LVS/F
CCC
YYC
CCAUGGAUCU
814
(AGTGGT)
20 (C12/13)
KKH-





GCCCAUGGUU



SaBE3





P1829LVS/F
CCC
YYC
CUGCCCAUGG
815
(CCGGAT)
20 (C4/5)
SaBE3





UUAGUGGUGA









P1829LVS/F
CCC
YYC
AUGGAUCUGC
816
(TGGTG)
20 (C10/11)
St3BE3





CCAUGGUUAG









P1872LVS/F
CCT
YYT
AUGUCUGCAA
817
(AGTG)
20 (C13/14)
VQR-





AUCCUUCCAA



SpBE3





P1872LVS/F
CCT
YYT
AAUCCUUCCA
818
(TGAA)
20 (C4/5)
VQR-





AAGUGUCCUA



SpBE3





P1872LVS/F
CCT
YYT
UUCAUGUCUG
819
(CAAAGT)
20 (C16/17)
KKH-





CAAAUCCUUC



SaBE3





P1943LVS/F
CCA
YYA
GAACUCAAGU
820
(CAG)
20 (C11/12)
SpBE3





CCAGAAAAAA









P1943LVS/F
CCA
YYA
AACUCAAGUC
821
(AGAT)
20 (C10/11)
VQR-





CAGAAAAAAC



SpBE3





P1943LVS/F
CCA
YYA
AGAACUCAAG
822
(ACAGAT)
20 (C12/13)
KKH-





UCCAGAAAAA



SaBE3





P1955LVS/F
CCA
YYA
CCACCACCUC
823
(TATGAT)
20 (C12/13)
KKH-





UCCACCUUCA



SaBE3





P1955/6L/S/
CCA
YYA
ACCACCUCUC
824
(TGAT)
20 (C10-14)
VQR-


F


CACCUUCAUA



SpBE3





P1955/6LVS/
CCA
YYA
ACCUCUCCAC
825
(TAG)
20 (C7-11)
SpBE3


F


CUUCAUAUGA









P1955/6LVS/
CCA
YYA
CCUCUCCACC
826
(AGTG)
20 (C6-10)
VQR-


F


UUCAUAUGAU



SpBE3





P1955/6L/S/
CCA
YYA
CCACCUCUCC
827
(GATAGT)
20 (C9-13)
KKH-


F


ACCUUCAUAU



SaBE3





P1964LVS/F
CCA
YYA
AGUGUAACAA
828
(AGAG)
20 (C13/14)
EQR-








AGCCAGACAA



SpBE3


P1964LVS/F
CCA
YYA
GUGUAACAAA
829
(GAG)
20 (C12/13)
SpBE3





GCCAGACAAA









P1964LVS/F
CCA
YYA
UGUAACAAAG
830
(AGAA)
20 (C11/12)
VQR-





CCAGACAAAG



SpBE3





P1964LVS/F
CCA
YYA
AAGCCAGACA
831
(TGAA)
20 (C4/5)
VQR-





AAGAGAAAUA



SpBE3





P1964LVS/F
CCA
YYA
UGUAACAAAG
832
(AGAAAT)
20 (C11/12)
KKH-





CCAGACAAAG



SaBE3





P1964LVS/F
CCA
YYA
AGUGUAACAA
833
(AGAGAAA)
20 (C13/14)
St1BE3





AGCCAGACAA






aBE types: SpBE3 = APOBEC1-SpCas9n-UGI; VQR-SpBE3 = APOBEC1-VQR-SpCas9n-UGI: EQR-SpBE3 = APOBEC1-EQR-SpCas9n-UGI; VRER-SpBE3 = APOBEC1-VRER-SpCas9n-UGI; SaBE3 = APOBEC1-SaCas9n-UGI; KKH-SaBE3 = APOBEC1-KKH-SaCas9n-UGI; St3BE3 = APOBEC1-St3Cas9n-UGI; St1BE3 = APOBEC1-St1Cas9n-UGI.




bPhospho-serine site S1490.







In some embodiments, editing of an ion channel-encoding nucleotide results in a destabilized or misfolded ion channel protein. An ion channel mutant comprising one or more destabilizing mutations described herein may have reduced activity compared to the wild type ion channel protein. For example, the activity of an ion channel variant comprising one or more destabilizing mutations described herein may be reduced by at least about 20%, at least about 30%, at least about 40%, at least about 50%, at least about 60%, at least about 70%, at least about 80%, at least about 90%, at least about 95%, at least about 99%, or more.


Premature Stop Codons


Some aspects of the present disclosure provide strategies of editing an ion channel gene (e.g., SCN9A gene) to reduce the amount of full-length, functional ion channel protein (e.g., NaV1.7 protein) being produced. In some embodiments, stop codons may be introduced into the coding sequence of an ion channel gene upstream of the normal stop codon (referred to as a “premature stop codon”). Premature stop codons cause premature translation termination, in turn resulting in truncated and nonfunctional proteins and induces rapid degradation of the mRNA via the non-sense mediated mRNA decay pathway. See, e.g., Baker et al., Current Opinion in Cell Biology 16 (3): 293-299, 2004; Chang et al., Annual Review of Biochemistry 76: 51-74, 2007; and Behm-Ansmant et al., Genes & Development 20 (4): 391-398, 2006, each of which is incorporated herein by reference.


The nucleobase editors may be used to convert several amino acid codons to a stop codon (e.g., TAA, TAG, or TGA). For example, nucleobase editors including a cytosine deaminase domain are capable of converting a cytosine (C) base to a thymine (T) base via deamination. Thus, it is envisioned that, for amino acid codons containing a C base, the C base may be converted to T. For example, a CAG (Gln/Q) codon may be changed to a TAG (amber) codon via the deamination of the first C on the coding strand. For sense codons that contain a guanine (G) base, a C base is present on the complementary strand; and the G base may be converted to an adenosine (A) via the deamination of the C on the complementary strand. For example, a TGG (Trp/W) codon may be converted to a TAG (amber) codon via the deamination of the second C on the complementary strand. In some embodiments, two C to T changes are required to convert a codon to a nonsense codon. For example, a CGG (R) codon is converted to a TAG (amber) codon via the deamination of the first C on the coding strand and the deamination of the second C on the complementary strand. Non-limiting examples of codons that may be changed to stop codons via base editing are provided in Table 3.









TABLE 3







Conversion to Stop Codon









Target codon
Base-editing process
Edited codon






CAG (Gln/Q)

1st base C to T on coding strand

TAG (amber)



TGG (Trp/W)
2nd base C to T on complementary strand
TAG (amber)



CGA (Arg/R)

1st base C to T on coding strand

TGA (opal)




CAA (Gln/Q)

1st base C to T on coding strand

TAA (ochre)



TGG (Trp/W)
3rd base C to T on complementary strand
TGA (opal)


CGG (Arg/R)
1st base C to T on coding strand and 2nd base C to T
TAG (amber)



on complementary strand


CGA (Arg/R)
1st base C to T on coding strand and 2nd base C to T
TAA (orchre)



on complementary strand





* single underline: changes on the coding strand


double underline: changes on the complementary strand






Non-limiting examples of codons in the SCN9A gene that may be changed to stop codons by the nucleobase editor are provided in Table 4. In some embodiments, the introduction of stop codons may be efficacious in generating truncations when the target residue is located in a flexible loop. In some embodiments, two codons adjacent to each other may both be converted to stop codons, resulting in two stop codons adjacent to each other (also referred to as “tandem stop codons”). “Adjacent” means there are no more than 5 amino acids between the two stop codons. For example, the two stop codons may be immediately adjacent to each other (0 amino acids in between) or have 1, 2, 3, 4, or 5 amino acids in between. Non-limiting examples of tandem stop codons that may be introduced are listed in Table 4 (e.g., Q368X/Q369X, Q408X/Q410X, Q1539X/Q1541X, wherein X is a stop codon). In some embodiments, a stop codon is introduced adjacent to a structurally destabilizing mutation.









TABLE 4







Exemplary NaV1.7 (SNA9A) Protective Loss-of-Function Mutations via


Premature Stop Codons




















gRNA







SEQ

size



Residue
Codon
Resulting
Programmable guide-RNA
ID

(C



Change
Change
Codon(s)
sequence
NOs
(PAM)
edited)
BE typea

















Q18X
CAG
TAG
AAACAGUCUCUUGCCCUCAU
834
(TGAA)
20 (C4)
VQR-









SpBE3





Q25X
CAA
TAA
CUCAUUGAACAACGCAUUGC
835
(TGAA)
20
VQR-








(C10)
SpBE3





Q25X
CAA
TAA
AUUGAACAACGCAUUGCUGA
836
(AAG)
20 (C7)
SpBE3





Q25X
CAA
TAA
UUGAACAACGCAUUGCUGAA
837
(AGAA)
20 (C6)
VQR-









SpBE3





Q25X
CAA
TAA
UGAACAACGCAUUGCUGAAA
838
(GAAAAT)
20 (C5)
KKH-









SaBE3





Q25X
CAA
TAA
CAUUGAACAACGCAUUGCUG
839
(AAAGAAA)
20 (C8)
St1BE3





Q58X
CAG
TAG
AAACAGCUGCCCUUCAUCUA
840
(TGG)
20 (C4)
SpBE3





Q58X
CAG
TAG
AACAGCUGCCCUUCAUCUAU
841
(GGG)
20 (C3)
SpBE3





Q58X
CAG
TAG
ACAGCUGCCCUUCAUCUAUG
842
(GGG)
20 (C2)
SpBE3





Q58X
CAG
TAG
CAGCUGCCCUUCAUCUAUGG
843
(GGAC)
20(C1)
VQR-









SpBE3





Q58X
CAG
TAG
AAACAGCUGCCCUUCAUCUA
844
(TGGGG)
20 (C4)
St3BE3





W151X
TGG
TAR
CCAGUCCGGUGGGUUAUUCA
845
(TGG)
20(C2)
SpBE3





W151X
TGG
TAR
CAUUUUUGGUCCAGUCCGGU
846
(GGG)
20
SpBE3








(C12)






W151X
TGG
TAR
ACAUUUUUGGUCCAGUCCGG
847
(TGG)
20
SpBE3








(C13)






W151X
TGG
TAR
GUCCAGUCCGGUGGGUUAUU
848
(CATGGT)
20(C4)
KKH-









SaBE3





W151X
TGG
TAR
GACAUUUUUGGUCCAGUCCG
849
(GTGGGT)
20
SaBE3








(C14)






W188X
TGG
TAR
CCACGGGUCACGAAGAAAAG
850
(TGAA)
20 (C2)
VQR-









SpBE3





W188X
TGG
TAR
UUCCACGGGUCACGAAGAAA
851
(AGTG)
20(C4)
VQR-









SpBE3





W188X
TGG
TAR
GUUCCACGGGUCACGAAGAA
852
(AAG)
20 (C5)
SpBE3





W188X
TGG
TAR
GCCAGUUCCACGGGUCACGA
853
(AGAA)
20
VQR-








(C9/3)
SpBE3





W188X
TGG
TAR
AGCCAGUUCCACGGGUCACG
854
(AAG)
20
SpBE3








(C10/4)






W188X
TGG
TAR
CCAGCCAGUUCCACGGGUCA
855
(CGAA)
20
VQR-








(C12/6)
SpBE3





W188X
TGG
TAR
UCCACGGGUCACGAAGAAAA
856
(GTGAAT)
20 (C3)
SaBE3





W188X
TGG
TAR
CAGUUCCACGGGUCACGAAG
857
(AAAAGT)
20
KKH-








(C7/1)
SaBE3





W188X
TGG
TAR
CAGCCAGUUCCACGGGUCAC
858
(GAAGAAA)
20
St1BE3








(C11/5)






W190X
TGG
TAR
CAAAAUCCAGCCAGUUCCAC
859
(GGG)
20
SpBE3








(C12)






W190X
TGG
TAR
ACAAAAUCCAGCCAGUUCCA
860
(CGG)
20
SpBE3








(C13)






W190X
TGG
TAR
GACAAAAUCCAGCCAGUUCC
861
(ACGGGT)
20
SaBE3








(C14)






R214X
CGA
TGA
GUUUCAGCUCUUCGAACUUU
862
(CAG)
20
SpBE3








(C13)






R214X
CGA
TGA
UUUCAGCUCUUCGAACUUUC
863
(AGAG)
20
EQR-








(C12)
SpBE3





R214X
CGA
TGA
UUCAGCUCUUCGAACUUUCA
864
(GAG)
20
SpBE3








(C11)






R214X
CGA
TGA
UCUUCGAACUUUCAGAGUAU
865
(TGAG)
20(C5)
EQR-









SpBE3





R214X
CGA
TGA
CUUCGAACUUUCAGAGUAUU
866
(GAG)
20 (C4)
SpBE3





R214X
CGA
TGA
UUCGAACUUUCAGAGUAUUG
867
(AGAG)
20 (C3)
EQR-









SpBE3





R214X
CGA
TGA
UCGAACUUUCAGAGUAUUGA
868
(GAG)
20 (C2)
SpBE3





R214X
CGA
TGA
GUUUCAGCUCUUCGAACUUU
869
(CAGAGT)
20
SaBE3








(C13)






Q240X
CAG
TAG
GGGCUUUGAUCCAGUCAGUG
870
(AAG)
20
SpBE3








(C12)






Q240X
CAG
TAG
GGCUUUGAUCCAGUCAGUGA
871
(AGAA)
20
VQR-








(C11)
SpBE3





0240X
CAG
TAG
CUUUGAUCCAGUCAGUGAAG
872
(AAG)
20 (C9)
SpBE3





Q240X
CAG
TAG
CAGUCAGUGAAGAAGCUUUC
873
(TGAT)
20 (C1)
VQR-









SpBE3





Q240X
CAG
TAG
UCCAGUCAGUGAAGAAGCUU
874
(TCTGAT)
20 (C3)
KKH-









SaBE3





Q240X
CAG
TAG
GGGGCUUUGAUCCAGUCAGU
875
(GAAGAAG)
20
St1BE3








(C13)






Q265X
CAG
TAG
AAUUGGACUACAGCUGUUCA
876
(TGG)
20
SpBE3








(C11)






Q265X
CAG
TAG
AUUGGACUACAGCUGUUCAU
877
(GGG)
20
SpBE3








(C10)



Q265X
CAG
TAG
UUGGACUACAGCUGUUCAUG
878
(GGAA)
20 (C9)
VQR-












SpBE3


Q265X
CAG
TAG
ACAGCUGUUCAUGGGAAACC
879
(TGAA)
20 (C2)
VQR-









SpBE3





Q265X
CAG
TAG
AGCUGUUCAUGGGAAACCUG
880
(AAG)
20 (C-1)
SpBE3








R277X
CGA
TGA
AAAUGUUUUCGAAAUUCACU
881
(TGAA)
20
VQR-








(C10)
SpBE3





R277X
CGA
TGA
CGAAAUUCACUUGAAAAUAA
882
(TGAA)
20 (C1)
VQR-









SpBE3


R277X
CGA
TGA
AAUGUUUUCGAAAUUCACUU
883
(GAAAAT)
20 (C9)
KKH-









SaBE3





R277X
CGA
TGA
GUUUUCGAAAUUCACUUGAA
884
(AATAAT)
20 (C6)
KKH-









SaBE3





Q323X
CAG
TAG
CUCGUGUGUAGUCAGUGUCC
885
(AGAG)
20
EQR-








(C13)
SpBE3





Q323X
CAG
TAG
UCGUGUGUAGUCAGUGUCCA
886
(GAG)
20
SpBE3








(C12)






Q323X
CAG
TAG
CGUGUGUAGUCAGUGUCCAG
887
(AGG)
20
SpBE3








(C11)



Q323X
CAG
TAG
GUGUGUAGUCAGUGUCCAGA
888
(GGG)
20
SpBE3








(C10)






Q323X
CAG
TAG
UGUGUAGUCAGUGUCCAGAG
889
(GGG)
20 (C9)
SpBE3





Q323X
CAG
TAG
AGUGUCCAGAGGGGUACACC
890
(TGTG)
20 (C-1)
VQR-









SpBE3





Q323X
CAG
TAG
CGUGUGUAGUCAGUGUCCAG
891
(AGGGGT)
20
SaBE3








(C11)






Q323X
CAG
TAG
CGUGUGUAGUCAGUGUCCAG
892
(AGGGG)
20
St3BE3








(C11)






W349X
TGG
TAR
CAGCUGAAAGUGUCAAAGCU
893
(CGTG)
20 (C1)
VQR-









SpBE3





W349X
TGG
TAR
AGGCCCAGCUGAAAGUGUCA
894
(AAG)
20 (C6)
SpBE3





W349X
TGG
TAR
GCUAAGAAGGCCCAGCUGAA
895
(AGTG)
20
VQR-








(C13)
SpBE3





W349X
TGG
TAR
AAGGCUAAGAAGGCCCAGCU
896
(GAAAGT)
20
KKH-








(C16)
SaBE3





Q360X
CAA
TAA
GGCUAAUGACCCAAGAUUAC
897
(TGG)
20
SpBE3








(C12)






Q360X
CAA
TAA
GCUAAUGACCCAAGAUUACU
898
(GGG)
20
SpBE3








(C11)






Q360X
CAA
TAA
CUAAUGACCCAAGAUUACUG
899
(GGAA)
20
VQR-








(C10)
SpBE3





W363X
TGG
TAR
UCCCAGUAAUCUUGGGUCAU
900
(TAG)
20 (C4)
SpBE3





W363X
TGG
TAR
AAGGUUUUCCCAGUAAUCUU
901
(GGG)
20
SpBE3








(C11)






W363X
TGG
TAR
AAAGGUUUUCCCAGUAAUCU
902
(TGG)
20
SpBE3








(C12)






W363X
TGG
TAR
UAAAGGUUUUCCCAGUAAUC
903
(TTGGGT)
20
SaBE3








(C13)






Q368/9X
CAA
TAA
UUUACCAACAGGUGAGUACC
904
(AAG)
20 (C6)
SpBE3





Q368/9X
CAA
TAA
UUACCAACAGGUGAGUACCA
905
(AGAG)
20 (C5)
EQR-









SpBE3





Q368/9X
CAA
TAA
UACCAACAGGUGAGUACCAA
906
(GAG)
20 (C4)
SpBE3





Q368/9X
CAA
TAA
ACCAACAGGUGAGUACCAAG
907
(AGAA)
20 (C3)
VQR-









SpBE3





Q368/9X
CAA
TAA
UUACCAACAGGUGAGUACCA
908
(AGAGAAA)
20 (C5)
St1BE3





Q369X
CAG
TAG
UUUACCAACAGGUGAGUACC
909
(AAG)
20 (C9)
SpBE3





Q369X
CAG
TAG
UUACCAACAGGUGAGUACCA
910
(AGAG)
20 (C8)
EQR-









SpBE3





Q369X
CAG
TAG
UACCAACAGGUGAGUACCAA
911
(GAG)
20 (C7)
SpBE3





Q369X
CAG
TAG
ACCAACAGGUGAGUACCAAG
912
(AGAA)
20 (C6)
VQR-









SpBE3





Q369X
CAG
TAG
UUACCAACAGGUGAGUACCA
913
(AGAGAAA)
20 (C8)
St1BE3





Q408/10X
CAG
TAG
GAACAGAACCAGGCAAACAU
914
(TGAA)
20
VQR-








(C4/10)
SpBE3





Q408/10X
CAG
TAG
ACAGAACCAGGCAAACAUUG
915
(AAG)
20
SpBE3








(C2/8)






Q408/10X
CAG
TAG
CAGAACCAGGCAAACAUUGA
916
(AGAA)
20
VQR-








(C1/7)
SpBE3





Q408/10X
CAG
TAG
AACAGAACCAGGCAAACAUU
917
(GAAGAAG)
20
St1BE3








(C3/9)






Q410X
CAG
TAG
GAACCAGGCAAACAUUGAAG
918
(AAG)
20 (C5)
SpBE3





Q418X
CAG
TAG
AGAAGCUAAACAGAAAGAAU
919
(TAG)
20
SpBE3








(C11)






Q418X
CAG
TAG
GAAGCUAAACAGAAAGAAUU
920
(AGAA)
20
VQR-








(C10)
SpBE3





Q418X
CAG
TAG
AGAAAGAAUUAGAAUUUCAA
921
(CAG)
20 (C-1)
SpBE3





Q418X
CAG
TAG
AGAAGCUAAACAGAAAGAAU
922
(TAGAAT)
20
SaBE3








(C11)






Q418X
CAG
TAG
CAGAAAGAAUUAGAAUUUCA
923
(ACAGAT)
20 (C1)
KKH-









SaBE3





Q418X
CAG
TAG
AAGAAGCUAAACAGAAAGAA
924
(TTAGAAT)
20
St1BE3








(C12)






Q424X
CAA
TAA
AUUAGAAUUUCAACAGAUGU
925
(TAG)
20
SpBE3








(C11)






Q424X
CAA
TAA
UUAGAAUUUCAACAGAUGUU
926
(AGAC)
20
VQR-








(C10)
SpBE3





Q425X
CAG
TAG
UUAGAAUUUCAACAGAUGUU
927
(AGAC)
20
VQR-








(C13)
SpBE3





Q434X
CAA
TAA
AAAAAAGAGCAAGAAGAAGC
928
(TGAG)
20
EQR-








(C10)
SpBE3





Q434X
CAA
TAA
AAAAAGAGCAAGAAGAAGCU
929
(GAG)
20 (C9)
SpBE3





Q434X
CAA
TAA
AAAAGAGCAAGAAGAAGCUG
930
(AGG)
20 (C8)
SpBE3





Q434X
CAA
TAA
AAAAAAGAGCAAGAAGAAGC
931
(TGAGGT)
20
KKH-








(C10)
SaBE3





Q485X
CAA
TAA
AAGAAUCAAAAGAAGCUCUC
932
(CAG)
20 (C7)
SpBE3





Q485X
CAA
TAA
AGAAUCAAAAGAAGCUCUCC
933
(AGTG)
20 (C6)
VQR-









SpBE3





Q485X
CAA
TAA
AAUCAAAAGAAGCUCUCCAG
934
(TGG)
20 (C4)
SpBE3





Q485X
CAA
TAA
AUCAAAAGAAGCUCUCCAGU
935
(GGAG)
20 (C3)
EQR-









SpBE3





Q485X
CAA
TAA
UCAAAAGAAGCUCUCCAGUG
936
(GAG)
20 (C2)
SpBE3





Q485X
CAA
TAA
CAAAAGAAGCUCUCCAGUGG
937
(AGAG)
20 (C1)
EQR-









SpBE3





Q485X
CAA
TAA
AAAAGAAGCUCUCCAGUGGA
938
(GAG)
20 (C-1)
SpBE3





Q485X
CAA
TAA
AAAAGAAUCAAAAGAAGCUC
939
(TCCAGT)
20 (C9)
KKH-









SaBE3





Q485X
CAA
TAA
AAUCAAAAGAAGCUCUCCAG
940
(TGGAG)
20 (C4)
St3BE3





R523X
CGA
TGA
GAAGGGCAUAGGCGAGCACA
941
(TGAA)
20
VQR-








(C13)
SpBE3





R523X
CGA
TGA
GGCAUAGGCGAGCACAUGAA
942
(AAG)
20 (C9)
SpBE3





R523X
CGA
TGA
GCAUAGGCGAGCACAUGAAA
943
(AGAG)
20 (C8)
EQR-









SpBE3





R523X
CGA
TGA
CAUAGGCGAGCACAUGAAAA
944
(GAG)
20 (C7)
SpBE3





R523X
CGA
TGA
AUAGGCGAGCACAUGAAAAG
945
(AGG)
20 (C6)
SpBE3





R523X
CGA
TGA
GCAUAGGCGAGCACAUGAAA
946
(AGAGGT)
20 (C8)
KKH-









SaBE3





Q534X
CAG
TAG
UACCCCCAAUCAGGUACCAC
947
(CCAAAT)
20
KKH-








(C11)
SaBE3





Q534X
CAG
TAG
AUCAGGUACCACCCAAAUUG
948
(CTAAAT)
20 (C3)
KKH-









SaBE3





R548X
CGA
TGA
UUUUCUGCAAGGCGAAGCAG
949
(CAG)
20
SpBE3








(C13)






R548X
CGA
TGA
UUUCUGCAAGGCGAAGCAGC
950
(AGAA)
20
VQR-








(C12)
SpBE3





R548X
CGA
TGA
GCAAGGCGAAGCAGCAGAAC
951
(AAG)
20 (C7)
SpBE3





R548X
CGA
TGA
CUGCAAGGCGAAGCAGCAGA
952
(ACAAGT)
20 (C9)
KKH-









SaBE3





R548X
CGA
TGA
GAAGCAGCAGAACAAGUCUU
953
(TTTAGT)
20 (C-1)
KKH-









SaBE3





Q595X
CAG
TAG
GUUUGUGCCCCACAGACCCC
954
(AGG)
20
SpBE3








(C13)






Q595X
CAG
TAG
UUUGUGCCCCACAGACCCCA
955
(GGAG)
20
EQR-








(C12)
SpBE3





Q595X
CAG
TAG
UUGUGCCCCACAGACCCCAG
956
(GAG)
20
SpBE3








(C11)






Q595X
CAG
TAG
UGUGCCCCACAGACCCCAGG
957
(AGCG)
20
VRER-








(C10)
SpBE3





Q595X
CAG
TAG
UGCCCCACAGACCCCAGGAG
958
(CGAC)
20 (C8)
VQR-









SpBE3





Q595X
CAG
TAG
CACAGACCCCAGGAGCGACG
959
(CAG)
20 (C3)
SpBE3





Q595X
CAG
TAG
AGACCCCAGGAGCGACGCAG
960
(CAG)
20 (C-1)
SpBE3





Q595X
CAG
TAG
ACAGACCCCAGGAGCGACGC
961
(AGCAGT)
20 (C2)
KKH-









SaBE3





Q595X
CAG
TAG
GUUUGUGCCCCACAGACCCC
962
(AGGAG)
20
St3BE3








(C13)






R597X
CGA
TGA
AGACCCCAGGAGCGACGCAG
963
(CAG)
20
SpBE3








(C13)






R597X
CGA
TGA
GAGCGACGCAGCAGUAACAU
964
(CAG)
20 (C4)
SpBE3





Q604X
CAA
TAA
AGUAACAUCAGCCAAGCCAG
965
(TAG)
20
SpBE3








(C13)






Q604X
CAA
TAA
GUAACAUCAGCCAAGCCAGU
966
(AGG)
20
SpBE3








(C12)






Q604X
CAA
TAA
CAGUAACAUCAGCCAAGCCA
967
(GTAGGT)
20
KKH-








(C14)
SaBE3





Q604X
CAA
TAA
AGCCAAGCCAGUAGGUCCCC
968
(ACCAAT)
20 (C4)
KKH-









SaBE3





Q643X
CAG
TAG
CCCCAAUGGACAGCUUCUGC
969
(CAG)
20
SpBE3








(C11)






Q643X
CAG
TAG
CCCAAUGGACAGCUUCUGCC
970
(AGAG)
20
EQR-








(C10)
SpBE3





Q643X
CAG
TAG
CCAAUGGACAGCUUCUGCCA
971
(GAG)
20 (C9)
SpBE3





Q643X
CAG
TAG
CAAUGGACAGCUUCUGCCAG
972
(AGG)
20 (C8)
SpBE3





Q643X
CAG
TAG
AAUGGACAGCUUCUGCCAGA
973
(GGTG)
20 (C7)
VQR-









SpBE3





Q643X
CAG
TAG
UGGACAGCUUCUGCCAGAGG
974
(TGAT)
20 (C5)
VQR-









SpBE3





Q643X
CAG
TAG
CCCAAUGGACAGCUUCUGCC
975
(AGAGGT)
20
KKH-








(C10)
SaBE3





Q643X
CAG
TAG
AAUGGACAGCUUCUGCCAGA
976
(GGTGAT)
20 (C7)
KKH-









SaBE3





Q643X
CAG
TAG
GGACAGCUUCUGCCAGAGGU
977
(GATAAT)
20 (C4)
KKH-









SaBE3





Q643X
CAG
TAG
AGCUUCUGCCAGAGGUGAUA
978
(ATAGAT)
20 (C-1)
KKH-









SaBE3





Q643X
CAG
TAG
CAAUGGACAGCUUCUGCCAG
979
(AGGTG)
20 (C8)
St3BE3





Q663X
CAA
TAA
GCACGACCAAUCAAAUACAC
980
(AAG)
20 (C8)
SpBE3





Q663X
CAA
TAA
CACGACCAAUCAAAUACACA
981
(AGAA)
20 (C7)
VQR-









SpBE3





Q663X
CAA
TAA
ACCAAUCAAAUACACAAGAA
982
(AAG)
20 (C3)
SpBE3





Q663X
CAA
TAA
CCAAUCAAAUACACAAGAAA
983
(AGG)
20 (C2)
SpBE3





Q663X
CAA
TAA
CAAUCAAAUACACAAGAAAA
984
(GGCG)
20 (C1)
VRER-









SpBE3





Q663X
CAA
TAA
GGCACGACCAAUCAAAUACA
985
(CAAGAAA)
20 (C9)
St1BE3





Q663X
CAA
TAA
CCAAUCAAAUACACAAGAAA
986
(AGGCG)
20 (C2)
St3BE3





Q687X
CAG
TAG
CAACCUCAGACAGAGAGCAA
987
(TGAG)
20 (C7)
EQR-









SpBE3





Q687X
CAG
TAG
AACCUCAGACAGAGAGCAAU
988
(GAG)
20 (C6)
SpBE3





Q687X
CAG
TAG
CUCAGACAGAGAGCAAUGAG
989
(TAG)
20 (C3)
SpBE3





Q687X
CAG
TAG
UCAGACAGAGAGCAAUGAGU
990
(AGAG)
20 (C5)
EQR-









SpBE3





Q687X
CAG
TAG
CAGACAGAGAGCAAUGAGUA
991
(GAG)
20 (C1)
SpBE3





Q687X
CAG
TAG
GAUCCCAACCUCAGACAGAG
992
(AGCAAT)
20
KKH-








(C12)
SaBE3





Q687X
CAG
TAG
CCAACCUCAGACAGAGAGCA
993
(ATGAGT)
20 (C8)
SaBE3





Q708X
CAA
TAA
CCAGACAAAAAUGUCCACCU
994
(TGG)
20 (C6)
SpBE3





Q708X
CAA
TAA
CAGACAAAAAUGUCCACCUU
995
(GGTG)
20 (C5)
VQR-









SpBE3





Q708X
CAA
TAA
GACAAAAAUGUCCACCUUGG
996
(TGG)
20 (C3)
SpBE3








20 (C8)
KKH-





Q708X
CAA
TAA
GUCCAGACAAAAAUGUCCAC
997
(CTTGGT)

SaBE3





Q708X
CAA
TAA
CAGACAAAAAUGUCCACCUU
998
(GGTGGT)
20 (C5)
KKH-









SaBE3





Q708X
CAA
TAA
CCAGACAAAAAUGUCCACCU
999
(TGGTG)
20 (C6)
St3BE3





W713X
TGG
TAR
CAAGGUGGACAUUUUUGUCU
1000
(GGAC)
20(C1)
VQR-









SpBE3





W713X
TGG
TAR
CCAAGGUGGACAUUUUUGUC
1001
(TGG)
20(C2)
SpBE3





W714X
TGG
TAR
CAAAUCUGUACCACCAAGGU
1002
(GGAC)
20
VQR-








(C12)
SpBE3





W714X
TGG
TAR
GCAAAUCUGUACCACCAAGG
1003
(TGG)
20
SpBE3








(C13)






W724X
TGG
TAR
AAUUCCAGAUCAAGAAUUUG
1004
(TGTG)
20 (C6)
VQR-









SpBE3





W724X
TGG
TAR
GCAAUUCCAGAUCAAGAAUU
1005
(TGTG)
20 (C8)
VQR-









SpBE3





W724X
TGG
TAR
UCCAGAUCAAGAAUUUGUGU
1006
(GCAAAT)
20 (C3)
KKH-









SaBE3





W724X
TGG
TAR
UAUGGAGAGCAAUUCCAGAU
1007
(CAAGAAT)
20
St1BE3








(C16)






W730X
TGG
TAR
CCAAUAUGGAGAGCAAUUCC
1008
(AGAT)
20(C2)
VQR-









SpBE3





W730X
TGG
TAR
UCCAAUAUGGAGAGCAAUUC
1009
(CAG)
20 (C3)
SpBE3





W730X
TGG
TAR
UGAAUUUUAUCCAAUAUGGA
1010
(GAG)
20
SpBE3








(C12)






W730X
TGG
TAR
UUGAAUUUUAUCCAAUAUGG
1011
(AGAG)
20
EQR-








(C13)
SpBE3





W730X
TGG
TAR
AUCCAAUAUGGAGAGCAAUU
1012
(CCAGAT)
20(C4)
KKH-









SaBE3





W730X
TGG
TAR
GAAUUUUAUCCAAUAUGGAG
1013
(AGCAAT)
20
KKH-








(C11)
SaBE3





Q805X
CAA
TAA
AUGAGUAUUUCCAAGUAGGC
1014
(TGG)
20
SpBE3








(C12)






Q805X
CAA
TAA
UGAGUAUUUCCAAGUAGGCU
1015
(GGAA)
20
VQR-








(C11)
SpBE3





Q805X
CAA
TAA
CAAGUAGGCUGGAAUAUUUU
1016
(TGAC)
20 (C1)
VQR-









SpBE3





Q805X
CAA
TAA
AUGAGUAUUUCCAAGUAGGC
1017
(TGGAAT)
20
SaBE3








(C12)






W808X
TGG
TAR
AAAAAUAUUCCAGCCUACUU
1018
(GGAA)
20
VQR-








(C11)
SpBE3





W808X
TGG
TAR
CAAAAAUAUUCCAGCCUACU
1019
(TGG)
20
SpBE3








(C12)






W808X
TGG
TAR
AAAAAUAUUCCAGCCUACUU
1020
(GGAAAT)
20
KKH-








(C11)
SaBE3





R835X
CGA
TGA
UUGUCAGUUCUGCGAUCAUU
1021
(CAG)
20
SpBE3








(C13)






R835X
CGA
TGA
UGUCAGUUCUGCGAUCAUUC
1022
(AGAC)
20
VQR-








(C12)
SpBE3





R835X
CGA
TGA
AGUUCUGCGAUCAUUCAGAC
1023
(TGG)
20(C8)
SpBE3





R835X
CGA
TGA
UCAGUUCUGCGAUCAUUCAG
1024
(ACTGGT)
20
KKH-








(C10)
SaBE3





R841X
CGA
TGA
GCUUUUAGCUCCGAGUCUUC
1025
(AAG)
20
SpBE3








(C12)






R841X
CGA
TGA
UUAGCUCCGAGUCUUCAAGU
1026
(TGG)
20 (C8)
SpBE3





R841X
CGA
TGA
GCUCCGAGUCUUCAAGUUGG
1027
(CAAAAT)
20(C5)
KKH-









SaBE3





W849X
TGG
TAR
CCAGGAUUUUGCCAACUUGA
1028
(AGAC)
20(C2)
VQR-









SpBE3





W849X
TGG
TAR
GCCAGGAUUUUGCCAACUUG
1029
(AAG)
20 (C3)
SpBE3





W849X
TGG
TAR
UGGCCAGGAUUUUGCCAACU
1030
(TGAA)
20 (C5)
VQR-









SpBE3





Q886X
CAG
TAG
GUGGUCGGCAUGCAGCUCUU
1031
(TGG)
20
SpBE3








(C13)






Q886X
CAG
TAG
UCGGCAUGCAGCUCUUUGGU
1032
(AAG)
20 (C9)
SpBE3





Q886X
CAG
TAG
CGGCAUGCAGCUCUUUGGUA
1033
(AGAG)
20(C8)
EQR-









SpBE3





Q886X
CAG
TAG
GGCAUGCAGCUCUUUGGUAA
1034
(GAG)
20 (C7)
SpBE3





Q886X
CAG
TAG
AGCUCUUUGGUAAGAGCUAC
1035
(AAAGAAT)
20 (C-1)
St1BE3





W908X
TGG
TAR
UGUGCCACCGUGGGAGCGUA
1036
(CAG)
20(C6)
SpBE3





W908X
TGG
TAR
CGUUCAUGUGCCACCGUGGG
1037
(AGCG)
20
VRER-








(C12)
SpBE3





W908X
TGG
TAR
UCGUUCAUGUGCCACCGUGG
1038
(GAG)
20
SpBE3








(C13)






W908X
TGG
TAR
CAUGUGCCACCGUGGGAGCG
1039
(TACAGT)
20(C8)
KKH-









SaBE3





W908X
TGG
TAR
AGUCGUUCAUGUGCCACCGU
1040
(GGGAG)
20
St3BE3








(C15)






W928X
TGG
TAR
CCACUCUCCACACAGCACGC
1041
(GGAA)
20 (C2)
VQR-









SpBE3





W928X
TGG
TAR
UCCACUCUCCACACAGCACG
1042
(CGG)
20 (C3)
SpBE3





W928X
TGG
TAR
UAUCCACUCUCCACACAGCA
1043
(CGCG)
20(C5)
VRER-









SpBE3





W928X
TGG
TAR
GUCUCUAUCCACUCUCCACA
1044
(CAG)
20
SpBE3








(C10)






Q941X
CAA
TAA
GGAGGUCGCUGGUCAAGCUA
1045
(TGTG)
20
VQR-








(C14)
SpBE3





Q989X
CAG
TAG
GCAAACAACCUCCAGAUUGC
1046
(AGTG)
20
VQR-








(C13)
SpBE3





Q989X
CAG
TAG
AAACAACCUCCAGAUUGCAG
1047
(TGAC)
20
VQR-








(C11)
SpBE3





Q989X
CAG
TAG
AACCUCCAGAUUGCAGUGAC
1048
(TAG)
20 (C7)
SpBE3





Q989X
CAG
TAG
ACCUCCAGAUUGCAGUGACU
1049
(AGAA)
20 (C6)
VQR-









SpBE3





Q989X
CAG
TAG
AACCUCCAGAUUGCAGUGAC
1050
(TAGAAT)
20 (C7)
SaBE3





Q989X
CAG
TAG
CAACCUCCAGAUUGCAGUGA
1051
(CTAGAAT)
20 (C8)
St1BE3





Q1004X
CAA
TAA
AUUAUGUGAAACAAACCUUA
1052
(CGTG)
20
VQR-








(C12)
SpBE3





Q1004X
CAA
TAA
UAUGUGAAACAAACCUUACG
1053
(TGAA)
20
VQR-








(C10)
SpBE3





Q1004X
CAA
TAA
UUAUGUGAAACAAACCUUAC
1054
(GTGAAT)
20
SaBE3








(C11)






Q1026X
CAA
TAA
CAGGGAGAUAAGACAAGCAG
1055
(AAG)
20
SpBE3








(C14)






Q1026X
CAA
TAA
AGGGAGAUAAGACAAGCAGA
1056
(AGAT)
20
VQR-








(C13)
SpBE3





Q1026X
CAA
TAA
GAUAAGACAAGCAGAAGAUC
1057
(TGAA)
20 (C8)
VQR-









SpBE3





Q1026X
CAA
TAA
AAGCAGAAGAUCUGAAUACU
1058
(AAG)
20 (C-1)
SpBE3





Q1026X
CAA
TAA
AGAUAAGACAAGCAGAAGAU
1059
(CTGAAT)
20 (C9)
SaBE3





Q1077X
CAA
TAA
GUGAUGGUCAAUCAUUUAUU
1060
(CACAAT)
20 (C9)
KKH-









SaBE3





W1161X
TGG
TAR
CAUACACAACCUGACAAGAA
1061
(AGAC)
20 (C1)
VQR-









SpBE3





W1161X
TGG
TAR
CCAUACACAACCUGACAAGA
1062
(AAG)
20(C2)
SpBE3





W1161X
TGG
TAR
CCUCCAUACACAACCUGACA
1063
(AGAA)
20(C5)
VQR-









SpBE3





W1161X
TGG
TAR
ACCUCCAUACACAACCUGAC
1064
(AAG)
20(C6)
SpBE3





W1161X
TGG
TAR
GAGAACCUCCAUACACAACC
1065
(TGAC)
20
VQR-








(C10)
SpBE3





W1161X
TGG
TAR
AACCUCCAUACACAACCUGA
1066
(CAAGAAA)
20(C7)
St1BE3





Q1167X
CAA
TAA
CUCAUGCUGCCAAGUUAACA
1067
(TAG)
20
SpBE3








(C11)






Q1167X
CAA
TAA
CUCAUGCUGCCAAGUUAACA
1068
(TAGAGT)
20
SaBE3








(C11)






Q1167X
CAA
TAA
UCAUGCUGCCAAGUUAACAU
1069
(AGAG)
20
EQR-








(C10)
SpBE3





Q1167X
CAA
TAA
CAUGCUGCCAAGUUAACAUA
1070
(GAG)
20 (C9)
SpBE3





Q1167X
CAA
TAA
CUGCCAAGUUAACAUAGAGU
1071
(CAG)
20 (C5)
SpBE3





Q1167X
CAA
TAA
UGCCAAGUUAACAUAGAGUC
1072
(AGG)
20 (C4)
SpBE3





Q1167X
CAA
TAA
GCCAAGUUAACAUAGAGUCA
1073
(GGG)
20 (C3)
SpBE3





Q1167X
CAA
TAA
CCAAGUUAACAUAGAGUCAG
1074
(GGAA)
20 (C2)
VQR-









SpBE3





W1178/9X
TGG
TAR
CACCAGAUUUUUCCUUUCCC
1075
(TGAC)
20
VQR-








(C4/1)
SpBE3





W1193X
TGG
TAR
AACUGUGUUCAACAAUCUUG
1076
(TAG)
20(C-1)
SpBE3





W1193X
TGG
TAR
CUUUCAAACCAACUGUGUUC
1077
(AACAAT)
20
KKH-








(C10)
SaBE3





W1245X
TGG
TAR
UCCAUUUUAGAAGCAUUUCC
1078
(AGAA)
20(C3)
VQR-









SpBE3





W1245X
TGG
TAR
AUCCAUUUUAGAAGCAUUUC
1079
(CAG)
20(C4)
SpBE3





W1245X
TGG
TAR
CCAUAUGCUAUCCAUUUUAG
1080
(AAG)
20
SpBE3








(C13)






W1245X
TGG
TAR
AUCCAUUUUAGAAGCAUUUC
1081
(CAGAAT)
20 (C4)
SaBE3





W1245X
TGG
TAR
UAUCCAUUUUAGAAGCAUUU
1082
(CCAGAAT)
20 (C5)
St1BE3





W1245X
TGG
TAR
AUAACCAUAUGCUAUCCAUU
1083
(TTAGAAG)
20
St1BE3








(C17)






W1245X
TGG
TAR
CAGCCAACACCAGGCAUUGG
1084
(TGAA)
20
VQR-








(C9/3)
SpBE3





W1245X
TGG
TAR
UCCAGCCAACACCAGGCAUU
1085
(GGTG)
20
VQR-








(C11/5)
SpBE3





W1245X
TGG
TAR
CAGCCAACACCAGGCAUUGG
1086
(TGAAAT)
20
KKH-








(C9/3)
SaBE3





W1245X
TGG
TAR
AAAUCCAGCCAACACCAGGC
1087
(ATTGGT)
20
KKH-








(C14/8)
SaBE3





W1245X
TGG
TAR
AUCCAGCCAACACCAGGCAU
1088
(TGGTG)
20
St3BE3








(C12/6)






W1245X
TGG
TAR
AUCCAGCCAACACCAGGCAU
1089
(TGG)
20
SpBE3








(C12/6)






W1332X
TGG
TAR
CAGAAUAUAAGACACACAAG
1090
(TAG)
20 (C1)
SpBE3





W1332X
TGG
TAR
AGCCAGAAUAUAAGACACAC
1091
(AAG)
20 (C4)
SpBE3





W1332X
TGG
TAR
UGAAUAUCAGCCAGAAUAUA
1092
(AGAC)
20
VQR-








(C12)
SpBE3





W1332X
TGG
TAR
CUGAAUAUCAGCCAGAAUAU
1093
(AAG)
20
SpBE3








(C13)






W1332X
TGG
TAR
UCAGCCAGAAUAUAAGACAC
1094
(ACAAGT)
20 (C6)
KKH-









SaBE3





Q1363X
CAA
TAA
AGUCAAGUUCCAAAUCGUUC
1095
(CGAA)
20 (C4)
VQR-









SpBE3





Q1363X
CAA
TAA
AAGUCAAGUUCCAAAUCGUU
1096
(CCGAAT)
20 (C5)
SaBE3





Q1378X
CAA
TAA
UGAAUGUUAGUCAAAAUGUG
1097
(CGAT)
20
VQR-








(C12)
SpBE3





Q1378X
CAA
TAA
AUGUUAGUCAAAAUGUGCGA
1098
(TGG)
20(C9)
SpBE3





Q1378X
CAA
TAA
UGUUAGUCAAAAUGUGCGAU
1099
(GGAA)
20 (C8)
VQR-









SpBE3





Q1378X
CAA
TAA
UAUGAAUGUUAGUCAAAAUG
1100
(TGCGAT)
20
KKH-








(C14)
SaBE3





R1381X
CGA
TGA
AAAUGUGCGAUGGAAAAACC
1101
(TGAA)
20(C8)
VQR-









SpBE3





R1381X
CGA
TGA
UGUGCGAUGGAAAAACCUGA
1102
(AAG)
20(C5)
SpBE3





R1381X
CGA
TGA
GUGCGAUGGAAAAACCUGAA
1103
(AGTG)
20(C4)
VQR-









SpBE3





R1381X
CGA
TGA
GCGAUGGAAAAACCUGAAAG
1104
(TGAA)
20(C2)
VQR-









SpBE3





R1381X
CGA
TGA
AAUGUGCGAUGGAAAAACCU
1105
(GAAAGT)
20(C7)
KKH-









SaBE3





W1382X
TGG
TAR
GGUUUUUCCAUCGCACAUUU
1106
(TGAC)
20(C9)
VQR-









SpBE3





Q1401X
CAA
TAA
UAUUCUUAAAGGCAACUUUU
1107
(AAG)
20
SpBE3








(C13)






Q1401X
CAA
TAA
AUUCUUAAAGGCAACUUUUA
1108
(AGG)
20
SpBE3








(C12)






Q1401X
CAA
TAA
UUCUUAAAGGCAACUUUUAA
1109
(GGG)
20
SpBE3








(C11)






Q1401X
CAA
TAA
UCUUAAAGGCAACUUUUAAG
1110
(GGAT)
20
VQR-








(C10)
SpBE3





Q1401X
CAA
TAA
UAAAGGCAACUUUUAAGGGA
1111
(TGG)
20 (C7)
SpBE3





Q1401X
CAA
TAA
AAAGGCAACUUUUAAGGGAU
1112
(GGAC)
20 (C6)
VQR-









SpBE3





Q1401X
CAA
TAA
GGCAACUUUUAAGGGAUGGA
1113
(CGAT)
20 (C3)
VQR-









SpBE3





Q1401X
CAA
TAA
AUUCUUAAAGGCAACUUUUA
1114
(AGGGAT)
20
SaBE3








(C12)






Q1401X
CAA
TAA
AAGGCAACUUUUAAGGGAUG
1115
(GACGAT)
20 (C5)
KKH-









SaBE3





W1408X
TGG
TAR
AUCCCUUAAAAGUUGCCUUU
1116
(AAG)
20 (C-1)
SpBE3





W1408X
TGG
TAR
AAUAAUCGUCCAUCCCUUAA
1117
(AAG)
20
SpBE3








(C11)






W1408X
TGG
TAR
AUCCCUUAAAAGUUGCCUUU
1118
(AAGAAT)
20 (C-1)
SaBE3





W1408X
TGG
TAR
AUAAUAAUCGUCCAUCCCUU
1119
(AAAAGT)
20
KKH-








(C13)
SaBE3





W1408X
TGG
TAR
CAUCCCUUAAAAGUUGCCUU
1120
(TAAGAAT)
20 (C1)
St1BE3





Q1424X
CAG
TAG
GUAGACAAGCAGCCCAAAUA
1121
(TGAA)
20
VQR-








(C10)
SpBE3





Q1424X
CAG
TAG
AAGCAGCCCAAAUAUGAAUA
1122
(TAG)
20 (C4)
SpBE3





Q1462X
CAA
TAA
CAUAGAUAAUUUCAACCAAC
1123
(AGAA)
20
VQR-








(C13)
SpBE3





Q1462X
CAA
TAA
AUAAUUUCAACCAACAGAAA
1124
(AAG)
20 (C8)
SpBE3





Q1462X
CAA
TAA
UAAUUUCAACCAACAGAAAA
1125
(AGAA)
20 (C7)
VQR-









SpBE3





Q1462X
CAA
TAA
AUUUCAACCAACAGAAAAAG
1126
(AAG)
20 (C5)
SpBE3





Q1462X
CAA
TAA
UUUCAACCAACAGAAAAAGA
1127
(AGAT)
20 (C4)
VQR-









SpBE3





Q1462X
CAA
TAA
AACCAACAGAAAAAGAAGAU
1128
(AAG)
20 (C-1)
SpBE3





Q1462X
CAA
TAA
AAUUUCAACCAACAGAAAAA
1129
(GAAGAT)
20 (C6)
KKH-









SaBE3





Q1462X
CAA
TAA
UCAACCAACAGAAAAAGAAG
1130
(ATAAGT)
20 (C2)
KKH-









SaBE3





Q1462X
CAA
TAA
GAUAAUUUCAACCAACAGAA
1131
(AAAGAAG)
20 (C9)
St1BE3





Q1463X
CAG
TAG
AUUUCAACCAACAGAAAAAG
1132
(AAG)
20
SpBE3








(C12)






Q1463X
CAG
TAG
UUUCAACCAACAGAAAAAGA
1133
(AGAT)
20
VQR-








(C11)
SpBE3





Q1463X
CAG
TAG
AACCAACAGAAAAAGAAGAU
1134
(AAG)
20 (C7)
SpBE3





Q1463X
CAG
TAG
AAUUUCAACCAACAGAAAAA
1135
(GAAGAT)
20
KKH-








(C13)
SaBE3





Q1463X
CAG
TAG
UCAACCAACAGAAAAAGAAG
1136
(ATAAGT)
20(C9)
KKH-









SaBE3





Q1463X
CAG
TAG
AGAAAAAGAAGAUAAGUAUU
1137
(TCAAAT)
20 (C-1)
KKH-









SaBE3





Q1470X
CAA
TAA
UGGAGGUCAAGACAUCUUUA
1138
(TGAC)
20 (C8)
VQR-









SpBE3





Q1470X
CAA
TAA
AGGUCAAGACAUCUUUAUGA
1139
(CAG)
20 (C5)
SpBE3





Q1470X
CAA
TAA
GGUCAAGACAUCUUUAUGAC
1140
(AGAA)
20 (C4)
VQR-









SpBE3





Q1470X
CAA
TAA
UCAAGACAUCUUUAUGACAG
1141
(AAG)
20 (C2)
SpBE3





Q1470X
CAA
TAA
CAAGACAUCUUUAUGACAGA
1142
(AGAA)
20 (C1)
VQR-









SpBE3





Q1470X
CAA
TAA
GAGGUCAAGACAUCUUUAUG
1143
(ACAGAAG)
20 (C6)
St1BE3





Q1470X
CAA
TAA
GUCAAGACAUCUUUAUGACA
1144
(GAAGAAC)
20 (C3)
St1BE3





Q1478X
CAG
TAG
CAGAAGAACAGAAGAAAUAC
1145
(TATAAT)
20 (C9)
KKH-









SaBE3





Q1478X
CAG
TAG
GAACAGAAGAAAUACUAUAA
1146
(TGCAAT)
20 (C4)
KKH-









SaBE3





Q1494X
CAA
TAA
AGCCACAAAAGCCAAUUCCU
1147
(CGAC)
20 (C6)
VQR-









SpBE3





Q1494X
CAA
TAA
ACAAAAGCCAAUUCCUCGAC
1148
(CAG)
20 (C2)
SpBE3





Q1494X
CAA
TAA
CAAAAGCCAAUUCCUCGACC
1149
(AGG)
20 (C1)
SpBE3





Q1494X
CAA
TAA
AAAAGCCAAUUCCUCGACCA
1150
(GGG)
20 (C-1)
SpBE3





Q1494X
CAA
TAA
AAAGCCAAUUCCUCGACCAG
1151
(GGG)
20 (C-2)
SpBE3





R1499X
CGA
TGA
AAUUCCUCGACCAGGGGUAA
1152
(AAAAAT)
20 (C8)
KKH-









SaBE3





Q1505X
CAA
TAA
AAAAUCCAAGGAUGUAUAUU
1153
(TGAC)
20 (C7)
VQR-









SpBE3





01505X
CAA
TAA
CCAAGGAUGUAUAUUUGACC
1154
(TAG)
20(C2)
SpBE3





Q1505X
CAA
TAA
CAAGGAUGUAUAUUUGACCU
1155
(AGTG)
20 (C1)
VQR-









SpBE3





Q1505X
CAA
TAA
AUCCAAGGAUGUAUAUUUGA
1156
(CCTAGT)
20(C4)
KKH-









SaBE3





Q1515X
CAA
TAA
CUAGUGACAAAUCAAGCCUU
1157
(TGAT)
20 (C8)
VQR-









SpBE3





Q1515X
CAA
TAA
ACAAAUCAAGCCUUUGAUAU
1158
(TAG)
20 (C2)
SpBE3





Q1515X
CAA
TAA
ACCUAGUGACAAAUCAAGCC
1159
(TTTGAT)
20
KKH-








(C10)
SaBE3





Q1515X
CAA
TAA
UGACAAAUCAAGCCUUUGAU
1160
(ATTAGT)
20 (C4)
KKH-









SaBE3





Q1539/41
CAA
TAA
GGAGGGUCAAAGUCAACAUA
1161
(TGAC)
20 (C8)
VQR-


X






SpBE3





Q1539/41
CAA
TAA
GGUCAAAGUCAACAUAUGAC
1162
(TGAA)
20
VQR-


X





(C4/10)
SpBE3





Q1539/41
CAA
TAA
UCAAAGUCAACAUAUGACUG
1163
(AAG)
20
SpBE3


X





(C2/8)






Q1539/41
CAA
TAA
GGUCAAAGUCAACAUAUGAC
1164
(TGAAGT)
20
KKH-


X





(C4/10)
SaBE3





Q1541X
CAA
TAA
GGUCAAAGUCAACAUAUGAC
1165
(TGAA)
20
VQR-








(C10)
SpBE3





Q1541X
CAA
TAA
UCAAAGUCAACAUAUGACUG
1166
(AAG)
20 (C8)
SpBE3





Q1541X
CAA
TAA
GGUCAAAGUCAACAUAUGAC
1167
(TGAAGT)
20
KKH-








(C4/10)
SaBE3





W1549X
TGG
TAR
AUUUAUCCAAUAUAAAACUU
1168
(CAG)
20 (C8)
SpBE3





W1549X
TGG
TAR
ACAUUUAUCCAAUAUAAAAC
1169
(TTCAGT)
20
KKH-








(C10)
SaBE3





W1578X
TGG
TAR
CCAUCCUACAGUGAAGUAGU
1170
(AGTG)
20(C2)
VQR-









SpBE3





W1578X
TGG
TAR
UCCAUCCUACAGUGAAGUAG
1171
(TAG)
20(C3)
SpBE3





W1578X
TGG
TAR
UAUUCCAUCCUACAGUGAAG
1172
(TAG)
20(C6)
SpBE3





W1578X
TGG
TAR
AAAUAUUCCAUCCUACAGUG
1173
(AAG)
20(C9)
SpBE3





W1578X
TGG
TAR
AAAAAUAUUCCAUCCUACAG
1174
(TGAA)
20
VQR-








(C11)
SpBE3





W1578X
TGG
TAR
UCAAAAAUAUUCCAUCCUAC
1175
(AGTG)
20
VQR-








(C13)
SpBE3





W1578X
TGG
TAR
AUUCCAUCCUACAGUGAAGU
1176
(AGTAGT)
20(C5)
KKH-









SaBE3





W1578X
TGG
TAR
AAUAUUCCAUCCUACAGUGA
1177
(AGTAGT)
20(C8)
KKH-









SaBE3





W1578X
TGG
TAR
AAAAAUAUUCCAUCCUACAG
1178
(TGAAGT)
20
KKH-








(C11)
SaBE3





W1578X
TGG
TAR
AAAUCAAAAAUAUUCCAUCC
1179
(TACAGT)
20
KKH-








(C16)
SaBE3





R1610X
CGA
TGA
UUCCGAGUGAUCCGUCUUGC
1180
(CAG)
20(C4)
SpBE3





R1610X
CGA
TGA
UCCGAGUGAUCCGUCUUGCC
1181
(AGG)
20(C3)
SpBE3





R1610X
CGA
TGA
CCGAGUGAUCCGUCUUGCCA
1182
(GGAT)
20(C2)
VQR-









SpBE3





R1610X
CGA
TGA
UUCCGAGUGAUCCGUCUUGC
1183
(CAGGAT)
20(C4)
SaBE3





R1619X
CGA
TGA
GAUUGGCCGAAUCCUACGUC
1184
(TAG)
20(C8)
SpBE3





R1619X
CGA
TGA
CCGAAUCCUACGUCUAGUCA
1185
(AAG)
20(C2)
SpBE3





R1619X
CGA
TGA
CGAAUCCUACGUCUAGUCAA
1186
(AGG)
20(C1)
SpBE3





R1619X
CGA
TGA
GAAUCCUACGUCUAGUCAAA
1187
(GGAG)
20(C-1)
EQR-









SpBE3





R1619X
CGA
TGA
AGGAUUGGCCGAAUCCUACG
1188
(TCTAGT)
20
KKH-








(C10)
SaBE3





R1619X
CGA
TGA
CGAAUCCUACGUCUAGUCAA
1189
(AGGAG)
20 (C1)
St3BE3





Q1693X
CAA
TAA
UUCCAAAUUACAACCUCUGC
1190
(TGG)
20 (C4)
SpBE3





Q1693X
CAA
TAA
AAAUUACAACCUCUGCUGGC
1191
(TGG)
20 (C-1)
SpBE3





W1700X
TGG
TAR
AGCCAGCAGAGGUUGUAAUU
1192
(TGG)
20 (C1)
SpBE3





W1700X
TGG
TAR
CAAUCCAUCCCAGCCAGCAG
1193
(AGG)
20
SpBE3








(C11)






W1700X
TGG
TAR
GCAAUCCAUCCCAGCCAGCA
1194
(GAG)
20
SpBE3








(C12)






W1700X
TGG
TAR
AGCAAUCCAUCCCAGCCAGC
1195
(AGAG)
20
EQR-








(C13)
SpBE3





W1700X
TGG
TAR
CCAUCCCAGCCAGCAGAGGU
1196
(TGTAAT)
20(C7)
KKH-









SaBE3





W1700X
TGG
TAR
AGCAAUCCAUCCCAGCCAGC
1197
(AGAGGT)
20
KKH-








(C13)
SaBE3





W1786X
TGG
TAR
AAACCUCAUAGAACAUCUCA
1198
(AAG)
20 (C-1)
SpBE3





W1786X
TGG
TAR
AAACUUCUCCCAAACCUCAU
1199
(AGAA)
20
VQR-








(C11)
SpBE3





W1786X
TGG
TAR
CAAACUUCUCCCAAACCUCA
1200
(TAG)
20
SpBE3








(C12)






W1786X
TGG
TAR
CCAAACCUCAUAGAACAUCU
1201
(CAAAGT)
20 (C2)
KKH-









SaBE3





W1786X
TGG
TAR
UCAAACUUCUCCCAAACCUC
1202
(ATAGAAC)
20
St1BE3








(C13)






Q1795X
CAG
TAG
CCCGAUGCGACCCAGUUUAU
1203
(AGAG)
20
EQR-








(C13)
SpBE3





Q1795X
CAG
TAG
CCGAUGCGACCCAGUUUAUA
1204
(GAG)
20
SpBE3








(C12)






Q1822X
CAG
TAG
CAAAGUCCAGCUCAUUGCCA
1205
(TGG)
20(C8)
SpBE3





Q1822X
CAG
TAG
AAAGUCCAGCUCAUUGCCAU
1206
(GGAT)
20 (C7)
VQR-









SpBE3





Q1822X
CAG
TAG
ACAAAGUCCAGCUCAUUGCC
1207
(ATGGAT)
20(C9)
SaBE3





Q1862X
CAG
TAG
UCUCUUCGUUCACAGAUGGA
1208
(AGAA)
20
VQR-








(C13)
SpBE3





Q1862X
CAG
TAG
CUUCGUUCACAGAUGGAAGA
1209
(AAG)
20
SpBE3








(C10)






Q1862X
CAG
TAG
UUCGUUCACAGAUGGAAGAA
1210
(AGG)
20 (C9)
SpBE3





Q1862X
CAG
TAG
UCUUCGUUCACAGAUGGAAG
1211
(AAAGGT)
20
KKH-








(C11)
SaBE3





Q1888X
CAA
TAA
CUAAAACGGAAACAAGAGGA
1212
(TGTG)
20
VQR-








(C13)
SpBE3





Q1897X
CAG
TAG
ACUGUCAUUCAGCGUGCUUA
1213
(TAG)
20
SpBE3








(C10)






Q1897X
CAG
TAG
CUGUCAUUCAGCGUGCUUAU
1214
(AGAC)
20(C9)
VQR-









SpBE3





Q1907X
CAA
TAA
CAAAAUGUCAAAAAUAUAUC
1215
(AAG)
20 (C1)
SpBE3





Q1907X
CAA
TAA
ACCGCUUAAGGCAAAAUGUC
1216
(AAT)
20
KKH-








(C12)
SaBE3





Q1907X
CAA
TAA
GGCAAAAUGUCAAAAAUAUA
1217
(TCAAGT)
20 (C3)
KKH-









SaBE3





Q1971X
CAA
TAA
GAAAUAUGAACAAGACAGAA
1218
(CAG)
20
SpBE3








(C11)






Q1971X
CAA
TAA
AAAUAUGAACAAGACAGAAC
1219
(AGAA)
20
VQR-








(C10)
SpBE3





Q1971X
CAA
TAA
AUGAACAAGACAGAACAGAA
1220
(AAG)
20 (C6)
SpBE3





Q1971X
CAA
TAA
UGAACAAGACAGAACAGAAA
1221
(AGG)
20 (C5)
SpBE3





Q1971X
CAA
TAA
GAACAAGACAGAACAGAAAA
1222
(GGAA)
20 (C4)
VQR-









SpBE3





Q1971X
CAA
TAA
ACAAGACAGAACAGAAAAGG
1223
(AAG)
20 (C2)
SpBE3





Q1971X
CAA
TAA
CAAGACAGAACAGAAAAGGA
1224
(AGAC)
20 (C1)
VQR-









SpBE3





Q1971X
CAA
TAA
AGAAAUAUGAACAAGACAGA
1225
(ACAGAAA)
20
St1BE3








(C12)






aBE types: SpBE3 = APOBEC1-SpCas9n-UGI; VQR-SpBE3 = APOBEC1-VQR-SpCas9n-UGI; EQR-SpBE3 = APOBEC1-EQR-SpCas9n-UGI; VRER-SpBE3 = APOBEC1-VRER-SpCas9n-UGI; SaBE3 = APOBEC1-SaCas9n-UGI; KKH-SaBE3 = APOBEC1-KKH-SaCas9n-UGI; St3BE3 = APOBEC1-St3Cas9n-UGI; St1BE3 = APOBEC1-St1Cas9n-UGI.








Target Base in Non-coding Region—Splicing Variants


Some aspects of the present disclosure provide strategies of reducing the activity of ion channels (e.g., ion channels in in DRG neurons) via preventing the ion channel mRNA maturation and production. In some embodiments, such strategies involve alterations of splicing sites in the ion channel gene. Altered splicing site may lead to altered splicing and maturation of the ion channel mRNA. For example, in some embodiments, an altered splicing site may lead to the skipping of an exon, in turn leading to a truncated protein product or an altered reading frame. In some embodiments, an altered splicing site may lead to translation of an intron sequence and premature translation termination when an in frame stop codon is encountered by the translating ribosome in the intron. In some embodiments, a start codon is edited and protein translation initiates at the next ATG codon, which may not be in the correct coding frame.


The splicing sites typically comprises an intron donor site, a Lariat branch point, and an intron acceptor site. The mechanism of splicing are familiar to those skilled in the art. As illustrated in FIG. 3, the intron donor site has a consensus sequence of GGGTRAGT, and the C bases paired with the G bases in the intron donor site consensus sequence may be targeted by a nucleobase editors described herein, thereby altering the intron donor site. The Lariat branch point also has consensus sequences, e.g., YTRAC, wherein Y is a pyrimidine, and R is a purine. The C base in the Lariat branch point consensus sequence may be targeted by the nucleobase editors, leading to the skipping of the following exon. The intron acceptor site has a consensus sequence of YNCAGG, wherein Y is a pyrimidine, and N is any nucleotide. The C base of the consensus sequence of the intron acceptor site, and the C base paired with the G bases in the consensus sequence of the intron acceptor site may be targeted by the nucleobase editors described herein, thereby altering the intron acceptor site, in turn leading the skipping of an exon. General strategies of altering the splicing sites of the ion channel gene are described in Table 5.









TABLE 5







Exemplary Alteration of Intron-Exon Junction via Base Editing












Consensus
Base-editing
Edited



Target site
Sequence
reaction (s)
sequence
Outcome





Intron
GGGTRAGT
2nd or 3rd base
GAGTRAGT
Intron sequence is


donor
(example)
C to T on
(example)
translated as exon, in frame




complementary

premature STOP codon




strand


Lariat
YTRAC
5th base
YTRAT
The following exon is


branch
(example)
C to T on
(example)
skipped from the mature


point

coding

mRNA, which may affect




strand

the coding frame


Intron
Y(rich)NCAGG
2nd to last base
Y(rich)NCAAG
The exon is skipped from


acceptor
(example)
C to T on
(example)
the mature mRNA, which




complementary

may affect the coding frame




strand


Start
ATG (Met/M)
3rd base
ATA (Ile/I)
The next ATG is used as


codon

C to T on

start codon, which may




complementary

affect the coding frame




strand









Provided in Table 6 are non-limiting examples of alterations that may be made to non-coding regions (e.g., splicing sites) in the SCN9A gene using nucleobase editors and the guide sequences that may be used for each alteration.









TABLE 6







Alteration of Intron/Exon Junctions in NaV1.7 (SCN9A) Gene via Base Editing













Target
Genome target seq. /
Programmable guide-
SEQ ID

gRNA size



site*
junction
RNA sequence
NOs
(PAM)
(C edited)
BE typea





donor,
CTAGGTTGCAAgtaagtgccttt
UUACUUGCAACCUAGCCCGC
1226
(CGAT)
20(C4)
VQR-SpBE3


intron 1
(SEQ ID NO: 1457)
AAAGGCACUUACUUGCAACC
1227
(TAG)
20(C12)
SpBE3




ACUUACUUGCAACCUAGCCC
1228
(GCCGAT)
20(C6)
KKH-SaBE3





acceptor,
ctttgtttccatccagGCCTCTT
AGAGGCCUGGAUGGAAACAA
1229
(AGAA)
20(C6/7)
VQR-SpBE3


intron 1
(SEQ ID NO: 1458)
AAGAGGCCUGGAUGGAAACA
1230
(AAG)
20(C7/8)
SpBE3




AGAGGCCUGGAUGGAAACAA
1231
(AGAAAT)
20(C6/7)
KKH-SaBE3




UAAGAGGCCUGGAUGGAAAC
1232
(AAAGAAA)
20(C8/9)
St1BE3





donor,
CTATGCAGACAAAAAGgtgagtt
CCUUUUUGUCUGCAUAGUAG
1233
(GGG)
20(C1/2)
SpBE3


intron 2
(SEQ ID NO: 1459)
ACCUUUUUGUCUGCAUAGUA
1234
(GGG)
20(C2/3)
SpBE3




CACCUUUUUGUCUGCAUAGU
1235
(AGG)
20(C3/4)
SpBE3




UCACCUUUUUGUCUGCAUAG
1236
(TAG)
20(C4/5)
SpBE3




AACUCACCUUUUUGUCUGCA
1237
(TAG)
20(C7/8)
SpBE3




CACCUUUUUGUCUGCAUAGU
1238
(AGGGGT)
20(C3/4)
SaBE3




UAAACUCACCUUUUUGUCUG
1239
(CATAGT)
20(C9/10)
KKH-SaBE3




CACCUUUUUGUCUGCAUAGU
1240
(AGGGG)
20(C3/4)
St3BE3





acceptor,
ctttttcctcctgcagACTTTCA
UCUGCAGGAGGAAAAAGAAA
1241
(GGAT)
20(C2)
VQR-SpBE3


intron 2
(SEQ ID NO: 1460)
GUCUGCAGGAGGAAAAAGAA
1242
(AGG)
20(C3)
SpBE3




AGUCUGCAGGAGGAAAAAGA
1243
(AAG)
20(C4)
SpBE3




GAAAGUCUGCAGGAGGAAAA
1244
(AGAA)
20(C7)
VQR-SpBE3




UGAAAGUCUGCAGGAGGAAA
1245
(AAG)
20(C8)
SpBE3




UACUAUGAAAGUCUGCAGGA
1246
(GGAA)
20(C13)
VQR-SpBE3




AGUCUGCAGGAGGAAAAAGA
1247
(AAGGAT)
20(C4)
SaBE3




AUGAAAGUCUGCAGGAGGAA
1248
(AAAGAAA)
20(C9)
St1BE3





donor,
TAGTACACTCatatccttttaaaaat
CACUCAUAUCCUUUUAAAAA
1249
(TGAT)
20(C3/5)
VQR-SpBE3


intron 3
(SEQ ID NO: 1461)
UAGUACACUCAUAUCCUUUU
1250
(AAAAAT)
20(CE00)
KKH-SaBE3




UACACUCAUAUCCUUUUAAA
1251
(AATGAT)
20(C5/7)
KKH-SaBE3





acceptor,
tgattctaagctacCTTATTCAG
UGAUUCUAAGCUACCUUAUU
1252
(CAG)
20(C11/14)
SpBE3


intron 3
(SEQ ID NO: 1462)










donor,
CCAAAAATGTCGAgtaagtgggt
CUUACUCGACAUUUUUGGUC
1253
(CAG)
20(C5)
SpBE3


intron 4
(SEQ ID NO: 1463)
ACCCACUUACUCGACAUUUU
1254
(TGG)
20(C10)
SpBE3




ACUCGACAUUUUUGGUCCAG
1255
(TCCGGT)
20(C2)
KKH-SaBE3




CACUUACUCGACAUUUUUGG
1256
(TCCAGT)
20(C7)
KKH-SaBE3




AUACCCACUUACUCGACAUU
1257
(TTTGGT)
20(C12)
KKH-SaBE3





acceptor,
atcttgtgtttagGTACACTTTTA
CCUAAACACAAGAUUCCAUU
1258
(GGG)
20(C1/2)
SpBE3


intron 4
(SEQ ID NO: 1464)
ACCUAAACACAAGAUUCCAU
1259
(TGG)
20(C2/3)
SpBE3




UAAAAGUGUACCUAAACACA
1260
(AGAT)
20(C11/12)
VQR-SpBE3




GUAAAAGUGUACCUAAACAC
1261
(AAG)
20(C12/13)
SpBE3




ACCUAAACACAAGAUUCCAU
1262
(TGGGAT)
20(C2/3)
SaBE3




AGUAAAAGUGUACCUAAACA
1263
(CAAGAT)
20(C13/14)
KKH-SaBE3





donor,
ATTGTTTTTGCgtaagtactttcagc
UACUUACGCAAAAACAAUGA
1264
(CGAC)
20(C7)
VQR-SpBE3


intron 5
(SEQ ID NO: 1465)
AAGUACUUACGCAAAAACAA
1265
(TGAC)
20(C10)
VQR-SpBE3




UUACGCAAAAACAAUGACGA
1266
(CAAAAT)
20(C4)
KKH-SaBE3




GCUGAAAGUACUUACGCAAA
1267
(AACAAT)
20(C15)
KKH-SaBE3





acceptor,
atttaattctacagGTATTTAACAGA
AAUACCUGUAGAAUUAAAUC
1268
(AGAA)
20(C5/6)
VQR-SpBE3


intron 5
(SEQ ID NO: 1466)
AAAUACCUGUAGAAUUAAAU
1269
(CAG)
20(C6/7)
SpBE3




AAAUACCUGUAGAAUUAAAU
1270
(CAGAAT)
20(C6/7)
SaBE3




UCUGUUAAAUACCUGUAGAA
1271
(TTAAAT)
20(C12/13)
KKH-SaBE3




UAAAUACCUGUAGAAUUAAA
1272
(TCAGAAT)
20(C7/8)
St1BE3





donor,
CTGTAATCCCAGgtaagaagtaa
CUUACCUGGGAUUACAGAAA
1273
(TAG)
20(C5/6)
SpBE3


intron 6
(SEQ ID NO: 1467)
UACUUCUUACCUGGGAUUAC
1274
(AGAA)
20(C10/11)
VQR-SpBE3




UUACUUCUUACCUGGGAUUA
1275
(CAG)
20(C11/12)
SpBE3




UUCUUACCUGGGAUUACAGA
1276
(AATAGT)
20(C7/8)
KKH-SaBE3




UACUUCUUACCUGGGAUUAC
1277
(AGAAAT)
20(C10/11)
KKH-SaBE3




AUUACUUCUUACCUGGGAUU
1278
(ACAGAAA)
20(C12/13)
St1BE3





acceptor,
ctcccattttcagGCCTGAAGAC
GCCUGAAAAUGGGAGAAAAA
1279
(AGTG)
20(C2/3)
VQR-SpBE3


intron 6
(SEQ ID NO: 1468)
GGCCUGAAAAUGGGAGAAAA
1280
(AAG)
20(C3/4)
SpBE3




UCUUCAGGCCUGAAAAUGGG
1281
(AGAA)
20(C9/10)
VQR-SpBE3




GUCUUCAGGCCUGAAAAUGG
1282
(GAG)
20(C10/11)
SpBE3




UGUCUUCAGGCCUGAAAAUG
1283
(GGAG)
20(C11/12)
EQR-SpBE3




UUGUCUUCAGGCCUGAAAAU
1284
(GGG)
20(C12/13)
SpBE3




CAGGCCUGAAAAUGGGAGAA
1285
(AAAAGT)
20(C5/6)
KKH-SaBE3




UGUCUUCAGGCCUGAAAAUG
1286
(GGAGAAA)
20(C11/12)
St1BE3




UUGUCUUCAGGCCUGAAAAU
1287
(GGGAG)
20(C12/13)
St3BE3





acceptor,
ttcttcttcaacagAATATTTTTA
CUGUUGAAGAAGAAUUUGAA
1288
(CAG)
20(C1)
SpBE3


intron 7
(SEQ ID NO: 1469)
UAUUCUGUUGAAGAAGAAUU
1289
(TGAA)
20(C5)
VQR-SpBE3




UAAAAAUAUUCUGUUGAAGA
1290
(AGAA)
20(C11)
VQR-SpBE3




AUAAAAAUAUUCUGUUGAAG
1291
(AAG)
20(C12)
SpBE3




UUCUGUUGAAGAAGAAUUUG
1292
(AACAGT)
20(C3)
KKH-SaBE3




AUAAAAAUAUUCUGUUGAAG
1293
(AAGAAT)
20(C12)
SaBE3




AAUAAAAAUAUUCUGUUGAA
1294
(GAAGAAT)
20(C13)
St1BE3




AGUAAUAAAAAUAUUCUGUU
1295
(GAAGAAG)
20(C16)
St1BE3





donor,
CACAGATTCAGGgtatgtaatatt
UACAUACCCUGAAUCUGUGC
1296
(TGAA)
20(C7/8)
VQR-SpBE3


intron 8
(SEQ ID NO: 1470)
AAUAUUACAUACCCUGAAUC
1297
(TGTG)
20(C12/13)
VQR-SpBE3





acceptor,
ctttctcgtgtgtagTCAGTGTC
ACACUGACUACACACGAGAA
1298
(AGAA)
20(C8)
VQR-SpBE3


intron 8
(SEQ ID NO: 1471)
GACACUGACUACACACGAGA
1299
(AAG)
20(C9)
SpBE3




CUGGACACUGACUACACACG
1300
(AGAA)
20(C12)
VQR-SpBE3





donor,
CTTTACCAACAGgtgagtaccaa
CCUGUUGGUAAAGGUUUUCC
1301
(CAG)
20(C1/2)
SpBE3


intron 9
(SEQ ID NO: 1472)
UGGUACUCACCUGUUGGUAA
1302
(AGG)
20(C10/11)
SpBE3




UUGGUACUCACCUGUUGGUA
1303
(AAG)
20(C11/12)
SpBE3




CACCUGUUGGUAAAGGUUUU
1304
(CCCAGT)
20(C3/4)
KKH-SaBE3




CUUGGUACUCACCUGUUGGU
1305
(AAAGGT)
20(C12/13)
KKH-SaBE3





acceptor,
ccatttttccctagACGCTGCGT
CGCAGCGUCUAGGGAAAAAU
1306
(GGAA)
20(C9)
VQR-SpBE3


intron 9
(SEQ ID NO: 1473)
ACGCAGCGUCUAGGGAAAAA
1307
(TGG)
20(C10)
SpBE3




CGCAGCGUCUAGGGAAAAAU
1308
(GGAAAT)
20(C9)
KKH-SaBE3




GCAGCACGCAGCGUCUAGGG
1309
(AAAAAT)
20(C15)
KKH-SaBE3





acceptor,
cttggcccaaccagGCAATTGCA
GCAAUUGCCUGGUUGGGCCA
1310
(AGAC)
20(C8/9)
VQR-SpBE3


intron 10
(SEQ ID NO: 1474)
UGCAAUUGCCUGGUUGGGCC
1311
(AAG)
20(C9/10)
SpBE3





donor,
CCCCCAATCAGgtaccacccaaa
GGUGGUACCUGAUUGGGGGU
1312
(AGAC)
20(C8/9)
VQR-SpBE3


intron 11
(SEQ ID NO: 1475)
GGGUGGUACCUGAUUGGGGG
1313
(TAG)
20(C9/10)
SpBE3




UUUGGGUGGUACCUGAUUGG
1314
(GGG)
20(C12/13)
SpBE3




AAUUUGGGUGGUACCUGAUU
1315
(GGGGGT)
20(C14/15)
SaBE3




AAUUUGGGUGGUACCUGAUU
1316
(GGGGG)
20(C14/15)
St3BE3





acceptor,
atttttctgcagTCACCACTCAGCAT
AUGCUGAGUGGUGACUGCAG
1317
(AAAAAT)
20(C15)
KKH-SaBE3


intron 11
(SEQ ID NO: 1476)










donor,
TTCTGCCAGAGgtgataatagata
UCUAUUAUCACCUCUGGCAG
1318
(AAG)
20(C11/12)
SpBE3


intron 12a
(SEQ ID NO: 1477)
UAUCUAUUAUCACCUCUGGC
1319
(AGAA)
20(C13/14)
VQR-SpBE3




CUUAUCUAUUAUCACCUCUG
1320
(GCAGAAG)
20(C15/16)
St1BE3





donor,
CTGATGACAGCgtaaggacg
CGUCCUUACGCUGUCAUCAG
1321
(AAG)
20(C9)
SpBE3


intron 12b
(SEQ ID NO: 1478)
AACGUCCUUACGCUGUCAUC
1322
(AGAA)
20(C11)
VQR-SpBE3




AAACGUCCUUACGCUGUCAU
1323
(CAG)
20(C12)
SpBE3




AACGUCCUUACGCUGUCAUC
1324
(AGAAGT)
20(C11)
KKH-SaBE3




AAAACGUCCUUACGCUGUCA
1325
(TCAGAAG)
20(C13)
St1BE3





acceptor,
attgattttttttttagGGCACGACC
GUGCCCUAAAAAAAAAAUCA
1326
(ATTAAT)
20(C5/6)
KKH-SaBE3


intron 13
(SEQ ID NO: 1479)
GGUCGUGCCCUAAAAAAAAA
1327
(ATCAAT)
20(C9/10)
KKH-SaBE3




GAUUGGUCGUGCCCUAAAAA
1328
(AAAAAT)
20(C13/14)
KKH-SaBE3





donor,
CACTGTGGAAGgtatgtaataatc
GAUUAUUACAUACCUUCCAC
1329
(AGTG)
20(C13/14)
VQR-SpBE3


intron 13
(SEQ ID NO: 1480)
ACAUACCUUCCACAGUGUUU
1330
(GTTAAT)
20(C6/7)
KKH-SaBE3





acceptor,
cttttttctcccagAACTTGAAG
GUUCUGGGAGAAAAAAGCAG
1331
(AGAA)
20(C4)
VQR-SpBE3


intron 13
(SEQ ID NO: 1481)
AGUUCUGGGAGAAAAAAGCA
1332
(GAG)
20(C5)
SpBE3




AAGUUCUGGGAGAAAAAAGC
1333
(AGAG)
20(C6)
EQR-SpBE3




CAAGUUCUGGGAGAAAAAAG
1334
(CAG)
20(C7)
SpBE3




UCAAGUUCUGGGAGAAAAAA
1335
(GCAG)
20(C8)
FALSE




CUUCAAGUUCUGGGAGAAAA
1336
(AAG)
20(C10)
SpBE3




AAGUUCUGGGAGAAAAAAGC
1337
(AGAGAAC)
20(C6)
St1BE3





donor,
CTATAGGAAATTTGgtaagtctc
CUUACCAAAUUUCCUAUAGC
1338
(AAG)
20(C1/2)
SpBE3


intron 14
(SEQ ID NO: 1482)
GAGACUUACCAAAUUUCCUA
1339
(TAG)
20(C5/6)
SpBE3




GACUUACCAAAUUUCCUAUA
1340
(GCAAGT)
20(C7/8)
KKH-SaBE3





acceptor,
atttttctcacttagGTCTTTACTGG
UUCCAGUAAAGACCUAAGUG
1341
(AGAA)
20(C13/14)
VQR-SpBE3


intron 14
(SEQ ID NO: 1483)
GAUUCCAGUAAAGACCUAAG
1342
(TGAG)
20(C13/14)
EQR-SpBE3




GUAAAGACCUAAGUGAGAAA
1343
(AATAAT)
20(C8/9)
KKH-SaBE3




CCAGUAAAGACCUAAGUGAG
1344
(AAAAAT)
20(C11/12)
KKH-SaBE3




GAUUCCAGUAAAGACCUAAG
1345
(TGAGAAA)
20(C15/16)
St1BE3





donor,
ATCATTCAGACTGgtaaacataaa
UUACCAGUCUGAAUGAUCGC
1346
(AGAA)
20(C4/5)
VQR-SpBE3


intron 15
(SEQ ID NO: 1484)
UUUACCAGUCUGAAUGAUCG
1347
(CAG)
20(C5/6)
SpBE3




UUUAUGUUUACCAGUCUGAA
1348
(TGAT)
20(C11/12)
VQR-SpBE3




AGUUUAUGUUUACCAGUCUG
1349
(AATGAT)
20(C13/14)
KKH-SaBE3




GUUUACCAGUCUGAAUGAUC
1350
(GCAGAAC)
20(C6/7)
St1BE3





acceptor,
actttatatttgcttttagCTCCGAG
CGGAGCUAAAAGCAAAUAUA
1351
(AAG)
20(C6)
SpBE3


intron 15
(SEQ ID NO: 1485)
AGCUAAAAGCAAAUAUAAAG
1352
(TTTAAT)
20(C3)
KKH-SaBE3




CUCGGAGCUAAAAGCAAAUA
1353
(TAAAGT)
20(C8)
KKH-SaBE3




UUGAAGACUCGGAGCUAAAA
1354
(GCAAAT)
20(C15)
KKH-SaBE3





donor,
ATTGGAAACCTGGTGgtatgtaacca
CACCAGGUUUCCAAUGACCA
1355
(TGAC)
20(C1)
VQR-SpBE3


intron 16
(SEQ ID NO: 1486)
ACAUACCACCAGGUUUCCAA
1356
(TGAC)
20 (C7)
VQR-SpBE3




UGGUUACAUACCACCAGGUU
1357
(TCCAAT)
20(C12)
KKH-SaBE3





acceptor,
ccaccctgatatagGTCCTAAAC
CUAUAUCAGGGUGGGGAGAG
1358
(GGG)
20(C1/2)
SpBE3


intron 16
(SEQ ID NO: 1487)
CCUAUAUCAGGGUGGGGAGA
1359
(GGG)
20(C2/3)
SpBE3




ACCUAUAUCAGGGUGGGGAG
1360
(AGG)
20(C3/4)
SpBE3




GACCUAUAUCAGGGUGGGGA
1361
(GAG)
20(C4/5)
SpBE3




GGACCUAUAUCAGGGUGGGG
1362
(AGAG)
20(C5/6)
EQR-SpBE3




AGGACCUAUAUCAGGGUGGG
1363
(GAG)
20(C6/7)
SpBE3




UAGGACCUAUAUCAGGGUGG
1364
(GGAG)
20(C7/8)
EQR-SpBE3




UUAGGACCUAUAUCAGGGUG
1365
(GGG)
20(C8/9)
SpBE3




UUUAGGACCUAUAUCAGGGU
1366
(GGG)
20(C9/10)
SpBE3




GUUUAGGACCUAUAUCAGGG
1367
(TGG)
20(C10/11)
SpBE3




AGGUUUAGGACCUAUAUCAG
1368
(GGTG)
20(C12/13)
VQR-SpBE3




CCUAUAUCAGGGUGGGGAGA
1369
(GGGGGT)
20(C2/3)
SaBE3




AAUAGGUUUAGGACCUAUAU
1370
(CAGGGT)
20(C15/16)
SaBE3




CCUAUAUCAGGGUGGGGAGA
1371
(GGGGG)
20(C2/3)
St3BE3




ACCUAUAUCAGGGUGGGGAG
1372
(AGGGG)
20(C3/4)
St3BE3




UUAGGACCUAUAUCAGGGUG
1373
(GGGAG)
20(C8/9)
St3BE3




AGGACCUAUAUCAGGGUGGG
1374
(GAG)
20(C6/7)
SpBE3




GUUUAGGACCUAUAUCAGGG
1375
(TGGGG)
20(C10/11)
St3BE3




UAGGUUUAGGACCUAUAUCA
1376
(GGGTG)
20(C13/14)
St3BE3





donor,
CTGTTTCACAGATGgtaagacaa
CCAUCUGUGAAACAGGCCUC
1377
(TGG)
20(C1/2)
SpBE3


intron 18
(SEQ ID NO: 1488)
UGUCUUACCAUCUGUGAAAC
1378
(AGG)
20(C8/9)
SpBE3




UUGUCUUACCAUCUGUGAAA
1379
(CAG)
20(C9/10)
SpBE3





acceptor,
gtctttcttgtcagGTTGTGTATG
CAUACACAACCUGACAAGAA
1380
(AGAC)
20(C10/11)
VQR-SpBE3


intron 18
(SEQ ID NO: 1489)
CCAUACACAACCUGACAAGA
1381
(AAG)
20(C11/12)
SpBE3




AACCUCCAUACACAACCUGA
1382
(CAAGAAA)
20(C16/17)
St1BE3





donor,
CTCAGCAGTGGTGCCCTGgtaaat
CCAGGGCACCACUGCUGAGC
1383
(AGG)
20(C1/2)
SpBE3


intron 19
(SEQ ID NO: 1490)
ACCAGGGCACCACUGCUGAG
1384
(CAG)
20(C2/3)
SpBE3




UUUACCAGGGCACCACUGCU
1385
(GAG)
20(C5/6)
SpBE3




AUUUACCAGGGCACCACUGC
1386
(TGAG)
20(C6/7)
EQR-SpBE3




ACCAGGGCACCACUGCUGAG
1387
(CAGGAT)
20(C2/3)
SaBE3





acceptor,
attatttccacagGCTTTTGAAGATA
AGCCUGUGGAAAUAAUAUUC
1388
(AAG)
20(C3/4)
SpBE3


intron 19
(SEQ ID NO: 1491)
AAAGCCUGUGGAAAUAAUAU
1389
(TCAAGT)
20(C5/6)
KKH-SaBE3




UAUCUUCAAAAGCCUGUGGA
1390
(AATAAT)
20(C13/14)
KKH-SaBE3





donor,
CCTAATTGTTGATgtaggtactt
ACAUCAACAAUUAGGAAAUC
1391
(CAG)
20(C2)
SpBE3


intron 20
(SEQ ID NO: 1492)
AGUACCUACAUCAACAAUUA
1392
(GGAA)
20(C9)
VQR-SpBE3




AAGUACCUACAUCAACAAUU
1393
(AGG)
20(C10)
SpBE3




AAAGUACCUACAUCAACAAU
1394
(TAG)
20(C11)
SpBE3




AGUACCUACAUCAACAAUUA
1395
(GGAAAT)
20(C9)
KKH-SaBE3





donor,
ATTTGAAGGAATGAGGgtaagaaaat
ACCCUCAUUCCUUCAAAUCU
1396
(AGAT)
20(C2/3)
VQR-SpBE3


intron 21
(SEQ ID NO: 1493)
UACCCUCAUUCCUUCAAAUC
1397
(TAG)
20(C3/4)
SpBE3




UUACCCUCAUUCCUUCAAAU
1398
(CTAGAT)
20(C4/5)
KKH-SaBE3




AUUUUCUUACCCUCAUUCCU
1399
(TCAAAT)
20(C10/11)
KKH-SaBE3





acceptor,
cttttgaatactagGTCGTTGTG
CUAGUAUUCAAAAGAAAGAA
1400
(AAG)
20(C1)
SpBE3


intron 21
(SEQ ID NO: 1494)
CGACCUAGUAUUCAAAAGAA
1401
(AGAA)
20(C5)
VQR-SpBE3




ACGACCUAGUAUUCAAAAGA
1402
(AAG)
20(C6)
SpBE3




ACAACGACCUAGUAUUCAAA
1403
(AGAA)
20(C9)
VQR-SpBE3




CACAACGACCUAGUAUUCAA
1404
(AAG)
20(C10)
SpBE3




AACGACCUAGUAUUCAAAAG
1405
(AAAGAAA)
20(C7)
St1BE3




UCACAACGACCUAGUAUUCA
1406
(AAAGAAA)
20(C11)
St1BE3





donor,
CTGCTTCAAGTTgtaagtgtccc
UUACAACUUGAAGCAGAGAU
1407
(AGG)
20(C4)
SpBE3


intron 22
(SEQ ID NO: 1495)
CUUACAACUUGAAGCAGAGA
1408
(TAG)
20(C5)
SpBE3




ACACUUACAACUUGAAGCAG
1409
(AGAT)
20(C8)
VQR-SpBE3




GACACUUACAACUUGAAGCA
1410
(GAG)
20(C9)
SpBE3




GGACACUUACAACUUGAAGC
1411
(AGAG)
20(C9)
EQR-SpBE3




GGGACACUUACAACUUGAAG
1412
(CAG)
20(C11)
SpBE3




ACUUACAACUUGAAGCAGAG
1413
(ATAGGT)
20(C6)
KKH-SaBE3




GGACACUUACAACUUGAAGC
1414
(AGAGAT)
20(C10)
KKH-SaBE3





acceptor,
attaatgttattcttaaagGCAACTT
CCUUUAAGAAUAACAUUAAU
1415
(AGAA)
20(C1/2)
VQR-SpBE3


intron 22
(SEQ ID NO: 1496)
GCCUUUAAGAAUAACAUUAA
1416
(TAG)
20(C2/3)
SpBE3




GCCUUUAAGAAUAACAUUAA
1417
(TAGAAT)
20(C2/3)
SaBE3




AAGUUGCCUUUAAGAAUAAC
1418
(ATTAAT)
20(C7/8)
KKH-SaBE3




UGCCUUUAAGAAUAACAUUA
1419
(ATAGAAT)
20(C3/4)
St1BE3





donor,
ATTCTGTTAATgtaagtattgattat
AUAAUCAAUACUUACAUUAA
1420
(CAGAAT)
20(C15)
SaBE3


intron 23
(SEQ ID NO: 1497)
GAUAAUCAAUACUUACAUUA
1421
(ACAGAAT)
20(C16)
St1BE3





acceptor,
acttttgtaaattttatagGTAGACA
CCUAUAAAAUUUACAAAAGU
1422
(TAG)
20(C1/2)
SpBE3


intron 23
(SEQ ID NO: 1498)
UCUACCUAUAAAAUUUACAA
1423
(AAG)
20(C5/6)
SpBE3




UGUCUACCUAUAAAAUUUAC
1424
(AAAAGT)
20(C7/8)
KKH-SaBE3





donor,
ACCAACAGAAAAAGAAGataagtatt
UAUCUUCUUUUUCUGUUGGU
1425
(TGAA)
20(C4)
VQR-SpBE3


intron 24
(SEQ ID NO: 1499)
UACUUAUCUUCUUUUUCUGU
1426
(TGG)
20(C8)
SpBE3




UAUCUUCUUUUUCUGUUGGU
1427
(TGAAAT)
20(C4)
KKH-SaBE3




AAUACUUAUCUUCUUUUUCU
1428
(GTTGGT)
20(C10)
KKH-SaBE3





donor,
CTCGACCAGGGgtaaaaaaatata
UUUACCCCUGGUCGAGGAAU
1429
(TGG)
20(C10/11)
SpBE3


intron 25
(SEQ ID NO: 1500)
AUUUUUUUACCCCUGGUCGA
1430
(GGAA)
20(C9/10)
VQR-SpBE3




UAUUUUUUUACCCCUGGUCG
1431
(AGG)
20(C5/6)
SpBE3




AUAUUUUUUUACCCCUGGUC
1432
(GAG)
20(C10/11)
SpBE3




UAUAUUUUUUUACCCCUGGU
1433
(CGAG)
20(C11/12)
EQR-SpBE3




UAUUUUUUUACCCCUGGUCG
1434
(AGGAAT)
20(C12/13)
SaBE3





acceptor,
cttatttctttgcagAACAAAAT
UUUUGUUCUGCAAAGAAAUA
1435
(AGAA)
20(C13/14)
VQR-SpBE3


intron 25
(SEQ ID NO: 1501)
AUUUUGUUCUGCAAAGAAAU
1436
(AAG)
20(C11/12)
SpBE3




UUGUUCUGCAAAGAAAUAAG
1437
(AATAAT)
20(C8)
KKH-SaBE3




AUUUUGUUCUGCAAAGAAAU
1438
(AAGAAT)
20(C9)
SaBE3




CCUUGGAUUUUGUUCUGCAA
1439
(AGAAAT)
20(C6)
KKH-SaBE3




GAUUUUGUUCUGCAAAGAAA
1440
(TAAGAAT)
20(C9)
St1BE3





donor,
CTCCATTGTAGgtaagaatattt
AAUAUUCUUACCUACAAUGG
1441
(AGAT)
20(C15)
VQR-SpBE3


intron 26
(SEQ ID NO: 1502)
AAAUAUUCUUACCUACAAUG
1442
(GAG)
20(C10)
SpBE3




UAAAUAUUCUUACCUACAAU
1443
(GGAG)
20(C11/12)
EQR-SpBE3




AUAUUCUUACCUACAAUGGA
1444
(GATAAT)
20(C12/13)
KKH-SaBE3




UAAAUAUUCUUACCUACAAU
1445
(GGAGAT)
20(C13/14)
KKH-SaBE3




AUAAAUAUUCUUACCUACAA
1446
(TGGAG)
20(C10/11)
St3BE3





acceptor,
ctccacatacagGTATGTTTCTAG
CUGUAUGUGGAGGAAAAUAA
1447
(TAG)
20(C13/14)
SpBE3


intron 26
(SEQ ID NO: 1503)
GAAACAUACCUGUAUGUGGA
1448
(GGAA)
20(C14/15)
VQR-SpBE3




AGAAACAUACCUGUAUGUGG
1449
(AGG)
20(C1)
SpBE3




UAGAAACAUACCUGUAUGUG
1450
(GAG)
20(C10)
SpBE3




CUAGAAACAUACCUGUAUGU
1451
(GGAG)
20(C11)
EQR-SpBE3




CAUACCUGUAUGUGGAGGAA
1452
(AATAAT)
20(C12)
KKH-SaBE3




AAACAUACCUGUAUGUGGAG
1453
(GAAAAT)
20(C13)
KKH-SaBE3




CCUGUAUGUGGAGGAAAAUA
1454
(ATAGAAA)
20(C6)
St1BE3




GCUAGAAACAUACCUGUAUG
1455
(TGGAG)
20(C9)
St3BE3




CUAGAAACAUACCUGUAUGU
1456
(GGAG)
20(C2)
EQR-SpBE3






aBE types: SpBE3 = APOBEC1-SpCas9n-UGI; VQR-SpBE3 = APOBEC1-VQR-SpCas9n-UGI; EQR-SpBE3 = APOBEC1-EQR-SpCas9n-UGI; VRER-SpBE3 = APOBEC1-VRER-SpCas9n-UGI; SaBE3 = APOBEC1-SaCas9n-UGI; KKH-SaBE3 = APOBEC1-KKH-SaCas9n-UGI; St3BE3 = APOBEC1-St3Cas9n-UGI; St1BE3 = APOBEC1-St1Cas9n-UGI. *Isoform 2 is expressed preferentially in the dorsal root ganglion.








Scoring of Guide RNA Sequences for Efficient Base Editing with High Specificity and Low Off-Target Binding


To achieve efficient and specific genome modifications using base editing requires judicious selection of a genomic sequence containing a target C, for which a specific complementary guide RNA sequence can be generated, and if required, a nearby PAM that matches the DNA-binding domain that is fused to the cytidine deaminase (e.g. Cas9, dCas9, Cas9n, Cpf1, NgAgo, etc.), as described in Komor et al., Nature, 533, 420-424 (2016), which is incorporated herein by reference. The guide RNA sequence and PAM preference define the genomic target sequence(s) of programmable DNA-binding domains (e.g. Cas9, dCas9, Cas9n, Cpf1, NgAgo, etc.). Because of the repetitive nature of some genomic sequences as well as the stochastic frequency of representation of short sequences throughout the genome it is necessary to identify guide RNAs for programming base editors that have the lowest number of potential off target sites, taking into consideration 1, 2, 3, 4, or more mismatches against all other sequences in the genome as described in Hsu et al (Nature Biotechnology, 2013, 31(9):827-832), Fusi et al. (bioRxiv 021568; doi: http://dx.doi.org/10.1101/021568), Chari et al. (Nature Methods, 2015, 12(9):823-6), Doench et al. (Nature Biotechnology, 2014, 32(12):1262-7), Wang et al. (Science, 2014, 343(6166): 80-4), Moreno-Mateos et al (Nature Methods, 2015, 12(10):982-8), Housden et al. (Science Signaling, 2015, 8(393):rs9), Haeussler et al., (Genome Biol. 2016; 17: 148), each of which is incorporated herein by reference. The potential for the formation of bulges between the guide RNA and the target DNA may also be considered as described in Bae et al. (Bioinformatics, 2014, 30, 1473-5), which is incorporated herein by reference. Non-limiting examples of calculated specificity scores for selected guide RNAs are shown in Tables 7-9. Other calculated parameters that may influence DNA-binding domains programming efficiency are shown, as described in Housden et al. (Science Signaling, 2015, 8(393):rs9), Farboud et al. (Genetics, 2015, 199(4):959-71), each of which is incorporated herein by reference.









TABLE 7







Exemplary Efficiency and Specificity Scores for gRNAs for NaV1.7 (SCN9A) Protective Loss-of-Function Mutations via


Premature Stop Codons
























Programmable
SEQ










Pro



Target
BE
guide-RNA
ID

gRNA size






M.-
Hous-
x/
Off


variants
typea
sequence
NOs
PAM
(C edited)
Effb
Hsuc
Fusi
Chari
Doench
Wang
M.
den
GC
targetsd

























Q687X
EQR-
CAACCUCAGACAG
1504
(TGAG)
20 (C7)
5.4
99
62
92
19
80
35
5
-
0-0-0-0-



SpBE3
AGAGCAA












8





Q687X
KKH-
GAUCCCAACCUCA
1505
(AGCAAT)
20 (C12)
6.2
92
66
99
39
77
26
6
-
0-0-0-2-



SaBE3
GACAGAG












13





W1245X
KKH-
AAAUCCAGCCAAC
1506
(ATTGGT)
20 (C14/8)
6.6
96
50
95
10
84
36
6
+
0-0-0-0-



SaBE3
ACCAGGC












8





Q323X
SaBE3
CGUGUGUAGUCAG
1507
(AGGGGT)
20 (C11)
8.2
96
60
93
36
78
69
8
+
0-0-0-2-




UGUCCAG












5





Q323X
St3BE3
CGUGUGUAGUCAG
1508
(AGGGG)
20 (C11)
8.2
96
60
93
36
78
69
8
+
0-0-0-1-




UGUCCAG












16





W188X
SpBE3
GUUCCACGGGUCA
1509
(AAG)
20 (C5)
5.3
95
51
92
13
55
51
5
-
0-0-0-2-




CGAAGAA












45





Q1494X
SpBE3
AAAGCCAAUUCCU
1510
(GGG)
20 (C-2)
4.9
88
68
96
40
84
64
4
+
0-0-1-9-




CGACCAG












68





R835X
KKH-
UCAGUUCUGCGAU
1511
(ACTGGT)
20 (C10)
6.8
98
60
85
51
71
58
6
-
0-0-0-0-



SaBE3
CAUUCAG












5





R841X
KKH-
GCUCCGAGUCUUC
1512
(CAAAAT)
20 (C5)
6.6
98
51
84
63
66
58
6
-
0-0-0-1-



SaBE3
AAGUUGG












3





Q485X
St3BE3
AAUCAAAAGAAGC
1513
(TGGAG)
20 (C4)
7.5
94
61
87
24
85
50
7
+
0-0-0-1-




UCUCCAG












38





Q643X
KKH-
AAUGGACAGCUUC
1514
(GGTGAT)
20 (C7)
9.9
95
60
85
65
67
54
9
+
0-0-0-2-



SaBE3
UGCCAGA












8





W730X
KKH-
GAAUUUUAUCCAA
1515
(AGCAAT)
20 (C11)
6.6
94
60
84
20
88
21
6
-
0-0-0-1-



SaBE3
UAUGGAG












17





Q1862X
KKH-
UCUUCGUUCACAG
1516
(AAAGGT)
20 (C11)
4.8
92
54
85
40
70
32
4
-
0-0-0-2-



SaBE3
AUGGAAG












44





Q595X
St3BE3
GUUUGUGCCCCAC
1517
(AGGAG)
20 (C13)
7.0
90
55
86
45
74
38
7
+
0-0-0-3-




AGACCCC












38





W151X
SpBE3
ACAUUUUUGGUCC
1518
(TGG)
20 (C13)
4.9
87
51
88
39
84
46
4
+
0-0-1-5-




AGUCCGG












85





R523X
SpBE3
AUAGGCGAGCACA
1519
(AGG)
20 (C6)
10.6
78
61
96
75
78
58
10
-
0-0-0-5-




UGAAAAG












86





Q534X
KKH-
UACCCCCAAUCAG
1520
(CCAAAT)
20 (C11)
4.7
96
56
77
5
47
48
4
-
0-0-0-0-



SaBE3
GUACCAC












3





W714X
SpBE3
GCAAAUCUGUACC
1521
(TGG)
20 (C13)
5.2
73
71
99
59
85
57
5
+
0-0-1-




ACCAAGG












14-113





Q1494X
SpBE3
AAAAGCCAAUUCC
1522
(GGG)
20 (C-1)
6.0
87
61
85
14
64
56
6
+
0-0-2-




UCGACCA












12-86





W188X
SaBE3
UCCACGGGUCACG
1523
(GTGAAT)
20 (C3)
6.9
96
56
75
55
51
57
6
-
0-0-0-0-




AAGAAAA












4





W1245X
KKH-
CAGCCAACACCAG
1524
(TGAAAT)
20 (C9/3)
7.0
91
50
80
9
60
48
7
-
0-0-0-1-



SaBE3
GCAUUGG












16





W188X
KKH-
CAGUUCCACGGGU
1525
(AAAAGT)
20 (C7/1)
4.3
99
-1
71
22
66
65
4
-
0-0-0-0-



SaBE3
CACGAAG












14





Q595X
SpBE3
CACAGACCCCAGG
1526
(CAG)
20 (C3)
7.7
75
61
95
65
87
69
5
+
0-0-4-




AGCGACG












22-140





Q1004X
VQR-
UAUGUGAAACAAA
1527
(TGAA)
20 (C10)
7.2
80
60
90
35
71
16
7
-
0-0-1-



SpBE3
CCUUACG












10-146





W1578X
KKH-
AAAAAUAUUCCAU
1528
(TGAAGT)
20 (C11)
5.2
86
62
83
13
81
35
5
-
0-0-0-4-



SaBE3
CCUACAG












22





Q368/9X
St1BE3
UUACCAACAGGUG
1529
(AGAGAAA)
20 (C5)
4.3
98
66
70
50
59
38
4
-
0-0-0-0-




AGUACCA












18





Q369X
St1BE3
UUACCAACAGGUG
1530
(AGAGAAA)
20 (C8)
4.3
98
66
70
50
59
38
4
-
0-0-0-0-




AGUACCA












18





W188X
VQR-
GCCAGUUCCACGG
1531
(AGAA)
20 (C9/3)
2.9
91
63
75
38
77
46
2
-
0-0-3-0-



SpBE3
GUCACGA












33





W151X
SaBE3
GACAUUUUUGGUC
1532
(GTGGGT)
20 (C14)
3.6
99
49
66
27
69
52
3
+
0-0-0-0-




CAGUCCG












4





W1332X
KKH-
UCAGCCAGAAUAU
1533
(ACAAGT)
20 (C6)
3.6
92
67
73
51
78
51
3
-
0-0-0-2-



SaBE3
AAGACAC












18





W908X
KKH-
CAUGUGCCACCGU
1534
(TACAGT)
20 (C8)
6.3
92
59
72
5
58
56
6
+
0-0-0-2-



SaBE3
GGGAGCG












8





Q534X
KKH-
AUCAGGUACCACC
1535
(CTAAAT)
20 (C3)
6.2
99
59
63
16
64
42
6
-
0-0-0-0-



SaBE3
CAAAUUG












5





Q1004X
SaBE3
UUAUGUGAAACAA
1536
(GTGAAT)
20 (C11)
4.8
96
44
65
13
28
37
4
-
0-0-0-2-




ACCUUAC












21





Q1907X
KKH-
ACCGCUUAAGGCA
1537
(AAAAAT)
20 (C12)
3.9
98
49
62
3
35
44
3
-
0-0-0-1-



SaBE3
AAAUGUC












3





Q663X
St1BE3
GGCACGACCAAUC
1538
(CAAGAAA)
20 (C9)
4.4
96
63
58
29
72
27
4
-
0-0-0-1-




AAAUACA












13





R1381X
KKH-
AAUGUGCGAUGGA
1539
(GAAAGT)
20 (C7)
4.0
91
67
68
49
81
64
4
-
0-0-0-2-



SaBE3
AAAACCU












17





R1619X
St3BE3
CGAAUCCUACGUC
1540
(AGGAG)
20 (C1)
8.5
99
60
54
32
49
54
8
-
0-0-3-0-




UAGUCAA












0





Q58X
St3BE3
AAACAGCUGCCCU
1541
(TGGGG)
20 (C4)
8.4
96
26
61
3
53
35
8
-
0-0-0-3-




UCAUCUA












29





Q708X
St3BE3
CCAGACAAAAAUG
1542
(TGGTG)
20 (C6)
7.2
90
67
55
13
73
47
7
+
0-0-1-4-




UCCACCU












35





Q25X
St1BE3
CAUUGAACAACGC
1543
(AAAGAAA)
20 (C8)
3.8
97
59
59
27
79
26
3
-
0-0-0-0-




AUUGCUG












16





Q1971X
St1BE3
AGAAAUAUGAACA
1544
(ACAGAAA)
20 (C12)
5.8
64
53
92
13
80
17
5
-
0-0-0-




AGACAGA












20-242





Q240X
St1BE3
GGGGCUUUGAUCC
1545
(GAAGAAG)
20 (C13)
5.4
95
60
50
8
62
48
5
-
0-0-1-3-




AGUCAGU












11





Q595X
KKH-
ACAGACCCCAGGA
1546
(AGCAGT)
20 (C2)
4.3
97
52
58
14
77
55
4
+
0-0-0-2-



SaBE3
GCGACGC












12





R597X
SpBE3
GAGCGACGCAGCA
1547
(CAG)
20 (C4)
4.1
91
64
58
48
76
63
4
-
0-0-1-0-




GUAACAU












43





R1619X
SpBE3
CGAAUCCUACGUC
1548
(AGG)
20 (C1)
8.5
95
60
54
32
49
54
8
-
0-0-3-1-




UAGUCAA












12





R1619X
EQR-
GAAUCCUACGUCU
1549
(GGAG)
20 (C-1)
4.1
78
47
76
19
45
27
4
-
0-0-3-9-



SpBE3
AGUCAAA












62





Q663X
SpBE3
GCACGACCAAUCA
1550
(AAG)
20 (C8)
3.3
86
67
54
68
77
37
3
-
0-0-0-3-




AAUACAC












36





Q1539/
KKH-
GGUCAAAGUCAAC
1551
(TGAAGT)
20 (C4/10)
6.7
90
56
63
22
57
14
6
-
0-0-1-1-


41X
SaBE3
AUAUGAC












6





Q604X
SpBE3
GUAACAUCAGCCA
1552
(AGG)
20 (C12)
3.8
68
61
84
76
61
33
3
+
0-0-2-




AGCCAGU












14-105





W1161X
SpBE3
ACCUCCAUACACA
1553
(AAG)
20 (C6)
7.5
82
54
70
28
27
35
7
+
0-0-2-5-




ACCUGAC












85





Q1378X
SpBE3
AUGUUAGUCAAAA
1554
(TGG)
20 (C9)
6.6
87
65
46
53
89
30
6
+
0-0-1-7-




UGUGCGA












78





W1786X
KKH-
CCAAACCUCAUAG
1555
(CAAAGT)
20 (C2)
4.4
91
61
52
20
51
34
4
-
0-0-0-4-



SaBE3
AACAUCU












16





R277X
KKH-
GUUUUCGAAAUUC
1556
(AATAAT)
20 (C6)
5.3
90
50
61
8
46
37
5
-
0-0-0-6-



SaBE3
ACUUGAA












48





Q604X
KKH-
AGCCAAGCCAGUA
1557
(ACCAAT)
20 (C4)
4.8
97
54
25
7
48
38
4
+
0-0-0-0-



SaBE3
GGUCCCC












8





Q643X
St3BE3
CAAUGGACAGCUU
1558
(AGGTG)
20 (C8)
4.2
90
61
61
15
67
54
4
+
0-0-0-5-




CUGCCAG












32





W151X
SpBE3
CAUUUUUGGUCCA
1559
(GGG)
20 (C12)
4.8
94
56
46
36
38
48
4
+
0-0-0-1-




GUCCGGU












48





W188X
St1BE3
CAGCCAGUUCCAC
1560
(GAAGAAA)
20 (C11/5)
6.9
98
42
52
1
27
59
6
+
0-0-1-0-




GGGUCAC












11





Q687X
SaBE3
CCAACCUCAGACA
1561
(ATGAGT)
20 (C8)
3.7
86
59
64
38
61
44
3
-
0-0-0-3-




GAGAGCA












19





Q1363X
SaBE3
AAGUCAAGUUCCA
1562
(CCGAAT)
20 (C5)
4.1
99
51
28
26
49
58
4
-
0-0-0-0-




AAUCGUU












7





Q1378X
VQR-
UGUUAGUCAAAAU
1563
(GGAA)
20 (C8)
4.3
89
61
15
9
41
48
4
-
0-0-0-6-



SpBE3
GUGCGAU












85





Q1515X
KKH-
ACCUAGUGACAAA
1564
(TTTGAT)
20 (C10)
7.6
93
47
57
11
60
1
7
+
0-0-0-1-



SaBE3
UCAAGCC












9





R1499X
KKH-
AAUUCCUCGACCA
1565
(AAAAAT)
20 (C8)
5.6
99
50
33
10
43
54
5
-
0-0-0-0-



SaBE3
GGGGUAA












2





Q643X
KKH-
cCCAAUGGACAGC
1566
(AGAGGT)
20 (C10)
7.9
88
36
60
11
35
34
7
+
0-0-2-1-



SaBE3
UUCUGCC












10





Q989X
St1BE3
CAACCUCCAGAUU
1567
(CTAGAAT)
20 (C8)
4.5
93
54
21
6
65
41
4
-
0-0-1-2-




GCAGUGA












15





Q1167X
SaBE3
CUCAUGCUGCCAA
1568
(TAGAGT)
20 (C11)
6.1
93
54
46
11
31
14
6
-
0-0-0-0-




GUUAACA












19





W1408X
KKH-
AUAAUAAUCGUCC
1569
(AAAAGT)
20 (C13)
4.1
94
51
53
62
46
41
4
-
0-0-0-0-



SaBE3
AUCCCUU












20





Q58X
SpBE3
ACAGCUGCCCUUC
1570
(GGG)
20 (C2)
6.7
69
71
77
39
52
44
6
-
0-0-4-




AUCUAUG












19-191





R523X
SpBE3
GGCAUAGGCGAGC
1571
(AAG)
20 (C9)
5.0
69
57
77
23
58
51
5
-
0-0-2-




ACAUGAA












14-83





R548X
KKH-
CUGCAAGGCGAAG
1572
(ACAAGT)
20 (C9)
5.2
74
56
72
35
65
75
5
-
0-0-1-2-



SaBE3
CAGCAGA












27





Q663X
St3BE3
CCAAUCAAAUACA
1573
(AGGCG)
20 (C2)
4.5
82
47
64
11
71
28
4
-
0-0-0-7-




CAAGAAA












63





W1700X
KKH-
CCAUCCCAGCCAG
1574
(TGTAAT)
20 (C7)
7.3
79
54
67
10
58
35
7
-
0-0-0-2-



SaBE3
CAGAGGU












35





R523X
KKH-
GCAUAGGCGAGCA
1575
(AGAGGT)
20 (C8)
4.3
92
48
53
23
83
41
4
-
0-0-0-2-



SaBE3
CAUGAAA












9





R835X
SpBE3
AGUUCUGCGAUCA
1576
(TGG)
20 (C8)
7.1
81
64
33
20
51
32
7
-
0-0-1-5-




UUCAGAC












42





R548X
KKH-
GAAGCAGCAGAAC
1577
(TTTAGT)
20 (C-1)
4.4
86
39
58
24
69
52
4
-
0-0-0-4-



SaBE3
AAGUCUU












12





Q360X
SpBE3
GCUAAUGACCCAA
1578
(GGG)
20 (C11)
6.0
71
55
72
25
36
15
6
-
0-0-3-8-




GAUUACU












74





Q643X
KKH-
GGACAGCUUCUGC
1579
(GATAAT)
20 (C4)
5.1
81
62
40
20
75
46
5
-
0-0-0-5-



SaBE3
CAGAGGU












14





R1381X
VQR-
GUGCGAUGGAAAA
1580
(AGTG)
20 (C4)
5.5
59
58
84
4
59
48
5
-
0-0-1-



SpBE3
ACCUGAA












21-169





W1578X
KKH-
AAUAUUCCAUCCU
1581
(AGTAGT)
20 (C8)
4.1
83
60
44
13
74
43
4
-
0-0-2-3-



SaBE3
ACAGUGA












37





Q25X
VQR-
UUGAACAACGCAU
1582
(AGAA)
20 (C6)
6.0
54
59
88
16
31
43
6
-
0-0-1-



SpBE3
UGCUGAA












31-326





Q368/9X
EQR-
UUACCAACAGGUG
1583
(AGAG)
20 (C5)
4.3
72
66
70
50
59
38
4
-
0-0-1-



SpBE3
AGUACCA












13-111





Q369X
EQR-
UUACCAACAGGUG
1584
(AGAG)
20 (C8)
4.3
72
66
70
50
59
38
4
-
0-0-1-



SpBE3
AGUACCA












13-111





Q941X
VQR-
GGAGGUCGCUGGU
1585
(TGTG)
20 (C14)
3.8
91
43
51
15
82
53
3
-
0-0-0-2-



SpBE3
CAAGCUA












44





Q1167X
SpBE3
GCCAAGUUAACAU
1586
(GGG)
20 (C3)
2.9
76
65
66
60
74
29
2
-
0-0-0-




AGAGUCA












13-103





Q989X
SaBE3
AACCUCCAGAUUG
1587
(TAGAAT)
20 (C7)
6.3
92
49
11
3
24
44
6
-
0-0-1-1-




CAGUGAC












9





W1578X
KKH-
AUUCCAUCCUACA
1588
(AGTAGT)
20 (C5)
4.4
89
51
15
15
37
35
4
-
0-0-0-1-



SaBE3
GUGAAGU












20





Q708X
SpBE3
GACAAAAAUGUCC
1589
(TGG)
20 (C3)
3.9
47
55
92
17
67
56
3
+
0-0-3-




ACCUUGG












25-208





Q708X
KKH-
GUCCAGACAAAAA
1590
(CTTGGT)
20 (C8)
6.0
76
54
63
28
71
34
6
+
0-0-0-



SaBE3
UGUCCAC












12-58





W724X
KKH-
UCCAGAUCAAGAA
1591
(GCAAAT)
20 (C3)
4.9
79
60
6
17
56
24
4
-
0-0-2-3-



SaBE3
UUUGUGU












32





Q805X
SaBE3
AUGAGUAUUUCCA
1592
(TGGAAT)
20 (C12)
4.4
88
51
39
7
51
32
4
+
0-0-1-4-




AGUAGGC












12





Q485X
EQR-
CAAAAGAAGCUCU
1593
(AGAG)
20 (C1)
6.8
62
57
75
5
83
50
6
+
0-0-2-



SpBE3
CCAGUGG












19-210





W1245X
St1BE3
AUAACCAUAUGCU
1594
(TTAGAAG)
20 (C17)
4.5
89
41
48
51
23
22
4
-
0-0-2-3-




AUCCAUU












17





Q1505X
KKH-
AUCCAAGGAUGUA
1595
(CCTAGT)
20 (C4)
5.8
87
50
20
16
29
44
5
-
0-0-0-4-



SaBE3
UAUUUGA












32





Q1363X
VQR-
AGUCAAGUUCCAA
1596
(CGAA)
20 (C4)
6.2
88
48
19
32
44
29
6
-
0-0-1-4-



SpBE3
AUCGUUC












92





Q58X
SpBE3
AAACAGCUGCCCU
1597
(TGG)
20 (C4)
8.4
74
26
61
3
53
35
8
-
0-0-2-




UCAUCUA












12-147





Q368/9X
SpBE3
UUUACCAACAGGU
1598
(AAG)
20 (C6)
4.8
81
54
44
5
23
34
4
-
0-0-1-9-




GAGUACC












88





Q1401X
KKH-
AAGGCAACUUUUA
1599
(GACGAT)
20 (C5)
5.2
83
52
38
2
62
62
5
+
0-0-1-6-



SaBE3
AGGGAUG












28





Q1515X
KKH-
UGACAAAUCAAGC
1600
(ATTAGT)
20 (C4)
4.2
92
43
14
32
34
29
4
-
0-0-0-1-



SaBE3
CUUUGAU












18





Q643X
KKH-
AGCUUCUGCCAGA
1601
(ATAGAT)
20 (C-1)
6.7
94
40
24
1
30
23
6
-
0-0-0-3-



SaBE3
GGUGAUA












16





Q25X
KKH-
UGAACAACGCAUU
1602
(GAAAAT)
20 (C5)
7.6
88
45
12
7
47
41
7
-
0-0-0-3-



SaBE3
GCUGAAA












14





Q368/9X
SpBE3
UACCAACAGGUGA
1603
(GAG)
20 (C4)
4.2
71
58
62
27
54
63
4
-
0-0-1-




GUACCAA












10-123





Q369X
SpBE3
UACCAACAGGUGA
1604
(GAG)
20 (C7)
4.2
71
58
62
27
54
63
4
-
0-0-1-




GUACCAA












10-123





W908X
VRER-
CGUUCAUGUGCCA
1605
(AGCG)
20 (C12)
4.8
50
52
83
6
55
56
4
+
1-0-0-0-



SpBE3
CCGUGGG












1





W1161X
St1BE3
AACCUCCAUACAC
1606
(CAAGAAA)
20 (C7)
3.4
49
61
84
25
77
29
3
-
1-0-0-0-




AACCUGA












10





W1245X
St1BE3
UAUCCAUUUUAGA
1607
(CCAGAAT)
20 (C5)
4.5
49
61
84
25
77
29
3
-
1-0-0-0-




AGCAUUU












10





W1408X
St1BE3
CAUCCCUUAAAAG
1608
(TAAGAAT)
20 (C1)
7.2
96
34
37
6
42
29
7
-
0-0-0-1-




UUGCCUU












28





Q1494X
SpBE3
ACAAAAGCCAAUU
1609
(CAG)
20 (C2)
5.1
85
48
8
14
50
38
5
+
0-0-0-




CCUCGAC












10-75





Q1494X
SpBE3
CAAAAGCCAAUUC
1610
(AGG)
20 (C1)
3.5
81
52
25
6
71
37
3
+
0-0-3-




CUCGACC












12-94





Q25X
SpBE3
AUUGAACAACGCA
1611
(AAG)
20 (C7)
8.3
61
58
70
11
65
26
8
-
01-1-




UUGCUGA












15-82





Q1462X
St1BE3
GAUAAUUUCAACC
1612
(AAAGAAG)
20 (C9)
3.4
43
47
88
35
76
14
3
-
0-2-2-9-




AACAGAA












143





Q240X
KKH-
UCCAGUCAGUGAA
1613
(TCTGAT)
20 (C3)
4.9
84
36
45
7
48
36
4
-
0-0-0-4-



SaBE3
GAAGCUU












15





Q408/
St1BE3
AACAGAACCAGGC
1614
(GAAGAAG)
20 (C3/9)
4.1
86
43
28
7
50
41
4
-
0-0-1-5-


10X

AAACAUU












65





Q643X
SpBE3
CAAUGGACAGCUU
1615
(AGG)
20 (C8)
4.2
68
61
61
15
67
54
4
+
0-0-0-




CUGCCAG












21-133





Q708X
SpBE3
CCAGACAAAAAUG
1616
(TGG)
20 (C6)
7.2
62
67
55
13
73
47
7
+
0-0-5-




UCCACCU












24-165





Q708X
KKH-
CAGACAAAAAUGU
1617
(GGTGGT)
20 (C5)
4.2
84
45
32
0
46
70
4
-
0-0-0-4-



SaBE3
CCACCUU












20





R841X
SpBE3
UUAGCUCCGAGUC
1618
(TGG)
20 (C8)
6.4
67
62
34
59
64
47
6
-
0-1-0-6-




UUCAAGU












44





Q1862X
SpBE3
UUCGUUCACAGAU
1619
(AGG)
20 (C9)
3.9
49
50
80
5
42
43
3
-
0-0-4-




GGAAGAA












24-228





W151X
SpBE3
CCAGUCCGGUGGG
1620
(TGG)
20 (C2)
7.9
87
41
41
2
43
43
7
-
0-0-1-4-




UUAUUCA












35





R523X
EQR-
GCAUAGGCGAGCA
1621
(AGAG)
20 (C8)
4.3
74
48
53
23
83
41
4
-
0-0-0-8-



SpBE3
CAUGAAA












92





Q1470X
St1BE3
GAGGUCAAGACAU
1622
(ACAGAAG)
20 (C6)
4.8
46
54
81
7
65
44
4
-
1-1-0-2-




CUUUAUG












25





W1578X
VQR-
CCAUCCUACAGUG
1623
(AGTG)
20 (C2)
5.2
78
48
35
25
37
44
5
-
0-0-0-



SpBE3
AAGUAGU












17-112





Q1026X
SaBE3
AGAUAAGACAAGC
1624
(CTGAAT)
20 (C9)
4.9
69
56
51
31
66
40
4
-
0-0-1-7-




AGAAGAU












40





Q1077X
KKH-
GUGAUGGUCAAUC
1625
(CACAAT)
20 (C9)
5.2
90
35
9
26
28
44
5
-
0-0-0-2-



SaBE3
AUUUAUU












21





Q58X
SpBE3
AACAGCUGCCCUU
1626
(GGG)
20 (C3)
6.2
74
49
3
7
24
25
6
-
0-0-1-




CAUCUAU












10-115





W151X
KKH-
GUCCAGUCCGGUG
1627
(CATGGT)
20 (C4)
4.9
100
23
7
4
9
53
4
-
0-0-0-1-



SaBE3
GGUUAUU












0





Q323X
SpBE3
UGUGUAGUCAGUG
1628
(GGG)
20 (C9)
7.9
43
75
80
69
68
76
7
+
0-1-2-62




UCCAGAG












35-1





Q485X
EQR-
AUCAAAAGAAGCU
1629
(GGAG)
20 (C3)
3.6
62
60
53
35
44
30
3
-
0-0-3-



SpBE3
CUCCAGU












14-187





Q1167X
SpBE3
UGCCAAGUUAACA
1630
(AGG)
20 (C4)
6.0
76
46
15
1
29
41
6
-
0-0-2-8-




UAGAGUC












89





Q1515X
VQR-
CUAGUGACAAAUC
1631
(TGAT)
20 (C8)
4.8
74
48
12
13
63
52
4
-
0-0-0-



SpBE3
AAGCCUU












17-129





Q1167X
EQR-
UCAUGCUGCCAAG
1632
(AGAG)
20 (C10)
8.6
64
53
57
43
69
27
8
-
0-0-1-



SpBE3
UUAACAU












27-191





Q805X
SpBE3
AUGAGUAUUUCCA
1633
(TGG)
20 (C12)
4.4
67
51
39
7
51
32
4
+
0-0-2-




AGUAGGC












25-177





Q360X
SpBE3
GGCUAAUGACCCA
1634
(TGG)
20 (C12)
6.1
83
28
33
5
28
10
6
-
0-0-1-7-




AGAUUAC












57





Q323X
EQR-
CUCGUGUGUAGUC
1635
(AGAG)
20 (C13)
4.4
75
40
5
1
34
46
4
+
0-0-1-



SpBE3
AGUGUCC












10-63





W730X
KKH-
AUCCAAUAUGGAG
1636
(CCAGAT)
20 (C4)
4.1
64
39
51
5
19
44
4
-
0-0-2-



SaBE3
AGCAAUU












11-36





R214X
EQR-
UUCGAACUUUCAG
1637
(AGAG)
20 (C3)
4.7
42
49
72
2
33
28
4
-
0-2-2-



SpBE3
AGUAUUG












14-188





Q265X
VQR-
ACAGCUGUUCAUG
1638
(TGAA)
20 (C2)
8.1
61
53
43
10
50
33
8
-
0-0-4-



SpBE3
GGAAACC












15-185





Q687X
EQR-
UCAGACAGAGAGC
1639
(AGAG)
20 (C5)
4.0
55
56
51
34
77
26
4
-
0-0-3-



SpBE3
AAUGAGU












30-285





W908X
St3BE3
AGUCGUUCAUGUG
1640
(GGGAG)
20 (C15)
5.7
48
63
24
22
54
63
5
+
1-0-1-3-




CCACCGU












7





W363X
SpBE3
AAGGUUUUCCCAG
1641
(GGG)
20 (C11)
8.2
64
46
28
10
55
46
8
-
0-0-5-




UAAUCUU












17-172





Q1401X
SpBE3
UAAAGGCAACUUU
1642
(TGG)
20 (C7)
7.3
53
49
49
14
83
37
7
-
0-0-3-




UAAGGGA












37-245





W908X
SpBE3
UGUGCCACCGUGG
1643
(CAG)
20 (C6)
5.5
48
52
41
33
34
77
5
-
1-0-0-2-




GAGCGUA












49





W730X
EQR-
UUGAAUUUUAUCC
1644
(AGAG)
20 (C13)
3.0
41
52
54
6
68
29
3
-
0-1-3-



SpBE3
AAUAUGG












33-405





W808X
SpBE3
CAAAAAUAUUCCA
1645
(TGG)
20 (C12)
3.8
61
34
31
1
22
34
3
-
0-1-4-




GCCUACU












18-174





Q1026X
VQR-
GAUAAGACAAGCA
1646
(TGAA)
20 (C8)
3.9
49
41
46
5
76
24
3
-
0-0-1-



SpBE3
GAAGAUC












32-348





R214X
EQR-
UCUUCGAACUUUC
1647
(TGAG)
20 (C5)
5.4
56
38
19
11
33
30
5
-
0-1-3-



SpBE3
AGAGUAU












10-139






aBE types: SpBE3 = APOBEC1-SpCas9n-UGI; VQR-SpBE3 = APOBEC1-VQR-SpCas9n-UGI; EQR-SpBE3 = APOBEC1-EQR-SpCas9n-UGI; VRER-SpBE3 = APOBEC1-VRER-SpCas9n-UGI; SaBE3 = APOBEC1-SaCas9n-UGI; KKH-SaBE3 = APOBEC1-KKH-SaCas9n-UGI; St3BE3 = APOBEC1-St3Cas9n-UGI; St1BE3 = APOBEC1-St1Cas9n-UGI.




bEfficiency score, based on Housden et al (Science Signaling, 2015, 8 (393):rs9).




cSpecificity scores based on Hsu et al (Nature biotechnology, 2013, 31 (9):827-832), Fusi et al (bioRxiv 021568; doi: http://dx.doi.org/10.1101/021568), Chari et al (Nature Methods, 2015, 12 (9):823-6), Doench et al (Nature Biotechnology, 2014, 32 (12):1262-7), Wang et al (Science, 2014, 343 (6166): 80-4), Moreno-Mateos et al (Nature Methods, 2015, 12 (10)982-8), Housden et al (Science Signaling, 2015, 8 (393):rs9), and the ″Prox/GC″ column shows ″+″ if the proximal 6 bp to the PAM has a GC count > = 4, and GG if the guide ends with GG, based on Farboud et al (Genetics, 2015, 199 (4):959-71).




dNumber of predicted off-target binding sites in the human genome allowing up to 0, 1, 2, 3 or 4 mismatches, respectively shown in the format 0-1-2-3-4. Algorithm used: Haeussler et al, Genome Biol. 2016; 17: 148.














TABLE 8







Exemplary Efficiency and Specificity Scores for gRNAs for NaV1.7 (SCN9A) Protective Loss-of-Function Mutations via Codon


Change
























Programmable
SEQ










Pro



Target
BE
guide-RNA
ID

gRNA size






M.-
Hous-
x/
Off


variants
typea
sequence
NOs
PAM
(C edited)
Effb
Hsuc
Fusi
Chari
Doench
Wang
M.
den
GC
targetsd

























C324Y
St1BE3
GGACACUGACUACA
1648
(AAAGAAC)
20 (C7/8)
6.2
99
68
99
61
84
36
6
+
0-0-0-




CACGAG












0-9





P613L/S/F
KKH-
CCAAUGCUGCCGGU
1649
(GAAAAT)
20 (C5)
9.2
100
63
97
70
88
71
9
+
0-0-0-



SaBE3
GAACGG












0-2





P591L/S/F
VRER-
UGUGCCCCACAGAC
1650
(AGCG)
20 (C8)
7.8
97
64
96
18
84
69
7
+
0-0-0-



SpBE3
CCCAGG












1-13





G785R
St1BE3
GAUUCCAGUAAAGA
1651
(TGAGAAA)
20 (C9)
6.3
94
59
99
24
78
42
6
-
0-0-0-




CCUAAG












1-52





P683L/S/F
KKH-
GAUCCCAACCUCAG
1652
(AGCAAT)
20 (C14)
6.2
92
66
99
39
77
26
6
-
0-0-0-



SaBE3
ACAGAG












2-13





C925Y
KKH-
UCUCCACACAGCAC
1653
(CACAAT)
20 (C2)
4.7
98
62
87
26
59
45
4
+
0-0-0-



SaBE3
GCGGAA












0-11





P1712/3L/
KKH-
CCACCCGACUGUGA
1654
(AAAAGT)
20 (C3/4/12)
6.1
99
57
86
18
39
61
6
-
0-0-0-


S/F
SaBE3
cCCAAA












0-5





P1606L/S/F
KKH-
GUGUCCCCUACCCU
1655
(AGTGAT)
20 (C13114)
6.4
93
56
92
50
76
41
6
+
0-0-0-



SaBE3
GUUCCG












1-13





P983L/S/F
KKH-
GACCCUGAUGCAAA
1656
(CCAGAT)
20 (C819)
3.5
96
58
82
9
74
24
3
-
0-0-0-



SaBE3
CAACCU












2-17





P591L/S/F
St3BE3
GUUUGUGCCCCACA
1657
(AGGAG)
20 (C7-14)
7.0
90
55
86
45
74
38
7
+
0-0-0-




GACCCC












3-38





P532L/S/F
KKH-
UACCCCCAAUCAGG
1658
(CCAAAT)
20 (C6-13)
4.7
96
56
77
5
47
48
4
-
0-0-0-



SaBE3
UACCAC












0-3





P1606L/S/F
VQR-
GUGUCCCCUACCCU
1659
(AGTG)
20 (C5-12)
6.4
81
56
92
50
76
41
6
+
0-0-1-



SpBE3
GUUCCG












7-62





P1496/8L/
SpBE3
AAAAGCCAAUUCCU
1660
(GGG)
20 (C5-12)
6.0
87
61
85
14
64
56
6
+
0-0-2-


S/F

CGACCA












12-86





P1133/5L/
St1BE3
AUAACCCUUUGCCU
1661
(GGAGAAG)
20 (C7-14)
6.5
90
53
81
33
46
53
6
-
0-0-0-


S/F

GGAGAA












4-44





P111L/S/F
SaBE3
UCUCCUUUCAGUCC
1662
(AAGAAT)
20 (C7-14)
4.4
88
47
81
69
37
24
4
-
0-0-1-




UCUAAG












4-27





P229L/S/F
KKH-
GUAAUCCCAGGUAA
1663
(ATTGGT)
20 (C5-12)
4.3
88
45
81
26
64
45
4
-
0-0-1-



SaBE3
GAAGUA












5-17





P1791L/S/F
KKH-
GAAGUUUGAUCCCG
1664
(CCCAGT)
20 (C11/12)
2.6
98
59
67
37
92
59
2
-
0-0-0-



SaBE3
AUGCGA












1-1





C315Y
SaBE3
AACCACAAAGGAGA
1665
(TTGGAT)
20 (C8)
4.6
89
47
76
1
40
14
4
-
0-0-0-




GCAUCU












2-21





C1154Y
SaBE3
GAAACAGGCCUCUG
1666
(CGGAAT)
20 (C15)
6.6
90
55
74
17
46
66
6
-
0-0-0-




GCUCAU












4-4





P1133/5L/
St1BE3
ACCCUUUGCCUGGA
1667
(GAAGAAG)
20 (C16)
5.8
93
60
70
39
51
40
5
-
0-0-1-


S/F

GAAGGA












2-17





G786R
EQR-
GAUUCCAGUAAAGA
1668
(TGAG)
20 (C4)
6.3
63
59
99
24
78
42
6
-
0-0-1-



SpBE3
CCUAAG












28-179





P1145L/S/F
SpBE3
CUGAACCUAUGAAU
1669
(GAG)
20 (C10)
6.4
94
68
59
82
45
24
6
-
0-0-0-




UCCGAU












1-117





P609/10L/
VQR-
GUCCCCACCAAUGC
1670
(TGAA)
20 (C17)
5.5
87
57
75
12
87
60
5
+
0-0-0-


S/F
SpBE3
UGCCGG












10-66





P609/10L/
VQR-
AGGUCCCCACCAAU
1671
(GGTG)
20 (C11)
8.7
84
49
78
14
43
13
8
+
0-0-0-


S/F
SpBE3
GCUGCC












9-85





P1093L/S/F
KKH-
CACCUGGGGAAUCC
1672
(GAAAAT)
20 (C12)
6.5
98
59
62
2
36
60
6
-
0-0-0-



SaBE3
GAUUUG












0-8





C944Y
VRER-
AUAAGGCACAUAGC
1673
(AGCG)
20 (C13)
4.8
100
60
48
12
66
21
4
-
0-0-0-



SpBE3
UUGACC












1-6





P337L/S/F
EQR-
AAACCCUGAUUAUG
1674
(CGAG)
20 (C13)
3.9
77
63
82
7
29
28
3
-
0-0-0-



SpBE3
GCUACA












13-121





P594L/S/F
SpBE3
CACAGACCCCAGGA
1675
(CAG)
20 (C5)
7.7
82
59
77
65
72
64
7
+
0-0-2-




GCGACG












17-142





P80L/S/F
KKH-
GACCCCUACUAUGC
1676
(AAAGGT)
20 (C6)
4.5
95
62
55
12
70
48
4
-
0-0-0-



SaBE3
AGACAA












2-7





P80L/S/F
St3BE3
CCCCUACUAUGCAG
1677
(AGGTG)
20 (C7)
3.5
92
37
65
27
24
42
3
-
0-0-0-




ACAAAA












4-31





P60L/S/F
St3BE3
AAACAGCUGCCCUU
1678
(TGGGG)
20 (C11)
8.4
96
26
61
3
53
35
8
-
0-0-0-




CAUCUA












3-29





P1490Sd
KKH-
GGGUCCAAGAAGCC
1679
(GCCAAT)
20 (C13)
5.0
75
57
81
64
74
57
5
-
0-0-0-



SaBE3
ACAAAA












2-28





P594L/S/F
KKH-
ACAGACCCCAGGAG
1680
(AGCAGT)
20 (C14)
4.3
97
52
58
14
77
55
4
+
0-0-0-



SaBE3
CGACGC












2-12





C324Y
VQR-
CUGGACACUGACUA
1681
(AGAA)
20 (C7)
5.5
85
69
69
75
67
61
5
+
0-0-1-



SpBE3
CACACG












7-86





G830R
St1BE3
UGACAAUCCUUCCA
1682
(CTAGAAA)
20 (C16)
4.1
96
58
58
15
54
36
4
-
0-0-0-




CAUCUG












2-13





C1526Y
KKH-
AGACAGAUAAGAAC
1683
(ACTAAT)
20 (C5)
4.5
87
54
67
41
53
20
4
-
0-0-0-



SaBE3
CAUGAU












3-26





P850L/S/F
KKH-
UCCUGGCCAACAUU
1684
(GCTGAT)
20 (C6)
5.4
94
58
52
31
55
43
5
-
0-0-0-



SaBE3
GAACAU












2-15





P67L/S/F
St3BE3
UGGGGACAUUCCUC
1685
(TGGTG)
20 (C9)
4.4
96
56
34
5
61
77
4
+
0-0-0-




CCGGCA












0-29





P148L/S/F
KKH-
AUAACCCACCGGAC
1686
(AAAAAT)
20 (C12)
6.5
99
52
46
17
52
28
6
+
0-0-0-



SaBE3
UGGACC












0-4





P1133/5L/
St1BE3
CAGUUGAUAACCCU
1687
(GGAGAAG)
20 (C14)
5.3
97
54
16
22
75
31
5
-
0-0-0-


S/F

UUGCCU












0-25





P325L/S/F
VQR-
AGUGUCCAGAGGGG
1688
(TGTG)
20 (C8)
6.9
90
54
60
3
54
47
6
-
0-0-0-



SpBE3
UACACC












5-64





P148L/S/F
SpBE3
CCAUGAAUAACCCA
1689
(TGG)
20 (C11)
4.4
98
52
46
18
56
43
4
+
0-0-0-




CCGGAC












3-24





P1090L/S/F
St3BE3
GUGACAGUGCCAAU
1690
(TGGGG)
20 (C14)
9.0
98
50
51
16
59
10
9
+
0-0-0-




UGCACC












1-20





P1498/1500
KKH-
AAUUCCUCGACCAG
1691
(AAAAAT)
20 (C9110)
5.6
99
50
33
10
43
54
5
-
0-0-0-


L/S/F
SaBE3
GGGUAA












0-2





S1490Fd
SpBE3
UGGGGUCCAAGAAG
1692
(AAG)
20 (C819)
4.2
63
64
85
16
74
64
4
-
0-0-3-




CCACAA












18-214





P1090L/S/F
SpBE3
UGACAGUGCCAAUU
1693
(GGG)
20 (C7/8)
7.4
80
63
68
42
71
30
7
+
0-0-1-




GCACCU












12-120





P1018L/S/F
St3BE3
CAAAAAGCCAAAGA
1694
(GGGAG)
20 (C5/6)
4.5
87
55
61
40
77
30
4
-
0-0-0-




UUUCCA












7-74





G1626R
SpBE3
UUGCUCCUUUGACU
1695
(AGG)
20 (C10/11)
5.6
86
62
42
43
59
56
5
-
0-0-4-




AGACGU












5-68





P711/2L/
KKH-
AAAAUGUCCACCUU
1696
(ACAGAT)
20 (C7/8)
5.6
91
57
29
6
47
29
5
+
0-0-1-


S/F
SaBE3
GGUGGU












2-28





C140Y
KKH-
AUAAAUAUGCAGUU
1697
(AATAGT)
20 (C-1)
9.0
77
60
70
35
60
54
9
-
0-0-0-



SaBE3
UGUCAG












5-34





P1083L/S/F
KKH-
CACAAUCCCAGCCU
1698
(GACAGT)
20 (C5)
6.0
85
62
50
18
62
45
6
-
0-0-0-



SaBE3
CACAGU












2-28





G1626R
SaBE3
UUUGCUCCUUUGAC
1699
(TAGGAT)
20 (C6)
4.4
91
56
43
49
70
29
4
-
0-0-3-




UAGACG












3-6





P609/10L/
KKH-
AGUAGGUCCCCACC
1700
(GCCGGT)
20 (C7)
6.1
97
50
39
21
61
48
6
-
0-0-0-


S/F
SaBE3
AAUGCU












1-7





P1496/8L/
SaBE3
CAAAAGCCAAUUCC
1701
(AGGGGT)
20 (C12)
3.5
95
52
25
6
71
37
3
+
0-0-0-


S/F

UCGACC












1-7





P60L/S/F
SpBE3
ACAGCUGCCCUUCA
1702
(GGG)
20 (C13)
6.7
69
71
77
39
52
44
6
-
0-0-4-




UCUAUG












19-191





P1133/5L/
St3BE3
ACAGUUGAUAACCC
1703
(TGGAG)
20 (C7)
4.7
94
52
29
12
62
11
4
-
0-0-1-


S/F

UUUGCC












3-20





P609/10L/
St3BE3
UAGGUCCCCACCAA
1704
(CGGTG)
20 (C3)
4.6
94
52
15
12
61
46
4
+
0-0-0-


S/F

UGCUGC












5-24





P1145L/S/F
EQR-
GCUGAACCUAUGAA
1705
(TGAG)
20 (C4)
3.4
87
58
55
32
90
29
3
-
0-0-1-



SpBE3
UUCCGA












2-79





P1151L/S/F
KKH-
AGCCAGAGGCCUGU
1706
(GATGGT)
20 (C8)
9.0
90
55
46
8
43
31
9
-
0-0-0-



SaBE3
UUCACA












1-20





P1090L/S/F
SpBE3
GACAGUGCCAAUUG
1707
(GGG)
20 (C4/5)
5.3
70
57
74
5
74
62
5
+
0-0-1-




CACCUG












20-184





P1133/5L/
St3BE3
GAUAACCCUUUGCC
1708
(AGGAG)
20 (C5)
3.7
93
51
42
12
82
33
3
-
0-0-0-


S/F

UGGAGA












3-35





P1955/6L/
KKH-
CCACCUCUCCACCU
1709
(GATAGT)
20 (C8)
8.1
92
52
42
63
37
38
8
-
0-0-0-


S/F
SaBE3
UCAUAU












1-12





P1496L/S/F
St3BE3
CAAAAGCCAAUUCC
1710
(AGGGG)
20 (C9)
3.5
92
52
25
6
71
37
3
+
0-0-2-




UCGACC












1-22





P1360L/S/F
KKH-
GGUUUCCUGCAAGU
1711
(CCAAAT)
20 (C13)
10.8
90
47
53
24
57
48
10
-
0-0-0-



SaBE3
CAAGUU












3-9





C1154Y
SpBE3
GAAACAGGCCUCUG
1712
(CGG)
20 (C10)
6.6
68
55
74
17
46
66
6
-
0-0-1-




GCUCAU












22-132





P1722L/S/F
St3BE3
CAUCCUGGAAGUUC
1713
(AGGAG)
20 (C14)
4.4
89
53
42
5
39
35
4
-
0-0-1-




AGUUGA












5-40





C1370Y
SpBE3
GCAAAACAUUCGGA
1714
(TGG)
20 (C2)
3.9
95
37
47
14
64
26
3
-
0-0-1-




ACGAUU












2-35





P1773L/S/F
KKH-
CCUCUGAGUGAGGA
1715
(TGAGAT)
20 (C3)
5.0
92
50
25
16
40
42
5
-
0-0-1-



SaBE3
UGACUU












3-12





P60L/S/F
VQR-
CAGCUGCCCUUCAU
1716
(GGAC)
20 (C4)
6.0
76
65
47
21
68
67
6
-
0-0-0-



SpBE3
CUAUGG












13-167





G1736R
KKH-
UAUUCCAACAGAUG
1717
(CACAGT)
20 (C10/11)
5.5
95
42
46
1
19
39
5
-
0-0-0-



SaBE3
GGUUAC












1-10





P1093L/S/F
VQR-
GCACCUGGGGAAUC
1718
(GGAA)
20 (C6/7)
5.4
93
36
48
6
36
59
5
-
0-0-1-



SpBE3
CGAUUU












2-54





P1133/5L/
EQR-
AUAACCCUUUGCCU
1719
(GGAG)
20 (C12/13)
6.5
59
53
81
33
46
53
6
-
0-0-2-


S/F
SpBE3
GGAGAA












22-182





P187L/S/F
SaBE3
UUCGUGACCCGUGG
1720
(CTGGAT)
20 (C12-14)
7.2
87
53
51
10
73
58
7
-
0-0-2-




AACUGG












2-5





C1690Y
KKH-
AGGCAAAUCAUACU
1721
(AAAGGT)
20 (C10/11)
6.3
91
49
43
19
36
33
6
+
0-0-1-



SaBE3
GUUGCC












1-19





P229L/S/F
St3BE3
AAUCCCAGGUAAGA
1722
(TGGTG)
20 (C1-5)
7.1
83
38
57
9
38
54
7
-
0-0-1-




AGUAAU












4-47





C330Y
VQR-
UCACACAGGUGUAC
1723
(GGAC)
20 (C213)
5.8
85
55
38
2
27
51
5
+
0-0-0-



SpBE3
cccucu












9-101





G1577R
KKH-
AUUCCAUCCUACAG
1724
(AGTAGT)
20 (C-1)
4.4
89
51
15
15
37
35
4
-
0-0-0-



SaBE3
UGAAGU












1-20


C324Y
St1BE3
CUCUGGACACUGAC
1725
(CGAGAAA)
20 (C1)
5.8
87
52
23
34
45
21
5
-
0-0-1-




UACACA












3-46





G1626R
VQR-
UGCUCCUUUGACUA
1726
(GGAT)
20 (C13)
4.8
89
49
48
50
26
51
4
-
0-0-3-



SpBE3
GACGUA












5-66





C275Y
KKH-
AUUUCGAAAACAUU
1727
(TCAGGT)
20 (C15)
5.8
83
45
55
7
52
14
5
-
0-0-0-



SaBE3
UAUGCU












3-48





P1093L/S/F
SpBE3
UGCACCUGGGGAAU
1728
(TGG)
20 (C16)
7.0
94
34
44
0
29
37
7
-
0-0-0-




CCGAUU












4-48





P683L/S/F
EQR-
AUGAUCCCAACCUC
1729
(AGAG)
20 (C1)
3.8
66
61
71
36
80
57
3
-
0-0-1-



SpBE3
AGACAG












18-162





P1018L/S/F
KKH-
AAAAAGCCAAAGAU
1730
(GGAGAT)
20 (C18)
5.8
49
57
88
27
91
43
5
-
0-0-1-



SaBE3
UUCCAG












12-27





P1090L/S/F
SpBE3
GUGACAGUGCCAAU
1731
(TGG)
20 (C2)
9.0
86
50
51
16
59
10
9
+
0-0-2-




UGCACC












8-82





P609/10L/
SpBE3
CCACCAAUGCUGCC
1732
(CGG)
20 (C16)
7.3
87
50
49
19
22
47
7
-
0-0-1-


S/F

GGUGAA












7-85





P1319L/S/F
VQR-
GCAAUUCCUUCCAU
1733
(TGTG)
20 (C415)
5.9
63
55
73
16
64
28
5
-
0-0-2-



SpBE3
CAUGAA












18-223





P536L/S/F
SpBE3
CAGUCACCACUCAG
1734
(TGG)
20 (C3/4)
7.0
81
43
55
9
45
39
7
-
0-0-1-




CAUUCG












12-123





P1297L/S/F
KKH-
AAGACCUCUAAGAG
1735
(CTAGAT)
20 (C112)
5.1
98
38
8
6
40
54
5
-
0-0-0-



SaBE3
CCUUAU












1-5





P60L/S/F
SpBE3
AAACAGCUGCCCUU
1736
(TGG)
20 (C314)
8.4
74
26
61
3
53
35
8
-
0-0-2-




CAUCUA












12-147





P35L/S/F
St1BE3
UCAAAGGAACCCAA
1737
(AAAGAAA)
20 (C11/12)
5.0
43
46
91
11
72
29
5
-
0-1-0-




AGAAGA












21-224





P67/8L/S/F
SpBE3
UGGGGACAUUCCUC
1738
(TGG)
20 (C7/8)
4.4
78
56
34
5
61
77
4
+
0-0-0-




CCGGCA












8-149





P646L/S/F
KKH-
AGCUUCUGCCAGAG
1739
(ATAGAT)
20 (C5/6)
6.7
94
40
24
1
30
23
6
-
0-0-0-



SaBE3
GUGAUA












3-16





P1829L/S/F
St3BE3
AUGGAUCUGCCCAU
1740
(TGGTG)
20 (C4/5)
10.0
68
49
65
10
39
59
10
-
0-2-3-




GGUUAG












2-39





C330Y
SpBE3
UUCACACAGGUGUA
1741
(TGG)
20 (C3/4)
5.0
87
42
46
4
29
50
5
+
0-0-0-




CCCCUC












8-88





G1577R
SpBE3
UCCAUCCUACAGUG
1742
(TAG)
20 (C2/3)
6.5
72
61
40
24
62
53
6
-
0-0-4-




AAGUAG












11-122





P1496/8L/
SpBE3
CAAAAGCCAAUUCC
1743
(AGG)
20 (C1/2)
3.5
81
52
25
6
71
37
3
+
0-0-3-


S/F

UCGACC












12-94





C1328Y
KKH-
AGACACACAAGUAG
1744
(CATGAT)
20 (C13/14)
5.1
90
43
22
5
29
29
5
-
0-0-0-



SaBE3
CACAUU












1-20





P1496L/S/F
SpBE3
ACAAAAGCCAAUUC
1745
(CAG)
20 (C415)
5.1
85
48
8
14
50
38
5
+
0-0-0-




CUCGAC












10-75





G1339R
St1BE3
CCCAUGAUGCUGAA
1746
(CCAGAAT)
20 (C7)
6.9
62
64
70
41
63
39
6
-
0-2-3-




UAUCAG












3-15





P1717L/S/F
SpBE3
GACCCAAAAAAAGU
1747
(TGG)
20 (C13114)
5.9
63
56
69
6
73
0
5
-
0-0-3-




UCAUCC












18-120





P591L/S/F
EQR-
UUUGUGCCCCACAG
1748
(GGAG)
20 (C12/13)
6.8
56
55
76
70
75
54
6
+
0-0-1-



SpBE3
ACCCCA












32-223





G1626R
SpBE3
UUUGCUCCUUUGAC
1749
(TAG)
20 (C13/14)
4.4
76
56
43
44
70
29
4
-
0-0-2-




UAGACG












24-72





P114L/S/F
KKH-
CCUCUAAGAAGAAU
1750
(TAAGAT)
20 (C3)
6.1
93
38
30
16
37
0
6
-
0-0-0-



SaBE3
AUCUAU












2-21





P800L/S/F
KKH-
AUGGAUCCAUAUGA
1751
(CCAAGT)
20 (C12)
5.8
90
41
3
3
22
62
5
-
0-0-0-



SaBE3
GUAUUU












2-18





P1285L/S/F
SpBE3
UUGGCCCCAUUAAA
1752
(CGG)
20 (C13)
4.5
77
52
46
51
45
39
4
-
0-0-1-




UCCCUU












10-123





G1626R
SpBE3
CUUUGACUAGACGU
1753
(CGG)
20 (C5)
7.9
81
48
9
41
28
52
7
-
0-0-3-




AGGAUU












2-53





P111L/S/F
St1BE3
UUCUCCUUUCAGUC
1754
(GAAGAAT)
20 (C14)
6.5
88
41
6
6
17
26
6
-
0-0-0-




CUCUAA












8-47





C944Y
SpBE3
AAUAAGGCACAUAG
1755
(CAG)
20 (C13/14)
7.7
75
53
19
12
34
35
7
-
0-0-3-




CUUGAC












7-76





C753Y
KKH-
AACUAUGCAAAUGG
1756
(CAAGAT)
20 (C12/13)
5.0
79
48
36
2
54
34
5
-
0-0-2-



SaBE3
UAAUUG












3-48





P610L/S/F
SpBE3
CACCAAUGCUGCCG
1757
(GGG)
20 (C11/12)
4.0
90
37
17
4
19
40
4
-
0-0-0-




GUGAAC












6-66





P1829L/S/F
SpBE3
AUGGAUCUGCCCAU
1758
(TGG)
20 (C10/11)
10.0
60
49
65
10
39
59
10
-
0-2-4-




GGUUAG












14-116





P1090/3L/
KKH-
UGCCAAUUGCACCU
1759
(TCCGAT)
20 (C7/8)
8.9
82
43
21
4
44
31
8
+
0-0-1-


S/F
SaBE3
GGGGAA












4-13





P711/2L/
VQR-
AAUGUCCACCUUGG
1760
(AGAT)
20 (C112)
8.2
82
43
7
5
36
56
8
-
0-0-0-


S/F
SpBE3
UGGUAC












12-94





P5/6/7L/S/F
EQR-
GUUGCCUCCCCCAG
1761
(AGAG)
20 (C1/2)
7.0
57
34
67
2
53
31
7
+
0-0-1-



SpBE3
GACCUC












23-184





P1829L/S/F
KKH-
CCAUGGAUCUGCCC
1762
(AGTGGT)
20 (C9/10)
4.3
94
30
17
8
44
50
4
-
0-0-1-



SaBE3
AUGGUU












3-8





C325Y
EQR-
CUCUGGACACUGAC
1763
(CGAG)
20 (C2/3)
5.8
71
52
23
34
45
21
5
-
0-0-2-



SpBE3
UACACA












14141





P60L/S/F
SpBE3
AACAGCUGCCCUUC
1764
(GGG)
20 (C1/2)
6.2
74
49
3
7
24
25
6
-
0-0-1-




AUCUAU












10-115





P111L/S/F
St1BE3
GCUUUCUCCUUUCA
1765
(TAAGAAG)
20 (C2/3)
4.9
93
28
14
11
38
34
4
+
00




GUCCUC












5-29





P187L/S/F
VQR-
CGUGACCCGUGGAA
1766
(GGAT)
20 (C8-12)
6.0
77
43
11
11
48
57
6
+
0-0-3-



SpBE3
CUGGCU












9-35





P744L/S/F
KKH-
AUGGAUCCUUUUGU
1767
(TGCAAT)
20 (C14/15)
6.6
91
28
0
0
38
59
6
-
0-0-0-



SaBE3
AGAUCU












2-22





P1722L/S/F
EQR-
AUCCUGGAAGUUCA
1768
(GGAG)
20 (C9/10)
4.7
63
55
53
16
23
44
4
-
0-0-3-



SpBE3
GUUGAA












13-230





G236R
SpBE3
AAGCCCCUACAAUU
1769
(AGG)
20 (C16/17)
9.1
75
43
42
20
26
35
9
-
0-0-2-




GUCUUC












9-84





P1829L/S/F
VQR-
UGGAUCUGCCCAUG
1770
(GGTG)
20 (C13/14)
6.3
77
41
34
9
23
37
6
-
0-0-2-



SpBE3
GUUAGU












11-102





G1662R
VRER-
AAGUUGGACAUUCC
1771
(GGCG)
20 (C12/13)
4.2
64
54
19
8
66
59
4
-
0-1-1-



SpBE3
AAAGAU












1-3





P1133/5L/
SpBE3
GAUAACCCUUUGCC
1772
(AGG)
20 (C10/11)
3.7
66
51
42
12
82
33
3
-
0-0-1-


S/F

UGGAGA












15-115





P1151L/S/F
KKH-
AUGAGCCAGAGGCC
1773
(ACAGAT)
20 (C9110)
6.0
93
24
18
1
16
51
6
-
0-0-0-



SaBE3
UGUUUC












1-18





P1722L/S/F
SpBE3
CAUCCUGGAAGUUC
1774
(AGG)
20 (C7/8)
4.4
63
53
42
5
39
35
4
-
0-0-2-




AGUUGA












21-161





C134Y
VQR-
AGUGCACAUGAUGA
1775
(TGAA)
20 (C2/3)
6.3
55
60
55
16
61
29
6
+
0-1-2-



SpBE3
GCAUGC












12-131





C1562Y
SpBE3
GCACACAUUCUCCA
1776
(AGG)
20 (C12/13)
6.0
45
47
69
21
61
24
6
-
0-1-2-




GUGAAA












23-147





C1159Y
SpBE3
CCAUACACAACCUG
1777
(AAG)
20 (C4/5)
2.7
43
57
70
14
67
24
2
-
1-0-1-




ACAAGA












8-88





P906L/S/F
VQR-
UACGCUCCCACGGU
1778
(TGAA)
20 (C10/11)
6.6
47
53
59
10
44
46
6
+
1-0-0-



SpBE3
GGCACA












2-33





C315Y
SpBE3
ACCACAAAGGAGAG
1779
(TGG)
20 (C13/14)
5.8
60
30
44
2
34
40
5
-
0-0-3-




CAUCUU












19-168





C1715Y
St1BE3
ACAGUCGGGUGGCU
1780
(TAAGAAT)
20 (C16/17)
7.4
50
53
33
2
70
36
7
-
1-0-0-




UACUGU












1-3





P850L/S/F
VQR-
CUGGCCAACAUUGA
1781
(TGAT)
200 ()
5.2
41
58
26
4
56
31
5
-
0-1-4-



SpBE3
ACAUGC












23-152





P1829L/S/F
SaBE3
CUGCCCAUGGUUAG
1782
(CCGGAT)
20 (C10-14)
5.5
47
46
6
5
41
71
5
-
0-2-1-




UGGUGA












1-13





C275Y
SpBE3
UUCGAAAACAUUUA
1783
(AGG)
20 (C11/12)
4.3
54
25
2
0
13
17
4
-
0-0-5-




UGCUUC












15-166






aBE types: SpBE3 = APOBEC1-SpCas9n-UGI; VQR-SpBE3 = APOBEC1-VQR-SpCas9n-UGI; EQR-SpBE3 = APOBEC1-EQR-SpCas9n-UGI; VRER-SpBE3 = APOBEC1-VRER-SpCas9n-UGI; SaBE3 = APOBEC1-SaCas9n-UGI; KKH-SaBE3 = APOBEC1-KKH-SaCas9n-UGI; St3BE3 = APOBEC1-St3Cas9n-UGI; St1BE3 = APOBEC1-St1Cas9n-UGI.




bEfficiency score, based on Housden et al (Science Signaling, 2015, 8 (393):rs9).




cSpecificity scores based on Hsu et al (Nature biotechnology, 2013, 31 (9):827-832), Fusi et al (bioRxiv 021568; doi: http://dx.doi.org/10.1101/021568), Chari et al (Nature Methods, 2015, 12 (9):823-6), Doench et al (Nature Biotechnology, 2014, 32 (12):1262-7), Wang et al (Science, 2014, 343 (6166): 80-4), Moreno-Mateos et al (Nature Methods, 2015, 12 (10)982-8), Housden et al (Science Signaling, 2015, 8 (393):rs9), and the ″Prox/GC″ column shows ″+″ if the proximal 6 bp to the PAM has a GC count > = 4, and GG if the guide ends with GG, based on Farboud et al (Genetics, 2015, 199 (4):959-71).




dNumber of predicted off-target binding sites in the human genome allowing up to 0, 1, 2, 3 or 4 mismatches, respectively shown in the format 0-1-2-3-4. Algorithm used: Haeussler et al, Genome Biol. 2016; 17: 148.




dPhospho-serine site S1490.














TABLE 9







Exemplary Efficiency and Specificity Scores for gRNAs for Alteration of Intron/Exon Junctions in NaV1.7 (SNA9A) Gene via


Base Editing
























Programmable
SEQ










Pro



Target
BE
guide-RNA
ID

gRNA size






M.-
Hous-
x/
Off


variants
typea
sequence
NOs
PAM
(C edited)
Effb
Hsuc
Fusi
Chari
Doench
Wang
M.
den
GC
targetsd

























acceptor,
KKH-
GCAGCACGCAGCGU
1784
(AAAAAT)
20 (C15)
6.6
98
60
99
52
91
67
6
+
0-0-0-


intron 9
SaBE3
CUAGGG












0-8





acceptor,
KKH-
GCAGCACGCAGCGU
1785
(AAT)
20 (C15)
6.6
98
60
99
52
91
67
6
+
0-0-0-


intron 9
SaBE3
CUAGGG












0-8





acceptor,
St3BE3
GUUUAGGACCUAUA
1786
(TGGGG)
20 (C10/11)
5.6
97
71
97
40
89
30
5
+
0-0-0-


intron 16

UCAGGG












0-18





acceptor,
St1BE3
GAUUCCAGUAAAGA
1787
(TGAGAAA)
20 (C15/16)
6.3
94
59
99
24
78
42
6
-
0-0-0-


intron 14

CCUAAG












1-52





donor, intron
KKH-
ACUUACAACUUGAA
1788
(ATAGGT)
20 (C6)
4.8
91
67
97
22
57
34
4
+
0-0-0-


22
SaBE3
GCAGAG












2-20





acceptor,
St3BE3
GCUAGAAACAUACC
1789
(TGGAG)
20 (C14)
4.6
96
58
90
19
53
44
4
-
0-0-0-


intron 26

UGUAUG












1-19





donor, intron
SaBE3
ACCAGGGCACCACU
1790
(CAGGAT)
20 (C2/3)
8.4
86
70
97
37
55
49
8
+
0-0-2-


19

GCUGAG












7-16





donor, intron
St1BE3
AACCUCCAUACACA
1791
(CAAGAAA)
20 (C16/17)
3.4
98
61
84
25
77
29
3
-
0-0-0-


19

ACCUGA












0-10





acceptor,
SpBE3
GUUUAGGACCUAUA
1792
(TGG)
20 (C10/11)
5.6
84
71
97
40
89
30
5
+
0-0-1-


intron 16

UCAGGG












6-63





acceptor,
St1BE3
AACGACCUAGUAUU
1793
(AAAGAAA)
20 (C7)
6.0
92
53
89
23
59
39
6
-
0-0-0-


intron 21

CAAAAG












2-28





donor, intron
KKH-
UUACGCAAAAACAA
1794
(CAAAAT)
20 (C4)
4.0
99
71
79
60
78
39
4
-
0-0-0-


5
SaBE3
UGACGA












0-10





acceptor,
KKH-
CCAGUAAAGACCUA
1795
(AAAAAT)
20 (C11/12)
5.0
95
64
80
40
62
47
5
-
0-0-0-


intron 14
SaBE3
AGUGAG












1-20





acceptor,
SpBE3
GACACUGACUACAC
1796
(AAG)
20 (C9)
4.0
87
60
87
17
87
30
4
-
0-0-1-


intron 8

ACGAGA












5-60





acceptor,
St1BE3
UGUCUUCAGGCCUG
1797
(GGAGAAA)
20 (C11/12)
4.8
89
54
83
1
43
53
4
-
0-0-1-


intron 6

AAAAUG












434





donor, intron
VQR-
UUACCAGUCUGAAU
1798
(AGAA)
20 (C4/5)
6.6
92
62
80
68
64
12
6
+
0-0-0-


15
SpBE3
GAUCGC












4-58





donor, intron
SpBE3
CGUCCUUACGCUGU
1799
(AAG)
20 (C9)
7.5
84
58
85
20
53
57
7
-
0-0-0-


12b

CAUCAG












449





donor, intron
KKH-
ACUCGACAUUUUUG
1800
(TCCGGT)
20 (C2)
5.4
99
55
67
8
51
52
5
+
0-0-0-


4
SaBE3
GUCCAG












2-3





acceptor,
VQR-
UUCCAGUAAAGACC
1801
(AGAA)
20 (C13/14)
2.7
74
68
91
13
62
33
2
-
0-0-1-


intron 14
SpBE3
UAAGUG












9-206





acceptor,
EQR-
GAUUCCAGUAAAGA
1802
(TGAG)
20 (C13/14)
6.3
63
59
99
24
78
42
6
-
0-0-1-


intron 14
SpBE3
CCUAAG












28-179





acceptor,
KKH-
GGUCGUGCCCUAAA
1803
(ATCAAT)
20 (C9/10)
6.1
85
32
76
59
69
25
6
-
0-0-0-


intron 12
SaBE3
AAAAAA












1-14





acceptor,
St3BE3
UAGGUUUAGGACCU
1804
(GGGTG)
20 (C13/14)
6.1
97
64
28
11
64
52
6
-
0-0-0-


intron 16

AUAUCA












0-13





acceptor,
EQR-
GGACCUAUAUCAGG
1805
(AGAG)
20 (C5/6)
4.7
60
46
98
25
87
43
4
+
0-0-3-


intron 16
SpBE3
GuGGGG












15-150





acceptor,
VQR-
AGGUUUAGGACCUA
1806
(GGTG)
20 (C12/13)
5.1
79
71
79
5
75
50
5
-
0-0-1-


intron 16
SpBE3
UAUCAG












5-100





acceptor,
VQR-
ACACUGACUACACA
1807
(AGAA)
20 (C8)
3.4
82
59
76
25
72
42
3
-
0-0-0-


intron 8
SpBE3
cGAGAA












10-130





acceptor,
KKH-
GUAAAGACCUAAGU
1808
(AATAAT)
20 (C8/9)
6.9
75
50
82
55
84
26
6
-
0-0-1-


intron 14
SaBE3
GAGAAA












7-59





acceptor,
SpBE3
ACGCAGCGUCUAGG
1809
(TGG)
20 (C10)
6.7
75
37
82
30
40
48
6
-
0-0-0-


intron 9

GAAAAA












2-73





donor, intron
VQR-
UUACUUGCAACCUA
1810
(CGAT)
20 (C4)
3.9
93
63
63
74
59
45
3
+
0-0-0-


1
SpBE3
GCCCGC
345

















donor, intron
KKH-
GGACACUUACAACU
1811
(AGAGAT)
20 (C10)
7.3
95
53
61
39
72
-6
7
-
0-0-0-


22
SaBE3
UGAAGC












0-8





acceptor,
KKH-
GAUUGGUCGUGCCC
1812
(AAAAAT)
20 (C13/14)
4.5
98
25
56
39
70
40
4
-
0-0-0-


intron 12
SaBE3
UAAAAA












0-4





acceptor,
VQR-
CUGGACACUGACUA
1813
(AGAA)
20 (C12)
5.5
85
69
69
75
67
61
5
+
0-0-1-


intron 8
SpBE3
CACACG












7-86





acceptor,
KKH-
AAACAUACCUGUAU
1814
(GAAAAT)
20 (C9)
6.2
90
63
62
15
70
43
6
+
0-0-0-


intron 26
SaBE3
GUGGAG












1-20





donor, intron
SpBE3
UUUACCAGUCUGAA
1815
(CAG)
20 (C5/6)
6.4
83
69
70
50
57
26
6
-
0-0-2-


15

UGAUCG












3-86





acceptor,
St3BE3
ACCUAUAUCAGGGU
1816
(AGGGG)
20 (C3/4)
6.9
72
44
80
9
53
40
6
+
0-0-0-


intron 16

GGGGAG












7-85





acceptor,
St3BE3
UUAGGACCUAUAUC
1817
(GGGAG)
20 (C8/9)
3.9
91
61
41
40
66
73
3
+
0-0-1-


intron 16

AGGGUG












7-60





acceptor,
St1BE3
UCACAACGACCUAG
1818
(AAAGAAA)
20 (C11)
5.7
99
50
52
1
31
15
5
-
0-0-0-


intron 21

UAUUCA












0-9





acceptor,
KKH-
UUGUUCUGCAAAGA
1819
(AATAAT)
20 (C6)
5.6
67
43
84
47
61
41
5
-
0-0-2-


intron 25
SaBE3
AAUAAG












9-62





acceptor,
St1BE3
CCUGUAUGUGGAGG
1820
(ATAGAAA)
20 (C2)
4.2
85
31
66
7
36
50
4
-
0-0-0-


intron 26

AAAAUA












749





donor, intron
St1BE3
AAAACGUCCUUACG
1821
(TCAGAAG)
20 (C13)
3.6
98
53
27
2
65
30
3
-
0-0-0-


12b

CUGUCA












1-8





acceptor,
VQR-
UCUUCAGGCCUGAA
1822
(AGAA)
20 (C9/10)
6.6
56
67
94
74
77
54
6
-
0-0-2-


intron 6
SpBE3
AAUGGG












23-213





donor, intron
SaBE3
UAUUUUUUUACCCC
1823
(AGGAAT)
20 (C11/12)
3.7
98
52
35
18
59
24
3
+
0-0-0-


25

UGGUCG












0-10





donor, intron
KKH-
ACUUACUUGCAACC
1824
(GCCGAT)
20 (C6)
7.2
97
52
36
31
74
14
7
+
0-0-0-


1
SaBE3
UAGCCC












2-9





donor, intron
VQR-
AUUUUUUUACCCCU
1825
(GGAA)
20 (C10/11)
8.0
83
60
66
49
47
32
8
+
0-0-1-


25
SpBE3
GGUCGA












12-133





acceptor,
VQR-
UACUAUGAAAGUCU
1826
(GGAA)
20 (C13)
5.3
62
63
86
28
64
37
5
+
0-0-5-


intron 2
SpBE3
GCAGGA












14-194





donor, intron
VQR-
AAUAUUCUUACCUA
1827
(AGAT)
20 (C11/12)
4.2
63
62
85
15
80
51
4
-
0-0-2-


26
SpBE3
CAAUGG












22-264





acceptor,
SaBE3
ACCUAAACACAAGA
1828
(TGGGAT)
20 (C2/3)
6.7
91
56
28
11
58
26
6
-
0-0-1-


intron 4

UUCCAU












1-18





acceptor,
KKH-
AGAGGCCUGGAUGG
1829
(AGAAAT)
20 (C6/7)
6.8
80
60
66
52
81
75
6
-
0-0-3-


intron 1
SaBE3
AAACAA












3-20





donor, intron
KKH-
AGUACCUACAUCAA
1830
(GGAAAT)
20 (C9)
4.6
87
41
59
9
46
33
4
-
0-0-1-


20
SaBE3
CAAUUA












4-23





donor, intron
SpBE3
GACACUUACAACUU
1831
(GAG)
20 (C9)
5.3
62
63
83
47
76
33
5
-
0-0-4-


22

GAAGCA












13-121





acceptor,
SpBE3
CCAUACACAACCUG
1832
(AAG)
20 (C11/12)
2.7
74
57
70
14
67
24
2
-
0-0-1-


intron 18

ACAAGA












8-88





acceptor,
KKH-
CGCAGCGUCUAGGG
1833
(GGAAAT)
20 (C9)
6.0
98
44
17
28
29
52
6
-
0-0-0-


intron 9
SaBE3
AAAAAU












0-2





donor, intron
SpBE3
GAGACUUACCAAAU
1834
(TAG)
20 (C5/6)
7.4
67
49
75
14
77
32
7
-
0-0-1-


14

UUCCUA












18-121





acceptor,
St3BE3
UUGUCUUCAGGCCU
1835
(GGGAG)
20 (C12/13)
5.8
92
49
33
25
32
59
5
-
0-0-1-


intron 6

GAAAAU












3-22





donor, intron
KKH-
UUCUUACCUGGGAU
1836
(AATAGT)
20 (C7/8)
5.3
89
52
37
17
49
45
5
-
0-0-1-


6
SaBE3
UACAGA












2-14





acceptor,
SpBE3
UUUAGGACCUAUAU
1837
(GGG)
20 (C9/10)
7.5
80
60
15
17
69
48
7
+
0-0-1-


intron 16

CAGGGU












11-87





donor, intron
KKH-
AACGUCCUUACGCU
1838
(AGAAGT)
20 (C11)
6.4
95
45
34
4
28
46
6
-
0-0-0-


12b
SaBE3
GUCAUC












1-4





acceptor,
SpBE3
AGGACCUAUAUCAG
1839
(GAG)
20 (C6/7)
5.1
50
53
89
8
64
72
5
+
0-0-3-


intron 16

GGUGGG












23-231





acceptor,
SpBE3
UUAGGACCUAUAUC
1840
(GGG)
20 (C8/9)
3.9
77
61
41
40
66
73
3
+
0-0-1-


intron 16

AGGGUG












19-153





acceptor,
EQR-
UGUCUUCAGGCCUG
1841
(GGAG)
20 (C11/12)
4.8
55
54
83
1
43
53
4
-
0-0-3-


intron 6
SpBE3
AAAAUG












26-246





donor, intron
St3BE3
AUAAAUAUUCUUAC
1842
(TGGAG)
20 (C14/15)
5.7
88
50
27
15
59
35
5
-
0-0-1-


26

CUACAA












5-55





acceptor,
KKH-
CAUACCUGUAUGUG
1843
(AATAAT)
20 (C6)
4.3
81
56
50
6
48
42
4
-
0-0-0-


intron 26
SaBE3
GAGGAA












1-28





donor, intron
St1BE3
GUUUACCAGUCUGA
1844
(GCAGAAC)
20 (C6/7)
6.1
94
43
23
1
42
38
6
-
0-0-0-


15

AUGAUC












3-14





donor, ntron
VQR-
GAUUAUUACAUACC
1845
(AGTG)
20 (C13/14)
3.4
76
55
60
7
73
28
3
-
0-0-0-


13
SpBE3
UUCCAC












7-137





donor, intron
SpBE3
UCACCUUUUUGUCU
1846
(TAG)
20 (C4/5)
5.9
65
45
71
6
42
16
5
-
0-0-1-


2

GCAUAG












21-176





acceptor,
St1BE3
AUGAAAGUCUGCAG
1847
(AAAGAAA)
20 (C9)
5.0
77
52
58
14
63
44
5
-
0-0-1-


intron 2

GAGGAA












4-118





donor, intron
SpBE3
AAACGUCCUUACGC
1848
(CAG)
20 (C12)
5.6
82
53
14
14
46
62
5
-
0-0-1-


12b

UGUCAU












14-25





donor, intron
KKH-
CACUUACUCGACAU
1849
(TCCAGT)
20 (C7)
6.5
91
44
39
51
51
39
6
-
0-0-0-


4
SaBE3
UUUUGG












1-7





donor, intron
KKH-
CUUGGUACUCACCU
1850
(AAAGGT)
20 (C12/13)
9.4
92
43
29
31
42
39
9
-
0-0-2-


9
SaBE3
GUUGGU












1-11





acceptor,
VQR-
GCAAUUGCCUGGUU
1851
(AGAC)
20 (C8/9)
5.6
79
54
55
36
82
49
5
+
0-0-2-


intron 10
SpBE3
GGGCCA












9-83





donor, intron
VQR-
AACGUCCUUACGCU
1852
(AGAA)
20 (C11)
6.4
89
45
34
4
28
46
6
-
0-0-0-


12b
SpBE3
GUCAUC












2-33





acceptor,
VQR-
CAUACACAACCUGA
1853
(AGAC)
20 (C10/11)
7.1
50
54
84
9
48
51
7
-
0-0-5-


intron 18
SpBE3
CAAGAA












39-478





acceptor,
St1BE3
AAGUUCUGGGAGAA
1854
(AGAGAAC)
20 (C6)
4.9
81
52
40
6
73
43
4
-
0-0-0-


intron 13

AAAAGC












13-84





donor, intron
KKH-
UGGUUACAUACCAC
1855
(TCCAAT)
20 (C12)
4.5
91
42
10
3
43
55
4
-
0-0-0-


16
SaBE3
CAGGUU












3-12





acceptor,
St1BE3
UGCCUUUAAGAAUA
1856
(ATAGAAT)
20 (C3/4)
2.9
84
21
48
4
33
14
2
-
0-0-0-


intron 22

ACAUUA












7-68





acceptor,
St1BE3
UAAGAGGCCUGGAU
1857
(AAAGAAA)
20 (C8/9)
6.2
93
36
37
6
53
50
6
-
0-0-0-


intron 1

GGAAAC











1
-38





donor, intron
EQR-
GGACACUUACAACU
1858
(AGAG)
20 (C9)
7.3
69
53
61
39
72
-6
7
-
0-0-2-


22
SpBE3
UGAAGC












11-129





donor, intron
SpBE3
UAUUUUUUUACCCC
1859
(AGG)
20 (C11/12)
3.7
78
52
35
18
59
24
3
+
0-0-1-


25

UGGUCG












12-87





donor, intron
KKH-
AUACCCACUUACUC
1860
(TTTGGT)
20 (C12)
5.4
99
30
18
16
27
33
5
-
0-0-0-


4
SaBE3
GACAUU












0-4





donor, intron
SpBE3
CUUACUCGACAUUU
1861
(CAG)
20 (C5)
8.7
80
48
9
12
32
31
8
-
0-0-0-


4

UUGGUC












5-56





donor, intron
SpBE3
UGGUACUCACCUGU
1862
(AGG)
20 (C10/11)
8.3
82
46
2
20
44
52
8
-
0-0-1-


9

UGGUAA












9-84





acceptor,
SaBE3
AAUAGGUUUAGGAC
1863
(CAGGGT)
20 (C15/16)
4.3
91
36
7
5
43
34
4
-
0-0-0-


intron 16

CUAUAU












6-11





acceptor,
VQR-
ACAACGACCUAGUA
1864
(AGAA)
20 (C9)
4.1
76
51
50
41
66
31
4
-
0-0-0-


intron 21
SpBE3
UUCAAA












4-113





acceptor,
SaBE3
GCCUUUAAGAAUAA
1865
(TAGAAT)
20 (C2/3)
5.9
89
24
38
3
42
26
5
-
0-0-0-


intron 22

CAUUAA












1-38





donor, intron
SpBE3
GGGUGGUACCUGAU
1866
(TAG)
20 (C9/10)
7.7
70
47
57
17
90
60
7
+
0-0-2-


11

UGGGGG












12-152





acceptor,
SpBE3
ACGACCUAGUAUUC
1867
(AAG)
20 (C6)
4.9
72
54
45
16
69
33
4
-
0-0-1-


intron 21

AAAAGA












6-79





acceptor,
VQR-
GAAACAUACCUGUA
1868
(GGAA)
20 (C10)
4.9
63
63
60
33
66
45
4
-
0-0-0-


intron 26
SpBE3
UGUGGA












21-206





donor, intron
KKH-
UAAACUCACCUUUU
1869
(CATAGT)
20 (C9/10)
8.0
57
57
68
6
42
37
8
-
0-0-1-


2
SaBE3
UGUCUG












5-21





donor, intron
VQR-
UACAUACCCUGAAU
1870
(TGAA)
20 (C7/8)
5.8
75
50
8
6
62
12
5
+
0-0-0-


8
SpBE3
CUGUGC












15-118





acceptor,
EQR-
CUAGAAACAUACCU
1871
(GGAG)
20 (C13)
6.2
66
58
16
18
50
34
6
-
0-0-0-


intron 26
SpBE3
GUAUGU












19-215





acceptor,
VQR-
CGACCUAGUAUUCA
1872
(AGAA)
20 (C5)
3.6
59
51
64
20
65
43
3
-
0-0-1-


intron 21
SpBE3
AAAGAA












10-143





acceptor,
KKH-
AAGUUGCCUUUAAG
1873
(ATTAAT)
20 (C7/8)
4.4
87
36
23
11
39
38
4
-
0-0-0-


intron 22
SaBE3
AAUAAC












735





donor, intron
VQR-
GGUGGUACCUGAUU
1874
(AGAC)
20 (C8/9)
6.8
73
50
43
22
78
63
6
+
0-0-5-


11
SpBE3
GGGGGu












13-84





donor, intron
St3BE3
CACCUUUUUGUCUG
1875
(AGGGG)
20 (C3/4)
3.8
91
32
7
1
13
41
3
-
0-0-0-


2

CAUAGU












2-31





acceptor,
SpBE3
ACCUAAACACAAGA
1876
(TGG)
20 (C2/3)
6.7
66
56
28
11
58
26
6
-
0-0-3-


intron 4

UUCCAU












17-119





acceptor,
VQR-
CGCAGCGUCUAGGG
1877
(GGAA)
20 (C9)
6.0
78
44
17
28
29
52
6
-
0-0-0-


intron 9
SpBE3
AAAAAU












4-61





donor, intron
St3BE3
AAUUUGGGUGGUAC
1878
(GGGGG)
20 (C14/15)
5.3
96
26
9
2
36
67
5
-
0-0-0-


11

CUGAUU












3-31





donor, intron
SpBE3
CCUUUUUGUCUGCA
1879
(GGG)
20 (C1/2)
6.0
66
56
38
61
59
37
6
-
0-0-3-


2

UAGUAG












22-194





donor, intron
SpBE3
UUUACCCCUGGUCG
1880
(TGG)
20 (C5/6)
5.1
89
33
8
13
26
52
5
-
0-0-0-


25

AGGAAU












8-52





donor, intron
VQR-
UACUUACGCAAAAA
1881
(CGAC)
20 (C7)
4.1
56
62
66
22
75
29
4
-
0-0-2-


5
SpBE3
CAAUGA












14-257





acceptor,
SaBE3
CCUAUAUCAGGGUG
1882
(GGGGGT)
20 (C2/3)
3.8
76
45
25
4
47
56
3
+
0-0-0-


intron 16

GGGAGA












1-30





donor, intron
SaBE3
AAUUUGGGUGGUAC
1883
(GGGGGT)
20 (C14/15)
5.3
95
26
9
2
36
67
5
-
0-0-0-


11

CUGAUU












2-5





donor, intron
SpBE3
UUGGUACUCACCUG
1884
(AAG)
20 (C11/12)
3.7
83
38
12
0
37
54
3
-
0-0-1-


9

UUGGUA


















donor, intron
EQR-
AUUUACCAGGGCAC
1885
(TGAG)
20 (C6/7)
6.4
67
40
53
1
55
10
6
+
0-0-3-


19
SpBE3
CACUGC












22-108





donor, intron
KKH-
ACAUACCUUCCACA
1886
(GTTAAT)
20 (C6/7)
6.3
79
41
30
13
33
31
6
-
0-0-0-


13
SaBE3
GUGUUU












3-38





donor, intron
KKH-
CACCUGUUGGUAAA
1887
(CCCAGT)
20 (C3/4)
5.2
93
26
7
3
7
27
5
-
0-0-0-


9
SaBE3
GGUUUU












1-14





donor, intron
KKH-
GACUUACCAAAUUU
1888
(GCAAGT)
20 (C7/8)
6.2
83
35
29
15
36
52
6
-
0-0-0-


14
SaBE3
CCUAUA












4-31





donor, intron
VQR-
ACACUUACAACUUG
1889
(AGAT)
20 (C8)
3.5
55
63
62
38
87
45
3
-
0-0-9-


22
SpBE3
AAGCAG












16-173





donor, intron
St1BE3
AUUACUUCUUACCU
1890
(ACAGAAA)
20 (C12/13)
7.0
91
27
13
3
29
37
7
-
0-0-1-


6

GGGAUU












4-30





acceptor,
SpBE3
UGCAAUUGCCUGGU
1891
(AAG)
20 (C9/10)
7.8
74
43
11
8
40
37
7
+
0-0-1-


intron 10

UGGGCC












15-146





acceptor,
SpBE3
CGGAGCUAAAAGCA
1892
(AAG)
20 (C6)
4.6
65
35
52
11
36
46
4
-
0-0-2-


intron 15

AAUAUA












16-105





acceptor,
KKH-
CUCGGAGCUAAAAG
1893
(TAAAGT)
20 (C8)
4.8
88
28
29
7
33
42
4
-
0-0-0-


intron 15
SaBE3
CAAAUA












1-16





donor, intron
SaBE3
CACCUUUUUGUCUG
1894
(AGGGGT)
20 (C3/4)
3.8
84
32
7
1
13
41
3
-
0-0-1-


2

CAUAGU












15-17





donor, intron
SpBE3
AACUCACCUUUUUG
1895
(TAG)
20 (C7/8)
3.7
65
49
12
13
29
20
3
-
0-0-0-


2

UCUGCA












20-206





acceptor,
VQR-
AGAGGCCUGGAUGG
1896
(AGAA)
20 (C6/7)
6.8
46
60
66
52
81
75
6
-
0-0-5-


intron 1
SpBE3
AAACAA












54-404





donor, intron
VQR-
AGUACCUACAUCAA
1897
(GGAA)
20 (C9)
4.6
52
41
59
9
46
33
4
-
0-0-3-


20
SpBE3
CAAUUA












53-739





acceptor,
SaBE3
AUAAAAAUAUUCUG
1898
(AAGAAT)
20 (C12)
3.8
58
53
50
8
53
22
3
-
0-0-8-


intron 7

UUGAAG












13-102





acceptor,
St3BE3
CCUAUAUCAGGGUG
1899
(GGGGG)
20 (C2/3)
3.8
64
45
25
4
47
56
3
+
0-0-0-


intron 16

GGGAGA












12-144





acceptor,
KKH-
UGUCUACCUAUAAA
1900
(AAAAGT)
20 (C7/8)
4.3
78
31
9
17
26
16
4
-
0-0-0-


intron 23
SaBE3
AUUUAC












3-55





acceptor,
St1BE3
UAAAUACCUGUAGA
1901
(TCAGAAT)
20 (C7/8)
4.1
68
16
41
10
40
39
4
-
0-0-1-


intron 5

AUUAAA












17-167





donor, intron
SpBE3
ACCCACUUACUCGA
1902
(TGG)
20 (C10)
7.1
86
20
8
4
7
12
7
-
0-0-1-


4

CAUUUU












4-58





acceptor,
St1BE3
GAUUUUGUUCUGCA
1903
(TAAGAAT)
20 (C10)
5.9
68
35
37
15
76
33
5
-
0-0-3-


intron 25

AAGAAA












16-104





donor, intron
KKH-
UUACCCUCAUUCCU
1904
(CTAGAT)
20 (C4/5)
5.2
64
40
20
51
30
21
5
-
0-1-1-


21
SaBE3
UCAAAU












3-19





donor, intron
EQR-
UAUAUUUUUUUACC
1905
(CGAG)
20 (C13/14)
4.1
51
53
36
12
37
25
4
+
0-0-3-


25
SpBE3
ccuGGu












38-413





donor, intron
KKH-
UAGUACACUCAUAU
1906
(AAAAAT)
20 (C8/10)
9.1
90
10
4
4
18
42
9
-
0-0-0-


3
SaBE3
ccuuuu












2-26





donor, intron
VQR-
ACCCUCAUUCCUUC
1907
(AGAT)
20 (C2/3)
5.6
62
36
3
1
28
12
5
-
0-0-4-


21
SpBE3
AAAUCU












22-199





donor, intron
VQR-
AAUAUUACAUACCC
1908
(TGTG)
20 (C12/13)
4.5
63
31
16
2
39
12
4
-
0-0-2-


8
SpBE3
UGAAUC












13-223





donor, intron
SpBE3
AAGUACCUACAUCA
1909
(AGG)
20 (C10)
6.6
53
40
36
16
43
42
6
-
0-0-8-


20

ACAAUU












38-315





donor, intron
SpBE3
CACCUUUUUGUCUG
1910
(AGG)
20 (C3/4)
3.8
60
32
7
1
13
41
3
-
0-0-3-


2

CAUAGU












25-159





donor, intron
SpBE3
UUACAACUUGAAGC
1911
(AGG)
20 (C4)
4.6
41
47
37
45
44
56
4
-
0-0-10-


22

AGAGAU












36-283






aBE types: SpBE3 = APOBEC1-SpCas9n-UGI; VQR-SpBE3 = APOBEC1-VQR-SpCas9n-UGI; EQR-SpBE3 = APOBEC1-EQR-SpCas9n-UGI; VRER-SpBE3 = APOBEC1-VRER-SpCas9n-UGI; SaBE3 = APOBEC1-SaCas9n-UGI; KKH-SaBE3 = APOBEC1-KKH-SaCas9n-UGI; St3BE3 = APOBEC1-St3Cas9n-UGI; St1BE3 = APOBEC1-St1Cas9n-UGI.




bEfficiency score, based on Housden et al (Science Signaling, 2015, 8 (393):rs9).




cSpecificity scores based on Hsu et al (Nature biotechnology, 2013, 31 (9):827-832), Fusi et al (bioRxiv 021568; doi: http://dx.doi.org/10.1101/021568), Chari et al (Nature Methods, 2015, 12 (9):823-6), Doench et al (Nature Biotechnology, 2014, 32 (12):1262-7), Wang et al (Science, 2014, 343 (6166): 80-4), Moreno-Mateos et al (Nature Methods, 2015, 12 (10)982-8), Housden et al (Science Signaling, 2015, 8 (393):rs9), and the ″Prox/GC″ column shows ″+″ if the proximal 6 bp to the PAM has a GC count > = 4, and GG if the guide ends with GG, based on Farboud et al (Genetics, 2015, 199 (4):959-71).




dNumber of predicted off-target binding sites in the human genome allowing up to 0, 1, 2, 3 or 4 mismatches, respectively shown in the format 0-1-2-3-4. Algorithm used: Haeussler et al, Genome Biol. 2016; 17: 148. Isoform 2 is expressed preferentially in the dorsal root ganglion.








Editing the SCN9A Gene Using Cas9 Nuclease or Cas9 Nickase Pairs


In some embodiments, the editing of an ion channel-encoding polynucleotide (e.g., SCN9A gene) may be achieved using Cas9 nucleases, or Cas9 nickase pairs (e.g., as described in Ran et al., Cell. 2013 Sep. 12; 154(6): 1380-1389., incorporated herein by reference. Cas9 nuclease or Cas9 nickase pairs introduce double stranded DNA break in the ion channel-encoding polynucleotide (e.g., SCN9A gene). Indels may be introduced when the double strand break is repaired by the cellular double strand break repair system, causing loss-of-function SCN9A mutants. The use of Cas9 nuclease to generate SCN9A mutation have been described in the art, e.g., in Sun et al., Transl Perioper Pain Med. 2016; 1(3): 22-33, incorporated herein by reference.


Nonetheless, provided herein are top-scoring guide-RNA target sites in SCN9A gene using these alternative genome editing agents (Table 10 and Table 11).









TABLE 10







Top-Scoring Guide-RNA Target Sites and PAM Sequences in SCN9A for


Cas9 Nuclease
















Guide-
SEQ ID
Specificity
Efficiency


Entry
Position
Strand
RNA target site (PAM)
NOs
score50
score28





  1
   350
-1
GAGCACGGGCGAAAGACCGA (GGG)
1912
94
67





  2
   439
 1
GTATTACGCCACCTGGAAAG (AAG)
1913
81
70





  3
   532
-1
ACAGAGTCAAAACCGCACAG (GAG)
1914
84
89





  4
   534
-1
CCACAGAGTCAAAACCGCAC (AGG)
1915
84
60





  5
   753
 1
AGCTTAGCAGATACAACCTG (TGG)
1916
60
72





  6
   755
 1
CTTAGCAGATACAACCTGTG (GGG)
1917
70
73





  7
   837
 1
TCTGCCCCTATTTCTCAGCG (CAG)
1918
75
83





  8
  1555
-1
TCATGAAAATTTGCGACACA (GGG)
1919
84
66





  9
  2064
-1
CTACTTTTTTCCTTGCCACA (GAG)
1920
51
81





 10
  2380
-1
GCTGAAATGGAGTAATAAGG (AAG)
1921
61
85





 11
  2596
-1
ATAGAGAATGAATTGCAGGG (GAG)
1922
52
87





 12
  2846
-1
ATGTGTTTTAGCCACGACCT (GGG)
1923
90
62





 13
  3685
-1
AAACATCAATTTAGACCGTG (TGG)
1924
83
64





 14
  5589
-1
AAAACATTAGCCGGGCACGG (TGG)
1925
78
71





 15
  5724
-1
AGATAATGGGCTGAGCGCGG (TGG)
1926
88
65





 16
  6504
 1
GGCCTACTCAGGGATCAACT (GGG)
1927
82
66





 17
  7409
 1
GGAGTGCAGTGGTACGATGT (TGG)
1928
89
62





 18
  7790
-1
TGGTCATGAGGATTTAAACG (GAG)
1929
77
77





 19
  7963
 1
CCCCACACAGATATACCTGG (TGG)
1930
69
76





 20
  7967
-1
TGCTTGGTAGCGTAACCACC (AGG)
1931
92
61





 21
  8465
 1
ACGCCCGTAATCCAGCACTT (TGG)
1932
89
67





 22
 10500
 1
GGGATTACTAACCTGCGTCG (AGG)
1933
95
65





 23
 10501
 1
GGATTACTAACCTGCGTCGA (GGG)
1934
98
61





 24
 10501
-1
TTATCACGCAGCCCTCGACG (CAG)
1935
96
71





 25
 11027
 1
CTAGCAAAACAGATACCAAG (GAG)
1936
59
81





 26
 11046
 1
GGAGACACCGCATGTTGTCA (GGG)
1937
83
62





 27
 11105
-1
GTGTTTTGAGATCCGTAAGG (CAG)
1938
90
71





 28
 11108
-1
AGCGTGTTTTGAGATCCGTA (AGG)
1939
91
62





 29
 11121
 1
TTACGGATCTCAAAACACGC (TAG)
1940
92
86





 30
 11466
-1
TTCTGATATATGCTACGACC (CGG)
1941
92
60





 31
 12273
-1
TGAATCACAGACCTAAACGT (CAG)
1942
79
79





 32
 12530
-1
GCAAGGATATTCTTTCCCAT (CAG)
1943
59
81





 33
 12956
-1
TAGGGGACTTAACCTCCACA (AGG)
1944
81
67





 34
 12973
-1
TGGGAAAAGGTATTGCCTAG (GGG)
1945
70
74





 35
 14409
-1
TGGATACACTGAACACACCG (AGG)
1946
85
73





 36
 14896
-1
AGTTCTTATATAGCAAACCG (GAG)
1947
88
82





 37
 14921
 1
ATAAGAACTGAGCTTTAGAG (AAG)
1948
55
84





 38
 15045
 1
GCTGTCTTACTATTTTACTG (CAG)
1949
56
83





 39
 15387
-1
GTAATAACTTTGGCACCAGG (CAG)
1950
67
91





 40
 15569
 1
ATAAAGTCTTAACTAACAGA (GAG)
1951
52
89





 41
 15850
-1
GGAGAACTGCTTGAACCCGG (GAG)
1952
71
72





 42
 17006
 1
TAGTTATCATTGGGACACCT (GGG)
1953
82
63





 43
 17865
 1
AGTGAGCTGAGATCGCACCA (AGG)
1954
82
82





 44
 18150
-1
ATTGGGTCTCCAATACCAAA (CAG)
1955
75
75





 45
 18651
 1
GGCCCTGTAGGCGTTACACT (AGG)
1956
92
62





 46
 18855
 1
GGTGGGAACAACACACACTG (GGG)
1957
62
74





 47
 19346
 1
CCACATGGATGGATACACAA (GGG)
1958
68
72





 48
 20999
 1
AGTCAGCTATGATTGCACCA (CAG)
1959
75
88





 49
 21248
-1
GCTTGTACGCAAATAACAGG (GAG)
1960
83
86





 50
 23890
-1
AGCCCTAAACCCGTAAAATG (GGG)
1961
81
63





 51
 24449
 1
GCTCAGCTGAACCAGAGCAA (GAG)
1962
58
89





 52
 24871
-1
AATCTGATTTGGCGACACAA (AGG)
1963
83
63





 53
 25247
-1
TTGCCCACTGGTGATCACCA (GGG)
1964
69
72





 54
 25468
-1
GTATGCATAGGGGTATACTT (TAG)
1965
83
78





 55
 25928
 1
TATAGACAAGTCCACGAACC (AGG)
1966
87
64





 56
 25930
 1
TAGACAAGTCCACGAACCAG (GAG)
1967
85
73





 57
 26295
-1
ATACCTCAGACCGGGCATGG (TGG)
1968
78
73





 58
 26495
 1
AATGAAGTGGAAGTACACAG (TAG)
1969
55
81





 59
 26796
 1
ATAAGATGGTCACAGCTTGG (GGG)
1970
63
74





 60
 26974
 1
TCCTGCCTCAGCCTTCCGAG (GAG)
1971
55
84





 61
 27331
-1
GCTTATGGGATTAACCCACA (AGG)
1972
80
65





 62
 27917
 1
GGAGCCACAGATTGTTAGCA (GAG)
1973
71
75





 63
 28255
-1
ACACGGAAAACAAATCCAGG (AAG)
1974
51
87





 64
 28522
-1
TGGGAGATCAACATGCCTAG (TGG)
1975
69
73





 65
 29289
 1
GCACCTGCTCCATATTTAGT (AAG)
1976
73
75





 66
 29487
-1
CTTGAGCCGTCAAAGACACA (CAG)
1977
67
81





 67
 29862
-1
GTATTACCACTTCGTGAAAA (GAG)
1978
85
62





 68
 29864
 1
GCTTGTTTACTCTTTTCACG (AAG)
1979
66
91





 69
 29990
 1
CCATCTTTGTTGTTTCAAGG (CAG)
1980
58
83





 70
 30043
 1
GAATACTCCCAAATTCAGGG (AGG)
1981
67
76





 71
 30500
 1
AGAGCATACTGACCTCAACG (TGG)
1982
83
77





 72
 30917
 1
TAGATACCCATCTTATACAC (AGG)
1983
82
60





 73
 31112
 1
ACACTGCTGCTTCACATCAG (GGG)
1984
61
70





 74
 31620
-1
GATACCATTAACTATCACCT (GGG)
1985
73
71





 75
 33443
 1
GAGACTCTATTCTAAACGTG (AGG)
1986
85
63





 76
 33616
 1
TAACTGCAGTAGTTGACCAT (TGG)
1987
82
64





 77
 34247
-1
TTTGCTATGACACAGTACAG (AAG)
1988
66
80





 78
 34544
 1
TCTTAGACGGTATAAAGTGG (GAG)
1989
80
72





 79
 35281
 1
GAGGGTCACTTGAATCCCAG (AGG)
1990
68
74





 80
 36749
 1
TTTTAAATTTGATTTCCGAA (GAG)
1991
56
85





 81
 37237
-1
TTCGTGACCTGACAATTGGG (CAG)
1992
83
72





 82
 37670
 1
AAGCCCTAAATCAATGCCGA (GGG)
1993
84
61





 83
 37739
 1
GGGCATGTCCCTTTCATACA (GAG)
1994
72
79





 84
 37955
-1
GCACTCTTCCCAGGATACAA (GAG)
1995
55
92





 85
 38493
-1
GGAATATTCCTAGTCCCAAG (AGG)
1996
77
72





 86
 38734
 1
CCTCTCATAAGAAATCACTG (GAG)
1997
56
86





 87
 39328
-1
TACACTGTAAACGGCCTGAG (AGG)
1998
85
66





 88
 39329
-1
TTACACTGTAAACGGCCTGA (GAG)
1999
86
70





 89
 39457
-1
CCCCAAAATCGATTAAGCTG (AGG)
2000
84
66





 90
 39551
-1
CCTCCCTCATGGGAACATGG (AGG)
2001
62
70





 91
 40096
-1
GCACAGTCTGAGCATGTACA (GAG)
2002
66
90





 92
 40431
 1
GGTGCTAGAGAACAGCCAAT (CAG)
2003
73
92





 93
 41623
-1
CGTCATGTAGAATATGGCAG (AAG)
2004
71
83





 94
 42582
 1
AAGACATGTTACATTGTAGG (GGG)
2005
63
70





 95
 42636
 1
AGTCAACTCTGCAAAACAAG (GAG)
2006
52
83





 96
 42662
 1
TTAATGAAAGCCAATCATCG (AGG)
2007
74
74





 97
 42857
 1
ACTCTGGTAACTCCACCTGG (AGG)
2008
66
76





 98
 43791
-1
AGCTATAGTAGAATCCTGTG (TGG)
2009
76
75





 99
 43824
 1
TGTACATAGACCCAGCACAA (GGG)
2010
71
76





100
 45140
 1
TTAGGAACCAGGCTGCACAG (CAG)
2011
60
89





101
 45255
 1
TATTGTGAACTGCACATACG (AGG)
2012
81
65





102
 45256
 1
ATTGTGAACTGCACATACGA (GGG)
2013
88
71





103
 45416
-1
GATAACACCTGGCAATCCAG (CAG)
2014
73
85





104
 45427
-1
GCTCTCTTAGTGATAACACC (TGG)
2015
81
60





105
 46134
 1
AAACTGTTAACACAAGAGGG (AGG)
2016
65
71





106
 46321
 1
CAACAGACTGTAAGCCCTAG (AGG)
2017
72
70





107
 46346
-1
GGGACACAATACTAACTAGG (TGG)
2018
81
72





108
 46675
-1
GATTTTAAGGTTTACCCCCG (CAG)
2019
87
79





109
 47862
-1
TGACACTCTGGAACATTAGA (GAG)
2020
71
73





110
 47868
 1
TCACTCTCTCTAATGTTCCA (GAG)
2021
59
81





111
 47960
-1
TTAAGAGTATGAAATCCTAC (AAG)
2022
64
84





112
 48743
 1
GGAGGTCGCTTGAGTGCACG (AGG)
2023
88
60





113
 48893
-1
ATATTGCGTTTATACCACAG (AAG)
2024
71
74





114
 49353
-1
TTACCATTGAGAGATCCTTG (GAG)
2025
71
72





115
 50070
 1
AAGGTGATGTTATCGAACAT (AGG)
2026
88
63





116
 50074
 1
TGATGTTATCGAACATAGGA (GAG)
2027
82
65





117
 50130
-1
GACAAGGATACGCTTAACCC (TGG)
2028
92
62





118
 50147
 1
TTAAGCGTATCCTTGTCAGC (CAG)
2029
87
69





119
 50619
-1
GATCCATTAGAAATGCTGAT (CAG)
2030
57
88





120
 51722
-1
GCACTCCAGCCTGAACCAGA (GAG)
2031
67
81





121
 51778
-1
GGAGAATTACTTGAACCCAG (CAG)
2032
54
82





122
 53493
-1
GTTAATAATCATGCTCCGAA (GAG)
2033
87
74





123
 53495
-1
GAGTTAATAATCATGCTCCG (AAG)
2034
82
86





124
 53560
 1
GAGGTTATGTCATCTCCACA (GGG)
2035
66
73





125
 54056
 1
TCTTGCTTATTGCTTGACAA (CAG)
2036
64
81





126
 54511
-1
GAGCCATGATCACACCACTG (CGG)
2037
69
84





127
 54692
-1
AAGGCGGGTGAATCACTTGA (GGG)
2038
81
65





128
 54693
-1
CAAGGCGGGTGAATCACTTG (AGG)
2039
84
62





129
 55118
 1
ACCCTGGTCAATAGCCACAG (TGG)
2040
70
72





130
 55121
-1
AATGCAGGTATACTCCACTG (TGG)
2041
79
79





131
 55162
 1
ATACACTCTTGACAACCATA (GAG)
2042
74
78





132
 56004
 1
CCCCATTCTCAAATTCCAAG (CAG)
2043
57
87





133
 56439
-1
GATGTGTTCTTCAAGTAGCA (GAG)
2044
66
86





134
 57073
 1
GAGACTAATGTCGAACAACA (TGG)
2045
81
67





135
 57802
-1
TTTTAGCTAGAACCAGGGTG (GAG)
2046
71
79





136
 60122
 1
CTGACTAATGAAAACTCCTG (TGG)
2047
62
70





137
 60257
-1
TAGGCTGACAGGGTTACAGA (GGG)
2048
66
70





138
 60516
-1
ATGCTAGTGGTACCATGCAT (GGG)
2049
81
61





139
 60808
-1
GCCTCACTAGACTTTCAGTG (TAG)
2050
76
79





140
 61932
-1
GCACCCCAAAACAATTACCA (CAG)
2051
66
85





141
 62404
 1
TTAAGCCAAAGCCTAATCCA (CAG)
2052
74
71





142
 62737
-1
GCTGCATTATCCCCTAACAA (GAG)
2053
81
94





143
 63063
-1
CTATTTATAGAGCACAGGCA (GAG)
2054
56
85





144
 63147
-1
TGAGCTATAAGTATCAACAC (TGG)
2055
80
63





145
 63203
-1
CCAGGCACATTGTCAATAGG (CAG)
2056
79
75





146
 63236
 1
GTCACTCAAGAGCTCTAACG (GAG)
2057
87
68





147
 63239
 1
ACTCAAGAGCTCTAACGGAG (AGG)
2058
89
68





148
 63307
 1
TCTGTAGCCTATGGGCCAAA (GAG)
2059
71
72





149
 66208
 1
TTAGGATTGACTTGGCGATG (CGG)
2060
84
61





150
 66433
 1
GTTTGTAGTTCTCCTCGAAG (AGG)
2061
84
62





151
 66811
-1
AGGGAGACTTTATAAACCGG (AGG)
2062
85
73





152
 67111
-1
AGTGAGCCAAAATCGCGCCA (CGG)
2063
95
69





153
 67288
-1
AGGTGGGCAGAACACAACGT (CAG)
2064
79
74





154
 67480
 1
AAACTTACAATCATGGTCGA (AGG)
2065
89
61





155
 67959
-1
GGCTTTTTATTTGTATGCGG (CAG)
2066
79
72





156
 67997
-1
CATTTCTCACCGTATTCAGG (AGG)
2067
82
62





157
 67998
-1
GCATTTCTCACCGTATTCAG (GAG)
2068
83
65





158
 68003
 1
ACTTACCTCCTGAATACGGT (GAG)
2069
90
67





159
 68307
-1
GATTCCTCACTTACTAACCA (CGG)
2070
75
73





160
 68314
 1
ATTACCGTGGTTAGTAAGTG (AGG)
2071
88
60





161
 68419
-1
CCTAAGTTGAAGGAACGTCA (GAG)
2072
83
63





162
 68756
-1
CGCATCTATCAATGTCACCT (TGG)
2073
80
62





163
 69363
-1
GGAACAAAAGAGACGACAGT (GGG)
2074
69
72





164
 69460
 1
TATGACCATGAATAACCCAC (CGG)
2075
68
71





165
 69464
-1
CATTTTTGGTCCAGTCCGGT (GGG)
2076
92
61





166
 69955
 1
AGGGTGTGTCCATAACCCAA (CAG)
2077
80
69





167
 70069
-1
GTAAAAGTGTACCTAAACAC (AAG)
2078
73
74





168
 70165
 1
TCACTTTTCTTCGTGACCCG (TGG)
2079
86
70





169
 70656
-1
TTAATCTTAGGCTTAGTAAG (CAG)
2080
69
83





170
 70888
 1
GAGCCACCTAGACAATACAG (AAG)
2081
74
74





171
 70890
 1
GCCACCTAGACAATACAGAA (GGG)
2082
69
75





172
 71166
 1
TCACCACTACCTAATTAGAG (AAG)
2083
80
79





173
 71983
 1
GAGAGTGGGGTTAAACACCA (GGG)
2084
73
76





174
 72722
 1
TGTAGGGGCTTTGATCCAGT (CAG)
2085
79
74





175
 73080
-1
CTGCTAGATAGCTTAGAACC (AGG)
2086
83
61





176
 73091
 1
CCTGGTTCTAAGCTATCTAG (CAG)
2087
82
62





177
 73609
 1
TCATCTGTATGCACTCTCAG (AAG)
2088
64
81





178
 74688
-1
GCTGTCTCAGCCAATCACAG (CAG)
2089
63
82





179
 75558
-1
GCTTAAATGCCATCACCTCA (GAG)
2090
64
83





180
 76917
-1
TCTTTCCTCCTGTTTCGGTG (GAG)
2091
74
72





181
 77252
 1
GCCAGATTATGTGTAGACTG (TGG)
2092
76
74





182
 77679
-1
GTTTTAGCCCAATATAACCA (CAG)
2093
71
87





183
 77846
-1
GCACATGATACTCTACACTC (TGG)
2094
81
62





184
 77927
-1
GAAGAGTATATCCCCAACGA (AGG)
2095
89
66





185
 78181
-1
GGAATGCAGCATAACGGCAA (AGG)
2096
90
61





186
 78444
-1
CCATGTATATTAAATCTACA (GAG)
2097
56
80





187
 79522
-1
AACACTCCTGAACCTCGGGA (AGG)
2098
85
61





188
 80328
 1
TACTGAGTCTGCCTCTTCCG (GAG)
2099
75
74





189
 80331
-1
TATGTGGTACAATACTCCGG (AAG)
2100
96
74





190
 80539
 1
TAGGCTATACCACATAGCCT (AGG)
2101
81
63





191
 80545
-1
GTATAGGCTACCATACACCT (AGG)
2102
88
69





192
 80585
 1
GGTTTGTATAAGTGCACCCT (AGG)
2103
82
60





193
 80970
-1
GAAAATAAATTAAGGCAACG (TGG)
2104
66
72





194
 81615
 1
GTGCTCGAATTAACACAAGA (CAG)
2105
83
66





195
 81715
 1
TCTTCTTTCTGGAAAACGAA (GAG)
2106
51
88





196
 82630
 1
CGTGTGTAGTCAGTGTCCAG (AGG)
2107
74
70





197
 82993
-1
TGATATACTCAGGAAGGCGA (GAG)
2108
74
72





198
 83017
-1
GTACTTAACTAGGACCCCAT (GGG)
2109
87
69





199
 84026
-1
CCAAACCATGAAAACCCTAG (AAG)
2110
71
74





200
 84279
-1
GCATGGTAGTGGTACCCAAA (CAG)
2111
81
79





201
 85965
 1
GACAACTACCTAATGCATGC (AGG)
2112
84
61





202
 86012
 1
ATAGGTGGAGCAAACCACCA (TAG)
2113
72
75





203
 86606
 1
GGTGGGCAATGAGAACACAT (GGG)
2114
61
74





204
 86633
 1
GAGAAGATCATCACACACTG (GGG)
2115
65
74





205
 86724
 1
ATGGGTGCAGCAAACCACCA (TGG)
2116
64
73





206
 86730
-1
ACATGGGTAGACACGTGCCA (TGG)
2117
83
75





207
 87379
-1
TACGACAAAGAAGATCATGT (AGG)
2118
67
72





208
 87621
 1
CGGTTACAACAGAGGCTCTG (CGG)
2119
63
71





209
 87627
-1
AGAAGGCCAAGCATATACCG (CAG)
2120
85
94





210
 88070
 1
ACACACAATGGATTTCCCCA (GAG)
2121
58
88





211
 88144
-1
ACTGTTTTAGTCATACCCCA (TAG)
2122
71
89





212
 88422
 1
GGAGTCTAATGTATTAGGGG (AGG)
2123
83
64





213
 88874
 1
ACTACCTAGGGAATTCCCAG (AAG)
2124
68
83





214
 89604
-1
TATGCCCTTCGACACCAAGG (TGG)
2125
78
72





215
 89611
 1
GTTTCCACCTTGGTGTCGAA (GGG)
2126
86
64





216
 89689
 1
TGCTAAATGTGTATCACCCG (AGG)
2127
88
68





217
 89738
 1
TTTAGGGTAAGAGAACTCGG (GAG)
2128
83
74





218
 90216
-1
TTATAAGCAGGGAGGCCTGA (GAG)
2129
54
81





219
 90645
-1
GAAGTTGCCCAATACCAAAG (AGG)
2130
70
72





220
 90646
-1
AGAAGTTGCCCAATACCAAA (GAG)
2131
64
82





221
 91214
 1
TTTTCTGCAAGGCGAAGCAG (CAG)
2132
72
76





222
 91444
 1
TGCTGTGGACTGCAACGGTG (TGG)
2133
82
68





223
 91457
-1
CTGAGCGTCCATCAACCAGG (GAG)
2134
81
69





224
 92139
 1
GTAGCTCCTAAGTTGAAACG (GAG)
2135
90
85





225
 92140
 1
TAGCTCCTAAGTTGAAACGG (AGG)
2136
87
72





226
 92408
 1
AAGGTCTACGAGTCACTAAG (TGG)
2137
88
64





227
 93703
 1
GTAAGAGACAACCATTACAG (GAG)
2138
67
81





228
 94028
-1
ACTGGCTGTATATCATAGGA (GAG)
2139
79
74





229
 94038
 1
GCTCTCCTATGATATACAGC (CAG)
2140
83
68





230
 94204
 1
GCACGACCAATCAAATACAC (AAG)
2141
87
70





231
 95047
 1
TGTCATGGGACTAAAAACAC (AGG)
2142
60
71





232
 95431
-1
GCAAATCTGTACCACCAAGG (TGG)
2143
73
73





233
 95434
-1
TGTGCAAATCTGTACCACCA (AGG)
2144
72
77





234
 95600
 1
GGAACACCACCCAATGACTG (AGG)
2145
74
74





235
 95871
 1
ATAAAAGGTTACCATCTTGG (GAG)
2146
61
82





236
 96250
-1
CTATATGCCAGGCTAATAAG (CAG)
2147
71
81





237
 96762
-1
TGCTAACTCAGCGAGCACAT (GGG)
2148
82
61





238
 97850
 1
AGTTCTGCGATCATTCAGAC (TGG)
2149
81
60





239
 98726
-1
GGTTACCTAGAGCCCCTACT (GAG)
2150
83
66





240
 98747
-1
TGATGGCCAACACTAAGGTG (AGG)
2151
69
73





241
 99300
-1
TTACTAGTATAGCTTCAAGA (GAG)
2152
64
88





242
 99408
-1
ATAGAGGCTAGTCTTACACA (TGG)
2153
72
72





243
 99426
 1
TAAGACTAGCCTCTATAGCA (AGG)
2154
80
63





244
 99753
-1
CACGCGATGCTATAGGCCAG (TGG)
2155
87
63





245
 99765
 1
CACTGGCCTATAGCATCGCG (TGG)
2156
97
66





246
 99940
-1
ACTGTGACAAGTCAACGTGG (CAG)
2157
81
77





247
 99943
-1
CCAACTGTGACAAGTCAACG (TGG)
2158
86
75





248
101373
-1
GTAGTTCCTCCATTAGTCAA (GAG)
2159
74
92





249
101609
 1
TCTATATCAGGAAACTTGCG (AAG)
2160
82
65





250
102970
-1
ACACGGATAAGACCACATGA (GAG)
2161
72
74





251
103743
-1
TTACCAGATGAATCTTCAGG (AAG)
2162
60
88





252
104091
 1
TGATGTATCCATGATCCGCA (AAG)
2163
92
85





253
105545
-1
TACTCGCCCATAGATATCGA (GGG)
2164
96
70





254
105546
-1
CTACTCGCCCATAGATATCG (AGG)
2165
97
62





255
108599
 1
CTCAACTGGAAATCGTCCCA (GGG)
2166
85
64





256
108829
 1
AGCTAACATGATACTAACCA (GGG)
2167
76
79





257
109542
 1
ATAAAGCTATAGTAACCAAA (CAG)
2168
58
93





258
110187
 1
CTCAACATCACTAATCACCA (GGG)
2169
69
72





259
110646
 1
GGCAACATGAATGAACCTGG (AGG)
2170
65
78





260
110720
-1
CTACTTCTATGACAACCCTT (TAG)
2171
71
72





261
110756
 1
AGTAGAATAGTGGTTATCGG (AGG)
2172
87
66





262
110856
-1
CTAGTCATCCAACGATTCAA (TAG)
2173
91
73





263
112186
 1
TCTCTGGCCCGGTACTCACG (TAG)
2174
92
61





264
112189
-1
ACACAGGGAGAAAACTACGT (GAG)
2175
72
71





265
112238
-1
GTCCAAATCCAATATAACTG (GGG)
2176
68
74





266
112970
 1
TGCCACGATAAGGCCCAAAG (AGG)
2177
80
68





267
113933
-1
AATTTCATCAACAAGCCAGG (GAG)
2178
56
83





268
114417
 1
CCACAGATCAGCAGTCCACG (TGG)
2179
77
73





269
114563
 1
GTAGAGAAAGAAATAGAACG (AAG)
2180
51
94





270
114615
 1
GGAAGGGCAAAACTTTCCCA (GAG)
2181
52
86





271
119671
 1
AAGATTGTAGAGACCTCAAG (GGG)
2182
60
76





272
124929
-1
ACAGATGGTGATGACCAATG (GGG)
2183
72
77





273
126886
 1
GGGGCCGTGCAAATATATGG (AGG)
2184
90
63





274
126887
 1
GGGCCGTGCAAATATATGGA (GGG)
2185
82
63





275
127078
-1
CCTCAAGTGATCGCCCACCT (CGG)
2186
87
60





276
127540
 1
GGGAGCTTAGACTAGTATGG (TAG)
2187
89
68





277
131325
 1
AGAGTTGCACAGTAGCCCAA (TAG)
2188
70
82





278
131352
-1
TCTGGATTATTCTCTCTGGA (CAG)
2189
55
83





279
131411
 1
AGAGATGCACAATAGCCCGA (CAG)
2190
86
91





280
131432
-1
CTATTCCGTTTGAATAGCAG (AAG)
2191
72
85





281
131938
-1
AGGATCCCAGGACTACCAGG (TGG)
2192
68
74





282
132160
-1
GATGTCTCCACGGTACATGG (AGG)
2193
84
72





283
132164
 1
AACTTATCCTCCATGTACCG (TGG)
2194
85
66





284
132166
 1
CTTATCCTCCATGTACCGTG (GAG)
2195
88
68





285
132402
-1
AGTTTGGGTGGAATTCCAGG (CAG)
2196
51
91





286
132545
-1
ACTAAAGTGACAGATAGTCA (GGG)
2197
64
70





287
135192
 1
TCACTGCAAACACAACCCTG (AGG)
2198
65
77





288
135662
-1
TAGGTAAACACGTGTCATGG (GGG)
2199
77
71





289
135663
-1
ATAGGTAAACACGTGTCATG (GGG)
2200
83
64





290
138647
 1
GTTTACATATTATTTTAACG (AAG)
2201
54
90





291
140378
 1
GGTCTCAAAACTGAAAACGT (TGG)
2202
68
71





292
140459
-1
ATTTGCCACATCCAACCCCA (GAG)
2203
51
87





293
140907
 1
TTAAAGTTCTGGAAGCTGGG (AAG)
2204
52
86





294
141052
-1
GAGTGAGTTAGATATCACAA (GAG)
2205
71
75





295
144206
 1
AAAAAGACGGACGGATCATG (AGG)
2206
85
62





296
144318
 1
TGTAGTCTCAGCTACTAGGG (AGG)
2207
60
74





297
145243
 1
GTACAGTGGTACATAGACCC (CGG)
2208
90
72





298
145249
-1
TACTCACTCTTTGGGGACCG (GGG)
2209
84
64





299
145337
 1
CAGTAGGGAGTGGCTATCCG (GGG)
2210
87
66





300
145363
 1
TCTGGGAAGACATCACAAGG (AGG)
2211
60
76





301
145431
 1
AGGCAGATAGGCATTCAAGG (CAG)
2212
56
85





302
145518
-1
CCCTACTATGTTTATCACGT (AGG)
2213
92
65





303
145524
 1
GAGTGCCTACGTGATAAACA (TAG)
2214
84
75





304
145883
 1
AGAGTTGAATAGTTGCAACG (GAG)
2215
80
64





305
148450
-1
ACCACTAGGCTACTATCAGG (TGG)
2216
88
63





306
148460
 1
TCCACCTGATAGTAGCCTAG (TGG)
2217
88
74





307
148475
 1
CCTAGTGGTTGTGAGTACAG (CAG)
2218
76
81





308
149832
-1
TCAGGAACCATATCTTACGT (TGG)
2219
87
66





309
150045
-1
TCTAACCTCCAAAAGTGTGA (GAG)
2220
67
82





310
150239
-1
ACTGGCATCCTTACTAGTAG (AGG)
2221
84
61





311
152488
 1
CCATTTTAGTTACTTCACCG (AAG)
2222
83
86





312
153443
-1
GGAGAATCACTTGAACCAGG (GAG)
2223
54
88





313
154133
-1
GGGGTGCCAAGAATACACAA (TAG)
2224
75
76





314
154336
 1
TTATAATCCCAGCAACTCGG (GAG)
2225
80
68





315
154500
 1
GGAGGATCACTGAAGCCCAA (GAG)
2226
59
83





316
154992
 1
ATTGTTAGTGTATAGAAACG (CAG)
2227
76
76





317
155184
-1
ACAGCACTAGAAGTCCTAGC (CAG)
2228
81
68





318
155293
 1
ATTGAATACGATGTTAGCTG (TGG)
2229
80
60





319
155374
 1
GCTACTATAACAGAATACCA (CAG)
2230
66
91





320
155448
 1
ATGGAAAGTTCATGACTGAG (GGG)
2231
62
70





321
155658
-1
GCAATTGTGACAGAATTGGG (AGG)
2232
63
74





322
155913
-1
CATGTACTACGACCAAGTGG (GAG)
2233
84
81





323
155915
-1
ATCATGTACTACGACCAAGT (GGG)
2234
92
69





324
155916
-1
GATCATGTACTACGACCAAG (TGG)
2235
92
63





325
155918
 1
GGACAACTCCCACTTGGTCG (TAG)
2236
88
62





326
156439
-1
AAGGGTAACAACACACACTG (GGG)
2237
67
74





327
157217
-1
CTATCAACAGAGTAAGCAGA (CAG)
2238
54
81





328
157656
-1
ATGGGTGCCGCACACCAACA (TGG)
2239
82
65





329
159943
 1
GCATCCCTCAGATAAATCCC (AAG)
2240
71
82





330
160831
-1
TTGAACAACTCATAATTACG (TGG)
2241
83
70





331
161670
 1
GTAGCCTAATGGTTTCCATG (GGG)
2242
68
77





332
161744
-1
CAAGTACAAAAAACGATGGG (GGG)
2243
85
66





333
162012
 1
ATAGTTTCTCAACCCTTGGG (AAG)
2244
70
77





334
162135
-1
GAAAAACTCATGCACACCAG (AGG)
2245
63
71





335
163457
-1
TGCAGCAACACCATAACAGT (AGG)
2246
78
70





336
163882
-1
GTAACCAAAAGAGAGCAATG (GGG)
2247
53
82





337
164242
-1
ATTGCCTCATGATAACCACA (AGG)
2248
64
72





338
164558
-1
CATGGTAAAGAGCAACACAA (GAG)
2249
53
83





339
164789
 1
GCTCTTTTAAAGTTTCCACT (GAG)
2250
55
84





340
166597
-1
TGAAGTTTAGCAAAGTACCA (GAG)
2251
61
80





341
166686
-1
AAAGGGATAAAAGAAATCCG (CAG)
2252
56
83





342
168072
-1
GCATGCCAAGAACTTGACAG (AAG)
2253
62
95





343
169562
 1
CTTATGAGTGAGAACATGCA (GAG)
2254
57
80





344
170590
-1
CCTCACAAAAACAAGCAACG (GGG)
2255
72
73





345
175111
-1
TCAAGTGATTTCGCCCACCT (CGG)
2256
85
64





346
180157
-1
GTAGGAACACTTGAAGCCAG (GAG)
2257
61
84





*Searching was based on WT Cas9 PAMs, 347 solutions out of ~34,500 possible guide-RNA sequences are shown.













TABLE 11







Top-Scoring Guide-RNA Target Sites and PAM Sequences in SCN9A for


Programmed Cas9-Nickase Pairs

















SEQ








ID
Specificity
Efficiency


Pair
Position
Strand
Guide-RNA target site (PAM)
NOs
score50
score28
















1
6112
1
CAGGAGTTCTAGATCAGCCT(GGG)
2258
66
60



6050
−1
CCAAAGTGATGGGATTGCAG(GGG)
2259
62
70





2
14921
1
ATAAGAACTGAGCTTTAGAG(AAG)
2260
55
84



14896
−1
AGTTCTTATATAGCAAACCG(GAG)
2261
88
82





3
24369
1
AAGACTGATGAATCCAGCCA(GGG)
2262
61
68



24306
−1
ATCCAAGTCATTAGTCTTGG(GGG)
2263
74
64





4
26796
1
ATAAGATGGTCACAGCTTGG(GGG)
2264
63
74



26751
−1
CTCCCATATTTAGCCCAATG(GGG)
2265
76
68





5
26974
1
TCCTGCCTCAGCCTTCCGAG(GAG)
2266
55
84



26943
−1
GGAGAATCGCTTGAACCCAG(GAG)
2267
59
75





6
27276
1
TTGAGTCCTAGATAGGTGGG(TGG)
2268
71
61



27249
−1
GACTCAAGATCCTAGATAGG(TGG)
2269
79
61





7
27277
1
TGAGTCCTAGATAGGTGGGT(GGG)
2270
74
64



27249
−1
GACTCAAGATCCTAGATAGG(TGG)
2271
79
61





8
27313
1
AAATTGGGCTGGGACCACTT(AGG)
2272
78
60



27249
−1
GACTCAAGATCCTAGATAGG(TGG)
2273
79
61





9
28567
1
TGCATGAAAACCTATCCCCT(GGG)
2274
77
66



28522
−1
TGGGAGATCAACATGCCTAG(TGG)
2275
69
73





10
29897
1
AATTACCTCCCACAGCAGCA(CAG)
2276
50
76



29862
−1
GTATTACCACTTCGTGAAAA(GAG)
2277
85
62





11
29916
1
ACAGGTTACTCAAAAGCCCA(GAG)
2278
60
62



29862
−1
GTATTACCACTTCGTGAAAA(GAG)
2279
85
62





12
29919
1
GGTTACTCAAAAGCCCAGAG(GAG)
2280
58
73



29862
−1
GTATTACCACTTCGTGAAAA(GAG)
2281
85
62





13
30917
1
TAGATACCCATCTTATACAC(AGG)
2282
82
60



30869
−1
GTCTTTAACTATCATCCATG(TGG)
2283
67
67





14
30917
1
TAGATACCCATCTTATACAC(AGG)
2284
82
60



30864
−1
TAACTATCATCCATGTGGAA(GGG)
2285
62
60





15
31268
1
TTTGCACAAAGGATTGTAGG(TGG)
2286
63
64



31215
−1
CAAGATACCAAACTAAGAGG(TGG)
2287
62
63





16
32326
1
TAGCTGAGATCCACTCCCCT(CGG)
2288
72
69



32274
−1
GATGTTTGCTTGAGCCCCTG(GGG)
2289
66
65





17
32400
1
CTTTTTCAATGAGGAAACCG(TGG)
2290
64
62



32338
−1
TATAATCCCAGCACTTTGGG(AGG)
2291
8
64





18
36029
1
AATAGGAGACATAGTTCCTG(AGG)
2292
61
68



35994
−1
CACTGGTGAGGAAGTTACAC(GGG)
2293
79
63





19
36029
1
AATAGGAGACATAGTTCCTG(AGG)
2294
61
68



35976
−1
ACGGGTAGTCTGTTAGAAAG(AGG)
2295
67
60





20
39372
1
TTAGAGCCAAAGGAGCAAGT(AAG)
2296
58
62



39329
−1
TTACACTGTAAACGGCCTGA(GAG)
2297
86
70





21
39469
1
CTCAGCTTAATCGATTTTGG(GGG)
2298
77
60



39418
−1
TAGACCACAATTTCACCTGG(AGG)
2299
66
64





22
39847
1
TAAGGGAACACCAAAAGCAC(AGG)
2300
62
61



39815
−1
TAGCCAAACCTGCTAGAAAG(AGG)
2301
61
64





23
40326
1
CTATGCTTCTGAAAGTTAGC(AAG)
2302
58
61



40298
−1
GCATAGTTACTGGAGTGAGG(CAG)
2303
61
75





24
40326
1
CTATGCTTCTGAAAGTTAGC(AAG)
2304
58
61



40298
−1
GCATAGTTACTGGAGTGAGG(CAG)
2305
61
75





25
43824
1
TGTACATAGACCCAGCACAA(GGG)
2306
71
76



43791
−1
AGCTATAGTAGAATCCTGTG(TGG)
2307
76
75





26
44028
1
TCCATCACCACTACACACAA(TGG)
2308
60
60



43991
−1
CAGAGCCTTGACACCTGCCG(TGG)
2309
70
68





27
45061
1
GATCTGTTTATAGGCCACAG(TGG)
2310
61
66



45014
−1
TCTGTGGCTTATACAACTGG(GGG)
2311
75
70





28
45061
1
GATCTGTTTATAGGCCACAG(TGG)
2312
61
66



45015
−1
ATCTGTGGCTTATACAACTG(GGG)
2313
65
64





29
45113
1
CAGTGACAGATACTGGTCCA(TGG)
2314
66
60



45064
−1
ACCCCTGATCTAACCCACTG(TGG)
2315
73
68





30
45255
1
TATTGTGAACTGCACATACG(AGG)
2316
81
65



45194
−1
GCCAAGGCTGATCTAACAGG(AGG)
2317
75
69





31
45255
1
TATTGTGAACTGCACATACG(AGG)
2318
81
65



45210
−1
TCTCTGAGAGTCTAATGCCA(AGG)
2319
62
64





32
45256
1
ATTGTGAACTGCACATACGA(GGG)
2320
88
71



45194
−1
GCCAAGGCTGATCTAACAGG(AGG)
2321
75
69





33
45256
1
ATTGTGAACTGCACATACGA(GGG)
2322
88
71



45210
−1
TCTCTGAGAGTCTAATGCCA(AGG)
2323
62
64





34
50918
1
AATGGTGCAGATAGTAAGGA(CAG)
2324
65
60



50879
−1
ATAAATCTATTCCAAGACAA(AAG)
2325
51
73





35
53558
1
GAGAGGTTATGTCATCTCCA(CAG)
2326
64
69



53495
−1
GAGTTAATAATCATGCTCCG(AAG)
2327
82
86





36
57832
1
AAAATGGACATGGATACCCT(AGG)
2328
70
65



57804
−1
CATTTTAGCTAGAACCAGGG(TGG)
2329
71
68





37
57832
1
AAAATGGACATGGATACCCT(AGG)
2330
70
65



57807
−1
GTCCATTTTAGCTAGAACCA(GGG)
2331
71
65





38
63236
1
GTCACTCAAGAGCTCTAACG(GAG)
2332
87
68



63203
−1
CCAGGCACATTGTCAATAGG(CAG)
2333
79
75





39
63246
1
AGCTCTAACGGAGAGGTACA(AGG)
2334
78
62



63221
−1
GTTAGAGCTCTTGAGTGACC(AGG)
2335
75
61





40
63247
1
GCTCTAACGGAGAGGTACAA(GGG)
2336
78
64



63221
−1
GTTAGAGCTCTTGAGTGACC(AGG)
2337
75
61





41
66136
1
TTTGGGTTACTGTAGCCTTG(TAG)
2338
67
68



66100
−1
GCATGGTACTGGTACCAAAA(CAG)
2339
74
63





42
68003
1
ACTTACCTCCTGAATACGGT(GAG)
2340
90
67



67959
−1
GGCTTTTTATTTGTATGCGG(CAG)
2341
79
72





43
70978
1
TTTTGAGGTCACATATGATG(GGG)
2342
63
66



70933
−1
GATGGAAAAGAGGTTAGGCA(GGG)
2343
64
67





44
76923
1
GACAGCTCCACCGAAACAGG(AGG)
2344
76
65



76882
−1
TTTACTCTTTCACTTTCACG(AGG)
2345
61
62





45
79521
1
TACCAGGCCCATCCTTCCCG(AGG)
2346
68
64



79497
−1
GGGCCTGGTAGAGTGAGTAT(GGG)
2347
77
68





46
80585
1
GGTTTGTATAAGTGCACCCT(AGG)
2348
82
60



80545
−1
GTATAGGCTACCATACACCT(AGG)
2349
88
69





47
80599
1
CACCCTAGGATGTTTGCACA(AGG)
2350
73
60



80545
−1
GTATAGGCTACCATACACCT(AGG)
2351
88
69





48
89635
1
ATAGGCGAGCACATGAAAAG(AGG)
2352
73
70



89604
−1
TATGCCCTTCGACACCAAGG(TGG)
2353
78
72





49
89689
1
TGCTAAATGTGTATCACCCG(AGG)
2354
88
68



89654
−1
TTTGGGTGGTACCTGATTGG(GGG)
2355
77
66





50
89689
1
TGCTAAATGTGTATCACCCG(AGG)
2356
88
68



89655
−1
ATTTGGGTGGTACCTGATTG(GGG)
2357
76
60





51
90246
1
ATAATTCTGCACAAATCCCC(AAG)
2358
64
66



90216
−1
TTATAAGCAGGGAGGCCTGA(GAG)
2359
54
81





52
91383
1
GTAACATCAGCCAAGCCAGT(AGG)
2360
63
69



91353
−1
TTACTGCTGCGTCGCTCCTG(GGG)
2361
76
69





53
91402
1
TAGGTCCCCACCAATGCTGC(CGG)
2362
75
65



91353
−1
TTACTGCTGCGTCGCTCCTG(GGG)
2363
76
69





54
91444
1
TGCTGTGGACTGCAACGGTG(TGG)
2364
82
68



91396
−1
GTTCACCGGCAGCATTGGTG(GGG)
2365
78
62





55
91444
1
TGCTGTGGACTGCAACGGTG(TGG)
2366
82
68



91382
−1
TTGGTGGGGACCTACTGGCT(TGG)
2367
75
62





56
92524
1
TGCATTACCAATATCAGCAA(GGG)
2368
63
64



92494
−1
TGCAGCATAGCATAGTGAGT(GGG)
2369
73
65





57
92524
1
TGCATTACCAATATCAGCAA(GGG)
2370
63
64



92495
−1
ATGCAGCATAGCATAGTGAG(TGG)
2371
68
66





58
93703
1
GTAAGAGACAACCATTACAG(GAG)
2372
67
81



93663
−1
GGAAGACCTCATGAACTGAG(CAG)
2373
61
70





59
94847
1
CCCCCACATTCCCATTGTGG(GGG)
2374
66
64



94784
−1
GACCTGGGGCATATTGTCAG(GGG)
2375
77
69





60
94847
1
CCCCCACATTCCCATTGTGG(GGG)
2376
66
64



94816
−1
GGGGTGAAGTGTTAGACCCA(GGG)
2377
73
67





61
94847
1
CCCCCACATTCCCATTGTGG(GGG)
2378
66
64



94806
−1
GTTAGACCCAGGGACCAGGT(GGG)
2379
62
69





62
99426
1
TAAGACTAGCCTCTATAGCA(AGG)
2380
80
63



99395
−1
TTACACATGGCTATAAGGTG(CGG)
2381
76
62





63
99993
1
TCTCTCATCAGGTATCCAGA(AGG)
2382
70
69



99943
−1
CCAACTGTGACAAGTCAACG(TGG)
2383
86
75





64
111569
1
GTTATCTCAAAGGTACCCAT(GAG)
2384
74
71



111513
−1
CACTGACTATCTCTTCAGAG(AAG)
2385
59
67





65
112933
1
GGAGAAGGGTATAACCTTGG(GGG)
2386
72
66



112878
−1
CCTGCATCCAATGAATGGTG(TGG)
2387
70
68





66
131392
1
AGACCACCGTCCAGAAAGAA(GAG)
2388
55
69



131349
−1
GGATTATTCTCTCTGGACAG(TAG)
2389
61
70





67
131392
1
AGACCACCGTCCAGAAAGAA(GAG)
2390
55
69



131352
−1
TCTGGATTATTCTCTCTGGA(CAG)
2391
55
83





68
131411
1
AGAGATGCACAATAGCCCGA(CAG)
2392
86
91



131349
−1
GGATTATTCTCTCTGGACAG(TAG)
2393
61
70





69
131411
1
AGAGATGCACAATAGCCCGA(CAG)
2394
86
91



131352
−1
TCTGGATTATTCTCTCTGGA(CAG)
2395
55
83





70
134360
1
TCAGGGTCTAGAAAGACGAA(CAG)
2396
68
69



134315
−1
TACGTTTCTGAAATTGCAAG(CAG)
2397
55
78





71
135192
1
TCACTGCAAACACAACCCTG(AGG)
2398
65
77



135158
−1
GCAACCTTGAGACATGAGGT(AGG)
2399
70
64





72
135192
1
TCACTGCAAACACAACCCTG(AGG)
2400
65
77



135162
−1
GTGAGCAACCTTGAGACATG(AGG)
2401
69
67





73
138647
1
GTTTACATATTATTTTAACG(AAG)
2402
54
90



138593
−1
TCCATCATCCAAGTATTCAA(CAG)
2403
65
67





74
140490
1
AATCATTGTAACAAGCCCTA(CAG)
2404
71
64



140459
−1
ATTTGCCACATCCAACCCCA(GAG)
2405
51
87





75
140966
1
TTGCTGGTGGGCACACCAGA(GAG)
2406
63
68



140940
−1
ACCAGCAAGAAAGTTCCCAC(CAG)
2407
68
67





76
141112
1
CTATATTCCATTCATGAAGG(CAG)
2408
56
64



141052
−1
GAGTGAGTTAGATATCACAA(GAG)
2409
71
75





77
144318
1
TGTAGTCTCAGCTACTAGGG(AGG)
2410
60
74



144285
−1
AGGTGAGCACCACTATGCCC(GGG)
2411
78
62





78
156887
1
CACTCCCATCAACAGTGTGT(AGG)
2412
72
69



156842
−1
AACCATAATGGAAGACTGTG(TGG)
2413
60
64





79
161670
1
GTAGCCTAATGGTTTCCATG(GGG)
2414
68
77



161635
−1
CGTTTTCCAGCCGCTCCCTG(TGG)
2415
62
63





80
163858
1
CATGACCCTGTAGATACTGA(AGG)
2416
68
65



163829
−1
TCATGGTTTCAGAACCCCAA(GGG)
2417
65
70





81
168112
1
TTTCAGTCCCCATTAATGAA(CAG)
2418
59
64



168072
−1
GCATGCCAAGAACTTGACAG(AAG)
2419
62
95





82
168112
1
TTTCAGTCCCCATTAATGAA(CAG)
2420
59
64



168075
−1
ACAGCATGCCAAGAACTTGA(CAG)
2421
58
72





83
170725
1
TTTTGGTTACTGTAGCCTTG(TAG)
2422
65
63



170689
−1
GCATGGTACTGGTACCAAAA(CAG)
2423
74
63





84
180194
1
CATGACCTGCCAACATGCTG(GGG)
2424
65
63



180140
−1
CAGGAGTTTGAGACTAGCCT(GGG)
2425
63
69





*Searching was based on WT Cas9 PAMs, 84 solutions out of ~37,500 possible pairs shown.







Nucleobase Editors for Use in the Invention


The methods of editing ion channel-encoding genes in neurons (e.g., DRG neurons) for pain suppression are enabled by the use of the nucleobase editors. As described herein, a nucleobase editor is a fusion protein comprising: (i) a programmable DNA binding protein domain; and (ii) a deaminase domain. Any programmable DNA binding domain may be used in the based editors.


In some embodiments, the programmable DNA binding protein domain comprises the DNA binding domain of a zinc finger nuclease (ZFN) or a transcription activator-like effector domain (TALE). In some embodiments, the programmable DNA binding protein domain may be programmed by a guide nucleotide sequence and is thus referred as a “guide nucleotide sequence-programmable DNA binding-protein domain.” In some embodiments, the guide nucleotide sequence-programmable DNA binding protein is a nuclease inactive Cas9, or dCas9. A dCas9 as used herein, encompasses a Cas9 that is completely inactive with respect to its nuclease activity, or partially inactive with respect to its nuclease activity (e.g., a Cas9 nickase). Thus, in some embodiments, the guide nucleotide sequence-programmable DNA binding protein is a Cas9 nickase. In some embodiments, the guide nucleotide sequence-programmable DNA binding protein is a nuclease inactive Cpf1. In some embodiments, the guide nucleotide sequence-programmable DNA binding protein is a nuclease inactive Argonaute.


In some embodiments, the guide nucleotide sequence-programmable DNA binding protein is a dCas9 domain. In some embodiments, the guide nucleotide sequence-programmable DNA binding protein is a Cas9 nickase. In some embodiments, the dCas9 domain comprises the amino acid sequence of SEQ ID NO: 2 or SEQ ID NO: 3. In some embodiments, the dCas9 domain comprises an amino acid sequence that is at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to any one of the Cas9 domains provided herein (e.g., SEQ ID NOs: 11-260), and comprises mutations corresponding to D10X (X is any amino acid except for D) and/or H840X (X is any amino acid except for H) in SEQ ID NO: 1. In some embodiments, the dCas9 domain comprises an amino acid sequence that is at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to any one of the Cas9 domains provided herein (e.g., SEQ ID NOs: 11-260), and comprises mutations corresponding to D10A and/or H840A in SEQ ID NO: 1. In some embodiments, the Cas9 nickase comprises an amino acid sequence that is at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to any one of the Cas9 domains provided herein (e.g., SEQ ID NOs: 11-260), and comprises mutations corresponding to D10X (X is any amino acid except for D) in SEQ ID NO: 1 and a histidine at the position corresponding to position 840 in SEQ ID NO: 1. In some embodiments, the Cas9 nickase comprises an amino acid sequence that is at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to any one of the Cas9 domains provided herein (e.g., SEQ ID NOs: 11-260), and comprises mutations corresponding to D10A in SEQ ID NO: 1 and a histidine at the position corresponding to position 840 in SEQ ID NO: 1. In some embodiments, variants or homologues of dCas9 or Cas9 nickase (e.g., variants of SEQ ID NO: 2 or SEQ ID NO: 3, respectively) are provided which are at least about 70% identical, at least about 80% identical, at least about 90% identical, at least about 95% identical, at least about 98% identical, at least about 99% identical, at least about 99.5% identical, or at least about 99.9% to SEQ ID NO: 2 or SEQ ID NO: 3, respectively, and comprises mutations corresponding to D10A and/or H840A in SEQ ID NO: 1. In some embodiments, variants of Cas9 (e.g., variants of SEQ ID NO: 2) are provided having amino acid sequences which are shorter, or longer than SEQ ID NO: 2, by about 5 amino acids, by about 10 amino acids, by about 15 amino acids, by about 20 amino acids, by about 25 amino acids, by about 30 amino acids, by about 40 amino acids, by about 50 amino acids, by about 75 amino acids, by about 100 amino acids, or more, provided that the dCas9 variants comprise mutations corresponding to D10A and/or H840A in SEQ ID NO: 1. In some embodiments, variants of Cas9 nickase (e.g., variants of SEQ ID NO: 3) are provided having amino acid sequences which are shorter, or longer, than SEQ ID NO: 3, by about 5 amino acids, by about 10 amino acids, by about 15 amino acids, by about 20 amino acids, by about 25 amino acids, by about 30 amino acids, by about 40 amino acids, by about 50 amino acids, by about 75 amino acids, by about 100 amino acids, or more, provided that the dCas9 variants comprise mutations corresponding to D10A and comprises a histidine at the position corresponding to position 840 in SEQ ID NO: 1.


Additional suitable nuclease-inactive dCas9 domains will be apparent to those of skill in the art based on this disclosure and knowledge in the field, and are within the scope of this disclosure. Such additional exemplary suitable nuclease-inactive Cas9 domains include, but are not limited to, D10A/H840A, D10A/D839A/H840A, and D10A/D839A/H840A/N863A mutant domains (See, e.g., Prashant et al., Nature Biotechnology. 2013; 31(9): 833-838, which are incorporated herein by reference), or K603R (See, e.g., Chavez et al., Nature Methods 12, 326-328, 2015, which is incorporated herein by reference.


In some embodiments, the nucleobase editors described herein comprise a Cas9 domain with decreased electrostatic interactions between the Cas9 domain and the sugar-phosphate backbone of a target DNA, as compared to a wild-type Cas9 domain. In some embodiments, a Cas9 domain comprises one or more mutations that decreases the association between the Cas9 domain and a sugar-phosphate backbone of a DNA. In some embodiments, the nucleobase editors useful in the present disclosure comprises a dCas9 (e.g., with D10A and H840A mutations) or a Cas9 nickase (e.g., with D10A mutation), wherein the dCas9 or the Cas9 nickase further comprises one or more of a N497X, a R661X, a Q695X, and/or a Q926X mutation of the amino acid sequence provided in SEQ ID NO: 1, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11-260, wherein X is any amino acid. In some embodiments, the nucleobase editors described herein comprises a dCas9 (e.g., with D10A and H840A mutations) or a Cas9 nickase (e.g., with D10A mutation), wherein the dCas9 or the Cas9 nickase further comprises one or more of a N497A, a R661A, a Q695A, and/or a Q926A mutation of the amino acid sequence provided in SEQ ID NO: 1, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11-260. In some embodiments, the dCas9 domain (e.g., of any of the nucleobase editors provided herein) comprises the amino acid sequence as set forth in any one of SEQ ID NOs: 2-9. In some embodiments, the nucleobase editor comprises the amino acid sequence as set forth in any one of SEQ ID NOs: 10 or 293-302.










Cas9 variant with decreased electrostatic interactions between the Cas9 and DNA backbone



DKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETALATRLKRTARR





RYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRK





KLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAK





AILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLL





AQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYK





EIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGE





LHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASA





QSFIERMTAFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTN





RKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFE





DREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGALSRKLINGIRDKQSGKTILDFLKSDGFANRNFM







A
LIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVIEM






ARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDIN





RLSDYDVDHIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFD





NLTKAERGGLSELDKAGFIKRQLVETRAITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFR





KDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATA





KYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTG





GFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERS





SFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASH





YEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIH





LFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGD (SEQ ID NO: 9,





mutations relative to SEQ ID NO: 1 are bolded and underlined)





High fidelity nucleobase editor


msSETGPVAVDPTLRRRIEPHEFEVFFDPRELRKETCLLYEINWGGRHSIWRHTSQNTNKHVEVNFIEKF





TTERYFCPNTRCSITWFLSWSPCGECSRAITEFLSRYPHVTLFIYIARLYHHADPRNRQGLRDLISSGVTI





QIMTEQESGYCWRNFVNYSPSNEAHWPRYPHLWVRLYVLELYCIILGLPPCLNILRRKQPQLTFFTIALQ





SCHYQRLPPHILWATGLKSGSETPGTSESATPESDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLG





NTDRHSIKKNLIGALLFDSGETALATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFL





VEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLN





PDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALS





LGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITK





APLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKM





DGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGP





LARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTAFDKNLPNEKVLPKHSLLYEYFTVYN





ELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASL





GTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWG





ALSRKLINGIRDKQSGKTILDFLKSDGFANRNFMALIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGS





PAIKKGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEH





PVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDDSIDNKVLTRSDKNRGKS





DNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRAITKHVAQIL





DSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPK





LESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIV





WDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVA





YSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGR





KRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKR





VILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIH





QSITGLYETRIDLSQLGGD (SEQ ID NO: 321)






In some embodiments, the guide nucleotide sequence-programmable DNA binding protein is a single effector of a microbial CRISPR-Cas system. Single effectors of microbial CRISPR-Cas systems include, without limitation, Cas9, Cpf1, C2c1, C2c2, and C2c3. Typically, microbial CRISPR-Cas systems are divided into Class 1 and Class 2 systems. Class 1 systems have multisubunit effector complexes, while Class 2 systems have a single protein effector. Cas9 and Cpf1 are Class 2 effectors. In addition to Cas9 and Cpf1, three distinct Class 2 CRISPR-Cas systems (C2c1, C2c2, and C2c3) have been described by Shmakov et al., “Discovery and Functional Characterization of Diverse Class 2 CRISPR Cas Systems”, Mol. Cell, 2015 Nov. 5; 60(3): 385-397, the entire contents of which are herein incorporated by reference. Effectors of two of the systems, C2c1 and C2c3, contain RuvC-like endonuclease domains related to Cpf1. A third system, C2c2 contains an effector with two predicted HEPN RNase domains. Production of mature CRISPR RNA is tracrRNA-independent, unlike production of CRISPR RNA by C2c1. C2c1 depends on both CRISPR RNA and tracrRNA for DNA cleavage. Bacterial C2c2 has been shown to possess a unique RNase activity for CRISPR RNA maturation distinct from its RNA-activated single-stranded RNA degradation activity. These RNase functions are different from each other and from the CRISPR RNA-processing behavior of Cpf1. See, e.g., East-Seletsky, et al., “Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection”, Nature, 2016 Oct. 13; 538(7624):270-273, the entire contents of which are hereby incorporated by reference. In vitro biochemical analysis of C2c2 in Leptotrichia shahii has shown that C2c2 is guided by a single CRISPR RNA and can be programmed to cleave ssRNA targets carrying complementary protospacers. Catalytic residues in the two conserved HEPN domains mediate cleavage. Mutations in the catalytic residues generate catalytically inactive RNA-binding proteins. See e.g., Abudayyeh et al., “C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector,” Science, 2016 Aug. 5; 353(6299), the entire contents of which are hereby incorporated by reference.


The crystal structure of Alicyclobaccillus acidoterrastris C2c1 (AacC2c1) has been reported in complex with a chimeric single-molecule guide RNA (sgRNA). See, e.g., Liu et al., “C2c1-sgRNA Complex Structure Reveals RNA-Guided DNA Cleavage Mechanism”, Mol. Cell, 2017 Jan. 19; 65(2):310-322, incorporated herein by reference. The crystal structure has also been reported for Alicyclobacillus acidoterrestris C2c1 bound to target DNAs as ternary complexes. See, e.g., Yang et al., “PAM-dependent Target DNA Recognition and Cleavage by C2C1 CRISPR-Cas endonuclease”, Cell, 2016 Dec. 15; 167(7):1814-1828, the entire contents of which are hereby incorporated by reference. Catalytically competent conformations of AacC2c1, both with target and non-target DNA strands, have been captured independently positioned within a single RuvC catalytic pocket, with C2c1-mediated cleavage resulting in a staggered seven-nucleotide break of target DNA. Structural comparisons between C2c1 ternary complexes and previously identified Cas9 and Cpf1 counterparts demonstrate the diversity of mechanisms used by CRISPR-Cas9 systems.


In some embodiments, the nucleobase editors described herein comprise a C2c1, a C2c2, or a C2c3 protein. In some embodiments, the guide nucleotide sequence-programmable DNA binding protein is a C2c 1 protein. In some embodiments, the guide nucleotide sequence-programmable DNA binding protein is a C2c2 protein. In some embodiments, the guide nucleotide sequence-programmable DNA binding protein is a C2c3 protein. In some embodiments, the guide nucleotide sequence-programmable DNA binding protein comprises an amino acid sequence that is at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to a naturally-occurring C2c1, C2c2, or C2c3 protein. In some embodiments, the guide nucleotide sequence-programmable DNA binding protein is a naturally-occurring C2c1, C2c2, or C2c3 protein. In some embodiments, the guide nucleotide sequence-programmable DNA binding protein comprises an amino acid sequence that is at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to any one of SEQ ID NOs: 756-758. In some embodiments, the guide nucleotide sequence-programmable DNA binding protein comprises an amino acid sequence of any one SEQ ID NOs: 756-758. It should be appreciated that C2c1, C2c2, or C2c3 from other bacterial species may also be used in accordance with the present disclosure.










C2c1 (uniprot.org/uniprot/T0D7A2#)



sp|T0D7A2|C2C1_ALIAG CRISPR-associated endonuclease C2c1 OS = Alicyclobacillus



acidoterrestris (strain ATCC 49025 / DSM 3922 / CIP 106132 / NCIMB 13137 / GD3B)



GN = c2c1 PE = 1 SV = 1


(SEQ ID NO: 2470)



MAVKSIKVKLRLDDMPEIRAGLWKLHKEVNAGVRYYTEWLSLLRQENLYRRSPNGDGEQECDKTAE






ECKAELLERLRARQVENGHRGPAGSDDELLQLARQLYELLVPQAIGAKGDAQQIARKFLSPLADKDAV





GGLGIAKAGNKPRWVRMREAGEPGWEEEKEKAETRKSADRTADVLRALADFGLKPLMRVYTDSEMS





SVEWKPLRKGQAVRTWDRDMFQQAIERMMSWESWNQRVGQEYAKLVEQKNRFEQKNFVGQEHLV





HLVNQLQQDMKEASPGLESKEQTAHYVTGRALRGSDKVFEKWGKLAPDAPFDLYDALIKNVQRRNT





RRFGSHDLFAKLAEPEYQALWREDASFLTRYAVYNSILRKLNHAKMFATFTLPDATAHPIWTRFDKLG





GNLHQYTFLFNEFGERRHAIRFHKLLKVENGVAREVDDVTVPISMSEQLDNLLPRDPNEPIALYFRDYG





AEQHFTGEFGGAKIQCRRDQLAHMHRRRGARDVYLNVSVRVQSQSEARGERRPPYAAVFRLVGDNH





RAFVHFDKLSDYLAEHPDDGKLGSEGLLSGLRVMSVDLGLRTSASISVFRVARKDELKPNSKGRVPFFF





PIKGNDNLVAVHERSQLLKLPGETESKDLRAIREERQRTLRQLRTQLAYLRLLVRCGSEDVGRRERSW





AKLIEQPVDAANHMTPDWREAFENELQKLKSLHGICSDKEWMDAVYESVRRVWRHMGKQVRDWRK





DVRSGERPKIRGYAKDVVGGNSIEQIEYLERQYKFLKSWSFFGKVSGQVIRAEKGSRFAITLREHIDHAK





EDRLKKLADRIIMEALGYVYALDERGKGKWVAKYPPCQLILLEELSEYQFNNDRPPSENNQLMQWSH





RGVFQELINQAQVHDLLVGTMYAAFSSRFDARTGAPGIRCRRVPARCTQEHNPEPFPWWLNKFVVEHT





LDACPLRADDLIPTGEGEIFVSPFSAEEGDFHQIHADLNAAQNLQQRLWSDFDISQIRERCDWGEVDGE





LVLIPRLTGKRTADSYSNKVFYTNTGVTYYERERGKKRRKVFAQEKLSEEEAELLVEADEAREKSVVL





MRDPSGIINRGNWTRQKEFWSMVNQRIEGYLVKQIRSRVPLQDSACENTGDI





C2c2 (uniprot.org/uniprot/P0DOC6)


>sp|P0DOC6|C2C2_LEPSD CRISPR-associated endoribonuclease C2c2 OS = Leptotrichia



shahii (strain DSM 19757 / CCUG 47503 / CIP 107916 / JCM 16776 / LB37) GN = c2c2



PE = 1 SV = 1


(SEQ ID NO: 2471)



MGNLFGHKRWYEVRDKKDFKIKRKVKVKRNYDGNKYILNINENNNKEKIDNNKFIRKYINYKKNDNI






LKEFTRKFHAGNILFKLKGKEGIIRIENNDDFLETEEVVLYIEAYGKSEKLKALGITKKKIIDEAIRQGITK





DDKKIEIKRQENEEEIEIDIRDEYTNKTLNDCSIILRIIENDELETKKSIYEIFKNINMSLYKIIEKIIENETEK





VFENRYYEEHLREKLLKDDKIDVILTNFMEIREKIKSNLEILGFVKFYLNVGGDKKKSKNKKMLVEKIL





NINVDLTVEDIADFVIKELEFWNITKRIEKVKKVNNEFLEKRRNRTYIKSYVLLDKHEKFKIERENKKDK





IVKFFVENIKNNSIKEKIEKILAEFKIDELIKKLEKELKKGNCDTEIFGIFKKHYKVNFDSKKFSKKSDEEK





ELYKIIYRYLKGRIEKILVNEQKVRLKKMEKIEIEKILNESILSEKILKRVKQYTLEHIMYLGKLRHNDID





MTTVNTDDFSRLHAKEELDLELITFFASTNMELNKIFSRENINNDENIDFFGGDREKNYVLDKKILNSKI





KIIRDLDFIDNKNNITNNFIRKFTKIGTNERNRILHAISKERDLQGTQDDYNKVINIIQNLKISDEEVSKAL





NLDVVFKDKKNIITKINDIKISEENNNDIKYLPSFSKVLPEILNLYRNNPKNEPFDTIETEKIVLNALIYVN





KELYKKLILEDDLEENESKNIFLQELKKTLGNIDEIDENIIENYYKNAQISASKGNNKAIKKYQKKVIECY





IGYLRKNYEELFDFSDFKMNIQEIKKQIKDINDNKTYERITVKTSDKTIVINDDFEYIISIFALLNSNAVIN





KIRNRFFATSVWLNTSEYQNIIDILDEIMQLNTLRNECITENWNLNLEEFIQKMKEIEKDFDDFKIQTKKE





IFNNYYEDIKNNILTEFKDDINGCDVLEKKLEKIVIFDDETKFEIDKKSNILQDEQRKLSNINKKDLKKKV





DQYIKDKDQEIKSKILCRIIFNSDFLKKYKKEIDNLIEDMESENENKFQEIYYPKERKNELYIYKKNLFLNI





GNPNFDKIYGLISNDIKMADAKFLFNIDGKNIRKNKISEIDAILKNLNDKLNGYSKEYKEKYIKKLKEND





DFFAKNIQNKNYKSFEKDYNRVSEYKKIRDLVEFNYLNKIESYLIDINWKLAIQMARFERDMHYIVNGL





RELGIIKLSGYNTGISRAYPKRNGSDGFYTTTAYYKFFDEESYKKFEKICYGFGIDLSENSEINKPENESIR





NYISHFYIVRNPFADYSIAEQIDRVSNLLSYSTRYNNSTYASVFEVFKKDVNLDYDELKKKFKLIGNNDI





LERLMKPKKVSVLELESYNSDYIKNLIIELLTKIENTNDTL





C2c3, translated from >CEPX01008730.1 marine metagenome genome assembly


TARA_037_MES_0.1-0.22, contig TARA_037_MES_0.1-0.22_scaffold22115_1, whole


genome shotgun sequence.


(SEQ ID NO: 2472)



MRSNYHGGRNARQWRKQISGLARRTKETVFTYKFPLETDAAEIDFDKAVQTYGIAEGVGHGSLIGLVC






AFHLSGFRLFSKAGEAMAFRNRSRYPTDAFAEKLSAIMGIQLPTLSPEGLDLIFQSPPRSRDGIAPVWSE





NEVRNRLYTNWTGRGPANKPDEHLLEIAGEIAKQVFPKFGGWDDLASDPDKALAAADKYFQSQGDFP





SIASLPAAIMLSPANSTVDFEGDYIAIDPAAETLLHQAVSRCAARLGRERPDLDQNKGPFVSSLQDALVS





SQNNGLSWLFGVGFQHWKEKSPKELIDEYKVPADQHGAVTQVKSFVDAIPLNPLFDTTHYGEFRASVA





GKVRSWVANYWKRLLDLKSLLATTEFTLPESISDPKAVSLFSGLLVDPQGLKKVADSLPARLVSAEEAI





DRLMGVGIPTAADIAQVERVADEIGAFIGQVQQFNNQVKQKLENLQDADDEEFLKGLKIELPSGDKEPP





AINRISGGAPDAAAEISELEEKLQRLLDARSEHFQTISEWAEENAVTLDPIAAMVELERLRLAERGATGD





PEEYALRLLLQRIGRLANRVSPVSAGSIRELLKPVFMEEREFNLFFHNRLGSLYRSPYSTSRHQPFSIDVG





KAKAIDWIAGLDQISSDIEKALSGAGEALGDQLRDWINLAGFAISQRLRGLPDTVPNALAQVRCPDDVR





IPPLLAMLLEEDDIARDVCLKAFNLYVSAINGCLFGALREGFIVRTRFQRIGTDQIHYVPKDKAWEYPDR





LNTAKGPINAAVSSDWIEKDGAVIKPVETVRNLSSTGFAGAGVSEYLVQAPHDWYTPLDLRDVAHLVT





GLPVEKNITKLKRLTNRTAFRMVGASSFKTHLDSVLLSDKIKLGDFTIIIDQHYRQSVTYGGKVKISYEP





ERLQVEAAVPVVDTRDRTVPEPDTLFDHIVAIDLGERSVGFAVFDIKSCLRTGEVKPIHDNNGNPVVGT





VAVPSIRRLMKAVRSHRRRRQPNQKVNQTYSTALQNYRENVIGDVCNRIDTLMERYNAFPVLEFQIKN





FQAGAKQLEIVYGS






The Cas9 protein recognizes a short motif (PAM motif) in the CRISPR repeat sequences in the target DNA sequence. A “PAM motif,” or “protospacer adjacent motif,” as used herein, refers to a DNA sequence immediately following the DNA sequence targeted by the Cas9 nuclease in the CRISPR bacterial adaptive immune system. PAM is a component of the invading virus or plasmid but is not a component of the bacterial CRISPR locus. Wild-type Streptococcus pyogenes Cas9 recognizes a canonical PAM sequence (5′-NGG-3′). Other Cas9 nucleases (e.g., Cas9 from Streptococcus thermophiles, Staphylococcus aureus, Neisseria meningitidis, or Treponema denticolaor) and Cas9 variants thereof have been described in the art to have different, or more relaxed PAM requirements. For example, in Kleinstiver et al., Nature 523, 481-485, 2015; Klenstiver et al., Nature 529, 490-495, 2016; Ran et al., Nature, Apr. 9; 520(7546): 186-191, 2015; Kleinstiver et al., Nat Biotechnol, 33(12):1293-1298, 2015; Hou et al., Proc Natl Acad Sci USA, 110(39):15644-9, 2014; Prykhozhij et al., PLoS One, 10(3): e0119372, 2015; Zetsche et al., Cell 163, 759-771, 2015; Gao et al., Nature Biotechnology, doi:10.1038/nbt.3547, 2016; Want et al., Nature 461, 754-761, 2009; Chavez et al., doi: dx.doi.org/10.1101/058974; Fagerlund et al., Genome Biol. 2015; 16: 25, 2015; Zetsche et al., Cell, 163, 759-771, 2015; and Swarts et al., Nat Struct Mol Biol, 21(9):743-53, 2014, each of which is incorporated herein by reference.


Thus, the guide nucleotide sequence-programmable DNA-binding proteins useful in the present disclosure may recognize a variety of PAM sequences including, without limitation: NGG, NGAN, NGNG, NGAG, NGCG, NNGRRT, NGRRN, NNNRRT, NNNGATT, NNAGAAW, NAAAC, TTN, TTTN, and YTN, wherein Y is a pyrimidine, and N is any nucleobase. In some embodiments, the PAM is located 3′ of the target base. In some embodiments, the PAM is located 5′ of the target base.


One example of an RNA-programmable DNA-binding protein that has different PAM specificity is Clustered Regularly Interspaced Short Palindromic Repeats from Prevotella and Francisella 1 (Cpf1). Similar to Cas9, Cpf1 is also a class 2 CRISPR effector. It has been shown that Cpf1 mediates robust DNA interference with features distinct from Cas9. Cpf1 is a single RNA-guided endonuclease lacking tracrRNA, and it utilizes a T-rich protospacer-adjacent motif (TTN, TTTN, or YTN). Moreover, Cpf1 cleaves DNA via a staggered DNA double-stranded break. Out of 16 Cpf1-family proteins, two enzymes from Acidaminococcus and Lachnospiraceae are shown to have efficient genome-editing activity in human cells.


Also useful in the present disclosure are nuclease-inactive Cpf1 (dCpf1) variants that may be used as a guide nucleotide sequence-programmable DNA-binding protein domain. The Cpf1 protein has a RuvC-like endonuclease domain that is similar to the RuvC domain of Cas9 but does not have a HNH endonuclease domain, and the N-terminal of Cpf1 does not have the alfa-helical recognition lobe of Cas9. It was shown in Zetsche et al., Cell, 163, 759-771, 2015 (which is incorporated herein by reference) that, the RuvC-like domain of Cpf1 is responsible for cleaving both DNA strands and inactivation of the RuvC-like domain inactivates Cpf1 nuclease activity. For example, mutations corresponding to D917A, E1006A, or D1255A in Francisella novicida Cpf1 (SEQ ID NO: 10) inactivates Cpf1 nuclease activity. In some embodiments, the dCpf1 of the present disclosure comprises mutations corresponding to D917A, E1006A, D1255A, D917A/E1006A, D917A/D1255A, E1006A/D1255A, or D917A/E1006A/D1255A in SEQ ID NO: 10. It is to be understood that any mutations, e.g., substitution mutations, deletions, or insertions that inactivate the RuvC domain of Cpf1 may be used in accordance with the present disclosure.


Thus, in some embodiments, the guide nucleotide sequence-programmable DNA binding protein is a nuclease inactive Cpf1 (dCpf1). In some embodiments, the dCpf1 comprises the amino acid sequence of any one SEQ ID NOs: 261-267. In some embodiments, the dCpf1 comprises an amino acid sequence that is at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to SEQ ID NO: 10, and comprises mutations corresponding to D917A, E1006A, D1255A, D917A/E1006A, D917A/D1255A, E1006A/D1255A, or D917A/E1006A/D1255A in SEQ ID NO: 10. Cpf1 from other bacterial species may also be used in accordance with the present disclosure.










Wild type Francisella novicida Cpf1 (D917, E1006, and D1255 are



bolded and underlined)


(SEQ ID NO: 10)



MSIYQEFVNKYSLSKTLRFELIPQGKTLENIKARGLILDDEKRAKDYKKAKQIIDKYHQFFIEEILSSVCIS






EDLLQNYSDVYFKLKKSDDDNLQKDFKSAKDTIKKQISEYIKDSEKFKNLFNQNLIDAKKGQESDLILW





LKQSKDNGIELFKANSDITDIDEALEIIKSFKGWTTYFKGFHENRKNVYSSNDIPTSIIYRIVDDNLPKFLE





NKAKYESLKDKAPEAINYEQIKKDLAELLTFDIDYKTSEVNQRVFSLDEVFEIANFNNYLNQSGITKFNT





IIGGKFVNGENTKRKGINEYINLYSQQINDKTLKKYKMSVLFKQILSDTESKSFVIDKLEDDSDVVTTMQ





SFYEQIAAFKTVEEKSIKETLSLLFDDLKAQKLDLSKIYFKNDKSLTDLSQQVFDDYSVIGTAVLEYITQ





QIAPKNLDNPSKKEQELIAKKTEKAKYLSLETIKLALEEFNKHRDIDKQCRFEEILANFAAIPMIFDEIAQ





NKDNLAQISIKYQNQGKKDLLQASAEDDVKAIKDLLDQTNNLLHKLKIFHISQSEDKANILDKDEHFYL





VFEECYFELANIVPLYNKIRNYITQKPYSDEKFKLNFENSTLANGWDKNKEPDNTAILFIKDDKYYLGV





MNKKNNKIFDDKAIKENKGEGYKKIVYKLLPGANKMLPKVFFSAKSIKFYNPSEDILRIRNHSTHTKNG





SPQKGYEKFEFNIEDCRKFIDFYKQSISKHPEWKDFGFRFSDTQRYNSIDEFYREVENQGYKLTFENISES





YIDSVVNQGKLYLFQIYNKDFSAYSKGRPNLHTLYWKALFDERNLQDVVYKLNGEAELFYRKQSIPKK





ITHPAKEAIANKNKDNPKKESVFEYDLIKDKRFTEDKFFFHCPITINFKSSGANKFNDEINLLLKEKAND





VHILSIDRGERHLAYYTLVDGKGNIIKQDTFNIIGNDRMKTNYHDKLAAIEKDRDSARKDWKKINNIKE





MKEGYLSQVVHEIAKLVIEYNAIVVFEDLNFGFKRGRFKVEKQVYQKLEKMLIEKLNYLVFKDNEFDK





TGGVLRAYQLTAPFETFKKMGKQTGIIYYVPAGFTSKICPVTGFVNQLYPKYESVSKSQEFFSKFDKICY





NLDKGYFEFSFDYKNFGDKAAKGKWTIASFGSRLINFRNSDKNHNWDTREVYPTKELEKLLKDYSIEY





GHGECIKAAICGESDKKFFAKLTSVLNTILQMRNSKTGTELDYLISPVADVNGNFFDSRQAPKNMPQDA







D
ANGAYHIGLKGLMLLGRIKNNQEGKKLNLVIKNEEYFEFVQNRNN







Francisella novicida Cpf1 D917A (A917, E1006, and D1255 are



bolded and underlined)


(SEQ ID NO: 261)



MSIYQEFVNKYSLSKTLRFELIPQGKTLENIKARGLILDDEKRAKDYKKAKQIIDKYHQFFIEEILSSVCIS






EDLLQNYSDVYFKLKKSDDDNLQKDFKSAKDTIKKQISEYIKDSEKFKNLFNQNLIDAKKGQESDLILW





LKQSKDNGIELFKANSDITDIDEALEIIKSFKGWTTYFKGFHENRKNVYSSNDIPTSIIYRIVDDNLPKFLE





NKAKYESLKDKAPEAINYEQIKKDLAELLTFDIDYKTSEVNQRVFSLDEVFEIANFNNYLNQSGITKFNT





IIGGKFVNGENTKRKGINEYINLYSQQINDKTLKKYKMSVLFKQILSDTESKSFVIDKLEDDSDVVTTMQ





SFYEQIAAFKTVEEKSIKETLSLLFDDLKAQKLDLSKIYFKNDKSLTDLSQQVFDDYSVIGTAVLEYITQ





QIAPKNLDNPSKKEQELIAKKTEKAKYLSLETIKLALEEFNKHRDIDKQCRFEEILANFAAIPMIFDEIAQ





NKDNLAQISIKYQNQGKKDLLQASAEDDVKAIKDLLDQTNNLLHKLKIFHISQSEDKANILDKDEHFYL





VFEECYFELANIVPLYNKIRNYITQKPYSDEKFKLNFENSTLANGWDKNKEPDNTAILFIKDDKYYLGV





MNKKNNKIFDDKAIKENKGEGYKKIVYKLLPGANKMLPKVFFSAKSIKFYNPSEDILRIRNHSTHTKNG





SPQKGYEKFEFNIEDCRKFIDFYKQSISKHPEWKDFGFRFSDTQRYNSIDEFYREVENQGYKLTFENISES





YIDSVVNQGKLYLFQIYNKDFSAYSKGRPNLHTLYWKALFDERNLQDVVYKLNGEAELFYRKQSIPKK





ITHPAKEAIANKNKDNPKKESVFEYDLIKDKRFTEDKFFFHCPITINFKSSGANKFNDEINLLLKEKAND





VHILSIARGERHLAYYTLVDGKGNIIKQDTFNIIGNDRMKTNYHDKLAAIEKDRDSARKDWKKINNIKE





MKEGYLSQVVHEIAKLVIEYNAIVVFEDLNFGFKRGRFKVEKQVYQKLEKMLIEKLNYLVFKDNEFDK





TGGVLRAYQLTAPFETFKKMGKQTGIIYYVPAGFTSKICPVTGFVNQLYPKYESVSKSQEFFSKFDKICY





NLDKGYFEFSFDYKNFGDKAAKGKWTIASFGSRLINFRNSDKNHNWDTREVYPTKELEKLLKDYSIEY





GHGECIKAAICGESDKKFFAKLTSVLNTILQMRNSKTGTELDYLISPVADVNGNFFDSRQAPKNMPQDA







D
ANGAYHIGLKGLMLLGRIKNNQEGKKLNLVIKNEEYFEFVQNRNN







Francisella novicida Cpf1 E1006A (D917, A1006, and D1255 are



bolded and underlined)


(SEQ ID NO: 262)



MSIYQEFVNKYSLSKTLRFELIPQGKTLENIKARGLILDDEKRAKDYKKAKQIIDKYHQFFIEEILSSVCIS






EDLLQNYSDVYFKLKKSDDDNLQKDFKSAKDTIKKQISEYIKDSEKFKNLFNQNLIDAKKGQESDLILW





LKQSKDNGIELFKANSDITDIDEALEIIKSFKGWTTYFKGFHENRKNVYSSNDIPTSIIYRIVDDNLPKFLE





NKAKYESLKDKAPEAINYEQIKKDLAELLTFDIDYKTSEVNQRVFSLDEVFEIANFNNYLNQSGITKFNT





IIGGKFVNGENTKRKGINEYINLYSQQINDKTLKKYKMSVLFKQILSDTESKSFVIDKLEDDSDVVTTMQ





SFYEQIAAFKTVEEKSIKETLSLLFDDLKAQKLDLSKIYFKNDKSLTDLSQQVFDDYSVIGTAVLEYITQ





QIAPKNLDNPSKKEQELIAKKTEKAKYLSLETIKLALEEFNKHRDIDKQCRFEEILANFAAIPMIFDEIAQ





NKDNLAQISIKYQNQGKKDLLQASAEDDVKAIKDLLDQTNNLLHKLKIFHISQSEDKANILDKDEHFYL





VFEECYFELANIVPLYNKIRNYITQKPYSDEKFKLNFENSTLANGWDKNKEPDNTAILFIKDDKYYLGV





MNKKNNKIFDDKAIKENKGEGYKKIVYKLLPGANKMLPKVFFSAKSIKFYNPSEDILRIRNHSTHTKNG





SPQKGYEKFEFNIEDCRKFIDFYKQSISKHPEWKDFGFRFSDTQRYNSIDEFYREVENQGYKLTFENISES





YIDSVVNQGKLYLFQIYNKDFSAYSKGRPNLHTLYWKALFDERNLQDVVYKLNGEAELFYRKQSIPKK





ITHPAKEAIANKNKDNPKKESVFEYDLIKDKRFTEDKFFFHCPITINFKSSGANKFNDEINLLLKEKAND





VHILSIDRGERHLAYYTLVDGKGNIIKQDTFNIIGNDRMKTNYHDKLAAIEKDRDSARKDWKKINNIKE





MKEGYLSQVVHEIAKLVIEYNAIVVFADLNFGFKRGRFKVEKQVYQKLEKMLIEKLNYLVFKDNEFDK





TGGVLRAYQLTAPFETFKKMGKQTGIIYYVPAGFTSKICPVTGFVNQLYPKYESVSKSQEFFSKFDKICY





NLDKGYFEFSFDYKNFGDKAAKGKWTIASFGSRLINFRNSDKNHNWDTREVYPTKELEKLLKDYSIEY





GHGECIKAAICGESDKKFFAKLTSVLNTILQMRNSKTGTELDYLISPVADVNGNFFDSRQAPKNMPQDA







D
ANGAYHIGLKGLMLLGRIKNNQEGKKLNLVIKNEEYFEFVQNRNN







Francisella novicida Cpf1 D1255A (D917, E1006, and A1255 are



bolded and underlined)


(SEQ ID NO: 263)



MSIYQEFVNKYSLSKTLRFELIPQGKTLENIKARGLILDDEKRAKDYKKAKQIIDKYHQFFIEEILSSVCIS






EDLLQNYSDVYFKLKKSDDDNLQKDFKSAKDTIKKQISEYIKDSEKFKNLFNQNLIDAKKGQESDLILW





LKQSKDNGIELFKANSDITDIDEALEIIKSFKGWTTYFKGFHENRKNVYSSNDIPTSIIYRIVDDNLPKFLE





NKAKYESLKDKAPEAINYEQIKKDLAELLTFDIDYKTSEVNQRVFSLDEVFEIANFNNYLNQSGITKFNT





IIGGKFVNGENTKRKGINEYINLYSQQINDKTLKKYKMSVLFKQILSDTESKSFVIDKLEDDSDVVTTMQ





SFYEQIAAFKTVEEKSIKETLSLLFDDLKAQKLDLSKIYFKNDKSLTDLSQQVFDDYSVIGTAVLEYITQ





QIAPKNLDNPSKKEQELIAKKTEKAKYLSLETIKLALEEFNKHRDIDKQCRFEEILANFAAIPMIFDEIAQ





NKDNLAQISIKYQNQGKKDLLQASAEDDVKAIKDLLDQTNNLLHKLKIFHISQSEDKANILDKDEHFYL





VFEECYFELANIVPLYNKIRNYITQKPYSDEKFKLNFENSTLANGWDKNKEPDNTAILFIKDDKYYLGV





MNKKNNKIFDDKAIKENKGEGYKKIVYKLLPGANKMLPKVFFSAKSIKFYNPSEDILRIRNHSTHTKNG





SPQKGYEKFEFNIEDCRKFIDFYKQSISKHPEWKDFGFRFSDTQRYNSIDEFYREVENQGYKLTFENISES





YIDSVVNQGKLYLFQIYNKDFSAYSKGRPNLHTLYWKALFDERNLQDVVYKLNGEAELFYRKQSIPKK





ITHPAKEAIANKNKDNPKKESVFEYDLIKDKRFTEDKFFFHCPITINFKSSGANKFNDEINLLLKEKAND





VHILSIDRGERHLAYYTLVDGKGNIIKQDTFNIIGNDRMKTNYHDKLAAIEKDRDSARKDWKKINNIKE





MKEGYLSQVVHEIAKLVIEYNAIVVFEDLNFGFKRGRFKVEKQVYQKLEKMLIEKLNYLVFKDNEFDK





TGGVLRAYQLTAPFETFKKMGKQTGIIYYVPAGFTSKICPVTGFVNQLYPKYESVSKSQEFFSKFDKICY





NLDKGYFEFSFDYKNFGDKAAKGKWTIASFGSRLINFRNSDKNHNWDTREVYPTKELEKLLKDYSIEY





GHGECIKAAICGESDKKFFAKLTSVLNTILQMRNSKTGTELDYLISPVADVNGNFFDSRQAPKNMPQDA







A
ANGAYHIGLKGLMLLGRIKNNQEGKKLNLVIKNEEYFEFVQNRNN







Francisella novicida Cpf1 D917A/E1006A (A917, A1006, and



D1255 are bolded and underlined)


(SEQ ID NO: 264)



MSIYQEFVNKYSLSKTLRFELIPQGKTLENIKARGLILDDEKRAKDYKKAKQIIDKYHQFFIEEILSSVCIS






EDLLQNYSDVYFKLKKSDDDNLQKDFKSAKDTIKKQISEYIKDSEKFKNLFNQNLIDAKKGQESDLILW





LKQSKDNGIELFKANSDITDIDEALEIIKSFKGWTTYFKGFHENRKNVYSSNDIPTSIIYRIVDDNLPKFLE





NKAKYESLKDKAPEAINYEQIKKDLAELLTFDIDYKTSEVNQRVFSLDEVFEIANFNNYLNQSGITKFNT





IIGGKFVNGENTKRKGINEYINLYSQQINDKTLKKYKMSVLFKQILSDTESKSFVIDKLEDDSDVVTTMQ





SFYEQIAAFKTVEEKSIKETLSLLFDDLKAQKLDLSKIYFKNDKSLTDLSQQVFDDYSVIGTAVLEYITQ





QIAPKNLDNPSKKEQELIAKKTEKAKYLSLETIKLALEEFNKHRDIDKQCRFEEILANFAAIPMIFDEIAQ





NKDNLAQISIKYQNQGKKDLLQASAEDDVKAIKDLLDQTNNLLHKLKIFHISQSEDKANILDKDEHFYL





VFEECYFELANIVPLYNKIRNYITQKPYSDEKFKLNFENSTLANGWDKNKEPDNTAILFIKDDKYYLGV





MNKKNNKIFDDKAIKENKGEGYKKIVYKLLPGANKMLPKVFFSAKSIKFYNPSEDILRIRNHSTHTKNG





SPQKGYEKFEFNIEDCRKFIDFYKQSISKHPEWKDFGFRFSDTQRYNSIDEFYREVENQGYKLTFENISES





YIDSVVNQGKLYLFQIYNKDFSAYSKGRPNLHTLYWKALFDERNLQDVVYKLNGEAELFYRKQSIPKK





ITHPAKEAIANKNKDNPKKESVFEYDLIKDKRFTEDKFFFHCPITINFKSSGANKFNDEINLLLKEKAND





VHILSIARGERHLAYYTLVDGKGNIIKQDTFNIIGNDRMKTNYHDKLAAIEKDRDSARKDWKKINNIKE





MKEGYLSQVVHEIAKLVIEYNAIVVFADLNFGFKRGRFKVEKQVYQKLEKMLIEKLNYLVFKDNEFDK





TGGVLRAYQLTAPFETFKKMGKQTGIIYYVPAGFTSKICPVTGFVNQLYPKYESVSKSQEFFSKFDKICY





NLDKGYFEFSFDYKNFGDKAAKGKWTIASFGSRLINFRNSDKNHNWDTREVYPTKELEKLLKDYSIEY





GHGECIKAAICGESDKKFFAKLTSVLNTILQMRNSKTGTELDYLISPVADVNGNFFDSRQAPKNMPQDA







D
ANGAYHIGLKGLMLLGRIKNNQEGKKLNLVIKNEEYFEFVQNRNN







Francisella novicida Cpf1 D917A/D1255A (A917, E1006, and



A1255 are bolded and underlined)


(SEQ ID NO: 265)



MSIYQEFVNKYSLSKTLRFELIPQGKTLENIKARGLILDDEKRAKDYKKAKQIIDKYHQFFIEEILSSVCIS






EDLLQNYSDVYFKLKKSDDDNLQKDFKSAKDTIKKQISEYIKDSEKFKNLFNQNLIDAKKGQESDLILW





LKQSKDNGIELFKANSDITDIDEALEIIKSFKGWTTYFKGFHENRKNVYSSNDIPTSIIYRIVDDNLPKFLE





NKAKYESLKDKAPEAINYEQIKKDLAELLTFDIDYKTSEVNQRVFSLDEVFEIANFNNYLNQSGITKFNT





IIGGKFVNGENTKRKGINEYINLYSQQINDKTLKKYKMSVLFKQILSDTESKSFVIDKLEDDSDVVTTMQ





SFYEQIAAFKTVEEKSIKETLSLLFDDLKAQKLDLSKIYFKNDKSLTDLSQQVFDDYSVIGTAVLEYITQ





QIAPKNLDNPSKKEQELIAKKTEKAKYLSLETIKLALEEFNKHRDIDKQCRFEEILANFAAIPMIFDEIAQ





NKDNLAQISIKYQNQGKKDLLQASAEDDVKAIKDLLDQTNNLLHKLKIFHISQSEDKANILDKDEHFYL





VFEECYFELANIVPLYNKIRNYITQKPYSDEKFKLNFENSTLANGWDKNKEPDNTAILFIKDDKYYLGV





MNKKNNKIFDDKAIKENKGEGYKKIVYKLLPGANKMLPKVFFSAKSIKFYNPSEDILRIRNHSTHTKNG





SPQKGYEKFEFNIEDCRKFIDFYKQSISKHPEWKDFGFRFSDTQRYNSIDEFYREVENQGYKLTFENISES





YIDSVVNQGKLYLFQIYNKDFSAYSKGRPNLHTLYWKALFDERNLQDVVYKLNGEAELFYRKQSIPKK





ITHPAKEAIANKNKDNPKKESVFEYDLIKDKRFTEDKFFFHCPITINFKSSGANKFNDEINLLLKEKAND





VHILSIARGERHLAYYTLVDGKGNIIKQDTFNIIGNDRMKTNYHDKLAAIEKDRDSARKDWKKINNIKE





MKEGYLSQVVHEIAKLVIEYNAIVVFEDLNFGFKRGRFKVEKQVYQKLEKMLIEKLNYLVFKDNEFDK





TGGVLRAYQLTAPFETFKKMGKQTGIIYYVPAGFTSKICPVTGFVNQLYPKYESVSKSQEFFSKFDKICY





NLDKGYFEFSFDYKNFGDKAAKGKWTIASFGSRLINFRNSDKNHNWDTREVYPTKELEKLLKDYSIEY





GHGECIKAAICGESDKKFFAKLTSVLNTILQMRNSKTGTELDYLISPVADVNGNFFDSRQAPKNMPQDA







A
ANGAYHIGLKGLMLLGRIKNNQEGKKLNLVIKNEEYFEFVQNRNN







Francisella novicida Cpf1 E1006A/D1255A (D917, A1006, and



A1255 are bolded and underlined)


(SEQ ID NO: 266)



MSIYQEFVNKYSLSKTLRFELIPQGKTLENIKARGLILDDEKRAKDYKKAKQIIDKYHQFFIEEILSSVCIS






EDLLQNYSDVYFKLKKSDDDNLQKDFKSAKDTIKKQISEYIKDSEKFKNLFNQNLIDAKKGQESDLILW





LKQSKDNGIELFKANSDITDIDEALEIIKSFKGWTTYFKGFHENRKNVYSSNDIPTSIIYRIVDDNLPKFLE





NKAKYESLKDKAPEAINYEQIKKDLAELLTFDIDYKTSEVNQRVFSLDEVFEIANFNNYLNQSGITKFNT





IIGGKFVNGENTKRKGINEYINLYSQQINDKTLKKYKMSVLFKQILSDTESKSFVIDKLEDDSDVVTTMQ





SFYEQIAAFKTVEEKSIKETLSLLFDDLKAQKLDLSKIYFKNDKSLTDLSQQVFDDYSVIGTAVLEYITQ





QIAPKNLDNPSKKEQELIAKKTEKAKYLSLETIKLALEEFNKHRDIDKQCRFEEILANFAAIPMIFDEIAQ





NKDNLAQISIKYQNQGKKDLLQASAEDDVKAIKDLLDQTNNLLHKLKIFHISQSEDKANILDKDEHFYL





VFEECYFELANIVPLYNKIRNYITQKPYSDEKFKLNFENSTLANGWDKNKEPDNTAILFIKDDKYYLGV





MNKKNNKIFDDKAIKENKGEGYKKIVYKLLPGANKMLPKVFFSAKSIKFYNPSEDILRIRNHSTHTKNG





SPQKGYEKFEFNIEDCRKFIDFYKQSISKHPEWKDFGFRFSDTQRYNSIDEFYREVENQGYKLTFENISES





YIDSVVNQGKLYLFQIYNKDFSAYSKGRPNLHTLYWKALFDERNLQDVVYKLNGEAELFYRKQSIPKK





ITHPAKEAIANKNKDNPKKESVFEYDLIKDKRFTEDKFFFHCPITINFKSSGANKFNDEINLLLKEKAND





VHILSIDRGERHLAYYTLVDGKGNIIKQDTFNIIGNDRMKTNYHDKLAAIEKDRDSARKDWKKINNIKE





MKEGYLSQVVHEIAKLVIEYNAIVVFADLNFGFKRGRFKVEKQVYQKLEKMLIEKLNYLVFKDNEFDK





TGGVLRAYQLTAPFETFKKMGKQTGIIYYVPAGFTSKICPVTGFVNQLYPKYESVSKSQEFFSKFDKICY





NLDKGYFEFSFDYKNFGDKAAKGKWTIASFGSRLINFRNSDKNHNWDTREVYPTKELEKLLKDYSIEY





GHGECIKAAICGESDKKFFAKLTSVLNTILQMRNSKTGTELDYLISPVADVNGNFFDSRQAPKNMPQDA







A
ANGAYHIGLKGLMLLGRIKNNQEGKKLNLVIKNEEYFEFVQNRNN







Francisella novicida Cpf1 D917A/E1006A/D1255A (A917,



A1006, and A1255 are bolded and underlined)


(SEQ ID NO: 267)



MSIYQEFVNKYSLSKTLRFELIPQGKTLENIKARGLILDDEKRAKDYKKAKQIIDKYHQFFIEEILSSVCIS






EDLLQNYSDVYFKLKKSDDDNLQKDFKSAKDTIKKQISEYIKDSEKFKNLFNQNLIDAKKGQESDLILW





LKQSKDNGIELFKANSDITDIDEALEIIKSFKGWTTYFKGFHENRKNVYSSNDIPTSIIYRIVDDNLPKFLE





NKAKYESLKDKAPEAINYEQIKKDLAELLTFDIDYKTSEVNQRVFSLDEVFEIANFNNYLNQSGITKFNT





IIGGKFVNGENTKRKGINEYINLYSQQINDKTLKKYKMSVLFKQILSDTESKSFVIDKLEDDSDVVTTMQ





SFYEQIAAFKTVEEKSIKETLSLLFDDLKAQKLDLSKIYFKNDKSLTDLSQQVFDDYSVIGTAVLEYITQ





QIAPKNLDNPSKKEQELIAKKTEKAKYLSLETIKLALEEFNKHRDIDKQCRFEEILANFAAIPMIFDEIAQ





NKDNLAQISIKYQNQGKKDLLQASAEDDVKAIKDLLDQTNNLLHKLKIFHISQSEDKANILDKDEHFYL





VFEECYFELANIVPLYNKIRNYITQKPYSDEKFKLNFENSTLANGWDKNKEPDNTAILFIKDDKYYLGV





MNKKNNKIFDDKAIKENKGEGYKKIVYKLLPGANKMLPKVFFSAKSIKFYNPSEDILRIRNHSTHTKNG





SPQKGYEKFEFNIEDCRKFIDFYKQSISKHPEWKDFGFRFSDTQRYNSIDEFYREVENQGYKLTFENISES





YIDSVVNQGKLYLFQIYNKDFSAYSKGRPNLHTLYWKALFDERNLQDVVYKLNGEAELFYRKQSIPKK





ITHPAKEAIANKNKDNPKKESVFEYDLIKDKRFTEDKFFFHCPITINFKSSGANKFNDEINLLLKEKAND





VHILSIARGERHLAYYTLVDGKGNIIKQDTFNIIGNDRMKTNYHDKLAAIEKDRDSARKDWKKINNIKE





MKEGYLSQVVHEIAKLVIEYNAIVVFADLNFGFKRGRFKVEKQVYQKLEKMLIEKLNYLVFKDNEFDK





TGGVLRAYQLTAPFETFKKMGKQTGIIYYVPAGFTSKICPVTGFVNQLYPKYESVSKSQEFFSKFDKICY





NLDKGYFEFSFDYKNFGDKAAKGKWTIASFGSRLINFRNSDKNHNWDTREVYPTKELEKLLKDYSIEY





GHGECIKAAICGESDKKFFAKLTSVLNTILQMRNSKTGTELDYLISPVADVNGNFFDSRQAPKNMPQDA







A
ANGAYHIGLKGLMLLGRIKNNQEGKKLNLVIKNEEYFEFVQNRNN







In some embodiments, the guide nucleotide sequence-programmable DNA binding protein is a Cpf1 protein from a Acidaminococcus species (AsCpf1). Cpf1 proteins form Acidaminococcus species have been described previously and would be apparent to the skilled artisan. Exemplary Acidaminococcus Cpf1 proteins (AsCpf1) include, without limitation, any of the AsCpf1 proteins provided herein.


Wild-type AsCpf1—Residue R912 is indicated in bold underlining and residues 661-667 are indicated in italics and underlining.









(SEQ ID NO: 2473)


TQFEGFTNLYQVSKTLRFELIPQGKTLKHIQEQGFIEEDKARNDHYKELK





PIIDRIYKTYADQCLQLVQLDWENLSAAIDSYRKEKTEETRNALIELQAT





YRNAIHDYFIGRTDNLTDAINKRHAEIYKGLFKAELFNGKVLKQLGTVTT





TEHENALLRSFDKFTTYFSGFYENRKNVFSAEDISTAIPHRIVQDNFPKF





KENCHIFTRLITAVPSLREHFENVKKAIGIFVSTSIEEVFSFPFYNQLLT





QTQIDLYNQLLGGISREAGTEKIKGLNEVLNLAIQKNDETAHIIASLPHR





FIPLFKQILSDRNTLSFILEEFKSDEEVIQSFCKYKTLLRNENVLETAEA





LFNELNSIDLTHIFISHKKLETISSALCDHWDTLRNALYERRISELTGKI





TKSAKEKVQRSLKHEDINLQEIISAAGKELSEAFKQKTSEILSHAHAALD





QPLPTTMLKKQEEKEILKSQLDSLLGLYHLLDWFAVDESNEVDPEFSARL





TGIKLEMEPSLSFYNKARNYATKKPYSVEKFKLNFQMPTLASGWDVNKEK





NNGAILFVKNGLYYLGIMPKQKGRYKALSFEPTEKTSEGFDKMYYDYFPD





AAKMIPKCSTQLKAVTAHFQTHTTPILLSNNFIEPLEITKEIYDLNNPEK





EPKKFQTAYAKKTGDQKGYREALCKWIDFTRDFLSKYTKTTSIDLSSLRP





SSQYKDLGEYYAELNPLLYHISFQRIAEKEIMDAVETGKLYLFQIYNKDF





AKGHHGKPNLHTLYWTGLFSPENLAKTSIKLNGQAELFYRPKSRMKRMAH





RLGEKMLNKKLKDQKTPIPDTLYQELYDYVNHRLSHDLSDEARALLPNVI





TKEVSHEIIKDRRFTSDKFFFHVPITLNYQAANSPSKFNQRVNAYLKEHP





ETPIIGIDRGERNLIYITVIDSTGKILEQRSLNTIQQFDYQKKLDNREKE





RVAARQAWSVVGTIKDLKQGYLSQVIHEIVDLMIHYQAVVVLENLNFGFK





SKRTGIALKAVYQQFEKMLIDKLNCLVLKDYPAEKVGGVLNPYQLTDQFT





SFAKMGTQSGFLFYVPAPYTSKIDPLTGFVDPFVWKTIKNHESRKHFLEG





FDFLHYDVKTGDFILHFKMNRNLSFQRGLPGFMPAWDIVFEKNETQFDAK





GTPFIAGKRIVPVIENHRFTGRYRDLYPANELIALLEEKGIVFRDGSNIL





PKLLENDDSHAIDTMVALIRSVLQMRNSNAATGEDYINSPVRDLNGVCFD





SRFQNPEWPMDADANGAYHIALKGQLLLNHLKESKDLKLQNGISNQDWLA





YIQELRN






AsCpf1(R912A)—Residue A912 is indicated in bold underlining and residues 661-667 are indicated in italics and underlining.









(SEQ ID NO: 2474)


TQFEGFTNLYQVSKTLRFELIPQGKTLKHIQEQGFIEEDKARNDHYKELK





PIIDRIYKTYADQCLQLVQLDWENLSAAIDSYRKEKTEETRNALIELQAT





YRNAIHDYFIGRTDNLTDAINKRHAEIYKGLFKAELFNGKVLKQLGTVTT





TEHENALLRSFDKFTTYFSGFYENRKNVFSAEDISTAIPHRIVQDNFPKF





KENCHIFTRLITAVPSLREHFENVKKAIGIFVSTSIEEVFSFPFYNQLLT





QTQIDLYNQLLGGISREAGTEKIKGLNEVLNLAIQKNDETAHIIASLPHR





FIPLFKQILSDRNTLSFILEEFKSDEEVIQSFCKYKTLLRNENVLETAEA





LFNELNSIDLTHIFISHKKLETISSALCDHWDTLRNALYERRISELTGKI





TKSAKEKVQRSLKHEDINLQEIISAAGKELSEAFKQKTSEILSHAHAALD





QPLPTTMLKKQEEKEILKSQLDSLLGLYHLLDWFAVDESNEVDPEFSARL





TGIKLEMEPSLSFYNKARNYATKKPYSVEKFKLNFQMPTLASGWDVNKEK





NNGAILFVKNGLYYLGIMPKQKGRYKALSFEPTEKTSEGFDKMYYDYFPD





AAKMIPKCSTQLKAVTAHFQTHTTPILLSNNFIEPLEITKEIYDLNNPEK





EPKKFQTAYAKKTGDQKGYREALCKWIDFTRDFLSKYTKTTSIDLSSLRP





SSQYKDLGEYYAELNPLLYHISFQRIAEKEIMDAVETGKLYLFQIYNKDF





AKGHHGKPNLHTLYWTGLFSPENLAKTSIKLNGQAELFYRPKSRMKRMAH





RLGEKMLNKKLKDQKTPIPDTLYQELYDYVNHRLSHDLSDEARALLPNVI





TKEVSHEIIKDRRFTSDKFFFHVPITLNYQAANSPSKFNQRVNAYLKEHP





ETPIIGIDRGEANLIYITVIDSTGKILEQRSLNTIQQFDYQKKLDNREKE





RVAARQAWSVVGTIKDLKQGYLSQVIHEIVDLMIHYQAVVVLENLNFGFK





SKRTGIALKAVYQQFEKMLIDKLNCLVLKDYPAEKVGGVLNPYQLTDQFT





SFAKMGTQSGFLFYVPAPYTSKIDPLTGFVDPFVWKTIKNHESRKHFLEG





FDFLHYDVKTGDFILHFKMNRNLSFQRGLPGFMPAWDIVFEKNETQFDAK





GTPFIAGKRIVPVIENHRFTGRYRDLYPANELIALLEEKGIVFRDGSNIL





PKLLENDDSHAIDTMVALIRSVLQMRNSNAATGEDYINSPVRDLNGVCFD





SRFQNPEWPMDADANGAYHIALKGQLLLNHLKESKDLKLQNGISNQDWLA





YIQELRN






In some embodiments, the nucleic acid programmable DNA binding protein is a Cpf1 protein from a Lachnospiraceae species (LbCpf1). Cpf1 proteins form Lachnospiraceae species have been described previously have been described previously and would be apparent to the skilled artisan. Exemplary Lachnospiraceae Cpf1 proteins (LbCpf1) include, without limitation, any of the LbCpf1 proteins provided herein.










Wild-type LbCpf1



(SEQ ID NO: 2475)



MSKLEKFTNCYSLSKTLRFKAIPVGKTQENIDNKRLLVEDEKRAEDYKGVKKLLDRYYLSFINDVEHSI






KLKNLNNYISLFRKKTRTEKENKELENLEINLRKEIAKAFKGNEGYKSLFKKDIIETILPEFLDDKDEIAL





VNSFNGFTTAFTGFFDNRENMFSEEAKSTSIAFRCINENLTRYISNMDIFEKVDAIFDKHEVQEIKEKILN





SDYDVEDFFEGEFFNFVLTQEGIDVYNAIIGGFVTESGEKIKGENEYINLYNQKTKQKLPKFKPLYKQVL





SDRESLSFYGEGYTSDEEVLEVFRNTLNKNSEIFSSIKKLEKLFKNFDEYSSAGIFVKNGPAISTISKDIFG





EWNVIRDKWNAEYDDIHLKKKAVVTEKYEDDRRKSFKKIGSFSLEQLQEYADADESVVEKLKEIIIQK





VDEIYKVYGSSEKLFDADFVLEKSLKKNDAVVAIMKDLLDSVKSFENYIKAFFGEGKETNRDESFYGD





FVLAYDILLKVDHIYDAIRNYVTQKPYSKDKFKLYFQNPQFMGGWDKDKETDYRATILRYGSKYYLAI





MDKKYAKCLQKIDKDDVNGNYEKINYKLLPGPNKMLPKVFFSKKWMAYYNPSEDIQKIYKNGTFKK





GDMFNLNDCHKLIDFFKDSISRYPKWSNAYDFNFSETEKYKDIAGFYREVEEQGYKVSFESASKKEVD





KLVEEGKLYMFQIYNKDFSDKSHGTPNLHTMYFKLLFDENNHGQIRLSGGAELFMRRASLKKEELVVH





PANSPIANKNPDNPKKTTTLSYDVYKDKRFSEDQYELHIPIAINKCPKNIFKINTEVRVLLKHDDNPYVI





GIDRGERNLLYIVVVDGKGNIVEQYSLNEIINNFNGIRIKTDYHSLLDKKEKERFEARQNWTSIENIKELK





AGYISQVVHKICELVEKYDAVIALEDLNSGFKNSRVKVEKQVYQKFEKMLIDKLNYMVDKKSNPCAT





GGALKGYQITNKFESFKSMSTQNGFIFYIPAWLTSKIDPSTGFVNLLKTKYTSIADSKKFISSFDRIMYVP





EEDLFEFALDYKNFSRTDADYIKKWKLYSYGNRIRIFRNPKKNNVFDWEEVCLTSAYKELFNKYGINY





QQGDIRALLCEQSDKAFYSSFMALMSLMLQMRNSITGRTDVDFLISPVKNSDGIFYDSRNYEAQENAIL





PKNADANGAYNIARKVLWAIGQFKKAEDEKLDKVKIAISNKEWLEYAQTSVKH





LbCpf1 (R836A)


(SEQ ID NO: 2476)



MSKLEKFTNCYSLSKTLRFKAIPVGKTQENIDNKRLLVEDEKRAEDYKGVKKLLDRYYLSFINDVLHSI






KLKNLNNYISLFRKKTRTEKENKELENLEINLRKEIAKAFKGNEGYKSLFKKDIIETILPEFLDDKDEIAL





VNSFNGFTTAFTGFFDNRENMFSEEAKSTSIAFRCINENLTRYISNMDIFEKVDAIFDKHEVQEIKEKILN





SDYDVEDFFEGEFFNFVLTQEGIDVYNAIIGGFVTESGEKIKGLNEYINLYNQKTKQKLPKFKPLYKQVL





SDRESLSFYGEGYTSDEEVLEVFRNTLNKNSEIFSSIKKLEKLFKNFDEYSSAGIFVKNGPAISTISKDIFG





EWNVIRDKWNAEYDDIHLKKKAVVTEKYEDDRRKSFKKIGSFSLEQLQEYADADLSVVEKLKEIIIQK





VDEIYKVYGSSEKLFDADFVLEKSLKKNDAVVAIMKDLLDSVKSFENYIKAFFGEGKETNRDESFYGD





FVLAYDILLKVDHIYDAIRNYVTQKPYSKDKFKLYFQNPQFMGGWDKDKETDYRATILRYGSKYYLAI





MDKKYAKCLQKIDKDDVNGNYEKINYKLLPGPNKMLPKVFFSKKWMAYYNPSEDIQKIYKNGTFKK





GDMFNLNDCHKLIDFFKDSISRYPKWSNAYDFNFSETEKYKDIAGFYREVEEQGYKVSFESASKKEVD





KLVEEGKLYMFQIYNKDFSDKSHGTPNLHTMYFKLLFDENNHGQIRLSGGAELFMRRASLKKEELVVH





PANSPIANKNPDNPKKTTTLSYDVYKDKRFSEDQYELHIPIAINKCPKNIFKINTEVRVLLKHDDNPYVI





GIDRGEANLLYIVVVDGKGNIVEQYSLNEIINNFNGIRIKTDYHSLLDKKEKERFEARQNWTSIENIKEL





KAGYISQVVHKICELVEKYDAVIALEDENSGFKNSRVKVEKQVYQKFEKMLIDKLNYMVDKKSNPCA





TGGALKGYQITNKFESFKSMSTQNGFIFYIPAWLTSKIDPSTGFVNLLKTKYTSIADSKKFISSFDRIMYV





PEEDLFEFALDYKNFSRTDADYIKKWKLYSYGNRIRIFRNPKKNNVFDWEEVCLTSAYKELFNKYGIN





YQQGDIRALLCEQSDKAFYSSFMALMSLMLQMRNSITGRTDVDFLISPVKNSDGIFYDSRNYEAQENAI





LPKNADANGAYNIARKVLWAIGQFKKAEDEKLDKVKIAISNKEWLEYAQTSVKH





LbCpf1 (R1138A)


(SEQ ID NO: 2477)



MSKLEKFTNCYSLSKTERFKAIPVGKTQENIDNKRLLVEDEKRAEDYKGVKKLLDRYYLSFINDVLHSI






KLKNLNNYISLFRKKTRTEKENKELENLEINERKEIAKAFKGNEGYKSLFKKDIIETILPEFLDDKDEIAL





VNSFNGFTTAFTGFFDNRENMFSEEAKSTSIAFRCINENLTRYISNMDIFEKVDAIFDKHEVQEIKEKILN





SDYDVEDFFEGEFFNFVLTQEGIDVYNAIIGGFVTESGEKIKGLNEYINLYNQKTKQKLPKFKPLYKQVL





SDRESLSFYGEGYTSDEEVLEVFRNTLNKNSEIFSSIKKLEKLFKNFDEYSSAGIFVKNGPAISTISKDIFG





EWNVIRDKWNAEYDDIHLKKKAVVTEKYEDDRRKSFKKIGSFSLEQLQEYADADLSVVEKLKEIIIQK





VDEIYKVYGSSEKLFDADFVLEKSLKKNDAVVAIMKDLLDSVKSFENYIKAFFGEGKETNRDESFYGD





FVLAYDILLKVDHIYDAIRNYVTQKPYSKDKFKLYFQNPQFMGGWDKDKETDYRATILRYGSKYYLAI





MDKKYAKCLQKIDKDDVNGNYEKINYKLLPGPNKMLPKVFFSKKWMAYYNPSEDIQKIYKNGTFKK





GDMFNLNDCHKLIDFFKDSISRYPKWSNAYDFNFSETEKYKDIAGFYREVEEQGYKVSFESASKKEVD





KLVEEGKLYMFQIYNKDFSDKSHGTPNLHTMYFKLLFDENNHGQIRLSGGAELFMRRASLKKEELVVH





PANSPIANKNPDNPKKTTTLSYDVYKDKRFSEDQYELHIPIAINKCPKNIFKINTEVRVLLKHDDNPYVI





GIDRGERNLLYIVVVDGKGNIVEQYSLNEIINNFNGIRIKTDYHSLLDKKEKERFEARQNWTSIENIKELK





AGYISQVVHKICELVEKYDAVIALEDLNSGFKNSRVKVEKQVYQKFEKMLIDKLNYMVDKKSNPCAT





GGALKGYQITNKFESFKSMSTQNGFIFYIPAWLTSKIDPSTGFVNLLKTKYTSIADSKKFISSFDRIMYVP





EEDLFEFALDYKNFSRTDADYIKKWKLYSYGNRIRIFRNPKKNNVFDWEEVCLTSAYKELFNKYGINY





QQGDIRALLCEQSDKAFYSSFMALMSLMLQMANSITGRTDVDFLISPVKNSDGIFYDSRNYEAQENAIL





PKNADANGAYNIARKVLWAIGQFKKAEDEKLDKVKIAISNKEWLEYAQTSVKH






In some embodiments, the Cpf1 protein is a crippled Cpf1 protein. As used herein a “crippled Cpf1” protein is a Cpf1 protein having diminished nuclease activity as compared to a wild-type Cpf1 protein. In some embodiments, the crippled Cpf1 protein preferentially cuts the target strand more efficiently than the non-target strand. For example, the Cpf1 protein preferentially cuts the strand of a duplexed nucleic acid molecule in which a nucleotide to be edited resides. In some embodiments, the crippled Cpf1 protein preferentially cuts the non-target strand more efficiently than the target strand. For example, the Cpf1 protein preferentially cuts the strand of a duplexed nucleic acid molecule in which a nucleotide to be edited does not reside. In some embodiments, the crippled Cpf1 protein preferentially cuts the target strand at least 5% more efficiently than it cuts the non-target strand. In some embodiments, the crippled Cpf1 protein preferentially cuts the target strand at least 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 50%, 60%, 70%, 80%, 90%, or at least 100% more efficiently than it cuts the non-target strand.


In some embodiments, a crippled Cpf1 protein is a non-naturally occurring Cpf1 protein. In some embodiments, the crippled Cpf1 protein comprises one or more mutations relative to a wild-type Cpf1 protein. In some embodiments, the crippled Cpf1 protein comprises 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 mutations relative to a wild-type Cpf1 protein. In some embodiments, the crippled Cpf1 protein comprises an R836A mutation as set forth in SEQ ID NO: 763, or in a corresponding amino acid in another Cpf1 protein. It should be appreciated that a Cpf1 comprising a homologous residue (e.g., a corresponding amino acid) to R836A of SEQ ID NO: 763 could also be mutated to achieve similar results. In some embodiments, the crippled Cpf1 protein comprises a R1138A mutation as set forth in SEQ ID NO: 763, or in a corresponding amino acid in another Cpf1 protein. In some embodiments, the crippled Cpf1 protein comprises an R912A mutation as set forth in SEQ ID NO: 762, or in a corresponding amino acid in another Cpf1 protein. Without wishing to be bound by any particular theory, residue R838 of SEQ ID NO: 763 (LbCpf1) and residue R912 of SEQ ID NO: 762 (AsCpf1) are examples of corresponding (e.g., homologous) residues. For example, a portion of the alignment between SEQ ID NO: 762 and 763 shows that R912 and R838 are corresponding residues.


In some embodiments, any of the Cpf1 proteins provided herein comprises one or more amino acid deletions. In some embodiments, any of the Cpf1 proteins provided herein comprises 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 amino acid deletions. Without wishing to be bound by any particular theory, there is a helical region in Cpf1, which includes residues 661-667 of AsCpf1 (SEQ ID NO: 762), that may obstruct the function of a deaminase (e.g., APOBEC) that is fused to the Cpf1. This region comprises the amino acid sequence KKTGDQK. Accordingly, aspects of the disclosure provide Cpf1 proteins comprising mutations (e.g., deletions) that disrupt this helical region in Cpf1. In some embodiments, the Cpf1 protein comprises one or more deletions of the following residues in SEQ ID NO: 762, or one or more corresponding deletions in another Cpf1 protein: K661, K662, T663, G664, D665, Q666, and K667. In some embodiments, the Cpf1 protein comprises a T663 and a D665 deletion in SEQ ID NO: 762, or corresponding deletions in another Cpf1 protein. In some embodiments, the Cpf1 protein comprises a K662, T663, D665, and Q666 deletion in SEQ ID NO: 762, or corresponding deletions in another Cpf1 protein. In some embodiments, the Cpf1 protein comprises a K661, K662, T663, D665, Q666 and K667 deletion in SEQ ID NO: 762, or corresponding deletions in another Cpf1 protein.










AsCpf1 (deleted T663 and D665)



(SEQ ID NO: 2478)



TQFEGFTNLYQVSKTLRFELIPQGKTLKHIQEQGFIEEDKARNDHYKELKPIIDRIYKTYADQCLQLVQL






DWENLSAAIDSYRKEKTEETRNALIELQATYRNAIHDYFIGRTDNLTDAINKRHAEIYKGLFKAELFNG





KVLKQLGTVTTTEHENALLRSFDKFTTYFSGFYENRKNVFSAEDISTAIPHRIVQDNFPKFKENCHIFTRL





ITAVPSLREHFENVKKAIGIFVSTSIEEVFSFPFYNQLLTQTQIDLYNQLLGGISREAGTEKIKGLNEVLNL





AIQKNDETAHIIASLPHRFIPLFKQILSDRNTLSFILEEFKSDEEVIQSFCKYKTLLRNENVLETAEALFNEL





NSIDLTHIFISHKKLETISSALCDHWDTLRNALYERRISELTGKITKSAKEKVQRSLKHEDINLQEIISAAG





KELSEAFKQKTSEILSHAHAALDQPLPTTMLKKQEEKEILKSQLDSLLGLYHLLDWFAVDESNEVDPEF





SARLTGIKLEMEPSLSFYNKARNYATKKPYSVEKFKLNFQMPTLASGWDVNKEKNNGAILFVKNGLY





YLGIMPKQKGRYKALSFEPTEKTSEGFDKMYYDYFPDAAKMIPKCSTQLKAVTAHFQTHTTPILLSNNF





IEPLEITKEIYDLNNPEKEPKKFQTAYAKKGQKGYREALCKWIDFTRDFLSKYTKTTSIDLSSLRPSSQY





KDLGEYYAELNPLLYHISFQRIAEKEIMDAVETGKLYLFQIYNKDFAKGHHGKPNLHTLYWTGLFSPEN





LAKTSIKLNGQAELFYRPKSRMKRMAHRLGEKMLNKKLKDQKTPIPDTLYQELYDYVNHRLSHDLSD





EARALLPNVITKEVSHEIIKDRRFTSDKFFFHVPITLNYQAANSPSKFNQRVNAYLKEHPETPIIGIDRGER





NLIYITVIDSTGKILEQRSLNTIQQFDYQKKLDNREKERVAARQAWSVVGTIKDLKQGYLSQVIHEIVDL





MIHYQAVVVLENLNFGFKSKRTGIALKAVYQQFEKMLIDKLNCLVLKDYPAEKVGGVLNPYQLTDQF





TSFAKMGTQSGFLFYVPAPYTSKIDPLTGFVDPFVWKTIKNHESRKHFLEGFDFLHYDVKTGDFILHFK





MNRNLSFQRGLPGFMPAWDIVFEKNETQFDAKGTPFIAGKRIVPVIENHRFTGRYRDLYPANELIALLE





EKGIVFRDGSNILPKLLENDDSHAIDTMVALIRSVLQMRNSNAATGEDYINSPVRDLNGVCFDSRFQNP





EWPMDADANGAYHIALKGQLLLNHLKESKDLKLQNGISNQDWLAYIQELRN





AsCpf1 (deleted K662, T663, D665, and Q666)


(SEQ ID NO: 2479)



TQFEGFTNLYQVSKTLRFELIPQGKTLKHIQEQGFIEEDKARNDHYKELKPIIDRIYKTYADQCLQLVQL






DWENLSAAIDSYRKEKTEETRNALIELQATYRNAIHDYFIGRTDNLTDAINKRHAEIYKGLFKAELFNG





KVLKQLGTVTTTEHENALLRSFDKFTTYFSGFYENRKNVFSAEDISTAIPHRIVQDNFPKFKENCHIFTRL





ITAVPSLREHFENVKKAIGIFVSTSIEEVFSFPFYNQLLTQTQIDLYNQLLGGISREAGTEKIKGLNEVLNL





AIQKNDETAHIIASLPHRFIPLFKQILSDRNTLSFILEEFKSDEEVIQSFCKYKTLLRNENVLETAEALFNEL





NSIDLTHIFISHKKLETISSALCDHWDTLRNALYERRISELTGKITKSAKEKVQRSLKHEDINLQEIISAAG





KELSEAFKQKTSEILSHAHAALDQPLPTTMLKKQEEKEILKSQLDSLLGLYHLLDWFAVDESNEVDPEF





SARLTGIKLEMEPSLSFYNKARNYATKKPYSVEKFKLNFQMPTLASGWDVNKEKNNGAILFVKNGLY





YLGIMPKQKGRYKALSFEPTEKTSEGFDKMYYDYFPDAAKMIPKCSTQLKAVTAHFQTHTTPILLSNNF





IEPLEITKEIYDLNNPEKEPKKFQTAYAKGKGYREALCKWIDFTRDFLSKYTKTTSIDLSSLRPSSQYKDL





GEYYAELNPLLYHISFQRIAEKEIMDAVETGKLYLFQIYNKDFAKGHHGKPNLHTLYWTGLFSPENLAK





TSIKLNGQAELFYRPKSRMKRMAHRLGEKMLNKKLKDQKTPIPDTLYQELYDYVNHRLSHDLSDEAR





ALLPNVITKEVSHEIIKDRRFTSDKFFFHVPITLNYQAANSPSKFNQRVNAYLKEHPETPIIGIDRGERNLI





YITVIDSTGKILEQRSLNTIQQFDYQKKLDNREKERVAARQAWSVVGTIKDLKQGYLSQVIHEIVDLMI





HYQAVVVLENLNFGFKSKRTGIAEKAVYQQFEKMLIDKLNCLVLKDYPAEKVGGVLNPYQLTDQFTS





FAKMGTQSGFLFYVPAPYTSKIDPLTGFVDPFVWKTIKNHESRKHFLEGFDFLHYDVKTGDFILHFKMN





RNLSFQRGLPGFMPAWDIVFEKNETQFDAKGTPFIAGKRIVPVIENHRFTGRYRDLYPANELIALLEEKG





IVFRDGSNILPKLLENDDSHAIDTMVALIRSVLQMRNSNAATGEDYINSPVRDLNGVCFDSRFQNPEWP





MDADANGAYHIALKGQLLLNHLKESKDLKLQNGISNQDWLAYIQELRN





AsCpf1 (deleted K661, K662, T663,D665, Q666, and K667)


(SEQ ID NO: 2480)



TQFEGFTNLYQVSKTLRFELIPQGKTLKHIQEQGFIEEDKARNDHYKELKPIIDRIYKTYADQCLQLVQL






DWENLSAAIDSYRKEKTEETRNALIEEQATYRNAIHDYFIGRTDNLTDAINKRHAEIYKGLFKAELFNG





KVLKQLGTVTTTEHENALLRSFDKFTTYFSGFYENRKNVFSAEDISTAIPHRIVQDNFPKFKENCHIFTRL





ITAVPSLREHFENVKKAIGIFVSTSIEEVFSFPFYNQLLTQTQIDLYNQLLGGISREAGTEKIKGLNEVLNL





AIQKNDETAHIIASLPHRFIPLFKQILSDRNTLSFILEEFKSDEEVIQSFCKYKTLLRNENVLETAEALFNEL





NSIDLTHIFISHKKLETISSALCDHWDTLRNALYERRISELTGKITKSAKEKVQRSLKHEDINLQEIISAAG





KELSEAFKQKTSEILSHAHAALDQPLPTTMLKKQEEKEILKSQLDSLLGLYHLLDWFAVDESNEVDPEF





SARLTGIKLEMEPSLSFYNKARNYATKKPYSVEKFKLNFQMPTLASGWDVNKEKNNGAILFVKNGLY





YLGIMPKQKGRYKALSFEPTEKTSEGFDKMYYDYFPDAAKMIPKCSTQLKAVTAHFQTHTTPILLSNNF





IEPLEITKEIYDLNNPEKEPKKFQTAYAGGYREALCKWIDFTRDFLSKYTKTTSIDLSSLRPSSQYKDLGE





YYAELNPLLYHISFQRIAEKEIMDAVETGKLYLFQIYNKDFAKGHHGKPNLHTLYWTGLFSPENLAKTS





IKLNGQAELFYRPKSRMKRMAHRLGEKMLNKKLKDQKTPIPDTLYQELYDYVNHRLSHDLSDEARAL





LPNVITKEVSHEIIKDRRFTSDKFFFHVPITLNYQAANSPSKFNQRVNAYLKEHPETPIIGIDRGERNLIYIT





VIDSTGKILEQRSLNTIQQFDYQKKLDNREKERVAARQAWSVVGTIKDLKQGYLSQVIHEIVDLMIHYQ





AVVVLENLNFGFKSKRTGIAEKAVYQQFEKMLIDKLNCLVLKDYPAEKVGGVLNPYQLTDQFTSFAK





MGTQSGFLFYVPAPYTSKIDPLTGFVDPFVWKTIKNHESRKHFLEGFDFLHYDVKTGDFILHFKMNRNL





SFQRGLPGFMPAWDIVFEKNETQFDAKGTPFIAGKRIVPVIENHRFTGRYRDLYPANELIALLEEKGIVF





RDGSNILPKLLENDDSHAIDTMVALIRSVLQMRNSNAATGEDYINSPVRDLNGVCFDSRFQNPEWPMD





ADANGAYHIALKGQLLLNHLKESKDLKLQNGISNQDWLAYIQELRN






In some embodiments, the guide nucleotide sequence-programmable DNA-binding protein domain of the present disclosure has no requirements for a PAM sequence. One example of such a guide nucleotide sequence-programmable DNA-binding protein may be an Argonaute protein from Natronobacterium gregoryi (NgAgo). NgAgo is a ssDNA-guided endonuclease. NgAgo binds 5′ phosphorylated ssDNA of ˜24 nucleotides (gDNA) to guide it to its target site and will make DNA double-strand breaks at gDNA site. In contrast to Cas9, the NgAgo-gDNA system does not require a protospacer-adjacent motif (PAM). Using a nuclease inactive NgAgo (dNgAgo) can greatly expand the bases or codons that may be targeted. The characterization and use of NgAgo have been described in Gao et al., Nat Biotechnol. Epub 2016 May 2. PubMed PMID: 27136078; Swarts et al., Nature. 507(7491) (2014):258-61; and Swarts et al., Nucleic Acids Res. 43(10) (2015):5120-9, each of which are incorporated herein by reference. The sequence of Natronobacterium gregoryi Argonaute is provided in SEQ ID NO: 270.









Wild type Natronobacterium gregoryi Argonaute


(SEQ ID NO: 270)


MTVIDLDSTTTADELTSGHTYDISVTLTGVYDNTDEQHPRMSLAFEQDNG





ERRYITLWKNTTPKDVFTYDYATGSTYIFTNIDYEVKDGYENLTATYQTT





VENATAQEVGTTDEDETFAGGEPLDHHLDDALNETPDDAETESDSGHVMT





SFASRDQLPEWTLHTYTLTATDGAKTDTEYARRTLAYTVRQELYTDHDAA





PVATDGLMLLTPEPLGETPLDLDCGVRVEADETRTLDYTTAKDRLLAREL





VEEGLKRSLWDDYLVRGIDEVLSKEPVLTCDEFDLHERYDLSVEVGHSGR





AYLHINFRHRFVPKLTLADIDDDNIYPGLRVKTTYRPRRGHIVWGLRDEC





ATDSLNTLGNQSVVAYHRNNQTPINTDLLDAIEAADRRVVETRRQGHGDD





AVSFPQELLAVEPNTHQIKQFASDGFHQQARSKTRLSASRCSEKAQAFAE





RLDPVRLNGSTVEFSSEFFTGNNEQQLRLLYENGESVLTFRDGARGAHPD





ETFSKGIVNPPESFEVAVVLPEQQADTCKAQWDTMADLLNQAGAPPTRSE





TVQYDAFSSPESISLNVAGAIDPSEVDAAFVVLPPDQEGFADLASPTETY





DELKKALANMGIYSQMAYFDRFRDAKIFYTRNVALGLLAAAGGVAFTTEH





AMPGDADMFIGIDVSRSYPEDGASGQINIAATATAVYKDGTILGHSSTRP





QLGEKLQSTDVRDIMKNAILGYQQVTGESPTHIVIHRDGFMNEDLDPATE





FLNEQGVEYDIVEIRKQPQTRLLAVSDVQYDTPVKSIAAINQNEPRATVA





TFGAPEYLATRDGGGLPRPIQIERVAGETDIETLTRQVYLLSQSHIQVHN





STARLPITTAYADQASTHATKGYLVQTGAFESNVGFL






Also provided herein are Cas9 variants that have relaxed PAM requirements (PAMless Cas9). PAMless Cas9 exhibits an increased activity on a target sequence that does not include a canonical PAM (e.g., NGG) at its 3′-end as compared to Streptococcus pyogenes Cas9 as provided by SEQ ID NO: 1, e.g., increased activity by at least 5-fold, at least 10-fold, at least 50-fold, at least 100-fold, at least 500-fold, at least 1,000-fold, at least 5,000-fold, at least 10,000-fold, at least 50,000-fold, at least 100,000-fold, at least 500,000-fold, or at least 1,000,000-fold. Such Cas9 variants that have relaxed PAM requirements are described in U.S. Provisional Applications, U.S. Ser. No. 62/245,828, 62/279,346, 62/311,763, 62/322,178, and 62/357,332, each of which is incorporated herein by reference. In some embodiments, the dCas9 or Cas9 nickase useful in the present disclosure may further comprise mutations that relax the PAM requirements, e.g., mutations that correspond to A262T, K294R, S409I, E480K, E543D, M694I, or E1219V in SEQ ID NO: 1.


Other non-limiting, exemplary Cas9 variants (including dCas9, Cas9 nickase, and Cas9 variants with alternative PAM requirements) suitable for use in the nucleobase editors useful in the present disclosure and their respective sequences are provided below.










VRER-nCas9 (D10A/D1135V/G1218R/R1335E/T1337R) S. pyogenes Cas9 Nickase



(SEQ ID NO: 2426)



MDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTAR






RRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLR





KKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDA





KAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDN





LLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEK





YKEIFFDQSKNGYAGYIDGGASQLEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHL





GELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGA





SAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFK





TNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLT





LFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRN





FMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVI






EMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQEL







DINRLSDYDVDHIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRK







FDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSD







FRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKA







TAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQ







TGGFSKESILPKRNSDKLIARKKDWDPKKYGGFVSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIME






RSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASARELQKGNELALPSKYVNFLYLA





SHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENI





IHLFTLTNLGAPAAFKYFDTTIDRKEYRSTKEVLDATLIHQSITGLYETRIDLSQLGGD





(single underline: HNH domain; double underline: RuvC domain)





VQR-nCas9 (D10A/D1135V/R1335Q/T1337R) S. pyogenes Cas9 Nickase


(SEQ ID NO: 2427)



MDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTAR






RRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLR





KKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDA





KAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDN





LLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEK





YKEIFFDQSKNGYAGYIDGGASQLEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHL





GELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGA





SAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFK





TNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLT





LFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRN





FMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVI






EMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQEL







DINRLSDYDVDHIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRK







FDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSD







FRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKA







TAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQ







TGGFSKESILPKRNSDKLIARKKDWDPKKYGGFVSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIME






RSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLA





SHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENI





IHLFTLTNLGAPAAFKYFDTTIDRKQYRSTKEVLDATLIHQSITGLYETRIDLSQLGGD





(single underline: HNH domain; double underline: RuvC domain)





EQR-nCas9 (D10A/D1135E/R1335Q/T1337R) S. pyogenes Cas9 Nickase


(SEQ ID NO: 2428)



MDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTAR






RRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLR





KKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDA





KAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDN





LLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEK





YKEIFFDQSKNGYAGYIDGGASQLEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHL





GELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGA





SAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFK





TNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLT





LFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRN





FMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVI






EMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQEL







DINRLSDYDVDHIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRK







FDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSD







FRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKA







TAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQ







TGGFSKESILPKRNSDKLIARKKDWDPKKYGGFESPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIME






RSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLA





SHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENI





IHLFTLTNLGAPAAFKYFDTTIDRKQYRSTKEVLDATLIHQSITGLYETRIDLSQLGGD





(single underline: HNH domain; double underline: RuvC domain)





KKH-nCas9 (D10A/E782K/N968K/R1015H) S. aureus Cas9 Nickase


(SEQ ID NO: 268)



MKRNYILGLAIGITSVGYGIIDYETRDVIDAGVRLFKEANVENNEGRRSKRGARRLKRRRRHRIQRVKK






LLFDYNLLTDHSELSGINPYEARVKGLSQKLSEEEFSAALLHLAKRRGVHNVNEVEEDTGNELSTKEQI





SRNSKALEEKYVAELQLERLKKDGEVRGSINRFKTSDYVKEAKQLLKVQKAYHQLDQSFIDTYIDLLE





TRRTYYEGPGEGSPFGWKDIKEWYEMLMGHCTYFPEELRSVKYAYNADLYNALNDLNNLVITRDENE





KLEYYEKFQIIENVFKQKKKPTLKQIAKEILVNEEDIKGYRVTSTGKPEFTNLKVYHDIKDITARKEIIEN





AELLDQIAKILTIYQSSEDIQEELTNLNSELTQEEIEQISNLKGYTGTHNLSLKAINLILDELWHTNDNQIA





IFNRLKLVPKKVDLSQQKEIPTTLVDDFILSPVVKRSFIQSIKVINAIIKKYGLPNDIIIELAREKNSKDAQK





MINEMQKRNRQTNERIEEIIRTTGKENAKYLIEKIKLHDMQEGKCLYSLEAIPLEDLLNNPFNYEVDHIIP





RSVSFDNSFNNKVLVKQEENSKKGNRTPFQYLSSSDSKISYETFKKHILNLAKGKGRISKTKKEYLLEER





DINRFSVQKDFINRNLVDTRYATRGLMNLLRSYFRVNNLDVKVKSINGGFTSFLRRKWKFKKERNKGY





KHHAEDALIIANADFIFKEWKKLDKAKKVMENQMFEEKQAESMPEIETEQEYKEIFITPHQIKHIKDFK





DYKYSHRVDKKPNRKLINDTLYSTRKDDKGNTLIVNNLNGLYDKDNDKLKKLINKSPEKLLMYHHDP





QTYQKLKLIMEQYGDEKNPLYKYYEETGNYLTKYSKKDNGPVIKKIKYYGNKLNAHLDITDDYPNSR





NKVVKLSLKPYRFDVYLDNGVYKFVTVKNLDVIKKENYYEVNSKCYEEAKKLKKISNQAEFIASFYKN





DLIKINGELYRVIGVNNDLLNRIEVNMIDITYREYLENMNDKRPPHIIKTIASKTQSIKKYSTDILGNLYE





VKSKKHPQIIKKG






Streptococcus thermophilus CRISPR1 Cas9 (St1Cas9) Nickase (D9A)



(SEQ ID NO: 269)



MSDLVLGLAIGIGSVGVGILNKVTGEIIHKNSRIFPAAQAENNLVRRTNRQGRRLTRRKKHRRVRLNRL






FEESGLITDFTKISINLNPYQLRVKGLTDELSNEELFIALKNMVKHRGISYLDDASDDGNSSIGDYAQIVK





ENSKQLETKTPGQIQLERYQTYGQLRGDFTVEKDGKKHRLINVFPTSAYRSEALRILQTQQEFNPQITDE





FINRYLEILTGKRKYYHGPGNEKSRTDYGRYRTSGETLDNIFGILIGKCTFYPDEFRAAKASYTAQEFNL





LNDLNNLTVPTETKKLSKEQKNQIINYVKNEKAMGPAKLFKYIAKLLSCDVADIKGYRIDKSGKAEIHT





FEAYRKMKTLETLDIEQMDRETLDKLAYVLTLNTEREGIQEALEHEFADGSFSQKQVDELVQFRKANS





SIFGKGWHNFSVKLMMELIPELYETSEEQMTILTRLGKQKTTSSSNKTKYIDEKLLTEEIYNPVVAKSVR





QAIKIVNAAIKEYGDFDNIVIEMARETNEDDEKKAIQKIQKANKDEKDAAMLKAANQYNGKAELPHSV





FHGHKQLATKIRLWHQQGERCLYTGKTISIHDLINNSNQFEVDHILPLSITFDDSLANKVLVYATANQE





KGQRTPYQALDSMDDAWSFRELKAFVRESKTLSNKKKEYLLTEEDISKFDVRKKFIERNLVDTRYASR





VVLNALQEHFRAHKIDTKVSVVRGQFTSQLRRHWGIEKTRDTYHHHAVDALIIAASSQLNLWKKQKN





TLVSYSEDQLLDIETGELISDDEYKESVFKAPYQHFVDTLKSKEFEDSILFSYQVDSKFNRKISDATIYAT





RQAKVGKDKADETYVLGKIKDIYTQDGYDAFMKIYKKDKSKFLMYRHDPQTFEKVIEPILENYPNKQI





NEKGKEVPCNPFLKYKEEHGYIRKYSKKGNGPEIKSLKYYDSKLGNHIDITPKDSNNKVVLQSVSPWR





ADVYFNKTTGKYEILGLKYADLQFEKGTGTYKISQEKYNDIKKKEGVDSDSEFKFTLYKNDLLLVKDT





ETKEQQLFRFLSRTMPKQKHYVELKPYDKQKFEGGEALIKVLGNVANSGQCKKGLGKSNISIYKVRTD





VLGNQHIIKNEGDKPKLDF






Streptococcus thermophilus CRISPR3Cas9 (St3Cas9) Nickase (D10A)



(SEQ ID NO: 2429)



MTKPYSIGLAIGTNSVGWAVITDNYKVPSKKMKVLGNTSKKYIKKNLLGVLLFDSGITAEGRRLKRTA






RRRYTRRRNRILYLQEIFSTEMATLDDAFFQRLDDSFLVPDDKRDSKYPIFGNLVEEKVYHDEFPTIYHL





RKYLADSTKKADLRLVYLALAHMIKYRGHFLIEGEFNSKNNDIQKNFQDFLDTYNAIFESDLSLENSKQ





LEEIVKDKISKLEKKDRILKLFPGEKNSGIFSEFLKLIVGNQADFRKCFNLDEKASLHFSKESYDEDLETL





LGYIGDDYSDVFLKAKKLYDAILLSGFLTVTDNETEAPLSSAMIKRYNEHKEDLALLKEYIRNISLKTYN





EVFKDDTKNGYAGYIDGKTNQEDFYVYLKNLLAEFEGADYFLEKIDREDFLRKQRTFDNGSIPYQIHLQ





EMRAILDKQAKFYPFLAKNKERIEKILTFRIPYYVGPLARGNSDFAWSIRKRNEKITPWNFEDVIDKESS





AEAFINRMTSFDLYLPEEKVLPKHSLLYETFNVYNELTKVRFIAESMRDYQFLDSKQKKDIVRLYFKDK





RKVTDKDIIEYLHAIYGYDGIELKGIEKQFNSSLSTYHDLLNIINDKEFLDDSSNEAIIEEIIHTLTIFEDRE





MIKQRLSKFENIFDKSVLKKLSRRHYTGWGKLSAKLINGIRDEKSGNTILDYLIDDGISNRNFMQLIHDD





ALSFKKKIQKAQIIGDEDKGNIKEVVKSLPGSPAIKKGILQSIKIVDELVKVMGGRKPESIVVEMARENQ





YTNQGKSNSQQRLKRLEKSLKELGSKILKENIPAKLSKIDNNALQNDRLYLYYLQNGKDMYTGDDLDI





DRLSNYDIDHIIPQAFLKDNSIDNKVLVSSASNRGKSDDFPSLEVVKKRKTFWYQLLKSKLISQRKFDNL





TKAERGGLLPEDKAGFIQRQLVETRQITKHVARLLDEKFNNKKDENNRAVRTVKIITLKSTLVSQFRKD





FELYKVREINDFHHAHDAYLNAVIASALLKKYPKLEPEFVYGDYPKYNSFRERKSATEKVYFYSNIMNI





FKKSISLADGRVIERPLIEVNEETGESVWNKESDLATVRRVLSYPQVNVVKKVEEQNHGLDRGKPKGL





FNANLSSKPKPNSNENLVGAKEYLDPKKYGGYAGISNSFAVLVKGTIEKGAKKKITNVLEFQGISILDRI





NYRKDKLNFLLEKGYKDIELIIELPKYSLFELSDGSRRMLASILSTNNKRGEIHKGNQIFLSQKFVKLLYH





AKRISNTINENHRKYVENHKKEFEELFYYILEFNENYVGAKKNGKLLNSAFQSWQNHSIDELCSSFIGPT





GSERKGLFELTSRGSAADFEFLGVKIPRYRDYTPSSLLKDATLIHQSVTGLYETRIDLAKLGEG






In some embodiments, the nucleobase editors useful in the present disclosure comprises: (i) a guide nucleotide sequence-programmable DNA-binding protein domain; and (ii) a deaminase domain. In some embodiments, the deaminase domain of the fusion protein is a cytosine deaminase. In some embodiments, the deaminase is an APOBEC1 deaminase. In some embodiments, the deaminase is a rat APOBEC1. In some embodiments, the deaminase is a human APOBEC1. In some embodiments, the deaminase is an APOBEC2 deaminase. In some embodiments, the deaminase is an APOBEC3A deaminase. In some embodiments, the deaminase is an APOBEC3B deaminase. In some embodiments, the deaminase is an APOBEC3C deaminase. In some embodiments, the deaminase is an APOBEC3D deaminase. In some embodiments, is an APOBEC3F deaminase. In some embodiments, the deaminase is an APOBEC3G deaminase. In some embodiments, the deaminase is an APOBEC3H deaminase. In some embodiments, the deaminase is an APOBEC4 deaminase. In some embodiments, the deaminase is an activation-induced deaminase (AID). In some embodiments, the deaminase is a Lamprey CDA1 (pmCDA1). In some embodiments, the deaminase is a human APOBEC3G or a functional fragment thereof. In some embodiments, the deaminase is an APOBEC3G variant comprising mutations corresponding to the D316R/D317R mutations in the human APOBEC3G. Exemplary, non-limiting cytosine deaminase sequences that may be used in accordance with the methods of the present disclosure are provided in Example 1 below.


In some embodiments, the cytosine deaminase is a wild type deaminase or a deaminase as set forth in SEQ ID NOs: 271-292, 303, and 2483-2494. In some embodiments, the cytosine deaminase domains of the fusion proteins provided herein include fragments of deaminases or proteins homologous to a deaminase. For example, in some embodiments, a deaminase domain comprises a fragment of any of the amino acid sequences set forth in any of SEQ ID NOs: 271-292, 303, and 2483-2494. In some embodiments, a deaminase domain comprises an amino acid sequence homologous to the amino acid sequence set forth in any of SEQ ID NOs: 271-292, 303, and 2483-2494, or an amino acid sequence homologous to a fragment of the amino acid sequence set forth in any of SEQ ID NOs: 271-292, 303, and 2483-2494. In some embodiments, proteins comprising a deaminase, fragments of a deaminase, or homologs of a deaminase are referred to as “deaminase variants.” A deaminase variant shares homology to a deaminase, or a fragment thereof. For example, a deaminase variant is at least about 70% identical, at least about 80% identical, at least about 90% identical, at least about 95% identical, at least about 96% identical, at least about 97% identical, at least about 98% identical, at least about 99% identical, at least about 99.5% identical, or at least about 99.9% to a wild type deaminase or a deaminase as set forth in any of SEQ ID NOs: 271-292, 303, and 2483-2494. In some embodiments, the deaminase variant comprises a fragment of the deaminase, such that the fragment is at least about 70% identical, at least about 80% identical, at least about 90% identical, at least about 95% identical, at least about 96% identical, at least about 97% identical, at least about 98% identical, at least about 99% identical, at least about 99.5% identical, or at least about 99.9% identical to the corresponding fragment of a wild type deaminase or a deaminase as set forth in any of SEQ ID NOs: 271-292, 303, and 2483-2494. In some embodiments, the cytosine deaminase is at least at least about 70% identical, at least about 80% identical, at least about 90% identical, at least about 95% identical, at least about 96% identical, at least about 97% identical, at least about 98% identical, at least about 99% identical, at least about 99.5% identical, or at least about 99.9% identical to an APOBEC3G variant as set forth in SEQ ID NO: 291 or SEQ ID NO: 292, and comprises mutations corresponding to the D316E/D317R mutations in SEQ ID NO: 290.


In some embodiments, the cytosine deaminase domain is fused to the N-terminus of the guide nucleotide sequence-programmable DNA-binding protein domain. For example, the fusion protein may have an architecture of NH2-[cytosine deaminase]-[guide nucleotide sequence-programmable DNA-binding protein domain]-COOH. The “]-[” used in the general architecture above indicates the presence of an optional linker sequence. The term “linker,” as used herein, refers to a chemical group or a molecule linking two molecules or moieties, e.g., two domains of a fusion protein, such as, for example, a dCas9 domain and a cytosine deaminase domain. Typically, the linker is positioned between, or flanked by, two groups, molecules, or other moieties and connected to each one via a covalent bond, thus connecting the two. In some embodiments, the linker is an amino acid or a plurality of amino acids (e.g., a peptide or protein). In some embodiments, the linker is an organic molecule, group, polymer, or chemical moiety. In some embodiments, the linker is 5-100 amino acids in length, for example, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 30-35, 35-40, 40-45, 45-50, 50-60, 60-70, 70-80, 80-90, 90-100, 100-150, or 150-200 amino acids in length. Longer or shorter linkers are also contemplated.


In some embodiments, the cytosine deaminase domain and the Cas9 domain are fused to each other via a linker. Various linker lengths and flexibilities between the deaminase domain (e.g., APOBEC1) and the Cas9 domain can be employed (e.g., ranging from very flexible linkers of the form (GGGS)n (SEQ ID NO: 2430), (GGGGS)n (SEQ ID NO: 308), (GGS)n(SEQ ID NO: 2467), and (G)n(SEQ ID NO: 2498) to more rigid linkers of the form (EAAAK)n (SEQ ID NO: 309), SGSETPGTSESATPES (SEQ ID NO: 310)) (see, e.g., Guilinger et, al., Nat. Biotechnol. 2014; 32(6): 577-82; the entire contents are incorporated herein by reference), (SGGS)nSGSETPGTSESATPES(SGGS)n (SEQ ID NO: 2481), (XP)n, or a combination of any of these, wherein X is any amino acid, and n is independently an integer between 1 and 30, in order to achieve the optimal length for deaminase activity for the specific application. In some embodiments, n is independently 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30, or, if more than one linker or more than one linker motif is present, any combination thereof. In some embodiments, the linker comprises a (GGS)n(SEQ ID NO: 2467) motif, wherein n is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15. In some embodiments, the linker comprises a (GGS)n(SEQ ID NO: 2467) motif, wherein n is 1, 3, or 7. In some embodiments, the linker comprises the amino acid sequence SGSETPGTSESATPES (SEQ ID NO: 310), also referred to as the XTEN linker. In some embodiments, the linker comprises an amino acid sequence selected from the group including, but not limited to, AGVF (SEQ ID NO: 2499), GFLG (SEQ ID NO: 2500), FK, AL, ALAL (SEQ ID NO: 2501), and ALALA (SEQ ID NO: 2502). In some embodiments, suitable linker motifs and configurations include those described in Chen et al., Fusion protein linkers: property, design and functionality. Adv Drug Deliv Rev. 2013; 65(10):1357-69, which is incorporated herein by reference. In some embodiments, the linker comprises any of the following amino acid sequences: VPFLLEPDNINGKTC (SEQ ID NO: 311), GSAGSAAGSGEF (SEQ ID NO: 312), SIVAQLSRPDPA (SEQ ID NO: 313), MKIIEQLPSA (SEQ ID NO: 314), VRHKLKRVGS (SEQ ID NO: 315), GHGTGSTGSGSS (SEQ ID NO: 316), MSRPDPA (SEQ ID NO: 317), GSAGSAAGSGEF (SEQ ID NO: 312), SGSETPGTSESA (SEQ ID NO: 318), SGSETPGTSESATPEGGSGGS (SEQ ID NO: 319), or GGSM (SEQ ID NO: 320). Any linker provided under the “Linkers” section may be used.


In some embodiments, the nucleobase editor comprises a guide nucleotide sequence-programmable DNA-binding protein domain and an apolipoprotein B mRNA-editing complex 1 (APOBEC1) deaminase domain, where the deaminase domain is fused to the N-terminus of the napDNAbp domain via a linker comprising the amino acid sequence SGSETPGTSESATPES (SEQ ID NO: 310). In some embodiments, the a guide nucleotide sequence-programmable DNA-binding protein domain comprises the amino acid sequence of any of the a guide nucleotide sequence-programmable DNA-binding protein domains provided herein. In some embodiments, the deaminase is rat APOBEC1 (SEQ ID NO: 288). In some embodiments, the deaminase is human APOBEC1 (SEQ ID NO: 286). In some embodiments, the deaminase is pmCDA1 (SEQ ID NO: 289). In some embodiments, the deaminase is human APOBEC3G (SEQ ID NO: 279). In some embodiments, the deaminase is a human APOBEC3G variant of any one of (SEQ ID NOs: 290-292). In some embodiments, the fusion protein comprises a guide nucleotide sequence-programmable DNA-binding protein domain and an apolipoprotein B mRNA-editing complex 1 catalytic polypeptide-like 3G (APOBEC3G) deaminase domain, wherein the deaminase domain is fused to the N-terminus of the a guide nucleotide sequence-programmable DNA-binding protein domain via a linker of any length or composition (e.g., an amino acid sequence, a peptide, a polymer, or a bond). In some embodiments, the linker comprises the amino acid sequence SGSETPGTSESATPES (SEQ ID NO: 310). In some embodiments, the linker comprises the amino acid sequence (SGGS)2SGSETPGTSESATPES(SGGS)2 (SEQ ID NO: 2482).


In some embodiments, the fusion protein comprises a guide nucleotide sequence-programmable DNA-binding protein domain and a cytidine deaminase 1 (CDA1) deaminase domain, wherein the deaminase domain is fused to the N-terminus of the guide nucleotide sequence-programmable DNA-binding protein domain via a linker comprising the amino acid sequence SGSETPGTSESATPES (SEQ ID NO: 310). In some embodiments, the linker comprises the amino acid sequence (SGGS)2SGSETPGTSESATPES(SGGS)2 (SEQ ID NO: 2482). In some embodiments, the guide nucleotide sequence-programmable DNA-binding protein domain comprises the amino acid sequence of any of the guide nucleotide sequence-programmable DNA-binding protein domains provided herein.


In some embodiments, the fusion protein comprises a guide nucleotide sequence-programmable DNA-binding protein and an activation-induced cytidine deaminase (AID) deaminase domain, where the deaminase domain is fused to the N-terminus of the guide nucleotide sequence-programmable DNA-binding protein domain via a linker comprising the amino acid sequence SGSETPGTSESATPES (SEQ ID NO: 310). In some embodiments, the linker comprises the amino acid sequence (SGGS)2SGSETPGTSESATPES(SGGS)2 (SEQ ID NO: 2482). In some embodiments, the guide nucleotide sequence-programmable DNA-binding protein comprises the amino acid sequence of any of the guide nucleotide sequence-programmable DNA-binding protein domains provided herein.


Some aspects of the disclosure are based on the recognition that certain configurations of a guide nucleotide sequence-programmable DNA-binding protein, and a cytidine deaminase domain fused by a linker are useful for efficiently deaminating target cytidine residues. Other aspects of this disclosure relate to the recognition that a nucleobase editing fusion protein with an apolipoprotein B mRNA-editing complex 1 (APOBEC1) deaminase domain fused to the N-terminus of a guide nucleotide sequence-programmable DNA-binding protein via a linker comprising the amino acid sequence SGSETPGTSESATPES (SEQ ID NO: 310) was capable of efficiently deaminating target nucleic acids in a double stranded DNA target molecule. In some embodiments, the fusion protein comprises a guide nucleotide sequence-programmable DNA-binding protein domain and an apolipoprotein B mRNA-editing complex 1 (APOBEC1) deaminase domain, where the deaminase domain is fused to the N-terminus of the napDNAbp via a linker comprising the amino acid sequence SGSETPGTSESATPES (SEQ ID NO: 310). In some embodiments, the fusion protein comprises a guide nucleotide sequence-programmable DNA-binding protein domain and an apolipoprotein B mRNA-editing complex 1 (APOBEC1) deaminase domain, where the deaminase domain is fused to the N-terminus of the napDNAbp via a linker comprising the amino acid sequence (SGGS)2SGSETPGTSESATPES(SGGS)2 (SEQ ID NO: 2482).


To successfully edit the desired target C base, the linker between Cas9 and APOBEC may be optimized, as described in Komor et al., Nature, 533, 420-424 (2016), which is incorporated herein by reference. The numbering scheme for base editing is based on the predicted location of the target C within the single-stranded stretch of DNA (R-loop) displaced by a programmable guide RNA sequence occurring when a DNA-binding domain (e.g. Cas9, nCas9, dCas9) binds a genomic site. Conveniently, the sequence immediately surrounding the target C also matches the sequence of the guide RNA. The numbering scheme for base editing is based on a standard 20-mer programmable sequence, and defines position “21” as the first DNA base of the PAM sequence, resulting in position “1” assigned to the first DNA base matching the 5′-end of the 20-mer programmable guide RNA sequence. Therefore, for all Cas9 variants, position “21” is defined as the first base of the PAM sequence (e.g. NGG, NGAN, NGNG, NGAG, NGCG, NNGRRT, NGRRN, NNNRRT, NNNGATT, NNAGAA, NAAAC). When a longer programmable guide RNA sequence is used (e.g. 21-mer) the 5′-end bases are assigned a decreasing negative number starting at “−1”. For other DNA-binding domains that differ in the position of the PAM sequence, or that require no PAM sequence, the programmable guide RNA sequence is used as a reference for numbering. A 3-aa linker results in a 2-5 base editing window (e.g., positions 2, 3, 4, or 5 relative to the PAM sequence at position 21). A 9-aa linker results in a 3-6 base editing window (e.g., positions 3, 4, 5, or 6 relative to the PAM sequence at position 21). A 16-aa linker (e.g., the SGSETPGTSESATPES (SEQ ID NO: 310) linker) results in a 4-7 base editing window (e.g., positions 4, 5, 6, or 7 relative to the PAM sequence at position 21). A 21-aa linker results in a 5-8 base editing window (e.g., positions 5, 6, 7, or 8 relative to the PAM sequence at position 21). Each of these windows can be useful for editing different targeted C bases. For example, the targeted C bases may be at different distances from the adjacent PAM sequence, and by varying the linker length, the precise editing of the desired C base is ensured. One skilled in the art, based on the teachings of CRISPR/Cas9 technology in the art, and in particular the teachings of e.g., in U.S. Pat. No. 9,068,179, US Patent Application Publications US 2015/0166980, published Jul. 18, 2015, US 2015/0166981, published Jul. 18, 2015; US 2015/0166982, published Jul. 18, 2015; US 2015/0166984, published Jul. 18, 2015; and US 2015/0165054, published Jul. 18, 2015; and US Provisional Applications, U.S. Ser. No. 62/245,828, filed Oct. 23, 2015; 62/279,346, filed Jan. 15, 2016; 62/311,763, filed Mar. 22, 2016; 62/322,178, filed Apr. 13, 2016, 62/357,352, filed Jun. 30, 2016, U.S. Pat. No. 62,370,700, filed Aug. 3, 2016; 62/398,490, filed Sep. 22, 2016; 62/408,686, filed Oct. 14, 2016; PCT Application PCT/US2016/058344, filed Oct. 22, 2016, U.S. patent application Ser. No. 15/311,852, filed Oct. 22, 2016; and in Komor et al., Nature, Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage, 533, 420-424 (2016), the entire contents of each of which are incorporated herein by reference, will be able to determine the window of editing for his/her purpose, and properly design the linker of the cytosine deaminase-dCas9 protein for the precise targeting of the desired C base.


To successfully edit the desired target C base, appropriate Cas9 domain may be selected to attach to the deaminase domain (e.g., APOBEC1), since different Cas9 domains may lead to different editing windows. For example, APOBEC1-XTEN-SaCas9n-UGI gives a 1-12 base editing window (e.g., positions 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12 relative to the NNNRRT PAM sequence in positions 20-26). One skilled in the art, based on the teachings of CRISPR/Cas9 technology in the art, will be able to determine the editing window and properly determine the required Cas9 homolog and linker attached to the cytosine deaminase for the precise targeting of the desired C base.


In some embodiments, the fusion protein useful in the present disclosure further comprises a uracil glycosylase inhibitor (UGI) domain. A “uracil glycosylase inhibitor” refers to a protein that inhibits the activity of uracil-DNA glycosylase. The C to T base change induced by deamination results in a U:G heteroduplex, which triggers cellular DNA-repair response. Uracil DNA glycosylase (UDG) catalyzes removal of U from DNA in cells and initiates base excision repair, with reversion of the U:G pair to a C:G pair as the most common outcome. Thus, such cellular DNA-repair response may be responsible for the decrease in nucleobase editing efficiency in cells. Uracil DNA Glycosylase Inhibitor (UGI) is known in the art to block UDG activity. As described in Komor et al., Nature (2016), fusing a UGI domain to the cytidine deaminase-dCas9 fusion protein reduced the activity of UDG and significantly enhanced editing efficiency.


Suitable UGI protein and nucleotide sequences are provided herein and additional suitable UGI sequences are known to those in the art, and include, for example, those published in Wang et al., Uracil-DNA glycosylase inhibitor gene of bacteriophage PBS2 encodes a binding protein specific for uracil-DNA glycosylase. J. Biol. Chem. 264:1163-1171(1989); Lundquist et al., Site-directed mutagenesis and characterization of uracil-DNA glycosylase inhibitor protein. Role of specific carboxylic amino acids in complex formation with Escherichia coli uracil-DNA glycosylase. J. Biol. Chem. 272:21408-21419(1997); Ravishankar et al., X-ray analysis of a complex of Escherichia coli uracil DNA glycosylase (EcUDG) with a proteinaceous inhibitor. The structure elucidation of a prokaryotic UDG. Nucleic Acids Res. 26:4880-4887(1998); and Putnam et al., Protein mimicry of DNA from crystal structures of the uracil-DNA glycosylase inhibitor protein and its complex with Escherichia coli uracil-DNA glycosylase. J. Mol. Biol. 287:331-346(1999), each of which is incorporated herein by reference. In some embodiments, the UGI domain comprises the amino acid sequence of SEQ ID NO: 304 without the N-terminal methionine (M). In some embodiments, the UGI protein comprises the following amino acid sequence:










Bacillus phage PBS2 (Bacteriophage PBS2)Uracil-DNA



glycosylase inhibitor


(SEQ ID NO: 304)


MTNLSDIIEKETGKQLVIQESILMLPEEVEEVIGNKPESDILVHTAYDES


TDENVMLLTSDAPEYKPWALVIQDSNGENKIKML






In some embodiments, the UGI protein comprises a wild type UGI or a UGI as set forth in SEQ ID NO: 304. In some embodiments, the UGI proteins useful in the present disclosure include fragments of UGI and proteins homologous to a UGI or a UGI fragment. For example, in some embodiments, a UGI protein comprises a fragment of the amino acid sequence set forth in SEQ ID NO: 304. In some embodiments, a UGI comprises an amino acid sequence homologous to the amino acid sequence set forth in SEQ ID NO: 304 or an amino acid sequence homologous to a fragment of the amino acid sequence set forth in SEQ ID NO: 304. In some embodiments, proteins comprising UGI or fragments of UGI or homologs of UGI or UGI fragments are referred to as “UGI variants.” A UGI variant shares homology to UGI, or a fragment thereof. For example a UGI variant is at least about 70% identical, at least about 80% identical, at least about 90% identical, at least about 95% identical, at least about 96% identical, at least about 97% identical, at least about 98% identical, at least about 99% identical, at least about 99.5% identical, or at least about 99.9% to a wild type UGI or a UGI as set forth in SEQ ID NO: 304. In some embodiments, the UGI variant comprises a fragment of UGI, such that the fragment is at least about 70% identical, at least about 80% identical, at least about 90% identical, at least about 95% identical, at least about 96% identical, at least about 97% identical, at least about 98% identical, at least about 99% identical, at least about 99.5% identical, or at least about 99.9% identical to the corresponding fragment of wild type UGI or the UGI as set forth in SEQ ID NO: 304.


It should be appreciated that additional proteins may be uracil glycosylase inhibitors. For example, other proteins that are capable of inhibiting (e.g., sterically blocking) a uracil-DNA glycosylase base-excision repair enzyme are within the scope of this disclosure. In some embodiments, a uracil glycosylase inhibitor is a protein that binds DNA. In some embodiments, a uracil glycosylase inhibitor is a protein that binds single-stranded DNA. For example, a Erwinia tasmaniensis single-stranded binding protein may also inhibit the activity of uracil glycosylase. In some embodiments, the single-stranded binding protein comprises the amino acid sequence (SEQ ID NO: 305). In some embodiments, a uracil glycosylase inhibitor is a protein that binds uracil. In some embodiments, a uracil glycosylase inhibitor is a protein that binds uracil in DNA. In some embodiments, a uracil glycosylase inhibitor is a catalytically inactive uracil DNA-glycosylase protein. In some embodiments, a uracil glycosylase inhibitor is a catalytically inactive uracil DNA-glycosylase protein that does not excise uracil from the DNA. For example, a uracil glycosylase inhibitor is a UdgX. In some embodiments, the UdgX comprises the amino acid sequence (SEQ ID NO: 306). As another example, a uracil glycosylase inhibitor is a catalytically inactive UDG. In some embodiments, a catalytically inactive UDG comprises the amino acid sequence (SEQ ID NO: 307). It should be appreciated that other uracil glycosylase inhibitors would be apparent to the skilled artisan and are within the scope of this disclosure.











Erwinia tasmaniensis SSB (themostable single-stranded DNA binding protein)




(SEQ ID NO: 305)



MASRGVNKVILVGNLGQDPEVRYMPNGGAVANITLATSESWRDKQTGETKEKTEWHRVVLFGKLAE






VAGEYLRKGSQVYIEGALQTRKWTDQAGVEKYTTEVVVNVGGTMQMLGGRSQGGGASAGGQNGGS





NNGWGQPQQPQGGNQFSGGAQQQARPQQQPQQNNAPANNEPPIDFDDDIP





UdgX (binds to uracil in DNA but does not excise)


(SEQ ID NO: 306)



MAGAQDFVPHTADLAELAAAAGECRGCGLYRDATQAVFGAGGRSARIMMIGEQPGDKEDLAGLPFV






GPAGRLLDRALEAADIDRDALYVTNAVKHFKFTRAAGGKRRIHKTPSRTEVVACRPWLIAEMTSVEPD





VVVLLGATAAKALLGNDFRVTQHRGEVLHVDDVPGDPALVATVHPSSLLRGPKEERESAFAGLVDDL





RVAADVRP





UDG (catalytically inactive human UDG, binds to uracil in DNA but does not excise)


(SEQ ID NO: 307)



MIGQKTLYSFFSPSPARKRHAPSPEPAVQGTGVAGVPLESGDAAAIPAKKAPAGQEEPGTPPSSPLSALQ






LDRIQRNKAAALLRLAARNVPVGFGESWKKHLSGEFGKPYFIKLMGFVAEERKHYTVYPPPHQVFTW





TQMCDIKDVKVVILGQEPYHGPNQAHGLCFSVQRPVPPPPSLENIYKELSTDIEDFVHPGHGDLSGWAK





QGVLLLNAVLTVRAHQANSHKERGWEQFTDAVVSWLNQNSNGLVFLLWGSYAQKKGSAIDRKRHH





VLQTAHPSPLSVYRGFFGCRHFSKTNELLQKSGKKPIDWKEL






In some embodiments, the UGI domain is fused to the C-terminus of the dCas9 domain in the fusion protein. Thus, the fusion protein would have an architecture of NH2-[cytosine deaminase]-[guide nucleotide sequence-programmable DNA-binding protein domain]-[UGI]-COOH. In some embodiments, the UGI domain is fused to the N-terminus of the cytosine deaminase domain. As such, the fusion protein would have an architecture of NH2-[UGI]-[cytosine deaminase]-[guide nucleotide sequence-programmable DNA-binding protein domain]-COOH. In some embodiments, the UGI domain is fused between the guide nucleotide sequence-programmable DNA-binding protein domain and the cytosine deaminase domain. As such, the fusion protein would have an architecture of NH2-[cytosine deaminase]-[UGI]-[guide nucleotide sequence-programmable DNA-binding protein domain]-COOH. The linker sequences useful in the present disclosure may also be used for the fusion of the UGI domain to the cytosine deaminase-dCas9 fusion proteins.


In some embodiments, the fusion protein comprises the structure:

    • [cytosine deaminase]-[optional linker sequence]-[guide nucleotide sequence-programmable DNA binding protein]-[optional linker sequence]-[UGI];
    • [cytosine deaminase]-[optional linker sequence]-[UGI]-[optional linker sequence]-[guide nucleotide sequence-programmable DNA binding protein];
    • [UGI]-[optional linker sequence]-[cytosine deaminase]-[optional linker sequence]-[guide nucleotide sequence-programmable DNA binding protein];
    • [UGI]-[optional linker sequence]-[guide nucleotide sequence-programmable DNA binding protein]-[optional linker sequence]-[cytosine deaminase];
    • [guide nucleotide sequence-programmable DNA binding protein]-[optional linker sequence]-[cytosine deaminase]-[optional linker sequence]-[UGI]; or
    • [guide nucleotide sequence-programmable DNA binding protein]-[optional linker sequence]-[UGI]-[optional linker sequence]-[cytosine deaminase].


In some embodiments, the fusion protein used in the present disclosure comprises the structure:

    • [cytosine deaminase]-[optional linker sequence]-[Cas9 nickase]-[optional linker sequence]-[UGI];
    • [cytosine deaminase]-[optional linker sequence]-[UGI]-[optional linker sequence]-[Cas9 nickase];
    • [UGI]-[optional linker sequence]-[cytosine deaminase]-[optional linker sequence]-[Cas9 nickase];
    • [UGI]-[optional linker sequence]-[Cas9 nickase]-[optional linker sequence]-[cytosine deaminase];
    • [Cas9 nickase]-[optional linker sequence]-[cytosine deaminase]-[optional linker sequence]-[UGI]; or
    • [Cas9 nickase]-[optional linker sequence]-[UGI]-[optional linker sequence]-[cytosine deaminase].


In some embodiments, fusion proteins useful in the present disclosure further comprise a nuclear localization sequence (NLS). In some embodiments, the NLS is fused to the N-terminus of the fusion protein. In some embodiments, the NLS is fused to the C-terminus of the fusion protein. In some embodiments, the NLS is fused to the N-terminus of the UGI protein. In some embodiments, the NLS is fused to the C-terminus of the UGI protein. In some embodiments, the NLS is fused to the N-terminus of the guide nucleotide sequence-programmable DNA-binding protein domain. In some embodiments, the NLS is fused to the C-terminus of the guide nucleotide sequence-programmable DNA-binding protein domain. In some embodiments, the NLS is fused to the N-terminus of the cytosine deaminase. In some embodiments, the NLS is fused to the C-terminus of the deaminase. In some embodiments, the NLS is fused to the fusion protein via one or more linkers. In some embodiments, the NLS is fused to the fusion protein without a linker. Non-limiting, exemplary NLS sequences may be PKKKRKV (SEQ ID NO: 2431) or MDSLLMNRRKFLYQFKNVRWAKGRRETYLC (SEQ ID NO: 2432).


In some embodiments, any of the fusion proteins provided herein comprise a second UGI domain. Fusion proteins comprising two UGI domains are described in U.S. Provisional Application No., U.S. Ser. Nos. 62/475,830, filed Mar. 23, 2017; 62/490,587; 62/511,934, filed May 26, 2017; 62/551,951, filed Aug. 30, 2017; and Komor et al. (2017) Improved Base Excision Repair Inhibition and Bateriophage Mu Gam Protein Yields C:G-to-T:A base editors with higher efficiency and product purity. Sci Adv, 3: eaao4774; the entire contents of which is incorporated by reference herein. In some embodiments, the second UGI domain comprises a wild-type UGI or a UGI as set forth in SEQ ID NO: 304. In some embodiments, the UGI proteins provided herein include fragments of UGI and proteins homologous to a UGI or a UGI fragment. For example, in some embodiments, the second UGI domain comprises a fragment of the amino acid sequence set forth in SEQ ID NO: 304. In some embodiments, a UGI fragment comprises an amino acid sequence that comprises at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% of the amino acid sequence as set forth in SEQ ID NO: 304. In some embodiments, the second UGI domain comprises an amino acid sequence homologous to the amino acid sequence set forth in SEQ ID NO: 304 or an amino acid sequence homologous to a fragment of the amino acid sequence set forth in SEQ ID NO: 304. In some embodiments, proteins comprising UGI or fragments of UGI or homologs of UGI or UGI fragments are referred to as “UGI variants.” A UGI variant shares homology to UGI, or a fragment thereof. For example a UGI variant is at least 70% identical, at least 75% identical, at least 80% identical, at least 85% identical, at least 90% identical, at least 95% identical, at least 96% identical, at least 97% identical, at least 98% identical, at least 99% identical, at least 99.5% identical, or at least 99.9% identical to a wild type UGI or a UGI as set forth in SEQ ID NO: 304. In some embodiments, the UGI variant comprises a fragment of UGI, such that the fragment is at least 70% identical, at least 80% identical, at least 90% identical, at least 95% identical, at least 96% identical, at least 97% identical, at least 98% identical, at least 99% identical, at least 99.5% identical, or at least 99.9% to the corresponding fragment of wild-type UGI or a UGI as set forth in SEQ ID NO: 304.


In some embodiments, the fusion protein comprises the structure:

    • [deaminase]-[optional linker sequence]-[dCas9]-[optional linker sequence]-[first UGI]-[optional linker sequence]-[second UGI];
    • [deaminase]-[optional linker sequence]-[Cas9 nickase]-[optional linker sequence]-[first UGI]-[optional linker sequence]-[second UGI]; or
    • [deaminase]-[optional linker sequence]-[Cas9]-[optional linker sequence]-[first UGI]-[optional linker sequence]-[second UGI].


In some embodiments, the nucleobase editor comprises a guide nucleotide sequence-programmable DNA-binding protein domain and an apolipoprotein B mRNA-editing complex 1 (APOBEC1) deaminase domain, wherein the deaminase domain is fused to the N-terminus of the guide nucleotide sequence-programmable DNA-binding protein domain via a linker comprising the amino acid sequence (SGGS)2SGSETPGTSESATPES(SGGS)2 (SEQ ID NO: 2482). In some embodiments, the a guide nucleotide sequence-programmable DNA-binding protein domain comprises the amino acid sequence of any of the a guide nucleotide sequence-programmable DNA-binding protein domains provided herein. In some embodiments, the deaminase is rat APOBEC1 (SEQ ID NO: 288). In some embodiments, the deaminase is human APOBEC1 (SEQ ID NO: 286). In some embodiments, the deaminase is a human APOBEC3G variant of any one of (SEQ ID NOs: 290-292). In some embodiments, the nucleobase editor comprises a first UGI domain fused to the C-terminus of a guide nucleotide sequence-programmable DNA-binding protein domain via a linker comprising the amino acid sequence (GGS)n(SEQ ID NO: 2467), wherein n is 3. In some embodiments, the nucleobase editor comprises a second UGI domain fused to the C-terminus of a first UGI domain via a linker comprising the amino acid sequence (GGS)n(SEQ ID NO: 2467), wherein n is 3.


In some embodiments, the fusion protein comprises the amino acid sequence of SEQ ID NO: 2495. In some embodiments, the fusion protein comprises an amino acid sequence that is at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to the amino acid sequence as set forth in SEQ ID NO: 2495.


In some embodiments, any of the fusion proteins provided herein may further comprise a Gam protein. The term “Gam protein,” as used herein, refers generally to proteins capable of binding to one or more ends of a double strand break of a double stranded nucleic acid (e.g., double stranded DNA). In some embodiments, the Gam protein prevents or inhibits degradation of one or more strands of a nucleic acid at the site of the double strand break. In some embodiments, a Gam protein is a naturally-occurring Gam protein from bacteriophage Mu, or a non-naturally occurring variant thereof. Fusion proteins comprising Gam proteins are described in Komor et al. (2017) Improved Base Excision Repair Inhibition and Bateriophage Mu Gam Protein Yields C:G-to-T:A base editors with higher efficiency and product purity. Sci Adv, 3: eaao4774; the entire contents of which is incorporated by reference herein. In some embodiments, the Gam protein comprises an amino acid sequence that is at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 92%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to the amino acid sequence provided by SEQ ID NO: 2496. In some embodiments, the Gam protein comprises the amino acid sequence of SEQ ID NO: 2496. In some embodiments, the fusion protein (e.g., BE4-Gam of SEQ ID NO: 2497) comprises a Gam protein, wherein the Cas9 domain of BE4 is replaced with any of the Cas9 domains provided herein.









Gam from bacteriophage Mu:


(SEQ ID NO: 2496)


AKPAKRIKSAAAAYVPQNRDAVITDIKRIGDLQREASRLETEMNDAIAEI





TEKFAARIAPIKTDIETLSKGVQGWCEANRDELTNGGKVKTANLVTGDVS





WRVRPPSVSIRGMDAVMETLERLGLQRFIRTKQEINKEAILLEPKAVAGV





AGITVKSGIEDFSIIPFEQEAGI





BE4-Gam:


(SEQ ID NO: 2497)



MAKPAKRIKSAAAAYVPQNRDAVITDIKRIGDLQREASRLETEMNDAIAE







ITEKFAARIAPIKTDIETLSKGVQGWCEANRDELINGGKVKTANLVTGDV







SWRVRPPSVSIRGMDAVMETLERLGLQRFIRTKQEINKEAILLEPKAVAG







VAGITVKSGIEDFSIIPFEQEAGI
SGSETPGTSESATPESSSETGPVAVD






PTLRRRIEPHEFEVFFDPRELRKETCLLYEINWGGRHSIWRHTSQNTNKH





VEVNFIEKFTTERYFCPNTRCSITWFLSWSPCGECSRAITEFLSRYPHVT





LFIYIARLYHHADPRNRQGLRDLISSGVTIQIMTEQESGYCWRNFVNYSP





SNEAHWPRYPHLWVRLYVLELYCIILGLPPCLNILRRKQPQLTFFTIALQ





SCHYQRLPPHILWATGLKSGGSSGGSSGSETPGTSESATPESSGGSSGGS





DKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGAL





LFDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRL





EESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADL





RLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPI





NASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPN





FKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAIL





LSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIF





FDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRK





QRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYY





VGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKN





LPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDL





LFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKII





KDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQL





KRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDS





LTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVM





GRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPV





ENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDDS





IDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLT





KAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIR





EVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKY





PKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEIT





LANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQ





TGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEK





GKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKY





SLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPED





NEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKP





IREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQS





ITGLYETRIDLSQLGGDSGGSGGSGGSTNLSDIIEKETGKQLVIQESILM





LPEEVEEVIGNKPESDILVHTAYDESTDENVMLLTSDAPEYKPWALVIQD





SNGENKIKMLSGGSGGSGGSTNLSDIIEKETGKQLVIQESILMLPEEVEE





VIGNKPESDILVHTAYDESTDENVMLLTSDAPEYKPWALVIQDSNGENKI





KMLSGGSPKKKRK







Linkers


In certain embodiments, linkers may be used to link any of the protein or protein domains described herein. The linker may be as simple as a covalent bond, or it may be a polymeric linker many atoms in length. In certain embodiments, the linker is a polypeptide or based on amino acids. In other embodiments, the linker is not peptide-like. In certain embodiments, the linker is a covalent bond (e.g., a carbon-carbon bond, disulfide bond, carbon-heteroatom bond, etc.). In certain embodiments, the linker is a carbon-nitrogen bond of an amide linkage. In certain embodiments, the linker is a cyclic or acyclic, substituted or unsubstituted, branched or unbranched aliphatic or heteroaliphatic linker. In certain embodiments, the linker is polymeric (e.g., polyethylene, polyethylene glycol, polyamide, polyester, etc.). In certain embodiments, the linker comprises a monomer, dimer, or polymer of aminoalkanoic acid. In certain embodiments, the linker comprises an aminoalkanoic acid (e.g., glycine, ethanoic acid, alanine, beta-alanine, 3-aminopropanoic acid, 4-aminobutanoic acid, 5-pentanoic acid, etc.). In certain embodiments, the linker comprises a monomer, dimer, or polymer of aminohexanoic acid (Ahx). In certain embodiments, the linker is based on a carbocyclic moiety (e.g., cyclopentane, cyclohexane). In other embodiments, the linker comprises a polyethylene glycol moiety (PEG). In other embodiments, the linker comprises amino acids. In certain embodiments, the linker comprises a peptide. In certain embodiments, the linker comprises an aryl or heteroaryl moiety. In certain embodiments, the linker is based on a phenyl ring. The linker may include functionalized moieties to facilitate attachment of a nucleophile (e.g., thiol, amino) from the peptide to the linker. Any electrophile may be used as part of the linker. Exemplary electrophiles include, but are not limited to, activated esters, activated amides, Michael acceptors, alkyl halides, aryl halides, acyl halides, and isothiocyanates.


In some embodiments, the linker is an amino acid or a plurality of amino acids (e.g., a peptide or protein). In some embodiments, the linker is a bond (e.g., a covalent bond), an organic molecule, group, polymer, or chemical moiety. In some embodiments, the linker is 5-100 amino acids in length, for example, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 30-35, 35-40, 40-45, 45-50, 50-60, 60-70, 70-80, 80-90, 90-100, 100-110, 110-120, 120-130, 130-140, 140-150, or 150-200 amino acids in length. Longer or shorter linkers are also contemplated. In some embodiments, a linker comprises the amino acid sequence SGSETPGTSESATPES (SEQ ID NO: 310), which may also be referred to as the XTEN linker. In some embodiments, a linker comprises the amino acid sequence SGGS (SEQ ID NO: 37). In some embodiments, a linker comprises (SGGS)n (SEQ ID NO: 2468), (GGGS)n (SEQ ID NO: 2430), (GGGGS)n (SEQ ID NO: 308), (G)n (SEQ ID NO: 2498), (EAAAK)n (SEQ ID NO: 40), (GGS)n (SEQ ID NO: 2467), SGSETPGTSESATPES (SEQ ID NO: 310), or (XP)n motif, or a combination of any of these, wherein n is independently an integer between 1 and 30, and wherein X is any amino acid. In some embodiments, n is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15. In some embodiments, a linker comprises SGSETPGTSESATPES (SEQ ID NO: 10), and SGGS (SEQ ID NO: 37). In some embodiments, a linker comprises SGGSSGSETPGTSESATPESSGGS (SEQ ID NO: 384). In some embodiments, a linker comprises SGGSSGGSSGSETPGTSESATPESSGGSSGGS (SEQ ID NO: 385). In some embodiments, a linker comprises









(SEQ ID NO: 386)


GGSGGSPGSPAGSPTSTEEGTSESATPESGPGTSTEPSEGSAPGSPAGS


PTSTEEGTSTEPSEGSAPGTSTEPSEGSAPGTSESATPESGPGSEPATS


GGSGGS.







Nucleobase Editor/gRNA Complexes


Some aspects of the present disclosure provide nucleobase editors associated with a guide nucleotide sequence (e.g., a guide RNA or gRNA). gRNAs can exist as a complex of two or more RNAs, or as a single RNA molecule. gRNAs that exist as a single RNA molecule may be referred to as single-guide RNAs (sgRNAs), though “gRNA” is used interchangeably to refer to guide RNAs that exist as either single molecules or as a complex of two or more molecules. Typically, gRNAs that exist as a single RNA species comprise two domains: (1) a domain that shares homology to a target nucleic acid (e.g., and directs binding of the Cas9 complex to the target); and (2) a domain that binds the Cas9 protein. In some embodiments, domain (2) corresponds to a sequence known as a tracrRNA and comprises a stem-loop structure. For example, in some embodiments, domain (2) is identical or homologous to a tracrRNA as provided in Jinek et al., Science 337:816-821(2012), which is incorporated herein by reference. Other examples of gRNAs (e.g., those including domain 2) can be found in U.S. Provisional Patent Application, U.S. Ser. No. 61/874,682, filed Sep. 6, 2013, entitled “Switchable Cas9 Nucleases And Uses Thereof,” and U.S. Provisional Patent Application, U.S. Ser. No. 61/874,746, filed Sep. 6, 2013, entitled “Delivery System For Functional Nucleases,” each of which is incorporated herein by reference. The gRNA comprises a nucleotide sequence that complements a target site, which mediates binding of the nuclease/RNA complex to said target site, providing the sequence specificity of the nuclease:RNA complex. These proteins are able to be targeted, in principle, to any sequence specified by the guide RNA. Methods of using RNA-programmable nucleases, such as Cas9, for site-specific cleavage (e.g., to modify a genome) are known in the art (see e.g., Cong, L. et al. Science 339, 819-823 (2013); Mali, P. et al. Science 339, 823-826 (2013); Hwang, W. Y. et al. Nature Biotechnology 31, 227-229 (2013); Jinek, M. et al. eLife 2, e00471 (2013); Dicarlo, J. E. et al. Nucleic acids research (2013); Jiang, W. et al. Nature biotechnology 31, 233-239 (2013); each of which is incorporated herein by reference). In particular, examples of guide nucleotide sequences (e.g., sgRNAs) that may be used to target the fusion proteins useful in the present disclosure to its target sequence to deaminate the targeted C bases are described in Komor et al., Nature, 533, 420-424 (2016), which is incorporated herein by reference.


The specific structure of the guide nucleotide sequences (e.g., sgRNAs) depends on its target sequence and the relative distance of a PAM sequence downstream of the target sequence. One skilled in the art will understand that no unifying structure of guide nucleotide sequence is given, because the target sequences are different for each and every C targeted to be deaminated.


However, the present disclosure provides guidance on how to design the guide nucleotide sequence, e.g., a sgRNA, so that one skilled in the art may use such teachings to target a sequence of interest. A gRNA typically comprises a tracrRNA framework allowing for Cas9 binding, and a guide sequence, which confers sequence specificity to fusion proteins disclosed herein. In some embodiments, the guide RNA comprises a structure 5′-[guide sequence]-tracrRNA-3′. Non-limiting, exemplary tracrRNA sequences are shown in Table 13.









TABLE 13







tracrRNA othologues and sequences











SEQ




ID


Organism
tracrRNA sequence
NO.






S. pyogenes

GUUUAAGAGCUAUGCUGGAAAGCCACGGUGAAAAAGUUCA
322



ACUAUUGCCUGAUCGGAAUAAAUUUGAACGAUACGACAGU




CGGUGCUUUUUUU







S. pyogenes

GUUUAAGAGCUAGAAAUAGCAAGUUUAAAUAAGGCUAGUC
323



CGUUAUCAACUUGAAAAAGUGGCACCGAGUCGGUGCUUUU




UU







S. thermophilus

GUUUUUGUACUCUCAAGAUUCAAUAAUCUUGCAGAAGCUA
324


CRISPR1
CAAAGAUAAGGCUUCAUGCCGAAAUCAACACCCUGUCAUUU




UAUGGCAGGGUGUUUU







S. thermophilus

GUUUUAGAGCUGUGUUGUUUGUUAAAACAACACAGCGAGU
325


CRISPR3
UAAAAUAAGGCUUAGUCCGUACUCAACUUGAAAAGGUGGC




ACCGAUUCGGUGUUUUU







C. jejuni

AAGAAAUUUAAAAAGGGACUAAAAUAAAGAGUUUGCGGGA
326



CUCUGCGGGGUUACAAUCCCCUAAAACCGCUUUU







F. novicida

AUCUAAAAUUAUAAAUGUACCAAAUAAUUAAUGCUCUGUA
327



AUCAUUUAAAAGUAUUUUGAACGGACCUCUGUUUGACACG




UCUGAAUAACUAAAA






S. thermophilus2
UGUAAGGGACGCCUUACACAGUUACUUAAAUCUUGCAGAA
328



GCUACAAAGAUAAGGCUUCAUGCCGAAAUCAACACCCUGUC




AUUUUAUGGCAGGGUGUUUUCGUUAUUU







M. mobile

UGUAUUUCGAAAUACAGAUGUACAGUUAAGAAUACAUAAG
329



AAUGAUACAUCACUAAAAAAAGGCUUUAUGCCGUAACUAC




UACUUAUUUUCAAAAUAAGUAGUUUUUUUU







L. innocua

AUUGUUAGUAUUCAAAAUAACAUAGCAAGUUAAAAUAAGG
330



CUUUGUCCGUUAUCAACUUUUAAUUAAGUAGCGCUGUUUC




GGCGCUUUUUUU







S. pyogenes

GUUGGAACCAUUCAAAACAGCAUAGCAAGUUAAAAUAAGG
331



CUAGUCCGUUAUCAACUUGAAAAAGUGGCACCGAGUCGGU




GCUUUUUUU







S. mutans

GUUGGAAUCAUUCGAAACAACACAGCAAGUUAAAAUAAGG
332



CAGUGAUUUUUAAUCCAGUCCGUACACAACUUGAAAAAGU




GCGCACCGAUUCGGUGCUUUUUUAUUU






S. thermophilus
UUGUGGUUUGAAACCAUUCGAAACAACACAGCGAGUUAAA
333



AUAAGGCUUAGUCCGUACUCAACUUGAAAAGGUGGCACCG




AUUCGGUGUUUUUUUU







N. meningitidis

ACAUAUUGUCGCACUGCGAAAUGAGAACCGUUGCUACAAU
334



AAGGCCGUCUGAAAAGAUGUGCCGCAACGCUCUGCCCCUUA




AAGCUUCUGCUUUAAGGGGCA







P. multocida

GCAUAUUGUUGCACUGCGAAAUGAGAGACGUUGCUACAAU
335



AAGGCUUCUGAAAAGAAUGACCGUAACGCUCUGCCCCUUGU




GAUUCUUAAUUGCAAGGGGCAUCGUUUUU









The guide sequence of the gRNA comprises a sequence that is complementary to the target sequence. The guide sequence is typically about 20 nucleotides long. For example, the guide sequence may be approximately 15-25 nucleotides long. In some embodiments, the guide sequence is 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25 nucleotides long. In some embodiments, the guide sequence is more than 25 nucleotides long. Such suitable guide RNA sequences typically comprise guide sequences that are complementary to a nucleic sequence within 50 nucleotides upstream or downstream of the target nucleotide to be edited.


In some embodiments, the guide RNA is about 15-100 nucleotides long and comprises a sequence of at least 10 contiguous nucleotides that is complementary to a target sequence. In some embodiments, the guide RNA is 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, or 50 nucleotides long. In some embodiments, the guide RNA comprises a sequence of 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, or 40 contiguous nucleotides that is complementary to a target sequence.


To edit the genes involved in pain propagation (e.g., ion channels in DRG neurons) using the methods described herein, the nucleobase editor and/or the guide nucleotide sequence is introduced into the cell (e.g., a DRG neuron) where the editing is to occur. In some embodiments, nucleic acid molecules (e.g., expression vectors) encoding the nucleobase editors and/or the guide nucleotide sequences are delivered into the cell, resulting in co-expression of the nucleobase editor(s) and/or the guide nucleotide sequence(s) in the cell. The nucleic acid molecules encoding the nucleobase editors and/or the guide nucleotide sequences may be delivered into the cell using any methods known in the art, e.g., transfection (e.g., transfection mediated by cationic liposomes), and transduction (e.g., via viral infection). In some embodiments, a nucleobase editor/gRNA complex is delivered. Methods of delivering a protein to a cell are familiar to those skilled in the art. For example, the nucleobase editor in complex with a gRNA may be associated with a supercharged or cell-penetrating protein or peptide, which facilitates its entry into a cell (e.g., as described in PCT Application Publication WO 2010/129023, published Nov. 11, 2010, and US Patent Application Publication US 2015/0071906, published Mar. 12, 2015, each of which is incorporated herein by reference). In some embodiments, the isolated nucleobase editor in complex with a gRNA is delivered to a cell using a cationic transfection reagent, e.g., the Lipofectamine CRISPRMAX Cas9 Transfection Reagent from Thermofisher Scientific. In some embodiments, the nucleobase editor and the gRNA may be delivered separately. Other suitable delivery methods may also be used, e.g., AAV mediated gene transfer. Strategies for delivery a genome editing agent (e.g., the nucleobase editor) using AAV have been described, e.g., in Zetsche et al., Nature Biotechnology 33, 139-142 (2015), incorporated herein by reference. Delivery of a split Cas9 using AAV has also been described, e.g., in Truong et al., Nucl. Acids Res. 43, 6450 (2016), and U.S. Provisional Application 62/408,575, filed Oct. 14, 2016, each of which is incorporated herein by reference.


In some embodiments, the genome editing agents (e.g., nucleobase editors) are delivered to neurons (e.g., DRG neurons) using neurotropic viral delivery vectors. Using neurotropic viral delivery vectors to deliver the genome editing agent enables genome editing treatments aimed at the site(s) of pain, despite the fact that the genetic material within the nuclei of DRG neurons is quite distant and indistinguishable from unrelated cells within each ganglion (e.g., as shown in FIG. 2).


In some embodiments, the neurotropic viral delivery vector is derived from a Herpes Simplex Virus 1 (HSV-1), which targets nerve endings in vivo and usurps retrograde axon transport to move the viral DNA up to the cell body of DRG neurons (e.g., as described in Smith et al., Annual Review of Microbiology, 66, 153-176, 2012, which is incorporated herein by reference). In addition, HSV-1 derived vectors allows packaging a large double-stranded DNA genome (>150 kbp), which can easily accommodate an expression construct for any programmable genome-editing enzyme (4-5 kbp), multiple guide-RNAs, and regulatory sequences. In some embodiments, the nucleotide sequences encoding the nucleobase editor and/or the gRNA is inserted into a neurotropic viral delivery vector (e.g., a HSV-1 derived vector) by replacing non-essential genes of the virus (e.g., HSV-1). Non-limiting examples of neurotropic viruses that may be used for the delivery of the genome editing agents described herein include the broader herpesviridae group, varicella-zoster, pseudorabies, cytomegalovirus, Epstein-Barr viruses, encephalitis viruses, polio, coxsackie, echo, mumps, measles, and rabies viruses. Evolved AAV that are neurotropic have also been described (e.g., Nature Biotechnology 34, 204-209 (2016), which is incorporated herein by reference) and may be used in accordance with the present disclosure. Delivery of a split Cas9 using AAV has also been described, e.g., in Truong et al., Nucl. Acids Res. 43, 6450 (2016), and US Provisional Application, U.S. Ser. No. 62/408,575, filed Oct. 14, 2016, each of which is incorporated herein by reference.


In some embodiments, the expression of the genome editing agents (e.g., nucleobase editors and/or gRNAs) is driven by a neuron-specific promoter, such that the genome editing agent is expressed specifically in neurons. Non-limiting examples of neuron-specific promoters that may be used in accordance with the present disclosure include: human synapsin I (SYN) promoter (e.g., as described in Li et al., Proc Natl Acad Sci USA 1993; 90: 1460-1464, incorporated herein by reference), mouse calcium/calmodulin-dependent protein kinase II (CaMKII) promoter (e.g., as described in Mayford et al., Proc Natl Acad Sci USA 1996; 93: 13250-13255, incorporated herein by reference), rat tubulin alpha I (Tal) promoter (e.g., as described in Gloster et al., J Neurosci 1994; 14: 7319-7330, incorporated herein by reference), rat neuron-specific enolase (NSE) promoter (e.g., as described in Forss-Petter et al, Neuron 1990; 5: 187-197, incorporated herein by reference), and human platelet-derived growth factor-beta chain (PDGF) promoter (e.g., as described in Sasahara et al, Cell 1991; 64: 217-227, incorporated herein by reference). In some embodiments, the gRNA sequence is engineered such that it targets the genome editing agent (e.g., the nucleobase editor) to a target gene encoding an ion channel that is only expressed in neurons, thus minimizing or eliminating the effect on other types of tissues (i.e., enhanced specificity).


Compositions


Aspects of the present disclosure relate to compositions that may be used for pain suppression. Such compositions comprise any of the genome editing agents (e.g., the nucleobase editor and/or gRNA) or nucleic acids (e.g., DNA, RNA) encoding the genome editing agent (e.g., a neurotropic viral delivery vector) described herein. In some embodiments, the composition is administered to a subject for pain suppression.


In some embodiments, the composition further comprises a pharmaceutically acceptable carrier. As used here, the term “pharmaceutically acceptable carrier” means a pharmaceutically acceptable material, composition or vehicle, such as a liquid or solid filler, diluent, excipient, manufacturing aid (e.g., lubricant, talc magnesium, calcium or zinc stearate, or steric acid), or solvent encapsulating material, involved in carrying or transporting the compound from one site (e.g., the delivery site) of the body, to another site (e.g., organ, tissue or portion of the body). A pharmaceutically acceptable carrier is “acceptable” in the sense of being compatible with the other ingredients of the formulation and not injurious to the tissue of the subject (e.g., physiologically compatible, sterile, physiologic pH, etc.). Some examples of materials which can serve as pharmaceutically acceptable carriers include: (1) sugars, such as lactose, glucose and sucrose; (2) starches, such as corn starch and potato starch; (3) cellulose, and its derivatives, such as sodium carboxymethyl cellulose, methylcellulose, ethyl cellulose, microcrystalline cellulose and cellulose acetate; (4) powdered tragacanth; (5) malt; (6) gelatin; (7) lubricating agents, such as magnesium stearate, sodium lauryl sulfate and talc; (8) excipients, such as cocoa butter and suppository waxes; (9) oils, such as peanut oil, cottonseed oil, safflower oil, sesame oil, olive oil, corn oil and soybean oil; (10) glycols, such as propylene glycol; (11) polyols, such as glycerin, sorbitol, mannitol and polyethylene glycol (PEG); (12) esters, such as ethyl oleate and ethyl laurate; (13) agar; (14) buffering agents, such as magnesium hydroxide and aluminum hydroxide; (15) alginic acid; (16) pyrogen-free water; (17) isotonic saline; (18) Ringer's solution; (19) ethyl alcohol; (20) pH buffered solutions; (21) polyesters, polycarbonates and/or polyanhydrides; (22) bulking agents, such as polypeptides, carbohydrates, and amino acids; (23) serum component, such as serum albumin, HDL, and LDL; (22) C2-C12 alcohols, such as ethanol; and (23) other non-toxic compatible substances employed in pharmaceutical formulations. Wetting agents, coloring agents, release agents, coating agents, sweetening agents, flavoring agents, perfuming agents, preservative and antioxidants can also be present in the formulation. The terms such as “excipient”, “carrier”, “pharmaceutically acceptable carrier” or the like are used interchangeably herein.


Suitable routes of administrating the composition for pain suppression include, without limitation: topical, subcutaneous, transdermal, intradermal, intralesional, intraarticular, intraperitoneal, intravesical, transmucosal, gingival, intradental, intracochlear, transtympanic, intraorgan, epidural, intrathecal, intramuscular, intravenous, intravascular, intraosseus, periocular, intratumoral, intracerebral, and intracerebroventricular administration.


In some embodiments, the composition for pain suppression is administered locally to the site of pain (e.g., via tropical administration or injection). In some embodiments, the localized volume of treatment is 1 μm3 to 1 dm3 (e.g., 1, 10 μm3, 100 μm3, 1000 μm3, 10000 μm3, or 1 dm3).


In some embodiments, the composition for pain suppression is administered to a subject by injection, by means of a catheter, by means of a suppository, or by means of an implant, the implant being of a porous, non-porous, or gelatinous material, including a membrane, such as a sialastic membrane, or a fiber.


In other embodiments, the compositions for pain suppression are delivered in a controlled release system. In one embodiment, a pump may be used (see, e.g., Langer, 1990, Science 249:1527-1533; Sefton, 1989, CRC Crit. Ref. Biomed. Eng. 14:201; Buchwald et al., 1980, Surgery 88:507; Saudek et al., 1989, N. Engl. J. Med. 321:574). In another embodiment, polymeric materials can be used. (See, e.g., Medical Applications of Controlled Release (Langer and Wise eds., CRC Press, Boca Raton, Fla., 1974); Controlled Drug Bioavailability, Drug Product Design and Performance (Smolen and Ball eds., Wiley, New York, 1984); Ranger and Peppas, 1983, Macromol. Sci. Rev. Macromol. Chem. 23:61. See also Levy et al., 1985, Science 228:190; During et al., 1989, Ann. Neurol. 25:351; Howard et al., 1989, J. Neurosurg. 71:105.) Other controlled release systems are discussed, for example, in Langer, supra.


In some embodiments, the composition is formulated in accordance with routine procedures as a composition adapted for intravenous or subcutaneous administration to a subject, e.g., a human. In some embodiments, compositions for administration by injection are solutions in sterile isotonic aqueous buffer. Where necessary, the pharmaceutical can also include a solubilizing agent and a local anesthetic such as lignocaine to ease pain at the site of the injection. Generally, the ingredients are supplied either separately or mixed together in unit dosage form, for example, as a dry lyophilized powder or water free concentrate in a hermetically sealed container such as an ampoule or sachette indicating the quantity of active agent. Where the pharmaceutical is to be administered by infusion, it can be dispensed with an infusion bottle containing sterile pharmaceutical grade water or saline. Where the pharmaceutical is administered by injection, an ampoule of sterile water for injection or saline can be provided so that the ingredients can be mixed prior to administration.


A composition for systemic administration may be a liquid, e.g., sterile saline, lactated Ringer's or Hank's solution. In addition, the pharmaceutical composition can be in solid forms and re-dissolved or suspended immediately prior to use. Lyophilized forms are also contemplated.


The pharmaceutical composition can be contained within a lipid particle or vesicle, such as a liposome or microcrystal, which is also suitable for parenteral administration. The particles can be of any suitable structure, such as unilamellar or plurilamellar, so long as compositions are contained therein. Compounds can be entrapped in “stabilized plasmid-lipid particles” (SPLP) containing the fusogenic lipid dioleoylphosphatidylethanolamine (DOPE), low levels (5-10 mol %) of cationic lipid, and stabilized by a polyethyleneglycol (PEG) coating (Zhang Y. P. et al., Gene Ther. 1999, 6:1438-47). Positively charged lipids such as N-[1-(2,3-dioleoyloxi)propyl]-N,N,N-trimethyl-amoniummethylsulfate, or “DOTAP,” are particularly preferred for such particles and vesicles. The preparation of such lipid particles is well known. See, e.g., U.S. Pat. Nos. 4,880,635; 4,906,477; 4,911,928; 4,917,951; 4,920,016; and 4,921,757; each of which is incorporated herein by reference.


The compositions of this disclosure may be administered or packaged as a unit dose, for example. The term “unit dose” when used in reference to a pharmaceutical composition of the present disclosure refers to physically discrete units suitable as unitary dosage for the subject, each unit containing a predetermined quantity of active material calculated to produce the desired therapeutic effect in association with the required diluent; i.e., carrier, or vehicle.


Further, the compositions of the present disclosure may be assembled into kits. In some embodiments, the kit comprises nucleic acid vectors for the expression of the genome-editing agents useful in the present disclosure. In some embodiments, the kit further comprises appropriate guide nucleotide sequences (e.g., gRNAs), or nucleic acid vectors for the expression of such guide nucleotide sequences, for targeting the nucleobase editor to the desired target sequence.


The kit described herein may include one or more containers housing components for performing the methods described herein and optionally instructions of uses. Any of the kit described herein may further comprise components needed for performing the assay methods. Each component of the kits, where applicable, may be provided in liquid form (e.g., in solution), or in solid form, (e.g., a dry powder). In certain cases, some of the components may be reconstitutable or otherwise processible (e.g., to an active form), for example, by the addition of a suitable solvent or other species (for example, water or certain organic solvents), which may or may not be provided with the kit.


In some embodiments, the kits may optionally include instructions and/or promotion for use of the components provided. As used herein, “instructions” can define a component of instruction and/or promotion, and typically involve written instructions on or associated with packaging of the disclosure. Instructions also can include any oral or electronic instructions provided in any manner such that a user will clearly recognize that the instructions are to be associated with the kit, for example, audiovisual (e.g., videotape, DVD, etc.), Internet, and/or web-based communications, etc. The written instructions may be in a form prescribed by a governmental agency regulating the manufacture, use, or sale of pharmaceuticals or biological products, which can also reflect approval by the agency of manufacture, use or sale for animal administration. As used herein, “promoted” includes all methods of doing business including methods of education, hospital and other clinical instruction, scientific inquiry, drug discovery or development, academic research, pharmaceutical industry activity including pharmaceutical sales, and any advertising or other promotional activity including written, oral and electronic communication of any form, associated with the disclosure. Additionally, the kits may include other components depending on the specific application, as described herein.


The kits may contain any one or more of the components described herein in one or more containers. The components may be prepared sterilely, packaged in a syringe and shipped refrigerated. Alternatively it may be housed in a vial or other container for storage. A second container may have other components prepared sterilely. Alternatively the kits may include the active agents premixed and shipped in a vial, tube, or other container.


The kits may have a variety of forms, such as a blister pouch, a shrink wrapped pouch, a vacuum sealable pouch, a sealable thermoformed tray, or a similar pouch or tray form, with the accessories loosely packed within the pouch, one or more tubes, containers, a box or a bag. The kits may be sterilized after the accessories are added, thereby allowing the individual accessories in the container to be otherwise unwrapped. The kits can be sterilized using any appropriate sterilization techniques, such as radiation sterilization, heat sterilization, or other sterilization methods known in the art. The kits may also include other components, depending on the specific application, for example, containers, cell media, salts, buffers, reagents, syringes, needles, a fabric, such as gauze, for applying or removing a disinfecting agent, disposable gloves, a support for the agents prior to administration, etc.


Therapeutics


The compositions described herein, may be administered to a subject in need thereof, in a therapeutically effective amount, for the suppression of pain. In some embodiments, the pain is chronic pain. “Chronic pain” is pain that lasts a long time. Types of pain that may be treated using the pain suppression strategies described herein include, without limitation: pain associated with a condition such as cancer pain, tumor pressure, bone metastasis, chemotherapy peripheral neuropathy, radiculopathy (sciatica, lumbar, cervical, failed back surgery syndrome), piriformis syndrome, phantom pain, arachnoiditis, fibromyalgia, facet joint mediated pain, sympathetically-mediated pain syndrome such as complex regional pain syndromes (crps), sacroiliac (si) joint mediated pain, meralgia paresthetica, localized myofacial pain syndromes-myofacial trigger points, diffuse myofacial pain syndrome, post-herpetic neuralgia, trigeminal neuralgia, glossopharyngeal neuralgia, scar pain (post-epesiotomy, post-hernia repair, post-surgery, post-radiotherapy), vulvodynia, vaginismus, levator ani syndrome, chronic prostatitis, interstitial cystitis, first bite syndrome, rheumatoid arthritis pain, osteoarthritis pain, atypical odontalgia, phantom tooth pain, neuropathic orofacial pain, and atypical facial pain, nerve block procedures (alternative to neurolytic, neurectomy, radiation, radiofrequency ablation). In some embodiments, the pain is neuropathic pain, allodynia, hyperalgesia, dysesthesia, causalgia, neuralgia, primary erythermalgia, or arthralgia.


A “therapeutically effective amount” as used herein refers to the amount of each therapeutic agent of the present disclosure required to confer therapeutic effect on the subject, either alone or in combination with one or more other therapeutic agents. Effective amounts vary, as recognized by those skilled in the art, depending on the particular condition being treated, the severity of the condition, the individual subject parameters including age, physical condition, size, gender and weight, the duration of the treatment, the nature of concurrent therapy (if any), the specific route of administration and like factors within the knowledge and expertise of the health practitioner. These factors are well known to those of ordinary skill in the art and can be addressed with no more than routine experimentation. It is generally preferred that a maximum dose of the individual components or combinations thereof be used, that is, the highest safe dose according to sound medical judgment. It will be understood by those of ordinary skill in the art, however, that a subject may insist upon a lower dose or tolerable dose for medical reasons, psychological reasons or for virtually any other reasons. Empirical considerations, such as the half-life, generally will contribute to the determination of the dosage.


Frequency of administration may be determined and adjusted over the course of therapy, and is generally, but not necessarily, based on treatment and/or suppression and/or amelioration and/or delay of a disease. Alternatively, sustained continuous release formulations of a genome-editing may be appropriate. Various formulations and devices for achieving sustained release are known in the art. In some embodiments, dosage is daily, every other day, every three days, every four days, every five days, or every six days. In some embodiments, dosing frequency is once every week, every 2 weeks, every 4 weeks, every 5 weeks, every 6 weeks, every 7 weeks, every 8 weeks, every 9 weeks, or every 10 weeks; or once every month, every 2 months, or every 3 months, or longer. The progress of this therapy is easily monitored by conventional techniques and assays.


The dosing regimen can vary over time. In some embodiments, for an adult subject of normal weight, doses ranging from about 0.01 to 1000 mg/kg may be administered. In some embodiments, the dose is between 1 to 200 mg. The particular dosage regimen, i.e., dose, timing and repetition, will depend on the particular subject and that subject's medical history, as well as the properties of the agents.


For the purpose of the present disclosure, the appropriate dosage of a genome-editing agent as described herein will depend on the specific agent (or compositions thereof) employed, the formulation and route of administration, the type and severity of the disease, whether the genome-editing agent is administered for preventive or therapeutic purposes, previous therapy, the subject's clinical history and response to the antagonist, and the discretion of the attending physician. Typically the clinician will administer a genome-editing agent until a dosage is reached that achieves the desired result.


As used herein, the term “treating” refers to the application or administration of a genome-editing agent described herein or a composition comprising such genome-editing agent to a subject in need thereof. Alleviating a disease includes delaying the development or progression of the disease, or reducing disease severity. Alleviating the disease does not necessarily require curative results.


“Development” or “progression” of a disease means initial manifestations and/or ensuing progression of the disease. Development of the disease can be detectable and assessed using standard clinical techniques as well known in the art. However, development also refers to progression that may be undetectable. For purpose of this disclosure, development or progression refers to the biological course of the symptoms. “Development” includes occurrence, recurrence, and onset. As used herein “onset” or “occurrence” of a disease includes initial onset and/or recurrence.


The term “parenteral” as used herein includes subcutaneous, intracutaneous, intravenous, intramuscular, intraarticular, intraarterial, intrasynovial, intrasternal, intrathecal, intralesional, and intracranial injection or infusion techniques. In addition, it can be administered to the subject via injectable depot routes of administration such as using 1-, 3-, or 6-month depot injectable or biodegradable materials and methods.


Without further elaboration, it is believed that one skilled in the art can, based on the above description, utilize the present disclosure to its fullest extent. The following specific embodiments are, therefore, to be construed as merely illustrative, and not limitative of the remainder of the disclosure in any way whatsoever. All publications cited herein are incorporated by reference for the purposes or subject matter referenced herein.


EXAMPLES

In order that the invention described herein may be more fully understood, the following examples are set forth. The synthetic examples described in this application are offered to illustrate the compounds and methods provided herein and are not to be construed in any way as limiting their scope.


Example 1: Guide Nucleotide Sequence-Programmable DNA-Binding Protein Domains, Deaminases, and Base Editors

Non-limiting examples of suitable guide nucleotide sequence-programmable DNA-binding protein domain s are provided. The disclosure provides Cas9 variants, for example, Cas9 proteins from one or more organisms, which may comprise one or more mutations (e.g., to generate dCas9 or Cas9 nickase). In some embodiments, one or more of the amino acid residues, identified below by an asterek, of a Cas9 protein may be mutated. In some embodiments, the D10 and/or H840 residues of the amino acid sequence provided in SEQ ID NO: 1, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11-260, are mutated. In some embodiments, the D10 residue of the amino acid sequence provided in SEQ ID NO: 1, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11-260, is mutated to any amino acid residue, except for D. In some embodiments, the D10 residue of the amino acid sequence provided in SEQ ID NO: 1, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11-260, is mutated to an A. In some embodiments, the H840 residue of the amino acid sequence provided in SEQ ID NO: 1, or a corresponding residue in any of the amino acid sequences provided in SEQ ID NOs: 11-260, is an H. In some embodiments, the H840 residue of the amino acid sequence provided in SEQ ID NO: 1, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11-260, is mutated to any amino acid residue, except for H. In some embodiments, the H840 residue of the amino acid sequence provided in SEQ ID NO: 1, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11-260, is mutated to an A. In some embodiments, the D10 residue of the amino acid sequence provided in SEQ ID NO: 1, or a corresponding residue in any of the amino acid sequences provided in SEQ ID NOs: 11-260, is a D.


A number of Cas9 sequences from various species were aligned to determine whether corresponding homologous amino acid residues of D10 and H840 of SEQ ID NO: 1 or SEQ ID NO: 11 can be identified in other Cas9 proteins, allowing the generation of Cas9 variants with corresponding mutations of the homologous amino acid residues. The alignment was carried out using the NCBI Constraint-based Multiple Alignment Tool (COBALT (accessible at st-va.ncbi.nlm.nih.gov/tools/cobalt), with the following parameters. Alignment parameters: Gap penalties −11,-1; End-Gap penalties −5,-1. CDD Parameters: Use RPS BLAST on; Blast E-value 0.003; Find Conserved columns and Recompute on. Query Clustering Parameters: Use query clusters on; Word Size 4; Max cluster distance 0.8; Alphabet Regular.


An exemplary alignment of four Cas9 sequences is provided below. The Cas9 sequences in the alignment are: Sequence 1 (S1): SEQ ID NO: 11 |WP_010922251| gi 499224711 | type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes]; Sequence 2 (S2): SEQ ID NO: 12 |WP_039695303 | gi 746743737 | type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus gallolyticus]; Sequence 3 (S3): SEQ ID NO: 13 | WP_045635197 | gi 782887988 | type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mitis]; Sequence 4 (S4): SEQ ID NO: 14 |5AXW_A|gi 924443546| Staphylococcus Aureus Cas9. The HNH domain (bold and underlined) and the RuvC domain (boxed) are identified for each of the four sequences. Amino acid residues 10 and 840 in S1 and the homologous amino acids in the aligned sequences are identified with an asterisk following the respective amino acid residue.













S1
1
--MDKK-YSIGLD*IGTNSVGWAVITDEYKVESKKFKVLGNTDRESIKENLI--GALLEDSG--ETAEATRLKRTARRRYT
73



S2
1
--MTKKNYSIGLD*IGTNSVGWAVITDDYKVPAKKMKVIGNTDKKYIKENLL--GALLFDSG--ETAEATRLKRTARRRYT
74


S3
1
--M-KKGYSIGLD*IGTNSVGFAVITDDYKVESKEMEVLGNTDKRFIKKNLI--GALLFDEG--TTAEARRLKRTARRRYT
73


S4
1
GSHMKRNYILGLD*IGITSVGYGII--DYET-----------------RDVIDAGVRIFKEANVENNEGRRSKRGARRLKR 
61





S1
74
RRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRL
153


S2
75
RRKNRLRYLQEIFANEIAKVDESFFQRLDESFLTDDDKTEDSHPIFGNKAEEDAYHQKFPTIYHLRKHLADSSEKADLRL
154


S3
74
RRKNRLRYLQEIFSEEMSKVDSSFFHRLDDSFLIPEDKRESKYPIFATLTEEKEYHKQFPTIYHLRKQLADSKEKTDLRL
153


S4
62
RRRHRIQRVKKLL--------------FDYNLLTD--------------------HSELSGINPYEARVKGLSQKLSEEE 
107





S1
154
TYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEK
233


S2
155
VYLALAHMIKFRGHFLIEGELNAENTDVQKIFADFVGVYNRTFDDSHLSEITVDVASILTEKISKSRRLENLIKYYPTEK
234


S3
154
TYLALAHMIKYRGHFLYEEAFDIKNNDIQKIFNEFISIYDNTFEGSSLSGQNAQVEAIFTDKISKSAKRERVLKLFPDEK
233


S4
108
FSAALLHLAKRRG----------------------VHNVNEVEEDT---------------------------------- 
131





S1
234
KNGLFGNLIALSLGLTPNEKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEIT
313


S2
235
KNTLFGNLIALALGLQPNEKTNFKLSEDAKLQFSKDTYEEDLEELLGKIGDDYADLFTSAKNLYDAILLSGILTVDDNST
314


S3
234
STGLFSEFLKLIVGNQADFKKHFDLEDKAPLQFSKDTYDEDLENLLGQIGDDFTDLFVSAKKLYDAILLSGILTVTDPST
313


S4
132
-----GNELS-------------------TKEQISRN-------------------------------------------
144





S1
314
KAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKM--DGTEELLV
391


S2
315
KAPLSASMIKRYVEHHEDLEKLKEFIKANKSELYHDIFKDKNKNGYAGYIENGVKQDEFYKYLKNILSKIKIDGSDYFLD
394


S3
314
KAPLSASMIERYENHQNDLAALKQFIKNNLPEKYDEVFSDQSKDGYAGYIDGKTTQETFYKYIKNLLSKF--EGTDYFLD
391


S4
145
----SKALEEKYVAELQ--------------------------------------------------LERLKKDG-----
165





S1
392
KLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEE
471


S2
395
KIEREDFLRKQRTFDNGSIPHQIHLQEMHAILRRQGDYYPFLKEKQDRIEKILTFRIPYYVGPLVRKDSRFAWAEYRSDE
474


S3
392
KIEREDFLRKQRTFDNGSIPHQIHLQEMNAILRRQGEYYPFLKDNKEKIEKILTFRIPYYVGPLARGNRDFAWLTRNSDE
471


S4
166
--EVRGSINRFKTSD--------YVKEAKQLLKVQKAYHQLDQSFIDTYIDLLETRRTYYEGP--GEGSPFGW------K
227





S1
472
TITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDL
551


S2
475
KITPWNFDKVIDKEKSAEKFITRMTLNDLYLPEEKVLPKHSHVYETYAVYNELTKIKYVNEQGKE-SFFDSNMKQEIFDH
553


S3
472
AIRPWNFEEIVDKASSAEDFINKMTNYDLYLPEEKVLPKHSLLYETFAVYNELTKVKFIAEGLRDYQFLDSGQKKQIVNQ
551


S4
228
DIKEW---------------YEMLMGHCTYFPEELRSVKYAYNADLYNALNDLNNLVITRDENEK---LEYYEKFQIIEN
289





S1
552
LEKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDR---FNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFED
628


S2
554
VFKENRKVTKEKLLNYLNKEFPEYRIKDLIGLDKENKSFNASLGTYHDLKKIL-DKAFLDDKVNEEVIEDIIKTLTLFED
632


S3
552
LEKENRKVTEKDIIHYLHN-VDGYDGIELKGIEKQ---FNASLSTYHDLLKIIKDKEEMDDAKNEAILENIVHTLTIFED
627


S4
290
VFKQKKKPTLKQIAKEILVNEEDIKGYRVTSTGKPEF---TNLKVYHDIKDITARKEII---ENAELLDQIAKILTIYQS
363





S1
629
REMIEERLKTYAHLFDDKVMKQLKR-RRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDSLTFKED
707


S2
633
KDMIHERLQKYSDIFTANQLKKLER-RHYTGWGRLSYKLINGIRNKENNKTILDYLIDDGSANRNFMQLINDDTLPFKQI
711


S3
628
REMIKQRLAQYDSLFDEKVIKALTR-RHYTGWGKLSAKLINGICDKQTGNTILDYLIDDGKINRNFMQLINDDGLSFKEI
706


S4
364
SEDIQEELTNLNSELTQEEIEQISNLKGYTGTHNLSLKAINLILDE------LWHTNDNQIAIFNRLKLVP---------
428





S1
708


embedded image


781


S2
712


embedded image


784


S3
707


embedded image


779


S4
429


embedded image


505


S1
782


KRIEEGIKELGSQIL-------KEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSD----YDVDH*IVPQSFLKDD


850


S2
785


KKLQNSLKELGSNILNEEKPSYIEDKVENSHLQNDQLFLYYIQNGKDMYTGDELDIDHLSD----YDIDH*IIPQAFIKDD


860


S3
780


KRIEDSLKILASGL---DSNILKENPTDNNQLQNDRLFLYYLQNGKDMYTGEALDINQLSS----YDIDH*IIPQAFIKDD


852


S4
506


ERIEEIIRTTGK---------------ENAKYLIEKIKLHDMQEGKCLYSLEAIPLEDLLNNPFNYEVDH*IIPRSVSFDN


570





S1
851


embedded image


922


S2
861


embedded image


932


S3
853


embedded image


924


S4
571


embedded image


650


S1
923


embedded image


1002


S2
933


embedded image


1012


S3
925


embedded image


1004


S4
651


embedded image


712


S1
1003


embedded image


1077


S2
1013


embedded image


1083


S3
1005


embedded image


1081


S4
713


embedded image


764


S1
1078


embedded image


1149


S2
1084


embedded image


1158


S3
1082


embedded image


1156


S4
765


embedded image


835


S1
1150
EKGKSKKLKSVKELLGITIMERSSFEKNPI-DFLEAKG-----YKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKG
1223


S2
1159
EKGKAKKLKTVKELVGISIMERSFFEENPV-EFLENKG-----YHNIREDKLIKLPKYSLFEFEGGRRRLLASASELQKG
1232


S3
1157
EKGKAKKLKTVKTLVGITIMEKAAFEENPI-TFLENKG-----YHNVRKENILCLPKYSLFELENGRRRLLASAKELQKG
1230


S4
836
DPQTYQKLK--------LIMEQYGDEKNPLYKYYEETGNYLTKYSKKDNGPVIKKIKYYGNKLNAHLDITDDYPNSRNKV
907





S1
1224
NELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEITEQISEFSKRVILADANLDKVLSAYNKH------
1297


S2
1233
NEMVLPGYLVELLYHAHRADNF-----NSTEYLNYVSEHKKEFEKVLSCVEDFANLYVDVEKNLSKIRAVADSM------
1301


S3
1231
NEIVLPVYLTTLLYHSKNVHKL-----DEPGHLEYIQKHRNEFKDLLNLVSEFSQKYVLADANLEKIKSLYADN------
1299


S4
908
VKLSLKPYRFD-VYLDNGVYKFV-----TVKNLDVIK--KENYYEVNSKAYEEAKKLKKISNQAEFIASFYNNDLIKING
979





S1
1298
RDKPIREQAENITHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSIT--------GLYETRI----DLSQL 
1365


S2
1302
DNFSIEEISNSFINLLTLTALGAPADFNFLGEKIPRKRYTSTKECLNATLIHQSIT--------GLYETRI----DLSKL 
1369


S3
1300
EQADIEILANSFINLLTFTALGAPAAFKFFGKDIDRKRYTTVSEILNATLIHQSIT--------GLYETWI----DLSKL 
1367


S4
980
ELYRVIGVNNDLLNRIEVNMIDITYR-EYLENMNDKRPPRIIKTIASKT---QSIKKYSTDILGNLYEVKSKKHPQIIKK
1055





S1
1366
GGD
1368


S2
1370
GEE
1372


S3
1368
GED
1370


S4
1056
G--
1056






The alignment demonstrates that amino acid sequences and amino acid residues that are homologous to a reference Cas9 amino acid sequence or amino acid residue can be identified across Cas9 sequence variants, including, but not limited to Cas9 sequences from different species, by identifying the amino acid sequence or residue that aligns with the reference sequence or the reference residue using alignment programs and algorithms known in the art. This disclosure provides Cas9 variants in which one or more of the amino acid residues identified by an asterisk in SEQ ID NOs: 11-14 (e.g., S1, S2, S3, and S4, respectively) are mutated as described herein. The residues D10 and H840 in Cas9 of SEQ ID NO: 1 that correspond to the residues identified in SEQ ID NOs: 11-14 by an asterisk are referred to herein as “homologous” or “corresponding” residues. Such homologous residues can be identified by sequence alignment, e.g., as described above, and by identifying the sequence or residue that aligns with the reference sequence or residue. Similarly, mutations in Cas9 sequences that correspond to mutations identified in SEQ ID NO: 1 herein, e.g., mutations of residues 10, and 840 in SEQ ID NO: 1, are referred to herein as “homologous” or “corresponding” mutations. For example, the mutations corresponding to the D10A mutation in SEQ ID NO: 1 or S1 (SEQ ID NO: 11) for the four aligned sequences above are D11A for S2, D10A for S3, and D13A for S4; the corresponding mutations for H840A in SEQ ID NO: 1 or S1 (SEQ ID NO: 11) are H850A for S2, H842A for S3, and H560A for S4.


A total of 250 Cas9 sequences (SEQ ID NOs: 11-260) from different species are provided. Amino acid residues homologous to residues 10, and 840 of SEQ ID NO: 1 may be identified in the same manner as outlined above. All of these Cas9 sequences may be used in accordance with the present disclosure.















WP_010922251.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes] SEQ ID NO: 11


WP_039695303.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus gallolyticus] SEQ ID NO: 12


WP_045635197.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mitis] SEQ ID NO: 13


5AXW_A
Cas9, Chain A, Crystal Structure [Staphylococcus Aureus] SEQ ID NO: 14


WP_009880683.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes] SEQ ID NO: 15


WP_010922251.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes] SEQ ID NO: 16


WP_011054416.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes] SEQ ID NO: 17


WP_011284745.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes] SEQ ID NO: 18


WP_011285506.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes] SEQ ID NO: 19


WP_011527619.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes] SEQ ID NO: 20


WP_012560673.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes] SEQ ID NO: 21


WP_014407541.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes] SEQ ID NO: 22


WP_020905136.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes] SEQ ID NO: 23


WP_023080005.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes] SEQ ID NO: 24


WP_023610282.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes] SEQ ID NO: 25


WP_030125963.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes] SEQ ID NO: 26


WP_030126706.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes] SEQ ID NO: 27


WP_031488318.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes] SEQ ID NO: 28


WP_032460140.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes] SEQ ID NO: 29


WP_032461047.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes] SEQ ID NO: 30


WP_032462016.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes] SEQ ID NO: 31


WP_032462936.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes] SEQ ID NO: 32


WP_032464890.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes] SEQ ID NO: 33


WP_033888930.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes] SEQ ID NO: 34


WP_038431314.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes] SEQ ID NO: 35


WP_038432938.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes] SEQ ID NO: 36


WP_038434062.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes] SEQ ID NO: 37


BAQ51233.1
CRISPR-associated protein, Csn1 family [Streptococcus pyogenes] SEQ ID NO: 38


KGE60162.1
hypothetical protein MGAS2111_0903 [Streptococcus pyogenes MGAS2111] SEQ ID NO: 39


KGE60856.1
CRISPR-associated endonuclease protein [Streptococcus pyogenes SS1447] SEQ ID NO: 40


WP_002989955.1
MULTISPECIES: type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus] SEQ ID NO: 41


WP_003030002.1
MULTISPECIES: type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus] SEQ ID NO: 42


WP_003065552.1
MULTISPECIES: type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus] SEQ ID NO: 43


WP_001040076.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 44


WP_001040078.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 45


WP_001040080.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 46


WP_001040081.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 47


WP_001040083.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 48


WP_001040085.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 49


WP_001040087.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 50


WP_001040088.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 51


WP_001040089.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 52


WP_001040090.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 53


WP_001040091.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 54


WP_001040092.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 55


WP_001040094.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 56


WP_001040095.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 57


WP_001040096.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 58


WP_001040097.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 59


WP_001040098.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 60


WP_001040099.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 61


WP_001040100.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 62


WP_001040104.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 63


WP_001040105.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 64


WP_001040106.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 65


WP_001040107.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 66


WP_001040108.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 67


WP_001040109.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 68


WP_001040110.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 69


WP_015058523.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 70


WP_017643650.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 71


WP_017647151.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 72


WP_017648376.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 73


WP_017649527.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 74


WP_017771611.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 75


WP_017771984.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 76


CFQ25032.1
CRISPR-associated protein [Streptococcus agalactiae] SEQ ID NO: 77


CFV16040.1
CRISPR-associated protein [Streptococcus agalactiae] SEQ ID NO: 78


KLJ37842.1
CRISPR-associated protein Csn1 [Streptococcus agalactiae] SEQ ID NO: 79


KLJ72361.1
CRISPR-associated protein Csn1 [Streptococcus agalactiae] SEQ ID NO: 80


KLL20707.1
CRISPR-associated protein Csn1 [Streptococcus agalactiae] SEQ ID NO: 81


KLL42645.1
CRISPR-associated protein Csn1 [Streptococcus agalactiae] SEQ ID NO: 82


WP_047207273.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 83


WP_047209694.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 84


WP_050198062.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 85


WP_050201642.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 86


WP_050204027.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 87


WP_050881965.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 88


WP_050886065.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 89


AHN30376.1
CRISPR-associated protein Csn1 [Streptococcus agalactiae 138P] SEQ ID NO: 90


EAO78426.1
reticulocyte binding protein [Streptococcus agalactiae H36B] SEQ ID NO: 91


CCW42055.1
CRISPR-associated protein, SAG0894 family [Streptococcus agalactiae ILRI112] SEQ ID NO: 92


WP_003041502.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus anginosus] SEQ ID NO: 93


WP_037593752.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus anginosus] SEQ ID NO: 94


WP_049516684.1
CRISPR-associated protein Csn1 [Streptococcus anginosus] SEQ ID NO: 95


GAD46167.1
hypothetical protein ANG6_0662 [Streptococcus anginosus T5] SEQ ID NO: 96


WP_018363470.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus caballi] SEQ ID NO: 97


WP_003043819.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus canis] SEQ ID NO: 98


WP_006269658.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus constellatus] SEQ ID NO: 99


WP_048800889.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus constellatus] SEQ ID NO: 100


WP_012767106.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus dysgalactiae] SEQ ID NO: 101


WP_014612333.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus dysgalactiae] SEQ ID NO: 102


WP_015017095.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus dysgalactiae] SEQ ID NO: 103


WP_015057649.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus dysgalactiae] SEQ ID NO: 104


WP_048327215.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus dysgalactiae] SEQ ID NO: 105


WP_049519324.1
CRISPR-associated protein Csn1 [Streptococcus dysgalactiae] SEQ ID NO: 106


WP_012515931.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus equi] SEQ ID NO: 107


WP_021320964.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus equi] SEQ ID NO: 108


WP_037581760.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus equi] SEQ ID NO: 109


WP_004232481.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus equinus] SEQ ID NO: 110


WP_009854540.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus gallolyticus] SEQ ID NO: 111


WP_012962174.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus gallolyticus] SEQ ID NO: 112


WP_039695303.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus gallolyticus] SEQ ID NO: 113


WP_014334983.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus infantarius] SEQ ID NO: 114


WP_003099269.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus iniae] SEQ ID NO: 115


AHY15608.1
CRISPR-associated protein Csn1 [Streptococcus iniae] SEQ ID NO: 116


AHY17476.1
CRISPR-associated protein Csn1 [Streptococcus iniae] SEQ ID NO: 117


ESR09100.1
hypothetical protein IUSA1_08595 [Streptococcus iniae IUSA1] SEQ ID NO: 118


AGM98575.1
CRISPR-associated protein Cas9/Csn1, subtype II/NMEMI [Streptococcus iniae SF1] SEQ ID NO: 119


ALF27331.1
CRISPR-associated protein Csn1 [Streptococcus intermedius] SEQ ID NO: 120


WP_018372492.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus massiliensis] SEQ ID NO: 121


WP_045618028.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mitis] SEQ ID NO: 122


WP_045635197.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mitis] SEQ ID NO: 123


WP_002263549.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 124


WP_002263887.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 125


WP_002264920.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 126


WP_002269043.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 127


WP_002269448.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 128


WP_002271977.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 129


WP_002272766.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 130


WP_002273241.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 131


WP_002275430.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 132


WP_002276448.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 133


WP_002277050.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 134


WP_002277364.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 135


WP_002279025.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 136


WP_002279859.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 137


WP_002280230.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 138


WP_002281696.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 139


WP_002282247.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 140


WP_002282906.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 141


WP_002283846.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 142


WP_002287255.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 143


WP_002288990.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 144


WP_002289641.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 145


WP_002290427.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 146


WP_002295753.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 147


WP_002296423.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 148


WP_002304487.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 149


WP_002305844.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 150


WP_002307203.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 151


WP_002310390.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 152


WP_002352408.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 153


WP_012997688.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 154


WP_014677909.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 155


WP_019312892.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 156


WP_019313659.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 157


WP_019314093.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 158


WP_019315370.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 159


WP_019803776.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 160


WP_019805234.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 161


WP_024783594.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 162


WP_024784288.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 163


WP_024784666.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 164


WP_024784894.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 165


WP_024786433.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 166


WP_049473442.1
CRISPR-associated protein Csn1 [Streptococcus mutans] SEQ ID NO: 167


WP_049474547.1
CRISPR-associated protein Csn1 [Streptococcus mutans] SEQ ID NO: 168


EMC03581.1
hypothetical protein SMU69_09359 [Streptococcus mutans NLML4] SEQ ID NO: 169


WP_000428612.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus oralis] SEQ ID NO: 170


WP_000428613.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus oralis] SEQ ID NO: 171


WP_049523028.1
CRISPR-associated protein Csn1 [Streptococcus parasanguinis] SEQ ID NO: 172


WP_003107102.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus parauberis] SEQ ID NO: 173


WP_054279288.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus phocae] SEQ ID NO: 174


WP_049531101.1
CRISPR-associated protein Csn1 [Streptococcus pseudopneumoniae] SEQ ID NO: 175


WP_049538452.1
CRISPR-associated protein Csn1 [Streptococcus pseudopneumoniae] SEQ ID NO: 176


WP_049549711.1
CRISPR-associated protein Csn1 [Streptococcus pseudopneumoniae] SEQ ID NO: 177


WP_007896501.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pseudoporcinus] SEQ ID NO: 178


EFR44625.1
CRISPR-associated protein, Csn1 family [Streptococcus pseudoporcinus SPIN 20026] SEQ ID NO: 179


WP_002897477.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus sanguinis] SEQ ID NO: 180


WP_002906454.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus sanguinis] SEQ ID NO: 181


WP_009729476.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus sp. F0441] SEQ ID NO: 182


CQR24647.1
CRISPR-associated protein [Streptococcus sp. FF10] SEQ ID NO: 183


WP_000066813.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus sp. M334] SEQ ID NO: 184


WP_009754323.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus sp. taxon 056] SEQ ID NO: 185


WP_044674937.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus suis] SEQ ID NO: 186


WP_044676715.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus suis] SEQ ID NO: 187


WP_044680361.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus suis] SEQ ID NO: 188


WP_044681799.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus suis] SEQ ID NO: 189


WP_049533112.1
CRISPR-associated protein Csn1 [Streptococcus suis] SEQ ID NO: 190


WP_029090905.1
type II CRISPR RNA-guided endonuclease Cas9 [Brochothrix thermosphacta] SEQ ID NO: 191


WP_006506696.1
type II CRISPR RNA-guided endonuclease Cas9 [Catenibacterium mitsuokai] SEQ ID NO: 192


AIT42264.1
Cas9hc:NLS:HA [Cloning vector pYB196] SEQ ID NO: 193


WP_034440723.1
type II CRISPR endonuclease Cas9 [Clostridiales bacterium S5-A11] SEQ ID NO: 194


AKQ21048.1
Cas9 [CRISPR-mediated gene targeting vector p(bhsp68-Cas9)] SEQ ID NO: 195


WP_004636532.1
type II CRISPR RNA-guided endonuclease Cas9 [Dolosigranulum pigrum] SEQ ID NO: 196


WP_002364836.1
MULTISPECIES: type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus] SEQ ID NO: 197


WP_016631044.1
MULTISPECIES: type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus] SEQ ID NO: 198


EMS75795.1
hypothetical protein H318_06676 [Enterococcus durans IPLA 655] SEQ ID NO: 199


WP_002373311.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus faecalis] SEQ ID NO: 200


WP_002378009.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus faecalis] SEQ ID NO: 201


WP_002407324.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus faecalis] SEQ ID NO: 202


WP_002413717.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus faecalis] SEQ ID NO: 203


WP_010775580.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus faecalis] SEQ ID NO: 204


WP_010818269.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus faecalis] SEQ ID NO: 205


WP_010824395.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus faecalis] SEQ ID NO: 206


WP_016622645.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus faecalis] SEQ ID NO: 207


WP_033624816.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus faecalis] SEQ ID NO: 208


WP_033625576.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus faecalis] SEQ ID NO: 209


WP_033789179.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus faecalis] SEQ ID NO: 210


WP_002310644.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus faecium] SEQ ID NO: 211


WP_002312694.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus faecium] SEQ ID NO: 212


WP_002314015.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus faecium] SEQ ID NO: 213


WP_002320716.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus faecium] SEQ ID NO: 214


WP_002330729.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus faecium] SEQ ID NO: 215


WP_002335161.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus faecium] SEQ ID NO: 216


WP_002345439.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus faecium] SEQ ID NO: 217


WP_034867970.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus faecium] SEQ ID NO: 218


WP_047937432.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus faecium] SEQ ID NO: 219


WP_010720994.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus hirae] SEQ ID NO: 220


WP_010737004.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus hirae] SEQ ID NO: 221


WP_034700478.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus hirae] SEQ ID NO: 222


WP_007209003.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus italicus] SEQ ID NO: 223


WP_023519017.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus mundtii] SEQ ID NO: 224


WP_010770040.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus phoeniculicola] SEQ ID NO: 225


WP_048604708.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus sp. AM1] SEQ ID NO: 226


WP_010750235.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus villorum] SEQ ID NO: 227


AII16583.1
Cas9 endonuclease [Expression vector pCas9] SEQ ID NO: 228


WP_029073316.1
type II CRISPR RNA-guided endonuclease Cas9 [Kandleria vitulina] SEQ ID NO: 229


WP_031589969.1
type II CRISPR RNA-guided endonuclease Cas9 [Kandleria vitulina] SEQ ID NO: 230


KDA45870.1
CRISPR-associated protein Cas9/Csn1, subtype II/NMEMI [Lactobacillus animalis] SEQ ID NO: 231


WP_039099354.1
type II CRISPR RNA-guided endonuclease Cas9 [Lactobacillus curvatus] SEQ ID NO: 232


AKP02966.1
hypothetical protein ABB45_04605 [Lactobacillus farciminis] SEQ ID NO: 233


WP_010991369.1
type II CRISPR RNA-guided endonuclease Cas9 [Listeria innocua] SEQ ID NO: 234


WP_033838504.1
type II CRISPR RNA-guided endonuclease Cas9 [Listeria innocua] SEQ ID NO: 235


EHN60060.1
CRISPR-associated protein, Csn1 family [Listeria innocua ATCC 33091] SEQ ID NO: 236


EFR89594.1
crispr-associated protein, Csn1 family [Listeria innocua FSL S4-378] SEQ ID NO: 237


WP_038409211.1
type II CRISPR RNA-guided endonuclease Cas9 [Listeria ivanovii] SEQ ID NO: 238


EFR95520.1
crispr-associated protein Csn1 [Listeria ivanovii FSL F6-596] SEQ ID NO: 239


WP_003723650.1
type II CRISPR RNA-guided endonuclease Cas9 [Listeria monocytogenes] SEQ ID NO: 240


WP_003727705.1
type II CRISPR RNA-guided endonuclease Cas9 [Listeria monocytogenes] SEQ ID NO: 241


WP_003730785.1
type II CRISPR RNA-guided endonuclease Cas9 [Listeria monocytogenes] SEQ ID NO: 242


WP_003733029.1
type II CRISPR RNA-guided endonuclease Cas9 [Listeria monocytogenes] SEQ ID NO: 243


WP_003739838.1
type II CRISPR RNA-guided endonuclease Cas9 [Listeria monocytogenes] SEQ ID NO: 244


WP_014601172.1
type II CRISPR RNA-guided endonuclease Cas9 [Listeria monocytogenes] SEQ ID NO: 245


WP_023548323.1
type II CRISPR RNA-guided endonuclease Cas9 [Listeria monocytogenes] SEQ ID NO: 246


WP_031665337.1
type II CRISPR RNA-guided endonuclease Cas9 [Listeria monocytogenes] SEQ ID NO: 247


WP_031669209.1
type II CRISPR RNA-guided endonuclease Cas9 [Listeria monocytogenes] SEQ ID NO: 248


WP_033920898.1
type II CRISPR RNA-guided endonuclease Cas9 [Listeria monocytogenes] SEQ ID NO: 249


AKI42028.1
CRISPR-associated protein [Listeria monocytogenes] SEQ ID NO: 250


AKI50529.1
CRISPR-associated protein [Listeria monocytogenes] SEQ ID NO: 251


EFR83390.1
crispr-associated protein Csn1 [Listeria monocytogenes FSL F2-208] SEQ ID NO: 252


WP_046323366.1
type II CRISPR RNA-guided endonuclease Cas9 [Listeria seeligeri] SEQ ID NO: 253


AKE81011.1
Cas9 [Plant multiplex genome editing vector pYLCRISPR/Cas9Pubi-H] SEQ ID NO: 254


CUO82355.1
Uncharacterized protein conserved in bacteria [Roseburia hominis] SEQ ID NO: 255


WP_033162887.1
type II CRISPR RNA-guided endonuclease Cas9 [Sharpea azabuensis] SEQ ID NO: 256


AGZ01981.1
Cas9 endonuclease [synthetic construct] SEQ ID NO: 257


AKA60242.1
nuclease deficient Cas9 [synthetic construct] SEQ ID NO: 258


AKS40380.1
Cas9 [Synthetic plasmid pFC330] SEQ ID NO: 259


4UN5_B
Cas9, Chain B, Crystal Structure SEQ ID NO: 260









Non-limiting examples of suitable deaminase domains are provided.










Human AID



(SEQ ID NO: 303)




MDSLLMNRRKFLYQFKNVRWAKGRRETYLCYVVKRRDSATSFSLDFGYLRNKNGCHVELLFLRYISD







WDLDPGRCYRVTWFTSWSPCYDCARHVADFLRGNPNLSLRIFTARLYFCEDRKAEPEGLRRLHRAGV





QIAIMTFKDYFYCWNTFVENHERTFKAWEGLHENSVRLSRQLRRILLPLYEVDDLRDAFRTLGL





(underline: nuclear localization signal; double underline: nuclear export





signal)





Mouse AID


(SEQ ID NO: 271)




MDSLLMKQKKFLYHFKNVRWAKGRHETYLCYVVKRRDSATSCSLDFGHLRNKSGCHVELLFLRYISD







WDLDPGRCYRVTWFTSWSPCYDCARHVAEFLRWNPNLSLRIFTARLYFCEDRKAEPEGLRRLHRAGV





QIGIMTFKDYFYCWNTFVENRERTFKAWEGLHENSVRLTRQLRRILLPLYEVDDLRDAFRMLGF





(underline: nuclear localization signal; double underline: nuclear export





signal)





Dog AID


(SEQ ID NO: 272)




MDSLLMKQRKFLYHFKNVRWAKGRHETYLCYVVKRRDSATSFSLDFGHLRNKSGCHVELLFLRYISD







WDLDPGRCYRVTWFTSWSPCYDCARHVADFLRGYPNLSLRIFAARLYFCEDRKAEPEGLRRLHRAGV





QIAIMTFKDYFYCWNTFVENREKTFKAWEGLHENSVRLSRQLRRILLPLYEVDDLRDAFRTLGL





(underline: nuclear localization signal; double underline: nuclear export





signal)





Bovine AID


(SEQ ID NO: 273)




MDSLLKKQRQFLYQFKNVRWAKGRHETYLCYVVKRRDSPTSFSLDFGHLRNKAGCHVELLFLRYISD







WDLDPGRCYRVTWFTSWSPCYDCARHVADFLRGYPNLSLRIFTARLYFCDKERKAEPEGLRRLHRAG





VQIAIMTFKDYFYCWNTFVENHERTFKAWEGLHENSVRLSRQLRRILLPLYEVDDLRDAFRTLGL





(underline: nuclear localization signal; double underline: nuclear export





signal)





Rat AID


(SEQ ID NO: 2483)



MAVGSKPKAALVGPHWERERIWCFLCSTGLGTQQTGQTSRWLRPAATQDPVSPPRSLLMKQRKFLYH






FKNVRWAKGRHETYLCYVVKRRDSATSFSLDFGYLRNKSGCHVELLFLRYISDWDLDPGRCYRVTWF





TSWSPCYDCARHVADFLRGNPNLSLRIFTARLTGWGALPAGLMSPARPSDYFYCWNTFVENHERTFKA





WEGLHENSVRLSRRLRRILLPLYEVDDLRDAFRTLGL





Mouse APOBEC-3


(SEQ ID NO: 274)



MGPFCLGCSHRKCYSPIRNLISQETFKFHFKNLGYAKGRKDTFLCYEVTRKDCDSPVSLHHGVFKNKD






NIHAEICFLYWFHDKVLKVLSPREEFKITWYMSWSPCFECAEQIVRFLATHHNLSLDIFSSRLYNVQDPETQ





QNLCRLVQEGAQVAAMDLYEFKKCWKKFVDNGGRRFRPWKRLLTNFRYQDSKLQEILRPCYIPVPSS





SSSTLSNICLTKGLPETRFCVEGRRMDPLSEEEFYSQFYNQRVKHLCYYHRMKPYLCYQLEQFNGQAPL





KGCLLSEKGKQHAEILFLDKIRSMELSQVTITCYLTWSPCPNCAWQLAAFKRDRPDLILHIYTSRLYFHWK





RPFQKGLCSLWQSGILVDVMDLPQFTDCWTNFVNPKRPFWPWKGLEIISRRTQRRLRRIKESWGLQDL





VNDFGNLQLGPPMS (italic: nucleic acid editing domain)





Rat APOBEC-3


(SEQ ID NO: 275)



MGPFCLGCSHRKCYSPIRNLISQETFKFHFKNLRYAIDRKDTFLCYEVTRKDCDSPVSLHHGVFKNKDN






IHAEICFLYWFHDKVLKVLSPREEFKITWYMSWSPCFECAEQVLRFLATHHNLSLDIFSSRLYNIRDPENQQ





NLCRLVQEGAQVAAMDLYEFKKCWKKFVDNGGRRFRPWKKLLTNFRYQDSKLQEILRPCYIPVPSSSS





STLSNICLTKGLPETRFCVERRRVHLLSEEEFYSQFYNQRVKHLCYYHGVKPYLCYQLEQFNGQAPLKG





CLLSEKGKQHAEILFLDKIRSMELSQVIITCYLTWSPCPNCAWQLAAFKRDRPDLILHIYTSRLYFHWKRPF





QKGLCSLWQSGILVDVMDLPQFTDCWTNFVNPKRPFWPWKGLEIISRRTQRRLHRIKESWGLQDLVND





FGNLQLGPPMS (italic: nucleic acid editing domain)





Rhesus macaque APOBEC-3G


(SEQ ID NO: 276)




MVEPMDPRTFVSNFNNRPILSGLNTVWLCCEVKTKDPSGPPLDAKIFQGKVYSKAKYHPEM
RFLRWFH








KWRQLHHDQEYKVTWYVSWSPCTRCANSVATFLAKDPKVTLTIFVARLYYFWKPDYQQALRILCQKRG






GPHATMKIMNYNEFQDCWNKFVDGRGKPFKPRNNLPKHYTLLQATLGELLRHLMDPGTFTSNFNNKP





WVSGQHETYLCYKVERLHNDTWVPLNQHRGFLRNQAPNIHGFPKGRHAELCFLDLIPFWKLDGQQYRV






TCFTSWSPCFSCAQEMAKFISNNEHVSLCIFAARIYDDQGRYQEGLRALHRDGAKIAMMNYSEFEYCW






DTFVDRQGRPFQPWDGLDEHSQALSGRLRAI (italic: nucleic acid editing domain;





underline: cytoplasmic localization signal)





Chimpanzee APOBEC-3G


(SEQ ID NO: 277)




MKPHFRNPVERMYQDTFSDNFYNRPILSHRNTVWLCYEVKTKGPSRPPLDAKIFRGQVYSKLKYHPEM








RFFHWFSKWRKLHRDQEYEVTWYISWSPCTKCTRDVATFLAEDPKVTLTIFVARLYYFWDPDYQEALRS






LCQKRDGPRATMKIMNYDEFQHCWSKFVYSQRELFEPWNNLPKYYILLHIMLGEILRHSMDPPTFTSN





FNNELWVRGRHETYLCYEVERLHNDTWVLLNQRRGFLCNQAPHKHGFLEGRHAELCFLDVIPFWKLD






LHQDYRVTCFTSWSPCFSCAQEMAKFISNNKHVSLCIFAARIYDDQGRCQEGLRTLAKAGAKISIMTYSE






FKHCWDTFVDHQGCPFQPWDGLEEHSQALSGRLRAILQNQGN (italic: nucleic acid





editing domain; underline: cytoplasmic localization signal)





Green monkey APOBEC-3G


(SEQ ID NO: 278)




MNPQIRNMVEQMEPDIFVYYFNNRPILSGRNTVWLCYEVKTKDPSGPPLDANIFQGKLYPEAKDHPEM








KFLHWFRKWRQLHRDQEYEVTWYVSWSPCTRCANSVATFLAEDPKVTLTIFVARLYYFWKPDYQQALRI






LCQERGGPHATMKIMNYNEFQHCWNEFVDGQGKPFKPRKNLPKHYTLLHATLGELLRHVMDPGTFTS





NFNNKPWVSGQRETYLCYKVERSHNDTWVLLNQHRGFLRNQAPDRHGFPKGRHAELCFLDLIPFWKL






DDQQYRVTCFTSWSPCFSCAQKMAKFISNNKHVSLCIFAARIYDDQGRCQEGLRTLHRDGAKIAVMNYS






EFEYCWDTFVDRQGRPFQPWDGLDEHSQALSGRLRAI (italic: nucleic acid editing





domain; underline: cytoplasmic localization signal)





Human APOBEC-3G


(SEQ ID NO: 279)




MKPHFRNTVERMYRDTFSYNFYNRPILSRRNTVWLCYEVKTKGPSRPPLDAKIFRGQVYSELKYHPEM








RFFHWFSKWRKLHRDQEYEVTWYISWSPCTKCTRDMATFLAEDPKVTLTIFVARLYYFWDPDYQEALRS






LCQKRDGPRATMKIMNYDEFQHCWSKFVYSQRELFEPWNNLPKYYILLHIMLGEILRHSMDPPTFTFN





FNNEPWVRGRHETYLCYEVERMHNDTWVLLNQRRGFLCNQAPHKHGFLEGRHAELCFLDVIPFWKLD






LDQDYRVTCFTSWSPCFSCAQEMAKFISKNKHVSLCIFTARIYDDQGRCQEGLRTLAEAGAKISIMTYSE






FKHCWDTFVDHQGCPFQPWDGLDEHSQDLSGRLRAILQNQEN (italic: nucleic acid





editing domain; underline: cytoplasmic localization signal)





Human APOBEC-3F


(SEQ ID NO: 280)



MKPHFRNTVERMYRDTFSYNFYNRPILSRRNTVWLCYEVKTKGPSRPRLDAKIFRGQVYSQPEHHAEM







CFLSWFCGNQLPAYKCFQITWFVSWTPCPDCVAKLAEFLAEHPNVTLTISAARLYYYWERDYRRALCRL






SQAGARVKIMDDEEFAYCWENFVYSEGQPFMPWYKFDDNYAFLHRTLKEILRNPMEAMYPHIFYFHF





KNLRKAYGRNESWLCFTMEVVKHHSPVSWKRGVFRNQVDPETHCHAERCFLSWFCDDILSPNTNYEVT






WYTSWSPCPECAGEVAEFLARHSNVNLTIFTARLYYFWDTDYQEGLRSLSQEGASVEIMGYKDFKYCW






ENFVYNDDEPFKPWKGLKYNFLFLDSKLQEILE (italic: nucleic acid editing domain)





Human APOBEC-3B


(SEQ ID NO: 281)



MNPQIRNPMERMYRDTFYDNFENEPILYGRSYTWLCYEVKIKRGRSNLLWDTGVFRGQVYFKPQYHA







EMCFLSWFCGNQLPAYKCFQITWFVSWTPCPDCVAKLAEFLSEHPNVTLTISAARLYYYWERDYRRALC






RLSQAGARVTIMDYEEFAYCWENFVYNEGQQFMPWYKFDENYAFLHRTLKEILRYLMDPDTFTFNFN





NDPLVLRRRQTYLCYEVERLDNGTWVLMDQHMGFLCNEAKNLLCGFYGRHAELRFLDLVPSLQLDPA





QIYRVTWFISWSPCFSWGCAGEVRAFLQENTHVRLRIFAARIYDYDPLYKEALQMLRDAGAQVSIMTYD





EFEYCWDTFVYRQGCPFQPWDGLEEHSQALSGRLRAILQNQGN (italic: nucleic acid





editing domain)





Rat APOBEC-3B:


(SEQ ID NO: 2484)



MQPQGLGPNAGMGPVCLGCSHRRPYSPIRNPLKKLYQQTFYFHFKNVRYAWGRKNNFLCYEVNGMD






CALPVPLRQGVFRKQGHIHAELCFIYWFHDKVLRVLSPMEEFKVTWYMSWSPCSKCAEQVARFLAAH





RNLSLAIFSSRLYYYLRNPNYQQKLCRLIQEGVHVAAMDLPEFKKCWNKFVDNDGQPFRPWMRLRINF





SFYDCKLQEIFSRMNLLREDVFYLQFNNSHRVKPVQNRYYRRKSYLCYQLERANGQEPLKGYLLYKK





GEQHVEILFLEKMRSMELSQVRITCYLTWSPCPNCARQLAAFKKDHPDLILRIYTSRLYFYWRKKFQKG





LCTLWRSGIHVDVMDLPQFADCWTNFVNPQRPFRPWNELEKNSWRIQRRLRRIKESWGL





Bovine APOBEC-3B:


(SEQ ID NO: 2485)



DGWEVAFRSGTVLKAGVLGVSMTEGWAGSGHPGQGACVWTPGTRNTMNLLREVLFKQQFGNQPRV






PAPYYRRKTYLCYQLKQRNDLTLDRGCFRNKKQRHAEIRFIDKINSLDLNPSQSYKIICYITWSPCPNCA





NELVNFITRNNHLKLEIFASRLYFHWIKSFKMGLQDLQNAGISVAVMTHTEFEDCWEQFVDNQSRPFQP





WDKLEQYSASIRRRLQRILTAPI





Chimpanzee APOBEC-3B:


(SEQ ID NO: 2486)



MNPQIRNPMEWMYQRTFYYNFENEPILYGRSYTWLCYEVKIRRGHSNLLWDTGVFRGQMYSQPEHH






AEMCFLSWFCGNQLSAYKCFQITWFVSWTPCPDCVAKLAKFLAEHPNVTLTISAARLYYYWERDYRR





ALCRLSQAGARVKIMDDEEFAYCWENFVYNEGQPFMPWYKFDDNYAFLHRTLKEIIRHLMDPDTFTF





NFNNDPLVLRRHQTYLCYEVERLDNGTWVLMDQHMGFLCNEAKNLLCGFYGRHAELRFLDLVPSLQ





LDPAQIYRVTWFISWSPCFSWGCAGQVRAFLQENTHVRLRIFAARIYDYDPLYKEALQMLRDAGAQVS





IMTYDEFEYCWDTFVYRQGCPFQPWDGLEEHSQALSGRLRAILQVRASSLCMVPHRPPPPPQSPGPCLP





LCSEPPLGSLLPTGRPAPSLPFLLTASFSFPPPASLPPLPSLSLSPGHLPVPSFHSLTSCSIQPPCSSRIRETEG





WASVSKEGRDLG





Human APOBEC-3C:


(SEQ ID NO: 282)



MNPQIRNPMKAMYPGTFYFQFKNLWEANDRNETWLCFTVEGIKRRSVVSWKTGVFRNQVDSETHCH







AERCFLSWFCDDILSPNTKYQWWYTSWSPCPDCAGEVAEFLARHSNVNLTIFTARLYYFQYPCYQEGLR






SLSQEGVAVEIMDYEDFKYCWENFVYNDNEPFKPWKGLKTNFRLLKRRLRESLQ





(italic: nucleic acid editing domain)





Gorilla APOBEC3C:


(SEQ ID NO: 2487)



MNPQIRNPMKAMYPGTFYFQFKNLWEANDRNETWLCFTVEGIKRRSVVSWKTGVFRNQVDSETHCH






AERCFLSWFCDDILSPNTNYQVTWYTSWSPCPECAGEVAEFLARHSNVNLTIFTARLYYFQDTDYQEG





LRSLSQEGVAVKIMDYKDFKYCWENFVYNDDEPFKPWKGLKYNFRFLKRRLQEILE





Human APOBEC-3A:


(SEQ ID NO: 283)



MEASPASGPRHLMDPHIFTSNFNNGIGRHKTYLCYEVERLDNGTSVKMDQHRGFLHNQAKNLLCGFY






GRHAELRFLDLVPSLQLDPAQIYRWWFISWSPCFSWGCAGEVRAFLQENTHVRLRIFAARIYDYDPLYKE





ALQMLRDAGAQVSIMTYDEFKHCWDTFVDHQGCPFQPWDGLDEHSQALSGRLRAILQNQGN





(italic: nucleic acid editing domain)





Rhesus macaque APOBEC-3A:


(SEQ ID NO: 2488)



MDGSPASRPRHLMDPNTFTFNFNNDLSVRGRHQTYLCYEVERLDNGTWVPMDERRGFLCNKAKNVP






CGDYGCHVELRFLCEVPSWQLDPAQTYRVTWFISWSPCFRRGCAGQVRVFLQENKHVRLRIFAARIYD





YDPLYQEALRTLRDAGAQVSIMTYEEFKHCWDTFVDRQGRPFQPWDGLDEHSQALSGRLRAILQNQG





N





Bovine APOBEC-3A:


(SEQ ID NO: 2489)



MDEYTFTENFNNQGWPSKTYLCYEMERLDGDATIPLDEYKGFVRNKGLDQPEKPCHAELYFLGKIHS






WNLDRNQHYRLTCFISWSPCYDCAQKLTTFLKENHHISLHILASRIYTHNRFGCHQSGLCELQAAGARI





TIMTFEDFKHCWETFVDHKGKPFQPWEGLNVKSQALCTELQAILKTQQN





Human APOBEC-3H:


(SEQ ID NO: 284)



MALLTAETFRLQFNNKRRLRRPYYPRKALLCYQLTPQNGSTPTRGYFENKKKCHAEICHNEIKSMGLD






ETQCYQVTCYLTWSPCSSCAWELVDFIKAHDHLNLGIFASRLYYHWCKPQQKGLRLLCGSQVPVEVMG





FPKFADCWENFVDHEKPLSFNPYKMLEELDKNSRAIKRRLERIKIPGVRAQGRYMDILCDAEV





(italic: nucleic acid editing domain)





Rhesus macaque APOBEC-3H:


(SEQ ID NO: 2490)



MALLTAKTFSLQFNNKRRVNKPYYPRKALLCYQLTPQNGSTPTRGHLKNKKKDHAEIRFINKIKSMGL






DETQCYQVTCYLTWSPCPSCAGELVDFIKAHRHLNLRIFASRLYYHWRPNYQEGLLLLCGSQVPVEVM





GLPEFTDCWENFVDHKEPPSFNPSEKLEELDKNSQAIKRRLERIKSRS VDVLENGLRS LQLGPVTPS S SIR





NSR





Human APOBEC-3D


(SEQ ID NO: 285)



MNPQIRNPMERMYRDTFYDNFENEPILYGRSYTWLCYEVKIKRGRSNLLWDTGVFRGPVLPKRQSNH






RQEVYFRFENHAEMCFLSWFCGNRLPANRRFQITWFVSWNPCLPCVVKVTKFLAEHPNVTLTISAARLY





YYRDRDWRWVLLRLHKAGARVKIMDYEDFAYCWENFVCNEGQPFMPWYKFDDNYASLHRTLKEIL





RNPMEAMYPHIFYFHFKNLLKACGRNESWLCFTMEVTKHHSAVFRKRGVFRNQVDPETHCHAERCFL






SWFCDDILSPNTNYEVTWYTSWSPCPECAGEVAEFLARHSNVNLTIFTARLCYFWDTDYQEGLCSLSQEG






ASVKIMGYKDFVSCWKNFVYSDDEPFKPWKGLQTNFRLLKRRLREILQ (italic:





nucleic acid editing domain)





Human APOBEC-1


(SEQ ID NO: 286)



MTSEKGPSTGDPTLRRRIEPWEFDVFYDPRELRKEACLLYEIKWGMSRKIWRSSGKNTTNHVEVNFIKK






FTSERDFHPSMSCSITWFLSWSPCWECSQAIREFLSRHPGVTLVIYVARLFWHMDQQNRQGLRDLVNS





GVTIQIMRASEYYHCWRNFVNYPPGDEAHWPQYPPLWMMLYALELHCIILSLPPCLKISRRWQNHLTF





FRLHLQNCHYQTIPPHILLATGLIHPSVAWR





Mouse APOBEC-1


(SEQ ID NO: 287)



mSSETGPVAVDPTLRRRIEPHEFEVFFDPRELRKETCLLYEINWGGRHSVWRHTSQNTSNHVEVNFLEK






FTTERYFRPNTRCSITWFLSWSPCGECSRAITEFLSRHPYVTLFIYIARLYHHTDQRNRQGLRDLISSGVTI





QIMTEQEYCYCWRNFVNYPPSNEAYWPRYPHLWVKLYVLELYCIILGLPPCLKILRRKQPQLTFFTITL





QTCHYQRIPPHLLWATGLK





Rat APOBEC-1


(SEQ ID NO: 288)



MSSETGPVAVDPTLRRRIEPHEFEVFFDPRELRKETCLLYEINWGGRHSIWRHTSQNTNKHVEVNFIEKF






TTERYFCPNTRCSITWFLSWSPCGECSRAITEFLSRYPHVTLFIYIARLYHHADPRNRQGLRDLISSGVTI





QIMTEQESGYCWRNFVNYSPSNEAHWPRYPHLWVRLYVLELYCIILGLPPCLNILRRKQPQLTFFTIALQ





SCHYQRLPPHILWATGLK





Human APOBEC-2:


(SEQ ID NO: 2491)



MAQKEEAAVATEAASQNGEDLENLDDPEKLKELIELPPFEIVTGERLPANFFKFQFRNVEYSSGRNKTF






LCYVVEAQGKGGQVQASRGYLEDEHAAAHAEEAFFNTILPAFDPALRYNVTWYVSSSPCAACADRIIK





TLSKTKNLRLLILVGRLFMWEEPEIQAALKKLKEAGCKLRIMKPQDFEYVWQNFVEQEEGESKAFQPW





EDIQENFLYYEEKLADILK





Mouse APOBEC-2:


(SEQ ID NO: 2492)



MAQKEEAAEAAAPASQNGDDLENLEDPEKLKELIDLPPFEIVTGVRLPVNFFKFQFRNVEYSSGRNKTF






LCYVVEVQSKGGQAQATQGYLEDEHAGAHAEEAFFNTILPAFDPALKYNVTWYVSSSPCAACADRIL





KTLSKTKNLRLLILVSRLFMWEEPEVQAALKKLKEAGCKLRIMKPQDFEYIWQNFVEQEEGESKAFEP





WEDIQENFLYYEEKLADILK





Rat APOBEC-2:


(SEQ ID NO: 2493)



MAQKEEAAEAAAPASQNGDDLENLEDPEKLKELIDLPPFEIVTGVRLPVNFFKFQFRNVEYSSGRNKTF






LCYVVEAQSKGGQVQATQGYLEDEHAGAHAEEAFFNTILPAFDPALKYNVTWYVSSSPCAACADRIL





KTLSKTKNLRLLILVSRLFMWEEPEVQAALKKLKEAGCKLRIMKPQDFEYLWQNFVEQEEGESKAFEP





WEDIQENFLYYEEKLADILK





Bovine APOBEC-2:


(SEQ ID NO: 2494)



MAQKEEAAAAAEPASQNGEEVENLEDPEKLKELIELPPFEIVTGERLPAHYFKFQFRNVEYSSGRNKTF






LCYVVEAQSKGGQVQASRGYLEDEHATNHAEEAFFNSIMPTFDPALRYMVTWYVSSSPCAACADRIV





KTLNKTKNLRLLILVGRLFMWEEPEIQAALRKLKEAGCRLRIMKPQDFEYIWQNFVEQEEGESKAFEP





WEDIQENFLYYEEKLADILK






Petromyzon marinus CDA1 (pmCDA1)



(SEQ ID NO: 289)



MTDAEYVRIHEKLDIYTFKKQFFNNKKSVSHRCYVLFELKRRGERRACFWGYAVNKPQSGTERGIHAE






IFSIRKVEEYLRDNPGQFTINWYSSWSPCADCAEKILEWYNQELRGNGHTLKIWACKLYYEKNARNQI





GLWNLRDNGVGLNVMVSEHYQCCRKIFIQSSHNQLNENRWLEKTLKRAEKRRSELSIMIQVKILHTTK





SPAV





Human APOBEC3G D316R_D317R


(SEQ ID NO: 290)



MKPHFRNTVERMYRDTFSYNFYNRPILSRRNTVWLCYEVKTKGPSRPPLDAKIFRGQVYSELKYHPEM






RFFHWFSKWRKLHRDQEYEVTWYISWSPCTKCTRDMATFLAEDPKVTLTIFVARLYYFWDPDYQEAL





RSLCQKRDGPRATMKIMNYDEFQHCWSKFVYSQRELFEPWNNLPKYYILLHIMLGEILRHSMDPPTFTF





NFNNEPWVRGRHETYLCYEVERMHNDTWVLLNQRRGFLCNQAPHKHGFLEGRHAELCFLDVIPFWK





LDLDQDYRVTCFTSWSPCFSCAQEMAKFISKNKHVSLCIFTARIYRRQGRCQEGLRTLAEAGAKISIMT





YSEFKHCWDTFVDHQGCPFQPWDGLDEHSQDLSGRLRAILQNQEN





Human APOBEC3G chain A


(SEQ ID NO: 291)



MDPPTFTFNFNNEPWVRGRHETYLCYEVERMHNDTWVLLNQRRGFLCNQAPHKHGFLEGRHAELCFL






DVIPFWKLDLDQDYRVTCFTSWSPCFSCAQEMAKFISKNKHVSLCIFTARIYDDQGRCQEGLRTLAEAG





AKISIMTYSEFKHCWDTFVDHQGCPFQPWDGLDEHSQDLSGRLRAILQ





Human APOBEC3G chain A D120R_D121R


(SEQ ID NO: 292)



MDPPTFTFNFNNEPWVRGRHETYLCYEVERMHNDTWVLLNQRRGFLCNQAPHKHGFLEGRHAELCFL






DVIPFWKLDLDQDYRVTCFTSWSPCFSCAQEMAKFISKNKHVSLCIFTARIYRRQGRCQEGLRTLAEAG





AKISIMTYSEFKHCWDTFVDHQGCPFQPWDGLDEHSQDLSGRLRAILQ





Non-limiting examples of fusion proteins/nucleobase editors are provided.


His6-rAPOBEC1-XTEN-dCas9 for Escherichia coli expression


(SEQ ID NO: 293)



MGSSHHHHHHMSSETGPVAVDPTLRRRIEPHEFEVFFDPRELRKETCLLYEINWGGRHSIWRHTSQNTN






KHVEVNFIEKFTTERYFCPNTRCSITWFLSWSPCGECSRAITEFLSRYPHVTLFIYIARLYHHADPRNRQG





LRDLISSGVTIQIMTEQESGYCWRNFVNYSPSNEAHWPRYPHLWVRLYVLELYCIILGLPPCLNILRRKQ





PQLTFFTIALQSCHYQRLPPHILWATGLKSGSETPGTSESATPESDKKYSIGLAIGTNSVGWAVITDEYK





VPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDD





SFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFR





GHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKN





GLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSD





ILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFY





KFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKIL





TFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSL





LYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEIS





GVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQ





LKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDS





LHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGI





KELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDAIVPQSFLKDDSIDNKV





LTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVE





TRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNA





VVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKR





PLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPK





KYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLP





KYSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYL





DEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYT





STKEVLDATLIHQSITGLYETRIDLSQLGGDSGGSPKKKRKV





rAPOBEC1-XTEN-dCas9-NLS for mammalian expression


(SEQ ID NO: 294)



MSSETGPVAVDPTLRRRIEPHEFEVFFDPRELRKETCLLYEINWGGRHSIWRHTSQNTNKHVEVNFIEKF






TTERYFCPNTRCSITWFLSWSPCGECSRAITEFLSRYPHVTLFIYIARLYHHADPRNRQGLRDLISSGVTI





QIMTEQESGYCWRNFVNYSPSNEAHWPRYPHLWVRLYVLELYCIILGLPPCLNILRRKQPQLTFFTIALQ





SCHYQRLPPHILWATGLKSGSETPGTSESATPESDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLG





NTDRHSIKKNLIGALLFDSGETALATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFL





VEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLN





PDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALS





LGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITK





APLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQLEFYKFIKPILEKM





DGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGP





LARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYN





ELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASL





GTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWG





RLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGS





PAIKKGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEH





PVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDAIVPQSFLKDDSIDNKVLTRSDKNRGKS





DNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQIL





DSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPK





LESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIV





WDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVA





YSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGR





KRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKR





VILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIH





QSITGLYETRIDLSQLGGDSGGSPKKKRKV





hAPOBEC1-XTEN-dCas9-NLS for mammalian expression


(SEQ ID NO: 295)



MTSEKGPSTGDPTLRRRIEPWEFDVFYDPRELRKEACLLYEIKWGMSRKIWRSSGKNTTNHVEVNFIKK






FTSERDFHPSMSCSITWFLSWSPCWECSQAIREFLSRHPGVTLVIYVARLFWHMDQQNRQGLRDLVNS





GVTIQIMRASEYYHCWRNFVNYPPGDEAHWPQYPPLWMMLYALELHCIILSLPPCLKISRRWQNHLTF





FRLHLQNCHYQTIPPHILLATGLIHPSVAWRSGSETPGTSESATPESDKKYSIGLAIGTNSVGWAVITDEY





KVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETALATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVD





DSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKF





RGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKK





NGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLS





DILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQLEF





YKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKI





LTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHS





LLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEIS





GVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQ





LKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDS





LHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGI





KELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDAIVPQSFLKDDSIDNKV





LTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVE





TRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNA





VVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKR





PLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPK





KYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLP





KYSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYL





DEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYT





STKEVLDATLIHQSITGLYETRIDLSQLGGDSGGSPKKKRKV





rAPOBEC1-XTEN-dCas9-UGI-NLS


(SEQ ID NO: 296)



MSSETGPVAVDPTLRRRIEPHEFEVFFDPRELRKETCLLYEINWGGRHSIWRHTSQNTNKHVEVNFIEKF






TTERYFCPNTRCSITWFLSWSPCGECSRAITEFLSRYPHVTLFIYIARLYHHADPRNRQGLRDLISSGVTI





QIMTEQESGYCWRNFVNYSPSNEAHWPRYPHLWVRLYVLELYCIILGLPPCLNILRRKQPQLTFFTIALQ





SCHYQRLPPHILWATGLKSGSETPGTSESATPESDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLG





NTDRHSIKKNLIGALLFDSGETALATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFL





VEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLN





PDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALS





LGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITK





APLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQLEFYKFIKPILEKM





DGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGP





LARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYN





ELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASL





GTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWG





RLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGS





PAIKKGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEH





PVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDAIVPQSFLKDDSIDNKVLTRSDKNRGKS





DNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQIL





DSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPK





LESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIV





WDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVA





YSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGR





KRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKR





VILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIH





QSITGLYETRIDLSQLGGDSGGSTNLSDIIEKETGKQLVIQESILMLPEEVEEVIGNKPESDILVHTAYDES





TDENVMLLTSDAPEYKPWALVIQDSNGENKIKMLSGGSPKKKRKV





rAPOBEC1-XTEN-Cas9 nickase-UGI-NLS


(BE3, SEQ ID NO: 297)



MSSETGPVAVDPTLRRRIEPHEFEVFFDPRELRKETCLLYEINWGGRHSIWRHTSQNTNKHVEVNFIEKF






TTERYFCPNTRCSITWFLSWSPCGECSRAITEFLSRYPHVTLFIYIARLYHHADPRNRQGLRDLISSGVTI





QIMTEQESGYCWRNFVNYSPSNEAHWPRYPHLWVRLYVLELYCIILGLPPCLNILRRKQPQLTFFTIALQ





SCHYQRLPPHILWATGLKSGSETPGTSESATPESDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLG





NTDRHSIKKNLIGALLFDSGETALATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFL





VEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLN





PDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALS





LGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITK





APLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQLEFYKFIKPILEKM





DGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGP





LARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYN





ELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASL





GTYHDLLKIIKDKDFLDNEENEDILEDIVLTITLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWG





RLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGS





PAIKKGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEH





PVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDDSIDNKVLTRSDKNRGKS





DNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQIL





DSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPK





LESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIV





WDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVA





YSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGR





KRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKR





VILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIH





QSITGLYETRIDLSQLGGDSGGSTNLSDIIEKETGKQLVIQESILMLPEEVEEVIGNKPESDILVHTAYDES





TDENVMLLTSDAPEYKPWALVIQDSNGENKIKMLSGGSPKKKRKV





pmCDA1-XTEN-dCas9-UGI (bacteria)


(SEQ ID NO: 298)



MTDAEYVRIHEKLDIYTFKKQFFNNKKSVSHRCYVLFELKRRGERRACFWGYAVNKPQSGTERGIHAE






IFSIRKVELYLRDNPGQFTINWYSSWSPCADCALKILEWYNQELRGNGHTLKIWACKLYYEKNARNQI





GLWNLRDNGVGLNVMVSEHYQCCRKIFIQSSHNQLNENRWLEKTLKRAEKRRSELSIMIQVKILHTTK





SPAVSGSETPGTSESATPESDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGAL





LFDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGN





IVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQ





TYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAE





DAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHH





QDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQLEFYKFIKPILEKMDGTEELLVKLNREDL





LRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRK





SEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRK





PAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDF





LDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQS





GKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVV





DELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLY





LYYLQNGRDMYVDQELDINRLSDYDVDAIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKM





KNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDEND





KLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKV





YDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRK





VLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGK





SKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKG





NELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSA





YNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQ





LGGDSGGSMTNLSDIIEKETGKQLVIQESILMLPEEVELVIGNKPESDILVHTAYDESTDENVMLLTSDA





PEYKPWALVIQDSNGENKIKML





pmCDA1-XTEN-nCas9-UGI-NLS (mammalian construct)


(SEQ ID NO: 299)



MTDAEYVRIHEKLDIYTFKKQFFNNKKSVSHRCYVLFELKRRGERRACFWGYAVNKPQSGTERGIHAE






IFSIRKVELYLRDNPGQFTINWYSSWSPCADCALKILEWYNQELRGNGHTLKIWACKLYYEKNARNQI





GLWNLRDNGVGLNVMVSEHYQCCRKIFIQSSHNQLNENRWLEKTLKRAEKRRSELSIMIQVKILHTTK





SPAVSGSETPGTSESATPESDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGAL





LFDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGN





IVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQ





TYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAE





DAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHH





QDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQLEFYKFIKPILEKMDGTEELLVKLNREDL





LRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRK





SEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRK





PAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDF





LDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQS





GKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVV





DELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLY





LYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKM





KNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDEND





KLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKV





YDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRK





VLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGK





SKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKG





NELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSA





YNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQ





LGGDSGGSTNLSDIIEKETGKQLVIQESILMLPEEVEEVIGNKPESDILVHTAYDESTDENVMLLTSDAPE





YKPWALVIQDSNGENKIKMLSGGSPKKKRKV





huAPOBEC3G-XTEN-dCas9-UGI (bacteria)


(SEQ ID NO: 300)



MDPPTFTFNFNNEPWVRGRHETYLCYEVERMHNDTWVLLNQRRGFLCNQAPHKHGFLEGRHAELCFL






DVIPFWKLDLDQDYRVTCFTSWSPCFSCAQEMAKFISKNKHVSLCIFTARIYDDQGRCQEGLRTLAEAG





AKISIMTYSEFKHCWDTFVDHQGCPFQPWDGLDEHSQDLSGRLRAILQSGSETPGTSESATPESDKKYSI





GLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETALATRLKRTARRRYTRRK





NRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDST





DKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARL





SKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQ





YADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQS





KNGYAGYIDGGASQLEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRR





QEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERM





TNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVK





QLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIE





ERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDS





LTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVIEMARENQTT





QKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDV





DAIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAER





GGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYK





VREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNI





MNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILP





KRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDF





LEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSP





EDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLG





APAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDSGGSMTNLSDIIEKETGKQLVI





QESILMLPEEVEEVIGNKPESDILVHTAYDESTDENVMLLTSDAPEYKPWALVIQDSNGENKIKML





huAPOBEC3G-XTEN-nCas9-UGI-NLS (mammalian construct)


(SEQ ID NO: 301)



MDPPTFTFNFNNEPWVRGRHETYLCYEVERMHNDTWVLLNQRRGFLCNQAPHKHGFLEGRHAELCFL






DVIPFWKLDLDQDYRVTCFTSWSPCFSCAQEMAKFISKNKHVSLCIFTARIYDDQGRCQEGLRTLAEAG





AKISIMTYSEFKHCWDTFVDHQGCPFQPWDGLDEHSQDLSGRLRAILQSGSETPGTSESATPESDKKYSI





GLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETALATRLKRTARRRYTRRK





NRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDST





DKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARL





SKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQ





YADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQS





KNGYAGYIDGGASQLEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRR





QEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERM





TNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVK





QLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIE





ERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDS





LTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVIEMARENQTT





QKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDV





DHIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAER





GGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYK





VREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNI





MNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILP





KRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDF





LEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSP





EDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLG





APAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDSGGSTNLSDIIEKETGKQLVIQ





ESILMLPEEVEEVIGNKPESDILVHTAYDESTDENVMLLTSDAPEYKPWALVIQDSNGENKIKMLSGGSP





KKKRKV





huAPOBEC3G (D316R_D317R)-XTEN-nCas9-UGI-NLS (mammalian construct)


(SEQ ID NO: 302)



MDPPTFTFNFNNEPWVRGRHETYLCYEVERMHNDTWVLLNQRRGFLCNQAPHKHGFLEGRHAELCFL






DVIPFWKLDLDQDYRVTCFTSWSPCFSCAQEMAKFISKNKHVSLCIFTARIYRRQGRCQEGLRTLAEAG





AKISIMTYSEFKHCWDTFVDHQGCPFQPWDGLDEHSQDLSGRLRAILQSGSETPGTSESATPESDKKYSI





GLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETALATRLKRTARRRYTRRK





NRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDST





DKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARL





SKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQ





YADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQS





KNGYAGYIDGGASQLEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRR





QEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERM





TNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVK





QLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIE





ERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDS





LTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVIEMARENQTT





QKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDV





DHIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAER





GGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYK





VREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNI





MNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILP





KRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDF





LEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSP





EDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLG





APAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDSGGSTNLSDIIEKETGKQLVIQ





ESILMLPEEVEEVIGNKPESDILVHTAYDESTDENVMLLTSDAPEYKPWALVIQDSNGENKIKMLSGGSP





KKKRKV





Base Editor 4 (BE4; APOBEC1-linker(32 aa)-Cas9n(D10A)-linker(9 aa)-UGI-


linker(9 aa)-UGI)


(SEQ ID NO: 2495)



MSSETGPVAVDPTLRRRIEPHEFEVFFDPRELRKETCLLYEINWGGRHSIWRHTSQNTNKHVEVNFIEKF






TTERYFCPNTRCSITWFLSWSPCGECSRAITEFLSRYPHVTLFIYIARLYHHADPRNRQGLRDLISSGVTI





QIMTEQESGYCWRNFVNYSPSNEAHWPRYPHLWVRLYVLELYCIILGLPPCLNILRRKQPQLTFFTIALQ





SCHYQRLPPHILWATGLKSGGSSGGSSGSETPGTSESATPESSGGSSGGSDKKYSIGLAIGTNSVGWAVI





TDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETALATRLKRTARRRYTRRKNRICYLQEIFSNEM





AKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALA





HMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQL





PGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLS





DAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGA





SQLEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNR





EKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEK





VLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIEC





FDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDD





KVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQV





SGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERM





KRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDD





SIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFI





KRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAH





DAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEITLA





NGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARK





KDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVK





KDLIIKLPKYSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVE





QHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTI





DRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDSGGSGGSGGSTNLSDIIEKETGKQLVIQESILML





PEEVEEVIGNKPESDILVHTAYDESTDENVMLLTSDAPEYKPWALVIQDSNGENKIKMLSGGSGGSGGS





TNLSDIIEKETGKQLVIQESILMLPEEVEEVIGNKPESDILVHTAYDESTDENVMLLTSDAPEYKPWALVI





QDSNGENKIKMLSGGSPKKKRK






Example 2: CRISPR/Cas9 Genome/Base-Editing Methods for Modifying Ion Channels in Dorsal Root Ganglia (DRG)

Long-term chronic pain due to trauma and associated with advanced cancer remains an unmet medical need. Management of pain using painkillers is inherently limited by the development of tolerance, physiological dependence, progressive addiction, and potential for overdose. Current health policies in response to the massive demand for painkillers (˜80-100 million patients/year in the US) have led to extensive prescription of opioids, inadvertently contributing to broader public challenges associated with substance abuse and drug-related crime. Fundamentally, there is a pressing need for an innovative solution to address chronic pain that is non-addictive, generalizable, and permanent.


A normal physiological outcome of trauma, inflammation, and nerve injury is the induction of gene expression changes in neighboring nociceptive neurons during the period required for healing, for example by facilitating the firing of action potentials by neurons at a lower activation threshold. These gene expression changes underlie the sensations of hyperalgesia (increased pain sensitivity) and allodynia (pain following a normally innocuous stimulus). Chronic pain develops when the enhanced sensitization of sensory neurons becomes irreversibly established and becomes a persistent maladaptive condition. The functional specialization of sensory neurons is driven by the expression of dedicated ion channel genes that fine-tune the membrane polarization to trigger and propagate action potentials in response to stimuli (Table 12).1 Therefore, in simple terms the etiology of chronic pain can be described as the dysregulated expression of just a few genes in just a few neurons. However, to date, genetic treatments of chronic pain have not been successfully translated into human therapeutics.2,3


In general, the types of chronic pain that occur in most parts of the body and the extremities involve afferent neurons of the dorsal root ganglia (DRG), which reside in clusters of nerve cells near the spinal cord and have long axons extending towards the skin, muscles, and organs, etc. (FIG. 1).1,4 The mechanism of enhanced excitability involves voltage-gated ion channels and background/leak channels that set the resting membrane potential and firing threshold of DRG neurons (Table 12).1 Under normal conditions, chemical, mechanical, or thermal stimuli are required to activate receptors and ion channels in peripheral nerve endings to initiate action potentials that propagate along the axons of DRG neurons (FIG. 1). Finally, the dendritic termini of the DRG neurons liberate glutamate and substance-P at synapses in the spinal cord dorsal horn, activating second-order neurons that communicate pain signals to the brain.1


Described herein is a novel approach to address chronic pain by deploying various genome-editing agents to modify the genes responsible for propagation of pain signals in dysregulated DRG neurons, by selectively targeting the local nerve endings at the sites of pain using neuron-specific viral vectors (FIG. 2). The genome editing reactions described herein can be achieved by any of the major types of genome editing tools: (i) base-editors that catalyze chemical reactions on nucleobases (e.g., cytidine deaminase-Cas9 fusion5); (ii) programmable nucleases with DNA cutting activity (e.g., WT Cas9,6-8 paired Cas9 nickases9 or Fok1-nuclease-dCas9 fusions,10,11 or compatible analogs such as Cpf1,12 NgAgo,13 etc.); as well as (iii) TALENs, zinc-finger nucleases, etc.14,15 The best studied example of a neurotropic virus that has potential as a delivery vector for genome editing constructs is Herpes Simplex Virus 1 (HSV-1),16 which targets nerve endings in vivo and usurps retrograde axon transport to move the viral DNA up to the cell body of DRG neurons.17 Therefore, using a neurotropic virus as a delivery strategy enables genome editing treatments aimed at the sites of pain, despite the fact that the genetic material within the nuclei of DRG neurons is quite distant and indistinguishable from unrelated cells within each ganglion (FIG. 2).4 HSV-1 vectors have the additional advantage of packaging a large double-stranded DNA genome (>150 kbp),18 which can easily accommodate an expression construct for any programmable genome-editing enzyme (4-5 kbp),19 multiple guide-RNAs, and regulatory sequences. Constructs up to 30 to 40 kbp can be inserted by replacing non-essential genes of HSV-1,16 and alternatively a designed 100 kbp amplicon can be packaged into helper HSV-1 capsids.20 Examples of other potentially useful neurotropic viruses include the broader herpesviridae group,21 varicella-zoster, pseudorabies, cytomegalovirus, Epstein-Barr viruses, encephalitis viruses, polio, coxsackie, echo, mumps, measles, and rabies viruses.22,23


This genome editing treatment incorporates multiple design elements that achieve precise and selective targeting of genome editing agents to pain-causative neurons, arising from: 1) localized delivery of a non-replicative viral vector that requires synaptic terminals, sparing the bulk of somatic tissues near the pain site, 2) neuron-specific promoters that drive expression of the genome editing construct, and 3) guide-RNA programmed targeting of non-essential ion channel genes exclusively expressed by DRG neurons to spare other types of neurons (efferent neurons, interneurons, etc.). Safety can be further enhanced using high-specificity Cas9 nuclease variants,9,10,24,25 and guide-RNAs without off-target matches in the human genome,26,27 as well as limiting the stability, activity, or expression of the construct, etc.28,29 By contrast, traditional pharmacological modulation of localized DRG neuron signaling would be challenging to achieve using small molecules or antibodies,30,31 because these spread systemically and must be optimized for selectivity among many similar ion channel isoforms.32 Therefore, such strategies are still in early development.33 Pharmacological analgesics and opioids act rapidly but reversibly, while genome editing is essentially permanent, therefore, standard medications may be co-administered over the period required for the delivery vector and the expression construct to take action.


Human DRG neurons constitutively express specific and specialized ion channels that have been implicated in afferent pain signaling,1 and fulfill the required criteria as targets for modulation of chronic pain conditions. Three sodium channels (NaV1.7, NaV1.8, and NaV1.9) are constitutively expressed in DRG neurons, and a fourth gene (NaV1.3) displays elevated expression after nerve injury (Table 12).1 Genetic evidence from spontaneous mutations of NaV1.7 (SCN9A) in humans,34-37 and animal models,38 strongly suggests that the phenotypic outcome of gene ablation, loss-of-function, destabilization of the transcript and/or protein folding will be the eradication of pain transmission,34-36 without compromising the normal function of the DRG neurons in triggering action potentials reaching a normal membrane depolarization threshold (FIG. 1). Disruption of SCN9A is only desirable at a localized level, because nociception is essentially a protective mechanism from overextension and deformation for our joints and muscles,34-36 and it is also necessary for our sense of smell.39 In the extreme, humans presenting homozygous SCN9A loss-of-function mutations present Congenital Insensitivity to Pain (CIP).34-36 Conversely, gain-of-function mutations in the sodium channels NaV1.7 (SCN9A) or NaV1.8 (SCN10A) cause congenital pain syndromes such as Primary Erythermalgia.37 Moreover, the SCN9A gene is also involved in itching.30,40


Guide sequences for programming the disruption of SCN9A gene using cytidine deaminase base-editors are shown in Tables 2, 4, and 6. Top scoring guide sequences are listed in Tables 7-9. Top-scoring guide-RNAs for Cas9 nuclease and paired nickases are shown in Table 10 and 11. Interestingly, gain-of-function mutations in the sodium channel NaV1.9 (SCN11A) are known to reduce pain transmission,38,41 which can be potentially replicated using cytosine deamination base-editors. These strategies can be extended to other ion channels expressed in DRG neurons (FIG. 3). Alternative target genes include the voltage-gated calcium channel CaV3.2 (CACNA1H),42 the calcium-activated chloride channel (ANO1),43,44 and the hyperpolarization-activated cation channels (HCN1 and HCN2) (Table 12).45,46 Moreover, these concepts can be further extended by implementing functional genomic screening of guide-RNA libraries in cell lines,47,48 towards the unbiased identification of new target genes and genomic locations that indirectly modulate the DRG neuron ion channels and other mechanisms.1


In conclusion, chronic pain could be permanently suppressed with unprecedented anatomical precision by genome editing treatment of a small number of DRG neurons, which are the root cause of the condition. This new treatment exploits numerous design elements for specificity and safety, and in principle, can be curative. By engaging the distal axon projections of DRG neurons in the region of chronic pain, this approach is both specific and potentially generalizable to theoretically any location in the body to treat dysregulated neuronal firing established by countless sources of trauma, and regardless of the time that may have elapsed since the onset of chronic pain.









TABLE 12







Ion Channel Genes in DRG Neurons Responsible for Pain Propagation











Channel
Gene
Channel type and

Target validation


name
name
function
Expression evidence
evidence





NaV1.7
SCN9A
Tetrodotoxin (TTX)-
Peripheral neuron specific.
Loss-of-function and




sensitive rapidly
Constitutive, and elevated
gain-of-function




inactivating sodium
after nerve injury
mutations




current
and inflammation


NaV1.8
SCN10A
TTX-resistant slowly
DRG specific.
Loss-of-function




inactivating sodium
Constitutive, and elevated
mutations




current
after nerve injury





and inflammation


NaV1.9
SCN11A
TTX-resistant
DRG specific.
Gain-of-function




persistent sodium
Constitutive, and elevated
mutations




current
after nerve injury





and inflammation


NaV1.3
SCN3A
TTX-sensitive rapidly
Elevated expression after




inactivating sodium
axotomy and nerve injury




current


CaV3.2
CACNA1H
T-type calcium current
Constitutive, and elevated
KO mice and genetic





after nerve injury
models





and inflammation


HCN1
HCN1
Hyperpolarization-
Constitutive, and elevated




activated cation
after inflammation




current
and chemotherapy


HCN2
HCN2
Hyperpolarization-
Constitutive, and elevated




activated cation
after inflammation




current


Ano1
ANO1
Calcium-activated
Constitutive, and elevated




chloride current
after nerve injury.










Human SCN9A primary protein and cDNA sequence alignment. Underlined: examples of residues and codons predicted to produce a premature stop codon, inactivation, loss-of-function, or destabilization of protein folding, as a result of base-editing using a cytidine deaminase-Cas9 construct.










gaggagctgaagaggaattaaaatatacaggatgaaaagatggcaatgttgcctccccca



                                        M  A  M  L  P  P  P





ggacctcagagctttgtccatttcacaaaacagtctcttgccctcattgaacaacgcatt


 G  P  Q  S  F  V  H  F  T  K  Q  S  L  A  L  I  E  Q  R  I





gctgaaagaaaatcaaaggaacccaaagaagaaaagaaagatgatgatgaagaagcccca


 A  E  R  K  S  K  E  P  K  E  E  K  K  D  D  D  E  E  A  P





aagccaagcagtgacttggaagctggcaaacagctgcccttcatctatggggacattcct


 K  P  S  S  D  L  E  A  G  K  Q  L  P  F  I  Y  G  D  I  P





cccggcatggtgtcagagcccctggaggacttggacccctactatgcagacaaaaagact


 P  G  M  V  S  E  P  L  E  D  L  D  P  Y  Y  A  D  K  K  T





ttcatagtattgaacaaagggaaaacaatcttccgtttcaatgccacacctgctttatat


 F  I  V  L  N  K  G  K  T  I  F  R  F  N  A  T  P  A  L  Y





atgctttctcctttcagtcctctaagaagaatatctattaagattttagtacactcctta


 M  L  S  P  F  S  P  L  P  R  I  S  I  K  I  L  V  H  S  L





ttcagcatgctcatcatgtgcactattctgacaaactgcatatttatgaccatgaataac


 F  S  M  L  I  M  C  T  I  L  T  N  C  I  F  M  T  M  N  N





ccaccggactggaccaaaaatgtcgagtacacttttactggaatatatacttttgaatca


 P  P  D  W  T  K  N  V  E  Y  T  F  T  G  I  Y  T  F  E  S





cttgtaaaaatccttgcaagaggcttctgtgtaggagaattcacttttcttcgtgacccg


 L  V  K  I  L  A  R  G  F  C  V  G  E  F  T  F  L  R  D  P





tggaactggctggattttgtcgtcattgtttttgcgtatttaacagaattcgtaaaccta


W  N  W  L  D  F  V  V  I  V  F  A  Y  L  T  E  F  V  N  L





ggcaatgtttcagctcttcgaactttcagagtattgagagctttgaaaactatttctgca


 G  N  V  S  A  L  R  T  F  R  V  L  R  A  L  K  T  I  S  V





atcccaggcctgaagacaattgtaggggctttgatccagtcagtgaagaagctttctgat


 I  P  G  L  K  T  I  V  G  A  L  I  Q  S  V  K  K  L  S  D





gtcatgatcctgactgtgttctgtctgagtgtgtttgcactaattggactacagctgttc


 V  M  I  L  T  V  F  C  L  S  V  F  A  L  I  G  L  Q  L  F





atgggaaacctgaagcataaatgttttcgaaattcacttgaaaataatgaaacattagaa


 M  G  N  L  K  H  K  C  F  R  N  S  L  E  N  N  E  T  L  E  





agcataatgaataccctagagagtgaagaagactttagaaaatatttttattacttggaa


 S  I  M  N  T  L  E  S  E  E  D  F  R  K  Y  F  Y  Y  L  E  





ggatccaaagatgctctcctttgtggtttcagcacagattcaggtcagtgtccagagggg


 G  S  K  D  A  L  L  C  G  F  S  T  D  S  G  Q  C  P  E  G  





tacacctgtgtgaaaattggcagaaaccctgattatggctacacgagctttgacactttc


 Y  T  C  V  K  I  G  R  N  P  D  Y  G  Y  T  S  F  D  T  F  





agctgggccttcttagccttgtttaggctaatgacccaagattactgggaaaacctttac


 S  W  A  F  L  A  L  F  R  L  M  T  Q  D  Y  W  E  N  L  Y  





caacagacgctgcgtgctgctggcaaaacctacatgatcttctttgtcgtagtgattttc


Q  Q  T  L  R  A  A  G  K  T  Y  M  I  F  F  V  V  V  I  F  





ctgggctccttttatctaataaacttgatcctggctgtggttgccatggcatatgaagaa


 L  G  S  F  Y  L  I  N  L  I  L  A  V  V  A  M  A  Y  E  E  





cagaaccaggcaaacattgaagaagctaaacagaaagaattagaatttcaacagatgtta


Q  N  Q  A  N  I  E  E  A  K  Q  K  E  L  E  F  Q  Q  M  L  





gaccgtcttaaaaaagagcaagaagaagctgaggcaattgcagcggcagcggctgaatat


 D  P  L  K  K  E  Q  E  E  A  E  A  I  A  A  A  A  A  E  Y  





acaagtattaggagaagcagaattatgggcctctcagagagttcttctgaaacatccaaa


 T  S  I  R  R  S  R  I  M  G  L  S  E  S  S  S  E  T  S  K  





ctgagctctaaaagtgctaaagaaagaagaaacagaagaaagaaaaagaatcaaaagaag


 L  S  S  K  S  A  K  E  R  R  N  R  R  K  K  K  N  Q  K  K  





ctctccagtggagaggaaaagggagatgctgagaaattgtcgaaatcagaatcagaggac


 L  S  S  G  E  E  K  G  D  A  E  K  L  S  K  S  E  S  E  D  





agcatcagaagaaaaagtttccaccttggtgtcgaagggcataggcgagcacatgaaaag


 S  I  R  R  K  S  F  H  L  G  V  E  G  H  R  R  A  H  E  K  





aggttgtgctaccccaatcagtcaccactcagcattcgtggctccttgttttctgcaagg


 R  L  S  I  P  N  Q  S  P  L  S  I  R  G  S  L  F  S  A  R  





cgaagcagcagaacaagtctttttagtttcaaaggcagaggaagagatataggatctgag


 R  S  S  R  T  S  L  F  S  F  K  G  R  G  R  D  I  G  S  E  





actgaatttgccgatgatgagcacagcatttttggagacaatgagagcagaaggggctca


 T  E  F  A  D  D  E  H  S  I  F  G  D  N  E  S  R  R  G  S  





ctgtttgtgccccacagaccccaggagcgacgcagcagtaacatcagccaagccagtagg


 L  F  V  P  H  R  P  Q  E  R  R  S  S  N  I  S  Q  A  S  R  





tccccaccaatgctgccggtgaacgggaaaatgcacagtgctgtggactgcaacggtgtg


 S  P  P  M  L  P  V  N  G  K  M  H  S  A  V  D  C  N  G  V  





gtctccctggttgatggacgctcagccctcatgctccccaatggacagcttctgccagag


 V  S  L  V  D  G  R  S  A  L  M  L  P  N  G  Q  L  L  P  E  





ggcacgaccaatcaaatacacaagaaaaggcgttgtagttcctatctcctttcagaggat


 G  T  T  N  Q  I  H  K  K  R  R  C  S  S  Y  L  L  S  E  D  





atgctgaatgatcccaacctcagacagagagcaatgagtagagcaagcatattaacaaac


 M  L  N  D  P  N  L  R  Q  R  A  M  S  R  A  S  I  L  T  N  





actgtggaagaacttgaagagtccagacaaaaatgtccaccttggtggtacagatttgca


 T  V  E  E  L  E  E  S  R  Q  K  C  P  P  W  W  Y  R  F  A  





cacaaattcttgatctggaattgctctccatattggataaaattcaaaaagtgtatctat


 H  K  F  L  I  W  N  C  S  P  Y  W  I  K  F  K  K  C  I  Y  





tttattgtaatggatccttttgtagatcttgcaattaccatttgcatagttttaaacaca


 F  I  V  M  D  P  F  V  D  L  A  I  T  I  C  I  V  L  N  T  





ttatttatggctatggaacaccacccaatgactgaggaattcaaaaatgtacttgctata


 L  F  A  M  A  M  E  H  P  M  T  E  E  F  K  N  V  L  A  I  





ggaaatttggtctttactggaatctttgcagctgaaatggtattaaaactgattgccatg


 G  N  L  V  F  T  G  I  F  A  A  E  M  V  L  K  L  I  A  M  





gatccatatgagtatttccaagtaggctggaatatttttgacagccttattgtgacttta


 D  P  Y  E  Y  F  Q  V  G  W  N  I  F  D  S  L  I  V  T  L  





agtttagtggagctctttctagcagatgtggaaggattgtcagttctgcgatcattcaga


 S  L  V  E  L  F  L  A  D  V  E  G  L  S  V  L  R  S  F  R  





ctgctccgagtcttcaagttggcaaaatcctggccaacattgaacatgctgattaagatc


 L  L  R  V  P  K  L  A  K  S  W  P  T  L  N  M  L  I  K  I  





attggtaactcagtaggggctctaggtaacctcaccttagtgttggccatcatcgtcttc


 I  G  N  S  V  G  A  L  G  N  L  T  L  V  L  A  I  I  V  F  





atttttgctgtggtcggcatgcagctctttggtaagagctacaaagaatgtgtctgcaag


 I  F  A  V  V  G  M  Q  L  F  G  K  S  Y  K  E  C  V  C  K  





atcaatgatgactgtacgctcccacggtggcacatgaacgacttcttccactccttcctg


 I  N  D  D  C  T  L  P  R  W  H  M  N  D  F  F  H  S  F  L  





attgtgttccgcgtgctgtgtggagagtggatagagaccatgtgggactgtatggaggtc


 I  V  F  R  V  L  C  G  E  W  I  E  T  M  W  D  C  M  E  V  





gctggtcaagctatgtgccttattgtttacatgatggtcatggtcattggaaacctggtg


 A  G  Q  A  M  C  L  V  I  Y  M  M  V  M  V  I  G  N  L  V  





gtcctaaacctatttctggccttattattgagctcatttagttcagacaatcttacagca


 V  L  N  L  F  L  A  L  L  L  S  S  F  S  S  D  N  L  T  A  





attgaagaagaccctgatgcaaacaacctccagattgcagtgactagaattaaaaaggga


 I  E  E  D  P  D  A  N  N  L  Q  I  A  V  T  R  I  K  K  G  





ataaattatgtgaaacaaaccttacgtgaatttattctaaaagcattttccaaaaagcca


 I  N  Y  V  K  Q  T  L  R  E  F  I  L  K  A  F  S  K  K  P  





aagatttccagggagataagacaagcagaagatctgaatactaagaaggaaaactatatt


 K  I  S  R  E  I  R  Q  A  E  D  L  N  T  K  K  E  N  Y  I  





tctaaccatacacttgctgaaatgagcaaaggtcacaatttcctcaaggaaaaagataaa


 S  N  H  T  L  A  E  M  S  K  G  H  N  F  L  K  E  K  D  K  





atcagtggttttggaagcagcgtggacaaacacttgatggaagacagtgatggtcaatca


 I  S  G  F  G  S  S  V  D  K  H  L  M  E  D  S  D  G  Q  S  





tttattcacaatcccagcctcacagtgacagtgccaattgcacctggggaatccgatttg


 F  I  H  N  P  S  L  T  V  T  V  P  I  A  P  G  E  S  D  L  





gaaaatatgaatgctgaggaacttagcagtgattcggatagtgaatacagcaaagtgaga


 E  N  M  N  A  E  E  L  S  S  D  S  D  S  E  Y  S  K  V  R  





ttaaaccggtcaagctcctcagagtgcagcacagttgataaccctttgcctggagaagga


 L  N  R  S  S  S  S  E  C  S  T  V  D  N  P  L  P  G  E  G  





gaagaagcagaggctgaacctatgaattccgatgagccagaggcctgtttcacagatggt


 E  E  A  E  A  E  P  M  N  S  D  E  P  E  A  C  F  T  D  G  





tgtgtatggaggttctcatgctgccaagttaacatagagtcagggaaaggaaaaatctgg


C  V  W  R  P  S  C  C  Q  V  N  I  E  S  G  K  G  K  I  W  





tggaacatcaggaaaacctgctacaagattgttgaacacagttggtttgaaagcttcatt


W  N  I  R  K  T  C  Y  K  I  V  E  H  S  W  F  E  S  F  I  





gtcctcatgatcctgctcagcagtggtgccctggcttttgaagatatttatattgaaagg


 V  L  M  I  L  L  S  S  G  A  L  A  F  E  D  I  Y  I  E  R  





aaaaagaccattaagattatcctggagtatgcagacaagatcttcacttacatcttcatt


 K  K  T  I  K  I  I  L  E  Y  A  D  K  I  F  T  Y  I  F  I  





ctggaaatgcttctaaaatggatagcatatggttataaaacatatttcaccaatgcctgg


 L  E  M  L  L  K  W  I  A  Y  G  Y  K  T  Y  F  T  N  A  W  





tgttggctggatttcctaattgttgatgtttctttggttactttagtggcaaacactctt


C  W  L  D  F  L  I  V  D  V  S  L  V  T  L  V  A  N  T  L  





ggctactcagatcttggccccattaaatcccttcggacactgagagctttaagacctcta


 G  Y  S  D  L  G  P  I  K  S  L  R  T  L  R  A  L  R  P  L  





agagccttatctagatttgaaggaatgagggtcgttgtgaatgcactcataggagcaatt


 R  A  L  S  R  F  E  G  M  R  V  V  V  N  A  L  I  G  A  I  





ccttccatcatgaatgtgctacttgtgtgtcttatattctggctgatattcagcatcatg


 P  S  I  M  N  V  L  L  V  C  L  I  F  W  L  I  F  S  I  M  





ggagtaaatttgtttgctggcaagttctatgagtgtattaacaccacagatgggtcacgg


 G  V  N  L  F  A  G  K  F  Y  E  C  I  N  T  T  D  G  S  R  





tttcctgcaagtcaagttccaaatcgttccgaatgttttgcccttatgaatgttagtcaa


 F  P  A  S  Q  V  P  N  R  S  E  C  F  A  L  M  N  V  S  Q  





aatgtgcgatggaaaaacctgaaagtgaactttgataatgtcggacttggttacctatct


 N  V  R  W  K  N  L  K  V  N  F  D  N  V  G  L  G  Y  L  S  





ctgcttcaagttgcaacttttaagggatggacgattattatgtatgcagcagtggattct


 L  L  Q  V  A  T  F  K  G  W  T  I  I  M  Y  A  A  V  D  S  





gttaatgtagacaagcagcccaaatatgaatatagcctctacatgtatatttattttgtc


 V  N  V  D  K  Q  P  K  Y  E  Y  S  L  Y  M  Y  I  Y  F  V  





gtctttatcatctttgggtcattcttcactttgaacttgttcattggtgtcatcatagat


 V  F  I  I  F  G  S  F  F  T  L  N  L  F  I  G  V  I  I  D  





aatttcaaccaacagaaaaagaagcttggaggtcaagacatctttatgacagaagaacag


 N  F  N  Q  Q  K  K  K  L  G  G  Q  D  I  F  M  T  E  E  Q  





aagaaatactataatgcaatgaaaaagctggggtccaagaagccacaaaagccaattcct


 K  K  Y  Y  N  A  M  K  K  L  G  S  K  K  P  Q  K  P  I  P  





cgaccagggaacaaaatccaaggatgtatatttgacctagtgacaaatcaagcctttgat


 R  P  G  N  K  I  Q  G  C  I  F  D  L  V  T  N  Q  A  F  D  





attagtatcatggttcttatctgtctcaacatggtaaccatgatggtagaaaaggagggt


 I  S  I  M  V  L  I  C  L  N  M  V  T  M  M  V  E  K  E  G  





caaagtcaacatatgactgaagttttatattggataaatgtggtttttataatccttttc


Q  S  Q  H  M  T  E  V  L  Y  W  I  N  V  V  F  I  I  L  F  





actggagaatgtgtgctaaaactgatctccctcagacactactacttcactgtaggatgg


 T  G  E  C  V  L  K  L  I  S  L  R  H  Y  Y  F  T  V  G  W  





aatatttttgattttgtggttgtgattatctccattgtaggtatgtttctagctgatttg


 N  I  F  D  F  V  V  V  I  I  S  I  V  G  M  F  L  A  D  L  





attgaaacgtattttgtgtcccctaccctgttccgagtgatccgtcttgccaggattggc


 I  E  T  Y  P  V  S  P  T  L  F  R  V  I  R  L  A  R  I  G  





cgaatcctacgtctagtcaaaggagcaaaggggatccgcacgctgctctttgctttgatg


 R  I  L  R  L  V  K  G  A  K  G  I  R  T  L  L  F  A  L  M  





atgtcccttcctgcgttgtttaacatcggcctcctgctcttcctggtcatgttcatctac


 M  S  L  P  A  L  F  N  I  G  L  L  L  F  L  V  M  F  I  Y  





gccatctttggaatgtccaactttgcctatgttaaaaaggaagatggaattaatgacatg


 A  I  F  G  M  S  N  F  A  Y  V  K  K  E  D  G  I  N  D  M  





ttcaattttgagacctttggcaacagtatgatttgcctgttccaaattacaacctctgct


 F  N  F  E  T  P  G  N  S  M  I  C  L  F  Q  I  T  T  S  A  





ggctgggatggattgctagcacctattcttaacagtaagccacccgactgtgacccaaaa


 G  W  D  G  L  L  A  P  I  L  N  S  K  P  P  D  C  D  P  K  





aaagttcatcctggaagttcagttgaaggagactgtggtaacccatctgttggaatattc


 K  V  H  P  G  S  S  V  E  G  D  C  G  N  P  S  V  G  I  F  





tactttgttagttatatcatcatatccttcctggttgtggtgaacatgtacattgcagtc


 Y  F  V  S  Y  I  I  I  S  F  L  V  V  V  N  M  Y  I  A  V  





atactggagaattttagtgttgccactgaagaaagtactgaacctctgagtgaggatgac


 I  L  E  N  P  S  V  A  T  E  E  S  T  E  P  L  S  E  D  D  





tttgagatgttctatgaggtttgggagaagtttgatcccgatgcgacccagtttatagag


 F  E  M  F  Y  E  V  W  E  K  F  D  P  D  A  T  Q  F  I  E  





ttctctaaactctctgattttgcagctgccctggatcctcctcttctcatagcaaaaccc


 F  S  K  L  S  D  F  A  A  A  L  D  P  P  L  L  I  A  K  P  





aacaaagtccagctcattgccatggatctgcccatggttagtggtgaccggatccattgt


 N  K  V  Q  L  I  A  M  D  L  P  M  V  S  G  D  R  I  H  C  





cttgacatcttatttgcttttacaaagcgtgttttgggtgagagtggggagatggattct


 L  D  I  L  F  A  F  T  K  R  V  L  G  E  S  G  E  M  D  S  





cttcgttcacagatggaagaaaggttcatgtctgcaaatccttccaaagtgtcctatgaa


 L  R  S  Q  M  E  E  R  F  M  S  A  N  P  S  K  V  S  Y  E  





cccatcacaaccacactaaaacggaaacaagaggatgtgtctgctactgtcattcagcgt


 P  I  T  T  T  L  K  R  K  Q  E  D  V  S  A  T  V  I  Q  R  





gcttatagacgttaccgcttaaggcaaaatgtcaaaaatatatcaagtatatacataaaa


 A  Y  R  R  Y  R  L  R  Q  N  V  K  N  I  S  S  I  Y  I  K  





gatggagacagagatgatgatttactcaataaaaaagatatggcttttgataatgttaat


 D  G  D  R  D  D  D  L  L  N  K  K  D  M  A  F  D  N  V  N  





gagaactcaagtccagaaaaaacagatgccacttcatccaccacctctccaccttcatat


 E  N  S  S  P  E  K  T  D  A  T  S  S  T  T  S  P  P  S  Y  





gatagtgtaacaaagccagacaaagagaaatatgaacaagacagaacagaaaaggaagac


 D  S  V  T  K  P  D  K  E  K  Y  E  Q  D  R  T  E  K  E  D  





aaagggaaagacagcaaggaaagcaaaaaatagagcttcatttttgatatattgtttaca (SEQ ID NO: 2433)


 K  G  K  D  S  K  E  S  K  K - (SEQ ID NO: 2434)







Human SCN9A gene sequence. Includes open reading frames (capitalized) and introns (lowercase, abridged). Underlined bases are predicted to disrupt the splicing of the RNA transcript, leading to diminished expression of functional protein. The start codon is also highlighted in bold.










CGGGGCTGCTACCTCCACGGGCGCGCCCTGGCAGGAGGGGCGCAGTCTGC






TTGCAGGCGGTCGCCAGCGCTCCAGCGGCGGCTGTCGGCTTTCCAATTCC





GCCAGCTCGGCTGAGGCTGGGCTAGCCTGGGTGCCAGTGGCTGCTAGCGG





CAGGCGTCCCCTGAGCAACAGGAGCCCAGAGAAAAAGAAGCAGCCCTGAG





AGAGCGCCGGGGAAGGAGAGGCCCGCGCCCTCTCCTGGAGCCAGATTCTG





CAGGTGCACTGGGTGGGGATGATCGGCGGGCTAGGTTGCAAgtaagtgcc





ttttcttttgctgcttctgtggggaggggaggagaagccctcggtctttc





...intron 1...





tttatgttgttattattagtttttaatgggcctttcttggcaggcaaata





gttaagtctttatttctttgtttccatccagGCCTCTTATGTGAGGAGCT





GAAGAGGAATTAAAATATACAGGATGAAAAGATGGCAATGTTGCCTCCCC





CAGGACCTCAGAGCTTTGTCCATTTCACAAAACAGTCTCTTGCCCTCATT





GAACAACGCATTGCTGAAAGAAAATCAAAGGAACCCAAAGAAGAAAAGAA





AGATGATGATGAAGAAGCCCCAAAGCCAAGCAGTGACTTGGAAGCTGGCA





AACAGCTGCCCTTCATCTATGGGGACATTCCTCCCGGCATGGTGTCAGAG





CCCCTGGAGGACTTGGACCCCTACTATGCAGACAAAAAGgtgagtttatt





ttgacttcagtggtcagtttctgttggcttccttctgtataaaaattatt





...intron 2...





atattgatgtgaaaaattgatattttggattctcaatttcatcctttctt





tttcctcctgcagACTTTCATAGTATTGAACAAAGGGAAAACAATCTTCC





GTTTCAATGCCACACCTGCTTTATATATGCTTTCTCCTTTCAGTCCTCTA





AGAAGAATATCTATTAAGATTTTAGTACACTCatatccttttaaaaatga





ttacatccagtggcactttatggtgtaatttttgctattttattcaaata





...intron 3...





cccactgtcgtctcttttgttccttgattctaagctacCTTATTCAGCAT





GCTCATCATGTGCACTATTCTGACAAACTGCATATTTATGACCATGAATA





ACCCACCGGACTGGACCAAAAATGTCGAgtaagtgggtataagtacattt





taatatagttttggtattatcatttcatcctttccttttcctgccaggaa





...intron 4...





ttataaagatttacatggtggttgtattcttttcacatctagtatcccaa





tggaatcttgtgtttagGTACACTTTTACTGGAATATATACTTTTGAATC





ACTTGTAAAAATCCTTGCAAGAGGCTTCTGTGTAGGAGAATTCACTTTTC





TTCGTGACCCGTGGAACTGGCTGGATTTTGTCGTCATTGTTTTTGCgtaa





gtactttcagctttttgaaacggcaaatttatgaaaatctcaggcagcac





...intron 5...





tcaggtaagtatcatagactctatctaaattctgaataattctgatttaa





ttctacagGTATTTAACAGAATTTGTAAACCTAGGCAATGTTTCAGCTCT





TCGAACTTTCAGAGTATTGAGAGCTTTGAAAACTATTTCTGTAATCCCAG







g
taagaagtaattggtgtgaagcattaggccactcataactccaactatt






...intron 6...





atgtcattacaaacacttttttctcccattttcagGCCTGAAGACAATTG





TAGGGGCTTTGATCCAGTCAGTGAAGAAGCTTTCTGATGTCATGATCCTG





ACTGTGTTCTGTCTGAGTGTGTTTGCACTAATTGGACTACAGCTGTTCAT





GGGAAACCTGAAGCATAAATGTTTTCGAAATTCACTTGAAAATAATGAAA





CATTAGAAAGCATAATGAATACCCTAGAGAGTGAAGAAGACTTTAGAAgt





aagaatgtccttgcatttgttattaggttgaaataatgctaaaaacattg





...intron 7...





attaatttacctcctttatcacaatcacagattaaagtctgtgatgttat





aactgttcaaattcttcttcaacagAATATTTTTATTACTTGGAAGGATC





CAAAGATGCTCTCCTTTGTGGTTTCAGCACAGATTCAGggtatgtaatat





ttgttttctttttagtctaaaggctgaaagagaaggaaaagaatgttcag





...intron 8...





cagtaaggctatttagcttgtgtcctgaagacactctcacctataatgtt





ctttctcgtgtgtagTCAGTGTCCAGAGGGGTACACCTGTGTGAAAATTG





GCAGAAACCCTGATTATGGCTACACGAGCTTTGACACTTTCAGCTGGGCC





TTCTTAGCCTTGTTTAGGCTAATGACCCAAGATTACTGGGAAAACCTTTA





CCAACAGgtgagtaccaagagaaacatgcattgtatttttgaatggcata





...intron 9...





tgtacctggtgtatgttaagagcctgtattaggaggttttttatttattt





aaaaactttttattgttcaaatgacaatttccatttttccctagACGCTG





CGTGCTGCTGGCAAAACCTACATGATCTTCTTTGTCGTAGTGATTTTCCT





GGGCTCCTTTTATCTAATAAACTTGATCCTGGCTGTGGTTGCCATGGCAT





ATGAAGAACAGAACCAGGCAAACATTGAAGAAGCTAAACAGAAAGAATTA





GAATTTCAACAGATGTTAGACCGTCTTAAAAAAGAGCAAGAAGAAGCTGA







Gg
tactgttatttgatttaaaattcttcctagaggtagaaatgcaaacgg






...intron 10...





tgtcctagggtttcctaggatttggaaatgactcatttaagtgttaacgt





cttggcccaaccagGCAATTGCAGCGGCAGCGGCTGAATATACAAGTATT





AGGAGAAGCAGAATTATGGGCCTCTCAGAGAGTTCTTCTGAAACATCCAA





ACTGAGCTCTAAAAGTGCTAAAGAAAGAAGAAACAGAAGAAAGAAAAAGA





ATCAAAAGAAGCTCTCCAGTGGAGAGGAAAAGGGAGATGCTGAGAAATTG





TCGAAATCAGAATCAGAGGACAGCATCAGAAGAAAAAGTTTCCACCTTGG





TGTCGAAGGGCATAGGCGAGCACATGAAAAGAGGTTGTCTACCCCCAATC





AGgtaccacccaaattgctaaatgtgtatcacccgaggcagaatgctaga





...intron 11...





atatgaagtgtacttctatcagtaggtgcttcagcaaccacgtttttttt





aatttttctgcagTCACCACTCAGCATTCGTGGCTCCTTGTTTTCTGCAA





GGCGAAGCAGCAGAACAAGTCTTTTTAGTTTCAAAGGCAGAGGAAGAGAT





ATAGGATCTGAGACTGAATTTGCCGATGATGAGCACAGCATTTTTGGAGA





CAATGAGAGCAGAAGGGGCTCACTGTTTGTGCCCCACAGACCCCAGGAGC





GACGCAGCAGTAACATCAGCCAAGCCAGTAGGTCCCCACCAATGCTGCCG





GTGAACGGGAAAATGCACAGTGCTGTGGACTGCAACGGTGTGGTCTCCCT





GGTTGATGGACGCTCAGCCCTCATGCTCCCCAATGGACAGCTTCTGCCAG





AGgtgataatagataaggcaacttctgatgacagcgtaaggacgttttac





ctatataagcaagattttatcttatacctacaatttattaggattctgtt





...intron 12...





cttaagacattaattgattttttttttagGGCACGACCAATCAAATACAC





AAGAAAAGGCGTTGTAGTTCCTATCTCCTTTCAGAGGATATGCTGAATGA





TCCCAACCTCAGACAGAGAGCAATGAGTAGAGCAAGCATATTAACAAACA





CTGTGGAAGgtatgtaataatcttcttttactgtacagattcttaaataa





...intron 13...





agacaaatggctgactccatgttctctgcttttttctcccagAACTTGAA





GAGTCCAGACAAAAATGTCCACCTTGGTGGTACAGATTTGCACACAAATT





CTTGATCTGGAATTGCTCTCCATATTGGATAAAATTCAAAAAGTGTATCT





ATTTTATTGTAATGGATCCTTTTGTAGATCTTGCAATTACCATTTGCATA





GTTTTAAACACATTATTTATGGCTATGGAACACCACCCAATGACTGAGGA





ATTCAAAAATGTACTTGCTATAGGAAATTTGgtaagtctcttattgtgtg





ttatgtactcatagtttctctttttagttgtcatcattgtcatttcatat





...intron 14...





aacagtgattattatcattgtgttgatttcctgttttctaatattaacag





aaaaacattatttttctcacttagGTCTTTACTGGAATCTTTGCAGCTGA





AATGGTATTAAAACTGATTGCCATGGATCCATATGAGTATTTCCAAGTAG





GCTGGAATATTTTTGACAGCCTTATTGTGACTTTAAGTTTAGTGGAGCTC





TTTCTAGCAGATGTGGAAGGATTGTCAGTTCTGCGATCATTCAGACTGgt





aaacataaactaaggttgccattatattctataataaaggggtatttctt





...intron 15...





gaaaagattttcatagtgattaacattaaactttatatttgcttttagCT





CCGAGTCTTCAAGTTGGCAAAATCCTGGCCAACATTGAACATGCTGATTA





AGATCATTGGTAACTCAGTAGGGGCTCTAGGTAACCTCACCTTAGTGTTG





GCCATCATCGTCTTCATTTTTGCTGTGGTCGGCATGCAGCTCTTTGGTAA





GAGCTACAAAGAATGTGTCTGCAAGATCAATGATGACTGTACGCTCCCAC





GGTGGCACATGAACGACTTCTTCCACTCCTTCCTGATTGTGTTCCGCGTG





CTGTGTGGAGAGTGGATAGAGACCATGTGGGACTGTATGGAGGTCGCTGG





TCAAGCTATGTGCCTTATTGTTTACATGATGGTCATGGTCATTGGAAACC





TGGTGgtatgtaaccagatgttcatgcattttaatttctctgtggaaatt





...intron 16...





attttattttttatatttcctgtctccctatttctctaccccctctcccc





accctgatatagGTCCTAAACCTATTTCTGGCCTTATTATTGAGCTCATT





TAGTTCAGACAATCTTACAGCAATTGAAGAAGACCCTGATGCAAACAACC





TCCAGATTGCAGTGACTAGAATTAAAAAGGGAATAAATTATGTGAAACAA





ACCTTACGTGAATTTATTCTAAAAGCATTTTCCAAAAAGCCAAAGATTTC





CAGGGAGATAAGACAAGCAGAAGATCTGAATACTAAGAAGGAAAACTATA





TTTCTAACCATACACTTGCTGAAATGAGCAAAGGTCACAATTTCCTCAAG





GAAAAAGATAAAATCAGTGGTTTTGGAAGCAGCGTGGACAAACACTTGAT





GGAAGACAGTGATGGTCAATCATTTATTCACAATCCCAGCCTCACAGTGA





CAGTGCCAATTGCACCTGGGGAATCCGATTTGGAAAATATGAATGCTGAG





GAACTTAGCAGTGATTCGGATAGTGAATACAGCAAAGTGgtaagaatgct





tcatatactttgtgtttcatattaacaattagtatgaaatgaatgaaaat





...intron 17...





tttgaatgaactctaaatgaactacctggtggggtggtgaattcctttct





agAGATTAAACCGGTCAAGCTCCTCAGAGTGCAGCACAGTTGATAACCCT





TTGCCTGGAGAAGGAGAAGAAGCAGAGGCTGAACCTATGAATTCCGATGA





GCCAGAGGCCTGTTTCACAGATGgtaagacaaaaattgagaccttggtta





gcattccttaattagtgttctggggtttgtcttaacgcctaatacttacc





...intron 18...





caagatttaacatgcatgtctttcttgtcagGTTGTGTATGGAGGTTCTC





ATGCTGCCAAGTTAACATAGAGTCAGGGAAAGGAAAAATCTGGTGGAACA





TCAGGAAAACCTGCTACAAGATTGTTGAACACAGTTGGTTTGAAAGCTTC





ATTGTCCTCATGATCCTGCTCAGCAGTGGTGCCCTGgtaaatgatctgac





acctaagtcaatatattgattaagtcaatattctttaaaatgagctaaaa





...intron 19...





tcctgttttttttaaatgaatcatgaagcttaagttgtgcatgattgaaa





cttgaatattatttccacagGCTTTTGAAGATATTTATATTGAAAGGAAA





AAGACCATTAAGATTATCCTGGAGTATGCAGACAAGATCTTCACTTACAT





CTTCATTCTGGAAATGCTTCTAAAATGGATAGCATATGGTTATAAAACAT





ATTTCACCAATGCCTGGTGTTGGCTGGATTTCCTAATTGTTGATgtaggt





acttttgagtacattttaaaagaggatttattcttactgtgtgttgtgaa





...intron 20...





agtttcagaattgactttttccttttatgcttcatcattttattgacaca





attaatgaaaatgttatttttatagGTTTCTTTGGTTACTTTAGTGGCAA





ACACTCTTGGCTACTCAGATCTTGGCCCCATTAAATCCCTTCGGACACTG





AGAGCTTTAAGACCTCTAAGAGCCTTATCTAGATTTGAAGGAATGAGGgt





aagaaaatactaaactttataatgttcttattttttaatggggtttaaaa





...intron 21...





ctttcatgttgcctatttaacatcttactaatcctaatcatgcttttctt





tcttttgaatactagGTCGTTGTGAATGCACTCATAGGAGCAATTCCTTC





CATCATGAATGTGCTACTTGTGTGTCTTATATTCTGGCTGATATTCAGCA





TCATGGGAGTAAATTTGTTTGCTGGCAAGTTCTATGAGTGTATTAACACC





ACAGATGGGTCACGGTTTCCTGCAAGTCAAGTTCCAAATCGTTCCGAATG





TTTTGCCCTTATGAATGTTAGTCAAAATGTGCGATGGAAAAACCTGAAAG





TGAACTTTGATAATGTCGGACTTGGTTACCTATCTCTGCTTCAAGTTgta





agtgtcccatttcatgagtgcttggtattttaatagatattggacgaagg





...intron 22...





tctgtttatggctattttagaatatgagcttaacattcaaattctattaa





tgttattcttaaagGCAACTTTTAAGGGATGGACGATTATTATGTATGCA





GCAGTGGATTCTGTTAATgtaagtattgattatcttagcactaaacttta





tttttaaaagcttcttagtttatttcagtgatttccaaactataacttca





...intron 23...





tccatataatgctaacttttgtaaattttatagGTAGACAAGCAGCCCAA





ATATGAATATAGCCTCTACATGTATATTTATTTTGTCGTCTTTATCATCT





TTGGGTCATTCTTCACTTTGAACTTGTTCATTGGTGTCATCATAGATAAT





TTCAACCAACAGAAAAAGAAGataagtatttcaaatatttttcattgtaa





...intron 24...





tttagtaatctatagaaagatgtagacaatgattctggttttaactacat





ttattttttgtttgtttctttacCTTGGAGGTCAAGACATCTTTATGACA





GAAGAACAGAAGAAATACTATAATGCAATGAAAAAGCTGGGGTCCAAGAA





GCCACAAAAGCCAATTCCTCGACCAGGGgtaaaaaaatatatatatcttt





agcatatagattttcaaattatttctaattcatttttaatgcacatcttt





...intron 25...





aatttctggataatacttgaaaagtttactctgcattcgatattattctt





atttctttgcagAACAAAATCCAAGGATGTATATTTGACCTAGTGACAAA





TCAAGCCTTTGATATTAGTATCATGGTTCTTATCTGTCTCAACATGGTAA





CCATGATGGTAGAAAAGGAGGGTCAAAGTCAACATATGACTGAAGTTTTA





TATTGGATAAATGTGGTTTTTATAATCCTTTTCACTGGAGAATGTGTGCT





AAAACTGATCTCCCTCAGACACTACTACTTCACTGTAGGATGGAATATTT





TTGATTTTGTGGTTGTGATTATCTCCATTGTAGgtaagaatatttatttt





tcagattttattttttgagtaaagctaaacttcacttatgctcaaggaag





...intron 26...





(SEQ ID NO: 2435)



ctgtttagagtcatcatttcaggtagcatacatctttaaatattttattt






ctattattttcctccacatacagGTATGTTTCTAGCTGATTTGATTGAAA





CGTATTTTGTGTCCCCTACCCTGTTCCGAGTGATCCGTCTTGCCAGGATT





GGCCGAATCCTACGTCTAGTCAAAGGAGCAAAGGGGATCCGCACGCTGCT





CTTTGCTTTGATGATGTCCCTTCCTGCGTTGTTTAACATCGGCCTCCTGC





TCTTCCTGGTCATGTTCATCTACGCCATCTTTGGAATGTCCAACTTTGCC





TATGTTAAAAAGGAAGATGGAATTAATGACATGTTCAATTTTGAGACCTT





TGGCAACAGTATGATTTGCCTGTTCCAAATTACAACCTCTGCTGGCTGGG





ATGGATTGCTAGCACCTATTCTTAACAGTAAGCCACCCGACTGTGACCCA





AAAAAAGTTCATCCTGGAAGTTCAGTTGAAGGAGACTGTGGTAACCCATC





TGTTGGAATATTCTACTTTGTTAGTTATATCATCATATCCTTCCTGGTTG





TGGTGAACATGTACATTGCAGTCATACTGGAGAATTTTAGTGTTGCCACT





GAAGAAAGTACTGAACCTCTGAGTGAGGATGACTTTGAGATGTTCTATGA





GGTTTGGGAGAAGTTTGATCCCGATGCGACCCAGTTTATAGAGTTCTCTA





AACTCTCTGATTTTGCAGCTGCCCTGGATCCTCCTCTTCTCATAGCAAAA





CCCAACAAAGTCCAGCTCATTGCCATGGATCTGCCCATGGTTAGTGGTGA





CCGGATCCATTGTCTTGACATCTTATTTGCTTTTACAAAGCGTGTTTTGG





GTGAGAGTGGGGAGATGGATTCTCTTCGTTCACAGATGGAAGAAAGGTTC





ATGTCTGCAAATCCTTCCAAAGTGTCCTATGAACCCATCACAACCACACT





AAAACGGAAACAAGAGGATGTGTCTGCTACTGTCATTCAGCGTGCTTATA





GACGTTACCGCTTAAGGCAAAATGTCAAAAATATATCAAGTATATACATA





AAAGATGGAGACAGAGATGATGATTTACTCAATAAAAAAGATATGGCTTT





TGATAATGTTAATGAGAACTCAAGTCCAGAAAAAACAGATGCCACTTCAT





CCACCACCTCTCCACCTTCATATGATAGTGTAACAAAGCCAGACAAAGAG





AAATATGAACAAGACAGAACAGAAAAGGAAGACAAAGGGAAAGACAGCAA





GGAAAGCAAAAAATAGAGCTTCATTTTTGATATATTGTTTACAGCCTGTG





AAAGTGATTTATTTGTGTTAATAAAACTCTTTTGAGGAAGTCTATGCCAA





AATCCTTTTTATCAAAATATTCTCGAAGGCAGTGCAGTCACTAACTCTGA





TTTCCTAAGAAAGGTGGGCAGCATTAGCAGATGGTTATTTTTGCACTGAT





GATTCTTTAAGAATCGTAAGAGAACTCTGTAGGAATTATTGATTATAGCA





TACAAAAGTGATTCAGTTTTTTGGTTTTTAATAAATCAGAAGACCATGTA





GAAAACTTTTACATCTGCCTTGTCATCTTTTCACAGGATTGTAATTAGTC





TTGTTTCCCATGTAAATAAACAACACACGCATACAGAAAAATCTATTATT





TATCTATTATTTGGAAATCAACAAAAGTATTTGCCTTGGCTTTGCAATGA





AATGCTTGATAGAAGTAATGGACATTAGTTATGAATGTTTAGTTAAAATG





CATTATTAGGGAGCTTGACTTTTTATCAATGTACAGAGGTTATTCTATAT





TTTGAGGTGCTTAAATTTATTCTACATTGCATCAGAACCAATTTATATGT





GCCTATAAAATGCCATGGGATTAAAAATATATGTAGGCTATTCATTTCTA





CAAATGTTTTTCATTCATCTTGACTCACATGCCAACAAGGATAAGACTTA





CCTTTAGAGTATTGTGTTTCATAGCCTTTCTTCTTTCATATCCCTTTTTG





TTCATAGAATAACCACAGAACTTGAAAAATTATTCTAAGTACATATTACA





CTCCTCAAAAAAAACAAAGATAACTGAGAAAAAAGTTATTGACAGAAGTT





CTATTTGCTATTATTTACATAGCCTAACATTTGACTGTGCTGCCCAAAAT





ACTGATAATAGTCTCTTAAACTCTTTTGTCAAATTTTCCTGCTTTCTTAT





GCAGTATTGTTTAGTCATCCTTTCGCTGTAAGCAAAGTTGATGAAATCCT





TCCTGATATGCAGTTAGTTGTTTGACCACGGTACATACTTGAGCAGATAA





TAACTTGGGCACAGTATTTATTGCATCACTTGTATACAATCCCGTGTTTG





GCAAGCTTTCAAATCATGTAATATGACAGACTTTACACAGATATGTGTTT





AGTATGAATAAAAAAGCATTGAAATAGGGATTCTTGCCAACTTGCTCTCT





TGCCACCAACTTACTTTCCTAAATTATGGAAGTAATCTTTTTTGGATATA





CTTCAATGTATACAATGAGGAAGATGTCACCTTCTCCTTAAAATTCTATG





ATGTGAAATATATTTTGCCTCAATCAACACAGTACCATGGGCTTCTAATT





TATCAAGCACATATTCATTTTGCATTAGCTGTAGACATCTAGTTTTTTGA





AAACACCTATTAATAGTAATTTGAAAAGAAATAACCATAATGCTTTTTTT





CGTGAGTTTATTTCAGGAATATGAGATCTTTCTTCTATAAAGTTATTCAT





GCACAGGCAAAAATTGAGCTACACAGGTAGAATGTAGTTTTACTTAGAAG





ATTTTTGTGGGAGGTTTTGAAGCAAATATATAAAACAACTTTCACTAATT





TGCTTTCCATATTTAAAAAATAATAAATTACATTTATATAATAAATGTTT





AAAGCACATATTTTTTGTTGTTCTGGCAATTTAAAAAGAAAGAGGATTTA





AACGTACCTATAGAAACAAAGATTTATGGTTAAAGAATGAGATCAGAAGT





CTAGAATGTTTTTAAATTGTGATATATTTTACAACATCCGTTATTACTTT





GAGACATTTGTCCTAATCTACGTATAAAACTCAATCTAGGGCTAAAGATT





CTTTATACCATCTTAGGTTCATTCATCTTAGGCTATTTGAACCACTTTTT





AATTTAATATGAAAGACACCATGCAGTGTTTTCCGAGACTACATAGATCA





TTTTATCACATACCTACCAAGCCTGTTGGAAATAGGTTTTGATAATTTAA





GTAGGGACCTATACAAAATATATTACATTTATCAGATTTTTAAATACATT





CAATTAAGAATTTAACATCACCTTAAATTTGAATTCAATCTACCGTTATT





TCAAACTCACAAATATAACTGCATTATGAATACTTACATAATGTAGTAAG





ACAAGATGTTTGACAGGTTCGTGTGTAATTTTCTATTAATGTTTTTACAT





TGCCTTGTTTTTATGTAAAATAAAAAATATGGGCAACTGGTTTGTTAACA





ACACAATTTCTTCTTAGCATTTCAAAAATATATATAAAGTTGTTCTTTTT





CCTATTTCATGAACTATGTTTTTTTTTAAAATAACATGGTTAAGTTTTAT





ATATATTTACGTTTGTTTCAGGAATGTCTACTTGTGACTTTTTATCAATT





AAAAATAATATTTGGAAGAAAGAGCTTATTAAGTATAAGCTTGAAGTAAA





ATTAGACCTCTCTTTCCATGTAGATTACTGTTTGTACTGATGGTTTCACC





CTTCAGAAGGCACTGTCATATTAATATTTAAATTTTATAATCGCTGAACT





TATTACACCCAACAATACAGAAAGGCAGTTACACTGAAGAACTTAACTTA





GAATAAAATGGAAGCAAACAGGTTTTCTAAAAACTTTTTTAAGTGACCAG





GTCTCGCTCTGTCACCCAGGCTAGAGTGCAATGGCATGATCATAGCTCTC





TGCAGCCTCAACTCTGGGCTCAAGCAACCCTCCTGCCTCAGCCTCCCAAG





TAGCTAAGACTACAGGTACATGCCACCATGCCTGGCTAATATTTAAATTT





TTGTAGATAAGGGGTCTTGCTATGTTGCCCAGGCTAGTCTCAAACTCCTG





GCTTCAAGTGTTCCTACTGTCATGACCTGCCAACATGCTGGGGTTACAGG





CATGAGCCACCATGCCCCAAACAGGTTTGAACACAAATCTTTCGGATGAA





AATTAGAGAACCTAATTTTAGCTTTTTGATAGTTACCTAGTTTGCAAAAG





ATTTGGGTGACTTGTGAGCTGTTTTTAAATGCTGATTGTTGAACATCACA





ACCCAAAATACTTAGCATGATTTTATAGAGTTTTGATAGCTTTATTAAAA





AGAGTGAAAATAAAATGCATATGTAAATAAAGCAGTTCTAAATAGCTATT





TCAGAGAAATGTTAATAGAAGTGCTGAAAGAAGGGCCAACTAAATTAGGA





TGGCCAGGGAATTGGCCTGGGTTTAGGACCTATGTATGAAGGCCACCAAT





TTTTTAAAAATATCTGTGGTTTATTATGTTATTATCTTCTTGAGGAAAAC





AATCAAGAATTGCTTCATGAAAATAAATAAATAGCCATGAATATCATAAA





GCTGTTTACATAGGATTCTTTACAAATTTCATAGATCTATGAATGCTCAA





AATGTTTGAGTTTGCCATAAATTATATTGTAGTTATATTGTAGTTATACT





TGAGACTGACACATTGTAATATAATCTAAGAATAAAAGTTATACAAAATA





A





SCN10A (Uniprot #: Q9Y5Y9)


Synonyms: NaV1.8, PN3, hPN3


(SEQ ID NO: 2436)



MEFPIGSLETNNFRRFTPESLVEIEKQIAAKQGTKKAREKHREQKDQEEKPRPQLDLKACNQLPKFYGE






LPAELIGEPLEDLDPFYSTHRTFMVLNKGRTISRFSATRALWLFSPFNLIRRTAIKVSVHSWFSLFITVTIL





VNCVCMTRTDLPEKIEYVFTVIYTFEALIKILARGFCLNEFTYLRDPWNWLDFSVITLAYVGTAIDLRGI





SGLRTFRVLRALKTVSVIPGLKVIVGALIHSVKKLADVTILTIFCLSVFALVGLQLFKGNLKNKCVKND





MAVNETTNYSSHRKPDIYINKRGTSDPLLCGNGSDSGHCPDGYICLKTSDNPDFNYTSFDSFAWAFLSL





FRLMTQDSWERLYQQTLRTSGKIYMIFFVLVIFLGSFYLVNLILAVVTMAYEEQNQATTDEIEAKEKKF





QEALEMLRKEQEVLAALGIDTTSLHSHNGSPLTSKNASERRHRIKPRVSEGSTEDNKSPRSDPYNQRRM





SFLGLASGKRRASHGSVFHFRSPGRDISLPEGVTDDGVFPGDHESHRGSLLLGGGAGQQGPLPRSPLPQP





SNPDSRHGEDEHQPPPTSELAPGAVDVSAFDAGQKKTFLSAEYLDEPFRAQRAMSVVSIITSVLEELEES





EQKCPPCLTSLSQKYLIWDCCPMWVKLKTILFGLVTDPFAELTITLCIVVNTIFMAMEHHGMSPTFEAM





LQIGNIVFTIFFTAEMVFKIIAFDPYYYFQKKWNIFDCIIVTVSLLELGVAKKGSLSVLRSFRLLRVFKLA





KSWPTLNTLIKIIGNSVGALGNLTIILAIIVFVFALVGKQLLGENYRNNRKNISAPHEDWPRWHMHDFFH





SFLIVFRILCGEWIENMWACMEVGQKSICLILFLTVMVLGNLVVLNLFIALLLNSFSADNLTAPEDDGEV





NNLQVALARIQVFGHRTKQALCSFFSRSCPFPQPKAEPELVVKLPLSSSKAENHIAANTARGSSGGLQAP





RGPRDEHSDFIANPTVWVSVPIAEGESDLDDLEDDGGEDAQSFQQEVIPKGQQEQLQQVERCGDHLTP





RSPGTGTSSEDLAPSLGETWKDESVPQVPAEGVDDTSSSEGSTVDCLDPEEILRKIPELADDLEEPDDCF





TEGCIRHCPCCKLDTTKSPWDVGWQVRKTCYRIVEHSWFESFIIFMILLSSGSLAFEDYYLDQKPTVKA





LLEYTDRVFTFIFVFEMLLKWVAYGFKKYFTNAWCWLDFLIVNISLISLTAKILEYSEVAPIKALRTLRA





LRPLRALSRFEGMRVVVDALVGAIPSIMNVLLVCLIFWLIFSIMGVNLFAGKFWRCINYTDGEFSLVPLS





IVNNKSDCKIQNSTGSFFWVNVKVNFDNVAMGYLALLQVATFKGWMDIMYAAVDSREVNMQPKWE





DNVYMYLYFVIFIIFGGFFTLNLFVGVIIDNFNQQKKKLGGQDIFMTEEQKKYYNAMKKLGSKKPQKPI





PRPLNKFQGFVFDIVTRQAFDITIMVLICLNMITMMVETDDQSEEKTKILGKINQFFVAVFTGECVMKM





FALRQYYFTNGWNVFDFIVVVLSIASLIFSAILKSLQSYFSPTLFRVIRLARIGRILRLIRAAKGIRTLLFAL





MMSLPALFNIGLLLFLVMFIYSIFGMSSFPHVRWEAGIDDMFNFQTFANSMLCLFQITTSAGWDGLLSPI





LNTGPPYCDPNLPNSNGTRGDCGSPAVGIIFFTTYIIISFLIMVNMYIAVILENFNVATEESTEPLSEDDFD





MFYETWEKFDPEATQFITFSALSDFADTLSGPLRIPKPNRNILIQMDLPLVPGDKIHCLDILFAFTKNVLG





ESGELDSLKANMEEKFMATNLSKSSYEPIATTLRWKQEDISATVIQKAYRSYVLHRSMALSNTPCVPRA





ELEAASLPDEGFVAFTANENCVLPDKSETASATSFPPSYESVTRGLSDRVNMRTSSSIQNEDEATSMELI





APGP





SCN11A (Uniprot #: Q9UI33)


Synonyms: NaV1.9, PN5, SCN12A, SN52, hNaN


(SEQ ID NO: 2437)



MDDRCYPVIFPDERNFRPFTSDSLAAIEKRIAIQKEKKKSKDQTGEVPQPRPQLDLKASRKLPKLYGDIP






RELIGKPLEDLDPFYRNHKTFMVLNRKRTIYRFSAKHALFIFGPFNSIRSLAIRVSVHSLFSMFIIGTVIINC





VFMATGPAKNSNSNNTDIALCVFTGIYIFEALIKILARGFILDEFSFLRDPWNWLDSIVIGIAIVSYIPGITI





KLLPLRTFRVFRALKAISVVSRLKVIVGALLRSVKKLVNVIILTFFCLSIFALVGQQLFMGSLNLKCISRD





CKNISNPEAYDHCFEKKENSPEFKMCGIWMGNSACSIQYECKHTKINPDYNYTNFDNFGWSFLAMFRL





MTQDSWEKLYQQTLRTTGLYSVFFFIVVIFLGSFYLINLTLAVVTMAYEEQNKNVAAEIEAKEKMFQE





AQQLLKEEKEALVAMGIDRSSLTSLETSYFTPKKRKLFGNKKRKSFFLRESGKDQPPGSDSDEDCQKKP





QLLEQTKRLSQNLSLDHFDEHGDPLQRQRALSAVSILTITMKEQEKSQEPCLPCGENLASKYLVWNCCP





QWLCVKKVLRTVMTDPFTELAITICIIINTVFLAMEHHKMEASFEKMLNIGNLVFTSIFIAEMCLKIIALD





PYHYFRRGWNIFDSIVALLSFADVMNCVLQKRSWPFLRSFRVLRVFKLAKSWPTLNTLIKIIGNSVGAL





GSLTVVLVIVIFIFSVVGMQLFGRSFNSQKSPKLCNPTGPTVSCLRHWHMGDFWHSFLVVFRILCGEWIE





NMWECMQEANASSSLCVIVFILITVIGKLVVLNLFIALLLNSFSNEERNGNLEGEARKTKVQLALDRFR





RAFCFVRHTLEHFCHKWCRKQNLPQQKEVAGGCAAQSKDIIPLVMEMKRGSETQEELGILTSVPKTLG





VRHDWTWLAPLAELEDDVEFSGEDNAQRITQPEPEQQAYELHQENKKPTSQRVQSVEIDMFSEDEPHL





TIQDPRKKSDVTSILSECSTIDLQDGFGWLPEMVPKKQPERCLPKGFGCCFPCCSVDKRKPPWVIWWNL





RKTCYQIVKHSWFESFIIFVILLSSGALIFEDVHLENQPKIQELLNCTDIIFTHIFILEMVLKWVAFGFGKY





FTSAWCCLDFIIVIVSVTTLINLMELKSFRTLRALRPLRALSQFEGMKVVVNALIGAIPAILNVLLVCLIF





WLVFCILGVYFFSGKFGKCINGTDSVINYTIITNKSQCESGNFSWINQKVNFDNVGNAYLALLQVATFK





GWMDIIYAAVDSTEKEQQPEFESNSLGYIYFVVFIIFGSFFTLNLFIGVIIDNFNQQQKKLGG





QDIFMTEEQKKYYNAMKKLGSKKPQKPIPRPLNKCQGLVFDIVTSQIFDIIIISLIILNM





ISMMAESYNQPKAMKSILDHLNWVFVVIFTLECLIKIFALRQYYFTNGWNLFDCVVVLLSIVSTMISTLE





NQEHIPFPPTLFRIVRLARIGRILRLVRAARGIRTLLFALMMSLPSLFNIGLLLFLIMFIYAILGMNWFSKV





NPESGIDDIFNFKTFASSMLCLFQISTSAGWDSLLSPMLRSKESCNSSSENCHLPGIATSYFVSYIIISFLIV





VNMYIAVILENFNTATEESEDPLGEDDFDIFYEVWEKFDPEATQFIKYSALSDFADALPEPLRVAKPNKY





QFLVMDLPMVSEDRLHCMDILFAFTARVLGGSDGLDSMKAMMEEKFMEANPLKKLYEPIVTTTKRKE





EERGAAIIQKAFRKYMMKVTKGDQGDQNDLENGPHSPLQTLCNGDLSSFGVAKGKVHCD





SCN3A (Uniprot #: Q9NY46)


Synonyms: NaV1.3, KIAA1356, NAC3


(SEQ ID NO: 2438)



MAQALLVPPGPESFRLFTRESLAAIEKRAALEKAKKPKKEQDNDDENKPKPNSDLEAGKNLPFIYGDIP






PEMVSEPLEDLDPYYINKKTFIVMNKGKAIFRFSATSALYILTPLNPVRKIAIKILVHSLFSMLIMCTILTN





CVFMTLSNPPDWTKNVEYTFTGIYTFESLIKILARGFCLEDFTFLRDPWNWLDFSVIVMAYVTEFVSLG





NVSALRTFRVLRALKTISVIPGLKTIVGALIQSVKKLSDVMILTVFCLSVFALIGLQLFMGNLRNKCLQW





PPSDSAFETNTTSYFNGTMDSNGTFVNVTMSTFNWKDYIGDDSHFYVLDGQKDPLLCGNGSDAGQCP





EGYICVKAGRNPNYGYTSFDTFSWAFLSLFRLMTQDYWENLYQLTLRAAGKTYMIFFVLVIFLGSFYL





VNLILAVVAMAYEEQNQATLEEAEQKEAEFQQMLEQLKKQQEEAQAVAAASAASRDFSGIGGLGELL





ESSSEASKLSSKSAKEWRNRRKKRRQREHLEGNNKGERDSFPKSESEDSVKRSSFLFSMDGNRLTSDKK





FCSPHQSLLSIRGSLFSPRRNSKTSIFSFRGRAKDVGSENDFADDEHSTFEDSESRRDSLFVPHRHGERRN





SNVSQASMSSRMVPGLPANGKMHSTVDCNGVVSLVGGPSALTSPTGQLPPEGTTTETEVRKRRLSSYQ





ISMEMLEDSSGRQRAVSIASILTNTMEELEESRQKCPPCWYRFANVFLIWDCCDAWLKVKHLVNLIVM





DPFVDLAITICIVLNTLFMAMEHYPMTEQFSSVLTVGNLVFTGIFTAEMVLKIIAMDPYYYFQEGWNIFD





GIIVSLSLMELGLSNVEGLSVLRSFRLLRVFKLAKSWPTLNMLIKIIGNSVGALGNLTLVLAIIVFIFAVV





GMQLFGKSYKECVCKINDDCTLPRWHMNDFFHSFLIVFRVLCGEWIETMWDCMEVAGQTMCLIVFML





VMVIGNLVVLNLFLALLLSSFSSDNLAATDDDNEMNNLQIAVGRMQKGIDYVKNKMRECFQKAFFRK





PKVIEIHEGNKIDSCMSNNTGIEISKELNYLRDGNGTTSGVGTGSSVEKYVIDENDYMSFINNPSLTVTVP





IAVGESDFENLNTEEFSSESELEESKEKLNATSSSEGSTVDVVLPREGEQAETEPEEDLKPEACFTEGCIK





KFPFCQVSTEEGKGKIWWNLRKTCYSIVEHNWFETFIVFMILLSSGALAFEDIYIEQRKTIKTMLEYADK





VFTYIFILEMLLKWVAYGFQTYFTNAWCWLDFLIVDVSLVSLVANALGYSELGAIKSLRTLRALRPLRA





LSRFEGMRVVVNALVGAIPSIMNVLLVCLIFWLIFSIMGVNLFAGKFYHCVNMTTGNMFDISDVNNLSD





CQALGKQARWKNVKVNFDNVGAGYLALLQVATFKGWMDIMYAAVDSRDVKLQPVYEENLYMYLY





FVIFIIFGSFFTLNLFIGVIIDNFNQQKKKFGGQDIFMTEEQKKYYNAMKKLGSKKPQKPIPRPANKFQG





MVFDFVTRQVFDISIMILICLNMVTMMVETDDQGKYMTLVLSRINLVFIVLFTGEFVLKLVSLRHYYFTI





GWNIFDFVVVILSIVGMFLAEMIEKYFVSPTLFRVIRLARIGRILRLIKGAKGIRTLLFALMMSLPALFNIG





LLLFLVMFIYAIFGMSNFAYVKKEAGIDDMFNFETFGNSMICLFQITTSAGWDGLLAPILNSAPPDCDPD





TIHPGSSVKGDCGNPSVGIFFFVSYIIISFLVVVNMYIAVILENFSVATEESAEPLSEDDFEMFYEVWEKF





DPDATQFIEFSKLSDFAAALDPPLLIAKPNKVQLIAMDLPMVSGDRIHCLDILFAFTKRVLGESGEMDAL





RIQMEDRFMASNPSKVSYLPITTTLKRKQEEVSAAIIQRNFRCYLLKQRLKNISSNYNKLAIKGRIDLPIK





QDMIIDKLNGNSTPEKTDGSSSTTSPPSYDSVTKPDKEKFEKDKPEKESKGKEVRENQK





CACNA1H (Uniprot #: O95180)


Synonyms: CaV3.2, CAC1H


(SEQ ID NO: 2439)



MTEGARAADEVRVPLGAPPPGPAALVGASPESPGAPGREAERGSELGVSPSESPAAERGAELGADEEQ






RVPYPALAATVFFCLGQTTRPRSWCLRLVCNPWFEHVSMLVIMLNCVTLGMFRPCEDVECGSERCNIL





EAFDAFIFAFFAVEMVIKMVALGLFGQKCYLGDTWNRLDFFIVVAGMMEYSLDGHNVSLSAIRTVRVL





RPLRAINRVPSMRILVTLLLDTLPMLGNVLLLCFFVFFIFGIVGVQLWAGLLRNRCFLDSAFVRNNNLTF





LRPYYQTEEGEENPFICSSRRDNGMQKCSHIPGRRELRMPCTLGWEAYTQPQAEGVGAARNACINWN





QYYNVCRSGDSNPHNGAINFDNIGYAWIAIFQVITLEGWVDIMYYVMDAHSFYNFIYFILLIIVGSFFMI





NLCLVVIATQFSETKQRESQLMREQRARHLSNDSTLASFSEPGSCYEELLKYVGHIFRKVKRRSLRLYA





RWQSRWRKKVDPSAVQGQGPGHRQRRAGRHTASVHHLVYHHHHHHHHHYHFSHGSPRRPGPEPGA





CDTRLVRAGAPPSPPSPGRGPPDAESVHSIYHADCHIEGPQERARVAHAAATAAASLRLATGLGTMNY





PTILPSGVGSGKGSTSPGPKGKWAGGPPGTGGHGPLSLNSPDPYEKIPHVVGEHGLGQAPGHLSGLSVP





CPLPSPPAGTLTCELKSCPYCTRALEDPEGELSGSESGDSDGRGVYEFTQDVRHGDRWDPTRPPRATDT





PGPGPGSPQRRAQQRAAPGEPGWMGRLWV





TFSGKLRRIVDSKYFSRGIMMAILVNTLSMGVEYHEQPEELTNALEISNIVFTSMFALEMLLKLLACGPL





GYIRNPYNIFDGIIVVISVWEIVGQADGGLSVLRTFRLLRVLKLVRFLPALRRQLVVLVKTMDNVATFC





TLLMLFIFIFSILGMHLFGCKFSLKTDTGDTVPDRKNFDSLLWAIVTVFQILTQEDWNVVLYNGMASTSS





WAALYFVALMTFGNYVLFNLLVAILVEGFQAEGDANRSDTDEDKTSVHFEEDFHKLRELQTTELKMC





SLAVTPNGHLEGRGSLSPPLIMCTAATPMPTPKSSPFLDAAPSLPDSRRGSSSSGDPPLGDQKPPASLRSS





PCAPWGPSGAWSSRRSSWSSLGRAPSLKRRGQCGERESLLSGEGKGSTDDEAEDGRAAPGPRATPLRR





AESLDPRPLRPAALPPTKCRDRDGQVVALPSDFFLRIDSHREDAAELDDDSEDSCCLRLHKVLEPYKPQ





WCRSREAWALYLFSPQNRFRVSCQKVITHKMFDHVVLVFIFLNCVTIALERPDIDPGSTERVFLSVSNYI





FTAIFVAEMMVKVVALGLLSGEHAYLQSSWNLLDGLLVLVSLVDIVVAMASAGGAKILGVLRVLRLL





RTLRPLRVISRAPGLKLVVETLISSLRPIGNIVLICCAFFIIFGILGVQLFKGKFYYCEGPDTRNISTKAQCR





AAHYRWVRRKYNFDNLGQALMSLFVLSSKDGWVNIMYDGLDAVGVDQQPVQNHNPWMLLYFISFL





LIVSFFVLNMFVGVVVENFHKCRQHQEALEARRREEKRLRRLERRRRSTFPSPEAQRRPYYADYSPTRR





SIHSLCTSHYLDLFITFIICVNVITMSMEHYNQPKSLDEALKYCNYVFTIVFVFEAALKLVAFGFRRFFKD





RWNQLDLAIVLLSLMGITLEEIEMSAALPINPTIIRIMRVLRIARVLKLLKMATGMRALLDTVVQALPQV





GNLGLLFMLLFFIYAALGVELFGRLECSEDNPCEGLSRHATFSNFGMAFLTLFRVSTGDNWNGIMKDTL





RECSREDKHCLSYLPALSPVYFVTFVLVAQFVLVNVVVAVLMKHLEESNKEAREDAELDAEIELEMAQ





GPGSARRVDADRPPLPQESPGARDAPNLVARKVSVSRMLSLPNDSYMFRPVVPASAPHPRPLQEVEME





TYGAGTPLGSVASVHSPPAESCASLQIPLAVSSPARSGEPLHALSPRGTARSPSLSRLLCRQEAVHTDSLE





GKIDSPRDTLDPAEPGEKTPVRPVTQGGSLQSPPRSPRPASVRTRKHTFGQRCVSSRPAAPGGEEAEASD





PADEEVSHITSSACPWQPTAEPHGPEASPVAGGERDLRRLYSVDAQGFLDKPGRADEQWRPSAELGSG





EPGEAKAWGPEAEPALGARRKKKMSPPCISVEPPAEDEGSARPSAAEGGSTTLRRRTPSCEATPHRDSL





EPTEGSGAGGDPAAKGERWGQASCRAEHLTVPSFAFEPLDLGVPSGDPFLDGSHSVTPESRASSSGAIV





PLEPPESEPPMPVGDPPEKRRGLYLTVPQCPLEKPGSPSATPAPGGGADDPV





HCN1 (Uniprot #: O60741)


Synonyms: BCNG1


(SEQ ID NO: 2440)



MEGGGKPNSSSNSRDDGNSVFPAKASATGAGPAAAEKRLGTPPGGGGAGAKEHGNSVCFKVDGGGG






GGGGGGGGEEPAGGFEDAEGPRRQYGFMQRQFTSMLQPGVNKFSLRMFGSQKAVEKEQERVKTAGF





WIIHPYSDFRFYWDLIMLIMMVGNLVIIPVGITFFTEQTTTPWIIFNVASDTVFLLDLIMNFRTGTVNEDS





SEIILDPKVIKMNYLKSWFVVDFISSIPVDYIFLIVEKGMDSEVYKTARALRIVRFTKILSLLRLLRLSRLIR





YIHQWEEIFHMTYDLASAVVRIFNLIGMMLLLCHWDGCLQFLVPLLQDFPPDCWVSLNEMVNDSWGK





QYSYALFKAMSHMLCIGYGAQAPVSMSDLWITMLSMIVGATCYAMFVGHATALIQSLDSSRRQYQEK





YKQVEQYMSFHKLPADMRQKIHDYYEHRYQGKIFDEENILNELNDPLREEIVNFNCRKLVATMPLFAN





ADPNFVTAMLSKLRFEVFQPGDYIIREGAVGKKMYFIQHGVAGVITKSSKEMKLTDGSYFGEICLLTKG





RRTASVRADTYCRLYSLSVDNFNEVLEEYPMMRRAFETVAIDRLDRIGKKNSILLQKFQKDLNTGVFN





NQENEILKQIVKHDREMVQAIAPINYPQMTTLNSTSSTTTPTSRMRTQSPPVYTATSLSHSNLHSPSPSTQ





TPQPSAILSPCSYTTAVCSPPVQSPLAARTFHYASPTASQLSLMQQQPQQQVQQSQPPQTQPQQPSPQPQ





TPGSSTPKNEVHKSTQALHNTNLTREVRPLSASQPSLPHEVSTLISRPHPTVGESLASIPQPVTAVPGTGL





QAGGRSTVPQRVTLFRQMSSGAIPPNRGVPPAPPPPAAALPRESSSVLNTDPDAEKPRFASNL





HCN2 (Uniprot #: Q9UL51)


Synonyms:BCNG2


(SEQ ID NO: 2441)



MDARGGGGRPGESPGATPAPGPPPPPPPAPPQQQPPPPPPPAPPPGPGPAPPQHPPRAEALPPEAADEGGP






RGRLRSRDSSCGRPGTPGAASTAKGSPNGECGRGEPQCSPAGPEGPARGPKVSFSCRGAASGPAPGPGP





ALEAGSEEAGPAGEPRGSQASFMQRQFGALLQPGVNKFSLRMFGSQKAVEREQERVKSAGAWIIHPYS





DFRFYWDFTMLLFMVGNLIIIPVGITFFKDETTAPWIVFNVVSDTFFLMDLVLNFRTGIVIEDNTEIILDPE





KIKKKYLRTWFVVDFVSSIPVDYIFLIVEKGIDSEVYKTARALRIVRFTKILSLLRLLRLSRLIRYIHQWEE





IFHMTYDLASAVMRICNLISMMLLLCHWDGCLQFLVPMLQDFPRNCWVSINGMVNHSWSELYSFALF





KAMSHMLCIGYGRQAPESMTDIWLTMLSMIVGATCYAMFIGHATALIQSLDSSRRQYQEKYKQVEQY





MSFHKLPADFRQKIHDYYEHRYQGKMFDEDSILGELNGPLREEIVNFNCRKLVASMPLFANADPNFVT





AMLTKLKFEVFQPGDYIIREGTIGKKMYFIQHGVVSVLTKGNKEMKLSDGSYFGEICLLTRGRRTASVR





ADTYCRLYSLSVDNFNEVLEEYPMMRRAFETVAIDRLDRIGKKNSILLHKVQHDLNSGVFNNQENAIIQ





EIVKYDREMVQQAELGQRVGLFPPPPPPPQVTSAIATLQQAAAMSFCPQVARPLVGPLALGSPRLVRRP





PPGPAPAAASPGPPPPASPPGAPASPRAPRTSPYGGLPAAPLAGPALPARRLSRASRPLSASQPSLPHGAP





GPAASTRPASSSTPRLGPTPAARAAAPSPDRRDSASPGAAGGLDPQDSARSRLSSNL





ANO1 (Uniprot #: Q5XXA6)


Synonyms: DOG1, ORAOV2, TAOS2, TMEM16A


(SEQ ID NO: 2442)



MRVNEKYSTLPAEDRSVHIINICAIEDIGYLPSEGTLLNSLSVDPDAECKYGLYFRDGRRKVDYILVYHH






KRPSGNRTLVRRVQHSDTPSGARSVKQDHPLPGKGASLDAGSGEPPMDYHEDDKRFRREEYEGNLLE





AGLELERDEDTKIHGVGFVKIHAPWNVLCREAEFLKLKMPTKKMYHINETRGLLKKINSVLQKITDPIQ





PKVAEHRPQTMKRLSYPFSREKQHLFDLSDKDSFFDSKTRSTIVYEILKRTTCTKAKYSMGITSLLANGV





YAAAYPLHDGDYNGENVEFNDRKLLYEEWARYGVFYKYQPIDLVRKYFGEKIGLYFAWLGVYTQML





IPASIVGIIVFLYGCATMDENIPSMEMCDQRHNITMCPLCDKTCSYWKMSSACATARASHLFDNPATVF





FSVFMALWAATFMEHWKRKQMRLNYRWDLTGFEEEEEAVKDHPRAEYEARVLEKSLKKESRNKEKR





RHIPEESTNKWKQRVKTAMAGVKLTDKVKLTWRDRFPAYLTNLVSIIFMIAVTFAIVLGVIIYRISMAA





ALAMNSSPSVRSNIRVTVTATAVIINLVVIILLDEVYGCIARWLTKIEVPKTEKSFEERLIFKAFLLKFVNS





YTPIFYVAFFKGRFVGRPGDYVYIFRSFRMEECAPGGCLMELCIQLSIIMLGKQLIQNNLFEIGIPKMKKL





IRYLKLKQQSPPDHEECVKRKQRYLVDYNLEPFAGLTPLYMEMIIQFGFVTLFVASFPLAPLFALLNNIIE





IRLDAKKFVTELRRPVAVRAKDIGIWYNILRGIGKLAVIINAFVISFTSDFIPRLVYLYMYSKNGTMHGF





VNHTLSSFNVSDFQNGTAPNDPLDLGYEVQICRYKDYREPPWSENKYDISKDFWAVLAARLAFVIVFQ





NLVMFMSDFVDWVIPDIPKDISQQIHKEKVLMVELFMREEQDKQQLLETWMEKERQKDEPPC





NHHNTKACPDSLGSPAPSHAYHGGVL






Example 3: C to T Base Editing to Introduce a Premature Stop Codon in Mouse Neuro-2a Cells

On day 1, a culture of mouse Neuro-2a cells (ATCC) was resuspended using trypsin (TrypLE), and diluted to 1.25×105 cells/mL with DMEM supplemented with 10% FBS and no antibiotics. This suspension of cells (250 μL) was used to seed a 48-well plate coated with poly-D-Lysine, and incubated at 37° C. with 5% CO2 for 24 hours. On day 2, each well was treated with a cationic lipid-DNA complex comprising 1.5 μL Lipofectamine 3000 and 1 μL of P3000 Reagent (ThermoFisher Scientific), 750 ng of base editor and 250 ng of sgRNA expression plasmids prepared as per the manufacturer's recommendation in a total volume of 25 μL DMEM. The base editing expression vector used the base editor 4 (BE4) architecture as described in Komor et al. 2017.51 The sgRNA expression plasmid contained the protospacer RNA sequence and the S. pyogenes guide-RNA scaffold driven by a U6 promoter. The transfected Neuro-2a cells were incubated for 72 hours in the same media. On day 5, the cells were resuspended with trypsin (TrypLE), centrifuged, and the cell pellets were washed three times with PBS. The cells were treated with 75 μL of lysis buffer (comprising: 10 mM Tris-HCl pH 8, 0.05% sodium dodecyl sulfate, 25 ug/mL Proteinase K) and incubated at 37° C. for 1 hour in a thermocycler, followed by 80° C. for 20 minutes. The lysate was diluted 1:25 in water, and the target genomic loci were PCR amplified for high-throughput DNA sequencing as described in Komor et al. 2016.52 See FIGS. 4-6 for non-limiting examples of the results obtained from C→T base editing treatments using guide-RNAs targeted to the NaV1.7/SCN9A gene in the mouse Neuro-2a cell line.


REFERENCES



  • 1 Waxman, S. G. & Zamponi, G. W. Regulating excitability of peripheral afferents: emerging ion channel targets. Nature neuroscience 17, 153-163, (2014).

  • 2 Guedon, J. M. et al. Current gene therapy using viral vectors for chronic pain. Molecular pain 11, 27, (2015).

  • 3 Kumar, S., Ruchi, R., James, S. R. & Chidiac, E. J. Gene therapy for chronic neuropathic pain: how does it work and where do we stand today? Pain Med 12, 808-822, (2011).

  • 4 Sapunar, D., Kostic, S., Banozic, A. & Puljak, L. Dorsal root ganglion—a potential new therapeutic target for neuropathic pain. Journal of pain research 5, 31-38, (2012).

  • 5 Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A. & Liu, D. R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420-424, (2016).

  • 6 Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819-823, (2013).

  • 7 Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816-821, (2012).

  • 8 Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823-826, (2013).

  • 9 Ran, F. A. et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154, 1380-1389, (2013). 10 Guilinger, J. P., Thompson, D. B. & Liu, D. R. Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nature biotechnology 32, 577-582, (2014).

  • 11 Tsai, S. Q. et al. Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nature Biotechnology 32, 569-576, (2014).

  • 12 Zetsche, B. et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163, 759-771, (2015).

  • 13 Gao, F., Shen, X. Z., Jiang, F., Wu, Y. & Han, C. DNA-guided genome editing using the Natronobacterium gregoryi Argonaute. Nature Biotechnology 34, 768-773, (2016).

  • 14 Cradick, T. J., Fine, E. J., Antico, C. J. & Bao, G. CRISPR/Cas9 systems targeting (3-globin and CCR5 genes have substantial off-target activity. Nucleic acids research, (2013).

  • 15 Holt, N. et al. Human hematopoietic stem/progenitor cells modified by zinc-finger nucleases targeted to CCR5 control HIV-1 in vivo. Nature Biotechnology 28, 839-847, (2010).

  • 16 Shen, Y. & Nemunaitis, J. Herpes simplex virus 1 (HSV-1) for cancer treatment. Cancer gene therapy 13, 975-992, (2006).

  • 17 Smith, G. Herpesvirus transport to the nervous system and back again. Annual review of microbiology 66, 153-176, (2012).

  • 18 Burton, E. A., Fink, D. J. & Glorioso, J. C. Gene delivery using herpes simplex virus vectors. DNA and cell biology 21, 915-936, (2002).

  • 19 Kay, M. A., Glorioso, J. C. & Naldini, L. Viral vectors for gene therapy: the art of turning infectious agents into vehicles of therapeutics. Nature medicine 7, 33-40, (2001).

  • 20 Epstein, A. L. HSV-1-based amplicon vectors: design and applications. Gene therapy 12 Suppl 1, S154-158, (2005).

  • 21 Steiner, I., Kennedy, P. G. & Pachner, A. R. The neurotropic herpes viruses: herpes simplex and varicella-zoster. The Lancet. Neurology 6, 1015-1028, (2007).

  • 22 Lancaster, K. Z. & Pfeiffer, J. K. Limited trafficking of a neurotropic virus through inefficient retrograde axonal transport and the type I interferon response. PLoS pathogens 6, e1000791, (2010).

  • 23 Hotta, H. [Neurotropic viruses—classification, structure and characteristics]. Nihon rinsho. Japanese journal of clinical medicine 55, 777-782, (1997).

  • 24 Kleinstiver, B. P. et al. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529, 490-495, (2016).

  • 25 Slaymaker, I. M. et al. Rationally engineered Cas9 nucleases with improved specificity. Science 351, 84-88, (2016).

  • 26 Pattanayak, V. et al. High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nature biotechnology 31, 839-843, (2013).

  • 27 Wu, X. et al. Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells. Nature Biotechnology 32, 670-676, (2014).

  • 28 Hsu, P. D. et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nature biotechnology 31, 827-832, (2013).

  • 29 Davis, K. M., Pattanayak, V., Thompson, D. B., Zuris, J. A. & Liu, D. R. Small Molecule-Triggered Cas9 Protein With Improved Genome-Editing Specificity. Nature Chemical Biology in press, (2015).

  • 30 Lee, J. H. et al. A monoclonal antibody that targets a NaV1.7 channel voltage sensor for pain and itch relief. Cell 157, 1393-1404, (2014).

  • 31 Bagal, S. K. et al. Recent progress in sodium channel modulators for pain. Bioorganic & medicinal chemistry letters 24, 3690-3699, (2014).

  • 32 King, G. F. & Vetter, I. No gain, no pain: NaV1.7 as an analgesic target. ACS chemical neuroscience 5, 749-751, (2014).

  • 33 Martz, L. Targeting Nav1.7 in pain and itch. Science-Business eXchange 7, (2014, doi:10.1038/scibx.2014.662).

  • 34 Cox, J. J. et al. An SCN9A channelopathy causes congenital inability to experience pain. Nature 444, 894-898, (2006).

  • 35 Cox, J. J. et al. Congenital insensitivity to pain: novel SCN9A missense and in-frame deletion mutations. Human mutation 31, E1670-1686, (2010).

  • 36 Goldberg, Y. P. et al. Loss-of-function mutations in the Nav1.7 gene underlie congenital indifference to pain in multiple human populations. Clinical genetics 71, 311-319, (2007).

  • 37 Yang, Y. et al. Mutations in SCN9A, encoding a sodium channel alpha subunit, in patients with primary erythermalgia. Journal of medical genetics 41, 171-174, (2004).

  • 38 Leipold, E. et al. A de novo gain-of-function mutation in SCN11A causes loss of pain perception. Nature genetics 45, 1399-1404, (2013).

  • 39 Weiss, J. et al. Loss-of-function mutations in sodium channel Nav1.7 cause anosmia. Nature 472, 186-190, (2011).

  • 40 Devigili, G. et al. Paroxysmal itch caused by gain-of-function Nav1.7 mutation. Pain 155, 1702-1707, (2014).

  • 41 Woods, C. G., Babiker, M. O., Horrocks, I., Tolmie, J. & Kurth, I. The phenotype of congenital insensitivity to pain due to the NaV1.9 variant p.L811P. European journal of human genetics: EJHG 23, 561-563, (2015).

  • 42 Bourinet, E. et al. Silencing of the Cav3.2 T-type calcium channel gene in sensory neurons demonstrates its major role in nociception. The EMBO journal 24, 315-324, (2005).

  • 43 Cho, H. et al. The calcium-activated chloride channel anoctamin 1 acts as a heat sensor in nociceptive neurons. Nature neuroscience 15, 1015-1021, (2012).

  • 44 Andre, S. et al. Axotomy-induced expression of calcium-activated chloride current in subpopulations of mouse dorsal root ganglion neurons. Journal of neurophysiology 90, 3764-3773, (2003).

  • 45 Benarroch, E. E. HCN channels: function and clinical implications. Neurology 80, 304-310, (2013).

  • 46 Emery, E. C., Young, G. T., Berrocoso, E. M., Chen, L. & McNaughton, P. A. HCN2 ion channels play a central role in inflammatory and neuropathic pain. Science 333, 1462-1466, (2011).

  • 47 Shalem, O., Sanjana, N. E. & Zhang, F. High-throughput functional genomics using CRISPR-Cas9. Nature reviews. Genetics 16, 299-311, (2015).

  • 48 Chen, S. et al. Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis. Cell 160, 1246-1260, (2015).

  • 49 Kleinstiver, B. P. et al. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 523, 481-485, (2015).

  • 50 Doench, J. G. et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nature biotechnology 34, 184-191, (2016).

  • 51 Komor, A. C. et al. Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C:G-toT:A base editors with higher efficiency and product purity. Science Advances 3, eaao4774, (2017).

  • 52 Komor, A. C. et al. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420-424 (2016).



EQUIVALENTS AND SCOPE

In the claims articles such as “a,” “an,” and “the” may mean one or more than one unless indicated to the contrary or otherwise evident from the context. Claims or descriptions that include “or” between one or more members of a group are considered satisfied if one, more than one, or all of the group members are present in, employed in, or otherwise relevant to a given product or process unless indicated to the contrary or otherwise evident from the context. The invention includes embodiments in which exactly one member of the group is present in, employed in, or otherwise relevant to a given product or process. The invention includes embodiments in which more than one, or all of the group members are present in, employed in, or otherwise relevant to a given product or process.


Furthermore, the invention encompasses all variations, combinations, and permutations in which one or more limitations, elements, clauses, and descriptive terms from one or more of the listed claims is introduced into another claim. For example, any claim that is dependent on another claim can be modified to include one or more limitations found in any other claim that is dependent on the same base claim. Where elements are presented as lists, e.g., in Markush group format, each subgroup of the elements is also disclosed, and any element(s) can be removed from the group. It should it be understood that, in general, where the invention, or aspects of the invention, is/are referred to as comprising particular elements and/or features, certain embodiments of the invention or aspects of the invention consist, or consist essentially of, such elements and/or features. For purposes of simplicity, those embodiments have not been specifically set forth in haec verba herein.


It is also noted that the terms “comprising” and “containing” are intended to be open and permits the inclusion of additional elements or steps. Where ranges are given, endpoints are included. Furthermore, unless otherwise indicated or otherwise evident from the context and understanding of one of ordinary skill in the art, values that are expressed as ranges can assume any specific value or sub-range within the stated ranges in different embodiments of the invention, to the tenth of the unit of the lower limit of the range, unless the context clearly dictates otherwise.


This application refers to various issued patents, published patent applications, journal articles, and other publications, all of which are incorporated herein by reference. If there is a conflict between any of the incorporated references and the instant specification, the specification shall control. In addition, any particular embodiment of the present invention that falls within the prior art may be explicitly excluded from any one or more of the claims. Because such embodiments are deemed to be known to one of ordinary skill in the art, they may be excluded even if the exclusion is not set forth explicitly herein. Any particular embodiment of the invention can be excluded from any claim, for any reason, whether or not related to the existence of prior art.


Those skilled in the art will recognize or be able to ascertain using no more than routine experimentation many equivalents to the specific embodiments described herein. The scope of the present embodiments described herein is not intended to be limited to the above Description, but rather is as set forth in the appended claims. Those of ordinary skill in the art will appreciate that various changes and modifications to this description may be made without departing from the spirit or scope of the present invention, as defined in the following claims.

Claims
  • 1. A method of editing a polynucleotide encoding an ion channel in a dorsal root ganglion (DRG) neuron, the method comprising contacting the ion channel-encoding polynucleotide with: (i) a fusion protein comprising: (a) a guide nucleotide sequence-programmable DNA binding protein domain; and (b) a cytosine deaminase domain, wherein the fusion protein further comprises a uracil glycosylase inhibitor (UGI) domain; and(ii) a guide nucleic acid molecule targeting the fusion protein of (i) to a target cytosine (C) base in the ion channel-encoding polynucleotide;whereby the contacting results in deamination of the target C base by the fusion protein, resulting in a cytosine (C) to thymine (T) change in the ion channel-encoding polynucleotide; andwherein the C to T change leads to a mutation in the ion channel that either introduces a premature stop codon in the ion channel-coding polynucleotide that leads to a truncated or non-functional ion channel or destabilizes ion-channel protein folding, or both.
  • 2. The method of claim 1, wherein the guide nucleotide sequence-programmable DNA binding protein domain is selected from the group consisting of: nuclease inactive Cas9 (dCas9) domains, nuclease inactive Cpf1 domains, nuclease inactive Argonaute domains, and variants thereof.
  • 3. The method of claim 1, wherein the cytosine deaminase domain comprises an apolipoprotein B mRNA-editing complex (APOBEC) family deaminase.
  • 4. The method of claim 1, wherein the cytosine deaminase domain is selected from the group consisting of APOBEC1 deaminase, APOBEC2 deaminase, APOBEC3A deaminase, APOBEC3B deaminase, APOBEC3C deaminase, APOBEC3D deaminase, APOBEC3F deaminase, APOBEC3G deaminase, APOBEC3H deaminase, APOBEC4 deaminase, activation-induced deaminase (AID), and pmCDA1.
  • 5. The method of claim 4, wherein the cytosine deaminase domain comprises the amino acid sequence of any one of SEQ ID NOs: 271-292, 303, or 2483-2494.
  • 6. The method of claim 1, wherein the UGI domain comprises the amino acid sequence of SEQ ID NO: 304.
  • 7. The method of claim 1, wherein the fusion protein comprises the amino acid sequence of any one of SEQ ID NOs: 296-302 and 2495.
  • 8. The method of claim 1, wherein the C to T change occurs in the coding region of the ion channel-encoding polynucleotide.
  • 9. The method of claim 1, wherein the mutation introduces a premature stop codon in the ion channel-coding sequence that leads to a truncated or non-functional ion channel.
  • 10. The method of claim 1, wherein the mutation destabilizes ion-channel protein folding.
  • 11. The method of claim 1, wherein the C to T change occurs at a C base-paired with the G base in a start codon (AUG).
  • 12. The method of claim 1, wherein the C to T change occurs in the non-coding region of the ion channel-encoding polynucleotide.
  • 13. The method of claim 1, wherein the ion channel is selected from the group consisting of: NaV1.7, NaV1.8, NaV1.9, NaV1.3, CaV3.2, HCN1, HCN2, and Ano1.
  • 14. The method of claim 13, wherein the ion channel is NaV1.7 encoded by the SCN9A gene.
  • 15. The method of claim 1, wherein a PAM sequence is either located 3′ of the C being changed or is located 5′ of the C being changed.
  • 16. The method of claim 1, wherein the DRG neuron is in a mammal.
  • 17. The method of claim 16, wherein the mammal is a human.
  • 18. The method of claim 1, wherein a nucleic acid construct encoding the fusion protein is delivered to the DRG neuron via a neurotropic viral delivery vector.
  • 19. The method of claim 9, wherein the mutation is installed at an amino acid position W188 of SEQ ID NO: 2434.
  • 20. The method of claim 1, wherein the guide nucleotide sequence-programmable DNA binding protein domain is an S. pyogenes Cas9 nickase, an S. aureus Cas9 nickase, or an S. aureus Cas9-KKH.
  • 21. The method of claim 20, wherein the guide nucleotide sequence-programmable DNA binding protein domain comprises an amino acid sequence having at least 95% sequence identity to any one of SEQ ID NOs: 3, 4, 268, or 2426-2428.
  • 22. The method of claim 20, wherein the guide nucleotide sequence-programmable DNA binding protein domain comprises the amino acid sequence of any of SEQ ID NOs: 3, 4, 268, or 2426-2428.
  • 23. The method of claim 4, wherein the cytosine deaminase domain comprises an amino acid sequence having at least 95% sequence identity to any one of SEQ ID NOs: 271-292, 303, or 2483-2494.
  • 24. The method of claim 1, wherein the guide nucleic acid molecule is selected from SEQ ID NOs: 834-1125 or 1273-1287.
  • 25. A method of editing a polynucleotide encoding an ion channel in a DRG neuron, the method comprising contacting the ion channel-encoding polynucleotide with: (i) a fusion protein comprising: (a) a guide nucleotide sequence-programmable DNA binding protein domain; and (b) a cytosine deaminase domain; and(ii) a guide nucleic acid molecule targeting the fusion protein of (i) to a target C base in the ion channel-encoding polynucleotide;whereby the contacting results in deamination of the target C base by the fusion protein, resulting in a C to T change in the ion channel-encoding polynucleotide, andwherein the guide nucleic acid molecule is selected from SEQ ID NOs: 339-1456.
  • 26. A method of editing a polynucleotide encoding an ion channel in a dorsal root ganglion (DRG) neuron, the method comprising contacting the ion channel-encoding polynucleotide with: (i) a fusion protein comprising: (a) a guide nucleotide sequence-programmable DNA binding protein domain; and (b) a cytosine deaminase domain, wherein the fusion protein further comprises a uracil glycosylase inhibitor (UGI) domain; and(ii) a guide nucleic acid molecule targeting the fusion protein of (i) to a target cytosine (C) base in the ion channel-encoding polynucleotide;whereby the contacting results in deamination of the target C base by the fusion protein, resulting in a cytosine (C) to thymine (T) change in the ion channel-encoding polynucleotide; andwherein the ion channel-encoding polynucleotide comprises the nucleic acid sequence of SEQ ID NO: 2435 and/or wherein the ion channel-encoding polynucleotide comprises a sequence containing the target C that comprises the nucleic acid sequence of any one of SEQ ID NOs: 1457-1503.
  • 27. The method of claim 26, wherein the ion channel comprises the amino acid sequence of SEQ ID NO: 2434.
  • 28. A method of editing a polynucleotide encoding an ion channel in a dorsal root ganglion (DRG) neuron, the method comprising contacting the ion channel-encoding polynucleotide with: (i) a fusion protein comprising: (a) a guide nucleotide sequence-programmable DNA binding protein domain; and (b) a cytosine deaminase domain, wherein the fusion protein further comprises a uracil glycosylase inhibitor (UGI) domain; and(ii) a guide nucleic acid molecule targeting the fusion protein of (i) to a target cytosine (C) base in the ion channel-encoding polynucleotide, wherein the guide nucleic acid molecule is selected from SEQ ID NOs: 834-1125 or 1273-1287;whereby the contacting results in deamination of the target C base by the fusion protein, resulting in a cytosine (C) to thymine (T) change in the ion channel-encoding polynucleotide.
RELATED APPLICATIONS

The present application is a national stage filing under 35 U.S.C. § 371 of international PCT application, PCT/US2018/021664, filed Mar. 9, 2018, which claims priority under 35 U.S.C. § 119(e) to U.S. provisional application, U.S. Ser. No. 62/469,408, filed Mar. 9, 2017, each of which is incorporated herein by reference.

GOVERNMENT SUPPORT

This invention was made with government support under GM065865 awarded by National Institutes of Health (NIH). The government has certain rights in this invention.

PCT Information
Filing Document Filing Date Country Kind
PCT/US2018/021664 3/9/2018 WO
Publishing Document Publishing Date Country Kind
WO2018/165504 9/13/2018 WO A
US Referenced Citations (591)
Number Name Date Kind
4182449 Kozlow Jan 1980 A
4186183 Steck et al. Jan 1980 A
4217344 Vanlerberghe et al. Aug 1980 A
4235871 Papahadjopoulos et al. Nov 1980 A
4261975 Fullerton et al. Apr 1981 A
4485054 Mezei et al. Nov 1984 A
4501728 Geho et al. Feb 1985 A
4663290 Weis et al. May 1987 A
4737323 Martin et al. Apr 1988 A
4774085 Fidler Sep 1988 A
4797368 Carter et al. Jan 1989 A
4837028 Allen Jun 1989 A
4873316 Meade et al. Oct 1989 A
4880635 Janoff et al. Nov 1989 A
4889818 Gelfand et al. Dec 1989 A
4897355 Eppstein et al. Jan 1990 A
4906477 Kurono et al. Mar 1990 A
4911928 Wallach Mar 1990 A
4917951 Wallach Apr 1990 A
4920016 Allen et al. Apr 1990 A
4921757 Wheatley et al. May 1990 A
4946787 Eppstein et al. Aug 1990 A
4965185 Grischenko et al. Oct 1990 A
5017492 Kotewicz et al. May 1991 A
5047342 Chatterjee Sep 1991 A
5049386 Eppstein et al. Sep 1991 A
5079352 Gelfand et al. Jan 1992 A
5139941 Muzyczka et al. Aug 1992 A
5173414 Lebkowski et al. Dec 1992 A
5223409 Ladner et al. Jun 1993 A
5244797 Kotewicz et al. Sep 1993 A
5270179 Chatterjee Dec 1993 A
5374553 Gelfand et al. Dec 1994 A
5405776 Kotewicz et al. Apr 1995 A
5436149 Barnes Jul 1995 A
5449639 Wei et al. Sep 1995 A
5496714 Comb et al. Mar 1996 A
5512462 Cheng Apr 1996 A
5580737 Polisky et al. Dec 1996 A
5614365 Tabor et al. Mar 1997 A
5652094 Usman et al. Jul 1997 A
5658727 Barbas et al. Aug 1997 A
5668005 Kotewicz et al. Sep 1997 A
5677152 Birch et al. Oct 1997 A
5767099 Harris et al. Jun 1998 A
5780053 Ashley et al. Jul 1998 A
5830430 Unger et al. Nov 1998 A
5834247 Comb et al. Nov 1998 A
5835699 Kimura Nov 1998 A
5844075 Kawakami et al. Dec 1998 A
5849548 Haseloff et al. Dec 1998 A
5851548 Dattagupta et al. Dec 1998 A
5855910 Ashley et al. Jan 1999 A
5856463 Blankenborg et al. Jan 1999 A
5962313 Podsakoff et al. Oct 1999 A
5981182 Jacobs, Jr. et al. Nov 1999 A
6015794 Haseloff et al. Jan 2000 A
6057153 George et al. May 2000 A
6063608 Kotewicz et al. May 2000 A
6077705 Duan et al. Jun 2000 A
6156509 Schellenberger Dec 2000 A
6183998 Ivanov et al. Feb 2001 B1
6355415 Wagner et al. Mar 2002 B1
6429298 Ellington et al. Aug 2002 B1
6453242 Eisenberg et al. Sep 2002 B1
6479264 Louwrier Nov 2002 B1
6503717 Case et al. Jan 2003 B2
6534261 Cox, III et al. Mar 2003 B1
6589768 Kotewicz et al. Jul 2003 B1
6599692 Case et al. Jul 2003 B1
6607882 Cox, III et al. Aug 2003 B1
6610522 Kotewicz et al. Aug 2003 B1
6689558 Case Feb 2004 B2
6716973 Baskerville et al. Apr 2004 B2
6824978 Cox, III et al. Nov 2004 B1
6933113 Case et al. Aug 2005 B2
6979539 Cox, III et al. Dec 2005 B2
7013219 Case et al. Mar 2006 B2
7045337 Schultz et al. May 2006 B2
7067650 Tanaka Jun 2006 B1
7070928 Liu et al. Jul 2006 B2
7078208 Smith et al. Jul 2006 B2
7083970 Schultz et al. Aug 2006 B2
7163824 Cox, III et al. Jan 2007 B2
7192739 Liu et al. Mar 2007 B2
7223545 Liu et al. May 2007 B2
7354761 Schultz et al. Apr 2008 B2
7368275 Schultz et al. May 2008 B2
7442160 Liu et al. Oct 2008 B2
7476500 Liu et al. Jan 2009 B1
7476734 Liu Jan 2009 B2
7479573 Chu et al. Jan 2009 B2
7491494 Liu et al. Feb 2009 B2
7541450 Liu et al. Jun 2009 B2
7557068 Liu et al. Jul 2009 B2
7595179 Chen et al. Sep 2009 B2
7638300 Schultz et al. Dec 2009 B2
7670807 Lampson et al. Mar 2010 B2
7678554 Liu et al. Mar 2010 B2
7713721 Schultz et al. May 2010 B2
7771935 Liu et al. Aug 2010 B2
7794931 Breaker et al. Sep 2010 B2
7807408 Liu et al. Oct 2010 B2
7851658 Liu et al. Dec 2010 B2
7915025 Schultz et al. Mar 2011 B2
7919277 Russell et al. Apr 2011 B2
7993672 Huang et al. Aug 2011 B2
7998904 Liu et al. Aug 2011 B2
8012739 Schultz et al. Sep 2011 B2
8017323 Liu et al. Sep 2011 B2
8017755 Liu et al. Sep 2011 B2
8030074 Schultz et al. Oct 2011 B2
8067556 Hogrefe et al. Nov 2011 B2
8114648 Schultz et al. Feb 2012 B2
8173364 Schultz et al. May 2012 B2
8173392 Schultz et al. May 2012 B2
8183012 Schultz et al. May 2012 B2
8183178 Liu et al. May 2012 B2
8206914 Liu et al. Jun 2012 B2
8361725 Russell et al. Jan 2013 B2
8394604 Liu et al. Mar 2013 B2
8440431 Voytas et al. May 2013 B2
8440432 Voytas et al. May 2013 B2
8450471 Voytas et al. May 2013 B2
8492082 De Franciscis et al. Jul 2013 B2
8546553 Terns et al. Oct 2013 B2
8569256 Heyes et al. Oct 2013 B2
8586363 Voytas et al. Nov 2013 B2
8680069 de Fougerolles et al. Mar 2014 B2
8691729 Liu et al. Apr 2014 B2
8691750 Constien et al. Apr 2014 B2
8697359 Zhang Apr 2014 B1
8697853 Voytas et al. Apr 2014 B2
8709466 Coady et al. Apr 2014 B2
8728526 Heller May 2014 B2
8748667 Budzik et al. Jun 2014 B2
8758810 Okada et al. Jun 2014 B2
8759103 Kim et al. Jun 2014 B2
8759104 Unciti-Broceta et al. Jun 2014 B2
8771728 Huang et al. Jul 2014 B2
8790664 Pitard et al. Jul 2014 B2
8795965 Zhang Aug 2014 B2
8822663 Schrum et al. Sep 2014 B2
8835148 Janulaitis et al. Sep 2014 B2
8846578 McCray et al. Sep 2014 B2
8871445 Cong et al. Oct 2014 B2
8889418 Zhang et al. Nov 2014 B2
8900814 Yasukawa et al. Dec 2014 B2
8945839 Zhang Feb 2015 B2
8975232 Liu et al. Mar 2015 B2
8993233 Zhang et al. Mar 2015 B2
8999641 Zhang et al. Apr 2015 B2
9023594 Liu et al. May 2015 B2
9023649 Mali et al. May 2015 B2
9068179 Liu et al. Jun 2015 B1
9150626 Liu et al. Oct 2015 B2
9163271 Schultz et al. Oct 2015 B2
9163284 Liu et al. Oct 2015 B2
9181535 Liu et al. Nov 2015 B2
9200045 Liu et al. Dec 2015 B2
9221886 Liu et al. Dec 2015 B2
9228207 Liu et al. Jan 2016 B2
9234213 Wu Jan 2016 B2
9243038 Liu et al. Jan 2016 B2
9267127 Liu et al. Feb 2016 B2
9322006 Liu et al. Apr 2016 B2
9322037 Liu et al. Apr 2016 B2
9340799 Liu et al. May 2016 B2
9340800 Liu et al. May 2016 B2
9359599 Liu et al. Jun 2016 B2
9388430 Liu et al. Jul 2016 B2
9394537 Liu et al. Jul 2016 B2
9434774 Liu et al. Sep 2016 B2
9458484 Ma et al. Oct 2016 B2
9512446 Joung et al. Dec 2016 B1
9526724 Oshlack et al. Dec 2016 B2
9526784 Liu et al. Dec 2016 B2
9534210 Park et al. Jan 2017 B2
9580698 Xu et al. Feb 2017 B1
9610322 Liu et al. Apr 2017 B2
9637739 Siksnys et al. May 2017 B2
9663770 Rogers et al. May 2017 B2
9737604 Liu et al. Aug 2017 B2
9738693 Telford et al. Aug 2017 B2
9753340 Saitou Sep 2017 B2
9771574 Liu et al. Sep 2017 B2
9783791 Hogrefe et al. Oct 2017 B2
9816093 Donohoue et al. Nov 2017 B1
9840538 Telford et al. Dec 2017 B2
9840690 Karli et al. Dec 2017 B2
9840699 Liu et al. Dec 2017 B2
9840702 Collingwood et al. Dec 2017 B2
9850521 Braman et al. Dec 2017 B2
9873907 Zeiner et al. Jan 2018 B2
9879270 Hittinger et al. Jan 2018 B2
9914939 Church et al. Mar 2018 B2
9932567 Xu et al. Apr 2018 B1
9938288 Kishi et al. Apr 2018 B1
9944933 Storici et al. Apr 2018 B2
9982279 Gill et al. May 2018 B1
9999671 Liu et al. Jun 2018 B2
10011868 Liu et al. Jul 2018 B2
10053725 Liu et al. Aug 2018 B2
10059940 Zhong Aug 2018 B2
10077453 Liu et al. Sep 2018 B2
10113163 Liu et al. Oct 2018 B2
10150955 Lambowitz et al. Dec 2018 B2
10167457 Liu et al. Jan 2019 B2
10179911 Liu et al. Jan 2019 B2
10189831 Arrington et al. Jan 2019 B2
10202593 Liu et al. Feb 2019 B2
10202658 Parkin et al. Feb 2019 B2
10227581 Liu et al. Mar 2019 B2
10323236 Liu et al. Jun 2019 B2
10336997 Liu et al. Jul 2019 B2
10358670 Janulaitis et al. Jul 2019 B2
10392674 Liu et al. Aug 2019 B2
10407474 Liu et al. Sep 2019 B2
10407697 Doudna et al. Sep 2019 B2
10465176 Liu et al. Nov 2019 B2
10508298 Liu et al. Dec 2019 B2
10583201 Chen et al. Mar 2020 B2
10597679 Liu et al. Mar 2020 B2
10612011 Liu et al. Apr 2020 B2
10682410 Liu et al. Jun 2020 B2
10704062 Liu et al. Jul 2020 B2
10745677 Maianti et al. Aug 2020 B2
10858639 Liu et al. Dec 2020 B2
10912833 Liu et al. Feb 2021 B2
10930367 Zhang et al. Feb 2021 B2
10947530 Liu et al. Mar 2021 B2
10954548 Liu et al. Mar 2021 B2
11046948 Liu et al. Jun 2021 B2
11053481 Liu et al. Jul 2021 B2
11124782 Liu et al. Sep 2021 B2
11214780 Liu et al. Jan 2022 B2
11268082 Liu et al. Mar 2022 B2
11299755 Liu et al. Apr 2022 B2
11306324 Liu et al. Apr 2022 B2
11319532 Liu et al. May 2022 B2
11447770 Liu et al. Sep 2022 B1
11542496 Liu et al. Jan 2023 B2
11542509 Maianti et al. Jan 2023 B2
11560566 Liu et al. Jan 2023 B2
11578343 Liu et al. Feb 2023 B2
11643652 Liu et al. May 2023 B2
11661590 Liu et al. May 2023 B2
11702651 Liu et al. Jul 2023 B2
20030082575 Schultz et al. May 2003 A1
20030087817 Cox et al. May 2003 A1
20030096337 Hillman et al. May 2003 A1
20030108885 Schultz et al. Jun 2003 A1
20030119764 Loeb et al. Jun 2003 A1
20030167533 Yadav et al. Sep 2003 A1
20030203480 Kovesdi et al. Oct 2003 A1
20040003420 Kuhn et al. Jan 2004 A1
20040115184 Smith et al. Jun 2004 A1
20040203109 Lal et al. Oct 2004 A1
20050136429 Guarente et al. Jun 2005 A1
20050222030 Allison Oct 2005 A1
20050260626 Lorens et al. Nov 2005 A1
20060088864 Smolke et al. Apr 2006 A1
20060104984 Littlefield et al. May 2006 A1
20060246568 Honjo et al. Nov 2006 A1
20070015238 Snyder et al. Jan 2007 A1
20070264692 Liu et al. Nov 2007 A1
20070269817 Shapero Nov 2007 A1
20080008697 Mintier et al. Jan 2008 A1
20080051317 Church et al. Feb 2008 A1
20080124725 Barrangou et al. May 2008 A1
20080182254 Hall et al. Jul 2008 A1
20080220502 Schellenberger et al. Sep 2008 A1
20080241917 Akita et al. Oct 2008 A1
20080268516 Perreault et al. Oct 2008 A1
20090130718 Short May 2009 A1
20090215878 Tan et al. Aug 2009 A1
20090234109 Han et al. Sep 2009 A1
20100076057 Sontheimer et al. Mar 2010 A1
20100093617 Barrangou et al. Apr 2010 A1
20100104690 Barrangou et al. Apr 2010 A1
20100273857 Thakker et al. Oct 2010 A1
20100305197 Che Dec 2010 A1
20100316643 Eckert et al. Dec 2010 A1
20110016540 Weinstein et al. Jan 2011 A1
20110059160 Essner et al. Mar 2011 A1
20110059502 Chalasani Mar 2011 A1
20110104787 Church et al. May 2011 A1
20110177495 Liu et al. Jul 2011 A1
20110189775 Ainley et al. Aug 2011 A1
20110189776 Terns et al. Aug 2011 A1
20110217739 Terns et al. Sep 2011 A1
20110301073 Gregory et al. Dec 2011 A1
20120129759 Liu et al. May 2012 A1
20120141523 Castado et al. Jun 2012 A1
20120244601 Bertozzi et al. Sep 2012 A1
20120270273 Zhang et al. Oct 2012 A1
20120322861 Byrne et al. Dec 2012 A1
20130022980 Nelson et al. Jan 2013 A1
20130059931 Petersen-Mahrt et al. Mar 2013 A1
20130117869 Duchateau et al. May 2013 A1
20130130248 Haurwitz et al. May 2013 A1
20130158245 Russell et al. Jun 2013 A1
20130165389 Schellenberger et al. Jun 2013 A1
20130212725 Kuhn et al. Aug 2013 A1
20130309720 Schultz et al. Nov 2013 A1
20130344117 Mirosevich et al. Dec 2013 A1
20130345064 Liu et al. Dec 2013 A1
20140004280 Loomis Jan 2014 A1
20140005269 Ngwuluka et al. Jan 2014 A1
20140017214 Cost Jan 2014 A1
20140018404 Chen et al. Jan 2014 A1
20140044793 Goll et al. Feb 2014 A1
20140065711 Liu et al. Mar 2014 A1
20140068797 Doudna et al. Mar 2014 A1
20140127752 Zhou et al. May 2014 A1
20140141094 Smyth et al. May 2014 A1
20140141487 Feldman et al. May 2014 A1
20140179770 Zhang et al. Jun 2014 A1
20140186843 Zhang et al. Jul 2014 A1
20140186958 Zhang et al. Jul 2014 A1
20140201858 Ostertag et al. Jul 2014 A1
20140234289 Liu et al. Aug 2014 A1
20140248702 Zhang et al. Sep 2014 A1
20140273037 Wu Sep 2014 A1
20140273226 Wu Sep 2014 A1
20140273230 Chen et al. Sep 2014 A1
20140273234 Zhang et al. Sep 2014 A1
20140283156 Zador et al. Sep 2014 A1
20140295556 Joung et al. Oct 2014 A1
20140295557 Joung et al. Oct 2014 A1
20140342456 Mali et al. Nov 2014 A1
20140342457 Mali et al. Nov 2014 A1
20140342458 Mali et al. Nov 2014 A1
20140349400 Jakimo et al. Nov 2014 A1
20140356867 Peter et al. Dec 2014 A1
20140356956 Church et al. Dec 2014 A1
20140356958 Mali et al. Dec 2014 A1
20140356959 Church et al. Dec 2014 A1
20140357523 Zeiner et al. Dec 2014 A1
20140377868 Joung et al. Dec 2014 A1
20150010526 Liu et al. Jan 2015 A1
20150031089 Lindstrom Jan 2015 A1
20150031132 Church et al. Jan 2015 A1
20150031133 Church et al. Jan 2015 A1
20150044191 Liu et al. Feb 2015 A1
20150044192 Liu et al. Feb 2015 A1
20150044772 Zhao Feb 2015 A1
20150050699 Siksnys et al. Feb 2015 A1
20150056177 Liu et al. Feb 2015 A1
20150056629 Guthrie-Honea Feb 2015 A1
20150064138 Lu et al. Mar 2015 A1
20150064789 Paschon et al. Mar 2015 A1
20150071898 Liu et al. Mar 2015 A1
20150071899 Liu et al. Mar 2015 A1
20150071900 Liu et al. Mar 2015 A1
20150071901 Liu et al. Mar 2015 A1
20150071902 Liu et al. Mar 2015 A1
20150071903 Liu et al. Mar 2015 A1
20150071906 Liu et al. Mar 2015 A1
20150079680 Bradley et al. Mar 2015 A1
20150079681 Zhang Mar 2015 A1
20150098954 Hyde et al. Apr 2015 A1
20150118216 Liu et al. Apr 2015 A1
20150128300 Warming et al. May 2015 A1
20150132269 Orkin et al. May 2015 A1
20150140664 Byrne et al. May 2015 A1
20150159172 Miller et al. Jun 2015 A1
20150165054 Liu et al. Jun 2015 A1
20150166980 Liu et al. Jun 2015 A1
20150166981 Liu et al. Jun 2015 A1
20150166982 Liu et al. Jun 2015 A1
20150166983 Liu et al. Jun 2015 A1
20150166984 Liu et al. Jun 2015 A1
20150166985 Liu et al. Jun 2015 A1
20150191744 Wolfe et al. Jul 2015 A1
20150197759 Xu et al. Jul 2015 A1
20150211058 Carstens Jul 2015 A1
20150218573 Loque et al. Aug 2015 A1
20150225773 Farmer et al. Aug 2015 A1
20150252358 Maeder et al. Sep 2015 A1
20150275202 Liu et al. Oct 2015 A1
20150291965 Zhang et al. Oct 2015 A1
20150307889 Petolino et al. Oct 2015 A1
20150315252 Haugwitz et al. Nov 2015 A1
20150344549 Muir et al. Dec 2015 A1
20160015682 Cawthorne et al. Jan 2016 A2
20160017393 Jacobson et al. Jan 2016 A1
20160017396 Cann et al. Jan 2016 A1
20160032292 Storici et al. Feb 2016 A1
20160032353 Braman et al. Feb 2016 A1
20160040155 Maizels et al. Feb 2016 A1
20160046952 Hittinger et al. Feb 2016 A1
20160046961 Jinek et al. Feb 2016 A1
20160046962 May et al. Feb 2016 A1
20160053272 Wurtzel et al. Feb 2016 A1
20160053304 Wurtzel et al. Feb 2016 A1
20160074535 Ranganathan et al. Mar 2016 A1
20160076093 Shendure et al. Mar 2016 A1
20160090603 Carnes et al. Mar 2016 A1
20160090622 Liu et al. Mar 2016 A1
20160115488 Zhang et al. Apr 2016 A1
20160138046 Wu May 2016 A1
20160153003 Joung et al. Jun 2016 A1
20160186214 Brouns et al. Jun 2016 A1
20160200779 Liu et al. Jul 2016 A1
20160201040 Liu et al. Jul 2016 A1
20160201089 Gersbach et al. Jul 2016 A1
20160206566 Lu et al. Jul 2016 A1
20160208243 Zhang et al. Jul 2016 A1
20160208288 Liu et al. Jul 2016 A1
20160215275 Zhong Jul 2016 A1
20160215276 Liu et al. Jul 2016 A1
20160215300 May et al. Jul 2016 A1
20160244784 Jacobson et al. Aug 2016 A1
20160244829 Bang et al. Aug 2016 A1
20160264934 Giallourakis et al. Sep 2016 A1
20160272593 Ritter et al. Sep 2016 A1
20160272965 Zhang et al. Sep 2016 A1
20160281072 Zhang Sep 2016 A1
20160298136 Chen et al. Oct 2016 A1
20160304846 Liu Oct 2016 A1
20160304855 Stark et al. Oct 2016 A1
20160312304 Sorrentino et al. Oct 2016 A1
20160319262 Doudna et al. Nov 2016 A1
20160333389 Liu et al. Nov 2016 A1
20160340622 Abdou Nov 2016 A1
20160340662 Zhang et al. Nov 2016 A1
20160345578 Barrangou et al. Dec 2016 A1
20160346360 Quake et al. Dec 2016 A1
20160346361 Quake et al. Dec 2016 A1
20160346362 Quake et al. Dec 2016 A1
20160348074 Quake et al. Dec 2016 A1
20160348096 Liu et al. Dec 2016 A1
20160350476 Quake et al. Dec 2016 A1
20160355796 Davidson et al. Dec 2016 A1
20160369262 Reik et al. Dec 2016 A1
20170009224 Liu et al. Jan 2017 A1
20170009242 McKinley et al. Jan 2017 A1
20170014449 Bangera et al. Jan 2017 A1
20170020922 Wagner et al. Jan 2017 A1
20170037432 Donohoue et al. Feb 2017 A1
20170044520 Liu et al. Feb 2017 A1
20170044592 Peter et al. Feb 2017 A1
20170053729 Kotani et al. Feb 2017 A1
20170058271 Joung et al. Mar 2017 A1
20170058272 Carter et al. Mar 2017 A1
20170058298 Kennedy et al. Mar 2017 A1
20170073663 Wang et al. Mar 2017 A1
20170073670 Nishida et al. Mar 2017 A1
20170087224 Quake Mar 2017 A1
20170087225 Quake Mar 2017 A1
20170088587 Quake Mar 2017 A1
20170088828 Quake Mar 2017 A1
20170107536 Zhang et al. Apr 2017 A1
20170107560 Peter et al. Apr 2017 A1
20170114367 Hu et al. Apr 2017 A1
20170121693 Liu et al. May 2017 A1
20170145394 Yeo et al. May 2017 A1
20170145405 Tang et al. May 2017 A1
20170145438 Kantor May 2017 A1
20170152528 Zhang Jun 2017 A1
20170152787 Kubo et al. Jun 2017 A1
20170159033 Kamtekar et al. Jun 2017 A1
20170166928 Vyas et al. Jun 2017 A1
20170175104 Doudna et al. Jun 2017 A1
20170175142 Zhang et al. Jun 2017 A1
20170191047 Terns et al. Jul 2017 A1
20170191078 Zhang et al. Jul 2017 A1
20170198269 Zhang et al. Jul 2017 A1
20170198277 Kmiec et al. Jul 2017 A1
20170198302 Feng et al. Jul 2017 A1
20170226522 Hu et al. Aug 2017 A1
20170233703 Xie et al. Aug 2017 A1
20170233708 Liu et al. Aug 2017 A1
20170233756 Begemann et al. Aug 2017 A1
20170247671 Yung et al. Aug 2017 A1
20170247703 Sloan et al. Aug 2017 A1
20170268022 Liu et al. Sep 2017 A1
20170275648 Barrangou et al. Sep 2017 A1
20170275665 Silas et al. Sep 2017 A1
20170283797 Robb et al. Oct 2017 A1
20170283831 Zhang et al. Oct 2017 A1
20170306306 Potter et al. Oct 2017 A1
20170314016 Kim et al. Nov 2017 A1
20170362635 Chamberlain et al. Dec 2017 A1
20180023062 Lamb et al. Jan 2018 A1
20180064077 Dunham et al. Mar 2018 A1
20180066258 Powell Mar 2018 A1
20180068062 Zhang et al. Mar 2018 A1
20180073012 Liu et al. Mar 2018 A1
20180080051 Sheikh et al. Mar 2018 A1
20180087046 Badran et al. Mar 2018 A1
20180100147 Yates et al. Apr 2018 A1
20180105867 Xiao et al. Apr 2018 A1
20180119118 Lu et al. May 2018 A1
20180127759 Lu et al. May 2018 A1
20180127780 Liu et al. May 2018 A1
20180155708 Church et al. Jun 2018 A1
20180155720 Donohoue et al. Jun 2018 A1
20180163213 Aneja et al. Jun 2018 A1
20180170984 Harris et al. Jun 2018 A1
20180179503 Maianti et al. Jun 2018 A1
20180179547 Zhang et al. Jun 2018 A1
20180201921 Malcolm Jul 2018 A1
20180230464 Zhong Aug 2018 A1
20180230471 Storici et al. Aug 2018 A1
20180236081 Liu et al. Aug 2018 A1
20180237787 Maianti et al. Aug 2018 A1
20180245066 Yao et al. Aug 2018 A1
20180245075 Khalil et al. Aug 2018 A1
20180258418 Kim Sep 2018 A1
20180265864 Li et al. Sep 2018 A1
20180273939 Yu et al. Sep 2018 A1
20180282722 Jakimo et al. Oct 2018 A1
20180298391 Jakimo et al. Oct 2018 A1
20180305688 Zhong Oct 2018 A1
20180305704 Zhang Oct 2018 A1
20180312822 Lee et al. Nov 2018 A1
20180312825 Liu et al. Nov 2018 A1
20180312828 Liu et al. Nov 2018 A1
20180312835 Yao et al. Nov 2018 A1
20180327756 Zhang et al. Nov 2018 A1
20180346927 Doudna et al. Dec 2018 A1
20180371497 Gill et al. Dec 2018 A1
20190010481 Joung et al. Jan 2019 A1
20190055543 Tran et al. Feb 2019 A1
20190055549 Capurso et al. Feb 2019 A1
20190062734 Cotta-Ramusino et al. Feb 2019 A1
20190093099 Liu et al. Mar 2019 A1
20190185883 Liu et al. Jun 2019 A1
20190218547 Lee et al. Jul 2019 A1
20190225955 Liu et al. Jul 2019 A1
20190233847 Savage et al. Aug 2019 A1
20190241633 Fotin-Mleczek et al. Aug 2019 A1
20190256842 Liu et al. Aug 2019 A1
20190264202 Church et al. Aug 2019 A1
20190276816 Liu et al. Sep 2019 A1
20190309290 Neuteboom et al. Oct 2019 A1
20190322992 Liu et al. Oct 2019 A1
20190330619 Smith et al. Oct 2019 A1
20190352632 Liu et al. Nov 2019 A1
20190367891 Liu et al. Dec 2019 A1
20200010818 Liu et al. Jan 2020 A1
20200010835 Maianti et al. Jan 2020 A1
20200063127 Lu et al. Feb 2020 A1
20200071722 Liu et al. Mar 2020 A1
20200172931 Liu et al. Jun 2020 A1
20200181619 Tang et al. Jun 2020 A1
20200190493 Liu et al. Jun 2020 A1
20200255868 Liu et al. Aug 2020 A1
20200277587 Liu et al. Sep 2020 A1
20200323984 Liu et al. Oct 2020 A1
20200399619 Maianti et al. Dec 2020 A1
20200399626 Liu et al. Dec 2020 A1
20210054416 Liu et al. Feb 2021 A1
20210196809 Maianti et al. Jul 2021 A1
20210198330 Liu et al. Jul 2021 A1
20210214698 Liu et al. Jul 2021 A1
20210230577 Liu et al. Jul 2021 A1
20210254127 Liu et al. Aug 2021 A1
20210315994 Liu et al. Oct 2021 A1
20210317440 Liu et al. Oct 2021 A1
20220033785 Liu et al. Feb 2022 A1
20220119785 Liu et al. Apr 2022 A1
20220170013 Liu et al. Jun 2022 A1
20220177877 Church et al. Jun 2022 A1
20220204975 Liu et al. Jun 2022 A1
20220213507 Liu et al. Jul 2022 A1
20220220462 Liu et al. Jul 2022 A1
20220238182 Shen et al. Jul 2022 A1
20220249697 Liu et al. Aug 2022 A1
20220282275 Liu et al. Sep 2022 A1
20220290115 Liu et al. Sep 2022 A1
20220307001 Liu et al. Sep 2022 A1
20220307003 Liu et al. Sep 2022 A1
20220315906 Liu et al. Oct 2022 A1
20220356469 Liu et al. Nov 2022 A1
20220380740 Liu et al. Dec 2022 A1
20220389395 Liu et al. Dec 2022 A1
20230002745 Liu et al. Jan 2023 A1
20230021641 Liu et al. Jan 2023 A1
20230056852 Liu et al. Feb 2023 A1
20230058176 Liu et al. Feb 2023 A1
20230078265 Liu et al. Mar 2023 A1
20230086199 Liu et al. Mar 2023 A1
20230090221 Liu et al. Mar 2023 A1
20230108687 Liu et al. Apr 2023 A1
20230123669 Liu et al. Apr 2023 A1
20230127008 Liu et al. Apr 2023 A1
20230159913 Liu et al. May 2023 A1
20230193295 Maianti et al. Jun 2023 A1
Foreign Referenced Citations (1675)
Number Date Country
2012244264 Nov 2012 AU
2012354062 Jul 2014 AU
2015252023 Nov 2015 AU
2015101792 Jan 2016 AU
112015013786 Jul 2017 BR
2894668 Jun 2014 CA
2894681 Jun 2014 CA
2894684 Jun 2014 CA
2852593 Nov 2015 CA
1069962 Mar 1993 CN
101460619 Jun 2009 CN
101873862 Oct 2010 CN
102892777 Jan 2013 CN
103224947 Jul 2013 CN
103233028 Aug 2013 CN
103388006 Nov 2013 CN
103614415 Mar 2014 CN
103642836 Mar 2014 CN
103668472 Mar 2014 CN
103820441 May 2014 CN
103820454 May 2014 CN
103911376 Jul 2014 CN
103923911 Jul 2014 CN
103088008 Aug 2014 CN
103981211 Aug 2014 CN
103981212 Aug 2014 CN
104004778 Aug 2014 CN
104004782 Aug 2014 CN
104017821 Sep 2014 CN
104109687 Oct 2014 CN
104178461 Dec 2014 CN
104342457 Feb 2015 CN
104404036 Mar 2015 CN
104450774 Mar 2015 CN
104480144 Apr 2015 CN
104498493 Apr 2015 CN
104504304 Apr 2015 CN
104531704 Apr 2015 CN
104531705 Apr 2015 CN
104560864 Apr 2015 CN
104561095 Apr 2015 CN
104593418 May 2015 CN
104593422 May 2015 CN
104611370 May 2015 CN
104651392 May 2015 CN
104651398 May 2015 CN
104651399 May 2015 CN
104651401 May 2015 CN
104673816 Jun 2015 CN
104725626 Jun 2015 CN
104726449 Jun 2015 CN
104726494 Jun 2015 CN
104745626 Jul 2015 CN
104762321 Jul 2015 CN
104805078 Jul 2015 CN
104805099 Jul 2015 CN
104805118 Jul 2015 CN
104846010 Aug 2015 CN
104894068 Sep 2015 CN
104894075 Sep 2015 CN
104928321 Sep 2015 CN
105039339 Nov 2015 CN
105039399 Nov 2015 CN
105063061 Nov 2015 CN
105087620 Nov 2015 CN
105112422 Dec 2015 CN
105112445 Dec 2015 CN
105112519 Dec 2015 CN
105121648 Dec 2015 CN
105132427 Dec 2015 CN
105132451 Dec 2015 CN
105177038 Dec 2015 CN
105177126 Dec 2015 CN
105210981 Jan 2016 CN
105219799 Jan 2016 CN
105238806 Jan 2016 CN
105255937 Jan 2016 CN
105274144 Jan 2016 CN
105296518 Feb 2016 CN
105296537 Feb 2016 CN
105316324 Feb 2016 CN
105316327 Feb 2016 CN
105316337 Feb 2016 CN
105331607 Feb 2016 CN
105331608 Feb 2016 CN
105331609 Feb 2016 CN
105331627 Feb 2016 CN
105400773 Mar 2016 CN
105400779 Mar 2016 CN
105400810 Mar 2016 CN
105441451 Mar 2016 CN
105462968 Apr 2016 CN
105463003 Apr 2016 CN
105463027 Apr 2016 CN
105492608 Apr 2016 CN
105492609 Apr 2016 CN
105505976 Apr 2016 CN
105505979 Apr 2016 CN
105518134 Apr 2016 CN
105518135 Apr 2016 CN
105518137 Apr 2016 CN
105518138 Apr 2016 CN
105518139 Apr 2016 CN
105518140 Apr 2016 CN
105543228 May 2016 CN
105543266 May 2016 CN
105543270 May 2016 CN
105567688 May 2016 CN
105567689 May 2016 CN
105567734 May 2016 CN
105567735 May 2016 CN
105567738 May 2016 CN
105593367 May 2016 CN
105594664 May 2016 CN
105602987 May 2016 CN
105624146 Jun 2016 CN
105624187 Jun 2016 CN
105646719 Jun 2016 CN
105647922 Jun 2016 CN
105647962 Jun 2016 CN
105647968 Jun 2016 CN
105647969 Jun 2016 CN
105671070 Jun 2016 CN
105671083 Jun 2016 CN
105695485 Jun 2016 CN
105779448 Jul 2016 CN
105779449 Jul 2016 CN
105802980 Jul 2016 CN
105821039 Aug 2016 CN
105821040 Aug 2016 CN
105821049 Aug 2016 CN
105821072 Aug 2016 CN
105821075 Aug 2016 CN
105821116 Aug 2016 CN
105838733 Aug 2016 CN
105861547 Aug 2016 CN
105861552 Aug 2016 CN
105861554 Aug 2016 CN
105886498 Aug 2016 CN
105886534 Aug 2016 CN
105886616 Aug 2016 CN
105907758 Aug 2016 CN
105907785 Aug 2016 CN
105925608 Sep 2016 CN
105934516 Sep 2016 CN
105950560 Sep 2016 CN
105950626 Sep 2016 CN
105950633 Sep 2016 CN
105950639 Sep 2016 CN
105985985 Oct 2016 CN
106011104 Oct 2016 CN
106011150 Oct 2016 CN
106011167 Oct 2016 CN
106011171 Oct 2016 CN
106032540 Oct 2016 CN
106047803 Oct 2016 CN
106047877 Oct 2016 CN
106047930 Oct 2016 CN
106086008 Nov 2016 CN
106086028 Nov 2016 CN
106086061 Nov 2016 CN
106086062 Nov 2016 CN
106109417 Nov 2016 CN
106119275 Nov 2016 CN
106119283 Nov 2016 CN
106148286 Nov 2016 CN
106148370 Nov 2016 CN
106148416 Nov 2016 CN
106167525 Nov 2016 CN
106167808 Nov 2016 CN
106167810 Nov 2016 CN
106167821 Nov 2016 CN
106172238 Dec 2016 CN
106190903 Dec 2016 CN
106191057 Dec 2016 CN
106191061 Dec 2016 CN
106191062 Dec 2016 CN
106191064 Dec 2016 CN
106191071 Dec 2016 CN
106191099 Dec 2016 CN
106191107 Dec 2016 CN
106191113 Dec 2016 CN
106191114 Dec 2016 CN
106191116 Dec 2016 CN
106191124 Dec 2016 CN
106222177 Dec 2016 CN
106222193 Dec 2016 CN
106222203 Dec 2016 CN
106244555 Dec 2016 CN
106244557 Dec 2016 CN
106244591 Dec 2016 CN
106244609 Dec 2016 CN
106282241 Jan 2017 CN
106318934 Jan 2017 CN
106318973 Jan 2017 CN
106350540 Jan 2017 CN
106367435 Feb 2017 CN
106399306 Feb 2017 CN
106399311 Feb 2017 CN
106399360 Feb 2017 CN
106399367 Feb 2017 CN
106399375 Feb 2017 CN
106399377 Feb 2017 CN
106434651 Feb 2017 CN
106434663 Feb 2017 CN
106434688 Feb 2017 CN
106434737 Feb 2017 CN
106434748 Feb 2017 CN
106434752 Feb 2017 CN
106434782 Feb 2017 CN
106446600 Feb 2017 CN
106479985 Mar 2017 CN
106480027 Mar 2017 CN
106480036 Mar 2017 CN
106480067 Mar 2017 CN
106480080 Mar 2017 CN
106480083 Mar 2017 CN
106480097 Mar 2017 CN
106544351 Mar 2017 CN
106544353 Mar 2017 CN
106544357 Mar 2017 CN
106554969 Apr 2017 CN
106566838 Apr 2017 CN
106701763 May 2017 CN
106701808 May 2017 CN
106701818 May 2017 CN
106701823 May 2017 CN
106701830 May 2017 CN
106754912 May 2017 CN
106755026 May 2017 CN
106755077 May 2017 CN
106755088 May 2017 CN
106755091 May 2017 CN
106755097 May 2017 CN
106755424 May 2017 CN
106801056 Jun 2017 CN
106834323 Jun 2017 CN
106834341 Jun 2017 CN
106834347 Jun 2017 CN
106845151 Jun 2017 CN
106868008 Jun 2017 CN
106868031 Jun 2017 CN
106906240 Jun 2017 CN
106906242 Jun 2017 CN
106916820 Jul 2017 CN
106916852 Jul 2017 CN
106939303 Jul 2017 CN
106947750 Jul 2017 CN
106947780 Jul 2017 CN
106957830 Jul 2017 CN
106957831 Jul 2017 CN
106957844 Jul 2017 CN
106957855 Jul 2017 CN
106957858 Jul 2017 CN
106967697 Jul 2017 CN
106967726 Jul 2017 CN
106978428 Jul 2017 CN
106987570 Jul 2017 CN
106987757 Jul 2017 CN
107012164 Aug 2017 CN
107012174 Aug 2017 CN
107012213 Aug 2017 CN
107012250 Aug 2017 CN
107022562 Aug 2017 CN
107034188 Aug 2017 CN
107034218 Aug 2017 CN
107034229 Aug 2017 CN
107043775 Aug 2017 CN
107043779 Aug 2017 CN
107043787 Aug 2017 CN
107058320 Aug 2017 CN
107058328 Aug 2017 CN
107058358 Aug 2017 CN
107058372 Aug 2017 CN
107083392 Aug 2017 CN
107099533 Aug 2017 CN
107099850 Aug 2017 CN
107119053 Sep 2017 CN
107119071 Sep 2017 CN
107129999 Sep 2017 CN
107130000 Sep 2017 CN
107142272 Sep 2017 CN
107142282 Sep 2017 CN
107177591 Sep 2017 CN
107177595 Sep 2017 CN
107177625 Sep 2017 CN
107177631 Sep 2017 CN
107190006 Sep 2017 CN
107190008 Sep 2017 CN
107217042 Sep 2017 CN
107217075 Sep 2017 CN
107227307 Oct 2017 CN
107227352 Oct 2017 CN
107236737 Oct 2017 CN
107236739 Oct 2017 CN
107236741 Oct 2017 CN
107245502 Oct 2017 CN
107254485 Oct 2017 CN
107266541 Oct 2017 CN
107267515 Oct 2017 CN
107287245 Oct 2017 CN
107298701 Oct 2017 CN
107299114 Oct 2017 CN
107304435 Oct 2017 CN
107312785 Nov 2017 CN
107312793 Nov 2017 CN
107312795 Nov 2017 CN
107312798 Nov 2017 CN
107326042 Nov 2017 CN
107326046 Nov 2017 CN
107354156 Nov 2017 CN
107354173 Nov 2017 CN
107356793 Nov 2017 CN
107362372 Nov 2017 CN
107365786 Nov 2017 CN
107365804 Nov 2017 CN
107384894 Nov 2017 CN
107384922 Nov 2017 CN
107384926 Nov 2017 CN
107400677 Nov 2017 CN
107418974 Dec 2017 CN
107435051 Dec 2017 CN
107435069 Dec 2017 CN
107446922 Dec 2017 CN
107446923 Dec 2017 CN
107446924 Dec 2017 CN
107446932 Dec 2017 CN
107446951 Dec 2017 CN
107446954 Dec 2017 CN
107460196 Dec 2017 CN
107474129 Dec 2017 CN
107475300 Dec 2017 CN
107488649 Dec 2017 CN
107502608 Dec 2017 CN
107502618 Dec 2017 CN
107513531 Dec 2017 CN
107519492 Dec 2017 CN
107523567 Dec 2017 CN
107523583 Dec 2017 CN
107541525 Jan 2018 CN
107557373 Jan 2018 CN
107557378 Jan 2018 CN
107557381 Jan 2018 CN
107557390 Jan 2018 CN
107557393 Jan 2018 CN
107557394 Jan 2018 CN
107557455 Jan 2018 CN
107574179 Jan 2018 CN
107586777 Jan 2018 CN
107586779 Jan 2018 CN
107604003 Jan 2018 CN
107619829 Jan 2018 CN
107619837 Jan 2018 CN
107630006 Jan 2018 CN
107630041 Jan 2018 CN
107630042 Jan 2018 CN
107630043 Jan 2018 CN
107641631 Jan 2018 CN
107653256 Feb 2018 CN
107686848 Feb 2018 CN
206970581 Feb 2018 CN
107760652 Mar 2018 CN
107760663 Mar 2018 CN
107760684 Mar 2018 CN
107760715 Mar 2018 CN
107784200 Mar 2018 CN
107794272 Mar 2018 CN
107794276 Mar 2018 CN
107815463 Mar 2018 CN
107828738 Mar 2018 CN
107828794 Mar 2018 CN
107828826 Mar 2018 CN
107828874 Mar 2018 CN
107858346 Mar 2018 CN
107858373 Mar 2018 CN
107880132 Apr 2018 CN
107881184 Apr 2018 CN
107893074 Apr 2018 CN
107893075 Apr 2018 CN
107893076 Apr 2018 CN
107893080 Apr 2018 CN
107893086 Apr 2018 CN
107904261 Apr 2018 CN
107937427 Apr 2018 CN
107937432 Apr 2018 CN
107937501 Apr 2018 CN
107974466 May 2018 CN
107988229 May 2018 CN
107988246 May 2018 CN
107988256 May 2018 CN
107988268 May 2018 CN
108018316 May 2018 CN
108034656 May 2018 CN
108048466 May 2018 CN
108102940 Jun 2018 CN
108103090 Jun 2018 CN
108103092 Jun 2018 CN
108103098 Jun 2018 CN
108103586 Jun 2018 CN
108148835 Jun 2018 CN
108148837 Jun 2018 CN
108148873 Jun 2018 CN
108192956 Jun 2018 CN
108251423 Jul 2018 CN
108251451 Jul 2018 CN
108251452 Jul 2018 CN
108342480 Jul 2018 CN
108359691 Aug 2018 CN
108359712 Aug 2018 CN
108384784 Aug 2018 CN
108396027 Aug 2018 CN
108410877 Aug 2018 CN
108410906 Aug 2018 CN
108410907 Aug 2018 CN
108410911 Aug 2018 CN
108424931 Aug 2018 CN
108441519 Aug 2018 CN
108441520 Aug 2018 CN
108486108 Sep 2018 CN
108486111 Sep 2018 CN
108486145 Sep 2018 CN
108486146 Sep 2018 CN
108486154 Sep 2018 CN
108486159 Sep 2018 CN
108486234 Sep 2018 CN
108504657 Sep 2018 CN
108504685 Sep 2018 CN
108504693 Sep 2018 CN
108546712 Sep 2018 CN
108546717 Sep 2018 CN
108546718 Sep 2018 CN
108559730 Sep 2018 CN
108559732 Sep 2018 CN
108559745 Sep 2018 CN
108559760 Sep 2018 CN
108570479 Sep 2018 CN
108588071 Sep 2018 CN
108588123 Sep 2018 CN
108588128 Sep 2018 CN
108588182 Sep 2018 CN
108610399 Oct 2018 CN
108611364 Oct 2018 CN
108624622 Oct 2018 CN
108642053 Oct 2018 CN
108642055 Oct 2018 CN
108642077 Oct 2018 CN
108642078 Oct 2018 CN
108642090 Oct 2018 CN
108690844 Oct 2018 CN
108707604 Oct 2018 CN
108707620 Oct 2018 CN
108707621 Oct 2018 CN
108707628 Oct 2018 CN
108707629 Oct 2018 CN
108715850 Oct 2018 CN
108728476 Nov 2018 CN
108728486 Nov 2018 CN
108753772 Nov 2018 CN
108753783 Nov 2018 CN
108753813 Nov 2018 CN
108753817 Nov 2018 CN
108753832 Nov 2018 CN
108753835 Nov 2018 CN
108753836 Nov 2018 CN
108795902 Nov 2018 CN
108822217 Nov 2018 CN
108823248 Nov 2018 CN
108823249 Nov 2018 CN
108823291 Nov 2018 CN
108841845 Nov 2018 CN
108853133 Nov 2018 CN
108866093 Nov 2018 CN
108893529 Nov 2018 CN
108913664 Nov 2018 CN
108913691 Nov 2018 CN
108913714 Nov 2018 CN
108913717 Nov 2018 CN
208034188 Nov 2018 CN
109517841 Mar 2019 CN
0264166 Apr 1988 EP
0321201 Jun 1989 EP
0519463 Dec 1992 EP
2604255 Jun 2013 EP
2840140 Feb 2015 EP
2877490 Jun 2015 EP
2966170 Jan 2016 EP
3009511 Apr 2016 EP
3031921 Jun 2016 EP
3045537 Jul 2016 EP
3115457 Jan 2017 EP
3144390 Mar 2017 EP
3199632 Aug 2017 EP
3216867 Sep 2017 EP
3252160 Dec 2017 EP
3450553 Dec 2019 EP
2740248 Feb 2020 ES
2528177 Jan 2016 GB
2531454 Apr 2016 GB
2542653 Mar 2017 GB
1208045 Feb 2016 HK
2007-501626 Feb 2007 JP
2008-515405 May 2008 JP
2010-033344 Feb 2010 JP
2010-535744 Nov 2010 JP
2010-539929 Dec 2010 JP
2011-081011 Apr 2011 JP
2011-523353 Aug 2011 JP
2012-525146 Oct 2012 JP
2012-210172 Nov 2012 JP
2012-531909 Dec 2012 JP
2015-523856 Aug 2015 JP
2015-532654 Nov 2015 JP
2016-525888 Sep 2016 JP
2016-534132 Nov 2016 JP
2017-500035 Jan 2017 JP
2018-521045 Aug 2018 JP
6629734 Jan 2020 JP
6633524 Jan 2020 JP
101584933 Jan 2016 KR
2016-0050069 May 2016 KR
20160133380 Nov 2016 KR
20170037025 Apr 2017 KR
20170037028 Apr 2017 KR
101748575 Jun 2017 KR
20170128137 Nov 2017 KR
2018-0022465 Mar 2018 KR
2016104674 Aug 2017 RU
2634395 Oct 2017 RU
2652899 May 2018 RU
2015128057 Mar 2019 RU
2015128098 Mar 2019 RU
2687451 May 2019 RU
2019112514 Jun 2019 RU
2019127300 Sep 2019 RU
2701850 Oct 2019 RU
10201707569 Oct 2017 SG
10201710486 Jan 2018 SG
10201710487 Jan 2018 SG
10201710488 Jan 2018 SG
I608100 Dec 2017 TW
2018-29773 Aug 2018 TW
WO 1990002809 Mar 1990 WO
WO 1991003162 Mar 1991 WO
WO 1991016024 Oct 1991 WO
WO 1991017271 Nov 1991 WO
WO 1991017424 Nov 1991 WO
WO 1992006188 Apr 1992 WO
WO 1992006200 Apr 1992 WO
WO 1992007065 Apr 1992 WO
WO 1993015187 Aug 1993 WO
WO 1993024641 Dec 1993 WO
WO 1994018316 Aug 1994 WO
WO 1994026877 Nov 1994 WO
WO 1996004403 Feb 1996 WO
WO 1996010640 Apr 1996 WO
WO 1998032845 Jul 1998 WO
WO 2001036452 May 2001 WO
WO 2001038547 May 2001 WO
WO 2002059296 Aug 2002 WO
WO 2002068676 Sep 2002 WO
WO 2002103028 Dec 2002 WO
WO 2004007684 Jan 2004 WO
WO 2005014791 Feb 2005 WO
WO 2005019415 Mar 2005 WO
WO 2006002547 Jan 2006 WO
WO 2006042112 Apr 2006 WO
WO 2007025097 Mar 2007 WO
WO 2007037444 Apr 2007 WO
WO 2007066923 Jun 2007 WO
WO 2007136815 Nov 2007 WO
WO 2007143574 Dec 2007 WO
WO 2008005529 Jan 2008 WO
WO 2008108989 Sep 2008 WO
WO 2009002418 Dec 2008 WO
WO 2009098290 Aug 2009 WO
WO 2009134808 Nov 2009 WO
WO 2010011961 Jan 2010 WO
WO 2010012902 Feb 2010 WO
WO 2010028347 Mar 2010 WO
WO 2010054108 May 2010 WO
WO 2010054154 May 2010 WO
WO 2010068289 Jun 2010 WO
WO 2010075424 Jul 2010 WO
WO 2010102257 Sep 2010 WO
WO 2010104749 Sep 2010 WO
WO 2010129019 Nov 2010 WO
WO 2010129023 Nov 2010 WO
WO 2010132092 Nov 2010 WO
WO 2010144150 Dec 2010 WO
WO 2011002503 Jan 2011 WO
WO 2011017293 Feb 2011 WO
WO 2011053868 May 2011 WO
WO 2011053982 May 2011 WO
WO 2011068810 Jun 2011 WO
WO 2011075627 Jun 2011 WO
WO 2011091311 Jul 2011 WO
WO 2011091396 Jul 2011 WO
WO 2011109031 Sep 2011 WO
WO 2011143124 Nov 2011 WO
WO 2011147590 Dec 2011 WO
WO 2011159369 Dec 2011 WO
WO 2012054726 Apr 2012 WO
WO 2012065043 May 2012 WO
WO 2012088381 Jun 2012 WO
WO 2012125445 Sep 2012 WO
WO 2012138927 Oct 2012 WO
WO 2012149470 Nov 2012 WO
WO 2012158985 Nov 2012 WO
WO 2012158986 Nov 2012 WO
WO 2012164565 Dec 2012 WO
WO 2012170930 Dec 2012 WO
WO 2013012674 Jan 2013 WO
WO 2013013105 Jan 2013 WO
WO 2013039857 Mar 2013 WO
WO 2013039861 Mar 2013 WO
WO 2013045632 Apr 2013 WO
WO 2013047844 Apr 2013 WO
WO 2013066438 May 2013 WO
WO 2013086441 Jun 2013 WO
WO 2013086444 Jun 2013 WO
WO 2013098244 Jul 2013 WO
WO 2013119602 Aug 2013 WO
WO 2013126794 Aug 2013 WO
WO 2013130824 Sep 2013 WO
WO 2013141680 Sep 2013 WO
WO 2013142578 Sep 2013 WO
WO 2013152359 Oct 2013 WO
WO 2013160230 Oct 2013 WO
WO 2013166315 Nov 2013 WO
WO 2013169398 Nov 2013 WO
WO 2013169802 Nov 2013 WO
WO 2013176772 Nov 2013 WO
WO 2013176915 Nov 2013 WO
WO 2013176916 Nov 2013 WO
WO 2013181440 Dec 2013 WO
WO 2013186754 Dec 2013 WO
WO 2013188037 Dec 2013 WO
WO 2013188522 Dec 2013 WO
WO 2013188638 Dec 2013 WO
WO 2013192278 Dec 2013 WO
WO 2013142378 Jan 2014 WO
WO 2014004336 Jan 2014 WO
WO 2014005042 Jan 2014 WO
WO 2014011237 Jan 2014 WO
WO 2014011901 Jan 2014 WO
WO 2014018423 Jan 2014 WO
WO 2014020608 Feb 2014 WO
WO 2014022120 Feb 2014 WO
WO 2014022702 Feb 2014 WO
WO 2014036219 Mar 2014 WO
WO 2014039513 Mar 2014 WO
WO 2014039523 Mar 2014 WO
WO 2014039585 Mar 2014 WO
WO 2014039684 Mar 2014 WO
WO 2014039692 Mar 2014 WO
WO 2014039702 Mar 2014 WO
WO 2014039872 Mar 2014 WO
WO 2014039970 Mar 2014 WO
WO 2014041327 Mar 2014 WO
WO 2014043143 Mar 2014 WO
WO 2014047103 Mar 2014 WO
WO 2014055782 Apr 2014 WO
WO 2014059173 Apr 2014 WO
WO 2014059255 Apr 2014 WO
WO 2014065596 May 2014 WO
WO 2014066505 May 2014 WO
WO 2014068346 May 2014 WO
WO 2014070887 May 2014 WO
WO 2014071006 May 2014 WO
WO 2014071219 May 2014 WO
WO 2014071235 May 2014 WO
WO 2014072941 May 2014 WO
WO 2014081729 May 2014 WO
WO 2014081730 May 2014 WO
WO 2014081855 May 2014 WO
WO 2014082644 Jun 2014 WO
WO 2014085261 Jun 2014 WO
WO 2014085593 Jun 2014 WO
WO 2014085830 Jun 2014 WO
WO 2014089212 Jun 2014 WO
WO 2014089290 Jun 2014 WO
WO 2014089348 Jun 2014 WO
WO 2014089513 Jun 2014 WO
WO 2014089533 Jun 2014 WO
WO 2014089541 Jun 2014 WO
WO 2014093479 Jun 2014 WO
WO 2014093595 Jun 2014 WO
WO 2014093622 Jun 2014 WO
WO 2014093635 Jun 2014 WO
WO 2014093655 Jun 2014 WO
WO 2014093661 Jun 2014 WO
WO 2014093694 Jun 2014 WO
WO 2014093701 Jun 2014 WO
WO 2014093709 Jun 2014 WO
WO 2014093712 Jun 2014 WO
WO 2014093718 Jun 2014 WO
WO 2014093736 Jun 2014 WO
WO 2014093768 Jun 2014 WO
WO 2014093852 Jun 2014 WO
WO 2014096972 Jun 2014 WO
WO 2014099744 Jun 2014 WO
WO 2014099750 Jun 2014 WO
WO 2014104878 Jul 2014 WO
WO 2014110006 Jul 2014 WO
WO 2014110552 Jul 2014 WO
WO 2014113493 Jul 2014 WO
WO 2014123967 Aug 2014 WO
WO 2014124226 Aug 2014 WO
WO 2014125668 Aug 2014 WO
WO 2014127287 Aug 2014 WO
WO 2014128324 Aug 2014 WO
WO 2014128659 Aug 2014 WO
WO 2014130706 Aug 2014 WO
WO 2014130955 Aug 2014 WO
WO 2014131833 Sep 2014 WO
WO 2014138379 Sep 2014 WO
WO 2014143381 Sep 2014 WO
WO 2014144094 Sep 2014 WO
WO 2014144155 Sep 2014 WO
WO 2014144288 Sep 2014 WO
WO 2014144592 Sep 2014 WO
WO 2014144761 Sep 2014 WO
WO 2014144951 Sep 2014 WO
WO 2014145599 Sep 2014 WO
WO 2014145736 Sep 2014 WO
WO 2014150624 Sep 2014 WO
WO 2014152432 Sep 2014 WO
WO 2014152940 Sep 2014 WO
WO 2014153118 Sep 2014 WO
WO 2014153470 Sep 2014 WO
WO 2014158593 Oct 2014 WO
WO 2014161821 Oct 2014 WO
WO 2014164466 Oct 2014 WO
WO 2014165177 Oct 2014 WO
WO 2014165349 Oct 2014 WO
WO 2014165612 Oct 2014 WO
WO 2014165707 Oct 2014 WO
WO 2014165825 Oct 2014 WO
WO 2014172458 Oct 2014 WO
WO 2014172470 Oct 2014 WO
WO 2014172489 Oct 2014 WO
WO 2014173955 Oct 2014 WO
WO 2014182700 Nov 2014 WO
WO 2014183071 Nov 2014 WO
WO 2014184143 Nov 2014 WO
WO 2014184741 Nov 2014 WO
WO 2014184744 Nov 2014 WO
WO 2014186585 Nov 2014 WO
WO 2014186686 Nov 2014 WO
WO 2014190181 Nov 2014 WO
WO 2014191128 Dec 2014 WO
WO 2014191518 Dec 2014 WO
WO 2014191521 Dec 2014 WO
WO 2014191525 Dec 2014 WO
WO 2014191527 Dec 2014 WO
WO 2014193583 Dec 2014 WO
WO 2014194190 Dec 2014 WO
WO 2014197568 Dec 2014 WO
WO 2014197748 Dec 2014 WO
WO 2014199358 Dec 2014 WO
WO 2014200659 Dec 2014 WO
WO 2014201015 Dec 2014 WO
WO 2014204578 Dec 2014 WO
WO 2014204723 Dec 2014 WO
WO 2014204724 Dec 2014 WO
WO 2014204725 Dec 2014 WO
WO 2014204726 Dec 2014 WO
WO 2014204727 Dec 2014 WO
WO 2014204728 Dec 2014 WO
WO 2014204729 Dec 2014 WO
WO 2014205192 Dec 2014 WO
WO 2014207043 Dec 2014 WO
WO 2015002780 Jan 2015 WO
WO 2015004241 Jan 2015 WO
WO 2015006290 Jan 2015 WO
WO 2015006294 Jan 2015 WO
WO 2015006437 Jan 2015 WO
WO 2015006498 Jan 2015 WO
WO 2015006747 Jan 2015 WO
WO 2015007194 Jan 2015 WO
WO 2015010114 Jan 2015 WO
WO 2015011483 Jan 2015 WO
WO 2015013583 Jan 2015 WO
WO 2015017866 Feb 2015 WO
WO 2015018503 Feb 2015 WO
WO 2015021353 Feb 2015 WO
WO 2015021426 Feb 2015 WO
WO 2015021990 Feb 2015 WO
WO 2015024017 Feb 2015 WO
WO 2015024986 Feb 2015 WO
WO 2015026883 Feb 2015 WO
WO 2015026885 Feb 2015 WO
WO 2015026886 Feb 2015 WO
WO 2015026887 Feb 2015 WO
WO 2015027134 Feb 2015 WO
WO 2015028969 Mar 2015 WO
WO 2015030881 Mar 2015 WO
WO 2015031619 Mar 2015 WO
WO 2015031775 Mar 2015 WO
WO 2015032494 Mar 2015 WO
WO 2015033293 Mar 2015 WO
WO 2015034872 Mar 2015 WO
WO 2015034885 Mar 2015 WO
WO 2015035136 Mar 2015 WO
WO 2015035139 Mar 2015 WO
WO 2015035162 Mar 2015 WO
WO 2015040075 Mar 2015 WO
WO 2015040402 Mar 2015 WO
WO 2015042393 Mar 2015 WO
WO 2015042585 Mar 2015 WO
WO 2015048577 Apr 2015 WO
WO 2015048690 Apr 2015 WO
WO 2015048707 Apr 2015 WO
WO 2015048801 Apr 2015 WO
WO 2015049897 Apr 2015 WO
WO 2015051191 Apr 2015 WO
WO 2015052133 Apr 2015 WO
WO 2015052231 Apr 2015 WO
WO 2015052335 Apr 2015 WO
WO 2015053995 Apr 2015 WO
WO 2015054253 Apr 2015 WO
WO 2015054315 Apr 2015 WO
WO 2015057671 Apr 2015 WO
WO 2015057834 Apr 2015 WO
WO 2015057852 Apr 2015 WO
WO 2015057976 Apr 2015 WO
WO 2015057980 Apr 2015 WO
WO 2015059265 Apr 2015 WO
WO 2015065964 May 2015 WO
WO 2015066119 May 2015 WO
WO 2015066634 May 2015 WO
WO 2015066636 May 2015 WO
WO 2015066637 May 2015 WO
WO 2015066638 May 2015 WO
WO 2015066643 May 2015 WO
WO 2015069682 May 2015 WO
WO 2015070083 May 2015 WO
WO 2015070193 May 2015 WO
WO 2015070212 May 2015 WO
WO 2015071474 May 2015 WO
WO 2015073683 May 2015 WO
WO 2015073867 May 2015 WO
WO 2015073990 May 2015 WO
WO 2015075056 May 2015 WO
WO 2015075154 May 2015 WO
WO 2015075175 May 2015 WO
WO 2015075195 May 2015 WO
WO 2015075557 May 2015 WO
WO 2015077058 May 2015 WO
WO 2015077290 May 2015 WO
WO 2015077318 May 2015 WO
WO 2015079056 Jun 2015 WO
WO 2015079057 Jun 2015 WO
WO 2015086795 Jun 2015 WO
WO 2015086798 Jun 2015 WO
WO 2015088643 Jun 2015 WO
WO 2015089046 Jun 2015 WO
WO 2015089077 Jun 2015 WO
WO 2015089277 Jun 2015 WO
WO 2015089351 Jun 2015 WO
WO 2015089354 Jun 2015 WO
WO 2015089364 Jun 2015 WO
WO 2015089406 Jun 2015 WO
WO 2015089419 Jun 2015 WO
WO 2015089427 Jun 2015 WO
WO 2015089462 Jun 2015 WO
WO 2015089465 Jun 2015 WO
WO 2015089473 Jun 2015 WO
WO 2015089486 Jun 2015 WO
WO 2015095804 Jun 2015 WO
WO 2015099850 Jul 2015 WO
WO 2015100929 Jul 2015 WO
WO 2015103057 Jul 2015 WO
WO 2015103153 Jul 2015 WO
WO 2015105928 Jul 2015 WO
WO 2015108993 Jul 2015 WO
WO 2015109752 Jul 2015 WO
WO 2015110474 Jul 2015 WO
WO 2015112790 Jul 2015 WO
WO 2015112896 Jul 2015 WO
WO 2015113063 Jul 2015 WO
WO 2015114365 Aug 2015 WO
WO 2015115903 Aug 2015 WO
WO 2015116686 Aug 2015 WO
WO 2015116969 Aug 2015 WO
WO 2015117021 Aug 2015 WO
WO 2015117041 Aug 2015 WO
WO 2015117081 Aug 2015 WO
WO 2015118156 Aug 2015 WO
WO 2015119941 Aug 2015 WO
WO 2015121454 Aug 2015 WO
WO 2015122967 Aug 2015 WO
WO 2015123339 Aug 2015 WO
WO 2015124715 Aug 2015 WO
WO 2015124718 Aug 2015 WO
WO 2015126927 Aug 2015 WO
WO 2015127428 Aug 2015 WO
WO 2015127439 Aug 2015 WO
WO 2015129686 Sep 2015 WO
WO 2015131101 Sep 2015 WO
WO 2015133554 Sep 2015 WO
WO 2015134121 Sep 2015 WO
WO 2015134812 Sep 2015 WO
WO 2015136001 Sep 2015 WO
WO 2015138510 Sep 2015 WO
WO 2015138739 Sep 2015 WO
WO 2015138855 Sep 2015 WO
WO 2015138870 Sep 2015 WO
WO 2015139008 Sep 2015 WO
WO 2015139139 Sep 2015 WO
WO 2015143046 Sep 2015 WO
WO 2015143177 Sep 2015 WO
WO 2015145417 Oct 2015 WO
WO 2015148431 Oct 2015 WO
WO 2015148670 Oct 2015 WO
WO 2015148680 Oct 2015 WO
WO 2015148760 Oct 2015 WO
WO 2015148761 Oct 2015 WO
WO 2015148860 Oct 2015 WO
WO 2015148863 Oct 2015 WO
WO 2015153760 Oct 2015 WO
WO 2015153780 Oct 2015 WO
WO 2015153789 Oct 2015 WO
WO 2015153791 Oct 2015 WO
WO 2015153889 Oct 2015 WO
WO 2015153940 Oct 2015 WO
WO 2015155341 Oct 2015 WO
WO 2015155686 Oct 2015 WO
WO 2015157070 Oct 2015 WO
WO 2015157534 Oct 2015 WO
WO 2015159068 Oct 2015 WO
WO 2015159086 Oct 2015 WO
WO 2015159087 Oct 2015 WO
WO 2015160683 Oct 2015 WO
WO 2015161276 Oct 2015 WO
WO 2015163733 Oct 2015 WO
WO 2015164740 Oct 2015 WO
WO 2015164748 Oct 2015 WO
WO 2015165274 Nov 2015 WO
WO 2015165275 Nov 2015 WO
WO 2015165276 Nov 2015 WO
WO 2015166272 Nov 2015 WO
WO 2015167766 Nov 2015 WO
WO 2015167956 Nov 2015 WO
WO 2015168125 Nov 2015 WO
WO 2015168158 Nov 2015 WO
WO 2015168404 Nov 2015 WO
WO 2015168547 Nov 2015 WO
WO 2015168800 Nov 2015 WO
WO 2015171603 Nov 2015 WO
WO 2015171894 Nov 2015 WO
WO 2015171932 Nov 2015 WO
WO 2015172128 Nov 2015 WO
WO 2015173436 Nov 2015 WO
WO 2015175642 Nov 2015 WO
WO 2015179540 Nov 2015 WO
WO 2015183025 Dec 2015 WO
WO 2015183026 Dec 2015 WO
WO 2015183885 Dec 2015 WO
WO 2015184259 Dec 2015 WO
WO 2015184262 Dec 2015 WO
WO 2015184268 Dec 2015 WO
WO 2015188056 Dec 2015 WO
WO 2015188065 Dec 2015 WO
WO 2015188094 Dec 2015 WO
WO 2015188109 Dec 2015 WO
WO 2015188132 Dec 2015 WO
WO 2015188135 Dec 2015 WO
WO 2015188191 Dec 2015 WO
WO 2015189693 Dec 2015 WO
WO 2015191693 Dec 2015 WO
WO 2015191899 Dec 2015 WO
WO 2015191911 Dec 2015 WO
WO 2015193858 Dec 2015 WO
WO 2015195547 Dec 2015 WO
WO 2015195621 Dec 2015 WO
WO 2015195798 Dec 2015 WO
WO 2015198020 Dec 2015 WO
WO 2015200334 Dec 2015 WO
WO 2015200378 Dec 2015 WO
WO 2015200555 Dec 2015 WO
WO 2015200805 Dec 2015 WO
WO 2016001978 Jan 2016 WO
WO 2016004010 Jan 2016 WO
WO 2016004318 Jan 2016 WO
WO 2016007347 Jan 2016 WO
WO 2016007604 Jan 2016 WO
WO 2016007948 Jan 2016 WO
WO 2016011080 Jan 2016 WO
WO 2016011210 Jan 2016 WO
WO 2016011428 Jan 2016 WO
WO 2016012544 Jan 2016 WO
WO 2016012552 Jan 2016 WO
WO 2016014409 Jan 2016 WO
WO 2016014565 Jan 2016 WO
WO 2016014794 Jan 2016 WO
WO 2016014837 Jan 2016 WO
WO 2016016119 Feb 2016 WO
WO 2016016358 Feb 2016 WO
WO 2016019144 Feb 2016 WO
WO 2016020399 Feb 2016 WO
WO 2016021972 Feb 2016 WO
WO 2016021973 Feb 2016 WO
WO 2016022363 Feb 2016 WO
WO 2016022866 Feb 2016 WO
WO 2016022931 Feb 2016 WO
WO 2016025131 Feb 2016 WO
WO 2016025469 Feb 2016 WO
WO 2016025759 Feb 2016 WO
WO 2016026444 Feb 2016 WO
WO 2016028682 Feb 2016 WO
WO 2016028843 Feb 2016 WO
WO 2016028887 Feb 2016 WO
WO 2016033088 Mar 2016 WO
WO 2016033230 Mar 2016 WO
WO 2016033246 Mar 2016 WO
WO 2016033298 Mar 2016 WO
WO 2016035044 Mar 2016 WO
WO 2016036754 Mar 2016 WO
WO 2016037157 Mar 2016 WO
WO 2016040030 Mar 2016 WO
WO 2016040594 Mar 2016 WO
WO 2016044182 Mar 2016 WO
WO 2016044416 Mar 2016 WO
WO 2016046635 Mar 2016 WO
WO 2016049024 Mar 2016 WO
WO 2016049163 Mar 2016 WO
WO 2016049230 Mar 2016 WO
WO 2016049251 Mar 2016 WO
WO 2016049258 Mar 2016 WO
WO 2016053397 Apr 2016 WO
WO 2016054326 Apr 2016 WO
WO 2016057061 Apr 2016 WO
WO 2016057821 Apr 2016 WO
WO 2016057835 Apr 2016 WO
WO 2016057850 Apr 2016 WO
WO 2016057951 Apr 2016 WO
WO 2016057961 Apr 2016 WO
WO 2016061073 Apr 2016 WO
WO 2016061374 Apr 2016 WO
WO 2016061481 Apr 2016 WO
WO 2016061523 Apr 2016 WO
WO 2016064894 Apr 2016 WO
WO 2016065364 Apr 2016 WO
WO 2016069282 May 2016 WO
WO 2016069283 May 2016 WO
WO 2016069591 May 2016 WO
WO 2016069774 May 2016 WO
WO 2016069910 May 2016 WO
WO 2016069912 May 2016 WO
WO 2016070037 May 2016 WO
WO 2016070070 May 2016 WO
WO 2016070129 May 2016 WO
WO 2016072399 May 2016 WO
WO 2016072936 May 2016 WO
WO 2016073433 May 2016 WO
WO 2016073559 May 2016 WO
WO 2016073990 May 2016 WO
WO 2016075662 May 2016 WO
WO 2016076672 May 2016 WO
WO 2016077273 May 2016 WO
WO 2016077350 May 2016 WO
WO 2016080097 May 2016 WO
WO 2016080795 May 2016 WO
WO 2016081923 May 2016 WO
WO 2016081924 May 2016 WO
WO 2016082135 Jun 2016 WO
WO 2016083811 Jun 2016 WO
WO 2016084084 Jun 2016 WO
WO 2016084088 Jun 2016 WO
WO 2016086177 Jun 2016 WO
WO 2016089433 Jun 2016 WO
WO 2016089866 Jun 2016 WO
WO 2016089883 Jun 2016 WO
WO 2016090385 Jun 2016 WO
WO 2016094679 Jun 2016 WO
WO 2016094845 Jun 2016 WO
WO 2016094867 Jun 2016 WO
WO 2016094872 Jun 2016 WO
WO 2016094874 Jun 2016 WO
WO 2016094880 Jun 2016 WO
WO 2016094888 Jun 2016 WO
WO 2016097212 Jun 2016 WO
WO 2016097231 Jun 2016 WO
WO 2016097751 Jun 2016 WO
WO 2016099887 Jun 2016 WO
WO 2016100272 Jun 2016 WO
WO 2016100389 Jun 2016 WO
WO 2016100568 Jun 2016 WO
WO 2016100571 Jun 2016 WO
WO 2016100951 Jun 2016 WO
WO 2016100955 Jun 2016 WO
WO 2016100974 Jun 2016 WO
WO 2016103233 Jun 2016 WO
WO 2016104716 Jun 2016 WO
WO 2016106236 Jun 2016 WO
WO 2016106239 Jun 2016 WO
WO 2016106244 Jun 2016 WO
WO 2016106338 Jun 2016 WO
WO 2016108926 Jul 2016 WO
WO 2016109255 Jul 2016 WO
WO 2016109840 Jul 2016 WO
WO 2016110214 Jul 2016 WO
WO 2016110453 Jul 2016 WO
WO 2016110511 Jul 2016 WO
WO 2016110512 Jul 2016 WO
WO 2016111546 Jul 2016 WO
WO 2016112242 Jul 2016 WO
WO 2016112351 Jul 2016 WO
WO 2016112963 Jul 2016 WO
WO 2016113357 Jul 2016 WO
WO 2016114972 Jul 2016 WO
WO 2016115179 Jul 2016 WO
WO 2016115326 Jul 2016 WO
WO 2016115355 Jul 2016 WO
WO 2016116032 Jul 2016 WO
WO 2016120480 Aug 2016 WO
WO 2016123071 Aug 2016 WO
WO 2016123230 Aug 2016 WO
WO 2016123243 Aug 2016 WO
WO 2016123578 Aug 2016 WO
WO 2016126747 Aug 2016 WO
WO 2016130600 Aug 2016 WO
WO 2016130697 Aug 2016 WO
WO 2016131009 Aug 2016 WO
WO 2016132122 Aug 2016 WO
WO 2016133165 Aug 2016 WO
WO 2016135507 Sep 2016 WO
WO 2016135557 Sep 2016 WO
WO 2016135558 Sep 2016 WO
WO 2016135559 Sep 2016 WO
WO 2016137774 Sep 2016 WO
WO 2016137949 Sep 2016 WO
WO 2016141224 Sep 2016 WO
WO 2016141893 Sep 2016 WO
WO 2016142719 Sep 2016 WO
WO 2016145150 Sep 2016 WO
WO 2016148994 Sep 2016 WO
WO 2016149484 Sep 2016 WO
WO 2016149547 Sep 2016 WO
WO 2016150336 Sep 2016 WO
WO 2016150855 Sep 2016 WO
WO 2016154016 Sep 2016 WO
WO 2016154579 Sep 2016 WO
WO 2016154596 Sep 2016 WO
WO 2016155482 Oct 2016 WO
WO 2016161004 Oct 2016 WO
WO 2016161207 Oct 2016 WO
WO 2016161260 Oct 2016 WO
WO 2016161380 Oct 2016 WO
WO 2016161446 Oct 2016 WO
WO 2016164356 Oct 2016 WO
WO 2016164797 Oct 2016 WO
WO 2016166340 Oct 2016 WO
WO 2016167300 Oct 2016 WO
WO 2016168631 Oct 2016 WO
WO 2016170484 Oct 2016 WO
WO 2016172359 Oct 2016 WO
WO 2016172727 Oct 2016 WO
WO 2016174056 Nov 2016 WO
WO 2016174151 Nov 2016 WO
WO 2016174250 Nov 2016 WO
WO 2016176191 Nov 2016 WO
WO 2016176404 Nov 2016 WO
WO 2016176690 Nov 2016 WO
WO 2016177682 Nov 2016 WO
WO 2016178207 Nov 2016 WO
WO 2016179038 Nov 2016 WO
WO 2016179112 Nov 2016 WO
WO 2016181357 Nov 2016 WO
WO 2016182893 Nov 2016 WO
WO 2016182917 Nov 2016 WO
WO 2016182959 Nov 2016 WO
WO 2016183236 Nov 2016 WO
WO 2016183298 Nov 2016 WO
WO 2016183345 Nov 2016 WO
WO 2016183402 Nov 2016 WO
WO 2016183438 Nov 2016 WO
WO 2016183448 Nov 2016 WO
WO 2016184955 Nov 2016 WO
WO 2016184989 Nov 2016 WO
WO 2016185411 Nov 2016 WO
WO 2016186745 Nov 2016 WO
WO 2016186772 Nov 2016 WO
WO 2016186946 Nov 2016 WO
WO 2016186953 Nov 2016 WO
WO 2016187717 Dec 2016 WO
WO 2016187904 Dec 2016 WO
WO 2016191684 Dec 2016 WO
WO 2016191869 Dec 2016 WO
WO 2016196273 Dec 2016 WO
WO 2016196282 Dec 2016 WO
WO 2016196308 Dec 2016 WO
WO 2016196361 Dec 2016 WO
WO 2016196499 Dec 2016 WO
WO 2016196539 Dec 2016 WO
WO 2016196655 Dec 2016 WO
WO 2016196805 Dec 2016 WO
WO 2016196887 Dec 2016 WO
WO 2016197132 Dec 2016 WO
WO 2016197133 Dec 2016 WO
WO 2016197354 Dec 2016 WO
WO 2016197355 Dec 2016 WO
WO 2016197356 Dec 2016 WO
WO 2016197357 Dec 2016 WO
WO 2016197358 Dec 2016 WO
WO 2016197359 Dec 2016 WO
WO 2016197360 Dec 2016 WO
WO 2016197361 Dec 2016 WO
WO 2016197362 Dec 2016 WO
WO 2016198361 Dec 2016 WO
WO 2016198500 Dec 2016 WO
WO 2016200263 Dec 2016 WO
WO 2016201047 Dec 2016 WO
WO 2016201138 Dec 2016 WO
WO 2016201152 Dec 2016 WO
WO 2016201153 Dec 2016 WO
WO 2016201155 Dec 2016 WO
WO 2016205276 Dec 2016 WO
WO 2016205613 Dec 2016 WO
WO 2016205623 Dec 2016 WO
WO 2016205680 Dec 2016 WO
WO 2016205688 Dec 2016 WO
WO 2016205703 Dec 2016 WO
WO 2016205711 Dec 2016 WO
WO 2016205728 Dec 2016 WO
WO 2016205745 Dec 2016 WO
WO 2016205749 Dec 2016 WO
WO 2016205759 Dec 2016 WO
WO 2016205764 Dec 2016 WO
WO 2017001572 Jan 2017 WO
WO 2017001988 Jan 2017 WO
WO 2017004261 Jan 2017 WO
WO 2017004279 Jan 2017 WO
WO 2017004616 Jan 2017 WO
WO 2017005807 Jan 2017 WO
WO 2017009399 Jan 2017 WO
WO 2017010556 Jan 2017 WO
WO 2017011519 Jan 2017 WO
WO 2017011721 Jan 2017 WO
WO 2017011804 Jan 2017 WO
WO 2017015015 Jan 2017 WO
WO 2017015101 Jan 2017 WO
WO 2017015545 Jan 2017 WO
WO 2017015567 Jan 2017 WO
WO 2017015637 Jan 2017 WO
WO 2017017016 Feb 2017 WO
WO 2017019867 Feb 2017 WO
WO 2017019895 Feb 2017 WO
WO 2017023803 Feb 2017 WO
WO 2017023974 Feb 2017 WO
WO 2017024047 Feb 2017 WO
WO 2017024319 Feb 2017 WO
WO 2017024343 Feb 2017 WO
WO 2017024602 Feb 2017 WO
WO 2017025323 Feb 2017 WO
WO 2017027423 Feb 2017 WO
WO 2017028768 Feb 2017 WO
WO 2017029664 Feb 2017 WO
WO 2017031360 Feb 2017 WO
WO 2017031483 Feb 2017 WO
WO 2017035416 Mar 2017 WO
WO 2017040348 Mar 2017 WO
WO 2017040511 Mar 2017 WO
WO 2017040709 Mar 2017 WO
WO 2017040786 Mar 2017 WO
WO 2017040793 Mar 2017 WO
WO 2017040813 Mar 2017 WO
WO 2017043573 Mar 2017 WO
WO 2017043656 Mar 2017 WO
WO 2017044419 Mar 2017 WO
WO 2017044776 Mar 2017 WO
WO 2017044857 Mar 2017 WO
WO 2017048390 Mar 2017 WO
WO 2017049129 Mar 2017 WO
WO 2017050963 Mar 2017 WO
WO 2017053312 Mar 2017 WO
WO 2017053431 Mar 2017 WO
WO 2017053713 Mar 2017 WO
WO 2017053729 Mar 2017 WO
WO 2017053753 Mar 2017 WO
WO 2017053762 Mar 2017 WO
WO 2017053879 Mar 2017 WO
WO 2017054721 Apr 2017 WO
WO 2017058658 Apr 2017 WO
WO 2017059241 Apr 2017 WO
WO 2017062605 Apr 2017 WO
WO 2017062723 Apr 2017 WO
WO 2017062754 Apr 2017 WO
WO 2017062855 Apr 2017 WO
WO 2017062886 Apr 2017 WO
WO 2017062983 Apr 2017 WO
WO 2017064439 Apr 2017 WO
WO 2017064546 Apr 2017 WO
WO 2017064566 Apr 2017 WO
WO 2017066175 Apr 2017 WO
WO 2017066497 Apr 2017 WO
WO 2017066588 Apr 2017 WO
WO 2017066707 Apr 2017 WO
WO 2017066781 Apr 2017 WO
WO 2017068077 Apr 2017 WO
WO 2017068377 Apr 2017 WO
WO 2017069829 Apr 2017 WO
WO 2017070029 Apr 2017 WO
WO 2017070032 Apr 2017 WO
WO 2017070169 Apr 2017 WO
WO 2017070284 Apr 2017 WO
WO 2017070598 Apr 2017 WO
WO 2017070605 Apr 2017 WO
WO 2017070632 Apr 2017 WO
WO 2017070633 Apr 2017 WO
WO 2017072590 May 2017 WO
WO 2017074526 May 2017 WO
WO 2017074962 May 2017 WO
WO 2017075261 May 2017 WO
WO 2017075335 May 2017 WO
WO 2017075475 May 2017 WO
WO 2017077135 May 2017 WO
WO 2017077329 May 2017 WO
WO 2017078751 May 2017 WO
WO 2017079400 May 2017 WO
WO 2017079428 May 2017 WO
WO 2017079673 May 2017 WO
WO 2017079724 May 2017 WO
WO 2017081097 May 2017 WO
WO 2017081288 May 2017 WO
WO 2017083368 May 2017 WO
WO 2017083722 May 2017 WO
WO 2017083766 May 2017 WO
WO 2017087395 May 2017 WO
WO 2017090724 Jun 2017 WO
WO 2017091510 Jun 2017 WO
WO 2017091630 Jun 2017 WO
WO 2017092201 Jun 2017 WO
WO 2017093370 Jun 2017 WO
WO 2017093969 Jun 2017 WO
WO 2017095111 Jun 2017 WO
WO 2017096041 Jun 2017 WO
WO 2017096237 Jun 2017 WO
WO 2017100158 Jun 2017 WO
WO 2017100431 Jun 2017 WO
WO 2017104404 Jun 2017 WO
WO 2017105251 Jun 2017 WO
WO 2017105350 Jun 2017 WO
WO 2017105991 Jun 2017 WO
WO 2017106414 Jun 2017 WO
WO 2017106528 Jun 2017 WO
WO 2017106537 Jun 2017 WO
WO 2017106569 Jun 2017 WO
WO 2017106616 Jun 2017 WO
WO 2017106657 Jun 2017 WO
WO 2017106767 Jun 2017 WO
WO 2017109134 Jun 2017 WO
WO 2017109757 Jun 2017 WO
WO 2017112620 Jun 2017 WO
WO 2017115268 Jul 2017 WO
WO 2017117395 Jul 2017 WO
WO 2017118598 Jul 2017 WO
WO 2017118720 Jul 2017 WO
WO 2017123609 Jul 2017 WO
WO 2017123910 Jul 2017 WO
WO 2017124086 Jul 2017 WO
WO 2017124100 Jul 2017 WO
WO 2017124652 Jul 2017 WO
WO 2017126987 Jul 2017 WO
WO 2017127807 Jul 2017 WO
WO 2017131237 Aug 2017 WO
WO 2017132112 Aug 2017 WO
WO 2017132580 Aug 2017 WO
WO 2017136520 Aug 2017 WO
WO 2017136629 Aug 2017 WO
WO 2017136794 Aug 2017 WO
WO 2017139264 Aug 2017 WO
WO 2017139505 Aug 2017 WO
WO 2017141173 Aug 2017 WO
WO 2017142835 Aug 2017 WO
WO 2017142999 Aug 2017 WO
WO 2017143042 Aug 2017 WO
WO 2017147056 Aug 2017 WO
WO 2017147278 Aug 2017 WO
WO 2017147432 Aug 2017 WO
WO 2017147446 Aug 2017 WO
WO 2017147555 Aug 2017 WO
WO 2017151444 Sep 2017 WO
WO 2017151719 Sep 2017 WO
WO 2017152015 Sep 2017 WO
WO 2017155717 Sep 2017 WO
WO 2017157422 Sep 2017 WO
WO 2017158153 Sep 2017 WO
WO 2017160689 Sep 2017 WO
WO 2017160752 Sep 2017 WO
WO 2017160890 Sep 2017 WO
WO 2017161068 Sep 2017 WO
WO 2017165826 Sep 2017 WO
WO 2017165862 Sep 2017 WO
WO 2017167712 Oct 2017 WO
WO 2017172644 Oct 2017 WO
WO 2017172645 Oct 2017 WO
WO 2017172860 Oct 2017 WO
WO 2017173004 Oct 2017 WO
WO 2017173054 Oct 2017 WO
WO 2017173092 Oct 2017 WO
WO 2017174329 Oct 2017 WO
WO 2017176529 Oct 2017 WO
WO 2017176806 Oct 2017 WO
WO 2017178590 Oct 2017 WO
WO 2017180694 Oct 2017 WO
WO 2017180711 Oct 2017 WO
WO 2017180915 Oct 2017 WO
WO 2017180926 Oct 2017 WO
WO 2017181107 Oct 2017 WO
WO 2017181735 Oct 2017 WO
WO 2017182468 Oct 2017 WO
WO 2017184334 Oct 2017 WO
WO 2017184768 Oct 2017 WO
WO 2017184786 Oct 2017 WO
WO 2017186550 Nov 2017 WO
WO 2017189308 Nov 2017 WO
WO 2017189336 Nov 2017 WO
WO 2017190041 Nov 2017 WO
WO 2017190257 Nov 2017 WO
WO 2017190664 Nov 2017 WO
WO 2017191210 Nov 2017 WO
WO 2017191274 Nov 2017 WO
WO 2017192172 Nov 2017 WO
WO 2017192512 Nov 2017 WO
WO 2017192544 Nov 2017 WO
WO 2017192573 Nov 2017 WO
WO 2017193029 Nov 2017 WO
WO 2017193053 Nov 2017 WO
WO 2017196768 Nov 2017 WO
WO 2017197038 Nov 2017 WO
WO 2017197238 Nov 2017 WO
WO 2017197301 Nov 2017 WO
WO 2017201476 Nov 2017 WO
WO 2017205290 Nov 2017 WO
WO 2017205423 Nov 2017 WO
WO 2017207589 Dec 2017 WO
WO 2017208247 Dec 2017 WO
WO 2017209809 Dec 2017 WO
WO 2017213896 Dec 2017 WO
WO 2017213898 Dec 2017 WO
WO 2017214460 Dec 2017 WO
WO 2017216392 Dec 2017 WO
WO 2017216771 Dec 2017 WO
WO 2017218185 Dec 2017 WO
WO 2017219027 Dec 2017 WO
WO 2017219033 Dec 2017 WO
WO 2017220751 Dec 2017 WO
WO 2017222370 Dec 2017 WO
WO 2017222773 Dec 2017 WO
WO 2017222834 Dec 2017 WO
WO 2017223107 Dec 2017 WO
WO 2017223330 Dec 2017 WO
WO 2018000657 Jan 2018 WO
WO 2018002719 Jan 2018 WO
WO 2018005117 Jan 2018 WO
WO 2018005289 Jan 2018 WO
WO 2018005691 Jan 2018 WO
WO 2018005782 Jan 2018 WO
WO 2018005873 Jan 2018 WO
WO 201806693 Jan 2018 WO
WO 2018009520 Jan 2018 WO
WO 2018009562 Jan 2018 WO
WO 2018009822 Jan 2018 WO
WO 2018013821 Jan 2018 WO
WO 2018013932 Jan 2018 WO
WO 2018013990 Jan 2018 WO
WO 2018014384 Jan 2018 WO
WO 2018015444 Jan 2018 WO
WO 2018015936 Jan 2018 WO
WO 2018017754 Jan 2018 WO
WO 2018018979 Feb 2018 WO
WO 2018020248 Feb 2018 WO
WO 2018021878 Feb 2018 WO
WO 2018022480 Feb 2018 WO
WO 2018022634 Feb 2018 WO
WO 2018025206 Feb 2018 WO
WO 2018026723 Feb 2018 WO
WO 2018026976 Feb 2018 WO
WO 2018027078 Feb 2018 WO
WO 2018030608 Feb 2018 WO
WO 2018031683 Feb 2018 WO
WO 2018035250 Feb 2018 WO
WO 2018035300 Feb 2018 WO
WO 2018035423 Feb 2018 WO
WO 2018035503 Feb 2018 WO
WO 2018039145 Mar 2018 WO
WO 2018039438 Mar 2018 WO
WO 2018039440 Mar 2018 WO
WO 2018039448 Mar 2018 WO
WO 2018045630 Mar 2018 WO
WO 2018048827 Mar 2018 WO
WO 2018049073 Mar 2018 WO
WO 2018049168 Mar 2018 WO
WO 2018051347 Mar 2018 WO
WO 2018058064 Mar 2018 WO
WO 2018062866 Apr 2018 WO
WO 2018064352 Apr 2018 WO
WO 2018064371 Apr 2018 WO
WO 2018064516 Apr 2018 WO
WO 2018067546 Apr 2018 WO
WO 2018067846 Apr 2018 WO
WO 2018068053 Apr 2018 WO
WO 2018069474 Apr 2018 WO
WO 2018071623 Apr 2018 WO
WO 2018071663 Apr 2018 WO
WO 2018071868 Apr 2018 WO
WO 2018071892 Apr 2018 WO
WO 2018074979 Apr 2018 WO
WO 2018079134 May 2018 WO
WO 2018080573 May 2018 WO
WO 2018081504 May 2018 WO
WO 2018081535 May 2018 WO
WO 2018081728 May 2018 WO
WO 2018083128 May 2018 WO
WO 2018083606 May 2018 WO
WO 2018085288 May 2018 WO
WO 2018085414 May 2018 WO
WO 2018086623 May 2018 WO
WO 2018089664 May 2018 WO
WO 2018093990 May 2018 WO
WO 2018098383 May 2018 WO
WO 2018098480 May 2018 WO
WO 2018098587 Jun 2018 WO
WO 2018099256 Jun 2018 WO
WO 2018103686 Jun 2018 WO
WO 2018106268 Jun 2018 WO
WO 2018107028 Jun 2018 WO
WO 2018107103 Jun 2018 WO
WO 2018107129 Jun 2018 WO
WO 2018108272 Jun 2018 WO
WO 2018109101 Jun 2018 WO
WO 2018111946 Jun 2018 WO
WO 2018111947 Jun 2018 WO
WO 2018112336 Jun 2018 WO
WO 2018112446 Jun 2018 WO
WO 2018119354 Jun 2018 WO
WO 2018119359 Jun 2018 WO
WO 2018120283 Jul 2018 WO
WO 2018130830 Jul 2018 WO
WO 2018135838 Jul 2018 WO
WO 2018136396 Jul 2018 WO
WO 2018138385 Aug 2018 WO
WO 2018142364 Aug 2018 WO
WO 2018148246 Aug 2018 WO
WO 2018148256 Aug 2018 WO
WO 2018148647 Aug 2018 WO
WO 2018149418 Aug 2018 WO
WO 2018149888 Aug 2018 WO
WO 2018149915 Aug 2018 WO
WO 2018152197 Aug 2018 WO
WO 2018152418 Aug 2018 WO
WO 2018154380 Aug 2018 WO
WO 2018154387 Aug 2018 WO
WO 2018154412 Aug 2018 WO
WO 2018154413 Aug 2018 WO
WO 2018154418 Aug 2018 WO
WO 2018154439 Aug 2018 WO
WO 2018154459 Aug 2018 WO
WO 2018154462 Aug 2018 WO
WO 2018156372 Aug 2018 WO
WO 2018156824 Aug 2018 WO
WO 2018161009 Sep 2018 WO
WO 2018165504 Sep 2018 WO
WO 2018165629 Sep 2018 WO
WO 2018170015 Sep 2018 WO
WO 2018170340 Sep 2018 WO
WO 2018175502 Sep 2018 WO
WO 2018176009 Sep 2018 WO
WO 2018177351 Oct 2018 WO
WO 2018179578 Oct 2018 WO
WO 2018183403 Oct 2018 WO
WO 2018189184 Oct 2018 WO
WO 2018191388 Oct 2018 WO
WO 2018195402 Oct 2018 WO
WO 2018195545 Oct 2018 WO
WO 2018195555 Oct 2018 WO
WO 2018197020 Nov 2018 WO
WO 2018197495 Nov 2018 WO
WO 2018202800 Nov 2018 WO
WO 2018204493 Nov 2018 WO
WO 2018208755 Nov 2018 WO
WO 2018208998 Nov 2018 WO
WO 2018209158 Nov 2018 WO
WO 2018209320 Nov 2018 WO
WO 2018213351 Nov 2018 WO
WO 2018213708 Nov 2018 WO
WO 2018213726 Nov 2018 WO
WO 2018213771 Nov 2018 WO
WO 2018213791 Nov 2018 WO
WO 2018217852 Nov 2018 WO
WO 2018217981 Nov 2018 WO
WO 2018218166 Nov 2018 WO
WO 2018218188 Nov 2018 WO
WO 2018218206 Nov 2018 WO
WO 2018226855 Dec 2018 WO
WO 2019005884 Jan 2019 WO
WO 2019005886 Jan 2019 WO
WO 2019010384 Jan 2019 WO
WO 2019023680 Jan 2019 WO
WO 2019051097 Mar 2019 WO
WO 2019079347 Apr 2019 WO
WO 2019084062 May 2019 WO
WO 2019090367 May 2019 WO
WO 2019092042 May 2019 WO
WO 2019118935 Jun 2019 WO
WO 2019118949 Jun 2019 WO
WO 2019123430 Jun 2019 WO
WO 2019139645 Jul 2019 WO
WO 2019139951 Jul 2019 WO
WO 2019147014 Aug 2019 WO
WO 2019161251 Aug 2019 WO
WO 2019168953 Sep 2019 WO
WO 2019183641 Sep 2019 WO
WO 2019217942 Nov 2019 WO
WO 2019226593 Nov 2019 WO
WO 2019226953 Nov 2019 WO
WO 2019236566 Dec 2019 WO
WO 2019241649 Dec 2019 WO
WO 2020014261 Jan 2020 WO
WO 2020028555 Feb 2020 WO
WO 2020028823 Feb 2020 WO
WO 2020041751 Feb 2020 WO
WO 2020047124 Mar 2020 WO
WO 2020051360 Mar 2020 WO
WO 2020086908 Apr 2020 WO
WO 2020092453 May 2020 WO
WO 2020102659 May 2020 WO
WO 2020154500 Jul 2020 WO
WO 2020157008 Aug 2020 WO
WO 2020160071 Aug 2020 WO
WO 2020160517 Aug 2020 WO
WO 2020180975 Sep 2020 WO
WO 2020181178 Sep 2020 WO
WO 2020181180 Sep 2020 WO
WO 2020181193 Sep 2020 WO
WO 2020181195 Sep 2020 WO
WO 2020181202 Sep 2020 WO
WO 2020191153 Sep 2020 WO
WO 2020191171 Sep 2020 WO
WO 2020191233 Sep 2020 WO
WO 2020191234 Sep 2020 WO
WO 2020191239 Sep 2020 WO
WO 2020191241 Sep 2020 WO
WO 2020191242 Sep 2020 WO
WO 2020191243 Sep 2020 WO
WO 2020191245 Sep 2020 WO
WO 2020191246 Sep 2020 WO
WO 2020191248 Sep 2020 WO
WO 2020191249 Sep 2020 WO
WO 2020210751 Oct 2020 WO
WO 2020214842 Oct 2020 WO
WO 2020236982 Nov 2020 WO
WO 2020247587 Dec 2020 WO
WO 2021022043 Feb 2021 WO
WO 2021025750 Feb 2021 WO
WO 2021030666 Feb 2021 WO
WO 2021042047 Mar 2021 WO
WO 2021042062 Mar 2021 WO
WO 2021072328 Apr 2021 WO
WO 2021081264 Apr 2021 WO
WO 2021087182 May 2021 WO
WO 2021108717 Jun 2021 WO
WO 2021138469 Jul 2021 WO
WO 2021155065 Aug 2021 WO
WO 2021158921 Aug 2021 WO
WO 2021158995 Aug 2021 WO
WO 2021158999 Aug 2021 WO
WO 2021178709 Sep 2021 WO
WO 2021178717 Sep 2021 WO
WO 2021178720 Sep 2021 WO
WO 2021178898 Sep 2021 WO
WO 2021222318 Nov 2021 WO
WO 2021226558 Nov 2021 WO
Non-Patent Literature Citations (1994)
Entry
Estacion et al., “A Sodium Channel Gene SCN9A Polymorphism That Increases Nociceptor Excitability”, Ann. Neurol., 2009, vol. 66, pp. 862-866.
Huang et al., “Gain-of-function mutations in sodium channel NaV1.9 in painful neuropathy”, Brain, 2014, vol. 137, pp. 1627-1642.
Drenth & Waxman, “Mutations in sodium-channel gene SCN9A cause a spectrum of human genetic pain disorders”, Science in Medicine, 2007, 117(12):3603-3609.
Wu et al., “A Novel SCN9A Mutation Responsible for Primary Erythromelalgia and Is Resistant to the Treatment of Sodium Channel Blockers”, Plos One, 2013, vol. 8, No. 1, e55212; pp. 1-15.
OriGene Nav1.7(SCN9A)(NM_002977) Human Tagged ORF Clone. Retrived from < https://www.origene.com/catalog/cdna-clones/expression-plasmids/rc224884/nav17-scn9a-nm_002977-human-tagged-orf-clone > on Feb. 13, 2023.
U.S. Appl. No. 61/716,256, filed Oct. 19, 2012, Jinek et al.
U.S. Appl. No. 61/717,324, filed Oct. 23, 2012, Cho et al.
U.S. Appl. No. 61/734,256, filed Dec. 6, 2012, Chen et al.
U.S. Appl. No. 61/758,624, filed Jan. 30, 2013, Chen et al.
U.S. Appl. No. 61/761,046, filed Feb. 5, 2013, Knight et al.
U.S. Appl. No. 61/794,422, filed Mar. 15, 2013, Knight et al.
U.S. Appl. No. 61/803,599, filed Mar. 20, 2013, Kim et al.
U.S. Appl. No. 61/837,481, filed Jun. 20, 2013, Cho et al.
U.S. Appl. No. 61/838,178, filed Jun. 21, 2013, Joung et al.
U.S. Appl. No. 61/874,682, filed Sep. 6, 2013, Liu et al.
U.S. Appl. No. 61/874,746, filed Sep. 6, 2013, Liu et al.
U.S. Appl. No. 62/288,661, filed Jan. 29, 2016, Muir et al.
U.S. Appl. No. 62/357,332, filed Jun. 30, 2016, Liu et al.
International Search Report for PCT/US2018/021664, dated Jun. 21, 2018.
International Preliminary Report on Patentability for PCT/US2018/021664, dated Sep. 19, 2019.
[No Author Listed] “FokI” from New England Biolabs Inc. Last accessed online via https://www.neb.com/products/r0109-foki#Product%20Information on Mar. 19, 2021. 1 page.
[No Author Listed] “Nucleic Acids Sizes and Molecular Weights.” Printed Mar. 19, 2021. 2 pages.
[No Author Listed] “Zinc Finger Nuclease” from Wikipedia. Retrieved from https://en.wikipedia.org/w/index.php?title=Zinc_finger_nuclease&oldid=1007053318. Page last edited Feb. 16, 2021. Printed on Mar. 19, 2021.
[No Author Listed] Beast2: Bayesian evolutionary analysis by sampling trees. http://www.beast2.org/ Last accessed Apr. 28, 2021.
[No Author Listed] HyPhy—Hypothesis testing using Phylogenies. Last modified Apr. 21, 2017. Accessed online via http://hyphy.org/w/index.php/Main_Page on Apr. 28, 2021.
[No Author Listed] NCBI Accession No. XP_015843220.1. C→U editing enzyme APOBEC-1 [Peromyscus maniculatus bairdii], XP002793540. Mar. 21, 2016.
[No Author Listed] NCBI Accession No. XP_021505673.1. C→U editing enzyme APOBEC-1 [Meriones unguiculatus], XP002793541. Jun. 27, 2017.
[No Author Listed] NCBI Reference Sequence: WP_00087959824.1. Oct. 9, 2019. 2 pages.
[No Author Listed] NCBI Reference Sequence: WP_001516895.1. Mar. 13, 2021. 2 pages.
[No Author Listed] Nucleic Acid Data from New England Biolabs. Printed Sep. 28, 2021. 1 page.
[No Author Listed] Score result for SEQ 355 to W02017032580. Muir et al. 2016.
[No Author Listed] Theoretical Biochemistry Group. Institute for Theoretical Chemistry. The ViennaRNA Package. Universitat Wien. https://www.tbi.univie.ac.at/RNA/. Last accessed Apr. 28, 2021.
[No Author Listed] Transcription activator-like effector nuclease. Wikipedia. Last edited Sep. 27, 2021. Accessed via https://en.wikipedia.org/w/index.php?title=Transcription_activator-like_effector_nuclease&oldid=1046813325 on Sep. 28, 2021. 9 pages.
[No Author Listed], “Human genome.” Encyclopedia Britannica. Encyclopedia Brittanica, Inc. Published Feb. 15, 2019. Last accessed online via https://www.britannica.com/science/human-genome on Mar. 19, 2021. 2 pages.
[No Author Listed], EMBL Accession No. Q99ZW2. Nov. 2012. 2 pages.
[No Author Listed], Invitrogen Lipofectamine™ 2000 product sheets, 2002. 2 pages.
[No Author Listed], Invitrogen Lipofectamine™ 2000 product sheets, 2005. 3 pages.
[No Author Listed], Invitrogen Lipofectamine™ LTX product sheets, 2011. 4 pages.
[No Author Listed], Thermo Fisher Scientific—How Cationic Lipid Mediated Transfection Works, retrieved from the internet Aug. 27, 2015. 2 pages.
Abremski et al., Bacteriophage P1 site-specific recombination. Purification and properties of the Cre recombinase protein. J Biol Chem. Feb. 10, 1984;259(3):1509-14.
Abudayyeh et al., C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science Aug. 2016;353(6299):aaf5573. DOI: 10.1126/science.aaf5573.
Abudayyeh et al., A cytosine deaminase for programmable single-base RNA editing. Science. Jul. 26, 2019;365(6451):382-386. doi: 10.1126/science.aax7063. Epub Jul. 11, 2019.
Abudayyeh et al., RNA targeting with CRISPR-Cas13. Nature. Oct. 12, 2017;550(7675):280-284. doi: 10.1038/nature24049. Epub Oct. 4, 2017.
Ada et al., Carbohydrate-protein conjugate vaccines. Clin Microbiol Infect. Feb. 2003;9(2):79-85. doi: 10.1046/j.1469-0691.2003.00530.x.
Adamala et al., Programmable RNA-binding protein composed of repeats of a single modular unit. Proc Natl Acad Sci U S A. May 10, 2016;113(19):E2579-88. doi: 10.1073/pnas.1519368113. Epub Apr. 26, 2016.
Adams et al., New biarsenical ligands and tetracysteine motifs for protein labeling in vitro and in vivo: synthesis and biological applications. J Am Chem Soc. May 29, 2002;124(21):6063-76. doi: 10.1021/ja017687n.
Addgene Plasmid # 44246. pdCas9-humanized, 2017, Stanley Qi.
Addgene Plasmid # 73021. PCMV-BE3, 2017, David Liu.
Addgene Plasmid # 79620. pcDNA3.1_pCMV-nCas-PmCDA1-ugi pH1-gRNA(HPRT), 2017, Akihiko Kondo.
Adli, The CRISPR tool kit for genome editing and beyond. Nat Commun. May 15, 2018;9(1):1911. doi: 10.1038/s41467-018-04252-2.
Aguilo et al., Coordination of m(6)A mRNA Methylation and Gene Transcription by ZFP217 Regulates Pluripotency and Reprogramming. Cell Stem Cell. Dec. 3, 2015;17(6):689-704. doi: 10.1016/j.stem.2015.09.005. Epub Oct. 29, 2015.
Ahmad et al., Antibody-mediated specific binding and cytotoxicity of liposome-entrapped doxorubicin to lung cancer cells in vitro. Cancer Res. Sep. 1, 1992;52(17):4817-20.
Aida et al., Prime editing primarily incudes undesired outcomes in mice. bioRxiv preprint and Supplemental Information. Aug. 6, 2020. Retrieved from www.biorxiv.org. doi: 10.1101/2020.08.06.239723. 40 pages.
Aihara et al., A conformational switch controls the DNA cleavage activity of lambda integrase. Mol Cell. Jul. 2003;12(1):187-98.
Aik et al., Structure of human RNA ?-methyladenine demethylase ALKBH5 provides insights into its mechanisms of nucleic acid recognition and demethylation. Nucleic Acids Res. Apr. 2014;42(7):4741-54. doi: 10.1093/nar/gku085. Epub Jan. 30, 2014.
Aird et al., Increasing Cas9-mediated homology-directed repair efficiency through covalent tethering of DNA repair template. Commun Biol. May 31, 2018;1:54. doi: 10.1038/s42003-018-0054-2.
Akcakaya et al., In vivo CRISPR editing with no detectable genome-wide off-target mutations. Nature. Sep. 2018;561(7723):416-419. doi: 10.1038/s41586-018-0500-9. Epub Sep. 12, 2018. PMID: 30209390; PMCID: PMC6194229.
Akins et al., Mitochondrial plasmids of Neurospora: integration into mitochondrial DNA and evidence for reverse transcription in mitochondria. Cell. Nov. 21, 1986;47(4):505-16. doi: 10.1016/0092-8674(86)90615-x.
Akinsheye et al., Fetal hemoglobin in sickle cell anemia. Blood. Jul. 7, 2011;118(1):19-27. doi: 10.1182/blood-2011-03-325258. Epub Apr. 13, 2011.
Akopian et al., Chimeric recombinases with designed DNA sequence recognition. Proc Natl Acad Sci U S A. Jul. 22, 2003;100(15):8688-91. Epub Jul. 1, 2003.
Alarcón et al., HNRNPA2B1 Is a Mediator of m(6)A-Dependent Nuclear RNA Processing Events. Cell. Sep. 10, 2015;162(6):1299-308. doi: 10.1016/j.cell.2015.08.011. Epub Aug. 27, 2015.
Alarcón et al., N6-methyladenosine marks primary microRNAs for processing. Nature. Mar. 26, 2015;519(7544):482-5. doi: 10.1038/nature14281. Epub Mar. 18, 2015.
Alexander, HFE-associated hereditary hemochromatosis. Genet Med. May 2009;11(5):307-13. doi: 10.1097/GIM.0b013e31819d30f2.
Alexandrov et al., Signatures of mutational processes in human cancer. Nature. Aug. 22, 2013;500(7463):415-21. doi: 10.1038/nature12477. Epub Aug. 14, 2013.
Ali et al., Novel genetic abnormalities in Bernard-Soulier syndrome in India. Ann Hematol. Mar. 2014;93(3):381-4. doi: 10.1007/s00277-013-1895-x. Epub Sep. 1, 2013.
Altschul et al., Basic local alignment search tool. J Mol Biol. Oct. 5, 1990;215(3):403-10. doi: 10.1016/S0022-2836(05)80360-2.
Amato et al., Interpreting elevated fetal hemoglobin in pathology and health at the basic laboratory level: new and known γ-gene mutations associated with hereditary persistence of fetal hemoglobin. Int J Lab Hematol. Feb. 2014;36(1):13-9. doi: 10.1111/ijlh.12094. Epub Apr. 29, 2013.
Ames et al., A eubacterial riboswitch class that senses the coenzyme tetrahydrofolate. Chem Biol. Jul. 30, 2010;17(7):681-5. doi: 10.1016/j.chembiol.2010.05.020.
Amrann et al., Tightly regulated tac promoter vectors useful for the expression of unfused and fused proteins in Escherichia coli. Gene. Sep. 30, 1988;69(2):301-15.
Anders et al., Chapter One: In Vitro Enzymology of Cas9. in Methods in Enzymology, eds Doudna et al. 2014: 546:1-20.
Anders et al., Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature. Sep. 25, 2014;513(7519):569-73. doi: 10.1038/nature13579. Epub Jul. 27, 2014.
Anderson, Human gene therapy. Science. May 8, 1992;256(5058):808-13. doi: 10.1126/science.1589762.
André et al., Axotomy-induced expression of calcium-activated chloride current in subpopulations of mouse dorsal root ganglion neurons. J Neurophysiol. Dec. 2003;90(6):3764-73. doi: 10.1152/jn.00449.2003. Epub Aug. 27, 2003.
Anzalone et al., Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors. Nat Biotechnol. Jul. 2020;38(7):824-844. doi: 10.1038/s41587-020-0561-9. Epub Jun. 22, 2020.
Anzalone et al., Reprogramming eukaryotic translation with ligand-responsive synthetic RNA switches. Nat Methods. May 2016;13(5):453-8. doi: 10.1038/nmeth.3807. Epub Mar. 21, 2016.
Anzalone et al., Search-and-replace genome editing without double-strand breaks or donor DNA. Nature. Dec. 2019;576(7785):149-157. doi: 10.1038/s41586-019-1711-4. Epub Oct. 21, 2019.
Aplan, Causes of oncogenic chromosomal translocation. Trends Genet. Jan. 2006;22(1):46-55. doi: 10.1016/j.tig.2005.10.002. Epub Oct. 28, 2005.
Arakawa et al., A method to convert mRNA into a gRNA library for CRISPR/Cas9 editing of any organism. Sci Adv. Aug. 24, 2016;2(8):e1600699. doi: 10.1126/sciadv.1600699.
Araki et al., Comparative analysis of right element mutant lox sites on recombination efficiency in embryonic stem cells. BMC Biotechnol. Mar. 31, 2010;10:29. doi: 10.1186/1472-6750-10-29.
Araki et al., Site-specific recombinase, R, encoded by yeast plasmid pSR1. J Mol Biol. May 5, 1992;225(1):25-37. doi: 10.1016/0022-2836(92)91023-i.
Araki et al., Targeted integration of DNA using mutant lox sites in embryonic stem cells. Nucleic Acids Res. Feb. 15, 1997;25(4):868-72. doi: 10.1093/nar/25.4.868.
Arambula et al., Surface display of a massively variable lipoprotein by a Legionella diversity-generating retroelement. Proc Natl Acad Sci U S A. May 14, 2013;110(20):8212-7. doi: 10.1073/pnas.1301366110. Epub Apr. 30, 2013.
Arazoe et al., Targeted Nucleotide Editing Technologies for Microbial Metabolic Engineering. Biotechnol J. Sep. 2018;13(9):e1700596. doi: 10.1002/biot.201700596. Epub Jun. 19, 2018.
Arbab et al., Cloning-free CRISPR. Stem Cell Reports. Nov. 10, 2015;5(5):908-917. doi: 10.1016/j.stemcr.2015.09.022. Epub Oct. 29, 2015.
Arbab et al., Determinants of Base Editing Outcomes from Target Library Analysis and Machine Learning. Cell. Jul. 23, 2020;182(2):463-480.e30. doi: 10.1016/j.cell.2020.05.037. Epub Jun. 12, 2020.
Arezi et al., Novel mutations in Moloney Murine Leukemia Virus reverse transcriptase increase thermostability through tighter binding to template-primer. Nucleic Acids Res. Feb. 2009;37(2):473-81. doi: 10.1093/nar/gkn952. Epub Dec. 4, 2008.
Arnold et al., Mutants of Tn3 resolvase which do not require accessory binding sites for recombination activity. EMBO J. Mar. 1, 1999;18(5):1407-14.
Asante et al., A naturally occurring variant of the human prion protein completely prevents prion disease. Nature. Jun. 25, 2015;522(7557):478-81. doi: 10.1038/nature14510. Epub Jun. 10, 2015.
Atkins et al., Ribosomal frameshifting and transcriptional slippage: From genetic steganography and cryptography to adventitious use. Nucleic Acids Res. Sep. 6, 2016;44(15):7007-78. doi: 10.1093/nar/gkw530. Epub Jul. 19, 2016.
Auer et al., Highly efficient CRISPR/Cas9-mediated knock-in in zebrafish by homology-independent DNA repair. Genome Res. Jan. 2014;24(1):142-53. doi: 10.1101/gr.161638.113. Epub Oct. 31, 2013.
Autieri et al., IRT-1, a novel interferon-gamma-responsive transcript encoding a growth-suppressing basic leucine zipper protein. J Biol Chem. Jun. 12, 1998;273(24):14731-7. doi: 10.1074/jbc.273.24.14731.
Avidan et al., The processivity and fidelity of DNA synthesis exhibited by the reverse transcriptase of bovine leukemia virus. Eur J Biochem. Feb. 2002;269(3):859-67. doi: 10.1046/j.0014-2956.2001.02719.x.
Babacic et al., CRISPR-cas gene-editing as plausible treatment of neuromuscular and nucleotide-repeat-expansion diseases: A systematic review. PLoS One. Feb. 22, 2019;14(2):e0212198. doi: 10.1371/journal.pone.0212198.
Bacman et al., Specific elimination of mutant mitochondrial genomes in patient-derived cells by mitoTALENs. Nat Med. Sep. 2013;19(9):1111-3. doi: 10.1038/nm.3261. Epub Aug. 4, 2013.
Badran et al., Continuous evolution of Bacillus thuringiensis toxins overcomes insect resistance. Nature. May 5, 2016;533(7601):58-63. doi: 10.1038/nature17938. Epub Apr. 27, 2016.
Badran et al., Development of potent in vivo mutagenesis plasmids with broad mutational spectra. Nat Commun. Oct. 7, 2015;6:8425. doi: 10.1038/ncomms9425.
Bae et al., Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics. May 15, 2014;30(10):1473-5. doi: 10.1093/bioinformatics/btu048. Epub Jan. 24, 2014.
Bae et al., Microhomology-based choice of Cas9 nuclease target sites. Nat Methods. Jul. 2014;11(7):705-6. doi: 10.1038/nmeth.3015.
Bagal et al., Recent progress in sodium channel modulators for pain. Bioorg Med Chem Lett. Aug. 15, 2014;24(16):3690-9. doi: 10.1016/j.bmcl.2014.06.038. Epub Jun. 21, 2014.
Bagyinszky et al., Characterization of mutations in PRNP (prion) gene and their possible roles in neurodegenerative diseases. Neuropsychiatr Dis Treat. Aug. 14, 2018;14:2067-2085. doi: 10.2147/NDT.S165445.
Balakrishnan et al., Flap endonuclease 1. Annu Rev Biochem. 2013;82:119-38. doi: 10.1146/annurev-biochem-072511-122603. Epub Feb. 28, 2013.
Baldari et al., A novel leader peptide which allows efficient secretion of a fragment of human interleukin 1 beta in Saccharomyces cerevisiae. EMBO J. Jan. 1987;6(1):229-34.
Banerjee et al., Cadmium inhibits mismatch repair by blocking the ATPase activity of the MSH2-MSH6 complex [published correction appears in Nucleic Acids Res. 2005;33(5):1738]. Nucleic Acids Res. 2005;33(4):1410-1419. Published Mar. 3, 2005. doi:10.1093/nar/gki291.
Banerji et al., A lymphocyte-specific cellular enhancer is located downstream of the joining region in immunoglobulin heavy chain genes. Cell. Jul. 1983;33(3):729-40. doi: 10.1016/0092-8674(83)90015-6.
Bannert et al., Retroelements and the human genome: new perspectives on an old relation. Proc Natl Acad Sci U S A. Oct. 5, 2004;101 Suppl 2(Suppl 2):14572-9. doi: 10.1073/pnas.0404838101. Epub Aug. 13, 2004.
Baranauskas et al., Generation and characterization of new highly thermostable and processive M-MuLV reverse transcriptase variants. Protein Eng Des Sel. Oct. 2012;25(10):657- 68. doi: 10.1093/protein/gzs034. Epub Jun. 12, 2012.
Barmania et al., C—C chemokine receptor type five (CCR5): An emerging target for the control of HIV infection. Appl Transl Genom. May 26, 2013;2:3-16. doi: 10.1016/j.atg.2013.05.004.
Barnes et al., Repair and genetic consequences of endogenous DNA base damage in mammalian cells. Annu Rev Genet. 2004;38:445-76.
Barnes et al., The fidelity of Taq polymerase catalyzing PCR is improved by an—terminal deletion. Gene. Mar. 1, 1992;112(1):29-35. doi: 10.1016/0378-1119(92)90299-5.
Barrangou et al., CRISPR provides acquired resistance against viruses in prokaryotes. Science. Mar. 23, 2007;315(5819):1709-12.
Barrangou, RNA-mediated programmable DNA cleavage. Nat Biotechnol. Sep. 2012;30(9):836-8. doi: 10.1038/nbt.2357.
Bartlett et al., Efficient expression of protein coding genes from the murine U1 small nuclear RNA promoters. Proc Natl Acad Sci U S A. Aug. 20, 1996;93(17):8852-7. doi: 10.1073/pnas.93.17.8852.
Bartosovic et al., N6-methyladenosine demethylase FTO targets pre-mRNAs and regulates alternative splicing and 3′-end processing. Nucleic Acids Res. Nov. 2, 2017;45(19):11356-11370. doi: 10.1093/nar/gkx778.
Basha et al., Influence of cationic lipid composition on gene silencing properties of lipid nanoparticle formulations of siRNA in antigen-presenting cells. Mol Ther. Dec. 2011;19(12):2186-200. doi: 10.1038/mt.2011.190. Epub Oct. 4, 2011.
Basturea et al., Substrate specificity and properties of the Escherichia coli 16S rRNA methyltransferase, RsmE. RNA. Nov. 2007;13(11):1969-76. doi: 10.1261/rna.700507. Epub Sep. 13, 2007.
Batey et al., Structure of a natural guanine-responsive riboswitch complexed with the metabolite hypoxanthine. Nature. Nov. 18, 2004;432(7015):411-5.
Beale et al., Comparison of the differential context-dependence of DNA deamination by APOBEC enzymes: correlation with mutation spectra in vivo. J Mol Biol. Mar. 26, 2004;337(3):585-96.
Beaudry et al., Directed evolution of an RNA enzyme. Science. Jul. 31, 1992;257(5070):635-41. doi: 10.1126/science.1496376.
Bebenek et al., Error-prone polymerization by HIV-1 reverse transcriptase. Contribution of template-primer misalignment, miscoding, and termination probability to mutational hot spots. J Biol Chem. May 15, 1993;268(14):10324-34.
Bedell et al., In vivo genome editing using a high-efficiency TALEN system. Nature. Nov. 1, 2012;491(7422):114-8. Doi: 10.1038/nature11537. Epub Sep. 23, 2012.
Begley, Scientists unveil the ‘most clever CRISPR gadget’ so far. STAT, Apr. 20, 2016. https://www.statnews.com/2016/04/20/clever-crispr-advance-unveiled/.
Behr, Gene transfer with synthetic cationic amphiphiles: prospects for gene therapy. Bioconjug Chem. Sep.-Oct. 1994;5(5):382-9. doi: 10.1021/bc00029a002.
Bell et al., Ribozyme-catalyzed excision of targeted sequences from within RNAs. Biochemistry. Dec. 24, 2002;41(51):15327-33. doi: 10.1021/bi0267386.
Belshaw et al., Controlling programmed cell death with a cyclophilin-cyclosporin-based chemical inducer of dimerization. Chem Biol. Sep. 1996;3(9):731-8. doi: 10.1016/s1074-5521(96)90249-5.
Belshaw et al., Controlling protein association and subcellular localization with a synthetic ligand that induces heterodimerization of proteins. Proc Natl Acad Sci U S A. May 14, 1996;93(10):4604-7. doi: 10.1073/pnas.93.10.4604.
Benarroch, HCN channels: function and clinical implications. Neurology. Jan. 15, 2013;80(3):304-10. doi: 10.1212/WNL.0b013e31827dec42.
Bennett et al., Painful and painless channelopathies. Lancet Neurol. Jun. 2014;13(6):587-99. doi: 10.1016/S1474-4422(14)70024-9. Epub May 6, 2014.
Bentin, T., A ribozyme transcribed by a ribozyme. Artif DNA PNA XNA. Apr. 2011;2(2):40-42. doi: 10.4161/adna.2.2.16852.
Berger et al., Reverse transcriptase and its associated ribonuclease H: interplay of two enzyme activities controls the yield of single-stranded complementary deoxyribonucleic acid. Biochemistry. May 10, 1983;22(10):2365-72. doi: 10.1021/bi00279a010.
Berges et al., Transduction of brain by herpes simplex virus vectors. Mol Ther. Jan. 2007;15(1):20-9. doi: 10.1038/sj.mt.6300018.
Berkhout et al., Identification of an active reverse transcriptase enzyme encoded by a human endogenous HERV-K retrovirus. J Virol. Mar. 1999;73(3):2365-75. doi: 10.1128/JVI.73.3.2365-2375.1999.
Bernhart et al., Local RNA base pairing probabilities in large sequences. Bioinformatics. Mar. 1, 2006;22(5):614-5. doi: 10.1093/bioinformatics/btk014. Epub Dec. 20, 2005.
Bernstein et al., Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature. Jan. 18, 2001;409(6818):363-6. doi: 10.1038/35053110.
Bershtein et al., Advances in laboratory evolution of enzymes. Curr Opin; Chem Biol. Apr. 2008;12(2):151-8. doi: 10.1016/j.cbpa.2008.01.027. Epub Mar. 7, 2008. Review.
Bertolotti et al., Toward genosafe endonuclease-boosted gene targeting using breakthrough CRISP/Cas9 for next generation stem cell gene therapy culminating in efficient ex Vivo in Vivo gene repair/genomic editing. Molecular Therapy. May 2015;23(Suppl1):S139. Abstract 350. 18th Ann Meeting of the American Society of Gene and Cell Therapy. ASGCT 2015. New Orleans, LA. May 13, 2015-May 16, 2015.
Bertrand et al., Localization of ASH1 mRNA particles in living yeast. Mol Cell. Oct. 1998;2(4):437-45. doi: 10.1016/s1097-2765(00)80143-4.
Bessen et al., High-resolution specificity profiling and off-target prediction for site-specific DNA recombinases. Nat Commun. Apr. 26, 2019;10(1):1937. doi: 10.1038/s41467-019-09987-0.
Beumer et al., Efficient gene targeting in Drosophila with zinc-finger nucleases. Genetics. Apr. 2006;172(4):2391-403. Epub Feb. 1, 2006.
Bhagwat, DNA-cytosine deaminases: from antibody maturation to antiviral defense. DNA Repair (Amst). Jan. 5, 2004;3(1):85-9.
Bi et al., Pseudo attP sites in favor of transgene integration and expression in cultured porcine cells identified by Streptomyces phage phiC31 integrase. BMC Mol Biol. Sep. 8, 2013;14:20. doi: 10.1186/1471-2199-14-20.
Bibb et al., Integration and excision by the large serine recombinase phiRv1 integrase. Mol Microbiol. Mar. 2005;55(6):1896-910. doi: 10.1111/j.1365-2958.2005.04517.x.
Biehs et al., DNA Double-Strand Break Resection Occurs during Non-homologous End Joining in G1 but Is Distinct from Resection during Homologous Recombination. Mol Cell. Feb. 16, 2017;65(4):671-684.e5. doi: 10.1016/j.molcel.2016.12.016. Epub Jan. 26, 2017.
Billon et al., CRISPR-Mediated Base Editing Enables Efficient Disruption of Eukaryotic Genes through Induction of STOP Codons. Mol Cell. Sep. 21, 2017;67(6):1068-1079.e4. doi: 10.1016/j.molcel.2017.08.008. Epub Sep. 7, 2017.
Birling et al., Site-specific recombinases for manipulation of the mouse genome. Methods Mol Biol. 2009;561:245-63. doi: 10.1007/978-1-60327-019-9_16.
Biswas et al., A structural basis for allosteric control of DNA recombination by lambda integrase. Nature. Jun. 23, 2005;435(7045):1059-66. doi: 10.1038/nature03657.
Bitinaite et al., FokI dimerization is required for DNA cleavage. Proc Natl Acad Sci U S A. Sep. 1, 1998;95(18):10570-5.
Blaese et al., Vectors in cancer therapy: how will they deliver? Cancer Gene Ther. Dec. 1995;2(4):291-7.
Blain et al., Nuclease activities of Moloney murine leukemia virus reverse transcriptase. Mutants with altered substrate specificities. J Biol Chem. Nov. 5, 1993;268(31):23585-92.
Blaisonneau et al., A circular plasmid from the yeast Torulaspora delbrueckii. Plasmid. 1997;38(3):202-9. doi: 10.1006/plas.1997.1315.
Blau et al., A proliferation switch for genetically modified cells. PNAS Apr. 1, 1997 94 (7) 3076-3081; https://doi.org/10.1073/pnas.94.7.3076.
Bloom et al., Evolving strategies for enzyme engineering. Curr Opin Struct Biol. Aug. 2005;15(4):447-52.
Boch, Tales of genome targeting. Nat Biotechnol. Feb. 2011;29(2):135-6. Doi: 10.1038/nbt.1767.
Bodi et al., Yeast m6A Methylated mRNAs Are Enriched on Translating Ribosomes during Meiosis, and under Rapamycin Treatment. PLoS One. Jul. 17, 2015;10(7):e0132090. doi: 10.1371/journal.pone.0132090.
Boeckle et al., Melittin analogs with high lytic activity at endosomal pH enhance transfection with purified targeted PEI polyplexes. J Control Release. May 15, 2006;112(2):240-8. Epub Mar. 20, 2006.
Boersma et al., Selection strategies for improved biocatalysts. FEBS J. May 2007;274(9):2181-95.
Bogdanove et al., Engineering altered protein-DNA recognition specificity. Nucleic Acids Res. Jun. 1, 2018;46(10):4845-4871. doi: 10.1093/nar/gky289.
Bogdanove et al., TAL effectors: customizable proteins for DNA targeting. Science. Sep. 30, 2011;333(6051):1843-6. doi: 10.1126/science.1204094.
Bohlke et al., Sense codon emancipation for proteome-wide incorporation of noncanonical amino acids: rare isoleucine codon AUA as a target for genetic code expansion. FEMS Microbiol Lett. Feb. 2014;351(2):133-44. doi: 10.1111/1574-6968.12371. Epub Jan. 27, 2014.
Bolotin et al., Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology. Aug. 2005;151(Pt 8):2551-61.
Bolusani et al., Evolution of variants of yeast site-specific recombinase Flp that utilize native genomic sequences as recombination target sites. Nucleic Acids Res. 2006;34(18):5259-69. Epub Sep. 26, 2006.
Bondeson et al., Inversion of the IDS gene resulting from recombination with IDS-related sequences is a common cause of the Hunter syndrome. Hum Mol Genet. Apr. 1995;4(4):615-21. doi: 10.1093/hmg/4.4.615.
Borchardt et al., Controlling mRNA stability and translation with the CRISPR endoribonuclease Csy4. RNA. Nov. 2015;21(11):1921-30. doi: 10.1261/rna.051227.115. Epub Sep. 9, 2015.
Borman, Improved route to single-base genome editing. Chemical & Engineering News, Apr. 25, 2016;94(17)p5. http://cen.acs.org/articles/94/i17/Improved-route-single-base-genome.html.
Bourinet et al., Silencing of the Cav3.2 T-type calcium channel gene in sensory neurons demonstrates its major role in nociception. EMBO J. Jan. 26, 2005;24(2):315-24. doi: 10.1038/sj.emboj.7600515. Epub Dec. 16, 2004.
Boutabout et al., DNA synthesis fidelity by the reverse transcriptase of the yeast retrotransposon Ty1. Nucleic Acids Res. Jun. 1, 2001;29(11):2217-22. doi: 10.1093/nar/29.11.2217.
Box et al., A multi-domain protein system based on the HC fragment of tetanus toxin for targeting DNA to neuronal cells. J Drug Target. Jul. 2003;11(6):333-43. doi: 10.1080/1061186310001634667.
Branden and Tooze, Introduction to Protein Structure. 1999; 2nd edition. Garland Science Publisher: 3-12.
Braun et al., Immunogenic duplex nucleic acids are nuclease resistant. J Immunol. Sep. 15, 1988;141(6):2084-9.
Briner et al., Guide RNA functional modules direct Cas9 activity and orthogonality. Mol Cell. Oct. 23, 2014;56(2):333-339. doi: 10.1016/j.molcel.2014.09.019.
Britt et al., Re-engineering plant gene targeting. Trends Plant Sci. Feb. 2003;8(2):90-5.
Brouns et al., Small CRISPR RNAs guide antiviral defense in prokaryotes. Science. Aug. 15, 2008;321(5891):960-4. doi: 10.1126/science.1159689.
Brown et al., A mammalian protein targeted by G1-arresting rapamycin-receptor complex. Nature. Jun. 30, 1994;369(6483):756-8. doi: 10.1038/369756a0.
Brown et al., Characterization of the genetic elements required for site-specific integration of plasmid pSE211 in Saccharopolyspora erythraea. J Bacteriol. Apr. 1990;172(4):1877-88. doi: 10.1128/jb.172.4.1877-1888.1990.
Brown et al., Serine recombinases as tools for genome engineering. Methods. Apr. 2011;53(4):372-9. doi: 10.1016/j.ymeth.2010.12.031. Epub Dec. 30, 2010.
Brown et al., Structural insights into the stabilization of MALAT1 noncoding RNA by a bipartite triple helix. Nat Struct Mol Biol. Jul. 2014;21(7):633-40. doi: 10.1038/nsmb.2844. Epub Jun. 22, 2014.
Brusse et al., Spinocerebellar ataxia associated with a mutation in the fibroblast growth factor 14 gene (SCA27): A new phenotype. Mov Disord. Mar. 2006;21(3):396-401.
Brzezicha et al., Identification of human tRNA:m5C methyltransferase catalysing intron-dependent m5C formation in the first position of the anticodon of the pre-tRNA Leu (CAA). Nucleic Acids Res. 2006;34(20):6034-43. doi: 10.1093/nar/gk1765. Epub Oct. 27, 2006.
Buchholz et al., Alteration of Cre recombinase site specificity by substrate-linked protein evolution. Nat Biotechnol. Nov. 2001;19(11):1047-52.
Buchschacher et al., Human immunodeficiency virus vectors for inducible expression of foreign genes. J Virol. May 1992;66(5):2731-9. doi: 10.1128/JVI.66.5.2731-2739.1992.
Buchwald et al., Long-term, continuous intravenous heparin administration by an implantable infusion pump in ambulatory patients with recurrent venous thrombosis. Surgery. Oct. 1980;88(4):507-16.
Buckley et al., Targeting the von Hippel-Lindau E3 ubiquitin ligase using small molecules to disrupt the VHL/HIF-1? interaction. J Am Chem Soc. Mar. 14, 2012;134(10):4465-8. doi: 10.1021/ja209924v. Epub Feb. 27, 2012.
Budisa et al., Residue-specific bioincorporation of non-natural, biologically active amino acids into proteins as possible drug carriers: structure and stability of the per-thiaproline mutant of annexin V. Proc Natl Acad Sci U S A. Jan. 20, 1998;95(2):455-9.
Budker et al., Protein/amphipathic polyamine complexes enable highly efficient transfection with minimal toxicity. Biotechniques. Jul. 1997;23(1):139, 142-7. doi: 10.2144/97231n-02.
Budworth et al., A brief history of triplet repeat diseases. Methods Mol Biol. 2013;1010:3-17. doi: 10.1007/978-1-62703-411-1_1.
Bulow et al., Multienzyme systems obtained by gene fusion. Trends Biotechnol. Jul. 1991;9(7):226-31.
Burke et al., Activating mutations of Tn3 resolvase marking interfaces important in recombination catalysis and its regulation. Mol Microbiol. Feb. 2004;51(4):937-48.
Burke et al., RNA Aptamers to the Adenosine Moiety of S-adenosyl Methionine: Structural Inferences From Variations on a Theme and the Reproducibility of Selex. Nucleic Acids Res. May 15, 1997;25(10):2020-4. doi: 10.1093/nar/25.10.2020.
Burstein et al., New CRISPR-Cas systems from uncultivated microbes. Nature Feb. 2017;542(7640):237-240.
Burton et al., Gene delivery using herpes simplex virus vectors. DNA Cell Biol. Dec. 2002;21(12):915-36. doi: 10.1089/104454902762053864.
Buskirk et al., Directed evolution of ligand dependence: small-molecule-activated protein splicing. Proc Natl Acad Sci U S A. Jul. 20, 2004;101(29):10505-10. Epub Jul. 9, 2004.
Buskirk et al., In vivo evolution of an RNA-based transcriptional activator. Chem Biol. Jun. 2003;10(6):533-40. doi: 10.1016/s1074-5521(03)00109-1.
Butt et al., Efficient CRISPR/Cas9-Mediated Genome Editing Using a Chimeric Single-Guide RNA Molecule. Front Plant Sci. Aug. 24, 2017;8:1441(1-8). doi: 10.3389/fpls.2017.01441.
Byrne et al., Multiplex gene regulation: a two-tiered approach to transgene regulation in transgenic mice. Proc Natl Acad Sci U S A. Jul. 1989;86(14):5473-7. doi: 10.1073/pnas.86.14.5473.
Böck et al., Selenocysteine: the 21st amino acid. Mol Microbiol. Mar. 1991;5(3):515-20.
Cade et al., Highly efficient generation of heritable zebrafish gene mutations using homo- and heterodimeric TALENs. Nucleic Acids Res. Sep. 2012;40(16):8001-10. Doi: 10.1093/nar/gks518. Epub Jun. 7, 2012.
Cadwell et al., Randomization of genes by PCR mutagenesis. PCR Methods Appl. Aug. 1992;2(1):28-33. doi: 10.1101/gr.2.1.28.
Cai et al., Reconstruction of ancestral protein sequences and its applications. BMC Evol Biol. Sep. 17, 2004;4:33. doi: 10.1186/1471-2148-4-33.
Calame et al., Transcriptional controlling elements in the immunoglobulin and T cell receptor loci. Adv Immunol. 1988;43:235-75. doi: 10.1016/s0065-2776(08)60367-3.
Caldecott et al., Single-strand break repair and genetic disease. Nat Rev Genet. Aug. 2008;9(8):619-31. doi: 10.1038/nrg2380.
Camarero et al., Biosynthesis of a Head-to-Tail Cyclized Protein with Improved Biological Activity. J. Am. Chem. Soc. May 29, 1999;121(23):5597-5598. https://doi.org/10.1021/ja990929n.
Cameron, Recent advances in transgenic technology. Mol Biotechnol. Jun. 1997;7(3):253-65.
Camper et al., Postnatal repression of the alpha-fetoprotein gene is enhancer independent. Genes Dev. Apr. 1989;3(4):537-46. doi: 10.1101/gad.3.4.537.
Camps et al., Targeted gene evolution in Escherichia coli using a highly error-prone DNA polymerase I. Proc Natl Acad Sci U S A. Aug. 19, 2003;100(17):9727-32. Epub Aug. 8, 2003.
Canchaya et al., Genome analysis of an inducible prophage and prophage remnants integrated in the Streptococcus pyogenes strain SF370. Virology. Oct. 25, 2002;302(2):245-58. doi: 10.1006/viro.2002.1570.
Canver et al., Customizing the genome as therapy for the ?-hemoglobinopathies. Blood. May 26, 2016;127(21):2536-45. doi: 10.1182/blood-2016-01-678128. Epub Apr. 6, 2016.
Cargill et al., Characterization of single-nucleotide polymorphisms in coding regions of human genes. Nat Genet. Jul. 1999;22(3):231-8.
Carlier et al., Burkholderia cenocepacia H111 Rhy-family protein. Apr. 16, 2015. Retrieved from the Internet via https://www.ebi.ac.uk/ena/browser/api/embl/CDN65395.1?lineLimit=1000. Last retrieved Apr. 26, 2021.
Carlson et al., Negative selection and stringency modulation in phage-assisted continuous evolution. Nat Chem Biol. Mar. 2014;10(3):216-22. doi: 10.1038/nchembio.1453. Epub Feb. 2, 2014. With Supplementary Results.
Caron et al., Intracellular delivery of a Tat-eGFP fusion protein into muscle cells. Mol Ther. Mar. 2001;3(3):310-8.
Carr et al., Genome engineering. Nat Biotechnol. Dec. 2009;27(12):1151-62. doi: 10.1038/nbt.1590.
Carroll et al., Gene targeting in Drosophila and Caenorhabditis elegans with zinc-finger nucleases. Methods Mol Biol. 2008;435:63-77. doi: 10.1007/978-1-59745-232-8_5.
Carroll et al., Progress and prospects: zinc-finger nucleases as gene therapy agents. Gene Ther. Nov. 2008;15(22):1463-8. doi: 10.1038/gt.2008.145. Epub Sep. 11, 2008.
Carroll, A CRISPR approach to gene targeting. Mol Ther. Sep. 2012;20(9):1658-60. doi: 10.1038/mt.2012.171.
Carroll, Genome engineering with zinc-finger nucleases. Genetics. Aug. 2011;188(4):773-82. doi: 10.1534/genetics.111.131433. Review.
Carvalho et al., Evolution in health and medicine Sackler colloquium: Genomic disorders: a window into human gene and genome evolution. Proc Natl Acad Sci U S A. Jan. 26, 2010;107 Suppl 1(Suppl 1):1765-71. doi: 10.1073/pnas.0906222107. Epub Jan. 13, 2010.
Caspi et al., Distribution of split DnaE inteins in cyanobacteria. Mol Microbiol. Dec. 2003;50(5):1569-77. doi: 10.1046/j.1365-2958.2003.03825.x.
Cattaneo et al., SEL1L affects human pancreatic cancer cell cycle and invasiveness through modulation of PTEN and genes related to cell-matrix interactions. Neoplasia. 2005;7(11):1030-1038.
Ceccaldi et al., Repair Pathway Choices and Consequences at the Double-Strand Break. Trends Cell Biol. Jan. 2016;26(1):52-64. doi: 10.1016/j.tcb.2015.07.009. Epub Oct. 1, 2015.
Cermak et al., Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res. Jul. 2011;39(12):e82. Doi: 10.1093/nar/gkr218. Epub Apr. 14, 2011.
Chadalavada et al., Wild-type is the optimal sequence of the HDV ribozyme under cotranscriptional conditions. RNA. Dec. 2007;13(12):2189-201. doi: 10.1261/rna.778107. Epub Oct. 23, 2007.
Chadwick et al., In Vivo Base Editing of PCSK9 (Proprotein Convertase Subtilisin/Kexin Type 9) as a Therapeutic Alternative to Genome Editing. Arterioscler Thromb Vasc Biol. Sep. 2017;37(9):1741-1747. doi: 10.1161/ATVBAHA.117.309881. Epub Jul. 27, 2017.
Chaikind et al., A programmable Cas9-serine recombinase fusion protein that operates on DNA sequences in mammalian cells. Nucleic Acids Res. Nov. 16, 2016;44(20):9758-9770. Epub Aug. 11, 2016.
Chalberg et al., Integration specificity of phage phiC31 integrase in the human genome. J Mol Biol. Mar. 17, 2006;357(1):28-48. doi: 10.1016/j.jmb.2005.11.098. Epub Dec. 22, 2005.
Chalberg et al., phiC31 integrase confers genomic integration and long-term transgene expression in rat retina. Invest Ophthalmol Vis Sci. Jun. 2005;46(6):2140-6. doi: 10.1167/iovs.04-1252.
Chan et al., Molecular recording of mammalian embryogenesis. Nature. Jun. 2019;570(7759):77-82. doi: 10.1038/s41586-019-1184-5. Epub May 13, 2019.
Chan et al., Novel selection methods for DNA-encoded chemical libraries. Curr Opin Chem Biol. 2015;26:55-61. doi:10.1016/j.cbpa.2015.02.010.
Chan et al., The choice of nucleotide inserted opposite abasic sites formed within chromosomal DNA reveals the polymerase activities participating in translesion DNA synthesis. DNA Repair (Amst). Nov. 2013;12(11):878-89. doi: 10.1016/j.dnarep.2013.07.008. Epub Aug. 26, 2013.
Chapman et al., Playing the end game: DNA double-strand break repair pathway choice. Mol Cell. Aug. 24, 2012;47(4):497-510. doi: 10.1016/j.molcel.2012.07.029.
Chari et al., Unraveling CRISPR-Cas9 genome engineering parameters via a library-on-library approach. Nat Methods. Sep. 2015;12(9):823-6. doi: 10.1038/nmeth.3473. Epub Jul. 13, 2015.
Charpentier et al., Biotechnology: Rewriting a genome. Nature. Mar. 7, 2013;495(7439):50-1. doi: 10.1038/495050a.
Chaturvedi et al., Stabilization of triple-stranded oligonucleotide complexes: use of probes containing alternating phosphodiester and stereo-uniform cationic phosphoramidate linkages. Nucleic Acids Res. Jun. 15, 1996;24(12):2318-23.
Chavez et al., Highly efficient Cas9-mediated transcriptional programming. Nat Methods. Apr. 2015;12(4):326-8. doi: 10.1038/nmeth.3312. Epub Mar. 2, 2015.
Chavez et al., Precise Cas9 targeting enables genomic mutation prevention. bioRxiv. Jun. 14, 2016; http://dx/doi.oreg/10.1101/058974. 6 pages. bioRxiv preprint first posted online Jun. 14, 2016.
Chavez et al., Precise Cas9 targeting enables genomic mutation prevention. Proc Natl Acad Sci U S A. Apr. 3, 2018;115(14):3669-3673. doi: 10.1073/pnas.1718148115. Epub Mar. 19, 2018. bioRxiv preprint first posted online Jun. 14, 2016.
Chavez et al., Therapeutic applications of the ?C31 integrase system. Curr Gene Ther. Oct. 2011;11(5):375-81. Review.
Chawla et al., An atlas of RNA base pairs involving modified nucleobases with optimal geometries and accurate energies. Nucleic Acids Res. Aug. 18, 2015;43(14):6714-29. doi: 10.1093/nar/gkv606. Epub Jun. 27, 2015.
Chelico et al., Biochemical basis of immunological and retroviral responses to DNA-targeted cytosine deamination by activation-induced cytidine deaminase and APOBEC3G. J Biol Chem. Oct. 9, 2009;284(41):27761-5. doi: 10.1074/jbc.R109.052449. Epub Aug. 13, 2009.
Chelico et al., Stochastic properties of processive cytidine DNA deaminases AID and APOBEC3G. Philos Trans R Soc Lond B Biol Sci. Mar. 12, 2009;364(1517):583-93. doi: 10.1098/rstb.2008.0195.
Chen et al., Enhanced proofreading governs CRISPR-Cas9 targeting accuracy. Nature. Oct. 19, 2017;550(7676):407-410. doi: 10.1038/nature24268. Epub Sep. 20, 2017.
Chen et al., A general strategy for the evolution of bond-forming enzymes using yeast display. Proc Natl Acad Sci U S A. Jul. 12, 2011;108(28):11399-404. doi: 10.1073/pnas.1101046108. Epub Jun. 22, 2011.
Chen et al., Fusion protein linkers: property, design and functionality. Adv Drug Deliv Rev. Oct. 2013;65(10):1357-69. doi: 10.1016/j.addr.2012.09.039. Epub Sep. 9, 2012.
Chen et al., Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis. Cell. Mar. 12, 2015;160(6):1246-60. doi: 10.1016/j.cell.2015.02.038. Epub Mar. 5, 2015.
Chen et al., Highly Efficient Mouse Genome Editing by CRISPR Ribonucleoprotein Electroporation of Zygotes. J Biol Chem. Jul. 8, 2016;291(28):14457-67. doi: 10.1074/jbc.M116.733154. Epub May 5, 2016.
Chen et al., m(6)A RNA methylation is regulated by microRNAs and promotes reprogramming to pluripotency. Cell Stem Cell. Mar. 5, 2015;16(3):289-301. doi: 10.1016/j.stem.2015.01.016. Epub Feb. 12, 2015.
Chen et al., Structure of the DNA deaminase domain of the HIV-1 restriction factor APOBEC3G. Nature. Mar. 6, 2008;452(7183):116-9. doi: 10.1038/nature06638. Epub Feb. 20, 2008.
Chen et al., Targeting genomic rearrangements in tumor cells through Cas9-mediated insertion of a suicide gene. Nat Biotechnol. Jun. 2017;35(6):543-550. doi: 10.1038/nbt.3843. Epub May 1, 2017.
Cheng et al., Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system. Cell Res. Oct. 2013;23(10):1163-71. doi: 10.1038/cr.2013.122. Epub Aug. 27, 2013.
Chesnoy et al., Structure and function of lipid-DNA complexes for gene delivery. Annu Rev Biophys Biomol Struct. 2000;29:27-47.
Chester et al., The apolipoprotein B mRNA editing complex performs a multifunctional cycle and suppresses nonsense-mediated decay. EMBO J. Aug. 1, 2003;22(15):3971-82. doi: 10.1093/emboj/cdg369.
Chew et al., A multifunctional AAV-CRISPR-Cas9 and its host response. Nat Methods. Oct. 2016;13(10):868-74. doi: 10.1038/nmeth.3993. Epub Sep. 5, 2016.
Chew et al., A multifunctional AAV-CRISPR-Cas9 and its host response. Nat Methods. Oct. 2016;13(10):868-74. doi: 10.1038/nmeth.3993. Epub Sep. 5, 2016. Supplementary Information.
Chichili et al., Linkers in the structural biology of protein-protein interactions. Protein Science. 2013;22:153-67.
Chin, Expanding and reprogramming the genetic code of cells and animals. Annu Rev Biochem. 2014;83:379-408. doi: 10.1146/annurev-biochem-060713-035737. Epub Feb. 10, 2014.
Chipev et al., A leucine—proline mutation in the H1 subdomain of keratin 1 causes epidermolytic hyperkeratosis. Cell. Sep. 4, 1992;70(5):821-8.
Cho et al., Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res. Jan. 2014;24(1):132-41. doi: 10.1101/gr.162339.113. Epub Nov. 19, 2013.
Cho et al., Site-specific recombination of bacteriophage P22 does not require integration host factor. J Bacteriol. Jul. 1999;181(14):4245-9. doi: 10.1128/JB.181.14.4245-4249.1999.
Cho et al., Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotechnol. Mar. 2013;31(3):230-2. doi: 10.1038/nbt.2507. Epub Jan. 29, 2013.
Cho et al., The calcium-activated chloride channel anoctamin 1 acts as a heat sensor in nociceptive neurons. Nat Neurosci. May 27, 2012;15(7):1015-21. doi: 10.1038/nn.3111.
Choe et al., Forging Ahead through Darkness: PCNA, Still the Principal Conductor at the Replication Fork. Mol Cell. Feb. 2, 2017;65(3):380-392. doi: 10.1016/j.molcel.2016.12.020.
Choi et al., (6)-methyladenosine in mRNA disrupts tRNA selection and translation-elongation dynamics. Nat Struct Mol Biol. Feb. 2016;23(2):110-5. doi: 10.1038/nsmb.3148. Epub Jan. 11, 2016.
Choi et al., Protein trans-splicing and characterization of a split family B-type DNA polymerase from the hyperthermophilic archaeal parasite Nanoarchaeum equitans. J Mol Biol. Mar. 10, 2006;356(5):1093-106. doi: 10.1016/j.jmb.2005.12.036. Epub Dec. 27, 2005.
CHOI et at al., Translesion synthesis across abasic lesions by human B-family and Y-family DNA polymerases ?, ?, ?, ?, ?, and Rev1. J Mol Biol. Nov. 19, 2010;404(1):34-44. doi: 10.1016/j.jmb.2010.09.015. Epub Oct. 1, 2010.
Chong et al., Modulation of protein splicing of the Saccharomyces cerevisiae vacuolar membrane ATPase intein. J Biol Chem. Apr. 24, 1998;273(17):10567-77. doi: 10.1074/jbc.273.17.10567.
Chong et al., Utilizing the C-terminal cleavage activity of a protein splicing element to purify recombinant proteins in a single chromatographic step. Nucleic Acids Res. Nov. 15, 1998;26(22):5109-15. doi: 10.1093/nar/26.22.5109.
Chong et al., Protein splicing involving the Saccharomyces cerevisiae VMA intein. The steps in the splicing pathway, side reactions leading to protein cleavage, and establishment of an in vitro splicing system. J Biol Chem. Sep. 6, 1996;271(36):22159-68. doi: 10.1074/jbc.271.36.22159.
Chong et al., Protein splicing of the Saccharomyces cerevisiae VMA intein without the endonuclease motifs. J Biol Chem. Jun. 20, 1997;272(25):15587-90. doi: 10.1074/jbc.272.25.15587.
Chong et al., Single-column purification of free recombinant proteins using a self-cleavable affinity tag derived from a protein splicing element. Gene. Jun. 19, 1997;192(2):271-81. doi: 10.1016/s0378-1119(97)00105-4.
Choudhury et al., CRISPR-dCas9 mediated TET1 targeting for selective DNA demethylation at BRCA1 promoter. Oncotarget. Jul. 19, 2016;7(29):46545-46556. doi: 10.18632/oncotarget.10234.
Choudhury et al., Engineering RNA endonucleases with customized sequence specificities. Nat Commun. 2012;3:1147. doi: 10.1038/ncomms2154.
Choulika et al., Induction of homologous recombination in mammalian chromosomes by using the I-SceI system of Saccharomyces cerevisiae. Mol Cell Biol. Apr. 1995;15(4):1968-73. doi: 10.1128/MCB.15.4.1968.
Christian et al., Targeting G with TAL effectors: a comparison of activities of TALENs constructed with NN and NK repeat variable di-residues. PLoS One. 2012;7(9):e45383. doi: 10.1371/journal.pone.0045383. Epub Sep. 24, 2012.
Christian et al., Targeting DNA double-strand breaks with TAL effector nucleases. Genetics. Oct. 2010;186(2):757-61. Doi: 10.1534/genetics.110.120717. Epub Jul. 26, 2010.
Christiansen et al., Characterization of the lactococcal temperate phage TP901-1 and its site-specific integration. J Bacteriol. Feb. 1994;176(4):1069-76. doi: 10.1128/jb.176.4.1069-1076.1994.
Chu et al., Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells. Nat Biotech. Feb. 13, 2015;33:543-8.
Chu et al., Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells. Nat Biotech. Feb. 13, 2015;33:543-8. doi: 10.1038/nbt.3198. Epub Mar. 24, 2015.
Chuai et al., DeepCRISPR: optimized CRISPR guide RNA design by deep learning. Genome Biol. Jun. 26, 2018;19(1):80. doi: 10.1186/s13059-018-1459-4.
Chuai et al., In Silico Meets In Vivo: Towards Computational CRISPR-Based sgRNA Design. Trends Biotechnol. Jan. 2017;35(1):12-21. doi: 10.1016/j.tibtech.2016.06.008. Epub Jul. 11, 2016.
Chuang et al., Novel Heterotypic Rox Sites for Combinatorial Dre Recombination Strategies. G3 (Bethesda). Dec. 29, 2015;6(3):559-71. doi: 10.1534/g3.115.025841.
Chujo et al., Trmt61B is a methyltransferase responsible for 1-methyladenosine at position 58 of human mitochondrial tRNAs. RNA. Dec. 2012;18(12):2269-76. doi: 10.1261/rna.035600.112. Epub Oct. 24, 2012.
Chung-Il et al., Artificial control of gene expression in mammalian cells by modulating RNA interference through aptamer-small molecule interaction. RNA. May 2006;12(5):710-6. Epub Apr. 10, 2006.
Chylinski et al., The tracrRNA and Cas9 families of type II CRISPR-Cas immunity systems. RNA Biol. May 2013;10(5):726-37. doi: 10.4161/rna.24321. Epub Apr. 5, 2013.
Clackson et al., Redesigning an FKBP-ligand interface to generate chemical dimerizers with novel specificity. Proc Natl Acad Sci U S A. Sep. 1, 1998;95(18):10437-42. doi: 10.1073/pnas.95.18.10437.
Clement et al., CRISPResso2 provides accurate and rapid genome editing sequence analysis. Nat Biotechnol. Mar. 2019;37(3):224-226. doi: 10.1038/s41587-019-0032-3.
Cobb et al., Directed evolution as a powerful synthetic biology tool. Methods. Mar. 15, 2013;60(1):81-90. doi: 10.1016/j.ymeth.2012.03.009. Epub Mar. 23, 2012.
Cokol et al., Finding nuclear localization signals. EMBO Rep. Nov. 2000;1(5):411-5. doi: 10.1093/embo-reports/kvd092.
Cole et al., Reconstructing evolutionary adaptive paths for protein engineering. Methods Mol Biol. 2013;978:115-25. doi: 10.1007/978-1-62703-293-3_8.
Cole-Strauss et al., Correction of the mutation responsible for sickle cell anemia by an RNA-DNA oligonucleotide. Science. Sep. 6, 1996;273(5280):1386-9.
Collinge, Prion diseases of humans and animals: their causes and molecular basis. Annu Rev Neurosci. 2001;24:519-50. doi: 10.1146/annurev.neuro.24.1.519.
Cong et al., Multiplex genome engineering using CRISPR/Cas systems. Science. Feb. 15, 2013;339(6121):819-23. doi: 10.1126/science.1231143. Epub Jan. 3, 2013.
Conrad et al., A Kaposi's sarcoma virus RNA element that increases the nuclear abundance of intronless transcripts. EMBO J. May 18, 2005;24(10):1831-41. doi: 10.1038/sj.emboj.7600662. Epub Apr. 28, 2005.
Conticello, The AID/APOBEC family of nucleic acid mutators. Genome Biol. 2008;9(6):229. doi: 10.1186/gb-2008-9-6-229. Epub Jun. 7, 2008.
Cornu et al., Refining strategies to translate genome editing to the clinic. Nat Med. Apr. 3, 2017;23(4):415-423. doi: 10.1038/nm.4313.
Costa et al., Frequent use of the same tertiary motif by self-folding RNAs. EMBO J. Mar. 15, 1995;14(6):1276-85.
Cotton et al., Insertion of a Synthetic Peptide into a Recombinant Protein Framework: A Protein Biosensor. J. Am. Chem. Soc. Jan. 22, 1999;121(5):1100-1. https://doi.org/10.1021/ja983804b.
Covino et al., The CCL2/CCR2 Axis in the Pathogenesis of HIV-1 Infection: A New Cellular Target for Therapy? Current Drug Targets Dec. 2016;17(1):76-110. DOI : 10.2174/138945011701151217110917.
Cox et al., An SCN9A channelopathy causes congenital inability to experience pain. Nature. Dec. 14, 2006;444(7121):894-8. doi: 10.1038/nature05413.
Cox et al., Conditional gene expression in the mouse inner ear using Cre-loxP. J Assoc Res Otolaryngol. Jun. 2012;13(3):295-322. doi: 10.1007/s10162-012-0324-5. Epub Apr. 24, 2012.
Cox et al., Congenital insensitivity to pain: novel SCN9A missense and in-frame deletion mutations. Hum Mutat. Sep. 2010;31(9):E1670-86. doi: 10.1002/humu.21325.
Cox et al., RNA editing with CRISPR-Cas13. Science. Nov. 24, 2017;358(6366):1019-1027. doi: 10.1126/science.aaq0180. Epub Oct. 25, 2017.
Cox et al., Therapeutic genome editing: prospects and challenges. Nat Med. Feb. 2015;21(2):121-31. doi: 10.1038/nm.3793.
Cox, Proteins pinpoint double strand breaks. Elife. Oct. 29, 2013;2:e01561. doi: 10.7554/eLife.01561.
Crabtree et al., Three-part inventions: intracellular signaling and induced proximity. Trends Biochem Sci. Nov. 1996;21(11):418-22. doi: 10.1016/s0968-0004(96)20027-1.
Cradick et al., CRISPR/Cas9 systems targeting β-globin and CCR5 genes have substantial off-target activity. Nucleic Acids Res. Nov. 1, 2013;41(20):9584-92. doi: 10.1093/nar/gkt714. Epub Aug. 11, 2013.
Cradick et al., ZFN-site searches genomes for zinc finger nuclease target sites and off-target sites. BMC Bioinformatics. May 13, 2011;12:152. doi: 10.1186/1471-2105-12-152.
Cradick et al., Zinc-finger nucleases as a novel therapeutic strategy for targeting hepatitis B virus DNAs. Mol Ther. May 2010;18(5):947-54. Doi: 10.1038/mt.2010.20. Epub Feb. 16, 2010.
Crick, On protein synthesis. Symp Soc Exp Biol. 1958;12:138-63.
Cronican et al., A class of human proteins that deliver functional proteins into mammalian cells in vitro and in vivo. Chem Biol. Jul. 29, 2011;18(7):833-8. doi: 10.1016/j.chembiol.2011.07.003.
Cronican et al., Potent delivery of functional proteins into Mammalian cells in vitro and in vivo using a supercharged protein. ACS Chem Biol. Aug. 20, 2010;5(8):747-52. doi:10.1021/cb1001153.
Crystal, Transfer of genes to humans: early lessons and obstacles to success. Science. Oct. 20, 1995;270(5235):404-10. doi: 10.1126/science.270.5235.404.
Cui et al., Consequences of Cas9 cleavage in the chromosome of Escherichia coli. Nucleic Acids Res. May 19, 2016;44(9):4243-51. doi: 10.1093/nar/gkw223. Epub Apr. 8, 2016.
Cui et al., m6A RNA Methylation Regulates the Self-Renewal and Tumorigenesis of Glioblastoma Stem Cells. Cell Rep. Mar. 14, 2017;18(11):2622-2634. doi: 10.1016/j.celrep.2017.02.059.
Cui et al., Review of CRISPR/Cas9 sgRNA Design Tools. Interdiscip Sci. Jun. 2018;10(2):455-465. doi: 10.1007/s12539-018-0298-z. Epub Apr. 11, 2018.
Cui et al., Targeted integration in rat and mouse embryos with zinc-finger nucleases. Nat Biotechnol. Jan. 2011;29(1):64-7. Doi: 10.1038/nbt.1731. Epub Dec. 12, 2010.
Cunningham et al., Ensembl 2015. Nucleic Acids Res. Jan. 2015;43(Database issue):D662-9. doi: 10.1093/nar/gku1010. Epub Oct. 28, 2014.
Cupples et al., A set of lacZ mutations in Escherichia coli that allow rapid detection of each of the six base substitutions. Proc Natl Acad Sci U S A. Jul. 1989;86(14):5345-9.
D'Adda di Fagagna et al., The Gam protein of bacteriophage Mu is an orthologue of eukaryotic Ku. EMBO Rep. Jan. 2003;4(1):47-52.
Dahlem et al., Simple methods for generating and detecting locus-specific mutations induced with TALENs in the zebrafish genome. PLoS Genet. 2012;8(8):e1002861. doi: 10.1371/journal.pgen.1002861. Epub Aug. 16, 2012.
Dahlgren et al., A novel mutation in ribosomal protein S4 that affects the function of a mutated RF1. Biochimie. Aug. 2000;82(8):683-91.
Dahlman et al., Orthogonal gene knockout and activation with a catalytically active Cas9 nuclease. Nat Biotechnol. Nov. 2015;33(11):1159-61. doi: 10.1038/nbt.3390.
Dandage et al., beditor: A Computational Workflow for Designing Libraries of Guide RNAs for CRISPR-Mediated Base Editing. Genetics. Jun. 2019;212(2):377-385. doi: 10.1534/genetics.119.302089. Epub Apr. 1, 2019.
Dang et al., Optimizing sgRNA structure to improve CRISPR-Cas9 knockout efficiency. Genome Biol. Dec. 15, 2015;16:280. doi: 10.1186/s13059-015-0846-3.
Das et al., The crystal structure of the monomeric reverse transcriptase from Moloney murine leukemia virus. Structure. May 2004;12(5):819-29. doi: 10.1016/j.str.2004.02.032.
Dassa et al., Fractured genes: a novel genomic arrangement involving new split inteins and a new homing endonuclease family. Nucleic Acids Res. May 2009;37(8):2560-73. doi: 10.1093/nar/gkp095. Epub Mar. 5, 2009.
Dassa et al., Trans protein splicing of cyanobacterial split inteins in endogenous and exogenous combinations. Biochemistry. Jan. 9, 2007;46(1):322-30. doi: 10.1021/bi0611762.
Database EBI Accession No. ADE34233 Jan. 29, 2004.
Database EBI Accession No. BFF09785. May 31, 2018. 2 pages.
Database EBI Accession No. BGE38086. Jul. 25, 2019. 2 pages.
Database UniProt Accession No. G8I3E0. Jan. 14, 2012.
Datsenko et al., One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A. Jun. 6, 2000;97(12):6640-5.
Davidson et al., Viral vectors for gene delivery to the nervous system. Nat Rev Neurosci. May 2003;4(5):353-64. doi: 10.1038/nrn1104.
Davis et al., DNA double strand break repair via non-homologous end-joining. Transl Cancer Res. Jun. 2013;2(3):130-143.
Davis et al., Small molecule-triggered Cas9 protein with improved genome-editing specificity. Nat Chem Biol. May 2015;11(5):316-8. doi: 10.1038/nchembio.1793. Epub Apr. 6, 2015.
De Felipe et al., Co-translational, intraribosomal cleavage of polypeptides by the foot-and-mouth disease virus 2A peptide. J Biol Chem. Mar. 28, 2003;278(13):11441-8. doi: 10.1074/jbc.M211644200. Epub Jan. 8, 2003.
De La Peña et al., The Hammerhead Ribozyme: A Long History for a Short RNA. Molecules. Jan. 4, 2017;22(1):78. doi: 10.3390/molecules22010078.
De Souza, Primer: genome editing with engineered nucleases. Nat Methods. Jan. 2012;9(1):27.
De Wit et al., The Human CD4+ T Cell Response against Mumps Virus Targets a Broadly Recognized Nucleoprotein Epitope. J Virol. Mar. 5, 2019;93(6):e01883-18. doi: 10.1128/JVI.01883-18.
Dean et al., Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Hemophilia Growth and Development Study, Multicenter AIDS Cohort Study, Multicenter Hemophilia Cohort Study, San Francisco City Cohort, Alive Study. Science. Sep. 27, 1996;273(5283):1856-62. doi: 10.1126/science.273.5283.1856.
DeKosky et al., Large-scale sequence and structural comparisons of human naive and antigen-experienced antibody repertoires. Proc Natl Acad Sci U S A. May 10, 2016;113(19):E2636-45. doi: 10.1073/pnas.1525510113. Epub Apr. 25, 2016.
Delebecque et al., Organization of intracellular reactions with rationally designed RNA assemblies. Science. Jul. 22, 2011;333(6041):470-4. doi: 10.1126/science.1206938. Epub Jun. 23, 2011.
Deltcheva et al., CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature. Mar. 31, 2011;471(7340):602-7. doi: 10.1038/nature09886.
Deng et al., Widespread occurrence of N6-methyladenosine in bacterial mRNA. Nucleic Acids Res. Jul. 27, 2015;43(13):6557-67. doi: 10.1093/nar/gkv596. Epub Jun. 11, 2015.
Denizio et al., Harnessing natural DNA modifying activities for editing of the genome and epigenome. Curr Opin Chem Biol. Aug. 2018;45:10-17. doi: 10.1016/j.cbpa.2018.01.016. Epub Feb. 13, 2018.
Deriano et al., Modernizing the nonhomologous end-joining repertoire: alternative and classical NHEJ share the stage. Annu Rev Genet. 2013;47:433-55. doi: 10.1146/annurev-genet-110711-155540. Epub Sep. 11, 2013.
Deussing, Targeted mutagenesis tools for modelling psychiatric disorders. Cell Tissue Res. Oct. 2013;354(1):9-25. doi: 10.1007/s00441-013-1708-5. Epub Sep. 10, 2013.
Dever et al., CRISPR/Cas9 ?-globin gene targeting in human haematopoietic stem cells. Nature. Nov. 17, 2016;539(7629):384-389. doi: 10.1038/nature20134. Epub Nov. 7, 2016.
Deverman et al., Cre-dependent selection yields AAV variants for widespread gene transfer to the adult brain. Nat Biotechnol. Feb. 2016;34(2):204-9. doi: 10.1038/nbt.3440. Epub Feb. 1, 2016.
Devigili et al., Paroxysmal itch caused by gain-of-function Nav1.7 mutation. Pain. Sep. 2014;155(9):1702-1707. doi: 10.1016/j.pain.2014.05.006. Epub May 10, 2014.
Dianov et al., Mammalian base excision repair: the forgotten archangel. Nucleic Acids Res. Apr. 1, 2013;41(6):3483-90. doi: 10.1093/nar/gkt076. Epub Feb. 13, 2013.
DiCarlo et al., Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Research Apr. 2013;41(7):4336-43.
DiCarlo et al., Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res. Apr. 2013;41(7):4336-43. doi: 10.1093/nar/gkt135. Epub Mar. 4, 2013.
DiCarlo et al., Safeguarding CRISPR-Cas9 gene drives in yeast. Nat Biotechnol. Dec. 2015;33(12):1250-1255. doi: 10.1038/nbt.3412. Epub Nov. 16, 2015.
Dickey et al., Single-stranded DNA-binding proteins: multiple domains for multiple functions. Structure. Jul. 2, 2013;21(7):1074-84. doi: 10.1016/j.str.2013.05.013.
Dickinson et al., Experimental interrogation of the path dependence and stochasticity of protein evolution using phage-assisted continuous evolution. Proc Natl Acad Sci USA. May 2013;110(22):9007-12.
Dillon, Regulating gene expression in gene therapy. Trends Biotechnol. May 1993;11(5):167-73. doi: 10.1016/0167-7799(93)90109-M.
Ding et al., A TALEN genome-editing system for generating human stem cell-based disease models. Cell Stem Cell. Feb. 7, 2013;12(2):238-51. Doi: 10.1016/j.stem.2012.11.011. Epub Dec. 13, 2012.
Ding et al., Permanent alteration of PCSK9 with in vivo CRISPR-Cas9 genome editing. Circ Res. Aug. 15, 2014;115(5):488-92. doi: 10.1161/CIRCRESAHA.115.304351. Epub Jun. 10, 2014.
Dingwall et al., Nuclear targeting sequences—a consensus? Trends Biochem Sci. Dec. 1991;16(12):478-81. doi: 10.1016/0968-0004(91)90184-w.
Diver et al., Single-Step Synthesis of Cell-Permeable Protein Dimerizers That Activate Signal Transduction and Gene Expression. J. Am. Chem. Soc. Jun. 4, 1997;119(22):5106-5109. https://doi.org/10.1021/ja963891c.
Dixon et al., Reengineering orthogonally selective riboswitches. Proc Natl Acad Sci U S A. Feb. 16, 2010;107(7):2830-5. doi: 10.1073/pnas.0911209107. Epub Jan. 26, 2010.
Doench et al., Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat Biotechnol. Feb. 2016;34(2):184-191. doi: 10.1038/nbt.3437.
Doench et al., Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation. Nat Biotechnol. Dec. 2014;32(12):1262-7. doi: 10.1038/nbt.3026. Epub Sep. 3, 2014.
Dolan et al., Trans-splicing with the group I intron ribozyme from Azoarcus. RNA. Feb. 2014;20(2):202-13. doi: 10.1261/rna.041012.113. Epub Dec. 16, 2013.
Doman et al., Evaluation and minimization of Cas9-independent off-target DNA editing by cytosine base editors. Nat Biotechnol. May 2020;38(5):620-628. doi: 10.1038/s41587-020-0414-6. Epub Feb. 10, 2020.
Dominissini et al., Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature. Apr. 29, 2012;485(7397):201-6. doi: 10.1038/nature11112.
Dorgan et al., An enzyme-coupled continuous spectrophotometric assay for S-adenosylmethionine-dependent methyltransferases. Anal Biochem. Mar. 15, 2006;350(2):249-55. doi: 10.1016/j.ab.2006.01.004. Epub Feb. 7, 2006.
Dormiani et al., Long-term and efficient expression of human β-globin gene in a hematopoietic cell line using a new site-specific integrating non-viral system. Gene Ther. Aug. 2015;22(8):663-74. doi: 10.1038/gt.2015.30. Epub Apr. 1, 2015.
Dorr et al., Reprogramming the specificity of sortase enzymes. Proc Natl Acad Sci U S A. Sep. 16, 2014;111(37):13343-8. doi: 10.1073/pnas.1411179111. Epub Sep. 3, 2014.
Doudna et al., Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science. Nov. 28, 2014;346(6213):1258096. doi: 10.1126/science.1258096.
Doudna, The promise and challenge of therapeutic genome editing. Nature. Feb. 2020;578(7794):229-236. doi: 10.1038/s41586-020-1978-5. Epub Feb. 12, 2020.
Dove et al., Conversion of the omega subunit of Escherichia coli RNA polymerase into a transcriptional activator or an activation target. Genes Dev. Mar. 1, 1998;12(5):745-54.
Doyon et al., Directed evolution and substrate specificity profile of homing endonuclease I-SceI. J Am Chem Soc. Feb. 22, 2006;128(7):2477-84.
Doyon et al., Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nat Biotechnol. Jun. 2008;26(6):702-8. Doi: 10.1038/nbt1409. Epub May 25, 2008.
Drake, A constant rate of spontaneous mutation in DNA-based microbes. Proc Natl Acad Sci USA. Aug. 15, 1991;88(16):7160-4.
Dubois et al., Retroviral RNA Dimerization: From Structure to Functions. Front Microbiol. Mar. 22, 2018;9:527. doi: 10.3389/fmicb.2018.00527.
Dumas et al., Designing logical codon reassignment—Expanding the chemistry in biology. Chem Sci. Jan. 1, 2015;6(1):50-69. doi: 10.1039/c4sc01534g. Epub Jul. 14, 2014. Review.
Dunaime, Breakthrough method means CRISPR just got a lot more relevant to human health. The Verge. Apr. 20, 2016. http://www.theverge.com/2016/4/20/11450262/crispr-base-editing-single-nucleotides-dna-gene-liu-harvard.
Dunbar et al., Gene therapy comes of age. Science. Jan. 12, 2018;359(6372):eaan4672. doi: 10.1126/science.aan4672.
Dupuy et al., Le syndrome de De La Chapelle [De La Chapelle syndrome]. Presse Med. Mar. 3, 2001;30(8):369-72. French.
Durai et al., A bacterial one-hybrid selection system for interrogating zinc finger-DNA interactions. Comb Chem High Throughput Screen. May 2006;9(4):301-11.
Durai et al., Zinc finger nucleases: custom-designed molecular scissors for genome engineering of plant and mammalian cells. Nucleic Acids Res. Oct. 26, 2005;33(18):5978-90. doi: 10.1093/nar/gki912.
During et al., Controlled release of dopamine from a polymeric brain implant: in vivo characterization. Ann Neurol. Apr. 1989;25(4):351-6.
East-Seletsky et al., Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection. Nature Oct. 2016;538(7624):270-3.
Edlund et al., Cell-specific expression of the rat insulin gene: evidence for role of two distinct 5′ flanking elements. Science. Nov. 22, 1985;230(4728):912-6. doi: 10.1126/science.3904002.
Edwards et al., An Escherichia coli tyrosine transfer RNA is a leucine-specific transfer RNA in the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. Feb. 15, 1991;88(4):1153-6.
Edwards et al., Crystal structures of the thi-box riboswitch bound to thiamine pyrophosphate analogs reveal adaptive RNA-small molecule recognition. Structure. Sep. 2006;14(9):1459-68.
Eick et al., Robustness of Reconstructed Ancestral Protein Functions to Statistical Uncertainty. Mol Biol Evol. Feb. 1, 2017;34(2):247-261. doi: 10.1093/molbev/msw223.
Eiler et al., Structural Basis for the Fast Self-Cleavage Reaction Catalyzed by the Twister Ribozyme. Proc Natl Acad Sci U S A. Sep. 9, 2014;111(36):13028-33. doi: 10.1073/pnas.1414571111. Epub Aug. 25, 2014.
Eltoukhy et al., Nucleic acid-mediated intracellular protein delivery by lipid-like nanoparticles. Biomaterials. Aug. 2014;35(24):6454-61. doi: 10.1016/j.biomaterials.2014.04.014. Epub May 13, 2014.
Emery et al., HCN2 ion channels play a central role in inflammatory and neuropathic pain. Science. Sep. 9, 2011;333(6048):1462-6. doi: 10.1126/science.1206243.
Endo et al., Toward establishing an efficient and versatile gene targeting system in higher plants. Biocatalysis and Agricultural Biotechnology 2014;3,(1):2-6.
Engel et al., The emerging role of mRNA methylation in normal and pathological behavior. Genes Brain Behav. Mar. 2018;17(3):e12428. doi: 10.1111/gbb.12428. Epub Nov. 17, 2017.
Engelward et al., Base excision repair deficient mice lacking the Aag alkyladenine DNA glycosylase. Proc Natl Acad Sci U S A. Nov. 25, 1997;94(24):13087-92.
England, Unnatural amino acid mutagenesis: a precise tool for probing protein structure and function. Biochemistry. Sep. 21, 2004;43(37):11623-9.
Enyeart et al., Biotechnological applications of mobile group II introns and their reverse transcriptases: gene targeting, RNA-seq, and non-coding RNA analysis. Mobile DNA 5, 2 (2014). https://doi.org/10.1186/1759-8753-5-2. https://doi.org/10.1186/1759-8753-5-2.
Epstein, HSV-1-based amplicon vectors: design and applications. Gene Ther. Oct. 2005;12 Suppl 1:S154-8. doi: 10.1038/sj.gt.3302617.
Eriksson et al., Recurrent de novo point mutations in lamin A cause Hutchinson-Gilford progeria syndrome. Nature. May 15, 2003;423(6937):293-8. doi: 10.1038/nature01629. Epub Apr. 25, 2003. PMID: 12714972.
Esvelt et al., A system for the continuous directed evolution of biomolecules. Nature. Apr. 28, 2011;472(7344):499-503. doi: 10.1038/nature09929. Epub Apr. 10, 2011.
Esvelt et al., Genome-scale engineering for systems and synthetic biology. Mol Syst Biol. 2013;9:641. doi: 10.1038/msb.2012.66.
Esvelt et al., Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. Nat Methods. Nov. 2013;10(11):1116-21. doi: 10.1038/nmeth.2681. Epub Sep. 29, 2013.
Evans et al., Protein trans-splicing and cyclization by a naturally split intein from the dnaE gene of Synechocystis species PCC6803. J Biol Chem. Mar. 31, 2000;275(13):9091-4. doi: 10.1074/jbc.275.13.9091.
Evans et al., Semisynthesis of cytotoxic proteins using a modified protein splicing element. Protein Sci. Nov. 1998;7(11):2256-64. doi: 10.1002/pro.5560071103.
Evans et al., The cyclization and polymerization of bacterially expressed proteins using modified self-splicing inteins. J Biol Chem. Jun. 25, 1999;274(26):18359-63. doi: 10.1074/jbc.274.26.18359.
Evans et al., The in vitro ligation of bacterially expressed proteins using an intein from Methanobacterium thermoautotrophicum. J Biol Chem. Feb. 12, 1999;274(7):3923-6. doi: 10.1074/jbc.274.7.3923.
Evers et al., CRISPR knockout screening outperforms shRNA and CRISPRi in identifying essential genes. Nat Biotechnol. Jun. 2016;34(6):631-3. doi: 10.1038/nbt.3536. Epub Apr. 25, 2016.
Fagerlund et al., The Cpf1 CRISPR-Cas protein expands genome-editing tools. Genome Biology Nov. 17, 2015;16:251. https://doi.org/10.1186/s13059-015-0824-9.
Falnes et al., DNA repair by bacterial AlkB proteins. Res Microbiol. Oct. 2003;154(8):531-8. doi: 10.1016/S0923-2508(03)00150-5.
Falnes et al., Repair of methyl lesions in DNA and RNA by oxidative demethylation. Neuroscience. Apr. 14, 2007;145(4):1222-32. doi: 10.1016/j.neuroscience.2006.11.018. Epub Dec. 18, 2006.
Fang et al., Synthetic Studies Towards Halichondrins: Synthesis of the Left Halves of Norhalichondrins and Homohalichondrins. Tetrahedron Letters 1992;33(12):1557-1560.
Farboud et al., Dramatic enhancement of genome editing by CRISPR/Cas9 through improved guide RNA design. Genetics. Apr. 2015;199(4):959-71. doi: 10.1534/genetics.115.175166. Epub Feb. 18, 2015.
Farhood et al., Codelivery to mammalian cells of a transcriptional factor with cis-acting element using cationic liposomes. Anal Biochem. Feb. 10, 1995;225(1):89-93.
Fawcett et al., Transposable elements controlling I-R hybrid dysgenesis in D. melanogaster are similar to mammalian LINEs. Cell. Dec. 26, 1986;47(6):1007-15. doi: 10.1016/0092-8674(86)90815-9.
Feldstein et al., Two sequences participating in the autolytic processing of satellite tobacco ringspot virus complementary RNA. Gene. Oct. 15, 1989;82(1):53-61. doi: 10.1016/0378-1119(89)90029-2.
Felletti et al., Twister Ribozymes as Highly Versatile Expression Platforms for Artificial Riboswitches. Nat Commun. Sep. 27, 2016;7:12834. doi: 10.1038/ncomms12834.
Feng et al., Crystal structures of the human RNA demethylase Alkbh5 reveal basis for substrate recognition. J Biol Chem. Apr. 25, 2014;289(17):11571-11583. doi: 10.1074/jbc.M113.546168. Epub Mar. 10, 2014.
Feng et al., Human L1 retrotransposon encodes a conserved endonuclease required for retrotransposition. Cell. Nov. 29, 1996;87(5):905-16. doi: 10.1016/s0092-8674(00)81997-2.
Ferretti et al., Complete genome sequence of an M1 strain of Streptococcus pyogenes. Proc Natl Acad Sci U S A. Apr. 10, 2001;98(8):4658-63.
Ferry et al., Rational design of inducible CRISPR guide RNAs for de novo assembly of transcriptional programs. Nat Commun. Mar. 3, 2017;8:14633. doi: 10.1038/ncomms14633.
Feuk, Inversion variants in the human genome: role in disease and genome architecture. Genome Med. Feb. 12, 2010;2(2):11. doi: 10.1186/gm132.
Filippov et al., A novel type of RNase III family proteins in eukaryotes. Gene. Mar. 7, 2000;245(1):213-21. doi: 10.1016/s0378-1119(99)00571-5.
Fine et al., Trans-spliced Cas9 allows cleavage of HBB and CCR5 genes in human cells using compact expression cassettes. Scientific Reports 2015;5(1):Article No. 10777. doi: 10.1038/srep10777. With Supplementary Information.
Fire et al., Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. Feb. 19, 1998;391(6669):806-11. doi: 10.1038/35888.
Fischbach et al., Directed evolution can rapidly improve the activity of chimeric assembly-line enzymes. Proc Natl Acad Sci U S A. Jul. 17, 2007;104(29):11951-6. doi: 10.1073/pnas.0705348104. Epub Jul. 9, 2007.
Fischer et al., Cryptic epitopes induce high-titer humoral immune response in patients with cancer. J Immunol. Sep. 1, 2010;185(5):3095-102. doi: 10.4049/jimmunol.0902166. Epub Jul. 26, 2010.
Fitzjohn, Diversitree: comparative phylogenetic analyses of diversification in R. Methods in Evology and Evolution. Dec. 2012;3(6):1084-92 .doi: 10.1111/j.2041-210X.2012.00234.x.
Flajolet et al., Woodchuck hepatitis virus enhancer I and enhancer II are both involved in—myc2 activation in woodchuck liver tumors. J Virol. Jul. 1998;72(7):6175-80. doi: 10.1128/JVI.72.7.6175-6180.1998.
Flaman et al., A rapid PCR fidelity assay. Nucleic Acids Res. Aug. 11, 1994;22(15):3259-60. doi: 10.1093/nar/22.15.3259.
Flynn et al., CRISPR-mediated genotypic and phenotypic correction of a chronic granulomatous disease mutation in human iPS cells. Exp Hematol. Oct. 2015;43(10):838-848.e3. doi: 10.1016/j.exphem.2015.06.002. Epub Jun. 19, 2015. Including supplementary figures and data.
Fogg et al., New applications for phage integrases. J Mol Biol. Jul. 29, 2014;426(15):2703-16. doi: 10.1016/j.jmb.2014.05.014. Epub May 22, 2014.
Fogg et al., Genome Integration and Excision by a New Streptomyces Bacteriophage, ?Joe. Appl Environ Microbiol. Feb. 15, 2017;83(5):e02767-16. doi: 10.1128/AEM.02767-16.
Fonfara et al., Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems. Nucleic Acids Res. Feb. 2014;42(4):2577-90. doi: 10.1093/nar/gkt1074. Epub Nov. 22, 2013.
Fonfara et al., Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems. Nucleic Acids Res. Feb. 2014;42(4):2577-90. doi: 10.1093/nar/gkt1074. Epub Nov. 22, 2013. Including Supplementary Information.
Forster et al., Self-cleavage of virusoid RNA is performed by the proposed 55-nucleotide active site. Cell. Jul. 3, 1987;50(1):9-16. doi: 10.1016/0092-8674(87)90657-x.
Fortini et al., Different DNA polymerases are involved in the short- and long-patch base excision repair in mammalian cells. Biochemistry. Mar. 17, 1998;37(11):3575-80. doi: 10.1021/bi972999h.
Fouts et al., Sequencing Bacillus anthracis typing phages gamma and cherry reveals a common ancestry. J Bacteriol. May 2006;188(9):3402-8. doi: 10.1128/JB.188.9.3402-3408.2006.
Freitas et al., Mechanisms and signals for the nuclear import of proteins. Curr Genomics. Dec. 2009;10(8):550-7. doi: 10.2174/138920209789503941.
Freshney, Culture of Animal Cells. A Manual of Basic Technique. Alan R. Liss, Inc. New York. 1983;4.
Fu et al., Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol. Mar. 2014;32(3):279-84. doi: 10.1038/nbt.2808. Epub Jan. 26, 2014.
Fu et al., High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol. Sep. 2013;31(9):822-6. doi: 10.1038/nbt.2623. Epub Jun. 23, 2013.
Fu et al., Promises and Pitfalls of Intracellular Delivery of Proteins. Bioconjugate Chemistry. Aug. 2014;25:1602-8.
Fuchs et al., Polyarginine as a multifunctional fusion tag. Protein Sci. Jun. 2005;14(6):1538-44.
Fujisawa et al., Disease-associated mutations in CIAS1 induce cathepsin B-dependent rapid cell death of human THP-1 monocytic cells. Blood. Apr. 1, 2007;109(7):2903-11.
Fukui et al., DNA Mismatch Repair in Eukaryotes and Bacteria. J Nucleic Acids. Jul. 27, 2010;2010. pii: 260512. doi: 10.4061/2010/260512.
Fung et al., Repair at single targeted DNA double-strand breaks in pluripotent and differentiated human cells. PLoS One. 2011;6(5):e20514. doi: 10.1371/journal.pone.0020514. Epub May 25, 2011.
Furukawa et al., In vitro selection of allosteric ribozymes that sense the bacterial second messenger c-di-GMP. Methods Mol Biol. 2014;1111:209-20. doi: 10.1007/978-1-62703-755-6_15.
Fusi et al., In Silico Predictive Modeling of CRISPR/Cas9 guide efficiency. Jun. 26, 2015; bioRxiv. http://dx.doi.org/10.1101/021568.
Gaj et al., 3rd. Genome engineering with custom recombinases. Methods Enzymol. 2014;546:79-91. doi: 10.1016/B978-0-12-801185-0.00004-0.
Gaj et al., A comprehensive approach to zinc-finger recombinase customization enables genomic targeting in human cells. Nucleic Acids Res. Feb. 6, 2013;41(6):3937-46.
Gaj et al., Enhancing the specificity of recombinase-mediated genome engineering through dimer interface redesign. J Am Chem Soc. Apr. 2, 2014;136(13):5047-56. doi: 10.1021/ja4130059. Epub Mar. 20, 2014.
Gaj et al., Expanding the scope of site-specific recombinases for genetic and metabolic engineering. Biotechnol Bioeng. Jan. 2014;111(1):1-15. doi: 10.1002/bit.25096. Epub Sep. 13, 2013.
Gaj et al., Structure-guided reprogramming of serine recombinase DNA sequence specificity. Proc Natl Acad Sci U S A. Jan. 11, 2011;108(2):498-503. doi: 10.1073/pnas.1014214108. Epub Dec. 27, 2010.
Gaj et al., ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. Jul. 2013;31(7):397-405. doi: 10.1016/j.tibtech.2013.04.004. Epub May 9, 2013.
Gajula, Designing an Elusive CoG?GoC CRISPR Base Editor. Trends Biochem Sci. Feb. 2019;44(2):91-94. doi: 10.1016/j.tibs.2018.10.004. Epub Nov. 13, 2018.
Gallo et al., A novel pathogenic PSEN1 mutation in a family with Alzheimer's disease: phenotypical and neuropathological features. J Alzheimers Dis. 2011;25(3):425-31. doi: 10.3233/JAD-2011-110185.
Gangopadhyay et al., Precision Control of CRISPR-Cas9 Using Small Molecules and Light. Biochemistry. Jan. 29, 2019;58(4):234-244. doi: 10.1021/acs.biochem.8b01202. Epub Jan. 22, 2019.
Gao et al., Cationic liposome-mediated gene transfer. Gene Ther. Dec. 1995;2(10):710-22.
Gao et al., DNA-guided genome editing using the Natronobacterium gregoryi Argonaute. Nat Biotechnol. Jul. 2016;34(7):768-73. doi: 10.1038/nbt.3547. Epub May 2, 2016.
Gao et al., Prime editing in mice reveals the essentiality of a single base in driving tissue-specific gene expression. Genome Biol. Mar. 16, 2021;22(1):83. doi: 10.1186/s13059-021-02304- 3.
Gao et al., Self-processing of ribozyme-flanked RNAs into guide RNAs in vitro and in vivo for CRISPR-mediated genome editing. J Integr Plant Biol. Apr. 2014;56(4):343-9. doi: 10.1111/jipb.12152. Epub Mar. 6, 2014.
Gao et al., Treatment of autosomal dominant hearing loss by in vivo delivery of genome editing agents. Nature. Jan. 11, 2018;553(7687):217-221. doi: 10.1038/nature25164. Epub Dec. 20, 2017.
Gapinske et al., CRISPR-SKIP: programmable gene splicing with single base editors. Genome Biol. Aug. 15, 2018;19(1):107. doi: 10.1186/s13059-018-1482-5.
Garcia et al., Transglycosylation: a mechanism for RNA modification (and editing?). Bioorg Chem. Jun. 2005;33(3):229-51. doi: 10.1016/j.bioorg.2005.01.001. Epub Feb. 23, 2005.
Gardlik et al., Vectors and delivery systems in gene therapy. Med Sci Monit. Apr. 2005;11(4):RA110-21. Epub Mar. 24, 2005.
Garibyan et al., Use of the rpoB gene to determine the specificity of base substitution mutations on the Escherichia coli chromosome. DNA Repair (Amst). May 13, 2003;2(5):593-608.
Garneau et al., The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature. Nov. 4, 2010;468(7320):67-71. doi: 10.1038/nature09523.
Gasiunas et al., Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci U S A. Sep. 25, 2012;109(39):E2579-86. Epub Sep. 4, 2012. Supplementary materials included.
Gasiunas et al., RNA-dependent DNA endonuclease Cas9 of the CRISPR system: Holy Grail of genome editing? Trends Microbiol. Nov. 2013;21(11):562-7. doi: 10.1016/j.tim.2013.09.001. Epub Oct. 1, 2013.
Gaudelli et al., Programmable base editing of AoT to GoC in genomic DNA without DNA cleavage. Nature. Nov. 23, 2017;551(7681):464-471. doi: 10.1038/nature24644. Epub Oct. 25, 2017. Erratum in: Nature. May 2, 2018.
Gearing, Addgene blog. CRISPR 101: Cas9 nickase design and homology directed repair. 2018. pp. 1-12. https://blog.addgene.org/crispr-101-cas9-nickase-design-and-homlogy-directed-repair. Last retrieved online Jun. 25, 2021.
Gehrke et al., An APOBEC3A-Cas9 base editor with minimized bystander and off-target activities. Nat Biotechnol. Nov. 2018;36(10):977-982. doi: 10.1038/nbt.4199. Epub Jul. 30, 2018.
GenBank Accession No. J01600.1. Brooks et al., E.coli dam gene coding for DNA adenine methylase. Apr. 26, 1993.
GenBank Accession No. U07651.1. Lu, Escherichia coli K12 negative regulator of replication initiation (seqA) gene, complete cds. Jul. 19, 1994.
GenBank Submission; NIH/NCBI Accession No. 4UN5_B. Anders et al., Jul. 23, 2014. 5 pages.
GenBank Submission; NIH/NCBI Accession No. NM_001319224.2. Umar et al., Apr. 21, 2021. 7 pages.
GenBank Submission; NIH/NCBI Accession No. NM_006027.4. Umar et al., Apr. 10, 2021. 7 pages.
GenBank Submission; NIH/NCBI, Accession No. AAA66622.1. Martinelli et al., May 18, 1995. 2 pages.
GenBank Submission; NIH/NCBI, Accession No. AGT42196. Farzadfar et al., Nov. 2, 2013. 2 pages.
GenBank Submission; NIH/NCBI, Accession No. AIT42264.1. Hyun et al., Oct. 15, 2014. 2 pages.
GenBank Submission; NIH/NCBI, Accession No. AKA60242.1. Tong et al., Apr. 5, 2015. 1 page.
GenBank Submission; NIH/NCBI, Accession No. AKQ21048.1. Gilles et al., Jul. 19, 2015. 1 page.
GenBank Submission; NIH/NCBI, Accession No. AKS40380.1. Nodvig et al., Aug. 2, 2015. 1 page.
GenBank Submission; NIH/NCBI, Accession No. APG80656.1. Burstein et al., Dec. 10, 2016. 1 pages.
GenBank Submission; NIH/NCBI, Accession No. AYD60528.1. Ram et al., Oct. 2, 2018. 1 page.
GenBank Submission; NIH/NCBI, Accession No. BDB43378. Zhang et al., Aug. 11, 2016. 2 pages.
GenBank Submission; NIH/NCBI, Accession No. J04623. Kita et al., Apr. 26, 1993. 2 pages.
GenBank Submission; NIH/NCBI, Accession No. KR710351.1. Sahni et al., Jun. 1, 2015. 2 pages.
GenBank Submission; NIH/NCBI, Accession No. NC 002737.2. Nasser et al., Feb. 7, 2021. 2 pages.
GenBank Submission; NIH/NCBI, Accession No. NC_002737.1. Ferretti et al., Jun. 27, 2013. 1 page.
GenBank Submission; NIH/NCBI, Accession No. NC_015683.1. Trost et al., Jul. 6, 2013. 1 page.
GenBank Submission; NIH/NCBI, Accession No. NC_016782.1. Trost et al., Jun. 11, 2013. 1 page.
GenBank Submission; NIH/NCBI, Accession No. NC_016786.1. Trost et al., Aug. 28, 2013. 1 page.
GenBank Submission; NIH/NCBI, Accession No. NC_017053.1. Fittipaldi et al., Jul. 6, 2013. 1 page.
GenBank Submission; NIH/NCBI, Accession No. NC_017317.1. Trost et al., Jun. 11, 2013. 1 page.
GenBank Submission; NIH/NCBI, Accession No. NC_017861.1. Heidelberg et al., Jun. 11, 2013. 1 page.
GenBank Submission; NIH/NCBI, Accession No. NC_018010.1. Lucas et al., Jun. 11, 2013. 2 pages.
GenBank Submission; NIH/NCBI, Accession No. NC_018721.1. Feng et al., Jun. 11, 2013. 1 pages.
GenBank Submission; NIH/NCBI, Accession No. NC_021284.1. Ku et al., Jul. 12, 2013. 1 page.
GenBank Submission; NIH/NCBI, Accession No. NC_021314.1. Zhang et al., Jul. 15, 2013. 1 page.
GenBank Submission; NIH/NCBI, Accession No. NC_021846.1. Lo et al., Jul. 22, 2013. 1 page.
GenBank Submission; NIH/NCBI, Accession No. NM_000311.5. Alves et al., Mar. 7, 2021. 5 pages.
GenBank Submission; NIH/NCBI, Accession No. NM_001319224. Umar et al., Apr. 21, 2021. 7 pages.
GenBank Submission; NIH/NCBI, Accession No. NM_002945.3. Weiser et al., Sep. 3, 2017. 5 pages.
GenBank Submission; NIH/NCBI, Accession No. NM_002946.5. Kavli et al., Jun. 26, 2021. 5 pages.
GenBank Submission; NIH/NCBI, Accession No. NM_002947.4. Xiao et al., May 1, 2019. 4 pages.
GenBank Submission; NIH/NCBI, Accession No. NM_003686. Umar et al., Apr. 9, 2021. 7 pages.
GenBank Submission; NIH/NCBI, Accession No. NM_003686.4. Umar et al., Apr. 9, 2021. 7 pages.
GenBank Submission; NIH/NCBI, Accession No. NM_006027. Umar et al., Apr. 10, 2021. 7 pages.
GenBank Submission; NIH/NCBI, Accession No. NM_174936. Guo et al., Oct. 28, 2015. 6 pages.
GenBank Submission; NIH/NCBI, Accession No. NP_000302.1. Alves et al., Mar. 7, 2021. 4 pages.
GenBank Submission; NIH/NCBI, Accession No. NP_001243439.1. Lee et al., Jul. 26, 2021. 4 pages.
GenBank Submission; NIH/NCBI, Accession No. NP_076161.2. Wade et al., Jun. 20, 2021. 4 pages.
GenBank Submission; NIH/NCBI, Accession No. NP_358988.1. Hoskins et al., Jan. 11, 2017. 2 pages.
GenBank Submission; NIH/NCBI, Accession No. NP_391970.1. Borriss et al., Feb. 12, 2021. 3 pages.
GenBank Submission; NIH/NCBI, Accession No. NP_472073.1. Glaser et al., Jun. 27, 2013. 2 pages.
GenBank Submission; NIH/NCBI, Accession No. NP_628093.1. Hsiao et al., Aug. 3, 2016. 2 pages.
GenBank Submission; NIH/NCBI, Accession No. NP_955579.1. Chen et al., Aug. 13, 2018. 5 pages.
GenBank Submission; NIH/NCBI, Accession No. P42212. Prasher et al., Mar. 19, 2014. 7 pages.
GenBank Submission; NIH/NCBI, Accession No. QBJ66766. Duan et al. Aug. 12, 2020. 2 pages.
GenBank Submission; NIH/NCBI, Accession No. RFF81513.1. Zhou et al., Aug. 21, 2018. 2 pages.
GenBank Submission; NIH/NCBI, Accession No. SNX31424.1. Weckx, S., Feb. 16, 2018. 2 pages.
GenBank Submission; NIH/NCBI, Accession No. TGH57013. Xu et al., Apr. 9, 2019. 2 pages.
GenBank Submission; NIH/NCBI, Accession No. WP_002989955.1. No Author Listed, May 6, 2013. 1 page.
GenBank Submission; NIH/NCBI, Accession No. WP_010922251.1. No Author Listed, May 15, 2013. 1 page.
GenBank Submission; NIH/NCBI, Accession No. WP_011054416.1. No Author Listed, May 15, 2013. 1 page.
GenBank Submission; NIH/NCBI, Accession No. WP_011284745.1. No Author Listed, May 16, 2013. 1 page.
GenBank Submission; NIH/NCBI, Accession No. WP_011285506.1. No Author Listed, May 16, 2013. 1 page.
GenBank Submission; NIH/NCBI, Accession No. WP_011527619.1. No Author Listed, May 16, 2013. 1 page.
GenBank Submission; NIH/NCBI, Accession No. WP_012560673.1. No Author Listed, May 17, 2013. 1 page.
GenBank Submission; NIH/NCBI, Accession No. WP_014407541.1. No Author Listed, May 18, 2013. 1 page.
GenBank Submission; NIH/NCBI, Accession No. WP_016631044.1. Haft et al., Sep. 22, 2020. 1 page.
GenBank Submission; NIH/NCBI, Accession No. WP_020905136.1. No Author Listed, Jul. 25, 2013. 1 page.
GenBank Submission; NIH/NCBI, Accession No. WP_023080005.1. No Author Listed, Oct. 27, 2013. 1 page.
GenBank Submission; NIH/NCBI, Accession No. WP_023610282.1. No Author Listed, Nov. 27, 2013. 1 page.
GenBank Submission; NIH/NCBI, Accession No. WP_030125963.1. No Author Listed, Jul. 9, 2014. 1 page.
GenBank Submission; NIH/NCBI, Accession No. WP_030126706.1. No Author Listed, Jul. 9, 2014. 1 page.
GenBank Submission; NIH/NCBI, Accession No. WP_031386437.1. No Author Listed., Sep. 23, 2019. 1 page.
GenBank Submission; NIH/NCBI, Accession No. WP_031488318.1. No Author Listed., Aug. 5, 2014. 1 page.
GenBank Submission; NIH/NCBI, Accession No. WP_031589969.1. Haft et al., Oct. 9, 2019. 2 pages.
GenBank Submission; NIH/NCBI, Accession No. WP_032460140.1. No Author Listed, Oct. 4, 2014. 1 page.
GenBank Submission; NIH/NCBI, Accession No. WP_032461047.1. No Author Listed, Oct. 4, 2014. 1 page.
GenBank Submission; NIH/NCBI, Accession No. WP_032462016.1. Haft et al., Oct. 4, 2014. 1 page.
GenBank Submission; NIH/NCBI, Accession No. WP_032462936.1. No Author Listed, Oct. 4, 2014. 1 page.
GenBank Submission; NIH/NCBI, Accession No. WP_032464890.1. No Author Listed, Oct. 4, 2014. 1 page.
GenBank Submission; NIH/NCBI, Accession No. WP_038431314.1. No Author Listed, Dec. 26, 2014. 1 page.
GenBank Submission; NIH/NCBI, Accession No. WP_038432938.1. No Author Listed, Dec. 26, 2014. 1 page.
GenBank Submission; NIH/NCBI, Accession No. WP_038434062.1. No Author Listed, Dec. 26, 2014. 1 page.
GenBank Submission; NIH/NCBI, Accession No. WP_044924278.1. Haft et al., Oct. 9, 2019. 2 pages.
GenBank Submission; NIH/NCBI, Accession No. WP_047338501.1. Haft et al., Oct. 9, 2019. 2 pages.
GenBank Submission; NIH/NCBI, Accession No. WP_048327215.1. No Author Listed, Jun. 26, 2015. 1 page.
GenBank Submission; NIH/NCBI, Accession No. WP_049519324.1. No Author Listed, Jul. 20, 2015. 1 page.
GenBank Submission; NIH/NCBI, Accession No. WP_060798984.1. Haft et al., Oct. 9, 2019. 2 pages.
GenBank Submission; NIH/NCBI, Accession No. WP_062913273.1. Haft et al., Oct. 9, 2019, 2 pages.
GenBank Submission; NIH/NCBI, Accession No. WP_072754838. No Author Listed., Sep. 23, 2019. 1 page.
GenBank Submission; NIH/NCBI, Accession No. WP_095142515.1. No Author Listed., Sep. 23, 2019. 1 page.
GenBank Submission; NIH/NCBI, Accession No. WP_118538418.1. No Author Listed., Oct. 13, 2019. 1 page.
GenBank Submission; NIH/NCBI, Accession No. WP_119223642.1. No Author Listed., Oct. 13, 2019. 1 page.
GenBank Submission; NIH/NCBI, Accession No. WP_119227726.1. No Author Listed., Oct. 13, 2019. 1 page.
GenBank Submission; NIH/NCBI, Accession No. WP_119623382.1. No Author Listed., Oct. 13, 2019. 1 page.
GenBank Submission; NIH/NCBI, Accession No. WP_132221894.1. No Author Listed., Sep. 23, 2019. 1 page.
GenBank Submission; NIH/NCBI, Accession No. WP_133478044.1. Haft et al., Oct. 9, 2019. 2 pages.
GenBank Submission; NIH/NCBI, Accession No. YP_002004532.1. Villegas et al., Oct. 11, 2021. 2 pages.
GenBank Submission; NIH/NCBI, Accession No. YP_002342100.1. Bernardini et al., Jun. 10, 2013. 2 pages.
GenBank Submission; NIH/NCBI, Accession No. YP_002344900.1. Gundogdu et al., Mar. 19, 2014. 2 pages.
GenBank Submission; NIH/NCBI, Accession No. YP_006589943.1. Lynch et al., Oct. 15, 2021. 2 pages.
GenBank Submission; NIH/NCBI, Accession No. YP_009137104.1. Davison, Aug. 13, 2018. 2 pages.
GenBank Submission; NIH/NCBI, Accession No. YP_009283008.1. Bernardini et al., Sep. 23, 2016. 2 pages.
GenBank Submission; NIH/NCBI, Accession No. YP_820832.1. Makarova et al., Aug. 27, 2013. 2 pages.
George et al., Adenosine deaminases acting on RNA, RNA editing, and interferon action. J Interferon Cytokine Res. Jan. 2011;31(1):99-117. doi: 10.1089/jir.2010.0097. Epub Dec. 23, 2010. PMID: 21182352; PMCID: PMC3034097.
Gerard et al., Influence on stability in Escherichia coli of the carboxy-terminal structure of cloned Moloney murine leukemia virus reverse transcriptase. DNA. Aug. 1986;5(4):271-9. doi: 10.1089/dna.1986.5.271.
Gerard et al., Purification and characterization of the DNA polymerase and RNase H activities in Moloney murine sarcoma-leukemia virus. J Virol. Apr. 1975;15(4):785-97. doi: 10.1128/JVI.15.4.785-797.1975.
Gerard et al., The role of template-primer in protection of reverse transcriptase from thermal inactivation. Nucleic Acids Res. Jul. 15, 2002;30(14):3118-29. doi: 10.1093/nar/gkf417.
Gerber et al., An adenosine deaminase that generates inosine at the wobble position of tRNAs. Science. Nov. 5, 1999;286(5442):1146-9. doi: 10.1126/science.286.5442.1146.
Gerber et al., RNA editing by base deamination: more enzymes, more targets, new mysteries. Trends Biochem Sci. Jun. 2001;26(6):376-84.
Gersbach et al., Directed evolution of recombinase specificity by split gene reassembly. Nucleic Acids Res. Jul. 2010;38(12):4198-206. doi: 10.1093/nar/gkq125. Epub Mar. 1, 2010.
Gersbach et al., Targeted plasmid integration into the human genome by an engineered zinc-finger recombinase. Nucleic Acids Res. Sep. 1, 2011;39(17):7868-78. doi: 10.1093/nar/gkr421. Epub Jun. 7, 2011.
Gete et al., Mechanisms of angiogenic incompetence in Hutchinson-Gilford progeria via downregulation of endothelial NOS. Aging Cell. Jul. 2021;20(7):e13388. doi: 10.1111/acel.13388. Epub Jun. 4, 2021.
Ghahfarokhi et al., Blastocyst Formation Rate and Transgene Expression are Associated with Gene Insertion into Safe and Non-Safe Harbors in the Cattle Genome. Sci Rep. Nov. 13, 2017;7(1):15432. doi: 10.1038/s41598-017-15648-3.
Gibson et al., Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods. May 2009;6(5):343-5. doi: 10.1038/nmeth.1318. Epub Apr. 12, 2009.
Gil, Position-dependent sequence elements downstream of AAUAAA are required for efficient rabbit beta-globin mRNA 3′ end formation. Cell. May 8, 1987;49(3):399-406. doi: 10.1016/0092-8674(87)90292-3.
Gilbert et al., CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell. 2013 154(2):442-51.
Gilleron et al., Image-based analysis of lipid nanoparticle-mediated siRNA delivery, intracellular trafficking and endosomal escape. Nat Biotechnol. Jul. 2013;31(7):638-46. doi: 10.1038/nbt.2612. Epub Jun. 23, 2013.
Glasgow et al.,DNA-binding properties of the Hin recombinase. J Biol Chem. Jun. 15, 1989;264(17):10072-82.
Glassner et al., Generation of a strong mutator phenotype in yeast by imbalanced base excision repair. Proc Natl Acad Sci U S A. Aug. 18, 1998;95(17):9997-10002.
Goldberg et al., Epigenetics: a landscape takes shape. Cell. Feb. 23, 2007;128(4):635-8. doi: 10.1016/j.cell.2007.02.006.
Goldberg et al., Loss-of-function mutations in the Nav1.7 gene underlie congenital indifference to pain in multiple human populations. Clin Genet. Apr. 2007;71(4):311-9. doi: 10.1111/j.1399-0004.2007.00790.x.
Gong et al., Active DNA demethylation by oxidation and repair. Cell Res. Dec. 2011;21(12):1649-51. doi: 10.1038/cr.2011.140. Epub Aug. 23, 2011.
Gonzalez et al., An iCRISPR platform for rapid, multiplexable, and inducible genome editing in human pluripotent stem cells. Cell Stem Cell. Aug. 7, 2014;15(2):215-26. doi: 10.1016/j.stem.2014.05.018. Epub Jun. 12, 2014.
Goodnough et al., Development of a delivery vehicle for intracellular transport of botulinum neurotoxin antagonists. FEBS Lett. Feb. 27, 2002;513(2-3):163-8.
Gordley et al., Evolution of programmable zinc finger-recombinases with activity in human cells. J Mol Biol. Mar. 30, 2007;367(3):802-13. Epub Jan. 12, 2007.
Gordley et al., Synthesis of programmable integrases. Proc Natl Acad Sci U S A. Mar. 31, 2009;106(13):5053-8. doi: 10.1073/pnas.0812502106. Epub Mar. 12, 2009.
Gou et al., Designing single guide RNA for CIRSPR-Cas9 base editor by deep learning. Peer reviewed Thesis/Dissertation. UCLA Electronic Theses and Dissertations. Jan. 1, 2019. Retrieved from the Internet via https://escholarship.org/uc/item/7vf9z54t. Last accessed on Apr. 29, 2021.
Grainge et al., The integrase family of recombinase: organization and function of the active site. Mol Microbiol. Aug. 1999;33(3):449-56.
Gregory et al., Integration site for Streptomyces phage phiBT1 and development of site-specific integrating vectors. J Bacteriol. Sep. 2003;185(17):5320-3. doi: 10.1128/jb.185.17.5320-5323.2003.
Griffiths, Endogenous retroviruses in the human genome sequence. Genome Biol. 2001;2(6):Reviews1017. doi: 10.1186/gb-2001-2-6-reviews1017. Epub Jun. 5, 2001.
Grindley et al., Mechanisms of site-specific recombination. Annu Rev Biochem. 2006;75:567-605. doi: 10.1146/annurev.biochem.73.011303.073908.
Grishok et al., Genes and Mechanisms Related to RNA Interference Regulate Expression of the Small Temporal RNAs that Control C. elegans Developmental Timing. Jul. 13, 2001:106(1):P23-4.
Groher et al., Synthetic riboswitches—A tool comes of age. Biochim Biophys Acta. Oct. 2014;1839(10):964-973. doi: 10.1016/j.bbagrm.2014.05.005. Epub May 17, 2014.
Groth et al., Construction of transgenic Drosophila by using the site-specific integrase from phage phiC31. Genetics. Apr. 2004;166(4):1775-82. doi: 10.1534/genetics.166.4.1775.
Groth et al., Phage integrases: biology and applications. J Mol Biol. Jan. 16, 2004;335(3):667-78.
Gruber et al., Strategies for measuring evolutionary conservation of RNA secondary structures. BMC Bioinformatics. Feb. 26, 2008;9:122. doi: 10.1186/1471-2105-9-122.
Gruber et al., The Vienna RNA websuite. Nucleic Acids Res. Jul. 1, 2008;36(Web Server issue): W70-4. doi: 10.1093/nar/gkn188. Epub Apr. 19, 2008.
Grunebaum et al., Recent advances in understanding and managing adenosine deaminase and purine nucleoside phosphorylase deficiencies. Curr Opin Allergy Clin Immunol. Dec. 2013;13(6):630-8. doi: 10.1097/ACI.0000000000000006.
Grünewald et al., Transcriptome-wide off-target RNA editing induced by CRISPR-guided DNA base editors. Nature. May 2019;569(7756):433-437. doi: 10.1038/s41586-019-1161-z. Epub Apr. 17, 2019.
Guedon et al., Current gene therapy using viral vectors for chronic pain. Mol Pain. May 13, 2015;11:27. doi: 10.1186/s12990-015-0018-1.
Guilinger et al., Broad specificity profiling of TALENs results in engineered nucleases with improved DNA-cleavage specificity. Nat Methods. Apr. 2014;11(4):429-35. doi: 10.1038/nmeth.2845. Epub Feb. 16, 2014.
Guilinger et al., Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat Biotechnol. Jun. 2014;32(6):577-82. doi: 10.1038/nbt.2909. Epub Apr. 25, 2014.
Gumulya et al., Exploring the past and the future of protein evolution with ancestral sequence reconstruction: the ‘retro’ approach to protein engineering. Biochem J. Jan. 1, 2017;474(1):1-19. doi: 10.1042/BCJ20160507.
Guo et al., Designing single guide RNA for CIRSPR-Cas9 base editor by deep learning. Peer reviewed Thesis/Dissertation. UCLA Electronic Theses and Dissertations. Jan. 1, 2019. Retrieved from the Internet via https://escholarship.org/uc/item/7vf9z54t. Last accessed on Apr. 29, 2021.
Guo et al., Evolution of Tetrahymena ribozyme mutants with increased structural stability. Nat Struct Biol. Nov. 2002;9(11):855-61. doi: 10.1038/nsb850.
Guo et al., Facile functionalization of FK506 for biological studies by the thiol-ene ‘click’ reaction. RSC Advances. 2014;22:11400-3.
Guo et al., Protein tolerance to random amino acid change. Proc Natl Acad Sci U S A. Jun. 22, 2004;101(25):9205-10. Epub Jun. 14, 2004.
Guo et al., Structure of Cre recombinase complexed with DNA in a site-specific recombination synapse. Nature. Sep. 4, 1997;389(6646):40-6.
Gupta et al., Cross-talk between cognate and noncognate RpoE sigma factors and Zn(2+)-binding anti-sigma factors regulates photooxidative stress response in Azospirillum brasilense. Antioxid Redox Signal. Jan. 1, 2014;20(1):42-59. doi: 10.1089/ars.2013.5314. Epub Jul. 19, 2013.
Gupta et al., Sequences in attB that affect the ability of phiC31 integrase to synapse and to activate DNA cleavage. Nucleic Acids Res. 2007;35(10):3407-19. doi: 10.1093/nar/gkm206. Epub May 3, 2007.
Guzman et al., Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol. 1995;177(14):4121-4130.
Haapaniemi et al., CRISPR-Cas9 genome editing induces a p53-mediated DNA damage response. Nat Med. Jul. 2018;24(7):927-930. doi: 10.1038/s41591-018-0049-z. Epub Jun. 11, 2018.
Haddada et al., Gene therapy using adenovirus vectors. Curr Top Microbiol Immunol. 1995;199 ( Pt 3):297-306. doi: 10.1007/978-3-642-79586-2_14.
Haeussler et al., Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR. Genome Biol. Jul. 5, 2016;17(1):148. doi: 10.1186/s13059-016-1012-2.
Hale et al., RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex. Cell. Nov. 25, 2009;139(5):945-56. doi: 10.1016/j.cell.2009.07.040.
Halmai et al., Targeted CRIPSR/dCas9-mediated reactivation of epigenetically silenced genes suggests limited escape from the inactive X chromosome. 2nd Intl Conf on Epigenetics and Bioengineering. Oct. 4, 2018; Retrieved from the Internet: https://aiche.confex.com/aiche/epibiol8/webprogram/paper544785.html. Retrieved Jun. 29, 2020.
Halperin et al., CRISPR-guided DNA polymerases enable diversification of all nucleotides in a tunable window. Nature. Aug. 2018;560(7717):248-252. doi: 10.1038/s41586-018-0384-8. Epub Aug. 1, 2018.
Halvas et al., Role of murine leukemia virus reverse transcriptase deoxyribonucleoside triphosphate-binding site in retroviral replication and in vivo fidelity. J Virol. Nov. 2000;74(22):10349-58. doi: 10.1128/jvi.74.22.10349-10358.2000.
Hamano-Takaku et al., A mutant Escherichia coli tyrosyl-tRNA synthetase utilizes the unnatural amino acid azatyrosine more efficiently than tyrosine. J Biol Chem. Dec. 22, 2000;275(51):40324-8.
Han, New CRISPR/Cas9-based Tech Edits Single Nucleotides Without Breaking DNA. Genome Web, Apr. 20, 2016. https://www.genomeweb.com/gene-silencinggene-editing/new-crisprcas9-based-tech-edits-single-nucleotides-without-breaking-dna.
Handa et al., Template-assisted synthesis of adenine-mutagenized cDNA by a retroelement protein complex. Nucleic Acids Res. Oct. 12, 2018;46(18):9711-9725. doi: 10.1093/nar/gky620.
Hanna et al., Massively parallel assessment of human variants with base editor screens. Cell. Feb. 18, 2021;184(4):1064-1080.e20. doi: 10.1016/j.cell.2021.01.012.
Hanson et al., Codon optimality, bias and usage in translation and mRNA decay. Nat Rev Mol Cell Biol. Jan. 2018;19(1):20-30. doi: 10.1038/nrm.2017.91. Epub Oct. 11, 2017.
Harms et al., Evolutionary biochemistry: revealing the historical and physical causes of protein properties. Nat Rev Genet. Aug. 2013;14(8):559-71. doi: 10.1038/nrg3540.
Harrington et al., A thermostable Cas9 with increased lifetime in human plasma. Nat Commun. Nov. 10, 2017;8(1):1424. doi: 10.1038/s41467-017-01408-4. Posted May 16, 2017 as bioRxiv preprint. Doi.org/10.1101/138867.
Harris et al., RNA Editing Enzyme APOBEC1 and Some of Its Homologs Can Act as DNA Mutators. Mol Cell. Nov. 2002; 10(5):1247-53.
Hartung et al., Correction of metabolic, craniofacial, and neurologic abnormalities in MPS I mice treated at birth with adeno-associated virus vector transducing the human alpha-L-iduronidase gene. Mol Ther. Jun. 2004;9(6):866-75.
Hartung et al., Cre mutants with altered DNA binding properties. J Biol Chem. Sep. 4, 1998;273(36):22884-91.
Hasadsri et al., Functional protein delivery into neurons using polymeric nanoparticles. J Biol Chem. Mar. 13, 2009;284(11):6972-81. doi: 10.1074/jbc.M805956200. Epub Jan. 7, 2009.
Hasegawa et al., Spontaneous mutagenesis associated with nucleotide excision repair in Escherichia coli. Genes Cells. May 2008;13(5):459-69. doi: 10.1111/j.1365-2443.2008.01185.x.
Hayes et al., Stop codons preceded by rare arginine codons are efficient determinants of SsrA tagging in Escherichia coli. Proc Natl Acad Sci U S A. Mar. 19, 2002;99(6):3440-5. Epub Mar. 12, 2002.
Hector et al., CDKL5 variants: Improving our understanding of a rare neurologic disorder. Neurol Genet. Dec. 15, 2017;3(6):e200. doi: 10.1212/NXG.0000000000000200.
Heidenreich et al., Non-homologous end joining as an important mutagenic process in cell cycle-arrested cells. EMBO J. May 1, 2003;22(9):2274-83. doi: 10.1093/emboj/cdg203.
Held et al., In vivo correction of murine hereditary tyrosinemia type I by phiC31 integrase-mediated gene delivery. Mol Ther. Mar. 2005;11(3):399-408. doi: 10.1016/j.ymthe.2004.11.001.
Heller et al., Replisome assembly and the direct restart of stalled replication forks. Nat Rev Mol Cell Biol. Dec. 2006;7(12):932-43. Epub Nov. 8, 2006.
Hendricks et al., The S. cerevisiae Mag1 3-methyladenine DNA glycosylase modulates susceptibility to homologous recombination. DNA Repair (Amst). 2002;1(8):645-659.
Hermonat et al., Use of adeno-associated virus as a mammalian DNA cloning vector: transduction of neomycin resistance into mammalian tissue culture cells. Proc Natl Acad Sci U S A. Oct. 1984;81(20):6466-70. doi: 10.1073/pnas.81.20.6466.
Herschhorn et al., Retroviral reverse transcriptases. Cell Mol Life Sci. Aug. 2010;67(16):2717-47. doi: 10.1007/s00018-010-0346-2. Epub Apr. 1, 2010.
Herzig et al., A Novel Leu92 Mutant of HIV-1 Reverse Transcriptase with a Selective Deficiency in Strand Transfer Causes a Loss of Viral Replication. J Virol. Aug. 2015;89(16):8119-29. doi: 10.1128/JVI.00809-15. Epub May 20, 2015.
Hess et al., Directed evolution using dCas9-targeted somatic hypermutation in mammalian cells. Nat Methods. Dec. 2016;13(12):1036-1042. doi: 10.1038/nmeth.4038. Epub Oct. 31, 2016.
Hickford et al., Antitumour polyether macrolides: four new halichondrins from the New Zealand deep-water marine sponge Lissodendoryx sp. Bioorg Med Chem. Mar. 15, 2009;17(6):2199-203. doi: 10.1016/j.bmc.2008.10.093. Epub Nov. 19, 2008.
Hida et al., Directed evolution for drug and nucleic acid; delivery. Adv Drug Deliv Rev. Dec. 22, 2007;59(15):1562-78. Epub Aug. 28, 2007.; Review.
Higgs et al., Genetic complexity in sickle cell disease. Proc Natl Acad Sci U S A. Aug. 19, 2008;105(33):11595-6. doi: 10.1073/pnas.0806633105. Epub Aug. 11, 2008.
Hill et al., Functional analysis of conserved histidines in ADP-glucose pyrophosphorylase from Escherichia coli.Biochem Biophys Res Commun. Mar. 17, 1998;244(2):573-7.
Hille et al., The Biology of CRISPR-Cas: Backward and Forward. Cell. Mar. 8, 2018;172(6):1239-1259. doi: 10.1016/j.cell.2017.11.032.
Hilton et al., Enabling functional genomics with genome engineering. Genome Res. Oct. 2015;25(10):1442-55. doi: 10.1101/gr.190124.115.
Hirano et al., Site-specific recombinases as tools for heterologous gene integration. Appl Microbiol Biotechnol. Oct. 2011;92(2):227-39. doi: 10.1007/s00253-011-3519-5. Epub Aug. 7, 2011. Review.
Hirano et al., Structural Basis for the Altered PAM Specificities of Engineered CRISPR-Cas9. Mol Cell. Mar. 17, 2016;61(6):886-94. doi: 10.1016/j.molcel.2016.02.018.
Hoang et al., UFBoot2: Improving the Ultrafast Bootstrap Approximation. Mol Biol Evol. Feb. 1, 2018;35(2):518-522. doi: 10.1093/molbev/msx281.
Hockemeyer et al., Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases. Nat Biotechnol. Sep. 2009;27(9):851-7. doi: 10.1038/nbt.1562. Epub Aug. 13, 2009.
Hockemeyer et al., Genetic engineering of human pluripotent cells using TALE nucleases. Nat Biotechnol. Jul. 7, 2011;29(8):731-4. doi: 10.1038/nbt.1927.
Hoernes et al., Translating the epitranscriptome. Wiley Interdiscip Rev RNA. Jan. 2017;8(1):e1375. doi: 10.1002/wrna.1375. Epub Jun. 27, 2016.
Hoess et al., DNA specificity of the Cre recombinase resides in the 25 kDa carboxyl domain of the protein. J Mol Biol. Dec. 20, 1990;216(4):873-82. doi: 10.1016/S0022-2836(99)80007-2.
Holden et al., Crystal structure of the anti-viral APOBEC3G catalytic domain and functional implications. Nature. Nov. 6, 2008;456(7218):121-4. doi: 10.1038/nature07357. Epub Oct. 12, 2008.
Hollis et al., Phage integrases for the construction and manipulation of transgenic mammals. Reprod Biol Endocrinol. Nov. 7, 2003;1:79. doi: 10.1186/1477-7827-1-79.
Holsinger et al., Signal transduction in T lymphocytes using a conditional allele of Sos. Proc Natl Acad Sci U S A. Oct. 10, 1995;92(21):9810-4. doi: 10.1073/pnas.92.21.9810.
Holt et al., Human hematopoietic stem/progenitor cells modified by zinc-finger nucleases targeted to CCR5 control HIV-1 in vivo. Nat Biotechnol. Aug. 2010;28(8):839-47. doi: 10.1038/nbt.1663. Epub Jul. 2, 2010.
Hondares et al., Peroxisome Proliferator-activated Receptor ? (PPAR?) Induces PPAR? Coactivator 1? (PGC-1?) Gene Expression and Contributes to Thermogenic Activation of Brown Fat. J Biol. Chem Oct. 2011; 286(50):43112-22. doi: 10.1074/jbc.M111.252775.
Hoogenboom et al., Natural and designer binding sites made by phage display technology. Immunol Today. Aug. 2000;21(8):371-8.
Horvath et al., CRISPR/Cas, the immune system of bacteria and archaea. Science. Jan. 8, 2010;327(5962):167-70. doi: 10.1126/science.1179555.
Horvath et al., Diversity, Activity, and Evolution of CRISPR Loci in Streptococcus thermophilus. J Bacteriol. Feb. 2008;190(4):1401-12. doi: 10.1128/JB.01415-07. Epub Dec. 7, 2007.
Hotta et al., [Neurotropic viruses—classification, structure and characteristics]. Nihon Rinsho. Apr. 1997;55(4):777-82. Japanese.
Hou et al., Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis. Proc Natl Acad Sci U S A. Sep. 24, 2013;110(39):15644-9. doi: 10.1073/pnas.1313587110. Epub Aug. 12, 2013.
Houdebine, The methods to generate transgenic animals and to control transgene expression. J Biotechnol. Sep. 25, 2002;98(2-3):145-60.
Housden et al., Identification of potential drug targets for tuberous sclerosis complex by synthetic screens combining CRISPR-based knockouts with RNAi. Sci Signal. Sep. 8, 2015;8(393):rs9. doi: 10.1126/scisignal.aab3729.
Howard et al., Intracerebral drug delivery in rats with lesion-induced memory deficits. J Neurosurg. Jul. 1989;71(1):105-12.
Hower et al., Shape-based peak identification for ChIP-Seq. BMC Bioinformatics. Jan. 12, 2011;12:15. doi: 10.1186/1471-2105-12-15.
Hsu et al., DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol. Sep. 2013;31(9):827-32. doi: 10.1038/nbt.2647. Epub Jul. 21, 2013.
Hsu et al., DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol. Sep. 2013;31(9):827-32. doi: 10.1038/nbt.2647. Epub Jul. 21, 2013. Supplementary Information. 27 pages.
Hsu et al., PrimeDesign software for rapid and simplified design of prime editing guide RNAs. Nat Commun. Feb. 15, 2021;12(1):1034. doi: 10.1038/s41467-021-21337-7.
Hu et al., Chemical Biology Approaches to Genome Editing: Understanding, Controlling, and Delivering Programmable Nucleases. Cell Chem Biol. Jan. 21, 2016;23(1):57-73. doi: 10.1016/j.chembiol.2015.12.009.
Hu et al., Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature. Apr. 5, 2018;556(7699):57-63 and Extended/Supplementary Data. doi: 10.1038/nature26155. Epub Feb. 28, 2018. 21 pages.
Hu et al., Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature. Apr. 5, 2018;556(7699):57-63. doi: 10.1038/nature26155. Epub Feb. 28, 2018.
Hua et al., Expanding the base editing scope in rice by using Cas9 variants. Plant Biotechnol J. Feb. 2019;17(2):499-504. doi: 10.1111/pbi.12993. Epub Oct. 5, 2018.
Hua et al., Precise A·T to G·C Base Editing in the Rice Genome. Mol Plant. Apr. 2, 2018;11(4):627-630. doi: 10.1016/j.molp.2018.02.007. Epub Feb. 21, 2018.
Huang et al., Circularly permuted and PAM-modified Cas9 variants broaden the targeting scope of base editors. Nat Biotechnol. Jun. 2019;37(6):626-631. doi: 10.1038/s41587-019-0134-y. Epub May 20, 2019. Including Supplementary Information.
Huang et al., Heritable gene targeting in zebrafish using customized TALENs. Nat Biotechnol. Aug. 5, 2011;29(8):699-700. doi: 10.1038/nbt.1939.
Huang et al., Precision genome editing using cytosine and adenine base editors in mammalian cells. Nat Protoc. Feb. 2021;16(2):1089-1128. doi: 10.1038/s41596-020-00450-9. Epub Jan. 18, 2021.
Huggins et al., Flap endonuclease 1 efficiently cleaves base excision repair and DNA replication intermediates assembled into nucleosomes. Mol Cell. Nov. 2002;10(5):1201-11. doi: 10.1016/s1097-2765(02)00736-0.
Humbert et al., Targeted gene therapies: tools, applications, optimization. Crit Rev Biochem Mol Biol. May-Jun. 2012;47(3):264-81. doi: 10.3109/10409238.2012.658112.
Hung et al., Protein localization in disease and therapy. J Cell Sci. Oct. 15, 2011;124(Pt 20):3381-92. doi: 10.1242/jcs.089110.
Hurt et al., Highly specific zinc finger proteins obtained by directed domain shuffling and cell-based selection. Proc Natl Acad Sci U S A. Oct. 14, 2003;100(21):12271-6. Epub Oct. 3, 2003.
Husimi, Selection and evolution of bacteriophages in cellstat. Adv Biophys. ; 1989;25:1-43. Review.
Hwang et al., Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol. Mar. 2013;31(3):227-9. doi: 10.1038/nbt.2501. Epub Jan. 29, 2013.
Hwang et al., Efficient In Vivo Genome Editing Using RNA-Guided Nucleases. Nat Biotechnol. Mar. 2013; 31(3): 227-229. doi: 10.1038/nbt.2501. Epub Jan. 29, 2013.
Hwang et al., Web-based design and analysis tools for CRISPR base editing. BMC Bioinformatics. Dec. 27, 2018;19(1):542. doi: 10.1186/s12859-018-2585-4.
Ibba et al., Relaxing the substrate specificity of an aminoacyl-tRNA synthetase allows in vitro and in vivo synthesis of proteins containing unnatural amino acids. FEBS Lett. May 15, 1995;364(3):272-5.
Ibba et al., Substrate specificity is determined by amino acid binding pocket size in Escherichia coli phenylalanyl-tRNA synthetase. Biochemistry. Jun. 14, 1994;33(23):7107-12.
Ihry et al., p53 inhibits CRISPR-Cas9 engineering in human pluripotent stem cells. Nat Med. Jul. 2018;24(7):939-946. doi: 10.1038/s41591-018-0050-6. Epub Jun. 11, 2018.
Iida et al., A site-specific, conservative recombination system carried by bacteriophage P1. Mapping the recombinase gene cin and the cross-over sites cix for the inversion of the C segment. EMBO J. 1982;1(11):1445-53.
Iida et al., The Min DNA inversion enzyme of plasmid p15B of Escherichia coli 15T-: a new member of the Din family of site-specific recombinases. Mol Microbiol. Jun. 1990;4(6):991-7. doi: 10.1111/j.1365-2958.1990.tb00671.x.
Ikediobi et al., Mutation analysis of 24 known cancer genes in the NCI-60 cell line set. Mol Cancer Ther. Nov. 2006;5(11):2606-12. Epub Nov. 6, 2006.
Imanishi et al., Detection of N6-methyladenosine based on the methyl-sensitivity of MazF RNA endonuclease. Chem Commun (Camb). Nov. 30, 2017;53(96):12930-12933. doi: 10.1039/c7cc07699a.
Imburgio et al., Studies of promoter recognition and start site selection by T7 RNA polymerase using a comprehensive collection of promoter variants. Biochemistry. Aug. 29, 2000;39(34):10419-30.
Ingram, A specific chemical difference between the globins of normal human and sickle-cell anaemia haemoglobin. Nature. Oct. 13, 1956;178(4537):792-4. doi: 10.1038/178792a0.
Irion et al., Identification and targeting of the ROSA26 locus in human embryonic stem cells. Nat Biotechnol. Dec. 2007;25(12):1477-82. doi: 10.1038/nbt1362. Epub Nov. 25, 2007.
Irrthum et al., Congenital hereditary lymphedema caused by a mutation that inactivates VEGFR3 tyrosine kinase. Am J Hum Genet. Aug. 2000;67(2):295-301. Epub Jun. 9, 2000.
Ishino et al., Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol. Dec. 1987;169(12):5429-33.
Iwai et al., Circular beta-lactamase: stability enhancement by cyclizing the backbone. FEBS Lett. Oct. 8, 1999;459(2):166-72. doi: 10.1016/s0014-5793(99)01220-x.
Iwai et al., Highly efficient protein trans-splicing by a naturally split DnaE intein from Nostoc punctiforme. FEBS Lett. Mar. 20, 2006;580(7):1853-8. doi: 10.1016/j.febslet.2006.02.045. Epub Feb. 24, 2006.
Jaffrey et al., Emerging links between m6A and misregulated mRNA methylation in cancer. Genome Med. Jan. 12, 2017;9(1):2. doi: 10.1186/s13073-016-0395-8.
Jamieson et al., Drug discovery with engineered zinc-finger proteins. Nat Rev Drug Discov. May 2003;2(5):361-8.
Jansen et al., Backbone and nucleobase contacts to glucosamine-6-phosphate in the glmS ribozyme. Nat Struct Mol Biol. Jun. 2006;13(6):517-23. Epub May 14, 2006.
Jansen et al., Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol. Mar. 2002;43(6):1565-75.
Jardine et al., HIV-1 Vaccines. Priming a broadly neutralizing antibody response to HIV-1 using a germline-targeting immunogen. Science. Jul. 10, 2015;349(6244):156-61. doi: 10.1126/science.aac5894. Epub Jun. 18, 2015.
Jasin et al., Repair of strand breaks by homologous recombination. Cold Spring Harb Perspect Biol. Nov. 1, 2013;5(11):a012740. doi: 10.1101/cshperspect.a012740.
Jeggo, DNA breakage and repair. Adv Genet. 1998;38:185-218. doi: 10.1016/s0065-2660(08)60144-3.
Jemielity et al., Novel “anti-reverse” cap analogs with superior translational properties. RNA. Sep. 2003;9(9):1108-22. doi: 10.1261/rna.5430403.
Jenkins et al., Comparison of a preQ1 riboswitch aptamer in metabolite-bound and free states with implications for gene regulation. J Biol Chem. Jul. 15, 2011;286(28):24626-37. doi: 10.1074/jbc.M111.230375. Epub May 18, 2011.
Jeong et al., Measurement of deoxyinosine adduct: Can it be a reliable tool to assess oxidative or nitrosative DNA damage? Toxicol Lett. Oct. 17, 2012;214(2):226-33. doi: 10.1016/j.toxlet.2012.08.013. Epub Aug. 23, 2012.
Jiang et al., Chemical modifications of adenine base editor mRNA and guide RNA expand its application scope. Nat Commun. Apr. 24, 2020;11(1): 1979. doi: 10.1038/s41467-020-15892-8.
Jiang et al., CRISPR-Cas9 Structures and Mechanisms. Annu Rev Biophys. May 22, 2017;46:505-529. doi: 10.1146/annurev-biophys-062215-010822. Epub Mar. 30, 2017.
Jiang et al., Prime editing efficiently generates W542L and S621I double mutations in two ALS genes of maize. bioRxiv preprint. Jul. 6, 2020. Retrieved from www.biorxiv.org. doi: 10.1101/2020.07.06.188896. 15 pages.
Jiang et al., RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol. Mar. 2013;31(3):233-9. doi: 10.1038/nbt.2508. Epub Jan. 29, 2013.
Jiang et al., Structural Biology. A Cas9-guide RNA Complex Preorganized for Target DNA Recognition. Science. Jun. 26, 2015;348(6242):1477-81. doi: 10.1126/science.aab1452.
Jiang et al., Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage. Science. Feb. 19, 2016;351(6275):867-71. doi: 10.1126/science.aad8282. Epub Jan. 14, 2016.
Jin et al., Cytosine, but not adenine, base editors induce genome-wide off-target mutations in rice. Science. Apr. 19, 2019;364(6437):292-295. doi: 10.1126/science.aaw7166. Epub Feb. 28, 2019.
Jinek et al., A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. Aug. 17, 2012;337(6096):816-21. doi: 10.1126/science.1225829. Epub Jun. 28, 2012.
Jinek et al., RNA-programmed genome editing in human cells. Elife. Jan. 29, 2013;2:e00471. doi: 10.7554/eLife.00471.
Jinek et al., Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science. Mar. 14, 2014;343(6176):1247997. doi: 10.1126/science.1247997. Epub Feb. 6, 2014.
Jiricny, The multifaceted mismatch-repair system. Nat Rev Mol Cell Biol. May 2006;7(5):335-46. doi: 10.1038/nrm1907.
Johann et al., GLVR1, a receptor for gibbon ape leukemia virus, is homologous to a phosphate permease of Neurospora crassa and is expressed at high levels in the brain and thymus. J Virol. Mar. 1992;66(3):1635-40. doi: 10.1128/JVI.66.3.1635-1640.1992.
Johansson et al., RNA Recognition by the MS2 Phage Coat Protein. Seminars in Virology. 1997;8(3):176-85. https://doi.org/10.1006/smvy.1997.0120.
Johansson et al., Selenocysteine in proteins-properties and biotechnological use. Biochim Biophys Acta. Oct. 30, 2005;1726(1):1-13. Epub Jun. 1, 2005.
Johns et al., The promise and peril of continuous in vitro evolution. J Mol Evol. Aug. 2005;61(2):253-63. Epub Jun. 27, 2005.
Johnson et al., Trans insertion-splicing: ribozyme-catalyzed insertion of targeted sequences into RNAs. Biochemistry. Aug. 9, 2005;44(31):10702-10. doi: 10.1021/bi0504815.
Joho et al., Identification of a region of the bacteriophage T3 and T7 RNA polymerases that determines promoter specificity. J Mol Biol. Sep. 5, 1990;215(1):31-9.
Jore et al., Structural basis for CRISPR RNA-guided DNA recognition by Cascade. Nat Struct Mol Biol. May 2011;18(5):529-36. doi: 10.1038/nsmb.2019. Epub Apr. 3, 2011.
Joung et al.,TALENs: a widely applicable technology for targeted genome editing. Nat Rev Mol Cell Biol. Jan. 2013;14(1):49-55. doi: 10.1038/nrm3486. Epub Nov. 21, 2012.
Joyce et al., Amplification, mutation and selection of catalytic RNA. Gene. Oct. 15, 1989;82(1):83-7. doi: 10.1016/0378-1119(89)90033-4.
Jusiak et al., Comparison of Integrases Identifies Bxb1-GA Mutant as the Most Efficient Site-Specific Integrase System in Mammalian Cells. ACS Synth Biol. Jan. 18, 2019;8(1):16-24. doi: 10.1021/acssynbio.8b00089. Epub Jan. 9, 2019.
Jyothy et al., Translocation Down syndrome. Indian J Med Sci. Mar. 2002;56(3):122-6.
Kacian et al., Purification of the DNA polymerase of avian myeloblastosis virus. Biochim Biophys Acta. Sep. 24, 1971;246(3):365-83. doi: 10.1016/0005-2787(71)90773-8.
Kaczmarczyk et al., Manipulating the Prion Protein Gene Sequence and Expression Levels with CRISPR/Cas9. PLoS One. Apr. 29, 2016;11(4):e0154604. doi: 10.1371/journal.pone.0154604.
Kadoch et al., Reversible disruption of mSWI/SNF (BAF) complexes by the SS18-SSX oncogenic fusion in synovial sarcoma. Cell. Mar. 28, 2013;153(1):71-85. doi: 10.1016/j.cell.2013.02.036.
Kahmann et al., G inversion in bacteriophage Mu DNA is stimulated by a site within the invertase gene and a host factor. Cell. Jul. 1985;41(3):771-80. doi: 10.1016/s0092-8674(85)80058-1.
Kaiser et al., Gene therapy. Putting the fingers on gene repair. Science. Dec. 23, 2005;310(5756):1894-6.
Kakiyama et al., A peptide release system using a photo-cleavable linker in a cell array format for cell-toxicity analysis. Polymer J. Feb. 27, 2013;45:535-9.
Kalyaanamoorthy et al., ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. Jun. 2017;14(6):587-589. doi: 10.1038/nmeth.4285. Epub May 8, 2017.
Kandavelou et al., Targeted manipulation of mammalian genomes using designed zinc finger nucleases. Biochem Biophys Res Commun. Oct. 9, 2009;388(1):56-61. doi: 10.1016/j.bbrc.2009.07.112. Epub Jul. 25, 2009.
Kang et al., Structural Insights into riboswitch control of the biosynthesis of queuosine, a modified nucleotide found in the anticodon of tRNA. Mol Cell. Mar. 27, 2009;33(6):784-90. doi: 10.1016/j.molcel.2009.02.019. Epub Mar. 12, 2009.
Kang et al., Precision genome engineering through adenine base editing in plants. Nat Plants. Jul. 2018;4(7):427-431. doi: 10.1038/s41477-018-0178-x. Epub Jun. 4, 2018. Erratum in: Nat Plants. Sep. 2018;4(9):730.
Kao et al., Cleavage specificity of Saccharomyces cerevisiae flap endonuclease 1 suggests a double-flap structure as the cellular substrate. J Biol Chem. Apr. 26, 2002;277(17):14379-89. doi: 10.1074/jbc.M110662200. Epub Feb. 1, 2002.
Kappel et al., Regulating gene expression in transgenic animals.Curr Opin Biotechnol. Oct. 1992;3(5):548-53.
Karimova et al., Discovery of Nigri/nox and Panto/pox site-specific recombinase systems facilitates advanced genome engineering. Sci Rep. Jul. 22, 2016;6:30130. doi: 10.1038/srep30130.
Karimova et al., Vika/vox, a novel efficient and specific Cre/loxP-like site-specific recombination system. Nucleic Acids Res. Jan. 2013;41(2):e37. doi: 10.1093/nar/gks1037. Epub Nov. 9, 2012.
Karpenshif et al., From yeast to mammals: recent advances in genetic control of homologous recombination. DNA Repair (Amst). Oct. 1, 2012;11(10):781-8. doi: 10.1016/j.dnarep.2012.07.001. Epub Aug. 11, 2012. Review.
Karpinsky et al., Directed evolution of a recombinase that excises the provirus of most HIV-1 primary isolates with high specificity. Nat Biotechnol. Apr. 2016;34(4):401-9. doi: 10.1038/nbt.3467. Epub Feb. 22, 2016.
Katafuchi et al., DNA polymerases involved in the incorporation of oxidized nucleotides into DNA: their efficiency and template base preference. Mutat Res. Nov. 28, 2010;703(1):24-31. doi: 10.1016/j.mrgentox.2010.06.004. Epub Jun. 11, 2010.
Kato et al., Improved purification and enzymatic properties of three forms of reverse transcriptase from avian myeloblastosis virus. J Virol Methods. Dec. 1984;9(4):325-39. doi: 10.1016/0166-0934(84)90058-2.
Katoh et al., MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. Apr. 2013;30(4):772-80. doi: 10.1093/molbev/mst010. Epub Jan. 16, 2013.
Kaufman et al., Translational efficiency of polycistronic mRNAs and their utilization to express heterologous genes in mammalian cells. EMBO J. Jan. 1987;6(1):187-93.
Kavli et al., Excision of cytosine and thymine from DNA by mutants of human uracil-DNA glycosylase. EMBO J. Jul. 1, 1996;15(13):3442-7.
Kawarasaki et al., Enhanced crossover SCRATCHY: construction and high-throughput screening of a combinatorial library containing multiple non-homologous crossovers. Nucleic Acids Res. Nov. 1, 2003;31(21):e126.
Kay et al., Viral vectors for gene therapy: the art of turning infectious agents into vehicles of therapeutics. Nat Med. Jan. 2001;7(1):33-40.
Kaya et al., A bacterial Argonaute with noncanonical guide RNA specificity. Proc. Natl. Acad. Sci. USA Apr. 2016;113(15):4057-62.
Keijzers et al., Human exonuclease 1 (EXO1) activity characterization and its function on flap structures. Biosci Rep. Apr. 25, 2015;35(3):e00206. doi: 10.1042/BSR20150058.
Kellendonk et al., Regulation of Cre recombinase activity by the synthetic steroid RU 486. Nucleic Acids Res. Apr. 15, 1996;24(8):1404-11.
Kelman, PCNA: structure, functions and interactions. Oncogene. Feb. 13, 1997;14(6):629-40. doi: 10.1038/sj.onc.1200886.
Keravala et al., A diversity of serine phage integrases mediate site-specific recombination in mammalian cells. Mol Genet Genomics. Aug. 2006;276(2):135-46. doi: 10.1007/s00438-006-0129-5. Epub May 13, 2006.
Kessel et al., Murine developmental control genes. Science. Jul. 27, 1990;249(4967):374-9. doi: 10.1126/science.1974085.
Kessler et al., Gene delivery to skeletal muscle results in sustained expression and systemic delivery of a therapeutic protein. Proc Natl Acad Sci U S A. Nov. 26, 1996;93(24):14082-7. doi: 10.1073/pnas.93.24.14082.
Ketha et al., Application of bioinformatics-coupled experimental analysis reveals a new transport-competent nuclear localization signal in the nucleoprotein of Influenza A virus strain. BMC Cell Biol. Apr. 28, 2008; 9:22. https://doi.org/10.1186/1471-2121-9-22.
Kiga et al., An engineered Escherichia coli tyrosyl-tRNA synthetase for site-specific incorporation of an unnatural amino acid into proteins in eukaryotic translation and its application in a wheat germ cell-free system. Proc Natl Acad Sci U S A. Jul. 23, 2002;99(15):9715-20. Epub Jul. 3, 2002.
Kilbride et al., Determinants of product topology in a hybrid Cre-Tn3 resolvase site-specific recombination system. J Mol Biol. Jan. 13, 2006;355(2):185-95. Epub Nov. 9, 2005.
Kilcher et al., Brochothrix thermosphacta bacteriophages feature heterogeneous and highly mosaic genomes and utilize unique prophage insertion sites. J Bacteriol. Oct. 2010;192(20):5441-53. doi: 10.1128/JB.00709-10. Epub Aug. 13, 2010.
Kim et al., DJ-1, a novel regulator of the tumor suppressor PTEN. Cancer Cell. 2005;7(3):263-273.
Kim et al., Genome-wide target specificity of CRISPR RNA-guided adenine base editors. Nat Biotechnol. Apr. 2019;37(4):430-435. doi: 10.1038/s41587-019-0050-1. Epub Mar. 4, 2019.
Kim et al., A library of TAL effector nucleases spanning the human genome. Nat Biotechnol. Mar. 2013;31(3):251-8. Doi: 10.1038/nbt.2517. Epub Feb. 17, 2013.
Kim et al., An anionic human protein mediates cationic liposome delivery of genome editing proteins into mammalian cells. Nat Commun. Jul. 2, 2019;10(1):2905. doi: 10.1038/s41467-019-10828-3.
Kim et al., Evaluating and Enhancing Target Specificity of Gene-Editing Nucleases and Deaminases. Annu Rev Biochem. Jun. 20, 2019;88:191-220. doi: 10.1146/annurev-biochem-013118-111730. Epub Mar. 18, 2019.
Kim et al., Genome-wide target specificities of CRISPR RNA-guided programmable deaminases. Nat Biotechnol. May 2017;35(5):475-480. doi: 10.1038/nbt.3852. Epub Apr. 10, 2017.
Kim et al., High cleavage efficiency of a 2A peptide derived from porcine teschovirus-1 in human cell lines, zebrafish and mice. PLoS One. 2011;6(4):e18556. doi: 10.1371/journal.pone.0018556. Epub Apr. 29, 2011.
Kim et al., High-throughput analysis of the activities of xCas9, SpCas9-NG and SpCas9 at matched and mismatched target sequences in human cells. Nat Biomed Eng. Jan. 2020;4(1):111-124. doi: 10.1038/s41551-019-0505-1. Epub Jan. 14, 2020.
Kim et al., Highly efficient RNA-guided base editing in mouse embryos. Nat Biotechnol. May 2017;35(5):435-437. doi: 10.1038/nbt.3816. Epub Feb. 27, 2017.
Kim et al., Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res. Jun. 2014;24(6):1012-9. doi: 10.1101/gr.171322.113. Epub Apr. 2, 2014.
Kim et al., In vivo genome editing with a small Cas9 orthologue derived from Campylobacter jejuni. Nat Commun. Feb. 21, 2017;8:14500. doi: 10.1038/ncomms14500. PMID: 28220790; PMCID: PMC5473640.
Kim et al., In vivo high-throughput profiling of CRISPR-Cpf1 activity. Nat Methods. Feb. 2017;14(2):153-159. doi: 10.1038/nmeth.4104. Epub Dec. 19, 2016.
Kim et al., Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions. Nat Biotechnol. Apr. 2017;35(4):371-376. doi: 10.1038/nbt.3803. Epub Feb. 13, 2017.
Kim et al., Mycobacteriophage Bxb1 integrates into the Mycobacterium smegmatis groEL1 gene. Mol Microbiol. Oct. 2003;50(2):463-73. doi: 10.1046/j.1365-2958.2003.03723.x.
Kim et al., Rescue of high-specificity Cas9 variants using sgRNAs with matched 5′ nucleotides. Genome Biol. Nov. 15, 2017;18(1):218. doi: 10.1186/s13059-017-1355-3.
Kim et al., Structural and kinetic characterization of Escherichia coli TadA, the wobble-specific tRNA deaminase. Biochemistry. May 23, 2006;45(20):6407-16. doi: 10.1021/bi0522394. PMID: 16700551.
Kim et al., TALENs and ZFNs are associated with different mutationsignatures. Nat Methods. Mar. 2013;10(3):185. doi: 10.1038/nmeth.2364. Epub Feb. 10, 2013.
Kim et al., Targeted genome editing in human cells with zinc finger nucleases constructed via modular assembly. Genome Res. Jul. 2009;19(7):1279-88. doi: 10.1101/gr.089417.108. Epub May 21, 2009.
Kim et al., The role of apolipoprotein E in Alzheimer's disease. Neuron. Aug. 13, 2009;63(3):287-303. doi: 10.1016/j.neuron.2009.06.026.
Kim et al., Transcriptional repression by zinc finger peptides. Exploring the potential for applications in gene therapy. J Biol Chem. Nov. 21, 1997;272(47):29795-800.
King et al., No gain, no pain: NaV1.7 as an analgesic target. ACS Chem Neurosci. Sep. 17, 2014;5(9):749-51. doi: 10.1021/cn500171p. Epub Aug. 11, 2014.
Kitamura et al., Uracil DNA glycosylase counteracts APOBEC3G-induced hypermutation of hepatitis B viral genomes: excision repair of covalently closed circular DNA. PLoS Pathog. 2013;9(5):e1003361. doi: 10.1371/journal.ppat.1003361. Epub May 16, 2013.
Klapacz et al., Frameshift mutagenesis and microsatellite instability induced by human alkyladenine DNA glycosylase. Mol Cell. Mar. 26, 2010;37(6):843-53. doi: 10.1016/j.molcel.2010.01.038.
Klauser et al., An engineered small RNA-mediated genetic switch based on a ribozyme expression platform. Nucleic Acids Res. May 1, 2013;41(10):5542-52. doi: 10.1093/nar/gkt253. Epub Apr. 12, 2013.
Klein et al., Cocrystal structure of a class I preQ1 riboswitch reveals a pseudoknot recognizing an essential hypermodified nucleobase. Nat Struct Mol Biol. Mar. 2009;16(3):343-4. doi: 10.1038/nsmb.1563.Epub Feb. 22, 2009.
Kleiner et al., In vitro selection of a DNA-templated small-molecule library reveals a class of macrocyclic kinase inhibitors. J Am Chem Soc. Aug. 25, 2010;132(33):11779-91. doi: 10.1021/ja104903x.
Kleinstiver et al., Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by modifying PAM recognition. Nat Biotechnol. Dec. 2015;33(12):1293-1298. doi: 10.1038/nbt.3404. Epub Nov. 2, 2015.
Kleinstiver et al., Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature. Jul. 23, 2015;523(7561):481-5 and Supplementary Materials. doi: 10.1038/nature14592. Epub Jun. 22, 2015. 27 pages.
Kleinstiver et al., Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature. Jul. 23, 2015;523(7561):481-5. doi: 10.1038/nature14592. Epub Jun. 22, 2015.
Kleinstiver et al., High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature. Jan. 28, 2016;529(7587):490-5. doi: 10.1038/nature16526. Epub Jan. 6, 2016.
Kleinstiver et al., Monomeric site-specific nucleases for genome editing. Proc Natl Acad Sci U S A. May 22, 2012;109(21):8061-6. doi: 10.1073/pnas.1117984109. Epub May 7, 2012.
Klement et al., Discrimination between bacteriophage T3 and T7 promoters by the T3 and T7 RNA polymerases depends primarily upon a three base-pair region located 10 to 12 base-pairs upstream from the start site. J Mol Biol. Sep. 5, 1990;215(1):21-9.
Klippel et al., Isolation and characterization of unusual gin mutants. EMBO J. Dec. 1, 1988;7(12):3983-9.
Klippel et al., The DNA invertase Gin of phage Mu: formation of a covalent complex with DNA via a phosphoserine at amino acid position 9. EMBO J. Apr. 1988;7(4):1229-37.
Klompe et al., Transposon-encoded CRISPR-Cas systems direct RNA-guided DNA integration. Nature. Jul. 2019;571(7764):219-225. doi: 10.1038/s41586-019-1323-z. Epub Jun. 12, 2019.
Kluesner et al., CRISPR-Cas9 cytidine and adenosine base editing of splice-sites mediates highly-efficient disruption of proteins in primary and immortalized cells. Nat Commun. Apr. 23, 2021;12(1):2437. doi: 10.1038/s41467-021-22009-2.
Knott et al., Guide-bound structures of an RNA-targeting A-cleaving CRISPR-Cas13a enzyme. Nat Struct Mol Biol. Oct. 2017;24(10):825-833. doi: 10.1038/nsmb.3466. Epub Sep. 11, 2017.
Koblan et al., In vivo base editing rescues Hutchinson-Gilford progeria syndrome in mice. Nature. Jan. 2021;589(7843):608-614. doi: 10.1038/s41586-020-03086-7. Epub Jan. 6, 2021.
Koblan et al., Efficient CoG-to-GoC base editors developed using CRISPRi screens, target-library analysis, and machine learning. Nature Biotechnol. Jun. 28, 2021. https://doi.org/10.1038/s41587-021-00938-z.
Koblan et al., Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction. Nat Biotechnol. Oct. 2018;36(9):843-846. doi: 10.1038/nbt.4172. Epub May 29, 2018.
Kobori et al., Deep Sequencing Analysis of Aptazyme Variants Based on a Pistol Ribozyme. ACS Synth Biol. Jul. 21, 2017;6(7):1283-1288. doi: 10.1021/acssynbio.7b00057. Epub Apr. 14, 2017.
Kohli et al., A portable hot spot recognition loop transfers sequence preferences from APOBEC family members to activation-induced cytidine deaminase. J Biol Chem. Aug. 21, 2009;284(34):22898-904. doi: 10.1074/jbc.M109.025536. Epub Jun. 26, 2009.
Kohli et al., Local sequence targeting in the AID/APOBEC family differentially impacts retroviral restriction and antibody diversification. J Biol Chem. Dec. 24, 2010;285(52):40956-64. doi: 10.1074/jbc.M110.177402. Epub Oct. 6, 2010.
Koike-Yusa et al., Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library. Nat Biotechnol. Mar. 2014;32(3):267-73. doi: 10.1038/nbt.2800. Epub Dec. 23, 2013.
Kolot et al., Site promiscuity of coliphage HK022 integrase as a tool for gene therapy. Gene Ther. Jul. 2015;22(7):521-7. doi: 10.1038/gt.2015.9. Epub Mar. 12, 2015.
Kolot et al., Site-specific recombination in mammalian cells expressing the Int recombinase of bacteriophage HK022. Mol Biol Rep. Aug. 1999;26(3):207-13. doi: 10.1023/a:1007096701720.
Komor et al., CRISPR-Based Technologies for the Manipulation of Eukaryotic Genomes. Cell. Jan. 12, 2017;168(1-2):20-36. doi: 10.1016/j.cell.2016.10.044.
Komor et al., Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C:G-to-T:A base editors with higher efficiency and product purity. Sci Adv. Aug. 30, 2017;3(8):eaao4774. doi: 10.1126/sciadv.aao4774. eCollection Aug. 2017.
Komor et al., Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature. Apr. 20, 2016;533(7603):420-4. doi: 10.1038/nature17946.
Komor, Editing the Genome Without Double-Stranded DNA Breaks. ACS Chem Biol. Feb. 16, 2018;13(2):383-388. doi: 10.1021/acschembio.7b00710. Epub Oct. 9, 2017.
Konermann et al., Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature. Jan. 29, 2015;517(7536):583-8. doi: 10.1038/nature14136. Epub Dec. 10, 2014.
Koonin et al., Diversity, classification and evolution of CRISPR-Cas systems. Curr Opin Microbiol. 2017;37:67?78. doi:10.1016/j.mib.2017.05.008.
Kosicki et al., Repair of double-strand breaks induced by CRISPR-Cas9 leads to large deletions and complex rearrangements. Nat Biotechnol. Sep. 2018;36(8):765-771. doi: 10.1038/nbt.4192. Epub Jul. 16, 2018.
Kotewicz et al., Cloning and overexpression of Moloney murine leukemia virus reverse transcriptase in Escherichia coli. Gene. 1985;35(3):249-58. doi: 10.1016/0378-1119(85)90003-4.
Kotewicz et al., Isolation of cloned Moloney murine leukemia virus reverse transcriptase lacking ribonuclease H activity. Nucleic Acids Res. Jan. 11, 1988;16(1):265-77. doi: 10.1093/nar/16.1.265.
Kotin, Prospects for the use of adeno-associated virus as a vector for human gene therapy. Hum Gene Ther. Jul. 1994;5(7):793-801. doi: 10.1089/hum.1994.5.7-793.
Kouzminova et al., Patterns of chromosomal fragmentation due to uracil-DNA incorporation reveal a novel mechanism of replication-dependent double-stranded breaks. Mol Microbiol. Apr. 2008;68(1):202-15. doi: 10.1111/j.1365-2958.2008.06149.x.
Kowal et al., Exploiting unassigned codons in Micrococcus luteus for tRNA-based amino acid mutagenesis. Nucleic Acids Res. Nov. 15, 1997;25(22):4685-9.
Kowalski et al., Delivering the Messenger: Advances in Technologies for Therapeutic mRNA Delivery. Mol Ther. Apr. 10, 2019;27(4):710-728. doi: 10.1016/j.ymthe.2019.02.012. Epub Feb. 19, 2019.
Kozak, An analysis of 5′-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res. Oct. 26, 1987;15(20):8125-48. doi: 10.1093/nar/15.20.8125.
Kraft et al., Deletions, Inversions, Duplications: Engineering of Structural Variants using CRISPR/Cas in Mice. Cell Rep. Feb. 10, 2015;10(5):833-839. doi: 10.1016/j.celrep.2015.01.016. Epub Feb. 7, 2015.
Kremer et al., Adenovirus and adeno-associated virus mediated gene transfer. Br Med Bull. Jan. 1995;51(1):31-44. doi: 10.1093/oxfordjournals.bmb.a072951.
Krokan et al., Uracil in DNA—occurrence, consequences and repair. Oncogene. Dec. 16, 2002;21(58):8935-48. doi: 10.1038/sj.onc.1205996.
Krokan et al., Base excision repair. Cold Spring Harb Perspect Biol. Apr. 1, 2013;5(4):a012583. doi: 10.1101/cshperspect.a012583.
Krzywkowski et al., Limited reverse transcriptase activity of phi29 DNA polymerase. Nucleic Acids Res. Apr. 20, 2018;46(7):3625-3632. doi: 10.1093/nar/gky190.
Kumar et al., Gene therapy for chronic neuropathic pain: how does it work and where do we stand today? Pain Med. May 2011;12(5):808-22. doi: 10.1111/j.1526-4637.2011.01120.x.
Kumar et al., Structural and functional consequences of the mutation of a conserved arginine residue in alphaA and alphaB crystallins. J Biol Chem. Aug. 20, 1999;274(34):24137-41.
Kundu et al., Leucine to proline substitution by SNP at position 197 in Caspase-9 gene expression leads to neuroblastoma: a bioinformatics analysis. 3 Biotech. 2013; 3:225-34.
Kunkel et al., Eukaryotic Mismatch Repair in Relation to DNA Replication. Annu Rev Genet. 2015;49:291-313. doi: 10.1146/annurev-genet-112414-054722.
Kunz et al., DNA Repair in mammalian cells: Mismatched repair: variations on a theme. Cell Mol Life Sci. Mar. 2009;66(6):1021-38. doi: 10.1007/s00018-009-8739-9.
Kurjan et al., Structure of a yeast pheromone gene (MF alpha): a putative alpha-factor precursor contains four tandem copies of mature alpha-factor. Cell. Oct. 1982;30(3):933-43. doi: 10.1016/0092-8674(82)90298-7.
Kury et al., De Novo Disruption of the Proteasome Regulatory Subunit PSMD12 Causes a Syndromic Neurodevelopmental Disorder. Am J Hum Genet. Feb. 2, 2017;100(2):352-363. doi: 10.1016/j.ajhg.2017.01.003. Epub Jan. 26, 2017.
Kuscu et al., CRISPR-Cas9-AID base editor is a powerful gain-of-function screening tool. Nat Methods. Nov. 29, 2016;13(12):983-984. doi: 10.1038/nmeth.4076.
Kuscu et al., CRISPR-STOP: gene silencing through base-editing-induced nonsense mutations. Nat Methods. Jul. 2017;14(7):710-712. doi: 10.1038/nmeth.4327. Epub Jun. 5, 2017.
Kuscu et al., Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease. Nat Biotechnol. Jul. 2014;32(7):677-83. doi: 10.1038/nbt.2916. Epub May 18, 2014.
Kwart et al., Precise and efficient scarless genome editing in stem cells using Correct. Nat Protoc. Feb. 2017;12(2):329-354. doi: 10.1038/nprot.2016.171. Epub Jan. 19, 2017.
Kweon et al., Fusion guide RNAs for orthogonal gene manipulation with Cas9 and Cpf1. Nat Commun. Nov. 23, 2017;8(1):1723. doi: 10.1038/s41467-017-01650-w. Erratum in: Nat Commun. Jan. 16, 2018;9(1):303.
Kwon et al., Chemical basis of glycine riboswitch cooperativity. RNA. Jan. 2008;14(1):25-34. Epub Nov. 27, 2007.
Köhrer et al., A possible approach to site-specific insertion of two different unnatural amino acids into proteins in mammalian cells via nonsense suppression. Chem Biol. Nov. 2003;10(11):1095-102.
Köhrer et al., Complete set of orthogonal 21st aminoacyl-tRNA synthetase-amber, ochre and opal suppressor tRNA pairs: concomitant suppression of three different termination codons in an mRNA in mammalian cells. Nucleic Acids Res. Dec. 1, 2004;32(21):6200-11. Print 2004.
Kügler et al., Human synapsin 1 gene promoter confers highly neuron-specific long-term transgene expression from an adenoviral vector in the adult rat brain depending on the transduced area. Gene Ther. Feb. 2003;10(4):337-47. doi: 10.1038/sj.gt.3301905.
Lada et al., Mutator effects and mutation signatures of editing deaminases produced in bacteria and yeast. Biochemistry (Mosc). Jan. 2011;76(1):131-46.
Lakich et al., Inversions disrupting the factor VIII gene are a common cause of severe haemophilia A. Nat Genet. Nov. 1993;5(3):236-41. doi: 10.1038/ng1193-236.
Lancaster et al., Limited trafficking of a neurotropic virus through inefficient retrograde axonal transport and the type I interferon response. PLoS Pathog. Mar. 5, 2010;6(3):e1000791. doi: 10.1371/journal.ppat.1000791.
Landrum et al., Clin Var: public archive of interpretations of clinically relevant variants. Nucleic Acids Res. Jan. 4, 2016;44(D1):D862-8. doi: 10.1093/nar/gkv1222. Epub Nov. 17, 2015.
Landrum et al., ClinVar: public archive of relationships among sequence variation and human phenotype. Nucleic Acids Res. Jan. 2014;42(Database issue):D980-5. doi: 10.1093/nar/gkt1113. Epub Nov. 14, 2013.
Langer et al., Chemical and Physical Structure of Polymers as Carriers for Controlled Release of Bioactive Agents: A Review. Journal of Macromolecular Science, 2006;23(1):61-126. DOI: 10.1080/07366578308079439.
Langer et al., New methods of drug delivery. Science. Sep. 28, 1990;249(4976):1527-33.
Lapinaite et al., DNA capture by a CRISPR-Cas9-guided adenine base editor. Science. Jul. 31, 2020;369(6503):566-571. doi: 10.1126/science.abb1390.
Larson et al., CRISPR interference (CRISPRi) for sequence-specific control of gene expression. Nat Protoc. Nov. 2013;8(11):2180-96. doi: 10.1038/nprot.2013.132. Epub Oct. 17, 2013.
Lau et al., Molecular basis for discriminating between normal and damaged bases by the human alkyladenine glycosylase, AAG. Proc Natl Acad Sci U S A. Dec. 5, 2000;97(25):13573-8.
Lauer et al., Construction, characterization, and use of two Listeria monocytogenes site-specific phage integration vectors. J Bacteriol. Aug. 2002;184(15):4177-86. doi: 10.1128/jb.184.15.4177-4186.2002.
Lavergne et al., Defects in type IIA von Willebrand disease: a cysteine 509 to arginine substitution in the mature von Willebrand factor disrupts a disulphide loop involved in the interaction with platelet glycoprotein Ib-IX. Br J Haematol. Sep. 1992;82(1):66-72.
Lawrence et al., Supercharging proteins can impart unusual resilience. J Am Chem Soc. Aug. 22, 2007;129(33):10110-2. Epub Aug. 1, 2007.
Lawyer et al., High-level expression, purification, and enzymatic characterization of full-length Thermus aquaticus DNA polymerase and a truncated form deficient in 5′ to 3′ exonuclease activity. PCR Methods Appl. May 1993;2(4):275-87. doi: 10.1101/gr.2.4.275.
Lazar et al., Transforming growth factor alpha: mutation of aspartic acid 47 and leucine 48 results in different biological activities. Mol Cell Biol. Mar. 1988;8(3):1247-52.
Lazarevic et al., Nucleotide sequence of the Bacillus subtilis temperate bacteriophage SPbetac2. Microbiology (Reading). May 1999;145 ( Pt 5):1055-1067. doi: 10.1099/13500872-145-5-1055.
Le Grice et al., Purification and characterization of recombinant equine infectious anemia virus reverse transcriptase. J Virol. Dec. 1991;65(12):7004-7. doi: 10.1128/JVI.65.12.7004-7007.1991.
Leaver-Fay et al., Rosetta3: an object-oriented software suite for the simulation and design of macromolecules. Methods Enzymol. 2011;487:545-74. doi: 10.1016/B978-0-12-381270-4.00019-6.
Leconte et al., A population-based experimental model for protein evolution: effects of mutation rate and selection stringency on evolutionary outcomes. Biochemistry. Feb. 26, 2013;52(8):1490-9. doi: 10.1021/bi3016185. Epub Feb. 14, 2013.
Ledford, Gene-editing hack yields pinpoint precision. Nature, Apr. 20, 2016. http://www.nature.com/news/gene-editing-hack-yields-pinpoint-precision-1.19773.
Lee et al., A chimeric thyroid hormone receptor constitutively bound to DNA requires retinoid X receptor for hormone-dependent transcriptional activation in yeast. Mol Endocrinol. Sep. 1994;8(9):1245-52.
Lee et al., A monoclonal antibody that targets a NaV1.7 channel voltage sensor for pain and itch relief. Cell. Jun. 5, 2014;157(6):1393-1404. doi: 10.1016/j.cell.2014.03.064. Epub May 22, 2014. Retraction in: Cell. Jun. 25, 2020;181(7):1695.
Lee et al., An allosteric self-splicing ribozyme triggered by a bacterial second messenger. Science. Aug. 13, 2010;329(5993):845-8. doi: 10.1126/science.1190713.
Lee et al., Failure to detect DNA-guided genome editing using Natronobacterium gregoryi Argonaute. Nat Biotechnol. Nov. 28, 2016;35(1):17-18. doi: 10.1038/nbt.3753.
Lee et al., Group I Intron-Based Therapeutics Through Trans-Splicing Reaction. Prog Mol Biol Transl Sci. 2018;159:79-100. doi: 10.1016/bs.pmbts.2018.07.001. Epub Aug. 9, 2018.
Lee et al., PIK3CA gene is frequently mutated in breast carcinomas and hepatocellular carcinomas. Oncogene. Feb. 17, 2005;24(8):1477-80.
Lee et al., Recognition of liposomes by cells: in vitro binding and endocytosis mediated by specific lipid headgroups and surface charge density. Biochim Biophys Acta. Jan. 31, 1992;1103(2):185-97.
Lee et al., Ribozyme Mediated gRNA Generation for In Vitro and In Vivo CRISPR/Cas9 Mutagenesis. PLoS One. Nov. 10, 2016;11(11):e0166020. doi: 10.1371/journal.pone.0166020. eCollection 2016.
Lee et al., Simultaneous targeting of linked loci in mouse embryos using base editing. Sci Rep. Feb. 7, 2019;9(1):1662. doi: 10.1038/s41598-018-33533-5.
Lee et al., Site-specific integration of mycobacteriophage L5: integration-proficient vectors for Mycobacterium smegmatis, Mycobacterium tuberculosis, and bacille Calmette-Guérin. Proc Natl Acad Sci U S A. Apr. 15, 1991;88(8):3111-5. doi: 10.1073/pnas.88.8.3111.
Lee et al., Synthetically modified guide RNA and donor DNA are a versatile platform for CRISPR-Cas9 engineering. Elife. May 2, 2017;6:e25312. doi: 10.7554/eLife.25312.
Lee et al., Targeted chromosomal deletions in human cells using zinc finger nucleases. Genome Res. Jan. 2010 20: 81-89; Published in Advance Dec. 1, 2009, doi:10.1101/gr.099747.109.
Lee et al., Targeting fidelity of adenine and cytosine base editors in mouse embryos. Nat Commun. Nov. 15, 2018;9(1):4804. doi: 10.1038/s41467-018-07322-7.
Lee et al., Transcriptional regulation and its misregulation in disease. Cell. Mar. 14, 2013;152(6):1237-51. doi: 10.1016/j.cell.2013.02.014.
Lei et al., Efficient targeted gene disruption in Xenopus embryos using engineered transcription activator-like effector nucleases (TALENs). Proc Natl Acad Sci U S A. Oct. 23, 2012;109(43):17484-9. Doi: 10.1073/pnas.1215421109. Epub Oct. 8, 2012.
Lei et al., Site-specificity of serine integrase demonstrated by the attB sequence preference of ?BT1 integrase. FEBS Lett. Apr. 2018;592(8):1389-1399. doi: 10.1002/1873-3468.13023. Epub Mar. 25, 2018.
Leipold et al., A de novo gain-of-function mutation in SCN11A causes loss of pain perception. Nat Genet. Nov. 2013;45(11):1399-404. doi: 10.1038/ng.2767. Epub Sep. 15, 2013.
Lemos et al., CRISPR/Cas9 cleavages in budding yeast reveal templated insertions and strand-specific insertion/deletion profiles. Proc Natl Acad Sci U S A. Feb. 27, 2018;115(9):E2040-E2047. doi: 10.1073/pnas.1716855115. Epub Feb. 13, 2018.
Lenk et al., Pathogenic mechanism of the FIG4 mutation responsible for Charcot-Marie-Tooth disease CMT4J. PLoS Genet. Jun. 2011;7(6):e1002104. doi: 10.1371/journal.pgen.1002104. Epub Jun. 2, 2011.
Levy et al., Cytosine and adenine base editing of the brain, liver, retina, heart and skeletal muscle of mice via adeno-associated viruses. Nat Biomed Eng. 2020;4(1):97-110. doi: 10.1038/s41551-019-0501-5.
Levy et al., Inhibition of calcification of bioprosthetic heart valves by local controlled-release diphosphonate. Science. Apr. 12, 1985;228(4696):190-2.
Levy et al., Membrane-associated guanylate kinase dynamics reveal regional and developmental specificity of synapse stability. J Physiol. Mar. 1, 2017;595(5):1699-1709. doi: 10.1113/JP273147. Epub Jan. 18, 2017.
Lew et al., Protein splicing in vitro with a semisynthetic two-component minimal intein. J Biol Chem. Jun. 26, 1998;273(26):15887-90. doi: 10.1074/jbc.273.26.15887.
Lewis et al., A serum-resistant cytofectin for cellular delivery of antisense oligodeoxynucleotides and plasmid DNA. Proc Natl Acad Sci U S A. Apr. 16, 1996;93(8):3176-81.
Lewis et al., Building the Class 2 CRISPR-Cas Arsenal. Mol Cell 2017;65(3);377-379.
Lewis et al., Codon 129 polymorphism of the human prion protein influences the kinetics of amyloid formation. J Gen Virol. Aug. 2006;87(Pt 8):2443-9.
Lewis et al., Cytosine deamination and the precipitous decline of spontaneous mutation during Earth's history. Proc Natl Acad Sci U S A. Jul. 19, 2016;113(29):8194-9. doi: 10.1073/pnas.1607580113. Epub Jul. 5, 2016.
Lewis et al., RNA modifications and structures cooperate to guide RNA-protein interactions. Nat Rev Mol Cell Biol. Mar. 2017;18(3):202-210. doi: 10.1038/nrm.2016.163. Epub Feb. 1, 2017.
Li et al., A Radioactivity-Based Assay for Screening Human m6A-RNA Methyltransferase, METTL3-METTL14 Complex, and Demethylase ALKBH5. J Biomol Screen. Mar. 2016;21(3):290-7. doi: 10.1177/1087057115623264. Epub Dec. 23, 2015.
Li et al., Base editing with a Cpf1-cytidine deaminase fusion. Nat Biotechnol. Apr. 2018;36(4):324-327. doi: 10.1038/nbt.4102. Epub Mar. 19, 2018.
Li et al., Current approaches for engineering proteins with diverse biological properties. Adv Exp Med Biol. 2007;620:18-33.
Li et al., Disruption of splicing-regulatory elements using CRISPR/Cas9 to rescue spinal muscular atrophy in human iPSCs and mice. National Science Review. Jan. 1, 2020:92-101. DOI: 10.1093/nsr/nwz131. Retrieved from the Internet via https://academic.oup.com/nsr/article-pdf/7/1/92/33321439/nwz131.pdf. Last accessed Apr. 28, 2021.
Li et al., Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. Jul. 15, 2009;25(14):1754-60. doi: 10.1093/bioinformatics/btp324. Epub May 18, 2009.
Li et al., Generation of Targeted Point Mutations in Rice by a Modified CRISPR/Cas9 System. Mol Plant. Mar. 6, 2017;10(3):526-529. doi: 10.1016/j.molp.2016.12.001. Epub Dec. 8, 2016.
Li et al., Highly efficient and precise base editing in discarded human tripronuclear embryos. Protein Cell. Aug. 19, 2017. doi: 10.1007/s13238-017-0458-7. [Epub ahead of print].
Li et al., Lagging strand DNA synthesis at the eukaryotic replication fork involves binding and stimulation of FEN-1 by proliferating cell nuclear antigen. J Biol Chem. Sep. 22, 1995;270(38):22109-12. doi: 10.1074/jbc.270.38.22109.
Li et al., Loss of post-translational modification sites in disease. Pac Symp Biocomput. 2010:337-47. doi: 10.1142/9789814295291_0036.
Li et al., Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes. Nucleic Acids Res. Aug. 2011;39(14):6315-25. doi: 10.1093/nar/gkr188. Epub Mar. 31, 2011.
Li et al., Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol. Aug. 2013;31(8):688-91. doi: 10.1038/nbt.2654.
Li et al., Precise Modifications of Both Exogenous and Endogenous Genes in Rice by Prime Editing. Mol Plant. May 4, 2020;13(5):671-674. doi: 10.1016/j.molp.2020.03.011. Epub Mar. 25, 2020.
Li et al., Protein trans-splicing as a means for viral vector-mediated in vivo gene therapy. Hum Gene Ther. Sep. 2008;19(9):958-64. doi: 10.1089/hum.2008.009.
Li et al., RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics. Aug. 4, 2011;12:323. doi: 10.1186/1471-2105-12-323.
Li et al., TAL nucleases (TALNs): hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain. Nucleic Acids Res. Jan. 2011;39(1):359-72. doi: 10.1093/nar/gkq704. Epub Aug. 10, 2010.
Li, Mechanisms and functions of DNA mismatch repair. Cell Res. Jan. 2008;18(1):85-98. doi: 10.1038/cr.2007.115.
Liang et al., Correction of ?-thalassemia mutant by base editor in human embryos. Protein Cell. Nov. 2017;8(11):811-822. doi: 10.1007/s13238-017-0475-6. Epub Sep. 23, 2017.
Liang et al., Homology-directed repair is a major double-strand break repair pathway in mammalian cells. Proc Natl Acad Sci U S A. Apr. 28, 1998;95(9):5172-7. doi: 10.1073/pnas.95.9.5172.
Liang et al., Rapid and highly efficient mammalian cell engineering via Cas9 protein transfection. Send to; J Biotechnol. Aug. 20, 2015;208:44-53. doi: 10.1016/j.jbiotec.2015.04.024.
Lieber et al., Mechanism and regulation of human non-homologous DNA end-joining. Nat Rev Mol Cell Biol. Sep. 2003;4(9):712-20.
Liefke et al., The oxidative demethylase ALKBH3 marks hyperactive gene promoters in human cancer cells. Genome Med. Jun. 30, 2015;7(1):66. doi: 10.1186/s13073-015-0180-0.
Lienert et al., Two- and three-input TALE-based AND logic computation in embryonic stem cells. Nucleic Acids Res. Nov. 2013;41(21):9967-75. doi: 10.1093/nar/gkt758. Epub Aug. 27, 2013.
Lilley, D.M. The Varkud Satellite Ribozyme. RNA. Feb. 2004;10(2):151-8.doi: 10.1261/rna.5217104.
Lim et al., Crystal structure of the moloney murine leukemia virus RNase H domain. J Virol. Sep. 2006;80(17):8379-89. doi: 10.1128/JVI.00750-06.
Lim et al., Viral vectors for neurotrophic factor delivery: a gene therapy approach for neurodegenerative diseases of the CNS. Pharmacol Res. Jan. 2010;61(1):14-26. doi: 10.1016/j.phrs.2009.10.002. Epub Oct. 17, 2009.
Lin et al., Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery. Elife. Dec. 15, 2014;3:e04766. doi: 10.7554/eLife.04766.
Lin et al., High-efficiency prime editing with optimized, paired pegRNAs in plants. Nat Biotechnol. Aug. 2021;39(8):923-927. doi: 10.1038/s41587-021-00868-w. Epub Mar. 25, 2021.
Lin et al., Prime genome editing in rice and wheat. Nat Biotechnol. May 2020;38(5):582-585 and Supplemental Info. doi: 10.1038/s41587-020-0455-x. Epub Mar. 16, 2020. 8 pages.
Lin et al., Prime genome editing in rice and wheat. Nat Biotechnol. May 2020;38(5):582-585. doi: 10.1038/s41587-020-0455-x. Epub Mar. 16, 2020.
Lin et al., The human REV1 gene codes for a DNA template-dependent dCMP transferase. Nucleic Acids Res. Nov. 15, 1999;27(22):4468-75. doi: 10.1093/nar/27.22.4468.
Link et al., Engineering ligand-responsive gene-control elements: lessons learned from natural riboswitches. Gene Ther. Oct. 2009;16(10):1189-201. doi: 10.1038/gt.2009.81. Epub Jul. 9, 2009. Review.
Liu et al., C2c1-sgRNA Complex Structure Reveals RNA-Guided DNA Cleavage Mechanism. Molecular Cell Jan. 2017;65(2):310-22.
Liu et al., Split dnaE genes encoding multiple novel inteins in Trichodesmium erythraeum. J Biol Chem. Jul. 18, 2003;278(29):26315-8. doi: 10.1074/jbc.C300202200. Epub May 24, 2003.
Liu et al., A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat Chem Biol. Feb. 2014;10(2):93-5. doi: 10.1038/nchembio.1432. Epub Dec. 6, 2013.
Liu et al., Adding new chemistries to the genetic code. Annu Rev Biochem. 2010;79:413-44. doi: 10.1146/annurev.biochem.052308.105824.
Liu et al., Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nat Rev Neurol. Feb. 2013;9(2):106-18. doi: 10.1038/nrneurol.2012.263. Epub Jan. 8, 2013.
Liu et al., Balancing AID and DNA repair during somatic hypermutation. Trends Immunol. Apr. 2009;30(4):173-81. doi: 10.1016/j.it.2009.01.007.
Liu et al., Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes. Cell. Aug. 23, 1991;66(4):807-15. doi: 10.1016/0092-8674(91)90124-h.
Liu et al., CasX enzymes comprise a distinct family of RNA-guided genome editors. Nature. Feb. 2019;566(7743):218-223. doi: 10.1038/s41586-019-0908-x. Epub Feb. 4, 2019. Author manuscript entitled CRISPR-CasX is an RNA-dominated enzyme active for human genome editing.
Liu et al., Cell-penetrating peptide-mediated delivery of TALEN proteins via bioconjugation for genome engineering. PLoS One. Jan. 20, 2014;9(1):e85755. doi: 10.1371/journal.pone.0085755. eCollection 2014.
Liu et al., Computational approaches for effective CRISPR guide RNA design and evaluation. Comput Struct Biotechnol J. Nov. 29, 2019;18:35-44. doi: 10.1016/j.csbj.2019.11.006.
Liu et al., Design of polydactyl zinc-finger proteins for unique addressing within complex genomes. Proc Natl Acad Sci U S A. May 27, 1997;94(11):5525-30.
Liu et al., Direct Promoter Repression by BCL11A Controls the Fetal to Adult Hemoglobin Switch. Cell. Apr. 5, 2018;173(2):430-442.e17. doi: 10.1016/j.cell.2018.03.016. Epub Mar. 29, 2018.
Liu et al., Distance determination by GIY-YIG intron endonucleases: discrimination between repression and cleavage functions. Nucleic Acids Res. Mar. 31, 2006;34(6):1755-64. Print 2006.
Liu et al., Editing DNA Methylation in the Mammalian Genome. Cell. Sep. 22, 2016;167(1):233- 247.e17. doi: 10.1016/j.cell.2016.08.056.
Liu et al., Engineering a tRNA and aminoacyl-tRNA synthetase for the site-specific incorporation of unnatural amino acids into proteins in vivo. Proc Natl Acad Sci U S A. Sep. 16, 1997;94(19):10092-7.
Liu et al., Fast Colorimetric Sensing of Adenosine and Cocaine Based on a General Sensor Design Involving Aptamers and Nanoparticles. Angew Chem. Dec. 16, 2006;45(1):90-4. DOI: 10.1002/anie.200502589.
Liu et al., Fast Colorimetric Sensing of Adenosine and Cocaine Based on a General Sensor Design Involving Aptamers and Nanoparticles. Angew Chem. 2006;118(1):96-100.
Liu et al., Flap endonuclease 1: a central component of DNA metabolism. Annu Rev Biochem. 2004;73:589-615. doi:10.1146/annurev.biochem.73.012803.092453.
Liu et al., Functional Nucleic Acid Sensors. Chem Rev. May 2009;109(5):1948-98. doi: 10.1021/cr030183i.
Liu et al., Genetic incorporation of unnatural amino acids into proteins in mammalian cells. Nat Methods. Mar. 2007;4(3):239-44. Epub Feb. 25, 2007.
Liu et al., Highly efficient RNA-guided base editing in rabbit. Nat Commun. Jul. 13, 2018;9(1):2717. doi: 10.1038/s41467-018-05232-2.
Liu et al., (6)-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions. Nature. Feb. 26, 2015;518(7540):560-4. doi: 10.1038/nature14234.
Liu et al., Probing N6-methyladenosine RNA modification status at single nucleotide resolution in mRNA and long noncoding RNA. RNA. Dec. 2013;19(12):1848-56. doi: 10.1261/rna.041178.113. Epub Oct. 18, 2013.
Liu et al., Reverse transcriptase of foamy virus. Purification of the enzymes and immunological identification. Arch Virol. 1977;55(3):187-200. doi: 10.1007/BF01319905.
Liu et al., Reverse transcriptase-mediated tropism switching in Bordetella bacteriophage. Science. Mar. 15, 2002;295(5562):2091-4. doi: 10.1126/science.1067467.
Liu et al., Saccharomyces cerevisiae flap endonuclease 1 uses flap equilibration to maintain triplet repeat stability. Mol Cell Biol. May 2004;24(9):4049-64. doi: 10.1128/MCB.24.9.4049-4064.2004.
Liu et al., The Molecular Architecture for RNA-Guided RNA Cleavage by Cas13a. Cell. Aug. 10, 2017;170(4):714-726.e10. doi: 10.1016/j.cell.2017.06.050. Epub Jul. 27, 2017.
Loessner et al., Complete nucleotide sequence, molecular analysis and genome structure of bacteriophage A118 of Listeria monocytogenes: implications for phage evolution. Mol Microbiol. Jan. 2000;35(2):324-40. doi: 10.1046/j.1365-2958.2000.01720.x.
Lombardo et al., Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery. Nat Biotechnol. Nov. 2007;25(11):1298-306. Epub Oct. 28, 2007.
Long et al., Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. Science. Jan. 22, 2016;351(6271):400-3. doi: 10.1126/science.aad5725. Epub Dec. 31, 2015.
Lopez-Girona et al., Cereblon is a direct protein target for immunomodulatory and antiproliferative activities of lenalidomide and pomalidomide. Leukemia. Nov. 2012;26(11):2326-35. doi: 10.1038/leu.2012.119. Epub May 3, 2012.
Lorenz et al., ViennaRNA Package 2.0. Algorithms Mol Biol. Nov. 24, 2011;6:26. doi: 10.1186/1748-7188-6-26.
Losey et al., Crystal structure of Staphylococcus sureus tRNA adenosine deaminase tadA in complex with RNA. Nature Struct. Mol. Biol. Feb. 2006;13(2):153-9.
Lu et al., Precise Editing of a Target Base in the Rice Genome Using a Modified CRISPR/Cas9 System. Mol Plant. Mar. 6, 2017;10(3):523-525. doi: 10.1016/j.molp.2016.11.013. Epub Dec. 6, 2016.
Luan et al., Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: a mechanism for non-LTR retrotransposition. Cell. Feb. 26, 1993;72(4):595-605. doi: 10.1016/0092-8674(93)90078-5.
Luckow et al., High level expression of nonfused foreign genes with Autographa californica nuclear polyhedrosis virus expression vectors. Virology. May 1989;170(1):31-9. doi: 10.1016/0042-6822(89)90348-6.
Lukacsovich et al., Repair of a specific double-strand break generated within a mammalian chromosome by yeast endonuclease I-SceI. Nucleic Acids Res. Dec. 25, 1994;22(25):5649-57. doi: 10.1093/nar/22.25.5649.
Lundberg et al., Delivery of short interfering RNA using endosomolytic cell-penetrating peptides. FASEB J. Sep. 2007;21(11):2664-71. Epub Apr. 26, 2007.
Lundquist et al., Site-directed mutagenesis and characterization of uracil-DNA glycosylase inhibitor protein. Role of specific carboxylic amino acids in complex formation with Escherichia coli uracil-DNA glycosylase. J Biol Chem. Aug. 22, 1997;272(34):21408-19.
Lynch, Evolution of the mutation rate. Trends Genet. Aug. 2010;26(8):345-52. doi: 10.1016/j.tig.2010.05.003. Epub Jun. 30, 2010.
Lyons et al., Efficient Recognition of an Unpaired Lesion by a DNA Repair Glycosylase. J. Am. Chem. Soc., 2009;131(49):17742-3. DOI: 10.1021/ja908378y.
Lüke et al., Partial purification and characterization of the reverse transcriptase of the simian immunodeficiency virus TYO-7 isolated from an African green monkey. Biochemistry. Feb. 20, 1990;29(7):1764-9. doi: 10.1021/bi00459a015.
Ma et al., Identification of pseudo attP sites for phage phiC31 integrase in bovine genome. Biochem Biophys Res Commun. Jul. 7, 2006;345(3):984-8. doi: 10.1016/j.bbrc.2006.04.145. Epub May 3, 2006.
Ma et al., In vitro protein engineering using synthetic tRNA(A1a) with different anticodons. Biochemistry. Aug. 10, 1993;32(31):7939-45.
Ma et al., PhiC31 integrase induces efficient site-specific recombination in the Capra hircus genome. DNA Cell Biol. Aug. 2014;33(8):484-91. doi: 10.1089/dna.2013.2124. Epub Apr. 22, 2014.
Ma et al., Single-Stranded DNA Cleavage by Divergent CRISPR-Cas9 Enzymes. Mol Cell. Nov. 5, 2015;60(3):398-407. doi: 10.1016/j.molce1.2015.10.030.
Ma et al., Targeted AID-mediated mutagenesis (TAM) enables efficient genomic diversification in mammalian cells. Nature Methods. Oct. 2016;13:1029-35. doi:10.1038/nmeth.4027.
Maas et al., Identification and characterization of a human tRNA-specific adenosine deaminase related to the ADAR family of pre-mRNA editing enzymes. Proc Natl Acad Sci U S A. Aug. 3, 1999;96(16):8895-900. doi: 10.1073/pnas.96.16.8895.
Macbeth et al., Inositol hexakisphosphate is bound in the ADAR2 core and required for RNA editing. Science. Sep. 2, 2005;309(5740):1534-9. doi: 10.1126/science.1113150.
Macrae et al., Ribonuclease revisited: structural insights into ribonuclease III family enzymes. Curr Opin Struct Biol. Feb. 2007;17(1):138-45. doi: 10.1016/j.sbi.2006.12.002. Epub Dec. 27, 2006.
Madura et al., Structural basis for ineffective T-cell responses to MHC anchor residue-improved “heteroclitic” peptides. Eur J Immunol. Feb. 2015;45(2):584-91. doi:. 10.1002/eji.201445114. Epub Dec. 28, 2014.
Maeder et al., CRISPR RNA-guided activation of endogenous human genes. Nat Methods. Oct. 2013;10(10):977-9. doi: 10.1038/nmeth.2598. Epub Jul. 25, 2013.
Maeder et al., Rapid “open-source” engineering of customized zinc-finger nucleases for highly efficient gene modification. Mol Cell. Jul. 25, 2008;31(2):294-301. doi:10.1016/j.molcel.2008.06.016.
Maeder et al., Robust, synergistic regulation of human gene expression using TALE activators. Nat Methods. Mar. 2013;10(3):243-5. doi: 10.1038/nmeth.2366. Epub Feb. 10, 2013.
Magin et al., Corf, the Rev/Rex homologue of HTDV/HERV-K, encodes an arginine-rich nuclear localization signal that exerts a trans-dominant phenotype when mutated. Virology. Aug. 15, 2000;274(1):11-6. doi: 10.1006/viro.2000.0438.
Mahfouz et al., De novo-engineered transcription activator-like effector (TALE) hybrid nuclease with novel Dna binding specificity creates double-strand breaks. Proc Natl Acad Sci U S A. Feb. 8, 2011;108(6):2623-8. doi: 10.1073/pnas.1019533108. Epub Jan. 24, 2011.
Maizels et al., Initiation of homologous recombination at DNA nicks. Nucleic Acids Res. Aug. 21, 2018;46(14):6962-6973. doi: 10.1093/nar/gky588.
Maji et al., A High-Throughput Platform to Identify Small-Molecule Inhibitors of CRISPR-Cas9. Cell. May 2, 2019;177(4):1067-1079.e19. doi: 10.1016/j.cell.2019.04.009.
Makarova et al., Prokaryotic homologs of Argonaute proteins are predicted to function as key components of a novel system of defense against mobile genetic elements. Biology Direct 2009;4:29.
Makarova et al., An updated evolutionary classification of CRISPR-Cas systems. Nat Rev Microbiol. Nov. 2015;13(11):722-36. doi: 10.1038/nrmicro3569. Epub Sep. 28, 2015.
Makarova et al., Classification and Nomenclature of CRISPR-Cas Systems: Where from Here? CRISPR J. Oct. 2018;1(5):325-336. doi: 10.1089/crispr.2018.0033.
Makarova et al., Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol. Jun. 2011;9(6):467-77. doi: 10.1038/nrmicro2577. Epub May 9, 2011.
Makarova et al., Prokaryotic homologs of Argonaute proteins are predicted to function as key components of a novel system of defense against mobile genetic elements. Biology Direct 2009;4:29. doi: 10.1186/1745-6150-4-29.
Makeyev et al., Evolutionary potential of an RNA virus. J Virol. Feb. 2004;78(4):2114-20.
Malashkevich et al., Crystal structure of tRNA adenosine deaminase TadA from Escherichia coli. Deposited: Mar. 10, 2005 Released: Feb. 21, 2006 doi:10.2210/pdb1z3a/pdb (2006).
Mali et al., Cas9 as a versatile tool for engineeringbiology. Nat Methods. Oct. 2013;10(10):957-63. doi: 10.1038/nmeth.2649.
Mali et al., CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol. Sep. 2013;31(9):833-8. doi: 10.1038/nbt.2675. Epub Aug. 1, 2013.
Mali et al., RNA-guided human genome engineering via Cas9. Science. Feb. 15, 2013;339(6121):823-6. doi: 10.1126/science.1232033. Epub Jan. 3, 2013.
Malito et al., Structural basis for lack of toxicity of the diphtheria toxin mutant CRM197. Proc Natl Acad Sci U S A. Apr. 3, 2012;109(14):5229-34. doi: 10.1073/pnas.1201964109. Epub Mar. 19, 2012.
Mandal et al., Efficient ablation of genes in human hematopoietic stem and effector cells using CRISPR/Cas9. Cell Stem Cell. Nov. 6, 2014;15(5):643-52. doi: 10.1016/j.stem.2014.10.004. Epub Nov. 6, 2014.
Mandal et al., Riboswitches Control Fundamental Biochemical Pathways in Bacillus Subtilis and Other Bacteria. Cell. May 30, 2003;113(5):577-86. doi: 10.1016/s0092-8674(03)00391-x.
Mani et al., Design, engineering, and characterization of zinc finger nucleases. Biochem Biophys Res Commun. Sep. 23, 2005;335(2):447-57.
Marceau, Functions of single-strand DNA-binding proteins in DNA replication, recombination, and repair. Methods Mol Biol. 2012;922:1-21. doi: 10.1007/978-1-62703-032-8_1.
Maresca et al., Obligate ligation-gated recombination (ObLiGaRe): custom-designed nuclease-mediated targeted integration through nonhomologous end joining. Genome Res. Mar. 2013;23(3):539-46. Doi: 10.1101/gr.145441.112. Epub Nov. 14, 2012.
Marioni et al., DNA methylation age of blood predicts all-cause mortality in later life. Genome Biol. Jan. 30, 2015;16:25. doi: 10.1186/s13059-015-0584-6.
Marquart et al., Predicting base editing outcomes with an attention-based deep learning algorithm trained on high-throughput target library screeen. bioRxiv. Jul. 5, 2020. DOI: 10.1101/2020.07.05.186544. Retrieved from the Internet via https://www.biorxiv.org/content/10.1101/2020.07.05.186544v1.full.pdf lased accessed on Apr. 28, 2021.
Marraffini et al., CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science. Dec. 19, 2008;322(5909):1843-5. doi: 10.1126/science.1165771.
Martinez et al., Hypermutagenesis of RNA using human immunodeficiency virus type 1 reverse transcriptase and biased dNTP concentrations. Proc Natl Acad Sci U S A. Dec. 6, 1994;91(25):11787-91. doi: 10.1073/pnas.91.25.11787.
Martsolf et al., Complete trisomy 17p a relatively new syndrome. Ann Genet. 1988;31(3):172-4.
Martz, L., Nav-i-gating antibodies for pain. Science-Business eXchange. Jun. 12, 2014;7(662):1-2. doi: 10.1038/scibx.2014.662.
Maruyama et al., Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining. Nat Biotechnol. May 2015;33(5):538-42. doi: 10.1038/nbt.3190. Epub Mar. 23, 2015.
Marzec et al., Prime Editing: A New Way for Genome Editing. Trends Cell Biol. Apr. 2020;30(4):257-259. doi: 10.1016/j.tcb.2020.01.004. Epub Jan. 27, 2020.
Mascola et al., HIV-1 neutralizing antibodies: understanding nature's pathways. Immunol Rev. Jul. 2013;254(1):225-44. doi: 10.1111/imr.12075.
Mathys et al., Characterization of a self-splicing mini-intein and its conversion into autocatalytic- and C-terminal cleavage elements: facile production of protein building blocks for protein ligation. Gene. Apr. 29, 1999;231(1-2):1-13. doi: 10.1016/s0378-1119(99)00103-1.
Matsuura et al., A gene essential for the site-specific excision of actinophage r4 prophage genome from the chromosome of a lysogen. J Gen Appl Microbiol. 1995;41(1):53-61.
Matthews, Structures of human ADAR2 bound to dsRNA reveal base-flipping mechanism and basis for site selectivity. Nat Struct Mol Biol. May 2016;23(5):426-33. doi: 10.1038/nsmb.3203. Epub Apr. 11, 2016.
May et al., Emergent lineages of mumps virus suggest the need for a polyvalent vaccine. Int J Infect Dis. Jan. 2018;66:1-4. doi: 10.1016/j.ijid.2017.09.024. Epub Oct. 4, 2017.
McCarroll et al., Copy-number variation and association studies of human disease. Nat Genet. Jul. 2007;39(7 Suppl):S37-42. doi: 10.1038/ng2080.
McDonald et al., Characterization of mutations at the mouse phenylalanine hydroxylase locus. Genomics. Feb. 1, 1997;39(3):402-5. doi: 10.1006/geno.1996.4508.
McInerney et al., Error Rate Comparison during Polymerase Chain Reaction by DNA Polymerase. Mol Biol Int. 2014;2014:287430. doi: 10.1155/2014/287430. Epub Aug. 17, 2014.
McKenna et al., Recording development with single cell dynamic lineage tracing. Development. Jun. 27, 2019;146(12):dev169730. doi: 10.1242/dev.169730.
McKenna et al., Whole-organism lineage tracing by combinatorial and cumulative genome editing. Science. Jul. 29, 2016;353(6298):aaf7907. doi: 10.1126/science.aaf7907. Epub May 26, 2016.
McNaughton et al., Mammalian cell penetration, siRNA transfection, and DNA transfection by supercharged proteins. Proc Natl Acad Sci U S A. Apr. 14, 2009;106(15):6111-6. doi: 10.1073/pnas.0807883106. Epub Mar. 23, 2009.
McVey et al., MMEJ repair of double-strand breaks (director's cut): deleted sequences and alternative endings. Trends Genet. Nov. 2008;24(11):529-38. doi: 10.1016/j.tig.2008.08.007. Epub Sep. 21, 2008.
Mead et al., A novel protective prion protein variant that colocalizes with kuru exposure. Engl J Med. Nov. 19, 2009;361(21):2056-65. doi: 10.1056/NEJMoa0809716.
Mei et al., Recent Progress in CRISPR/Cas9 Technology. J Genet Genomics. Feb. 20, 2016;43(2):63-75. doi: 10.1016/j.jgg.2016.01.001. Epub Jan. 18, 2016.
Meinke et al., Cre Recombinase and Other Tyrosine Recombinases. Chem Rev. Oct. 26, 2016;116(20):12785-12820. doi: 10.1021/acs.chemrev.6b00077. Epub May 10, 2016.
Meng et al., Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases. Nat Biotechnol. Jun. 2008;26(6):695-701. doi: 10.1038/nbt1398. Epub May 25, 2008.
Menéndez-Arias, Mutation rates and intrinsic fidelity of retroviral reverse transcriptases. Viruses. Dec. 2009;1(3):1137-65. doi: 10.3390/v1031137. Epub Dec. 4, 2009.
Mercer et al., Chimeric TALE recombinases with programmable DNA sequence specificity. Nucleic Acids Res. Nov. 2012;40(21):11163-72. doi: 10.1093/nar/gks875. Epub Sep. 26, 2012.
Mertens et al., Site-specific recombination in bacteriophage Mu: characterization of binding sites for the DNA invertase Gin. EMBO J. Apr. 1988;7(4):1219-27.
Meyer et al., Breathing life into polycations: functionalization with pH-responsive endosomolytic peptides and polyethylene glycol enables siRNA delivery. J Am Chem Soc. Mar. 19, 2008;130(11):3272-3. doi: 10.1021/ja710344v. Epub Feb. 21, 2008.
Meyer et al., Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell. Jun. 22, 2012;149(7):1635-46. doi: 10.1016/j.cell.2012.05.003. Epub May 17, 2012.
Meyer et al., Confirmation of a second natural preQ1 aptamer class in Streptococcaceae bacteria. RNA. Apr. 2008;14(4):685-95. doi: 10.1261/rna.937308. Epub Feb. 27, 2008.
Meyer et al., Library generation by gene shuffling. Curr Protoc Mol Biol. Jan. 6, 2014;105:Unit 15.12.. doi: 10.1002/0471142727.mb1512s105.
Meyer et al., Ribosome biogenesis factor Tsr3 is the aminocarboxypropyl transferase responsible for 18S rRNA hypermodification in yeast and humans. Nucleic Acids Res. May 19, 2016;44(9):4304-16. doi: 10.1093/nar/gkw244. Epub Apr. 15, 2016.
Meyer et al., The dynamic epitranscriptome: N6-methyladenosine and gene expression control. Nat Rev Mol Cell Biol. May 2014;15(5):313-26. doi: 10.1038/nrm3785. Epub Apr. 9, 2014.
Michel et al., Mitochondrial class II introns encode proteins related to the reverse transcriptases of retroviruses. Nature. Aug. 15-21, 1985;316(6029):641-3. doi: 10.1038/316641a0.
Midoux et al., Chemical vectors for gene delivery: a current review on polymers, peptides and lipids containing histidine or imidazole as nucleic acids carriers. Br J Pharmacol. May 2009;157(2):166-78. doi: 10.1111/j.1476-5381.2009.00288.x.
Mihai et al., PTEN inhibition improves wound healing in lung epithelia through changes in cellular mechanics that enhance migration. Am J Physiol Lung Cell Mol Physiol. 2012;302(3):L287-L299.
Mijakovic et al., Bacterial single-stranded DNA-binding proteins are phosphorylated on tyrosine. Nucleic Acids Res. Mar. 20, 2006;34(5):1588-96. doi: 10.1093/nar/gkj514.
Miller et al., A TALE nuclease architecture for efficient genome editing. Nat Biotechnol. Feb. 2011;29(2):143-8. doi:10.1038/nbt.1755. Epub Dec. 22, 2010.
Miller et al., An improved zinc-finger nuclease architecture for highly specific genome editing. Nat Biotechnol. Jul. 2007;25(7):778-85. Epub Jul. 1, 2007.
Miller et al., Construction and properties of retrovirus packaging cells based on gibbon ape leukemia virus. J Virol. May 1991;65(5):2220-4. doi: 10.1128/JVI.65.5.2220-2224.1991.
Miller et al., Continuous evolution of SpCas9 variants compatible with non-G PAMs. Nat Biotechnol. Apr. 2020;38(4):471-481. doi: 10.1038/s41587-020-0412-8. Epub Feb. 10, 2020.
Miller et al., Phage-assisted continuous and non-continuous evolution. Nat Protoc. Dec. 2020;15(12):4101-4127. doi: 10.1038/s41596-020-00410-3. Epub Nov. 16, 2020.
Miller, Human gene therapy comes of age. Nature. Jun. 11, 1992;357(6378):455-60. doi: 10.1038/357455a0.
Mills et al., Protein splicing in trans by purified- and C-terminal fragments of the Mycobacterium tuberculosis RecA intein. Proc Natl Acad Sci U S A. Mar. 31, 1998;95(7):3543-8. doi: 10.1073/pnas.95.7.3543.
Minoche et al., Evaluation of genomic high-throughput sequencing data generated on Illumina HiSeq and genome analyzer systems. Genome Biol. Nov. 8, 2011;12(11):R112. doi: 10.1186/gb-2011-12-11-r112.
Minoretti et al., A W148R mutation in the human FOXD4 gene segregating with dilated cardiomyopathy, obsessive-compulsive disorder, and suicidality. Int J Mol Med. Mar. 2007;19(3):369-72.
Mir et al., Two Active Site Divalent Ions in the Crystal Structure of the Hammerhead Ribozyme Bound to a Transition State Analogue. Biochemistry. . Feb. 2, 2016;55(4):633-6. doi: 10.1021/acs.biochem.5b01139. Epub Jan. 19, 2016.
Mir et al., Type II-C CRISPR-Cas9 Biology, Mechanism, and Application. ACS Chem Biol. Feb. 16, 2018;13(2):357-365. doi: 10.1021/acschembio.7b00855. Epub Dec. 20, 2017.
Mishina et al., Conditional gene targeting on the pure C57BL/6 genetic background. Neurosci Res. Jun. 2007;58(2):105-12. doi: 10.1016/j.neures.2007.01.004. Epub Jan. 18, 2007.
Mitani et al., Delivering therapeutic genes—matching approach and application. Trends Biotechnol. May 1993;11(5):162-6. doi: 10.1016/0167-7799(93)90108-L.
Mitton-Fry et al., Poly(A) tail recognition by a viral RNA element through assembly of a triple helix. Science. Nov. 26, 2010;330(6008):1244-7. doi: 10.1126/science.1195858.
Miyaoka et al., Systematic quantification of HDR and NHEJ reveals effects of locus, nuclease, and cell type on genome-editing. Sci Rep. Mar. 31, 2016;6:23549. doi: 10.1038/srep23549.
Moede et al., Identification of a nuclear localization signal, RRMKWKK, in the homeodomain transcription factor PDX-1. FEBS Lett. Nov. 19, 1999;461(3):229-34. doi: 10.1016/s0014-5793(99)01446-5.
Mohr et al., A Reverse Transcriptase-Cas1 Fusion Protein Contains a Cas6 Domain Required for Both CRISPR RNA Biogenesis and RNA Spacer Acquisition. Mol Cell. Nov. 15, 2018;72(4):700-714.e8. doi: 10.1016/j.molcel.2018.09.013. Epub Oct. 18, 2018. Including Supplemental Information.
Mohr et al., Thermostable group II intron reverse transcriptase fusion proteins and their use in cDNA synthesis and next-generation RNA sequencing. RNA. Jul. 2013;19(7):958-70. doi: 10.1261/rna.039743.113. Epub May 22, 2013.
Mojica et al., Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol. Feb. 2005;60(2):174-82.
Mok et al., A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing. Nature. Jul. 2020;583(7817):631-637. doi: 10.1038/s41586-020-2477-4. Epub Jul. 8, 2020.
Mol et al., Crystal structure and mutational analysis of human uracil-DNA glycosylase: structural basis for specificity and catalysis. Cell. Mar. 24, 1995;80(6):869-78. doi: 10.1016/0092-8674(95)90290-2.
Mol et al., Crystal structure of human uracil-DNA glycosylase in complex with a protein inhibitor: protein mimicry of DNA. Cell. Sep. 8, 1995;82(5):701-8.
Molla et al., CRISPR/Cas-Mediated Base Editing: Technical Considerations and Practical Applications. Trends Biotechnol. Oct. 2019;37(10):1121-1142. doi: 10.1016/j.tibtech.2019.03.008. Epub Apr. 14, 2019.
Monahan et al., Site-specific incorporation of unnatural amino acids into receptors expressed in Mammalian cells. Chem Biol. Jun. 2003;10(6):573-80.
Monot et al., The specificity and flexibility of 11 reverse transcription priming at imperfect T-tracts. PLoS Genet. May 2013;9(5):e1003499. doi: 10.1371/journal.pgen.1003499. Epub May 9, 2013.
Montange et al., Structure of the S-adenosylmethionine riboswitch regulatory mRNA element. Nature. Jun. 29, 2006;441(7097):1172-5.
Moore et al., Improved somatic mutagenesis in zebrafish using transcription activator-like effector nucleases (TALENs). PloS One. 2012;7(5):e37877. Doi: 10.1371/journal.pone.0037877. Epub May 24, 2012.
Mootz et al., Conditional protein splicing: a new tool to control protein structure and function in vitro and in vivo. J Am Chem Soc. Sep. 3, 2003;125(35):10561-9.
Mootz et al., Protein splicing triggered by a small molecule. J Am Chem Soc. Aug. 7, 2002;124(31):9044-5.
Morbitzer et al., Assembly of custom TALE-type DNA binding domains by modular cloning. Nucleic Acids Res. Jul. 2011;39(13):5790-9. doi: 10.1093/nar/gkr151. Epub Mar. 18, 2011.
Moreno-Mateos et al., CRISPRscan: designing highly efficient sgRNAs for CRISPR-Cas9 targeting in vivo. Nat Methods. Oct. 2015;12(10):982-8. doi: 10.1038/nmeth.3543. Epub Aug. 31, 2015.
Morita et al., The site-specific recombination system of actinophage TG1. FEMS Microbiol Lett. Aug. 2009;297(2):234-40. doi: 10.1111/j.1574-6968.2009.01683.x.
Morris et al., A peptide carrier for the delivery of biologically active proteins into mammalian cells. Nat Biotechnol. Dec. 2001;19(12):1173-6.
Moscou et al., A simple cipher governs DNA recognition by TAL effectors. Science. Dec. 11, 2009;326(5959):1501. doi: 10.1126/science.1178817.
Mougiakos et al., Characterizing a thermostable Cas9 for bacterial genome editing and silencing. Nat Commun. Nov. 21, 2017;8(1):1647. doi: 10.1038/s41467-017-01591-4.
Muir et al., Expressed protein ligation: a general method for protein engineering. Proc Natl Acad Sci U S A. Jun. 9, 1998;95(12):6705-10. doi: 10.1073/pnas.95.12.6705.
Muller et al., Nucleotide exchange and excision technology (NExT) DNA shuffling: a robust method for DNA fragmentation and directed evolution. Nucleic Acids Res. Aug. 1, 2005;33(13):e117. doi: 10.1093/nar/gni116. PMID: 16061932; PMCID: PMC1182171.
Muller, U.F., Design and Experimental Evolution of trans-Splicing Group I Intron Ribozymes. Molecules. Jan. 2, 2017;22(1):75. doi: 10.3390/molecules22010075.
Mullins et al., Transgenesis in nonmurine species. Hypertension. Oct. 1993;22(4):630-3.
Mumtsidu et al., Structural features of the single-stranded DNA-binding protein of Epstein-Barr virus. J Struct Biol. Feb. 2008;161(2):172-87. doi: 10.1016/j.jsb.2007.10.014. Epub Nov. 1, 2007.
Murphy, Phage recombinases and their applications. Adv Virus Res. 2012;83:367-414. doi: 10.1016/B978-0-12-394438-2.00008-6. Review.
Mussolino et al., A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity. Nucleic Acids Res. Nov. 2011;39(21):9283-93. Doi: 10.1093/nar/gkr597. Epub Aug. 3, 2011.
Mussolino et al., TALE nucleases: tailored genome engineering made easy. Curr Opin Biotechnol. Oct. 2012;23(5):644-50. doi: 10.1016/j.copbio.2012.01.013. Epub Feb. 17, 2012.
Muzyczka et al., Adeno-associated virus (AAV) vectors: will they work? J Clin Invest. Oct. 1994;94(4):1351. doi: 10.1172/JCI117468.
Myerowitz et al., The major defect in Ashkenazi Jews with Tay-Sachs disease is an insertion in the gene for the alpha-chain of beta-hexosaminidase. J Biol Chem. Dec. 15, 1988;263(35):18587-9.
Myers et al., Insulin signal transduction and the IRS proteins. Annu Rev Pharmacol Toxicol. 1996;36:615-58. doi: 10.1146/annurev.pa.36.040196.003151.
Nabel et al., Direct gene transfer for immunotherapy and immunization. Trends Biotechnol. May 1993;11(5):211-5. doi: 10.1016/0167-7799(93)90117-R.
Nahar et al., A G-quadruplex motif at the 3′ end of sgRNAs improves CRISPR-Cas9 based genome editing efficiency. Chem Commun (Camb). Mar. 7, 2018;54(19):2377-2380. doi: 10.1039/c7cc08893k. Epub Feb. 16, 2018.
Nahvi et al., Coenzyme B12 riboswitches are widespread genetic control elements in prokaryotes. Nucleic Acids Res. Jan. 2, 2004;32(1):143-50.
Nakade et al., Microhomology-mediated end-joining-dependent integration of donor DNA in cells and animals using TALENs and CRISPR/Cas9. Nat Commun. Nov. 20, 2014;5:5560. doi: 10.1038/ncomms6560.
Nakamura et al., Codon usage tabulated from international DNA sequence databases: status for the year 2000. Nucleic Acids Res. Jan. 1, 2000;28(1):292. doi: 10.1093/nar/28.1.292.
Naorem et al., DGR mutagenic transposition occurs via hypermutagenic reverse transcription primed by nicked template RNA. Proc Natl Acad Sci U S A. Nov. 21, 2017;114(47):E10187-E10195. doi: 10.1073/pnas.1715952114. Epub Nov. 6, 2017.
Narayanan et al., Clamping down on weak terminal base pairs: oligonucleotides with molecular caps as fidelity-enhancing elements at the 5′- and 3′-terminal residues. Nucleic Acids Res. May 20, 2004;32(9):2901-11. Print 2004.
Navaratnam et al., An overview of cytidine deaminases. Int J Hematol. Apr. 2006;83(3):195-200.
NCBI Reference Sequence: NM_002427.3. Wu et al., May 3, 2014. 5 pages.
Neel et al., Riboswitches: Classification, function and in silico approach, International Journal of Pharma Sciences and Research. 2010;1(9):409-420.
Nelson et al., Engineered pegRNAs improve prime editing efficiency. Nat Biotechnol. Oct. 4, 2021. doi: 10.1038/s41587-021-01039-7. Epub ahead of print. Erratum in: Nat Biotechnol. Dec. 8, 2021. 14 pages.
Nelson et al., Filamentous phage DNA cloning vectors: a noninfective mutant with a nonpolar deletion in gene III. Virology. 1981; 108(2): 338-50.
Nern et al., Multiple new site-specific recombinases for use in manipulating animal genomes. Proc Natl Acad Sci U S A. Aug. 23, 2011;108(34):14198-203. doi: 10.1073/pnas.1111704108. Epub Aug. 9, 2011.
Newby et al., Base editing of haematopoietic stem cells rescues sickle cell disease in mice. Nature. Jun. 2, 2021. doi: 10.1038/s41586-021-03609-w. Epub ahead of print.
Nguyen et al., Evolutionary drivers of thermoadaptation in enzyme catalysis. Science. Jan. 20, 2017;355(6322):289-294. doi: 10.1126/science.aah3717. Epub Dec. 22, 2016.
Nguyen et al., IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. Jan. 2015;32(1):268-74. doi: 10.1093/molbev/msu300. Epub Nov. 3, 2014.
Ni et al., A PCSK9-binding antibody that structurally mimics the EGF(A) domain of LDL-receptor reduces LDL cholesterol in vivo. J Lipid Res. 2011;52:76-86.
Ni et al., Nucleic acid aptamers: clinical applications and promising new horizons. Curr Med Chem. 2011;18(27):4206-14. Review.
Nishida et al., Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science. Sep. 16, 2016;353(6305):1248. pii: aaf8729. doi: 10.1126/science.aaf8729. Epub Aug. 4, 2016.
Nishikura, Functions and regulation of RNA editing by ADAR deaminases. Annu Rev Biochem. 2010;79:321-349. doi:10.1146/annurev-biochem-060208-105251.
Nishimasu et al., Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell. Feb. 27, 2014;156(5):935-49. doi: 10.1016/j.cell.2014.02.001. Epub Feb. 13, 2014.
Nishimasu et al., Crystal Structure of Staphylococcus aureus Cas9. Cell. Aug. 27, 2015;162(5):1113-26. doi: 10.1016/j.cell.2015.08.007.
Nishimasu et al., Engineered CRISPR-Cas9 nuclease with expanded targeting space. Science. Sep. 21, 2018;361(6408):1259-1262. doi: 10.1126/science.aas9129. Epub Aug. 30, 2018.
Nomura et al., Controlling Mammalian Gene Expression by Allosteric Hepatitis Delta Virus Ribozymes. ACS Synth Biol. Dec. 20, 2013;2(12):684-9. doi: 10.1021/sb400037a. Epub May 22, 2013.
Nomura et al., Synthetic mammalian riboswitches based on guanine aptazyme. Chem Commun (Camb). Jul. 21, 2012;48(57):7215-7. doi: 10.1039/c2cc33140c. Epub Jun. 13, 2012.
Noris et al., A phenylalanine-55 to serine amino-acid substitution in the human glycoprotein IX leucine-rich repeat is associated with Bernard-Soulier syndrome. Br J Haematol. May 1997;97(2):312-20.
Nottingham et al., RNA-seq of human reference RNA samples using a thermostable group II intron reverse transcriptase. RNA. Apr. 2016;22(4):597-613. doi: 10.1261/rna.055558.115. Epub Jan. 29, 2016.
Nowak et al., Characterization of single-stranded DNA-binding proteins from the psychrophilic bacteria Desulfotalea psychrophila, Flavobacterium psychrophilum, Psychrobacter arcticus, Psychrobacter cryohalolentis, Psychromonas ingrahamii, Psychroflexus torquis, and Photobacterium profundum. BMC Microbiol. Apr. 14, 2014;14:91. doi: 10.1186/1471-2180-14-91.
Nowak et al., Guide RNA Engineering for Versatile Cas9 Functionality. Nucleic Acids Res. Nov. 16, 2016;44(20):9555-9564. doi: 10.1093/nar/gkw908. Epub Oct. 12, 2016.
Nowak et al., Structural analysis of monomeric retroviral reverse transcriptase in complex with an RNA/DNA hybrid. Nucleic Acids Res. Apr. 1, 2013;41(6):3874-87. doi: 10.1093/nar/gkt053. Epub Feb. 4, 2013.
Numrych et al., A comparison of the effects of single-base and triple-base changes in the integrase arm-type binding sites on the site-specific recombination of bacteriophage lambda. Nucleic Acids Res. Jul. 11, 1990;18(13):3953-9. doi: 10.1093/nar/18.13.3953.
Nyerges et al., A highly precise and portable genome engineering method allows comparison of mutational effects across bacterial species. Proc Natl Acad Sci U S A. Mar. 1, 2016;113(9):2502-7. doi: 10.1073/pnas.1520040113. Epub Feb. 16, 2016.
O'Connell et al., Programmable RNA recognition and cleavage by CRISPR/Cas9. Nature. Dec. 11, 2014;516(7530):263-6. doi: 10.1038/nature13769. Epub Sep. 28, 2014.
O'Maille et al., Structure-based combinatorial protein engineering (SCOPE). J Mol Biol. Aug. 23, 2002;321(4):677-91.
Oakes et al., CRISPR-Cas9 Circular Permutants as Programmable Scaffolds for Genome Modification. Cell. Jan. 10, 2019;176(1-2):254-267.e16. doi: 10.1016/j.cell.2018.11.052.
Oakes et al., Profiling of engineering hotspots identifies an allosteric CRISPR-Cas9 switch. Nat Biotechnol. Jun. 2016;34(6):646-51. doi: 10.1038/nbt.3528. Epub May 2, 2016.
Oakes et al., Protein engineering of Cas9 for enhanced function. Methods Enzymol. 2014;546:491-511.
Odsbu et al., Specific-terminal interactions of the Escherichia coli SeqA protein are required to form multimers that restrain negative supercoils and form foci. Genes Cells. Nov. 2005;10(11):1039-49.
Oeemig et al., Solution structure of DnaE intein from Nostoc punctiforme: structural basis for the design of a new split intein suitable for site-specific chemical modification. FEBS Lett. May 6, 2009;583(9):1451-6.
Offord, Advances in Genome Editing. The Scientist, Apr. 20, 2016. http://www.the-scientist.com/?articles.view/articleNo/45903/title/Advances-in-Genome-Editing/.
Oh et al., Positional cloning of a gene for Hermansky-Pudlak syndrome, a disorder of cytoplasmic organelles. Nat Genet. Nov. 1996;14(3):300-6. doi: 10.1038/ng1196-300.
Ohe et al., Purification and properties of xanthine dehydrogenase from Streptomyces cyanogenus. J Biochem. Jul. 1979;86(1):45-53.
Olivares et al., Site-specific genomic integration produces therapeutic Factor IX levels in mice. Nat Biotechnol. Nov. 2002;20(11):1124-8. doi: 10.1038/nbt753. Epub Oct. 15, 2002.
Olorunniji et al., Purification and In Vitro Characterization of Zinc Finger Recombinases. Methods Mol Biol. 2017;1642:229-245. doi: 10.1007/978-1-4939-7169-5_15.
Olorunniji et al., Site-specific recombinases: molecular machines for the Genetic Revolution. Biochem J. Mar. 15, 2016;473(6):673-84. doi: 10.1042/BJ20151112.
Olorunniji et al., Synapsis and catalysis by activated Tn3 resolvase mutants. Nucleic Acids Res. Dec. 2008;36(22):7181-91. doi: 10.1093/nar/gkn885. Epub Nov. 10, 2008.
Orlando et al., Zinc-finger nuclease-driven targeted integration into mammalian genomes using donors with limited chromosomal homology. Nucleic Acids Res. Aug. 2010;38(15):e152. doi: 10.1093/nar/gkq512. Epub Jun. 8, 2010.
Orthwein et al., A mechanism for the suppression of homologous recombination in G1 cells. Nature. Dec. 17, 2015;528(7582):422-6. doi: 10.1038/nature 16142. Epub Dec. 9, 2015.
Ortiz-Urda et al., Stable nonviral genetic correction of inherited human skin disease. Nat Med. Oct. 2002;8(10):1166-70. doi: 10.1038/nm766. Epub Sep. 16, 2002. Erratum in: Nat Med. Feb. 2003;9(2):237.
Osborn et al., Base Editor Correction of COL7A1 in Recessive Dystrophic Epidermolysis Bullosa Patient-Derived Fibroblasts and iPSCs. J Invest Dermatol. Feb. 2020;140(2):338-347.e5. doi: 10.1016/j.jid.2019.07.701. Epub Aug. 19, 2019.
Osborn et al., TALEN-based gene correction for epidermolysis bullosa. Mol Ther. Jun. 2013;21(6):1151-9. doi: 10.1038/mt.2013.56. Epub Apr. 2, 2013.
Ostermeier et al., A combinatorial approach to hybrid enzymes independent of DNA homology. Nat Biotechnol. Dec. 1999;17(12):1205-9.
Ostertag et al., Biology of mammalian L1 retrotransposons. Annu Rev Genet. 2001;35:501-38. doi: 10.1146/annurev.genet.35.102401.091032.
Otomo et al., Improved segmental isotope labeling of proteins and application to a larger protein. J Biomol NMR. Jun. 1999;14(2):105-14. doi: 10.1023/a:1008308128050.
Otomo et al., NMR observation of selected segments in a larger protein: central-segment isotope labeling through intein-mediated ligation. Biochemistry. Dec. 7, 1999;38(49):16040-4. doi: 10.1021/bi991902j.
Otto et al., The probability of fixation in populations of changing size. Genetics. Jun. 1997;146(2):723-33.
Packer et al., Methods for the directed evolution of proteins. Nat Rev Genet. Jul. 2015;16(7):379-94. doi: 10.1038/nrg3927. Epub Jun. 9, 2015.
Packer et al., Phage-assisted continuous evolution of proteases with altered substrate specificity. Nat Commun. Oct. 16, 2017;8(1):956. doi: 10.1038/s41467-017-01055-9.
Paige et al., RNA mimics of green fluorescent protein. Science. Jul. 29, 2011;333(6042):642-6. doi:10.1126/science.1207339.
Paiva et al., Targeted protein degradation: elements of PROTAC design. Curr Opin Chem Biol. Jun. 2019;50:111-119. doi: 10.1016/j.cbpa.2019.02.022. Epub Apr. 17, 2019.
Pan et al., Biological and biomedical applications of engineered nucleases. Mol Biotechnol. Sep. 2013;55(1):54-62. doi: 10.1007/s12033-012-9613-9.
Paquet et al., Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9. Nature. May 5, 2016;533(7601):125-9. doi: 10.1038/nature17664. Epub Apr. 27, 2016.
Park et al., Digenome-seq web tool for profiling CRISPR specificity. Nat Methods. May 30, 2017;14(6):548-549. doi: 10.1038/nmeth.4262.
Park et al., Highly efficient editing of the ?-globin gene in patient-derived hematopoietic stem and progenitor cells to treat sickle cell disease. Nucleic Acids Res. Sep. 5, 2019;47(15):7955-7972. doi: 10.1093/nar/gkz475.
Park et al., Sendai virus, an RNA virus with no risk of genomic integration, delivers CRISPR/Cas9 for efficient gene editing. Mol Ther Methods Clin Dev. Aug. 24, 2016;3:16057. doi: 10.1038/mtm.2016.57.
Parker et al., Admixture mapping identifies a quantitative trait locus associated with FEV1/FVC in the COPDGene Study. Genet Epidemiol. Nov. 2014;38(7):652-9. doi: 10.1002/gepi.21847. Epub Aug. 11, 2014.
Patel et al., Flap endonucleases pass 5′-flaps through a flexible arch using a disorder-thread-order mechanism to confer specificity for free 5′-ends. Nucleic Acids Res. May 2012;40(10):4507-19. doi: 10.1093/nar/gks051. Epub Feb. 8, 2012.
Pattanayak et al., Determining the specificities of TALENs, Cas9, and other genome-editing enzymes. Methods Enzymol. 2014;546:47-78. doi: 10.1016/B978-0-12-801185-0.00003-9.
Pattanayak et al., High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat Biotechnol. Sep. 2013;31(9):839-43. doi: 10.1038/nbt.2673. Epub Aug. 11, 2013.
Pattanayak et al., Revealing off-target cleavage specificities of zinc-finger nucleases by in vitro selection. Nat Methods. Aug. 7, 2011;8(9):765-70. doi: 10.1038/nmeth.1670.
Pavletich et al., Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 A. Science. May 10, 1991;252(5007):809-17.
Pawson et al., Protein phosphorylation in signaling—50 years and counting. Trends Biochem Sci. Jun. 2005;30(6):286-90. doi: 10.1016/j.tibs.2005.04.013.
Pearl, Structure and function in the uracil-DNA glycosylase superfamily. Mutat Res. Aug. 30, 2000;460(3-4):165-81.
Peck et al., Directed evolution of a small-molecule-triggered intein with improved splicing properties in mammalian cells. Chem Biol. May 27, 2011;18(5):619-30. doi: 10.1016/j.chembiol.2011.02.014.
Pellenz et al., New human chromosomal safe harbor sites for genome engineering with CRISPR/Cas9, TAL effector and homing endonucleases. Aug. 20, 2018. bioRxiv doi: https://doi.org/10.1101/396390.
Pelletier, CRISPR-Cas systems for the study of the immune function. Nov. 15, 2016. https://doi.org/10.1002/9780470015902.a0026896.
Pennisi et al., The CRISPR craze. Science. Aug. 23, 2013;341(6148):833-6. doi: 10.1126/science.341.6148.833.
Pennisi et al., The tale of the TALEs. Science. Dec. 14, 2012;338(6113):1408-11. doi: 10.1126/science.338.6113.1408.
Perach et al., Catalytic features of the recombinant reverse transcriptase of bovine leukemia virus expressed in bacteria. Virology. Jun. 20, 1999;259(1):176-89. doi: 10.1006/viro.1999.9761.
Perez et al., Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases. Nat Biotechnol. Jul. 2008;26(7):808-16. Doi: 10.1038/nbt1410. Epub Jun. 29, 2008.
Perez-Pinera et al., Advances in targeted genome editing. Curr Opin Chem Biol. Aug. 2012;16(3-4):268-77. doi: 10.1016/j.cbpa.2012.06.007. Epub Jul. 20, 2012.
Perez-Pinera et al., RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Nat Methods. Oct. 2013;10(10):973-6. doi: 10.1038/nmeth.2600. Epub Jul. 25, 2013.
Perler et al., Protein splicing and autoproteolysis mechanisms. Curr Opin Chem Biol. Oct. 1997;1(3):292-9. doi: 10.1016/s1367-5931(97)80065-8.
Perler et al., Protein splicing elements: inteins and exteins—a definition of terms and recommended nomenclature. Nucleic Acids Res. Apr. 11, 1994;22(7):1125-7. doi: 10.1093/nar/22.7.1125.
Perler, InBase, the New England Biolabs Intein Database. Nucleic Acids Res. Jan. 1, 1999;27(1):346-7. doi: 10.1093/nar/27.1.346.
Perler, Protein splicing of inteins and hedgehog autoproteolysis: structure, function, and evolution. Cell. Jan. 9, 1998;92(1):1-4. doi: 10.1016/s0092-8674(00)80892-2.
Perreault et al., Mixed deoxyribo- and ribo-oligonucleotides with catalytic activity. Nature. Apr. 5, 1990;344(6266):565-7. doi: 10.1038/344565a0.
Petek et al., Frequent endonuclease cleavage at off-target locations in vivo. Mol Ther. May 2010;18(5):983-6. Doi: 10.1038/mt.2010.35. Epub Mar. 9, 2010.
Petersen-Mahrt et al., AID mutates E. coli suggesting a DNA deamination mechanism for antibody diversification. Nature. Jul. 4, 2002;418(6893):99-103.
Petolino et al., Editing Plant Genomes: a new era of crop improvement. Plant Biotechnol J. Feb. 2016;14(2):435-6. doi: 10.1111/pbi.12542.
Peyrottes et al., Oligodeoxynucleoside phosphoramidates (P-NH2): synthesis and thermal stability of duplexes with DNA and RNA targets. Nucleic Acids Res. May 15, 1996;24(10):1841-8.
Pfeiffer et al., Mechanisms of DNA double-strand break repair and their potential to induce chromosomal aberrations. Mutagenesis. Jul. 2000;15(4):289-302. doi: 10.1093/mutage/15.4.289.
Phillips, The challenge of gene therapy and DNA delivery. J Pharm Pharmacol. Sep. 2001;53(9):1169-74.
Pickart et al., Ubiquitin: structures, functions, mechanisms. Biochim Biophys Acta. Nov. 29, 2004;1695(1-3):55-72. doi: 10.1016/j.bbamcr.2004.09.019.
Pinkert et al., An albumin enhancer located 10 kb upstream functions along with its promoter to direct efficient, liver-specific expression in transgenic mice. Genes Dev. May 1987;1(3):268-76. doi: 10.1101/gad.1.3.268.
Pirakitikulr et al., PCRless library mutagenesis via oligonucleotide recombination in yeast. Protein Sci. Dec. 2010;19(12):2336-46. doi: 10.1002/pro.513.
Plasterk et al., DNA inversions in the chromosome of Escherichia coli and in bacteriophage Mu: relationship to other site-specific recombination systems. Proc Natl Acad Sci U S A. Sep. 1983;80(17):5355-8.
Plosky et al., CRISPR-Mediated Base Editing without DNA Double-Strand Breaks. Mol Cell. May 19, 2016;62(4):477-8. doi: 10.1016/j.molcel.2016.05.006.
Pluciennik et al., PCNA function in the activation and strand direction of MutL? endonuclease in mismatch repair. Proc Natl Acad Sci U S A. Sep. 14, 2010;107(37):16066-71. doi: 10.1073/pnas.1010662107. Epub Aug. 16, 2010.
Poller et al., A leucine-to-proline substitution causes a defective alpha 1-antichymotrypsin allele associated with familial obstructive lung disease. Genomics. Sep. 1993;17(3):740-3.
Popp et al., Sortagging: a versatile method for protein labeling. Nat Chem Biol. Nov. 2007;3(11):707-8. doi: 10.1038/nchembio.2007.31. Epub Sep. 23, 2007.
Porteus, Design and testing of zinc finger nucleases for use in mammalian cells. Methods Mol Biol. 2008;435:47-61. doi: 10.1007/978-1-59745-232-8_4.
Posnick et al., Imbalanced base excision repair increases spontaneous mutation and alkylation sensitivity in Escherichia coli. J Bacteriol. Nov. 1999;181(21):6763-71.
Pospísilová et al., Hydrolytic cleavage of N6-substituted adenine derivatives by eukaryotic adenine and adenosine deaminases. Biosci Rep. 2008;28(6):335-347. doi: 10.1042/BSR20080081.
Pourcel et al., CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology. Mar. 2005;151(Pt 3):653-63.
Prasad et al., Rev1 is a base excision repair enzyme with 5′-deoxyribose phosphate lyase activity. Nucleic Acids Res. Dec. 15, 2016;44(22):10824-10833. doi: 10.1093/nar/gkw869. Epub Sep. 28, 2016.
Prashant et al., CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nature Biotechnology 2013;31(9):833-8.
Prorocic et al., Zinc-finger recombinase activities in vitro. Nucleic Acids Res. Nov. 2011;39(21):9316-28. doi: 10.1093/nar/gkr652. Epub Aug. 17, 2011.
Proudfoot et al., Zinc finger recombinases with adaptable DNA sequence specificity. PLoS One. Apr. 29, 2011;6(4):e19537. doi: 10.1371/journal.pone.0019537.
Pruschy et al., Mechanistic studies of a signaling pathway activated by the organic dimerizer FK1012. Chem Biol. Nov. 1994;1(3):163-72. doi: 10.1016/1074-5521(94)90006-x.
Prykhozhij et al., CRISPR multitargeter: a web tool to find common and unique CRISPR single guide RNA targets in a set of similar sequences. PLoS One. Mar. 5, 2015;10(3):e0119372. doi: 10.1371/journal.pone.0119372. eCollection 2015.
Pu et al., Evolution of a split RNA polymerase as a versatile biosensor platform. Nat Chem Biol. Apr. 2017;13(4):432-438. doi: 10.1038/nchembio.2299. Epub Feb. 13, 2017.
Putnam et al., Protein mimicry of DNA from crystal structures of the uracil-DNA glycosylase inhibitor protein and its complex with Escherichia coli uracil-DNA glycosylase. J Mol Biol. Mar. 26, 1999;287(2):331-46.
Qi et al., Engineering naturally occurring trans-acting non-coding RNAs to sense molecular signals. Nucleic Acids Res. Jul. 2012;40(12):5775-86. doi: 10.1093/nar/gks168. Epub Mar. 1, 2012.
Qi et al., Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell. Feb. 28, 2013;152(5):1173-83. doi: 10.1016/j.cell.2013.02.022.
Qu et al., Global mapping of binding sites for phic31 integrase in transgenic maden-darby bovine kidney cells using ChIP-seq. Hereditas. Jan. 14, 2019;156:3. doi: 10.1186/s41065-018-0079-z.
Queen et al., Immunoglobulin gene transcription is activated by downstream sequence elements. Cell. Jul. 1983;33(3):741-8. doi: 10.1016/0092-8674(83)90016-8.
Radany et al., Increased spontaneous mutation frequency in human cells expressing the phage PBS2-encoded inhibitor of uracil-DNA glycosylase. Mutat Res. Sep. 15, 2000;461(1):41-58. doi: 10.1016/s0921-8777(00)00040-9.
Raghavan et al., Abstract 27: Therapeutic Targeting of Human Lipid Genes with in vivo CRISPR-Cas9 Genome Editing. Oral Abstract Presentations: Lipoprotein Metabolism and Therapeutic Targets. Arterioscler THromb Vasc Biol. 2015;35(Suppl. 1):Abstract 27. 5 pages.
Raillard et al., Targeting sites within HIV-1 cDNA with a DNA-cleaving ribozyme. Biochemistry. Sep. 10, 1996;35(36):11693-701. doi: 10.1021/bi960845g.
Raina et al., PROTAC-induced BET protein degradation as a therapy for castration-resistant prostate cancer. Proc Natl Acad Sci U S A. Jun. 28, 2016;113(26):7124-9. doi: 10.1073/pnas.1521738113. Epub Jun. 6, 2016.
Rakonjac et al., Roles of PIII in filamentous phage assembly. J Mol Biol. 1998; 282(1)25-41.
Ramakrishna et al., Gene disruption by cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA. Genome Res. Jun. 2014;24(6):1020-7. doi: 10.1101/gr.171264.113. Epub Apr. 2, 2014.
Ramamurthy et al., Identification of immunogenic B-cell epitope peptides of rubella virus E1 glycoprotein towards development of highly specific immunoassays and/or vaccine. Conference Abstract. 2019.
Ramirez et al., Engineered zinc finger nickases induce homology-directed repair with reduced mutagenic effects. Nucleic Acids Res. Jul. 2012;40(12):5560-8. doi: 10.1093/nar/gks179. Epub Feb. 28, 2012.
Ramirez et al., Unexpected failure rates for modular assembly of engineered zinc fingers. Nat Methods. May 2008;5(5):374-5. Doi: 10.1038/nmeth0508-374.
Ran et al., Double Nicking by RNA-guided CRISPR Cas9 for Enhanced Genome Editing Specificity. Cell. Sep. 12, 2013;154(6):1380-9. doi: 10.1016/j.ce11.2013.08.021. Epub Aug. 29, 2013.
Ran et al., Genome engineering using the CRISPR-Cas9 system. Nat Protoc. Nov. 2013;8(11):2281-308. doi: 10.1038/nprot.2013.143. Epub Oct. 24, 2013.
Ran et al., In vivo genome editing using Staphylococcus aureus Cas9. Nature. Apr. 9, 2015;520(7546):186-91. doi: 10.1038/nature14299. Epub Apr. 1, 2015.
Ranzau et al., Genome, Epigenome, and Transcriptome Editing via Chemical Modification of Nucleobases in Living Cells. Biochemistry. Feb. 5, 2019;58(5):330-335. doi: 10.1021/acs.biochem.8b00958. Epub Dec. 12, 2018.
Rashel et al., A novel site-specific recombination system derived from bacteriophage phiMR11. Biochem Biophys Res Commun. Apr. 4, 2008;368(2):192-8. doi: 10.1016/j.bbrc.2008.01.045. Epub Jan. 22, 2008.
Rasila et al., Critical evaluation of random mutagenesis by error-prone polymerase chain reaction protocols, Escherichia coli mutator strain, and hydroxylamine treatment. Anal Biochem. May 1, 2009;388(1):71-80. doi: 10.1016/j.ab.2009.02.008. Epub Feb. 10, 2009.
Raskin et al., Substitution of a single bacteriophage T3 residue in bacteriophage T7 RNA polymerase at position 748 results in a switch in promoter specificity. J Mol Biol. Nov. 20, 1992;228(2):506-15.
Raskin et al., T7 RNA polymerase mutants with altered promoter specificities. Proc Natl Acad Sci U S A. Apr. 15, 1993;90(8):3147-51.
Rath et al., Fidelity of end joining in mammalian episomes and the impact of Metnase on joint processing. Bmc Mol Biol. Mar. 22, 2014;15:6. doi: 10.1186/1471-2199-15-6.
Rauch et al., Programmable RNA Binding Proteins for Imaging and Therapeutics. Biochemistry. Jan. 30, 2018;57(4):363-364. doi: 10.1021/acs.biochem.7b01101. Epub Nov. 17, 2017.
Ravishankar et al., X-ray analysis of a complex of Escherichia coli uracil DNA glycosylase (EcUDG) with a proteinaceous inhibitor. The structure elucidation of a prokaryotic UDG. Nuclei Acids Res. 26 (21): 4880-4887 (1998).
Ray et al., A compendium of RNA-binding motifs for decoding gene regulation. Nature. Jul. 11, 2013;499(7457):172-7. doi: 10.1038/nature12311.
Ray et al., Homologous recombination: ends as the means. Trends Plant Sci. Oct. 2002;7(10):435-40.
Rebar et al., Phage display methods for selecting zinc finger proteins with novel DNA-binding specificities. Methods Enzymol. 1996;267:129-49.
Rebuzzini et al., New mammalian cellular systems to study mutations introduced at the break site by non-homologous end-joining. DNA Repair (Amst). May 2, 2005;4(5):546-55.
Rees et al., Analysis and minimization of cellular RNA editing by DNA adenine base editors. Sci Adv. May 8, 2019;5(5):eaax5717. doi: 10.1126/sciadv.aax5717.
Rees et al., Base editing: precision chemistry on the genome and transcriptome of living cells. Nat Rev Genet. Dec. 2018;19(12):770-788. doi: 10.1038/s41576-018-0059-1.
Rees et al., Development of hRad51-Cas9 nickase fusions that mediate HDR without double-stranded breaks. Nat Commun. May 17, 2019;10(1):2212. doi: 10.1038/s41467-019-09983-4.
Rees et al., Improving the DNA specificity and applicability of base editing through protein engineering and protein delivery. Nat Commun. Jun. 6, 2017;8:15790. doi: 10.1038/ncomms15790.
Relph et al., Recent developments and current status of gene therapy using viral vectors in the United Kingdom. BMJ. 2004;329(7470):839-842. doi:10.1136/bmj.329.7470.839.
Remy et al., Gene transfer with a series of lipophilic DNA-binding molecules. Bioconjug Chem. Nov.-Dec. 1994;5(6):647-54. doi: 10.1021/bc00030a021.
Ren et al., In-line Alignment and Mg2? Coordination at the Cleavage Site of the env22 Twister Ribozyme. Nat Commun. Nov. 20, 2014;5:5534. doi: 10.1038/ncomms6534.
Ren et al., Pistol Ribozyme Adopts a Pseudoknot Fold Facilitating Site-Specific In-Line Cleavage. Nat Chem Biol. Sep. 2016;12(9):702-8. doi: 10.1038/nchembio.2125. Epub Jul. 11, 2016.
Reynaud et al., What role for AID: mutator, or assembler of the immunoglobulin mutasome? Nat Immunol. Jul. 2003;4(7):631-8.
Reyon et al., FLASH assembly of TALENs for high-throughput genome editing. Nat Biotechnol. May 2012;30(5):460-5. doi: 10.1038/nbt.2170.
Ribeiro et al., Protein Engineering Strategies to Expand CRISPR-Cas9 Applications. Int J Genomics. Aug. 2, 2018;2018:1652567. doi: 10.1155/2018/1652567.
Richardson et al., Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA. Nat Biotechnol. Mar. 2016;34(3):339-44. doi: 10.1038/nbt.3481. Epub Jan. 20, 2016.
Richter et al., Function and regulation of clustered regularly interspaced short palindromic repeats (CRISPR) / CRISPR associated (Cas) systems. Viruses. Oct. 19, 2012;4(10):2291-311. doi: 10.3390/v4102291.
Richter et al., Phage-assisted evolution of an adenine base editor with improved Cas domain compatibility and activity. Nat Biotechnol. Jul. 2020;38(7):883-891. doi: 10.1038/s41587-020-0453-z. Epub Mar. 16, 2020.
Riechmann et al., The C-terminal domain of TolA is the coreceptor for filamentous phage infection of E. coli. Cell. 1997; 90(2):351-60. PMID:9244308.
Ringrose et al., The Kw recombinase, an integrase from Kluyveromyces waltii. Eur J Biochem. Sep. 15, 1997;248(3):903-12. doi: 10.1111/j.1432-1033.1997.00903.x.
Risso et al., Hyperstability and substrate promiscuity in laboratory resurrections of Precambrian ?-lactamases. J Am Chem Soc. Feb. 27, 2013;135(8):2899-902. doi: 10.1021/ja311630a. Epub Feb. 14, 2013.
Ritchie et al., limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. Apr. 20, 2015;43(7):e47. doi: 10.1093/nar/gkv007. Epub Jan. 20, 2015.
Robertson et al., DNA repair in mammalian cells: Base excision repair: the long and short of it. Cell Mol Life Sci. Mar. 2009;66(6):981-93. doi: 10.1007/s00018-009-8736-z.
Robertson et al., Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA. Nature. Mar. 29, 1990;344(6265):467-8. doi: 10.1038/344467a0.
Robinson et al., The protein tyrosine kinase family of the human genome. Oncogene. Nov. 20, 2000;19(49):5548-57. doi: 10.1038/sj.onc.1203957.
Rogozin et al., Evolution and diversification of lamprey antigen receptors: evidence for involvement of an AID-APOBEC family cytosine deaminase. Nat Immunol. Jun. 2007;8(6):647-56. doi: 10.1038/ni1463. Epub Apr. 29, 2007.
Rong et al., Homologous recombination in human embryonic stem cells using CRISPR/Cas9 nickase and a long DNA donor template. Protein Cell. Apr. 2014;5(4):258-60. doi: 10.1007/s13238-014-0032-5.
Rongrong et al., Effect of deletion mutation on the recombination activity of Cre recombinase. Acta Biochim Pol. 2005;52(2):541-4. Epub May 15, 2005.
Roth et al., A widespread self-cleaving ribozyme class is revealed by bioinformatics. Nat Chem Biol. Jan. 2014;10(1):56-60. doi: 10.1038/nchembio.1386. Epub Nov. 17, 2013.
Roth et al., Purification and characterization of murine retroviral reverse transcriptase expressed in Escherichia coli. J Biol Chem. Aug. 5, 1985;260(16):9326-35.
Rouet et al., Expression of a site-specific endonuclease stimulates homologous recombination in mammalian cells. Proc Natl Acad Sci U S A. Jun. 21, 1994;91(13):6064-8. doi: 10.1073/pnas.91.13.6064.
Rouet et al., Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease. Mol Cell Biol. Dec. 1994;14(12):8096-106. doi: 10.1128/mcb.14.12.8096.
Rouet et al., Receptor-Mediated Delivery of CRISPR-Cas9 Endonuclease for Cell-Type-Specific Gene Editing. J Am Chem Soc. May 30, 2018;140(21):6596-6603. doi: 10.1021/jacs.8b01551. Epub May 18, 2018.
Roundtree et al., YTHDC1 mediates nuclear export of N6-methyladenosine methylated mRNAs. Elife. Oct. 6, 2017;6:e31311. doi: 10.7554/eLife.31311.
Rowland et al., Regulatory mutations in Sin recombinase support a structure-based model of the synaptosome. Mol Microbiol. Oct. 2009;74(2):282-98. doi: 10.1111/j.1365-2958.2009.06756.x. Epub Jun. 8, 2009.
Rowland et al., Sin recombinase from Staphylococcus aureus: synaptic complex architecture and transposon targeting. Mol Microbiol. May 2002;44(3):607-19. doi: 10.1046/j.1365-2958.2002.02897.x.
Rowley, Chromosome translocations: dangerous liaisons revisited. Nat Rev Cancer. Dec. 2001;1(3):245-50. doi: 10.1038/35106108.
Rubio et al., An adenosine-to-inosine tRNA-editing enzyme that can perform C-to-U deamination of DNA. Proc Natl Acad Sci U S A. May 8, 2007;104(19):7821-6. doi: 10.1073/pnas.0702394104. Epub May 1, 2007. PMID: 17483465; PMCID: PMC1876531.
Rubio et al., Transfer RNA travels from the cytoplasm to organelles. Wiley Interdiscip Rev RNA. Nov.-Dec. 2011;2(6):802-17. doi: 10.1002/wrna.93. Epub Jul. 11, 2011.
Rudolph et al., Synthetic riboswitches for the conditional control of gene expression in Streptomyces coelicolor. Microbiology. Jul. 2013;159(Pt 7):1416-22. doi: 10.1099/mic.0.067322-0. Epub May 15, 2013.
Rutherford et al., Attachment site recognition and regulation of directionality by the serine integrases. Nucleic Acids Res. Sep. 2013;41(17):8341-56. doi: 10.1093/nar/gkt580. Epub Jul. 2, 2013.
Ryu et al., Adenine base editing in mouse embryos and an adult mouse model of Duchenne muscular dystrophy. Nat Biotechnol. Jul. 2018;36(6):536-539. doi: 10.1038/nbt.4148. Epub Apr. 27, 2018.
Rüfer et al., Non-contact positions impose site selectivity on Cre recombinase. Nucleic Acids Res. Jul. 1, 2002;30(13):2764-71. doi: 10.1093/nar/gkf399.
Sadelain et al., Safe harbours for the integration of new DNA in the human genome. Nat Rev Cancer. Dec. 1, 2011;12(1):51-8. doi: 10.1038/nrc3179.
Sadowski, The Flp recombinase of the 2-microns plasmid of Saccharomyces cerevisiae. Prog Nucleic Acid Res Mol Biol. 1995;51:53-91.
Sage et al., Proliferation of functional hair cells in vivo in the absence of the retinoblastoma protein. Science. Feb. 18, 2005;307(5712):1114-8. Epub Jan. 13, 2005.
Saha et al., The NIH Somatic Cell Genome Editing program. Nature. Apr. 2021;592(7853):195-204. doi: 10.1038/s41586-021-03191-1. Epub Apr. 7, 2021.
Sakuma et al., MMEJ-assisted gene knock-in using TALENs and CRISPR-Cas9 with the PITCh systems. Nat Protoc. Jan. 2016;11(1):118-33. doi: 10.1038/nprot.2015.140. Epub Dec. 17, 2015.
Sale et al., Y-family DNA polymerases and their role in tolerance of cellular DNA damage. Nat Rev Mol Cell Biol. Feb. 23, 2012;13(3):141-52. doi: 10.1038/nrm3289.
Saleh-Gohari et al., Conservative homologous recombination preferentially repairs DNA double-strand breaks in the S phase of the cell cycle in human cells. Nucleic Acids Res. Jul. 13, 2004;32(12):3683-8. Print 2004.
Samal et al., Cationic polymers and their therapeutic potential. Chem Soc Rev. Nov. 7, 2012;41(21):7147-94. doi: 10.1039/c2cs35094g. Epub Aug. 10, 2012.
Samanta et al., A reverse transcriptase ribozyme. Elife. Sep. 26, 2017;6:e31153. doi: 10.7554/eLife.31153.
Samulski et al., Helper-free stocks of recombinant adeno-associated viruses: normal integration does not require viral gene expression. J Virol. Sep. 1989;63(9):3822-8. doi: 10.1128/JVI.63.9.3822-3828.1989.
Sander et al., CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol. Apr. 2014;32(4):347-55. doi: 10.1038/nbt.2842. Epub Mar. 2, 2014.
Sander et al., In silico abstraction of zinc finger nuclease cleavage profiles reveals an expanded landscape of off-target sites. Nucleic Acids Res. Oct. 2013;41(19):e181. doi: 10.1093/nar/gkt716. Epub Aug. 14, 2013.
Sander et al., Targeted gene disruption in somatic zebrafish cells using engineered TALENs. Nat Biotechnol. Aug. 5, 2011;29(8):697-8. doi: 10.1038/nbt.1934.
Sang et al., A unique uracil-DNA binding protein of the uracil DNA glycosylase superfamily. Nucleic Acids Res. Sep. 30, 2015;43(17):8452-63. doi: 10.1093/nar/gkv854. Epub Aug. 24, 2015.
Sang, Prospects for transgenesis in the chick. Mech Dev. Sep. 2004;121(9):1179-86.
Sanjana et al., A transcription activator-like effector toolbox for genome engineering. Nat Protoc. Jan. 5, 2012;7(1):171-92. doi: 10.1038/nprot.2011.431.
Santiago et al., Targeted gene knockout in mammalian cells by using engineered zinc-finger nucleases. Proc Natl Acad Sci U S A. Apr. 15, 2008;105(15):5809-14. doi: 10.1073/pnas.0800940105. Epub Mar. 21, 2008.
Santoro et al., Directed evolution of the site specificity of Cre recombinase. Proc Natl Acad Sci U S A. Apr. 2, 2002;99(7):4185-90. Epub Mar. 19, 2002.
Saparbaev et al., Excision of hypoxanthine from DNA containing dIMP residues by the Escherichia coli, yeast, rat, and human alkylpurine DNA glycosylases. Proc Natl Acad Sci U S A. Jun. 21, 1994;91(13):5873-7. doi: 10.1073/pnas.91.13.5873.
Sapranauskas et al., The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic Acids Res. Nov. 2011;39(21):9275-82. doi: 10.1093/nar/gkr606. Epub Aug. 3, 2011.
Sapunar et al., Dorsal root ganglion—a potential new therapeutic target for neuropathic pain. J Pain Res. 2012;5:31-8. doi: 10.2147/JPR.S26603. Epub Feb. 16, 2012.
Saraconi et al., The RNA editing enzyme APOBEC1 induces somatic mutations and a compatible mutational signature is present in esophageal adenocarcinomas. Genome Biol. Jul. 31, 2014;15(7):417. doi: 10.1186/s13059-014-0417-z.
Sarkar et al., HIV-1 proviral DNA excision using an evolved recombinase. Science. Jun. 29, 2007;316(5833):1912-5. doi: 10.1126/science.1141453.
Sashital et al., Mechanism of foreign DNA selection in a bacterial adaptive immune system. Mol Cell. Jun. 8, 2012;46(5):606-15. doi: 10.1016/j.molcel.2012.03.020. Epub Apr. 19, 2012.
Sasidharan et al., The selection of acceptable protein mutations. PNAS; Jun. 12, 2007;104(24):10080-5. www.pnas.org/cgi/doi/10.1073.pnas.0703737104.
Satomura et al., Precise genome-wide base editing by the CRISPR Nickase system in yeast. Sci Rep. May 18, 2017;7(1):2095. doi: 10.1038/s41598-017-02013-7.
Saudek et al., A preliminary trial of the programmable implantable medication system for insulin delivery. Engl J Med. Aug. 31, 1989;321(9):574-9.
Sauer et al., DNA recombination with a heterospecific Cre homolog identified from comparison of the pac-c1 regions of P1-related phages. Nucleic Acids Res. Nov. 18, 2004;32(20):6086-95. doi: 10.1093/nar/gkh941.
Savic et al., Covalent linkage of the DNA repair template to the CRISPR-Cas9 nuclease enhances homology-directed repair. Elife. May 29, 2018;7:e33761. doi: 10.7554/eLife.33761.
Saville et al., A site-specific self-cleavage reaction performed by a novel RNA in Neurospora mitochondria. Cell. May 18, 1990;61(4):685-96. doi: 10.1016/0092-8674(90)90480-3.
Savva et al., The structural basis of specific base-excision repair by uracil-DNA glycosylase. Nature. Feb. 9, 1995;373(6514):487-93. doi: 10.1038/373487a0.
Schaaper et al., Base selection, proofreading, and mismatch repair during DNA replication in Escherichia coli. J Biol Chem. Nov. 15, 1993;268(32):23762-5.
Schaaper et al., Spectra of spontaneous mutations in Escherichia coli strains defective in mismatch correction: the nature of in vivo DNA replication errors. Proc Natl Acad Sci U S A. Sep. 1987;84(17):6220-4.
Schaefer et al., Understanding RNA modifications: the promises and technological bottlenecks of the ‘epitranscriptome’. Open Biol. May 2017;7(5):170077. doi: 10.1098/rsob.170077.
Schechner et al., Multiplexable, locus-specific targeting of long RNAs with CRISPR-Display. Nat Methods. Jul. 2015;12(7):664-70. doi: 10.1038/nmeth.3433. Epub Jun. 1, 2015. Author manuscript entitled CRISPR Display: A modular method for locus-specific targeting of long noncoding RNAs and synthetic RNA devices in vivo.
Schek et al., Definition of the upstream efficiency element of the simian virus 40 late polyadenylation signal by using in vitro analyses. Mol Cell Biol. Dec. 1992;12(12):5386-93. doi: 10.1128/mcb.12.12.5386.
Schenk et al., MPDU1 mutations underlie a novel human congenital disorder of glycosylation, designated type If. J Clin Invest. Dec. 2001;108(11):1687-95. doi: 10.1172/JCI13419.
Schmitz et al., Behavioral abnormalities in prion protein knockout mice and the potential relevance of PrP(C) for the cytoskeleton. Prion. 2014;8(6):381-6. doi: 10.4161/19336896.2014.983746.
Schriefer et al., Low pressure DNA shearing: a method for random DNA sequence analysis. Nucleic Acids Res. Dec. 25, 1990;18(24):7455-6.
Schultz et al., Expression and secretion in yeast of a 400-kDa envelope glycoprotein derived from Epstein-Barr virus. Gene. 1987;54(1):113-23. doi: 10.1016/0378-1119(87)90353-2.
Schultz et al., Oligo-2′-fluoro-2′-deoxynucleotide N3′→P5′ phosphoramidates: synthesis and properties. Nucleic Acids Res. Aug. 1, 1996;24(15):2966-73.
Schwank et al., Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell. Dec. 5, 2013;13(6):653-8. doi:10.1016/j.stem.2013.11.002.
Schwartz et al., Post-translational enzyme activation in an animal via optimized conditional protein splicing. Nat Chem Biol. Jan. 2007;3(1):50-4. Epub Nov. 26, 2006.
Schwarze et al., In vivo protein transduction: delivery of a biologically active protein into the mouse. Science. Sep. 3, 1999;285(5433):1569-72.
Schöller et al., Interactions, localization, and phosphorylation of the m6A generating METTL3-METTL14-WTAP complex. RNA. Apr. 2018;24(4):499-512. doi: 10.1261/rna.064063.117. Epub Jan. 18, 2018.
Sclimenti et al., Directed evolution of a recombinase for improved genomic integration at a native human sequence. Nucleic Acids Res. Dec. 15, 2001;29(24):5044-51.
Score Results for Luetticken et al., Complete genome sequence of a Streptococcus dysgalactiae subsp. RT equisimilis strain possessing Lancefield's group A antigen. RL Submitted to the EMBL/GenBank/DDBJ databases. May 2012. 3 pages.
Score Results for Okumura et al., Evolutionary paths of streptococcal and staphylococcal superantigens. RL BMC Genomics. 2012;13:404-404. 3 pages.
Score Results for Shimomura et al., Complete Genome Sequencing and Analysis of a Lancefield Group G RT Streptococcus dysagalactiae Subsp. Equisimilis Strain Causing Streptococcal RT Toxic Shock Syndrome (STSS). RL BMC Genomics. 2011;12:17-17. 3 pages.
Scott et al., Production of cyclic peptides and proteins in vivo. Proc Natl Acad Sci U S A. Nov. 23, 1999;96(24):13638-43. doi: 10.1073/pnas.96.24.13638.
Sebastían-Martín et al., Transcriptional inaccuracy threshold attenuates differences in RNA-dependent DNA synthesis fidelity between retroviral reverse transcriptases. Sci Rep. Jan. 12, 2018;8(1):627. doi: 10.1038/s41598-017-18974-8.
Seed, An LFA-3 cDNA encodes a phospholipid-linked membrane protein homologous to its receptor CD2. Nature. Oct. 29-Nov. 4, 1987;329(6142):840-2. doi: 10.1038/329840a0.
Sefton et al., Implantable pumps. Crit Rev Biomed Eng. 1987;14(3):201-40.
Segal et al., Toward controlling gene expression at will: selection and design of zinc finger domains recognizing each of the 5′-GNN-3′ DNA target sequences. Proc Natl Acad Sci U S A. Mar. 16, 1999;96(6):2758-63.
Sells et al., Delivery of protein into cells using polycationic liposomes. Biotechniques. Jul. 1995;19(1):72-6, 78.
Semenova et al., Interference by clustered regularly interspaced short palindromic repeat (CRISPR) RNA is governed by a seed sequence. Proc Natl Acad Sci U S A. Jun. 21, 2011;108(25):10098-103. doi: 10.1073/pnas.1104144108. Epub Jun. 6, 2011.
Semple et al., Rational design of cationic lipids for siRNA delivery. Nat Biotechnol. Feb. 2010;28(2):172-6. doi: 10.1038/nbt.1602. Epub Jan. 17, 2010.
Serganov et al., Coenzyme recognition and gene regulation by a flavin mononucleotide riboswitch. Nature. Mar. 12, 2009;458(7235):233-7. doi: 10.1038/nature07642. Epub Jan. 25, 2009.
Serganov et al., Structural basis for discriminative regulation of gene expression by adenine- and guanine-sensing mRNAs. Chem Biol. Dec. 2004;11(12):1729-41.
Serganov et al., Structural basis for gene regulation by a thiamine pyrophosphate-sensing riboswitch. Nature. Jun. 29, 2006;441(7097):1167-71. Epub May 21, 2006.
Seripa et al., The missing ApoE allele. Ann Hum Genet. Jul. 2007;71(Pt 4):496-500. Epub Jan. 22, 2007.
Serrano-Heras et al., Protein p56 from the Bacillus subtilis phage phi29 inhibits DNA-binding ability of uracil-DNA glycosylase. Nucleic Acids Res. 2007;35(16):5393-401. Epub Aug. 13, 2007.
Setten et al., The current state and future directions of RNAi-based therapeutics. Nat Rev Drug Discov. Jun. 2019;18(6):421-446. doi: 10.1038/s41573-019-0017-4.
Severinov et al., Expressed protein ligation, a novel method for studying protein-protein interactions in transcription. J Biol Chem. Jun. 26, 1998;273(26):16205-9. doi: 10.1074/jbc.273.26.16205.
Sha et al., Monobodies and other synthetic binding proteins for expanding protein science. Protein Sci. May 2017;26(5):910-924. doi: 10.1002/pro.3148. Epub Mar. 24, 2017.
Shah et al., Inteins: nature's gift to protein chemists. Chem Sci. 2014;5(1):446-461.
Shah et al., Kinetic control of one-pot trans-splicing reactions by using a wild-type and designed split intein. Angew Chem Int Ed Engl. Jul. 11, 2011;50(29):6511-5. doi: 10.1002/anie.201102909. Epub Jun. 8, 2011.
Shah et al., Protospacer recognition motifs: mixed identities and functional diversity. RNA Biol. May 2013;10(5):891-9. doi: 10.4161/rna.23764. Epub Feb. 12, 2013.
Shah et al., Target-specific variants of Flp recombinase mediate genome engineering reactions in mammalian cells. FEBS J. Sep. 2015;282(17):3323-33. doi: 10.1111/febs.13345. Epub Jul. 1, 2015.
Shaikh et al., Chimeras of the Flp and Cre recombinases: tests of the mode of cleavage by Flp and Cre. J Mol Biol. Sep. 8, 2000;302(1):27-48.
Shalem et al., Genome-scale CRISPR-Cas9 knockout screening in human cells. Science. Jan. 3, 2014;343(6166):84-7. doi: 10.1126/science.1247005. Epub Dec. 12, 2013.
Shalem et al., High-throughput functional genomics using CRISPR-Cas9. Nat Rev Genet. May 2015;16(5):299-311. doi: 10.1038/nrg3899. Epub Apr. 9, 2015.
Sharbeen et al., Ectopic restriction of DNA repair reveals that UNG2 excises AID-induced uracils predominantly or exclusively during G1 phase. J Exp Med. May 7, 2012;209(5):965-74. doi: 10.1084/jem.20112379. Epub Apr. 23, 2012.
Sharer et al., The ARF-like 2 (ARL2)-binding protein, BART. Purification, cloning, and initial characterization. J Biol Chem. Sep. 24, 1999;274(39):27553-61. doi: 10.1074/jbc.274.39.27553.
Sharma et al., Efficient introduction of aryl bromide functionality into proteins in vivo. FEBS Lett. Feb. 4, 2000;467(1):37-40.
Sharma et al., Identification of novel methyltransferases, Bmt5 and Bmt6, responsible for the m3U methylations of 25S rRNA in Saccharomyces cerevisiae. Nucleic Acids Res. Mar. 2014;42(5):3246-60. doi: 10.1093/nar/gkt1281. Epub Dec. 11, 2013.
Sharon et al., Functional Genetic Variants Revealed by Massively Parallel Precise Genome Editing. Cell. Oct. 4, 2018;175(2):544-557.e16. doi: 10.1016/j.cell.2018.08.057. Epub Sep. 20, 2018.
Shaw et al., Implications of human genome architecture for rearrangement-based disorders: the genomic basis of disease. Hum Mol Genet. Apr. 1, 2004;13 Spec No. 1:R57-64. doi: 10.1093/hmg/ddh073. Epub Feb. 5, 2004.
Shcherbakova et al., Near-infrared fluorescent proteins for multicolor in vivo imaging. Nat Methods. Aug. 2013;10(8):751-4. doi: 10.1038/nmeth.2521. Epub Jun. 16, 2013.
Shechner et al., Multiplexable, locus-specific targeting of long RNAs with CRISPR-Display. Nat Methods. Jul. 2015;12(7):664-70. doi: 10.1038/nmeth.3433. Epub Jun. 1, 2015.
Shee et al., Engineered proteins detect spontaneous DNA breakage in human and bacterial cells. Elife. Oct. 29, 2013;2:e01222. doi: 10.7554/eLife.01222.
Shen et al., Herpes simplex virus 1 (HSV-1) for cancer treatment. Cancer Gene Ther. Nov. 2006;13(11):975-92. doi: 10.1038/sj.cgt.7700946. Epub Apr. 7, 2006.
Shen et al., Predictable and precise template-free CRISPR editing of pathogenic variants. Nature. Nov. 2018;563(7733):646-651. doi: 10.1038/s41586-018-0686-x. Epub Nov. 7, 2018.
Shen, Data processing, Modeling and Analysis scripts for CRISPR-inDelphi. GitHub—maxwshen/indelphi-dataprocessinganalysis at 6b68e3cec73c9358fef6e5f178a935f3c2a4118f. Apr. 10, 2018. Retrieved online via https://github.com/maxwshen/indelphi-sataprocessinganalysis/tree/6b68e3cec73c9358fef6e5f178a935f3c2a4118f Last retrieved on Jul. 26, 2021. 2 pages.
Sheridan, First CRISPR-Cas patent opens race to stake out intellectual property. Nat Biotechnol. 2014;32(7):599-601.
Sheridan, Gene therapy finds its niche. Nat Biotechnol. Feb. 2011;29(2):121-8. doi: 10.1038/nbt.1769.
Sherwood et al., Discovery of directional and nondirectional pioneer transcription factors by modeling DNase profile magnitude and shape. Nat Biotechnol. Feb. 2014;32(2):171-178. doi: 10.1038/nbt.2798. Epub Jan. 19, 2014.
Shi et al., Structural basis for targeted DNA cytosine deamination and mutagenesis by APOBEC3A and APOBEC3B. Nat Struct Mol Biol. Feb. 2017;24(2):131-139. doi: 10.1038/nsmb.3344. Epub Dec. 19, 2016.
Shi et al., YTHDF3 facilitates translation and decay of N6-methyladenosine-modified RNA. Cell Res. Mar. 2017;27(3):315-328. doi: 10.1038/cr.2017.15. Epub Jan. 20, 2017.
Shimantani et al., Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion. Nat Biotechnol. May 2017;35(5):441-443. doi: 10.1038/nbt.3833. Epub Mar. 27, 2017.
Shimojima et al., Spinocerebellar ataxias type 27 derived from a disruption of the fibroblast growth factor 14 gene with mimicking phenotype of paroxysmal non-kinesigenic dyskinesia. Brain Dev. Mar. 2012;34(3):230-3. doi: 10.1016/j.braindev.2011.04.014. Epub May 19, 2011.
Shin et al., CRISPR/Cas9 targeting events cause complex deletions and insertions at 17 sites in the mouse genome. Nat Commun. May 31, 2017;8:15464. doi: 10.1038/ncomms15464.
Shindo et al., A Comparison of Two Single-Stranded DNA Binding Models by Mutational Analysis of APOBEC3G. Biology (Basel). Aug. 2, 2012;1(2):260-76. doi: 10.3390/biology1020260.
Shingledecker et al., Molecular dissection of the Mycobacterium tuberculosis RecA intein: design of a minimal intein and of a trans-splicing system involving two intein fragments. Gene. Jan. 30, 1998;207(2):187-95. doi: 10.1016/s0378-1119(97)00624-0.
Shmakov et al., Discovery and Functional Characterization of Diverse Class 2 CRISPR Cas Systems. Molecular Cell Nov. 2015;60(3):385-97.
Shmakov et al., Diversity and evolution of class 2 CRISPR-Cas systems. Nat Rev Microbiol. Mar. 2017;15(3):169-182. doi: 10.1038/nrmicro.2016.184. Epub Jan. 23, 2017.
Shultz et al., A genome-wide analysis of FRT-like sequences in the human genome. PLoS One. Mar. 23, 2011;6(3):e18077. doi: 10.1371/journal.pone.0018077.
Siebert et al., An improved PCR method for walking in uncloned genomic DNA. Nucleic Acids Res. Mar. 25, 1995;23(6):1087-8.
Silas et al., Direct CRISPR spacer acquisition from RNA by a natural reverse transcriptase-Cas1 fusion protein. Science. Feb. 26, 2016;351(6276):aad4234. doi: 10.1126/science.aad4234.
Silva et al., Selective disruption of the DNA polymerase III α-β complex by the umuD gene products. Nucleic Acids Res. Jul. 2012;40(12):5511-22. doi: 10.1093/nar/gks229. Epub Mar. 9, 2012.
Simonelli et al., Base excision repair intermediates are mutagenic in mammalian cells. Nucleic Acids Res. Aug. 2, 2005;33(14):4404-11. Print 2005.
Singh et al., Cross-talk between diverse serine integrases. J Mol Biol. Jan. 23, 2014;426(2):318-31. doi: 10.1016/j.jmb.2013.10.013. Epub Oct. 22, 2013.
Singh et al., Real-time observation of DNA recognition and rejection by the RNA-guided endonuclease Cas9. Nat Commun. Sep. 14, 2016;7:12778. doi: 10.1038/ncomms12778.
Singh et al., Real-time observation of DNA target interrogation and product release by the RNA-guided endonuclease CRISPR Cpf1 (Cas12a). Proc Natl Acad Sci U S A. May 22, 2018;115(21):5444-5449. doi: 10.1073/pnas.1718686115. Epub May 7, 2018.
Sirk et al., Expanding the zinc-finger recombinase repertoire: directed evolution and mutational analysis of serine recombinase specificity determinants. Nucleic Acids Res. Apr. 2014;42(7):4755-66. doi: 10.1093/nar/gkt1389. Epub Jan. 21, 2014.
Siu et al., Riboregulated toehold-gated gRNA for programmable CRISPR-Cas9 function. Nat Chem Biol. Mar. 2019;15(3):217-220. doi: 10.1038/s41589-018-0186-1. Epub Dec. 10, 2018.
Sivalingam et al., Biosafety assessment of site-directed transgene integration in human umbilical cord-lining cells. Mol Ther. Jul. 2010;18(7):1346-56. doi: 10.1038/mt.2010.61. Epub Apr. 27, 2010.
Sjoblom et al., The consensus coding sequences of human breast and colorectal cancers. Science. Oct. 13, 2006;314(5797):268-74. Epub Sep. 7, 2006.
Skretas et al., Regulation of protein activity with small-molecule-controlled inteins. Protein Sci. Feb. 2005;14(2):523-32. Epub Jan. 4, 2005.
Slaymaker et al., Rationally engineered Cas9 nucleases with improved specificity. Science. Jan. 1, 2016;351(6268):84-8. doi: 10.1126/science.aad5227. Epub Dec. 1, 2015.
Sledz et al., Structural insights into the molecular mechanism of the m(6)A writer complex. Elife. Sep. 14, 2016;5:e18434. doi: 10.7554/eLife.18434.
Slupphaug et al., A nucleotide-flipping mechanism from the structure of human uracil-DNA glycosylase bound to DNA. Nature. Nov. 7, 1996;384(6604):87-92. doi: 10.1038/384087a0.
Smargon et al., Cas13b Is a Type VI-B CRISPR-Associated RNA-Guided RNase Differentially Regulated by Accessory Proteins Csx27 and Csx28. Mol Cell. Feb. 16, 2017;65(4):618-630.e7. doi: 10.1016/j.molcel.2016.12.023. Epub Jan. 5, 2017.
Smith et al., Diversity in the serine recombinases. Mol Microbiol. Apr. 2002;44(2):299-307. Review.
Smith et al., Expression of a dominant negative retinoic acid receptor γ in Xenopus embryos leads to partial resistance to retinoic acid. Roux Arch Dev Biol. Mar. 1994;203(5):254-265. doi: 10.1007/BF00360521.
Smith et al., Herpesvirus transport to the nervous system and back again. Annu Rev Microbiol. 2012;66:153-76. doi: 10.1146/annurev-micro-092611-150051. Epub Jun. 15, 2012.
Smith et al., Production of human beta interferon in insect cells infected with a baculovirus expression vector. Mol Cell Biol. Dec. 1983;3(12):2156-65. doi: 10.1128/mcb.3.12.2156.
Smith et al., Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Gene. Jul. 15, 1988;67(1):31-40. doi: 10.1016/0378-1119(88)90005-4.
Smith, Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science. Jun. 14, 1985;228(4705):1315-7.
Smith, Phage-encoded Serine Integrases and Other Large Serine Recombinases. Microbiol Spectr. Aug. 2015;3(4). doi: 10.1128/microbiolspec.MDNA3-0059-2014.
Somanathan et al., AAV vectors expressing LDLR gain-of-function variants demonstrate increased efficacy in mouse models of familial hypercholesterolemia. Circ Res. Aug. 29, 2014;115(6):591-9. doi: 10.1161/CIRCRESAHA.115.304008. Epub Jul. 14, 2014.
Sommerfelt et al., Receptor interference groups of 20 retroviruses plating on human cells. Virology. May 1990;176(1):58-69. doi: 10.1016/0042-6822(90)90230-0.
Song et al., Adenine base editing in an adult mouse model of tyrosinaemia. Nat Biomed Eng. Jan. 2020;4(1):125-130. doi: 10.1038/s41551-019-0357-8. Epub Feb. 25, 2019.
Song et al., Delivery of CRISPR/Cas systems for cancer gene therapy and immunotherapy. Adv Drug Deliv Rev. Jan. 2021;168:158-180. doi: 10.1016/j.addr.2020.04.010. Epub May 1, 2020.
Southworth et al., Control of protein splicing by intein fragment reassembly. EMBO J. Feb. 16, 1998;17(4):918-26. doi: 10.1093/emboj/17.4.918.
Southworth et al., Purification of proteins fused to either the amino or carboxy terminus of the Mycobacterium xenopi gyrase A intein. Biotechniques. Jul. 1999;27(1):110-4, 116, 118-20. doi: 10.2144/99271st04.
Spencer et al., A general strategy for producing conditional alleles of Src-like tyrosine kinases. Proc Natl Acad Sci U S A. Oct. 10, 1995;92(21):9805-9. doi: 10.1073/pnas.92.21.9805.
Spencer et al., Controlling signal transduction with synthetic ligands. Science. Nov. 12, 1993;262(5136):1019-24. doi: 10.1126/science.7694365.
Spencer et al., Functional analysis of Fas signaling in vivo using synthetic inducers of dimerization. Curr Biol. Jul. 1, 1996;6(7):839-47. doi: 10.1016/s0960-9822(02)00607-3.
Srivastava et al., An inhibitor of nonhomologous end-joining abrogates double-strand break repair and impedes cancer progression. Cell. Dec. 21, 2012;151(7):1474-87. doi: 10.1016/j.cell.2012.11.054.
Stadtman, Selenocysteine. Annu Rev Biochem. 1996;65:83-100.
Stamos et al., Structure of a Thermostable Group II Intron Reverse Transcriptase with Template-Primer and Its Functional and Evolutionary Implications. Mol Cell. Dec. 7, 2017;68(5):926-939.e4. doi: 10.1016/j.molcel.2017.10.024. Epub Nov. 16, 2017.
Steele et al., The prion protein knockout mouse: a phenotype under challenge. Prion. Apr.-Jun. 2007;1(2):83-93. doi: 10.4161/pri.1.2.4346. Epub Apr. 25, 2007.
Steiner et al., The neurotropic herpes viruses: herpes simplex and varicella-zoster. Lancet Neurol. Nov. 2007;6(11):1015-28. doi: 10.1016/S1474-4422(07)70267-3.
Stella et al., Structure of the Cpf1 endonuclease R-loop complex after target DNA cleavage. Nature. Jun. 22, 2017;546(7659):559-563. doi: 10.1038/nature22398. Epub May 31, 2017.
Stenglein et al., APOBEC3 proteins mediate the clearance of foreign DNA from human cells. Nat Struct Mol Biol. Feb. 2010;17(2):222-9. doi: 10.1038/nsmb.1744. Epub Jan. 10, 2010.
Stenson et al., The Human Gene Mutation Database: towards a comprehensive repository of inherited mutation data for medical research, genetic diagnosis and next-generation sequencing studies. Hum Genet. Jun. 2017;136(6):665-677. doi: 10.1007/s00439-017-1779-6. Epub Mar. 27, 2017.
Stephens et al., The landscape of cancer genes and mutational processes in breast cancer. Nature Jun. 2012;486:400-404. doi: 10.1038/nature11017.
Sternberg et al., Conformational control of DNA target cleavage by CRISPR-Cas9. Nature. Nov. 5, 2015;527(7576):110-3. doi: 10.1038/nature15544. Epub Oct. 28, 2015.
Sternberg et al., DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature.Mar. 6, 2014;507(7490):62-7. doi: 10.1038/nature13011. Epub Jan. 29, 2014.
Sterne-Weiler et al., Exon identity crisis: disease-causing mutations that disrupt the splicing code. Genome Biol. Jan. 23, 2014;15(1):201. doi: 10.1186/gb4150.
Stevens et al., A promiscuous split intein with expanded protein engineering applications. Proc Natl Acad Sci U S A. Aug. 8, 2017;114(32):8538-8543. doi: 10.1073/pnas.1701083114. Epub Jul. 24, 2017.
Stevens et al., Design of a Split Intein with Exceptional Protein-Splicing Activity. J Am Chem Soc. Feb. 24, 2016;138(7):2162-5. doi: 10.1021/jacs.5b13528. Epub Feb. 8, 2016.
Stockwell et al., Probing the role of homomeric and heteromeric receptor interactions in TGF-beta signaling using small molecule dimerizers. Curr Biol. Jun. 18, 1998;8(13):761-70. doi: 10.1016/s0960-9822(98)70299-4.
Strecker et al., Engineering of CRISPR-Cas12b for human genome editing. Nat Commun. Jan. 22, 2019;10(1):212. doi: 10.1038/s41467-018-08224-4.
Strecker et al., RNA-guided DNA insertion with CRISPR-associated transposases. Science. Jul. 5, 2019;365(6448):48-53. doi: 10.1126/science.aax9181. Epub Jun. 6, 2019.
Strutt et al., RNA-dependent RNA targeting by CRISPR-Cas9. Elife. Jan. 5, 2018;7:e32724. doi: 10.7554/eLife.32724.
Su et al., Human DNA polymerase ? has reverse transcriptase activity in cellular environments. J Biol Chem. Apr. 12, 2019;294(15):6073-6081. doi: 10.1074/jbc.RA119.007925. Epub Mar. 6, 2019.
Sudarsan et al., An mRNA structure in bacteria that controls gene expression by binding lysine. Genes Dev. Nov. 1, 2003;17(21):2688-97.
Sudarsan et al., Riboswitches in eubacteria sense the second messenger cyclic di-GMP. Science. Jul. 18, 2008;321(5887):411-3. doi: 10.1126/science.1159519.
Suess et al., A theophylline responsive riboswitch based on helix slipping controls gene expression in vivo. Nucleic Acids Res. Mar. 5, 2004;32(4):1610-4.
Suh et al., Restoration of visual function in adult mice with an inherited retinal disease via adenine base editing. Nat Biomed Eng. Feb. 2021;5(2):169-178. doi: 10.1038/s41551-020-00632-6. Epub Oct. 19, 2020.
Sullenger et al., Ribozyme-mediated repair of defective mRNA by targeted, trans-splicing. Nature. Oct. 13, 1994;371(6498):619-22. doi: 10.1038/371619a0.
Sun et al., Optimized TAL effector nucleases (TALENs) for use in treatment of sickle cell disease. Mol Biosyst. Apr. 2012;8(4):1255-63. doi: 10.1039/c2mb05461b. Epub Feb. 3, 2012.
Sun et al., The CRISPR/Cas9 system for gene editing and its potential application in pain research. Transl Periop & Pain Med. Aug. 3, 2016;1(3):22-33.
Surun et al., High Efficiency Gene Correction in Hematopoietic Cells by Donor-Template-Free CRISPR/Cas9 Genome Editing. Mol Ther Nucleic Acids. Mar. 2, 2018;10:1-8. doi: 10.1016/j.omtn.2017.11.001. Epub Nov. 10, 2017.
Suzuki et al., Crystal structures reveal an elusive functional domain of pyrrolysyl-tRNA synthetase. Nat Chem Biol. Dec. 2017;13(12):1261-1266. doi: 10.1038/nchembio.2497. Epub Oct. 16, 2017.
Suzuki et al., In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration. Nature. Dec. 1, 2016;540(7631):144-149. doi: 10.1038/nature20565. Epub Nov. 16, 2016.
Suzuki et al., VCre/VloxP and SCre/SloxP: new site-specific recombination systems for genome engineering. Nucleic Acids Res. Apr. 2011;39(8):e49. doi: 10.1093/nar/gkq1280. Epub Feb. 1, 2011.
Swarts et al., Argonaute of the archaeon Pyrococcus furiosus is a DNA-guided nuclease that targets cognate DNA. Nucleic Acids Res. May 26, 2015;43(10):5120-9. doi: 10.1093/nar/gkv415. Epub Apr. 29, 2015.
Swarts et al., DNA-guided DNA interference by a prokaryotic Argonaute. Nature. Mar. 13, 2014;507(7491):258-61. doi: 10.1038/nature12971. Epub Feb. 16, 2014.
Swarts et al., The evolutionary journey of Argonaute proteins. Nat Struct Mol Biol. Sep. 2014;21(9):743-53. doi: 10.1038/nsmb.2879.
Szczepek et al., Structure-based redesign of the dimerization interface reduces the toxicity of zinc-finger nucleases. Nat Biotechnol. Jul. 2007;25(7):786-93. Epub Jul. 1, 2007.
Tabebordbar et al., In vivo gene editing in dystrophic mouse muscle and muscle stem cells. Science. Jan. 22, 2016;351(6271):407-411. doi: 10.1126/science.aad5177. Epub Dec. 31, 2015.
Tagalakis et al., Lack of RNA-DNA oligonucleotide (chimeraplast) mutagenic activity in mouse embryos. Mol Reprod Dev. Jun. 2005;71(2):140-4.
Tahara et al., Potent and Selective Inhibitors of 8-Oxoguanine DNA Glycosylase. J Am Chem Soc. Feb. 14, 2018;140(6):2105-2114. doi: 10.1021/jacs.7b09316. Epub Feb. 5, 2018.
Tajiri et al., Functional cooperation of MutT, MutM and MutY proteins in preventing mutations caused by spontaneous oxidation of guanine nucleotide in Escherichia coli. Mutat Res. May 1995;336(3):257-67. doi: 10.1016/0921-8777(94)00062-b.
Takimoto et al., Stereochemical basis for engineered pyrrolysyl-tRNA synthetase and the efficient in vivo incorporation of structurally divergent non-native amino acids. ACS Chem Biol. Jul. 15, 2011;6(7):733-43. doi: 10.1021/cb200057a. Epub May 5, 2011.
Tambunan et al., Vaccine Design for H5N1 Based on B- and T-cell Epitope Predictions. Bioinform Biol Insights. Apr. 28, 2016;10:27-35. doi: 10.4137/BBI.S38378.
Tanenbaum et al., A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell. Oct. 23, 2014;159(3):635-46. doi: 10.1016/j.cell.2014.09.039. Epub Oct. 9, 2014.
Tanese et al., Expression of enzymatically active reverse transcriptase in Escherichia coli. Proc Natl Acad Sci U S A. Aug. 1985;82(15):4944-8. doi: 10.1073/pnas.82.15.4944.
Tang et al., Aptazyme-embedded guide RNAs enable ligand-responsive genome editing and transcriptional activation. Nat Commun. Jun. 28, 2017;8:15939. doi: 10.1038/ncomms15939.
Tang et al., Evaluation of Bioinformatic Programmes for the Analysis of Variants within Splice Site Consensus Regions. Adv Bioinformatics. 2016;2016:5614058. doi: 10.1155/2016/5614058. Epub May 24, 2016.
Tang et al., Rewritable multi-event analog recording in bacterial and mammalian cells. Science. Apr. 13, 2018;360(6385):eaap8992. doi: 10.1126/science.aap8992. Epub Feb. 15, 2018.
Tassabehji, Williams-Beuren syndrome: a challenge for genotype-phenotype correlations. Hum Mol Genet. Oct. 15, 2003;12 Spec No. 2:R229-37. doi: 10.1093/hmg/ddg299. Epub Sep. 2, 2003.
Taube et al., Reverse transcriptase of mouse mammary tumour virus: expression in bacteria, purification and biochemical characterization. Biochem J. Feb. 1, 1998;329 ( Pt 3)(Pt 3):579-87. doi: 10.1042/bj3290579. Erratum in: Biochem J Jun. 15, 1998;332(Pt 3):808.
Tebas et al., Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. Engl J Med. Mar. 6, 2014;370(10):901-10. doi: 10.1056/NEJMoa1300662.
Tee et al., Polishing the craft of genetic diversity creation in directed evolution. Biotechnol Adv. Dec. 2013;31(8):1707-21. doi: 10.1016/j.biotechadv.2013.08.021. Epub Sep. 6, 2013.
Telenti et al., The Mycobacterium xenopi GyrA protein splicing element: characterization of a minimal intein. J Bacteriol. Oct. 1997;179(20):6378-82. doi: 10.1128/jb.179.20.6378-6382.1997.
Telesnitsky et al., RNase H domain mutations affect the interaction between Moloney murine leukemia virus reverse transcriptase and its primer-template. Proc Natl Acad Sci U S A. Feb. 15, 1993;90(4):1276-80. doi: 10.1073/pnas.90.4.1276.
Teng et al., Mutational analysis of apolipoprotein B mRNA editing enzyme (APOBEC1). structure-function relationships of RNA editing and dimerization. J Lipid Res. Apr. 1999;40(4):623-35.
Tessarollo et al., Targeted mutation in the neurotrophin-3 gene results in loss of muscle sensory neurons. Proc Natl Acad Sci U S A. Dec. 6, 1994;91(25):11844-8.
Tesson et al., Knockout rats generated by embryo microinjection of TALENs. Nat Biotechnol. Aug. 5, 2011;29(8):695-6. doi: 10.1038/nbt.1940.
Thompson et al., Cellular uptake mechanisms and endosomal trafficking of supercharged proteins. Chem Biol. Jul. 27, 2012;19(7):831-43. doi: 10.1016/j.chembiol.2012.06.014.
Thompson et al., Engineering and identifying supercharged proteins for macromolecule delivery into mammalian cells. Methods Enzymol. 2012;503:293-319. doi: 10.1016/B978-0-12396962-0.00012-4.
Thomson et al., Mutational analysis of loxP sites for efficient Cre-mediated insertion into genomic DNA. Genesis. Jul. 2003;36(3):162-7. doi: 10.1002/gene.10211.
Thorpe et al., Functional correction of episomal mutations with short DNA fragments and RNA-DNA oligonucleotides. J Gene Med. Mar.-Apr. 2002;4(2):195-204.
Thuronyi et al., Continuous evolution of base editors with expanded target compatibility and improved activity. Nat Biotechnol. Sep. 2019;37(9):1070-1079. doi: 10.1038/s41587-019-0193-0. Epub Jul. 22, 2019.
Thyagarajan et al., Creation of engineered human embryonic stem cell lines using phiC31 integrase. Stem Cells. Jan. 2008;26(1):119-26. doi: 10.1634/stemcells.2007-0283. Epub Oct. 25, 2007.
Thyagarajan et al., Mammalian genomes contain active recombinase recognition sites. Gene. Feb. 22, 2000;244(1-2):47-54.
Thyagarajan et al., Site-specific genomic integration in mammalian cells mediated by phage phiC31 integrase. Mol Cell Biol. Jun. 2001;21(12):3926-34.
Tinland et al., The T-DNA-linked VirD2 protein contains two distinct functional nuclear localization signals. Proc Natl Acad Sci U S A. Aug. 15, 1992;89(16):7442-6. doi: 10.1073/pnas.89.16.7442.
Tirumalai et al., Recognition of core-type DNA sites by lambda integrase. J Mol Biol. Jun. 12, 1998;279(3):513-27.
Tom et al., Mechanism whereby proliferating cell nuclear antigen stimulates flap endonuclease 1. J Biol Chem. Apr. 7, 2000;275(14):10498-505. doi: 10.1074/jbc.275.14.10498.
Tone et al., Single-stranded DNA binding protein Gp5 of Bacillus subtilis phage ?29 is required for viral DNA replication in growth-temperature dependent fashion. Biosci Biotechnol Biochem. 2012;76(12):2351-3. doi: 10.1271/bbb.120587. Epub Dec. 7, 2012.
Toor et al., Crystal structure of a self-spliced group II intron. Science. Apr. 4, 2008;320(5872):77-82. doi: 10.1126/science.1153803.
Toro et al., On the Origin and Evolutionary Relationships of the Reverse Transcriptases Associated With Type III CRISPR-Cas Systems. Front Microbiol. Jun. 15, 2018;9:1317. doi: 10.3389/fmicb.2018.01317.
Toro et al., The Reverse Transcriptases Associated with CRISPR-Cas Systems. Sci Rep. Aug. 2, 2017;7(1):7089. doi: 10.1038/s41598-017-07828-y.
Torres et al., Non-integrative lentivirus drives high-frequency cre-mediated cassette exchange in human cells. PLoS One. 2011;6(5):e19794. doi: 10.1371/journal.pone.0019794. Epub May 23, 2011.
Tourdot et al., A general strategy to enhance immunogenicity of low-affinity HLA-A2. 1-associated peptides: implication in the identification of cryptic tumor epitopes. Eur J Immunol. Dec. 2000;30(12):3411-21.
Townsend et al., Role of HFE in iron metabolism, hereditary haemochromatosis, anaemia of chronic disease, and secondary iron overload. Lancet. Mar. 2, 2002;359(9308):786-90. doi: 10.1016/S0140-6736(02)07885-6.
Tracewell et al., Directed enzyme evolution: climbing fitness peaks one amino acid at a time. Curr Opin Chem Biol. Feb. 2009;13(1):3-9. doi: 10.1016/j.cbpa.2009.01.017. Epub Feb. 25, 2009.
Tratschin et al., A human parvovirus, adeno-associated virus, as a eucaryotic vector: transient expression and encapsidation of the procaryotic gene for chloramphenicol acetyltransferase. Mol Cell Biol. Oct. 1984;4(10):2072-81. doi: 10.1128/mcb.4.10.2072.
Tratschin et al., Adeno-associated virus vector for high-frequency integration, expression, and rescue of genes in mammalian cells. Mol Cell Biol. Nov. 1985;5(11):3251-60. doi: 10.1128/mcb.5.11.3251.
Trausch et al., The structure of a tetrahydrofolate-sensing riboswitch reveals two ligand binding sites in a single aptamer. Structure. Oct. 12, 2011;19(10):1413-23. doi: 10.1016/j.str.2011.06.019. Epub Sep. 8, 2011.
Traxler et al., A genome-editing strategy to treat ?-hemoglobinopathies that recapitulates a mutation associated with a benign genetic condition. Nat Med. Sep. 2016;22(9):987-90. doi: 10.1038/nm.4170. Epub Aug. 15, 2016.
Trudeau et al., On the Potential Origins of the High Stability of Reconstructed Ancestral Proteins. Mol Biol Evol. Oct. 2016;33(10):2633-41. doi: 10.1093/molbev/msw138. Epub Jul. 12, 2016.
Truong et al., Development of an intein-mediated split-Cas9 system for gene therapy. Nucleic Acids Res. Jul. 27, 2015;43(13):6450-8. doi: 10.1093/nar/gkv601. Epub Jun. 16, 2015. With Supplementary Data.
Tsai et al., Circle-seq: a highly sensitive in vitro screen for genome-wide CRISPR-Cas9 nuclease off-targets. Nat Methods. Jun. 2017;14(6):607-614. doi: 10.1038/nmeth.4278. Epub May 1, 2017.
Tsai et al., Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nat Biotechnol. Jun. 2014;32(6):569-76. doi: 10.1038/nbt.2908. Epub Apr. 25, 2014.
Tsai et al., Guide-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat Biotechnol. Feb. 2015;33(2):187-97. doi: 10.1038/nbt.3117. Epub Dec. 16, 2014.
Tsang et al., Specialization of the DNA-cleaving activity of a group I ribozyme through in vitro evolution. J Mol Biol. Sep. 13, 1996;262(1):31-42. doi: 10.1006/jmbi.1996.0496.
Tsutakawa et al., Human flap endonuclease structures, DNA double-base flipping, and a unified understanding of the FEN1 superfamily. Cell. Apr. 15, 2011;145(2):198-211. doi: 10.1016/j.cell.2011.03.004.
Turan et al., Recombinase-mediated cassette exchange (RMCE)—a rapidly-expanding toolbox for targeted genomic modifications. Gene. Feb. 15, 2013;515(1):1-27. doi: 10.1016/j.gene.2012.11.016. Epub Nov. 29, 2012.
Turan et al., Recombinase-mediated cassette exchange (RMCE): traditional concepts and current challenges. J Mol Biol. Mar. 25, 2015;407(2):193-221. doi: 10.1016/j.jmb.2011.01.004. Epub Jan. 15, 2011.
Turan et al., Site-specific recombinases: from tag-and-target- to tag-and-exchange-based genomic modifications. Faseb J. Dec. 2011;25(12):4088-107. doi: 10.1096/fj.11-186940. Epub Sep. 2, 2011. Review.
Tycko et al., Pairwise library screen systematically interrogates Staphylococcus aureus Cas9 specificity in human cells. bioRxiv. doi: https://doi.org/10.1101/269399 Posted Feb. 22, 2018.
UniProt Consortium, UniProt: the universal protein knowledgebase. Nucleic Acids Res. Mar. 16, 2018;46(5):2699. doi: 10.1093/nar/gky092.
UniProt Submission; UniProt, Accession No. P01011. Last modified Jun. 11, 2014, version 2. 15 pages.
UniProt Submission; UniProt, Accession No. P01011. Last modified Sep. 18, 2013, version 2. 15 pages.
UniProt Submission; UniProt, Accession No. P04264. Last modified Jun. 11, 2014, version 6. 15 pages.
UniProt Submission; UniProt, Accession No. P04275. Last modified Jul. 9, 2014, version 107. 29 pages.
UniProtein A0A1V6. Dec. 11, 2019.
UniProtkb Submission; Accession No. F0NH53. May 3, 2011. 4 pages.
UniProtkb Submission; Accession No. F0NN87. May 3, 2011. 4 pages.
UniProtkb Submission; Accession No. G3ECR1.2. No Author Listed., Aug. 12, 2020, 8 pages.
UniProtkb Submission; Accession No. P04264. No Author Listed., Apr. 7, 2021. 12 pages.
UniProtkb Submission; Accession No. P0DOC6. No Author Listed., Oct. 5, 2016. 5 pages.
UniProtkb Submission; Accession No. T0D7A2. Oct. 16, 2013. 10 pages.
UniProtkb Submission; Accession No. U2UMQ6. No Author Listed., Apr. 7, 2021, 11 pages.
Urasaki et al., Functional dissection of the Tol2 transposable element identified the minimal cis-sequence and a highly repetitive sequence in the subterminal region essential for transposition. Genetics. Oct. 2006;174(2):639-49. doi: 10.1534/genetics.106.060244. Epub Sep. 7, 2006.
Urnov et al., Genome editing with engineered zinc finger nucleases. Nat Rev Genet. Sep. 2010;11(9):636-46. doi: 10.1038/nrg2842.
Urnov et al., Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature. Jun. 2, 2005;435(7042):646-51. Epub Apr. 3, 2005.
Usman et al., Exploiting the chemical synthesis of RNA. Trends Biochem Sci. Sep. 1992;17(9):334-9. doi: 10.1016/0968-0004(92)90306-t.
Vagner et al., Efficiency of homologous DNA recombination varies along the Bacillus subtilis chromosome. J Bacteriol. Sep. 1988;170(9):3978-82.
Van Brunt et al., Genetically Encoded Azide Containing Amino Acid in Mammalian Cells Enables Site-Specific Antibody-Drug Conjugates Using Click Cycloaddition Chemistry. Bioconjug Chem. Nov. 18, 2015;26(11):2249-60. doi: 10.1021/acs.bioconjchem.5b00359. Epub Sep. 11, 2015.
Van Brunt et al., Molecular Farming: Transgenic Animals as Bioreactors. Biotechnology (Y). 1988;6(10):1149-1154. doi: 10.1038/nbt1088-1149.
Van Duyne et al., Teaching Cre to follow directions. Proc Natl Acad Sci U S A. Jan. 6, 2009;106(1):4-5. doi: 10.1073/pnas.0811624106. Epub Dec. 31, 2008.
Van Overbeek et al., DNA Repair Profiling Reveals Nonrandom Outcomes at Cas9-Mediated Breaks. Mol Cell. Aug. 18, 2016;63(4):633-646. doi: 10.1016/j.molcel.2016.06.037. Epub Aug. 4, 2016.
Van Swieten et al., A mutation in the fibroblast growth factor 14 gene is associated with autosomal dominant cerebellar ataxia [corrected]. Am J Hum Genet. Jan. 2003;72(1):191-9. Epub Dec. 13, 2002.
Van Wijk et al., Identification of 51 novel exons of the Usher syndrome type 2A (USH2A) gene that encode multiple conserved functional domains and that are mutated in patients with Usher syndrome type II. Am J Hum Genet. Apr. 2004;74(4):738-44. doi: 10.1086/383096. Epub Mar. 10, 2004.
Vanamee et al., FokI requires two specific DNA sites for cleavage. J Mol Biol. May 25, 2001;309(1):69-78.
Varga et al., Progressive vascular smooth muscle cell defects in a mouse model of Hutchinson-Gilford progeria syndrome. Proc Natl Acad Sci U S A. Feb. 28, 2006;103(9):3250-5. doi: 10.1073/pnas.0600012103. Epub Feb. 21, 2006.
Vellore et al., A group II intron-type open reading frame from the thermophile Bacillus (Geobacillus) stearothermophilus encodes a heat-stable reverse transcriptase. Appl Environ Microbiol. Dec. 2004;70(12):7140-7. doi: 10.1128/AEM.70.12.7140-7147.2004.
Venken et al., Genome-wide manipulations of Drosophila melanogaster with transposons, Flp recombinase, and ΦC31 integrase. Methods Mol Biol. 2012;859:203-28. doi: 10.1007/978-1-61779-603-6_12.
Verma, The reverse transcriptase. Biochim Biophys Acta. Mar. 21, 1977;473(1):1-38. doi: 10.1016/0304-419x(77)90005-1.
Vigne et al., Third-generation adenovectors for gene therapy. Restor Neurol Neurosci. Jan. 1, 1995;8(1):35-6. doi: 10.3233/RNN-1995-81208.
Vik et al., Endonuclease V cleaves at inosines in RNA. Nat Commun. 2013;4:2271. doi: 10.1038/ncomms3271.
Vilenchik et al., Endogenous DNA double-strand breaks: production, fidelity of repair, and induction of cancer. Proc Natl Acad Sci U S A. Oct. 28, 2003;100(22):12871-6. doi: 10.1073/pnas.2135498100. Epub Oct. 17, 2003.
Villiger et al., Treatment of a metabolic liver disease by in vivo genome base editing in adult mice. Nat Med. Oct. 2018;24(10):1519-1525. doi: 10.1038/s41591-018-0209-1. Epub Oct. 8, 2018.
Vitreschak et al., Regulation of the vitamin B12 metabolism and transport in bacteria by a conserved RNA structural element. RNA. Sep. 2003;9(9):1084-97.
Voigt et al., Rational evolutionary design: the theory of in vitro protein evolution. Adv Protein Chem. 2000;55:79-160.
Vriend et al., Nick-initiated homologous recombination: Protecting the genome, one strand at a time. DNA Repair (Amst). Feb. 2017;50:1-13. doi: 10.1016/j.dnarep.2016.12.005. Epub Dec. 29, 2016.
Wacey et al., Disentangling the perturbational effects of amino acid substitutions in the DNA-binding domain of p53. Hum Genet. Jan. 1999;104(1):15-22.
Wadia et al., Modulation of cellular function by TAT mediated transduction of full length proteins. Curr Protein Pept Sci. Apr. 2003;4(2):97-104.
Wadia et al., Transducible TAT-HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis. Nat Med. Mar. 2004;10(3):310-5. Epub Feb. 8, 2004.
Wah et al., Structure of FokI has implications for DNA cleavage. Proc Natl Acad Sci U S A. Sep. 1, 1998;95(18):10564-9.
Wals et al., Unnatural amino acid incorporation in E. coli: current and future applications in the design of therapeutic proteins. Front Chem. Apr. 1, 2014;2:15. doi: 10.3389/fchem.2014.00015. eCollection 2014.
Wan et al., Material solutions for delivery of CRISPR/Cas-based genome editing tools: Current status and future outlook. Materials Today. Jun. 2019;26:40-66. doi: 10.1016/j.mattod.2018.12.003.
Wang et al. CRISPR-Cas9 and CRISPR-Assisted Cytidine Deaminase Enable Precise and Efficient Genome Editing in Klebsiella pneumoniae. Appl Environ Microbiol. 2018;84(23):e01834-18. Published Nov. 15, 2018. doi:10.1128/AEM.01834-18.
Wang et al., AID upmutants isolated using a high-throughput screen highlight the immunity/cancer balance limiting DNA deaminase activity. Nat Struct Mol Biol. Jul. 2009;16(7):769-76. doi: 10.1038/nsmb.1623. Epub Jun. 21, 2009.
Wang et al., Continuous directed evolutions of proteins with improved soluble expression. Nature Chemical Biology. Nat Publishing Group. Aug. 20, 2018; 14(10):972-980.
Wang et al., CRISPR-Cas9 Targeting of PCSK9 in Human Hepatocytes In Vivo-Brief Report. Arterioscler Thromb Vasc Biol. May 2016;36(5):783-6. doi: 10.1161/ATVBAHA.116.307227. Epub Mar. 3, 2016.
Wang et al., Efficient delivery of genome-editing proteins using bioreducible lipid nanoparticles. Proc Natl Acad Sci U S A. Feb. 29, 2016. pii: 201520244. [Epub ahead of print].
Wang et al., Enhanced base editing by co-expression of free uracil DNA glycosylase inhibitor. Cell Res. Oct. 2017;27(1):1289-92. doi: 10.1038/cr.2017.111. Epub Aug. 29, 2017.
Wang et al., Evolution of new nonantibody proteins via iterative somatic hypermutation. Proc Natl Acad Sci U S A. Nov. 30, 2004;101(48):16745-9. Epub Nov. 19, 2004.
Wang et al., Expanding the genetic code. Annu Rev Biophys Biomol Struct. 2006;35:225-49. Review.
Wang et al., Genetic screens in human cells using the CRISPR-Cas9 system. Science. Jan. 3, 2014;343(6166):80-4. doi: 10.1126/science.1246981. Epub Dec. 12, 2013.
Wang et al., Highly efficient CRISPR/HDR-mediated knock-in for mouse embryonic stem cells and zygotes. Biotechniques. 2015:59,201-2;204;206-8.
Wang et al., (6)-methyladenosine Modulates Messenger RNA Translation Efficiency. Cell. Jun. 4, 2015;161(6):1388-99. doi: 10.1016/j.cell.2015.05.014.
Wang et al., N6-methyladenosine-dependent regulation of messenger RNA stability. Nature. Jan. 2, 2014;505(7481):117-20. doi: 10.1038/nature12730. Epub Nov. 27, 2013.
Wang et al., Nucleation, propagation and cleavage of target RNAs in Ago silencing complexes. Nature. Oct. 8, 2009;461(7265):754-61. doi: 10.1038/nature08434.
Wang et al., One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell. May 9, 2013;153(4):910-8. doi: 10.1016/j.cell.2013.04.025. Epub May 2, 2013.
Wang et al., Optimized paired-sgRNA/Cas9 cloning and expression cassette triggers high-efficiency multiplex genome editing in kiwifruit. Plant Biotechnol J. Aug. 2018;16(8):1424-1433. doi: 10.1111/pbi.12884. Epub Feb. 6, 2018.
Wang et al., Programming cells by multiplex genome engineering and accelerated evolution. Nature. Aug. 13, 2009;460(7257):894-8. Epub Jul. 26, 2009.
Wang et al., Reading RNA methylation codes through methyl-specific binding proteins. RNA Biol. 2014;11(6):669-72. doi: 10.4161/rna.28829. Epub Apr. 24, 2014.
Wang et al., Recombinase technology: applications and possibilities. Plant Cell Rep. Mar. 2011;30(3):267-85. doi: 10.1007/s00299-010-0938-1. Epub Oct. 24, 2010.
Wang et al., Riboswitches that sense S-adenosylhomocysteine and activate genes involved in coenzyme recycling. Mol Cell. Mar. 28, 2008;29(6):691-702. doi: 10.1016/j.molcel.2008.01.012.
Wang et al., Staphylococcus aureus protein SAUGI acts as a uracil-DNA glycosylase inhibitor. Nucleic Acids Res. Jan. 2014;42(2):1354-64. doi: 10.1093/nar/gkt964. Epub Oct. 22, 2013.
Wang et al., Structural basis of (6)-adenosine methylation by the METTL3-METTL14 complex. Nature. Jun. 23, 2016;534(7608):575-8. doi: 10.1038/nature18298. Epub May 25, 2016.
Wang et al., Targeted gene addition to a predetermined site in the human genome using a ZFN-based nicking enzyme. Genome Res. Jul. 2012;22(7):1316-26. doi: 10.1101/gr.122879.111. Epub Mar. 20, 2012.
Wang et al., Uracil-DNA glycosylase inhibitor gene of bacteriophage PBS2 encodes a binding protein specific for uracil-DNA glycosylase. J Biol Chem. Jan. 15, 1989;264(2):1163-71.
Warren et al., A chimeric Cre recombinase with regulated directionality. Proc Natl Acad Sci USA. Nov. 25, 2008;105(47):18278-83. doi: 10.1073/pnas.0809949105. Epub Nov. 14, 2008.
Warren et al., Mutations in the amino-terminal domain of lambda-integrase have differential effects on integrative and excisive recombination. Mol Microbiol. Feb. 2005;55(4):1104-12.
Watowich, The erythropoietin receptor: molecular structure and hematopoietic signaling pathways. J Investig Med. Oct. 2011;59(7):1067-72. doi: 10.2310/JIM.0b013e31820fb28c.
Waxman et al., Regulating excitability of peripheral afferents: emerging ion channel targets. Nat Neurosci. Feb. 2014;17(2):153-63. doi: 10.1038/nn.3602. Epub Jan. 28, 2014.
Weber et al., Assembly of designer TAL effectors by Golden Gate cloning. PLoS One. 2011;6(5):e19722. doi: 10.1371/journal.pone.0019722. Epub May 19, 2011.
Weill et al., DNA polymerases in adaptive immunity. Nat Rev Immunol. Apr. 2008;8(4):302-12. doi: 10.1038/nri2281. Epub Mar. 14, 2008.
Weinberg et al., New Classes of Self-Cleaving Ribozymes Revealed by Comparative Genomics Analysis. Nat Chem Biol. Aug. 2015;11(8):606-10. doi: 10.1038/nchembio.1846. Epub Jul. 13, 2015.
Weinberg et al., The aptamer core of SAM-IV riboswitches mimics the ligand-binding site of SAM-I riboswitches. RNA. May 2008;14(5):822-8. doi: 10.1261/rna.988608. Epub Mar. 27, 2008.
Weinberger et al., Disease-causing mutations C277R and C277Y modify gating of human CIC-1 chloride channels in myotonia congenita. J Physiol. Aug. 1, 2012;590(Pt 15):3449-64. doi: 0.1113/jphysiol.2012.232785. Epub May 28, 2012.
Weinert et al., Unbiased detection of CRISPR off-targets in vivo using Discover-Seq. Science. Apr. 19, 2019;364(6437):286-289. doi: 10.1126/science.aav9023. Epub Apr. 18, 2019.
Weiss et al., Loss-of-function mutations in sodium channel Nav1.7 cause anosmia. Nature. Apr. 14, 2011;472(7342):186-90. doi: 10.1038/nature09975. Epub Mar. 23, 2011.
Wen et al., Inclusion of a universal tetanus toxoid CD4(+) T cell epitope P2 significantly enhanced the immunogenicity of recombinant rotavirus ?VP8* subunit parenteral vaccines. Vaccine. Jul. 31, 2014;32(35):4420-4427. doi: 10.1016/j.vaccine.2014.06.060. Epub Jun. 21, 2014.
West et al., Gene expression in adeno-associated virus vectors: the effects of chimeric mRNA structure, helper virus, and adenovirus VA1 RNA. Virology. Sep. 1987;160(1):38-47. doi: 10.1016/0042-6822(87)90041-9.
Wharton et al., A new-specificity mutant of 434 repressor that defines an amino acid-base pair contact. Nature. Apr. 30-May 6, 1987;326(6116):888-91.
Wharton et al., Changing the binding specificity of a repressor by redesigning an alpha-helix. Nature. Aug. 15-21, 1985;316(6029):601-5.
Wheeler et al., The thermostability and specificity of ancient proteins. Curr Opin Struct Biol. Jun. 2016;38:37-43. doi: 10.1016/j.sbi.2016.05.015. Epub Jun. 9, 2016.
Wiedenheft et al., RNA-guided genetic silencing systems in bacteria and archaea. Nature. Feb. 15, 2012;482(7385):331-8. doi: 10.1038/nature10886. Review.
Wienert et al., KLF1 drives the expression of fetal hemoglobin in British HPFH. Blood. Aug. 10, 2017;130(6):803-807. doi: 10.1182/blood-2017-02-767400. Epub Jun. 28, 2017.
Wijesinghe et al., Efficient deamination of 5-methylcytosines in DNA by human APOBEC3A, but not by AID or APOBEC3G. Nucleic Acids Res. Oct. 2012;40(18):9206-17. doi: 10.1093/nar/gks685. Epub Jul. 13, 2012.
Wijnker et al., Managing meiotic recombination in plant breeding. Trends Plant Sci. Dec. 2008;13(12):640-6. doi: 10.1016/j.tplants.2008.09.004. Epub Oct. 22, 2008.
Williams et al., Assessing the accuracy of ancestral protein reconstruction methods. PLoS Comput Biol. Jun. 23, 2006;2(6):e69. doi: 10.1371/journal.pcbi.0020069. Epub Jun. 23, 2006.
Wilson et al., Assessing annotation transfer for genomics: quantifying the relations between protein sequence, structure and function through traditional and probabilistic scores. J Mol Biol 2000;297:233-49.
Wilson et al., Formation of infectious hybrid virions with gibbon ape leukemia virus and human T-cell leukemia virus retroviral envelope glycoproteins and the gag and pol proteins of Moloney murine leukemia virus. J Virol. May 1989;63(5):2374-8. doi: 10.1128/JVI.63.5.2374-2378.1989.
Wilson et al., In Vitro Selection of Functional Nucleic Acids. Annu Rev Biochem. 1999;68:611-47. doi: 10.1146/annurev.biochem.68.1.611.
Wilson et al., Kinase dynamics. Using ancient protein kinases to unravel a modern cancer drug's mechanism. Science. Feb. 20, 2015;347(6224):882-6. doi: 10.1126/science.aaa1823.
Wilson et al., Programmable m6A modification of cellular RNAs with a Cas13-directed methyltransferase. Nat Biotechnol. Dec. 2020;38(12):1431-1440. doi: 10.1038/s41587-020-0572-6. Epub Jun. 29, 2020.
Winkler et al., An mRNA structure that controls gene expression by binding FMN. Proc Natl Acad Sci U S A. Dec. 10, 2002;99(25):15908-13. Epub Nov. 27, 2002.
Winkler et al., Control of gene expression by a natural metabolite-responsive ribozyme. Nature. Mar. 18, 2004;428(6980):281-6.
Winkler et al., Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression. Nature. Oct. 31, 2002;419(6910):952-6. Epub Oct. 16, 2002.
Winoto et al., A novel, inducible and T cell-specific enhancer located at the 3′ end of the T cell receptor alpha locus. EMBO J. Mar. 1989;8(3):729-33.
Winter et al., Drug Development. Phthalimide conjugation as a strategy for in vivo target protein degradation. Science. Jun. 19, 2015;348(6241):1376-81. doi:; 10.1126/science.aab1433. Epub May 21, 2015.
Winter et al., Targeted exon skipping with AAV-mediated split adenine base editors. Cell Discov. Aug. 20, 2019;5:41. doi: 10.1038/s41421-019-0109-7.
Wold, Replication protein A: a heterotrimeric, single-stranded DNA-binding protein required for eukaryotic DNA metabolism. Annu Rev Biochem. 1997;66:61-92. doi: 10.1146/annurev.biochem.66.1.61.
Wolf et al., tadA, an essential tRNA-specific adenosine deaminase from Escherichia coli. EMBO J. Jul. 15, 2002;21(14):3841-51.
Wolfe et al., Analysis of zinc fingers optimized via phage display: evaluating the utility of a recognition code. J Mol Biol. Feb. 5, 1999;285(5):1917-34.
Wong et al., A statistical analysis of random mutagenesis methods used for directed protein evolution. J Mol Biol. Jan. 27, 2006;355(4):858-71. Epub Nov. 17, 2005.
Wong et al., The Diversity Challenge in Directed Protein Evolution. Comb Chem High Throughput Screen. May 2006;9(4):271-88.
Wood et al., A genetic system yields self-cleaving inteins for bioseparations. Nat Biotechnol. Sep. 1999;17(9):889-92. doi: 10.1038/12879.
Wood et al., Targeted genome editing across species using ZFNs and TALENs. Science. Jul. 15, 2011;333(6040):307. doi: 10.1126/science.1207773. Epub Jun. 23, 2011.
Woods et al., The phenotype of congenital insensitivity to pain due to the NaV1.9 variant p.L811P. Eur J Hum Genet. May 2015;23(5):561-3. doi: 10.1038/ejhg.2014.166. Epub Aug. 13, 2014.
Wright et al., Continuous in vitro evolution of catalytic function. Science. Apr. 25, 1997;276(5312):614-7.
Wright et al., Rational design of a split-Cas9 enzyme complex. Proc Natl Acad Sci U S A. Mar. 10, 2015;112(10):2984-9. doi: 10.1073/pnas.1501698112. Epub Feb. 23, 2015.
Wu et al., Correction of a genetic disease in mouse via use of CRISPR-Cas9. Cell Stem Cell. Dec. 5, 2013;13(6):659-62. doi: 10.1016/j.stem.2013.10.016.
Wu et al., Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells. Nat Biotechnol. Jul. 2014;32(7):670-6. doi: 10.1038/nbt.2889. Epub Apr. 20, 2014.
Wu et al., Human single-stranded DNA binding proteins: guardians of genome stability. Acta Biochim Biophys Sin (Shanghai). Jul. 2016;48(7):671-7. doi: 10.1093/abbs/gmw044. Epub May 23, 2016.
Wu et al., Protein trans-splicing and functional mini-inteins of a cyanobacterial dnaB intein. Biochim Biophys Acta. Sep. 8, 1998;1387(1-2):422-32. doi: 10.1016/s0167-4838(98)00157-5.
Wu et al., Protein trans-splicing by a split intein encoded in a split DnaE gene of Synechocystis sp. PCC6803. Proc Natl Acad Sci U S A. Aug. 4, 1998;95(16):9226-31. doi: 10.1073/pnas.95.16.9226.
Wu et al., Readers, writers and erasers of N6-methylated adenosine modification. Curr Opin Struct Biol. Dec. 2017;47:67-76. doi: 10.1016/j.sbi.2017.05.011. Epub Jun. 16, 2017.
Xiang et al., RNA m6A methylation regulates the ultraviolet-induced DNA damage response. Nature. Mar. 23, 2017;543(7646):573-576. doi: 10.1038/nature21671. Epub Mar. 15, 2017.
Xiao et al., Genetic incorporation of multiple unnatural amino acids into proteins in mammalian cells. Angew Chem Int Ed Engl. Dec. 23, 2013;52(52):14080-3. doi: 10.1002/anie.201308137. Epub Nov. 8, 2013.
Xiao et al., Nuclear m(6)A Reader YTHDC1 Regulates mRNA Splicing. Mol Cell. Feb. 18, 2016;61(4):507-519. doi: 10.1016/j.molcel.2016.01.012. Epub Feb. 11, 2016.
Xie et al., Adjusting the attB site in donor plasmid improves the efficiency of ?C31 integrase system. DNA Cell Biol. Jul. 2012;31(7):1335-40. doi: 10.1089/dna.2011.1590. Epub Apr. 10, 2012.
Xiong et al., Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J. Oct. 1990;9(10):3353-62.
Xu et al., Accuracy and efficiency define Bxb1 integrase as the best of fifteen candidate serine recombinases for the integration of DNA into the human genome. BMC Biotechnol. Oct. 20, 2013;13:87. doi: 10.1186/1472-6750-13-87.
Xu et al., Chemical ligation of folded recombinant proteins: segmental isotopic labeling of domains for NMR studies. Proc Natl Acad Sci U S A. Jan. 19, 1999;96(2):388-93. doi: 10.1073/pnas.96.2.388.
Xu et al., Multiplex nucleotide editing by high-fidelity Cas9 variants with improved efficiency in rice. BMC Plant Biol. 2019;19(1):511. Published Nov. 21, 2019. doi: 10.1186/s12870-019-2131-1. Includes supplementary data and materials.
Xu et al., Protein splicing: an analysis of the branched intermediate and its resolution by succinimide formation. EMBO J. Dec. 1, 1994;13(23):5517-22.
Xu et al., PTMD: A Database of Human Disease-associated Post-translational Modifications. Genomics Proteomics Bioinformatics. Aug. 2018;16(4):244-251. doi: 10.1016/j.gpb.2018.06.004. Epub Sep. 21, 2018.
Xu et al., Sequence determinants of improved CRISPR sgRNA design. Genome Res. Aug. 2015;25(8):1147-57. doi: 10.1101/gr.191452.115. Epub Jun. 10, 2015.
Xu et al., Structures of human ALKBH5 demethylase reveal a unique binding mode for specific single-stranded N6-methyladenosine RNA demethylation. J Biol Chem. Jun. 20, 2014;289(25):17299-311. doi: 10.1074/jbc.M114.550350. Epub Apr. 28, 2014.
Xu et al., The mechanism of protein splicing and its modulation by mutation. EMBO J. Oct. 1, 1996;15(19):5146-53.
Yahata et al., Unified, Efficient, and Scalable Synthesis of Halichondrins: Zirconium/Nickel- Mediated One-Pot Ketone Synthesis as the Final Coupling Reaction. Angew Chem Int Ed Engl. Aug. 28, 2017;56(36):10796-10800. doi: 10.1002/anie.201705523. Epub Jul. 28, 2017.
Yamada et al., Crystal Structure of the Minimal Cas9 from Campylobacter jejuni Reveals the Molecular Diversity in the CRISPR-Cas9 Systems. Mol Cell. Mar. 16, 2017;65(6):P1109-1121. /doi.org/10.1016/j.molcel.2017.02.007.
Yamamoto et al., The ons and offs of inducible transgenic technology: a review. Neurobiol Dis. Dec. 2001;8(6):923-32.
Yamamoto et al., Virological and immunological bases for HIV-1 vaccine design. Uirusu 2007;57(2):133-139. https://doi.org/10.2222/jsv.57.133.
Yamano et al., Crystal Structure of Cpf1 in Complex with Guide RNA and Target DNA. Cell May 2016;165(4)949-62.
Yamano et al., Crystal Structure of Cpf1 in Complex with Guide RNA and Target DNA. Cell. May 5, 2016;165(4):949-62 and Supplemental Info. doi: 10.1016/j.cell.2016.04.003. Epub Apr. 21, 2016.
Yamano et al., Crystal Structure of Cpf1 in Complex with Guide RNA and Target DNA. Cell. May 5, 2016;165(4):949-62. doi: 10.1016/j.cell.2016.04.003. Epub Apr. 21, 2016.
Yamazaki et al., Segmental Isotope Labeling for Protein NMR Using Peptide Splicing. J. Am. Chem. Soc. May 22, 1998; 120(22):5591-2. https://doi.org/10.1021/ja9807760.
Yan et al., Cas13d Is a Compact RNA-Targeting Type VI CRISPR Effector Positively Modulated by a WYL-Domain-Containing Accessory Protein. Mol Cell. Apr. 19, 2018;70(2):327-339.e5. doi: 10.1016/j.molcel.2018.02.028. Epub Mar. 15, 2018.
Yan et al., Functionally diverse type V CRISPR-Cas systems. Science. Jan. 4, 2019;363(6422):88-91. doi: 10.1126/science.aav7271. Epub Dec. 6, 2018.
Yan et al., Highly Efficient A·T to G·C Base Editing by Cas9n-Guided tRNA Adenosine Deaminase in Rice. Mol Plant. Apr. 2, 2018;11(4):631-634. doi: 10.1016/j.molp.2018.02.008. Epub Feb. 22, 2018.
Yang et al., APOBEC: From mutator to editor. J Genet Genomics. Sep. 20, 2017;44(9):423-437. doi: 10.1016/j.jgg.2017.04.009. Epub Aug. 7, 2017.
Yang et al., Construction of an integration-proficient vector based on the site-specific recombination mechanism of enterococcal temperate phage phiFC1. J Bacteriol. Apr. 2002;184(7):1859-64. doi: 10.1128/jb.184.7.1859-1864.2002.
Yang et al., Engineering and optimising deaminase fusions for genome editing. Nat Commun. Nov. 2, 2016;7:13330. doi: 10.1038/ncomms13330.
Yang et al., Genome editing with targeted deaminases. BioRxiv. Preprint. First posted online Jul. 28, 2016.
Yang et al., Increasing targeting scope of adenosine base editors in mouse and rat embryos through fusion of TadA deaminase with Cas9 variants. Protein Cell. Sep. 2018;9(9):814-819. doi: 10.1007/s13238-018-0568-x.
Yang et al., Mutations in SCN9A, encoding a sodium channel alpha subunit, in patients with primary erythermalgia. J Med Genet. Mar. 2004;41(3):171-4. doi: 10.1136/jmg.2003.012153.
Yang et al., New CRISPR-Cas systems discovered. Cell Res. Mar. 2017;27(3):313-314. doi: 10.1038/cr.2017.21. Epub Feb. 21, 2017.
Yang et al., One Prime for All Editing. Cell. Dec. 12, 2019;179(7):1448-1450. doi: 10.1016/j.cell.2019.11.030.
Yang et al., One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell. Sep. 12, 2013;154(6):1370-9. doi: 10.1016/j.cell.2013.08.022. Epub Aug. 29, 2013.
Yang et al., PAM-dependent Target DNA Recognition and Cleavage by C2C1 CRISPR-Cas endonuclease. Cell Dec. 2016;167(7):1814-28.
Yang et al., Permanent genetic memory with >1-byte capacity. Nat Methods. Dec. 2014;11(12):1261-6. doi: 10.1038/nmeth.3147. Epub Oct. 26, 2014.
Yang et al., Preparation of RNA-directed DNA polymerase from spleens of Balb-c mice infected with Rauscher leukemia virus. Biochem Biophys Res Commun. Apr. 28, 1972;47(2):505-11. doi: 10.1016/0006-291x(72)90743-7.
Yang et al., Small-molecule control of insulin and PDGF receptor signaling and the role of membrane attachment. Curr Biol. Jan. 1, 1998;8(1):11-8. doi: 10.1016/s0960-9822(98)70015-6.
Yang, Development of Human Genome Editing Tools for the Study of Genetic Variations and Gene Therapies. Doctoral Dissertation. Harvard University. 2013. Accessible via nrs.harvard.edu/urn-3:HUL.InstRepos:11181072. 277 pages.
Yang, Nucleases: diversity of structure, function and mechanism. Q Rev Biophys. Feb. 2011;44(1):1-93. doi: 10.1017/S0033583510000181. Epub Sep. 21, 2010.
Yang, PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol. Aug. 2007;24(8):1586-91. doi: 10.1093/molbev/msm088. Epub May 4, 2007.
Yang, Phylogenetic Analysis by Maximum Likelihood (PAML). //abacus.gene.ucl.ac.uk/software/paml.html Last accessed Apr. 28, 2021.
Yanover et al., Extensive protein and DNA backbone sampling improves structure-based specificity prediction for C2H2 zinc fingers. Nucleic Acids Res. Jun. 2011;39(11):4564-76. doi: 10.1093/nar/gkr048. Epub Feb. 22, 2011.
Yasui et al., Miscoding Properties of 2′-Deoxyinosine, a Nitric Oxide-Derived DNA Adduct, during Translesion Synthesis Catalyzed by Human DNA Polymerases. J Molec Biol. Apr. 4, 2008;377(4):1015-23.
Yasui, Alternative excision repair pathways. Cold Spring Harb Perspect Biol. Jun. 1, 2013;5(6):a012617. doi: 10.1101/cshperspect.a012617.
Yasukawa et al., Characterization of Moloney murine leukaemia virus/avian myeloblastosis virus chimeric reverse transcriptases. J Biochem. Mar. 2009;145(3):315-24. doi: 10.1093/jb/mvn166. Epub Dec. 6, 2008.
Yazaki et al., Hereditary systemic amyloidosis associated with a new apolipoprotein AII stop codon mutation Stop78Arg. Kidney Int. Jul. 2003;64(1):11-6.
Yeh et al., In vivo base editing of post-mitotic sensory cells. Nat Commun. Jun. 5, 2018;9(1):2184. doi: 10.1038/s41467-018-04580-3.
Yeh et al., In vivo base editing restores sensory transduction and transiently improves auditory function in a mouse model of recessive deafness. Sci Transl Med. Jun. 3, 2020;12(546):eaay9101. doi: 10.1126/scitranslmed.aay9101.
Yin et al., Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nat Biotechnol. Jun. 2014;32(6):551-3. doi: 10.1038/nbt.2884. Epub Mar. 30, 2014.
Yokoe et al., Spatial dynamics of GFP-tagged proteins investigated by local fluorescence enhancement. Nat Biotechnol. Oct. 1996;14(10):1252-6. doi: 10.1038/nbt1096-1252.
Young et al., Beyond the canonical 20 amino acids: expanding the genetic lexicon. J Biol Chem. Apr. 9, 2010;285(15):11039-44. doi: 10.1074/jbc.R109.091306. Epub Feb. 10, 2010.
Yu et al., Circular permutation: a different way to engineer enzyme structure and function. Trends Biotechnol. Jan. 2011;29(1):18-25. doi: 10.1016/j.tibtech.2010.10.004. Epub Nov. 17, 2010.
Yu et al., Liposome-mediated in vivo E1A gene transfer suppressed dissemination of ovarian cancer cells that overexpress HER-2/neu. Oncogene. Oct. 5, 1995;11(7):1383-8.
Yu et al., Progress towards gene therapy for HIV infection. Gene Ther. Jan. 1994;1(1):13-26.
Yu et al., Small molecules enhance CRISPR genome editing in pluripotent stem cells. Cell Stem Cell. Feb. 5, 2015;16(2):142-7. doi: 10.1016/j.stem.2015.01.003.
Yu et al., Synthesis-dependent microhomology-mediated end joining accounts for multiple types of repair junctions. Nucleic Acids Res. Sep. 2010;38(17):5706-17. doi: 10.1093/nar/gkq379. Epub May 11, 2010.
Yuan et al., Laboratory-directed protein evolution. Microbiol Mol Biol Rev. 2005; 69(3):373-92. PMID: 16148303.
Yuan et al., Tetrameric structure of a serine integrase catalytic domain. Structure. Aug. 6, 2008;16(8):1275-86. doi: 10.1016/j.str.2008.04.018.
Yuen et al., Control of transcription factor activity and osteoblast differentiation in mammalian cells using an evolved small-molecule-dependent intein. J Am Chem Soc. Jul. 12, 2006;128(27):8939-46.
Zakas et al., Enhancing the pharmaceutical properties of protein drugs by ancestral sequence reconstruction. Nat Biotechnol. Jan. 2017;35(1):35-37. doi: 10.1038/nbt.3677. Epub Sep. 26, 2016.
Zalatan et al., Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds. Cell. Jan. 15, 2015;160(1-2):339-50. doi: 10.1016/j.cell.2014.11.052. Epub Dec. 18, 2014.
Zelphati et al., Intracellular delivery of proteins with a new lipid-mediated delivery system. J Biol Chem. Sep. 14, 2001;276(37):35103-10. Epub Jul. 10, 2001.
Zeng et al., Correction of the Marfan Syndrome Pathogenic FBN1 Mutation by Base Editing in Human Cells and Heterozygous Embryos. Mol Ther. Nov. 7, 2018;26(11):2631-2637. doi: 10.1016/j.ymthe.2018.08.007. Epub Aug. 14, 2018.
Zetsche et al., A split-Cas9 architecture for inducible genome editing and transcription modulation. Nat Biotechnol. Feb. 2015;33(2):139-42. doi: 10.1038/nbt.3149.
Zetsche et al., Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell. Oct. 22, 2015;163(3):759-71 and Supplemental Info. doi: 10.1016/j.cell.2015.09.038. Epub Sep. 25, 2015.
Zetsche et al., Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell. Oct. 22, 2015;163(3):759-71. doi: 10.1016/j.cell.2015.09.038. Epub Sep. 25, 2015.
Zettler et al., The naturally split Npu DnaE intein exhibits an extraordinarily high rate in the protein trans-splicing reaction. FEBS Lett. Mar. 4, 2009;583(5):909-14. doi: 10.1016/j.febslet.2009.02.003. Epub Feb. 10, 2009.
Zhang et al., II-Clamp-mediated cysteine conjugation. Nat Chem. Feb. 2016;8(2):120-8. doi: 10.1038/nchem.2413. Epub Dec. 21, 2015.
Zhang et al., A new strategy for the site-specific modification of proteins in vivo. Biochemistry. Jun. 10, 2003;42(22):6735-46.
Zhang et al., Circular intronic long noncoding RNAs. Mol Cell. Sep. 26, 2013;51(6):792-806. doi: 10.1016/j.molcel.2013.08.017. Epub Sep. 12, 2013.
Zhang et al., Comparison of non-canonical PAMs for CRISPR/Cas9-mediated DNA cleavage in human cells. Sci Rep. Jun. 2014;4:5405.
Zhang et al., Conditional gene manipulation: Cre-ating a new biological era. J Zhejiang Univ Sci B. Jul. 2012;13(7):511-24. doi: 10.1631/jzus.B1200042. Review.
Zhang et al., Copy number variation in human health, disease, and evolution. Annu Rev Genomics Hum Genet. 2009;10:451-81. doi: 10.1146/annurev.genom.9.081307.164217.
Zhang et al., CRISPR/Cas9 for genome editing: progress, implications and challenges. Hum Mol Genet. Sep. 15, 2014;23(R1):R40-6. doi: 10.1093/hmg/ddu125. Epub Mar. 20, 2014.
Zhang et al., Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription. Nat Biotechnol. Feb. 2011;29(2):149-53. doi: 10.1038/nbt.1775. Epub Jan. 19, 2011.
Zhang et al., Global analysis of small RNA and mRNA targets of Hfq. Mol Microbiol. Nov. 2003;50(4):1111-24. doi: 10.1046/j.1365-2958.2003.03734.x.
Zhang et al., Myoediting: Toward Prevention of Muscular Dystrophy by Therapeutic Genome Editing. Physiol Rev. Jul. 1, 2018;98(3):1205-1240. doi: 10.1152/physrev.00046.2017.
Zhang et al., Programmable base editing of zebrafish genome using a modified CRISPR-Cas9 system. Nat Commun. Jul. 25, 2017;8(1):118. doi: 10.1038/s41467-017-00175-6.
Zhang et al., Reversible RNA Modification N1-methyladenosine (m1A) in mRNA and tRNA. Genomics Proteomics Bioinformatics. Jun. 2018;16(3):155-161. doi: 10.1016/j.gpb.2018.03.003. Epub Jun. 14, 2018.
Zhang et al., Ribozymes and Riboswitches: Modulation of RNA Function by Small Molecules. Biochemistry. Nov. 2, 2010;49(43):9123-31. doi: 10.1021/bi1012645.
Zhang et al., Stabilized plasmid-lipid particles for regional gene therapy: formulation and transfection properties. Gene Ther. Aug. 1999;6(8):1438-47.
Zhao et al., An ultraprocessive, accurate reverse transcriptase encoded by a metazoan group II intron. RNA. Feb. 2018;24(2):183-195. doi: 10.1261/rna.063479.117. Epub Nov. 6, 2017.
Zhao et al., Crystal structures of a group II intron maturase reveal a missing link in spliceosome evolution. Nat Struct Mol Biol. Jun. 2016;23(6):558-65. doi: 10.1038/nsmb.3224. Epub May 2, 2016.
Zhao et al., Post-transcriptional gene regulation by mRNA modifications. Nat Rev Mol Cell Biol. Jan. 2017;18(1):31-42. doi: 10.1038/nrm.2016.132. Epub Nov. 3, 2016.
Zheng et al., ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell. Jan. 10, 2013;49(1):18-29. doi: 10.1016/j.molcel.2012.10.015. Epub Nov. 21, 2012.
Zheng et al., DNA editing in DNA/RNA hybrids by adenosine deaminases that act on RNA. Nucleic Acids Res. Apr. 7, 2017;45(6):3369-3377. doi: 10.1093/nar/gkx050.
Zheng et al., Highly efficient base editing in bacteria using a Cas9-cytidine deaminase fusion. Commun Biol. Apr. 19, 2018;1:32. doi: 10.1038/s42003-018-0035-5.
Zheng et al., Structural basis for the complete resistance of the human prion protein mutant G127V to prion disease. Sci Rep. Sep. 4, 2018;8(1):13211. doi: 10.1038/s41598-018-31394-6.
Zhong et al., Rational Design of Aptazyme Riboswitches for Efficient Control of Gene Expression in Mammalian Cells. Elife. Nov. 2, 2016;5:e18858. doi: 10.7554/eLife.18858.
Zhou et al., Cas12a variants designed for lower genome-wide off-target effect through stringent PAM recognition. Mol Ther. Jan. 5, 2022;30(1):244-255. doi: 10.1016/j.ymthe.2021.10.010. Epub Oct. 20, 2021.
Zhou et al., Dynamic m(6)A mRNA methylation directs translational control of heat shock response. Nature. Oct. 22, 2015;526(7574):591-4. doi: 10.1038/nature15377. Epub Oct. 12, 2015.
Zhou et al., GISSD: Group I Intron Sequence and Structure Database. Nucleic Acids Res. Jan. 2008;36(Database issue):D31-7. doi: 10.1093/nar/gkm766. Epub Oct. 16, 2007.
Zhou et al., Off-target RNA mutation induced by DNA base editing and its elimination by mutagenesis. Nature. Jul. 2019;571(7764):275-278. doi: 10.1038/s41586-019-1314-0. Epub Jun. 10, 2019.
Zhou et al., Protective V127 prion variant prevents prion disease by interrupting the formation of dimer and fibril from molecular dynamics simulations. Sci Rep. Feb. 24, 2016;6:21804. doi: 10.1038/srep21804.
Zhou et al., Seamless Genetic Conversion of SMN2 to SMN1 via CRISPR/Cpf1 and Single-Stranded Oligodeoxynucleotides in Spinal Muscular Atrophy Patient-Specific Induced Pluripotent Stem Cells. Hum Gene Ther. Nov. 2018;29(11):1252-1263. doi: 10.1089/hum.2017.255. Epub May 9, 2018.
Zielenski, Genotype and phenotype in cystic fibrosis. Respiration. 2000;67(2):117-33. doi: 10.1159/000029497.
Zimmerly et al., An Unexplored Diversity of Reverse Transcriptases in Bacteria. Microbiol Spectr. Apr. 2015;3(2):MDNA3-0058-2014. doi: 10.1128/microbiolspec.MDNA3-0058-2014.
Zimmerly et al., Group II intron mobility occurs by target DNA-primed reverse transcription. Cell. Aug. 25, 1995;82(4):545-54. doi: 10.1016/0092-8674(95)90027-6.
Zimmermann et al., Molecular interactions and metal binding in the theophylline-binding core of an RNA aptamer. RNA. May 2000;6(5):659-67.
Zong et al., Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion. Nat Biotechnol. May 2017;35(5):438-440. doi: 10.1038/nbt.3811. Epub Feb. 27, 2017.
Zorko et al., Cell-penetrating peptides: mechanism and kinetics of cargo delivery. Adv Drug Deliv Rev. Feb. 28, 2005;57(4):529-45. Epub Jan. 22, 2005.
Zou et al., Gene targeting of a disease-related gene in human induced pluripotent stem and embryonic stem cells. Cell Stem Cell. Jul. 2, 2009;5(1):97-110. doi: 10.1016/j.stem.2009.05.023. Epub Jun. 18, 2009.
Zufferey et al., Woodchuck hepatitis virus posttranscriptional regulatory element enhances expression of transgenes delivered by retroviral vectors. J Virol. Apr. 1999;73(4):2886-92. doi: 10.1128/JVI.73.4.2886-2892.1999.
Zuker et al., Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res. Jan. 10, 1981;9(1):133-48. doi: 10.1093/nar/9.1.133.
Zuo et al., Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos. Science. Apr. 19, 2019;364(6437):289-292. doi: 10.1126/science.aav9973. Epub Feb. 28, 2019.
Zuris et al., Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nat Biotechnol. 2015;33:73-80.
[No Author Listed], “Lambda DNA” from Catalog & Technical Reference. New England Biolabs Inc. 2002/2003. pp. 133 and 270-273.
[No Author Listed], Mus musculus (Mouse). UniProtKB Accession No. P51908 (ABEC1_Mouse). Oct. 1, 1996. 10 pages.
Asokan et al., The AAV vector toolkit: poised at the clinical crossroads. Mol Ther. Apr. 2012;20(4):699-708. doi: 10.1038/mt.2011.287. Epub Jan. 24, 2012.
Auricchio et al., Exchange of surface proteins impacts on viral vector cellular specificity and transduction characteristics: the retina as a model. Hum Mol Genet. Dec. 15, 2001;10(26):3075-81. doi: 10.1093/hmg/10.26.3075.
Baba et al., Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol. 2006;2:2006.0008. doi: 10.1038/msb4100050. Epub Feb. 21, 2006.
Badran et al., In vivo continuous directed evolution. Curr Opin Chem Biol. Feb. 2015;24:1-10. doi: 10.1016/j.cbpa.2014.09.040. Epub Nov. 7, 2014.
Banno et al., Deaminase-mediated multiplex genome editing in Escherichia coli. Nat Microbiol. Apr. 2018;3(4):423-429. doi: 10.1038/s41564-017-0102-6. Epub Feb. 5, 2018.
Bass, B.L., RNA editing by adenosine deaminases that act on RNA. Annu Rev Biochem. 2002;71:817-46. doi: 10.1146/annurev.biochem.71.110601.135501. Epub Nov. 9, 2001.
Blauw et al., SMN1 gene duplications are associated with sporadic ALS. Neurology. Mar. 13, 2012;78(11):776-80. doi: 10.1212/WNL.0b013e318249f697. Epub Feb. 8, 2012.
Bothmer et al., Characterization of the interplay between DNA repair and CRISPR/Cas9-induced DNA lesions at an endogenous locus. Nat Commun. Jan. 9, 2017;8:13905. doi: 10.1038/ncomms13905.
Brierley et al., Viral RNA pseudoknots: versatile motifs in gene expression and replication. Nat Rev Microbiol. Aug. 2007;5(8):598-610. doi: 10.1038/nrmicro1704.
Canny et al., Inhibition of 53BP1 Favors Homology-Dependent DNA Repair and Increases CRISPR-Cas9 Genome-Editing Efficiency. Nat Biotechnol. Jan. 2018;36(1):95-102. doi: 10.1038/nbt.4021. Epub Nov. 27, 2017.
Cao et al., Rapamycin reverses cellular phenotypes and enhances mutant protein clearance in Hutchinson-Gilford progeria syndrome cells. Sci Transl Med. Jun. 29, 2011;3(89):89ra58. doi: 10.1126/scitranslmed.3002346.
Cartegni et al., Determinants of exon 7 splicing in the spinal muscular atrophy genes, SMN1 and SMN2. Am J Hum Genet. Jan. 2006;78(1):63-77. doi: 10.1086/498853. Epub Nov. 16, 2005.
Chang et al., Degradation of survival motor neuron (SMN) protein is mediated via the ubiquitin/proteasome pathway. Neurochem Int. Dec. 2004;45(7):1107-12. doi: 10.1016/j.neuint.2004.04.005.
Chatterjee et al., Robust Genome Editing of Single-Base PAM Targets; with Engineered ScCas9 Variants. bioRxiv. doi: 10.1101/620351. Posted Apr. 26, 2019.
Chen et al., Alterations in PMS2, MSH2 and MLH1 expression in human prostate cancer. Int J Oncol. May 2003;22(5):1033-43.
Cho et al., A degron created by SMN2 exon 7 skipping is a principal contributor to spinal muscular atrophy severity. Genes Dev. Mar. 1, 2010;24(5):438-42. doi: 10.1101/gad.1884910.
Choudhury et al., CRISPR/Cas9 recombineering-mediated deep mutational scanning of essential genes in Escherichia coli. Mol Syst Biol. Mar. 2020;16(3):e9265. doi: 10.15252/msb.20199265.
Corcia et al., The importance of the SMN genes in the genetics of sporadic ALS. Amyotroph Lateral Scler. Oct.-Dec. 2009;10(5-6):436-40. doi: 10.3109/17482960902759162.
Corti et al., Genetic correction of human induced pluripotent stem cells from patients with spinal muscular atrophy. Sci Transl Med. Dec. 19, 2012;4(165):165ra162. doi: 10.1126/scitranslmed.3004108.
Cucchiarini et al., Enhanced expression of the central survival of motor neuron (SMN) protein during the pathogenesis of osteoarthritis. J Cell Mol Med. Jan. 2014;18(1):115-24. doi: 10.1111/jemm.12170. Epub Nov. 17, 2013.
D'Ydewalle et al., The Antisense Transcript SMN-AS1 Regulates SMN Expression and Is a Novel Therapeutic Target for Spinal Muscular Atrophy. Neuron. Jan. 4, 2017;93(1):66-79 and Supplemental Information. doi: 10.1016/j.neuron.2016.11.033. Epub Dec. 22, 2016.
Davis et al., Assaying Repair at DNA Nicks. Methods Enzymol. 2018;601:71-89. doi: 10.1016/bs.mie.2017.12.001. Epub Feb. 1, 2018.
Davis et al., Homology-directed repair of DNA nicks via pathways distinct from canonical double-strand break repair. Proc Natl Acad Sci U S A. Mar. 11, 2014;111(10):E924-32. doi: 10.1073/pnas.1400236111. Epub Feb. 20, 2014.
Davis et al., Two Distinct Pathways Support Gene Correction by Single-Stranded Donors at DNA Nicks. Cell Rep. Nov. 8, 2016;17(7):1872-1881. doi: 10.1016/j.celrep.2016.10.049.
De Sandre-Giovannoli et al., Lamin a truncation in Hutchinson-Gilford progeria. Science. Jun. 27, 2003;300(5628):2055. doi: 10.1126/science.1084125. Epub Apr. 17, 2003.
Drenth et al., Mutations in sodium-channel gene SCN9A cause a spectrum of human genetic pain disorders. J Clin Invest. Dec. 2007;117(12):3603-9. doi: 10.1172/JCI33297.
Drost et al., Inactivation of DNA mismatch repair by variants of uncertain significance in the PMS2 gene. Hum Mutat. Nov. 2013;34(11):1477-80. doi: 10.1002/humu.22426. Epub Sep. 11, 2013.
Duan et al., Enhancement of muscle gene delivery with pseudotyped adeno-associated virus type 5 correlates with myoblast differentiation. J Virol. Aug. 2001;75(16):7662-71. doi: 10.1128/JVI.75.16.7662-7671.2001.
Dugar et al., CRISPR RNA-Dependent Binding and Cleavage of Endogenous RNAs by the Campylobacter jejuni Cas9. Mol Cell. Mar. 1, 2018;69(5):893-905.e7. doi: 10.1016/j.molcel.2018.01.032.
Eisenberg et al., A-to-I RNA editing—immune protector and transcriptome diversifier. Nat Rev Genet. Aug. 2018;19(8):473-490. doi: 10.1038/s41576-018-0006-1.
Filippova et al., Guide RNA modification as a way to improve CRISPR/Cas9-based genome-editing systems. Biochimie. Dec. 2019;167:49-60. doi: 10.1016/j.biochi.2019.09.003. Epub Sep. 4, 2019.
Friedman, J. H., Greedy function approximation: A gradient boosting machine. Ann. Statist. Oct. 2001;29(5):1189-232. doi: 10.1214/aos/1013203451.
GenBank Submission; NIH/NCBI, Accession No. NG_008692.2. McClintock et al., Aug. 27, 2018. 33 pages.
GenBank Submission; NIH/NCBI, Accession No. NP_001075493.1. Schiaffella et al., Jun. 24, 2018. 2 pages.
GenBank Submission; NIH/NCBI, Accession No. NP_001157741.1. Zeng et al., Sep. 17, 2018. 3 pages.
GenBank Submission; NIH/NCBI, Accession No. NP_001157742.1. Zeng et al., Oct. 21, 2018. 3 pages.
GenBank Submission; NIH/NCBI, Accession No. NP_033040.2. Liu et al., Jun. 23, 2018. 2 pages.
GenBank Submission; NIH/NCBI, Accession No. XP_003314669.1. No Author Listed, Mar. 20, 2018. 2 pages.
GenBank Submission; NIH/NCBI, Accession No. XP_026671085.1. No Author Listed, Oct. 17, 2018. 1 page.
Gutschner et al., Post-translational Regulation of Cas9 during G1 Enhances Homology-Directed Repair. Cell Rep. Feb. 16, 2016;14(6):1555-1566. doi: 10.1016/j.celrep.2016.01.019. Epub Feb. 4, 2016.
Halbert et al., Repeat transduction in the mouse lung by using adeno-associated virus vectors with different serotypes. J Virol. Feb. 2000;74(3):1524-32. doi: 10.1128/jvi.74.3.1524-1532.2000.
Hardt et al.,Missense variants in hMLH1 identified in patients from the German HNPCC consortium and functional studies. Fam Cancer. Jun. 2011;10(2):273-84. doi: 10.1007/s10689-011-9431-4.
Harmsen et al., DNA mismatch repair and oligonucleotide end-protection promote base-pair substitution distal from a CRISPR/Cas9-induced DNA break. Nucleic Acids Res. Apr. 6, 2018;46(6):2945-2955. doi: 10.1093/nar/gky076.
Harrington et al., Programmed DNA destruction by miniature CRISPR-Cas14 enzymes. Science. Nov. 16, 2018;362(6416):839-842. doi: 10.1126/science.aav4294. Epub Oct. 18, 2018.
Hart et al., High-Resolution CRISPR Screens Reveal Fitness Genes and Genotype-Specific Cancer Liabilities. Cell. Dec. 3, 2015;163(6):1515-26. doi: 10.1016/j.cell.2015.11.015. Epub Nov. 25, 2015.
Hilbers et al., New developments in structure determination of pseudoknots. Biopolymers. 1998;48(2-3):137-53. doi: 10.1002/(SICI)1097-0282(1998)48:2<137::AID-BIP4>3.0.CO;2-H.
Huang et al., Gain-of-function mutations in sodium channel Na(v)1.9 in painful neuropathy. Brain. Jun. 2014;137(Pt 6):1627-42. doi: 10.1093/brain/awu079. Epub Apr. 27, 2014.
Isaacs et al., Engineered riboregulators enable post-transcriptional control of gene expression. Nat Biotechnol. Jul. 2004;22(7):841-7. doi: 10.1038/nbt986. Epub Jun. 20, 2004.
Ishizuka et al., Loss of ADAR1 in tumours overcomes resistance to immune checkpoint blockade. Nature. Jan. 2019;565(7737):43-48. doi: 10.1038/s41586-018-0768-9. Epub Dec. 17, 2018.
Iyama et al., DNA repair mechanisms in dividing and non-dividing cells. DNA Repair (Amst). Aug. 2013;12(8):620-36. doi: 10.1016/j.dnarep.2013.04.015. Epub May 16, 2013.
Jia et al., The MLH1 ATPase domain is needed for suppressing aberrant formation of interstitial telomeric sequences. DNA Repair (Amst). May 2018;65:20-25. doi: 10.1016/j.dnarep.2018.03.002. Epub Mar. 7, 2018.
Kan et al., Mechanisms of precise genome editing using oligonucleotide donors. Genome Res. Jul. 2017;27(7):1099-1111. doi: 10.1101/gr.214775.116. Epub Mar. 29, 2017.
Kim et al., Adenine base editors catalyze cytosine conversions in human cells. Nat Biotechnol. Oct. 2019;37(10):1145-1148. doi: 10.1038/s41587-019-0254-4. Epub Sep. 23, 2019.
Kim et al., RAD51 mutants cause replication defects and chromosomal instability. Mol Cell Biol. Sep. 2012;32(18):3663-80. doi: 10.1128/MCB.00406-12. Epub Jul. 9, 2012.
Knott et al., CRISPR-Cas guides the future of genetic engineering. Science. Aug. 31, 2018;361(6405):866-869. doi: 10.1126/science.aat5011.
Kweon et al., A CRISPR-based base-editing screen for the functional assessment of BRCA1 variants. Oncogene. Jan. 2020;39(1):30-35. doi: 10.1038/s41388-019-0968-2. Epub Aug. 29, 2019.
Le et al., SMNDelta7, the major product of the centromeric survival motor neuron (SMN2) gene, extends survival in mice with spinal muscular atrophy and associates with full-length SMN. Hum Mol Genet. Mar. 15, 2005;14(6):845-57. doi: 10.1093/hmg/ddi078. Epub Feb. 9, 2005.
Lefebvre et al., Identification and characterization of a spinal muscular atrophy-determining gene. Cell. Jan. 13, 1995;80(1):155-65. doi: 10.1016/0092-8674(95)90460-3.
Li et al., Programmable Single and Multiplex Base-Editing in Bombyx mori Using RNA-Guided Cytidine Deaminases. G3 (Bethesda). May 4, 2018;8(5):1701-1709. doi: 10.1534/g3.118.200134.
Liao et al., One-step assembly of large CRISPR arrays enables multi-functional targeting and reveals constraints on array design. bioRxiv. May 2, 2018. doi: 10.1101/312421. 45 pages.
Lin et al., [Construction and evaluation of DnaB split intein high expression vector and a six amino acids cyclic peptide library]. Sheng Wu Gong Cheng Xue Bao. Nov. 2008;24(11):1924-30. Chinese.
Lin et al., Base editing-mediated splicing correction therapy for spinal muscular atrophy. Cell Res. Jun. 2020;30(6):548-550. doi: 10.1038/s41422-020-0304-y. Epub Mar. 24, 2020.
Lindahl, T., Instability and decay of the primary structure of DNA. Nature. Apr. 22, 1993;362(6422):709-15. doi: 10.1038/362709a0.
Liu et al., Human BRCA2 protein promotes RAD51 filament formation on RPA-covered single-stranded DNA. Nat Struct Mol Biol. Oct. 2010;17(10):1260-2. doi: 10.1038/nsmb.1904. Epub Aug. 22, 2010.
Liu et al., Improving Editing Efficiency for the Sequences with NGH PAM Using xCas9-Derived Base Editors. Mol Ther Nucleic Acids. Sep. 6, 2019;17:626-635. doi: 10.1016/j.omtn.2019.06.024. Epub Jul. 12, 2019.
Liu et al., Intrinsic Nucleotide Preference of Diversifying Base Editors Guides Antibody Ex Vivo Affinity Maturation. Cell Rep. Oct. 23, 2018;25(4):884-892.e3. doi: 10.1016/j.celrep.2018.09.090.
Lorson et al., A single nucleotide in the SMN gene regulates splicing and is responsible for spinal muscular atrophy. Proc Natl Acad Sci U S A. May 25, 1999;96(11):6307-11. doi: 10.1073/pnas.96.11.6307.
Lutz et al., Postsymptomatic restoration of SMN rescues the disease phenotype in a mouse model of severe spinal muscular atrophy. J Clin Invest. Aug. 2011;121(8):3029-41. doi: 10.1172/JCI57291. Epub Jul. 25, 2011.
Ma et al., Human RAD52 interactions with replication protein A and the RAD51 presynaptic complex. J Biol Chem. Jul. 14, 2017;292(28):11702-11713. doi: 10.1074/jbc.M117.794545. Epub May 27, 2017.
Marsden et al., The Tumor-Associated Variant RAD51 G151D Induces a Hyper-Recombination Phenotype. PLoS Genet. Aug. 11, 2016;12(8):e1006208. doi: 10.1371/journal.pgen.1006208.
Mason et al., Non-enzymatic roles of human RAD51 at stalled replication forks. bioRxiv. Jul. 31, 2019; doi.org/10.1101/359380. 36 pages. bioRxiv preprint first posted online Jul. 31, 2019.
Mendell et al., Single-Dose Gene-Replacement Therapy for Spinal Muscular Atrophy. N Engl J Med. Nov. 2, 2017;377(18):1713-1722. doi: 10.1056/NEJMoa1706198.
Monani et al., A single nucleotide difference that alters splicing patterns distinguishes the SMA gene SMN1 from the copy gene SMN2. Hum Mol Genet. Jul. 1999;8(7):1177-83. doi: 10.1093/hmg/8.7.1177.
Mootz et al., Protein splicing triggered by a small molecule. J Am Chem Soc. Aug. 7, 2002;124(31):9044-5 and Supporting Information. doi: 10.1021/ja0267690. 4 pages.
Murray et al., Selective vulnerability of motor neurons and dissociation of pre- and post-synaptic pathology at the neuromuscular junction in mouse models of spinal muscular atrophy. Hum Mol Genet. Apr. 1, 2008;17(7):949-62. doi: 10.1093/hmg/ddm367. Epub Dec. 8, 2007.
Murugan et al., The Revolution Continues: Newly Discovered Systems Expand the CRISPR-Cas Toolkit. Mol Cell. Oct. 5, 2017;68(1):15-25. doi: 10.1016/j.molcel.2017.09.007.
Nelson et al., In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science. Jan. 22, 2016;351(6271):403-7. doi: 10.1126/science.aad5143. Epub Dec. 31, 2015.
Nelson et al., The unstable repeats—three evolving faces of neurological disease. Neuron. Mar. 6, 2013;77(5):825-43. doi: 10.1016/j.neuron.2013.02.022.
Noack et al., Epitranscriptomics: A New Regulatory Mechanism of Brain Development and Function. Front Neurosci. Feb. 20, 2018;12:85. doi: 10.3389/fnins.2018.00085. 9 pages.
Ottesen, ISS-N1 makes the First FDA-approved Drug for Spinal Muscular Atrophy. Transl Neurosci. Jan. 26, 2017;8:1-6. doi: 10.1515/tnsci-2017-0001.
Parente et al., Advances in spinal muscular atrophy therapeutics. Ther Adv Neurol Disord. Feb. 5, 2018;11:1756285618754501. doi: 10.1177/1756285618754501. 13 pages.
Passini et al., Antisense oligonucleotides delivered to the mouse CNS ameliorate symptoms of severe spinal muscular atrophy. Sci Transl Med. Mar. 2, 2011;3(72):72ra18. doi: 10.1126/scitranslmed.3001777.
Pellegrini et al., Insights into DNA recombination from the structure of a RAD51-BRCA2 complex. Nature. Nov. 21, 2002;420(6913):287-93. doi: 10.1038/nature01230. Epub Nov. 10, 2002.
Perez-Palma et al., Simple ClinVar: an interactive web server to explore and retrieve gene and disease variants aggregated in ClinVar database. Nucleic Acids Res. Jul. 2, 2019;47(W1):W99-W105. doi: 10.1093/nar/gkz411.
Pieken et al., Kinetic characterization of ribonuclease-resistant 2′-modified hammerhead ribozymes. Science. Jul. 19, 1991;253(5017):314-7. doi: 10.1126/science.1857967.
Porensky et al., a single administration of morpholino antisense oligomer rescues spinal muscular atrophy in mouse. Hum Mol Genet. Apr. 1, 2012;21(7):1625-38. doi: 10.1093/hmg/ddr600. Epub Dec. 20, 2011.
Prasad et al., Visualizing the assembly of human Rad51 filaments on double-stranded DNA. J Mol Biol. Oct. 27, 2006;363(3):713-28. doi: 10.1016/j jmb.2006.08.046. Epub Aug. 22, 2006.
Rajagopal et al., High-throughput mapping of regulatory DNA. Nat Biotechnol. Feb. 2016;34(2):167-74. doi: 10.1038/nbt.3468. Epub Jan. 25, 2016.
Ramos et al., Age-dependent SMN expression in disease-relevant tissue and implications for SMA treatment. J Clin Invest. Nov. 1, 2019;129(11):4817-4831. doi: 10.1172/JCI124120.
Richardson et al., CRISPR-Cas9 genome editing in human cells occurs via the Fanconi anemia pathway. Nat Genet. Aug. 2018;50(8):1132-1139. doi: 10.1038/s41588-018-0174-0. Epub Jul. 27, 2018.
Richardson et al., Frequent chromosomal translocations induced by DNA double-strand breaks. Nature. Jun. 8, 2000;405(6787):697-700. doi: 10.1038/35015097.
Rodriguez-Muela et al., Single-Cell Analysis of SMN Reveals Its Broader Role in Neuromuscular Disease. Cell Rep. Feb. 7, 2017;18(6):1484-1498 and Supplemental Information. doi: 10.1016/j.celrep.2017.01.035.
Safari et al., CRISPR Cpf1 proteins: structure, function and implications for genome editing. Cell Biosci. May 9, 2019;9:36. doi: 10.1186/s13578-019-0298-7.
San Filippo et al., Mechanism of eukaryotic homologous recombination. Annu Rev Biochem. 2008;77:229-57. doi: 10.1146/annurev.biochem.77.061306.125255.
Schlacher et al., Double-strand break repair-independent role for BRCA2 in blocking stalled replication fork degradation by MRE11. Cell. May 13, 2011;145(4):529-42. doi: 10.1016/j.cell.2011.03.041. Erratum in: Cell. Jun. 10, 2011;145(6):993.
Schrank et al., Inactivation of the survival motor neuron gene, a candidate gene for human spinal muscular atrophy, leads to massive cell death in early mouse embryos. Proc Natl Acad Sci USA. Sep. 2, 1997;94(18):9920-5. doi: 10.1073/pnas.94.18.9920.
Shen et al., Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects. Nat Methods. Apr. 2014;11(4):399-402. doi: 10.1038/nmeth.2857. Epub Mar. 2, 2014.
Singh et al., Splicing of a critical exon of human Survival Motor Neuron is regulated by a unique silencer element located in the last intron. Mol Cell Biol. Feb. 2006;26(4):1333-46. doi: 10.1128/MCB.26.4.1333-1346.2006.
Song et al., RS-1 enhances CRISPR/Cas9- and TALEN-mediated knock-in efficiency. Nat Commun. Jan. 28, 2016;7:10548. doi: 10.1038/ncomms10548.
Stark et al., ATP hydrolysis by mammalian RAD51 has a key role during homology-directed DNA repair. J Biol Chem. Jun. 7, 2002;277(23):20185-94. doi: 10.1074/jbc.M112132200. Epub Mar. 28, 2002.
Sumner et al., Two breakthrough gene-targeted treatments for spinal muscular atrophy: challenges remain. J Clin Invest. Aug. 1, 2018;128(8):3219-3227. doi: 10.1172/JCI121658. Epub Jul. 9, 2018.
Talbot et al., Spinal muscular atrophy. Semin Neurol. Jun. 2001;21(2):189-97. doi: 10.1055/s-2001-15264.
Tan et al., Engineering of high-precision base editors for site-specific single nucleotide replacement. Nat Commun. Jan. 25, 2019;10(1):439. doi: 10.1038/s41467-018-08034-8. Erratum in: Nat Commun. May 1, 2019;10(1):2019.
Thompson et al., The Future of Multiplexed Eukaryotic Genome Engineering. ACS Chem Biol. Feb. 16, 2018;13(2):313-325. doi: 10.1021/acschembio.7b00842. Epub Dec. 28, 2017.
Trojan et al., Functional analysis of hMLH1 variants and HNPCC-related mutations using a human expression system. Gastroenterology. Jan. 2002;122(1):211-9. doi: 10.1053/gast.2002.30296.
Tsai et al., Guide-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat Biotechnol. Feb. 2015;33(2):187-197. doi: 10.1038/nbt.3117. Epub Dec. 16, 2014.
Vakulskas et al., A high-fidelity Cas9 mutant delivered as a ribonucleoprotein complex enables efficient gene editing in human hematopoietic stem and progenitor cells. Nat Med. Aug. 2018;24(8):1216-1224. doi: 10.1038/s41591-018-0137-0. Epub Aug. 6, 2018.
Van Den Oord et al., Pixel Recurrent Neural Networks. Proceedings of the 33rd International Conference on Machine Learning. Journal of Machine Learning Research. Aug. 19, 2016. vol. 48. 11 pages.
Wills et al., Pseudoknot-dependent read-through of retroviral gag termination codons: importance of sequences in the spacer and loop 2. EMBO J. Sep. 1, 1994;13(17):4137-44. doi: 10.1002/j.1460-2075.1994.tb06731.x.
Wirth et al., Mildly affected patients with spinal muscular atrophy are partially protected by an increased SMN2 copy number. Hum Genet. May 2006;119(4):422-8. doi: 10.1007/s00439-006-0156-7. Epub Mar. 1, 2006.
Woo et al., Gene activation of SMN by selective disruption of lncRNA-mediated recruitment of PRC2 for the treatment of spinal muscular atrophy. Proc Natl Acad Sci U S A. Feb. 21, 2017;114(8):E1509-E1518. doi: 10.1073/pnas.1616521114. Epub Feb. 13, 2017.
Wu et al., A novel SCN9A mutation responsible for primary erythromelalgia and is resistant to the treatment of sodium channel blockers. PLoS One. 2013;8(1):e55212. doi: 10.1371/journal.pone.0055212. Epub Jan. 31, 2013. 15 pages.
Yamane et al., Deep-sequencing identification of the genomic targets of the cytidine deaminase AID and its cofactor RPA in B lymphocytes. Nat Immunol. Jan. 2011;12(1):62-9. doi: 10.1038/ni.1964. Epub Nov. 28, 2010.
Yang et al., BRCA2 function in DNA binding and recombination from a BRCA2-DSS1-ssDNA structure. Science. Sep. 13, 2002;297(5588):1837-48. doi: 10.1126/science.297.5588.1837.
Yang et al., Genome-wide inactivation of porcine endogenous retroviruses (PERVs). Science. Nov. 27, 2015;350(6264):1101-4. doi: 10.1126/science.aad1191. Epub Oct. 11, 2015.
Yang et al., The BRCA2 homologue Brh2 nucleates RAD51 filament formation at a dsDNA-ssDNA junction. Nature. Feb. 10, 2005;433(7026):653-7. doi: 10.1038/nature03234.
Yu et al., Dynamic control of Rad51 recombinase by self-association and interaction with BRCA2. Mol Cell. Oct. 2003;12(4):1029-41. doi: 10.1016/s1097-2765(03)00394-0.
Zhang et al., Efficient precise knockin with a double cut HDR donor after CRISPR/Cas9-mediated double-stranded DNA cleavage. Genome Biol. Feb. 20, 2017;18(1):35. doi: 10.1186/s13059-017-1164-8.
Zhang et al., Large genomic fragment deletions and insertions in mouse using CRISPR/Cas9. PLoS One. Mar. 24, 2015;10(3):e0120396. doi: 10.1371/journal.pone.0120396. 14 pages.
Zolotukhin et al., Production and purification of serotype 1, 2, and 5 recombinant adeno-associated viral vectors. Methods. Oct. 2002;28(2):158-67. doi: 10.1016/s1046-2023(02)00220-7.
[No Author Listed], Gag-Pol polyprotein. UniProtKB/Swiss-Prot No. P03355.5. Sep. 18, 2019. 18 pages.
[No Author Listed], Homo sapiens signal transducer and activator of transcription 3 (STAT3), transcript variant 1, mRNA. NCBI Ref Seq No. NM_139276.2. Retrived from https://www.ncbi.nlm.nih.gov/nuccore/nm_139276.2. Feb. 26, 2020. 8 pages.
Ai et al., C-terminal Loop Mutations Determine Folding and Secretion Properties of PCSK9. iMedPub J: Biochem Mol Biol J. Nov. 5, 2016;2(3):17. doi: 10.21767/2471-8084.100026. 12 pages.
Anzalone et al., Search-and-replace genome editing without double-strand breaks or donor DNA. Nature. Dec. 2019;576(7785):149-157 and Suppl Info. doi: 10.1038/s41586-019-1711-4. Epub Oct. 21, 2019. 72 pages.
Basila et al., Minimal 2′-O-methyl phosphorothioate linkage modification pattern of synthetic guide RNAs for increased stability and efficient CRISPR-Cas9 gene editing avoiding cellular toxicity. PLoS One. Nov. 27, 2017;12(11):e0188593. doi: 10.1371/journal.pone.0188593.
Bertsimas et al., Simulated annealing. Statistical Science. Feb. 1993;8(1):10-15. doi: 10.1214/ss/1177011077.
Bibikova et al., Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics. Jul. 2002;161(3):1169-75. doi: 10.1093/genetics/161.3.1169.
Brutlag et al., Improved sensitivity of biological sequence database searches. Comput Appl Biosci. Jul. 1990;6(3):237-45. doi: 10.1093/bioinformatics/6.3.237.
Carlier et al., Genome Sequence of Burkholderia cenocepacia H111, a Cystic Fibrosis Airway Isolate. Genome Announc. Apr. 10, 2014;2(2):e00298-14. doi: 10.1128/genomeA.00298-14.
Chen et al., Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell. Dec. 19, 2013;155(7):1479-91. doi: 10.1016/j.cell.2013.12.001. Erratum in: Cell. Jan. 16, 2014;156(1-2):373.
Cheng et al., [Cloning,expression and activity identification of human innate immune protein apolipoprotein B mRNA editing enzyme catalytic subunit 3A(APOBEC3A)]. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. Chinese Journal of Cellular and Molecular Immunology, Feb. 2017;33(2):179-84. Chinese.
Dickinson et al., A system for the continuous directed evolution of proteases rapidly reveals drug-resistance mutations. Nat Commun. Oct. 30, 2014;5:5352. doi: 10.1038/ncomms6352.
Ekstrand et al., Frequent alterations of the PI3K/AKT/mTOR pathways in hereditary nonpolyposis colorectal cancer. Fam Cancer. Jun. 2010;9(2):125-9. doi: 10.1007/s10689-009-9293-1.
Entin-Meer et al., The role of phenylalanine-119 of the reverse transcriptase of mouse mammary tumour virus in DNA synthesis, ribose selection and drug resistance. Biochem J. Oct. 15, 2002;367(Pt 2):381-91. doi: 10.1042/BJ20020712.
Fang et al., The Menu of Features that Define Primary MicroRNAs and Enable De Novo Design of MicroRNA Genes. Mol Cell. Oct. 1, 2015;60(1):131-45. doi: 10.1016/j.molcel.2015.08.015. Epub Sep. 24, 2015.
Feng et al., Efficient genome editing in plants using a CRISPR/Cas system. Cell Res. Oct. 2013;23(10):1229-32. doi: 10.1038/cr.2013.114. Epub Aug. 20, 2013.
Geisberg et al., Global analysis of mRNA isoform half-lives reveals stabilizing and destabilizing elements in yeast. Cell. Feb. 13, 2014;156(4):812-24. doi: 10.1016/j.cell.2013.12.026.
GenBank Submission; NIH/NCBI, Accession No. NC_000001.11. Gregory et al., Jun. 6, 2016. 3 pages.
GenBank Submission; NIH/NCBI, Accession No. NM_206933.2. Khalaileh et al., Sep. 16, 2018. 12 pages.
GenBank Submission; NIH/NCBI, Accession No. NP_996816.2. Fu et al., Sep. 22, 2019. 9 pages.
Grati et al., Localization of PDZD7 to the stereocilia ankle-link associates this scaffolding protein with the Usher syndrome protein network. J Neurosci. Oct. 10, 2012;32(41):14288-93. doi: 10.1523/JNEUROSCI.3071-12.2012.
Green et al., Characterization of the mechanical unfolding of RNA pseudoknots. J Mol Biol. Jan. 11, 2008;375(2):511-28. doi: 10.1016/j.jmb.2007.05.058. Epub May 26, 2007.
Hagen et al., A high rate of polymerization during synthesis of mouse mammary tumor virus DNA alleviates hypermutation by APOBEC3 proteins. PLoS Pathog. Feb. 15, 2019;15(2):e1007533. doi: 10.1371/journal.ppat.1007533.
Hawley-Nelson et al., Transfection of Cultured Eukaryotic Cells Using Cationic Lipid Reagents. Curr Prot Mol Biol. Jan. 2008;9.4.1-9.4.17. doi: 10.102/0471142727.mb0904s81. 17 pages.
Hendel et al., Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells. Nat Biotechnol. Sep. 2015;33(9):985-989. doi: 10.1038/nbt.3290. Epub Jun. 29, 2015. Author Manuscript. 14 pages.
Heyer et al., Regulation of homologous recombination in eukaryotes. Annu Rev Genet. 2010;44:113-39. doi: 10.1146/annurev-genet-051710-150955. Author Manuscript. 33 pages.
Houck-Loomis et al., An equilibrium-dependent retroviral mRNA switch regulates translational recoding. Nature. Nov. 27, 2011;480(7378):561-4. doi: 10.1038/nature10657.
Houseley et al., The many pathways of RNA degradation. Cell. Feb. 20, 2009;136(4):763-76. doi: 10.1016/j.cell.2009.01.019.
Hänsel-Hertsch et al., DNA G-quadruplexes in the human genome: detection, functions and therapeutic potential. Nat Rev Mol Cell Biol. May 2017;18(5):279-284. doi: 10.1038/nrm.2017.3. Epub Feb. 22, 2017.
Ibrahim et al., RNA recognition by 3′-to-5′ exonucleases: the substrate perspective. Biochim Biophys Acta. Apr. 2008;1779(4):256-65. doi: 10.1016/j.bbagrm.2007.11.004. Epub Dec. 3, 2007.
Jakimo et al., A Cas9 with Complete PAM Recognition for Adenine Dinucleotides. bioRxiv preprint. Sep. 27, 2018. doi.org/10.1101/429654. 29 pages.
Jost et al., Titrating gene expression using libraries of systematically attenuated CRISPR guide RNAs. Nat Biotechnol. Mar. 2020;38(3):355-364. doi: 10.1038/s41587-019-0387-5. Epub Jan. 13, 2020.
Konishi et al., Amino acid substitutions away from the RNase H catalytic site increase the thermal stability of Moloney murine leukemia virus reverse transcriptase through RNase H inactivation. Biochem Biophys Res Commun. Nov. 14, 2014;454(2):269-74. doi: 10.1016/j.bbrc.2014.10.044. Epub Oct. 17, 2014.
Ku et al., Nucleic Acid Aptamers: An Emerging Tool for Biotechnology and Biomedical Sensing. Sensors (Basel). Jul. 6, 2015;15(7):16281-313. doi: 10.3390/s150716281.
Kuan et al., A systematic evaluation of nucleotide properties for CRISPR sgRNA design. BMC Bioinformatics. Jun. 6, 2017;18(1):297. doi: 10.1186/s12859-017-1697-6.
Kwok et al., G-Quadruplexes: Prediction, Characterization, and Biological Application. Trends Biotechnol. Oct. 2017;35(10):997-1013. doi: 10.1016/j.tibtech.2017.06.012. Epub Jul. 26, 2017.
Langer et al., Chemical and Physical Structure of Polymers as Carriers for Controlled Release of Bioactive Agents: A Review. J Macromol Sci, Part C, 1983;23(1):61-126. doi: 10.1080/07366578308079439.
Lesinski et al., The potential for targeting the STAT3 pathway as a novel therapy for melanoma. Future Oncol. Jul. 2013;9(7):925-7. doi: 10.2217/fon.13.83. Author Manuscript. 4 pages.
Liu et al., Usherin is required for maintenance of retinal photoreceptors and normal development of cochlear hair cells. Proc Natl Acad Sci U S A. Mar. 13, 2007;104(11):4413-8. doi: 10.1073/pnas.0610950104. Epub Mar. 5, 2007.
Longsworth, Expanding the Enzymatic Activity of the Programmable Endonuclease Cas9 in Zebrafish. Thesis. Rice University. Houston, TX. Aug. 2018. 41 pages.
MacFadden et al., Mechanism and structural diversity of exoribonuclease-resistant RNA structures in flaviviral RNAs. Nat Commun. Jan. 9, 2018;9(1):119. doi: 10.1038/s41467-017-02604-y.
Maerker et al., A novel Usher protein network at the periciliary reloading point between molecular transport machineries in vertebrate photoreceptor cells. Hum Mol Genet. Jan. 1, 2008;17(1):71-86. doi: 10.1093/hmg/ddm285. Epub Sep. 28, 2007.
Mahoney et al., The Next Immune-Checkpoint Inhibitors: PD-1/PD-L1 Blockade in Melanoma. Clin Ther. Apr. 1, 2015;37(4):764-82. doi: 10.1016/j.clinthera.2015.02.018. Epub Mar. 29, 2015.
Mangeot et al., Genome editing in primary cells and in vivo using viral-derived Nanoblades loaded with Cas9-sgRNA ribonucleoproteins. Nat Commun. Jan. 3, 2019;10(1):45. doi: 10.1038/s41467-018-07845-z.
Marcovitz et al., Frustration in protein-DNA binding influences conformational switching and target search kinetics. Proc Natl Acad Sci U S A. Nov. 1, 2011;108(44):17957-62. doi: 10.1073/pnas.1109594108. Epub Oct. 14, 2011.
Micozzi et al., Human cytidine deaminase: a biochemical characterization of its naturally occurring variants. Int J Biol Macromol. Feb. 2014;63:64-74. doi: 10.1016/j.ijbiomac.2013.10.029. Epub Oct. 29, 2013. Erratum in: Int J Biol Macromol. Feb. 2014;63:262.
Millevoi et al., G-quadruplexes in RNA biology. Wiley Interdiscip Rev RNA. Jul.-Aug. 2012;3(4):495-507. doi: 10.1002/wrna.1113. Epub Apr. 4, 2012.
Min et al., Deep learning in bioinformatics. Brief Bioinform. Sep. 1, 2017;18(5):851-869. doi: 10.1093/bib/bbw068.
Ousterout et al., Multiplex CRISPR/Cas9-based genome editing for correction of dystrophin mutations that cause Duchenne muscular dystrophy. Nat Commun. Feb. 18, 2015;6:6244. doi: 10.1038/ncomms7244.
Pandey et al., Effect of loops and G-quartets on the stability of RNA G-quadruplexes. J Phys Chem B. Jun. 13, 2013;117(23):6896-905. doi: 10.1021/jp401739m. Epub May 29, 2013. Supplementary Information, 21 pages.
Pendse et al., Exon 13-skipped USH2A protein retains functional integrity in mice, suggesting an exo-skipping therapeutic approach to treat USH2A-associated disease. bioRxiv preprint. Feb. 4, 2020. Retrieved from www.biorxiv.org. doi: 10.1101/2020.02.04.934240. 34 pages.
Pendse et al., In Vivo Assessment of Potential Therapeutic Approaches for USH2A-Associated Diseases. Adv Exp Med Biol. 2019;1185:91-96. doi: 10.1007/978-3-030-27378-1_15.
Petit et al., Powerful mutators lurking in the genome. Philos Trans R Soc Lond B Biol Sci. Mar. 12, 2009;364(1517):705-15. doi: 10.1098/rstb.2008.0272.
Pijlman et al., A highly structured, nuclease-resistant, noncoding RNA produced by flaviviruses is required for pathogenicity. Cell Host Microbe. Dec. 11, 2008;4(6):579-91. doi: 10.1016/j.chom.2008.10.007.
Piotukh et al., Directed evolution of sortase A mutants with altered substrate selectivity profiles. J Am Chem Soc. Nov. 9, 2011;133(44):17536-9. doi: 10.1021/ja205630g. Epub Oct. 13, 2011.
Reiners et al., Scaffold protein harmonin (USH1C) provides molecular links between Usher syndrome type 1 and type 2. Hum Mol Genet. Dec. 15, 2005;14(24):3933-43. doi: 10.1093/hmg/ddi417. Epub Nov. 21, 2005.
Robert et al., Virus-Like Particles Derived from HIV-1 for Delivery of Nuclear Proteins: Improvement of Production and Activity by Protein Engineering. Mol Biotechnol. Jan. 2017;59(1):9-23. doi: 10.1007/s12033-016-9987-1.
Saayman et al., The therapeutic application of CRISPR/Cas9 technologies for HIV. Expert Opin Biol Ther. Jun. 2015;15(6):819-30. doi: 10.1517/14712598.2015.1036736. Epub Apr. 12, 2015.
Sanjurjo-Soriano et al., Genome Editing in Patient iPSCs Corrects the Most Prevalent USH2A Mutations and Reveals Intriguing Mutant mRNA Expression Profiles. Mol Ther Methods Clin Dev. Nov. 27, 2019;17:156-173. doi: 10.1016/j.omtm.2019.11.016.
Sorusch et al., Characterization of the ternary Usher syndrome SANS/ush2a/whirlin protein complex. Hum Mol Genet. Mar. 15, 2017;26(6):1157-1172. doi: 10.1093/hmg/ddx027.
Steckelberg et al., A folded viral noncoding RNA blocks host cell exoribonucleases through a conformationally dynamic RNA structure. Proc Natl Acad Sci U S A. Jun. 19, 2018;115(25):6404-6409. doi: 10.1073/pnas.1802429115. Epub Jun. 4, 2018.
Vidal et al., Yeast forward and reverse ‘n’-hybrid systems. Nucleic Acids Res. Feb. 15, 1999;27(4):919-29. doi: 10.1093/nar/27.4.919.
Wu et al., MLV based viral-like-particles for delivery of toxic proteins and nuclear transcription factors. Biomaterials. Sep. 2014;35(29):8416-26. doi: 10.1016/j.biomaterials.2014.06.006. Epub Jul. 3, 2014.
Wu et al., Widespread Influence of 3′-End Structures on Mammalian mRNA Processing and Stability. Cell. May 18, 2017;169(5):905-917.e11. doi: 10.1016/j.cell.2017.04.036.
Yi et al., Engineering of TEV protease variants by yeast ER sequestration screening (YESS) of combinatorial libraries. Proc Natl Acad Sci U S A. Apr. 30, 2013;110(18):7229-34. doi: 10.1073/pnas.1215994110. Epub Apr. 15, 2013.
Zhu et al., Novel Thrombotic Function of a Human SNP in STXBP5 Revealed by CRISPR/Cas9 Gene Editing in Mice. Arterioscler Thromb Vasc Biol. Feb. 2017;37(2):264-270. doi: 10.1161/ATVBAHA.116.308614. Epub Dec. 29, 2016.
U.S. Appl. No. 17/289,665, filed Apr. 28, 2021, Liu et al.
U.S. Appl. No. 16/756,432, filed Apr. 15, 2020, Liu et al.
U.S. Appl. No. 16/772,747, filed Jun. 12, 2020, Shen et al.
U.S. Appl. No. 17/425,261, filed Jul. 22, 2021, Kim et al.
U.S. Appl. No. 17/057,398, filed Nov. 20, 2020, Liu et al.
U.S. Appl. No. 17/259,147, filed Jan. 8, 2021, Liu et al.
U.S. Appl. No. 17/270,396, filed Feb. 22, 2021, Liu et al.
U.S. Appl. No. 17/273,688, filed Mar. 4, 2021, Liu et al.
U.S. Appl. No. 17/294,287, filed May 14, 2021, Liu et al.
U.S. Appl. No. 17/288,504, filed Apr. 23, 2021, Liu et al.
U.S. Appl. No. 17/633,573, filed Feb. 7, 2022, Liu et al.
U.S. Appl. No. 17/910,552, filed Sep. 9, 2022, Liu et al.
U.S. Appl. No. 17/436,048, filed Sep. 2, 2021, Liu et al.
U.S. Appl. No. 17/219,590, filed Mar. 31, 2021, Liu et al.
U.S. Appl. No. 17/603,917, filed Oct. 14, 2021, Liu et al.
U.S. Appl. No. 17/797,700, filed Aug. 4, 2022, Liu et al.
U.S. Appl. No. 17/602,738, filed Oct. 8, 2021, Liu et al.
U.S. Appl. No. 17/613,025, filed Nov. 19, 2021, Liu et al.
U.S. Appl. No. 17/300,668, filed Sep. 17, 2021, Liu et al.
U.S. Appl. No. 17/795,819, filed Jul. 27, 2022, Liu et al.
U.S. Appl. No. 17/779,953, filed May 25, 2022, Liu et al.
U.S. Appl. No. 17/767,777, filed Apr. 8, 2022, Liu et al.
U.S. Appl. No. 17/797,701, filed Aug. 4, 2022, Liu et al.
U.S. Appl. No. 18/053,269, filed Nov. 7, 2022, Liu et al.
U.S. Appl. No. 17/797,697, filed Aug. 4, 2022, Liu et al.
U.S. Appl. No. 17/921,971, filed Oct. 27, 2022, Liu et al.
U.S. Appl. No. 17/219,635, filed Mar. 31, 2021, Liu et al.
U.S. Appl. No. 18/064,738, filed Dec. 12, 2022, Liu et al.
U.S. Appl. No. 17/219,672, filed Mar. 31, 2021, Liu et al.
U.S. Appl. No. 17/751,599, filed May 23, 2022, Liu et al.
U.S. Appl. No. 17/440,682, filed Sep. 17, 2021, Liu et al.
U.S. Appl. No. 18/028,183, filed Mar. 23, 2023, Liu et al.
U.S. Appl. No. 14/234,031, filed Mar. 24, 2014, Liu et al.
U.S. Appl. No. 14/320,271, filed Jun. 30, 2014, Liu et al.
U.S. Appl. No. 16/441,751, filed Jun. 14, 2019, Liu et al.
U.S. Appl. No. 14/320,519, filed Jun. 30, 2014, Liu et al.
U.S. Appl. No. 14/913,458, filed Feb. 22, 2016, Liu et al.
U.S. Appl. No. 16/266,937, filed Feb. 4, 2019, Liu et al.
U.S. Appl. No. 14/320,370, filed Jun. 30, 2014, Liu et al.
U.S. Appl. No. 14/320,413, filed Jun. 30, 2014, Liu et al.
U.S. Appl. No. 14/874,123, filed Oct. 2, 2015, Liu et al.
U.S. Appl. No. 14/911,117, filed Feb. 9, 2016, Liu et al.
U.S. Appl. No. 17/160,329, filed Jan. 27, 2021, Liu et al.
U.S. Appl. No. 15/029,602, filed Apr. 14, 2016, Ritter et al.
U.S. Appl. No. 14/462,163, filed Aug. 18, 2014, Liu et al.
U.S. Appl. No. 14/462,189, filed Aug. 18, 2014, Liu et al.
U.S. Appl. No. 14/916,679, filed Mar. 4, 2016, Liu et al.
U.S. Appl. No. 16/860,639, filed Apr. 28, 2020, Liu et al.
U.S. Appl. No. 14/320,498, filed Jun. 30, 2014, Liu et al.
U.S. Appl. No. 14/320,467, filed Jun. 30, 2014, Liu et al.
U.S. Appl. No. 14/916,681, filed Mar. 4, 2016, Liu et al.
U.S. Appl. No. 17/103,233, filed Nov. 24, 2020, Liu et al.
U.S. Appl. No. 17/937,203, filed Sep. 30, 2022, Liu et al.
U.S. Appl. No. 14/326,329, filed Jul. 8, 2014, Liu et al.
U.S. Appl. No. 14/326,340, filed Jul. 8, 2014, Liu et al.
U.S. Appl. No. 14/326,361, filed Jul. 8, 2014, Liu et al.
U.S. Appl. No. 14/916,683, filed Mar. 4, 2016, Liu et al.
U.S. Appl. No. 16/796,323, filed Feb. 20, 2020, Liu et al.
U.S. Appl. No. 17/688,416, filed Mar. 7, 2022, Liu et al.
U.S. Appl. No. 14/325,815, filed Jul. 8, 2014, Liu et al.
U.S. Appl. No. 14/326,109, filed Jul. 8, 2014, Liu et al.
U.S. Appl. No. 14/326,140, filed Jul. 8, 2014, Liu et al.
U.S. Appl. No. 14/326,269, filed Jul. 8, 2014, Liu et al.
U.S. Appl. No. 14/326,290, filed Jul. 8, 2014, Liu et al.
U.S. Appl. No. 14/326,318, filed Jul. 8, 2014, Liu et al.
U.S. Appl. No. 14/326,303, filed Jul. 8, 2014, Liu et al.
U.S. Appl. No. 15/103,608, filed Jun. 10, 2016, Liu et al.
U.S. Appl. No. 16/374,634, filed Apr. 3, 2019, Liu et al.
U.S. Appl. No. 17/408,306, filed Aug. 20, 2021, Liu et al.
U.S. Appl. No. 15/329,925, filed Jan. 27, 2017, Liu et al.
U.S. Appl. No. 16/132,276, filed Sep. 14, 2018, Liu et al.
U.S. Appl. No. 16/888,646, filed May 29, 2020, Liu et al.
U.S. Appl. No. 18/069,898, filed Dec. 21, 2022, Liu et al.
U.S. Appl. No. 14/529,010, filed Oct. 30, 2014, Liu et al.
U.S. Appl. No. 15/958,721, filed Apr. 20, 2018, Liu et al.
U.S. Appl. No. 17/130,812, filed Dec. 22, 2020, Liu et al.
U.S. Appl. No. 15/331,852, filed Oct. 22, 2016, Liu et al.
U.S. Appl. No. 15/960,171, filed Apr. 23, 2018, Liu et al.
U.S. Appl. No. 17/527,011, filed Nov. 15, 2021, Liu et al.
U.S. Appl. No. 15/770,076, filed Apr. 20, 2018, Liu et al.
U.S. Appl. No. 16/327,744, filed Feb. 22, 2019, Maianti et al.
U.S. Appl. No. 18/055,274, filed Nov. 14, 2022, Maianti et al.
U.S. Appl. No. 15/852,891, filed Dec. 22, 2017, Maianti et al.
U.S. Appl. No. 16/926,436, filed Jul. 10, 2020, Maianti et al.
U.S. Appl. No. 15/852,526, filed Dec. 22, 2017, Maianti et al.
U.S. Appl. No. 16/492,534, filed Sep. 9, 2019, Liu et al.
U.S. Appl. No. 16/324,476, filed Feb. 8, 2019, Liu et al.
U.S. Appl. No. 15/791,085, filed Oct. 23, 2017, Liu et al.
U.S. Appl. No. 16/143,370, filed Sep. 26, 2018, Liu et al.
U.S. Appl. No. 17/148,059, filed Jan. 13, 2021, Liu et al.
U.S. Appl. No. 15/784,033, filed Oct. 13, 2017, Liu et al.
U.S. Appl. No. 17/692,925, filed Mar. 11, 2022, Liu et al.
U.S. Appl. No. 16/492,533, filed Sep. 9, 2019, Liu et al.
U.S. Appl. No. 18/059,308, filed Nov. 28, 2022, Liu et al.
U.S. Appl. No. 15/934,945, filed Mar. 23, 2018, Liu et al.
U.S. Appl. No. 17/586,688, filed Jan. 27, 2022, Liu et al.
U.S. Appl. No. 18/066,878, filed Dec. 15, 2022, Liu et al.
U.S. Appl. No. 16/643,376, filed Feb. 28, 2020, Liu et al.
U.S. Appl. No. 17/700,109, filed Mar. 21, 2022, Liu et al.
U.S. Appl. No. 16/612,988, filed Nov. 12, 2019, Liu et al.
U.S. Appl. No. 16/634,405, filed Jan. 27, 2020, Liu et al.
U.S. Appl. No. 18/178,048, filed Mar. 3, 2023, Liu et al.
U.S. Appl. No. 16/976,047, filed Aug. 26, 2020, Liu et al.
U.S. Appl. No. 17/593,020, filed Sep. 3, 2021, Church et al.
Related Publications (1)
Number Date Country
20210115428 A1 Apr 2021 US
Provisional Applications (1)
Number Date Country
62469408 Mar 2017 US