The present invention relates to a surgical device. More specifically, the present invention relates to a clamping, cutting and stapling device for clamping, cutting and stapling tissue.
The literature is replete with descriptions of surgical devices. Some of these surgical devices are described in U.S. Pat. No. 4,705,038 to Sjostrom et al.; U.S. Pat. No. 4,995,877 to Ams et al.; U.S. Pat. No. 5,249,583 to Mallaby; U.S. Pat. No. 5,395,033 to Byrne et al.; U.S. Pat. No. 5,467,911 to Tsuruta et al.; U.S. Pat. Nos. 5,383,880, 5,518,163, 5,518,164 and 5,667,517, all to Hooven; U.S. Pat. No. 5,653,374 to Young et al.; U.S. Pat. No. 5,779,130 to Alesi et al.; and U.S. Pat. No. 5,954,259 to Viola et al.
One type of surgical device is a straight stapling device, which is a guillotine-type device that is used to cut and staple a section of tissue.
Other examples of surgical devices are described in U.S. Pat. No. 4,442,964, U.S. Pat. No. 4,671,445, and U.S. Pat. No. 5,413,267. Such surgical staplers include opposing jaws that move in parallel correspondence to each other, wherein a first jaw has disposed therein an arrangement of staples while the second jaw provides an anvil for receiving and closing the staples. A staple pusher is located within the first jaw and that extends from a proximal end of the first jaw to a distal end of the first jaw. A drive shaft, coupled to the first jaw and to the staple pusher, is located in the plane of movement of the first jaw and the staple pusher and when actuated, the drive shaft drives the staple pusher so as to simultaneously push all of the staples against the staple guides in the anvil of the second jaw.
Another type of surgical device is a linear clamping, cutting and stapling device, such as that described in U.S. Pat. No. 6,264,087. Such a device may be employed in a surgical procedure to resect a cancerous or anomalous tissue from a gastrointestinal tract. A conventional linear clamping, cutting and stapling instrument is illustrated in a perspective view in
Generally, these surgical devices are employed in the following manner: upon identification of cancerous or other anomalous tissue in the gastrointestinal tract (and upon determination that the cancerous tissue is located at a position in the colon), a patient's abdomen is initially opened to expose the bowel. A surgeon then cuts the tube of the colon on either side of the cancerous tissue, and staples closed the two open ends of the bowel (a distal end which is directed toward the anus, and the proximal end which is closest to the lower intestine). This temporary closure is performed in order to minimize contamination of the exposed abdomen by the bowel contents. More particularly, this temporary closure of the two open ends of the bowel is achieved when the colon is placed between the jaws of the surgical device. By actuating a first driving mechanism, the surgeon causes the jaws to come together. A second driving mechanism is then actuated to drive a series of staples and a cutting blade through the clamped end of the colon, thereby closing and transecting the ends. This procedure is typically repeated a second time on the other side of the cancerous or anomalous tissue.
One problem with the foregoing surgical devices is that the devices may be difficult to maneuver. Because these devices may be employed corporally, e.g., inside the body of a patient, the device should be configured so as to be maneuverable inside the body of a patient. Conventional surgical devices, such as those illustrated in
The present invention, according to one example embodiment thereof, relates to a surgical device. The surgical device includes a first jaw and a second jaw in opposed correspondence with the first jaw. A first driver is configured to cause relative movement of the first jaw and the second jaw in a plane. The first driver is configured to engage a drive shaft rotatable about a rotation axis arranged in non-parallel correspondence to the plane. The surgical device may also include a surgical member disposed within the first jaw. A second driver is configured to cause relative movement of the surgical member in a direction parallel to the plane. The second driver is configured to engage a drive shaft rotatable about a rotation axis arranged in non-parallel correspondence to the plane.
According to one example embodiment of the present invention, a first drive socket is configured to couple to one end of a first rotatable drive shaft, arranged at an angle, e.g., perpendicular, to the plane of the first and second jaws of an electro-mechanical driver, wherein the electro-mechanical driver is configured to rotate the first rotatable drive shaft. The first rotatable drive shaft is rotated in a first direction to effect opening of the jaws and is rotated in a second direction opposite to the first direction to effect closing of the jaws. The first driver may include, for example, a pair of spur gears, a worm and a worm gear in turning and gearing relationship with each other. The first driver may also include an externally-threaded screw fixedly connected at one end to one of the worm gears and in engagement with an internally-threaded bore of the second jaw, the rotation of the gears thereby causing relative movement of the first jaw and the second jaw.
As indicated above, the surgical device may also include a surgical member, such as a cutting element, e.g., a knife, and a stapling element mounted to a thrust plate disposed within the first jaw. According to this example embodiment, a second driver is disposed within the first jaw. The second driver is configured to move the surgical member in a direction parallel to the plane of movement of the first and second jaws. The second driver includes a second drive socket, which is arranged at an angle, e.g., perpendicular, to the plane.
According to one example embodiment of the present invention, the second drive socket of the second driver is configured to couple to one end of a second rotatable drive shaft, arranged at an angle, e.g., perpendicular, to the plane of the first and second jaws of an electro-mechanical driver, wherein the electro-mechanical driver is configured to rotate the second rotatable drive shaft. The second rotatable drive shaft is rotated in a first direction to lower the surgical member and rotated in a second direction opposite to the first direction to raise the surgical member. The second driver may include, for example, a pair of spur gears, a worm and a pair of worm gears in turning and gearing relationship with each other. Each of this pair of worm gears has a centrally-disposed, internally-threaded bore in engagement with a respective one of a pair of externally-threaded screws fixedly connected the surgical member. The rotation of the gears causes relative movement of the surgical member.
a) is a side view of a conventional surgical device;
b) is a perspective view of a conventional linear clamping, cutting and stapling device;
a) is an exploded view of a cutting and stapling attachment according to one example embodiment of the present invention;
b) is an exploded view of a cutting and stapling attachment according to another example embodiment of the present invention;
a) is a perspective view of the cutting and stapling attachment illustrated in
b) is a perspective view of the cutting and stapling attachment illustrated in
a) to 20(c) illustrate a flowchart of a main operating program, the steps of which are performed during the operation of the surgical device in accordance with one example embodiment of the present invention;
a) to 21(c) illustrate a flowchart of a jaw-closing routine of the main operating program illustrated in
a) to 22(c) illustrate a flowchart of a calibration routine of the main operating program illustrated in
a) to 24(c) illustrate a flowchart of a clamping, cutting and stapling routine of the main operating program illustrated in
a) to 25(b) illustrate a flowchart of a testing routine of the main operating program illustrated in
One example embodiment of a surgical device 11 according to the present invention is illustrated in
The second driver 261 is coupled to cutting and stapling assembly 262 to move the cutting and stapling assembly 262 from a first retracted position, as illustrated in
a) is an exploded view of the surgical device 11 according to one example embodiment of the present invention, and
The first jaw 80 includes a housing frame 506. The housing frame 506 includes a pair of internally disposed guides 5061 along which a pair of ribs 5055 of the anvil 505 may travel, so that the housing frame 506 may move parallel with, and in opposite correspondence to, the anvil 505. A gear housing 255 is mounted to one side 5062 of the housing frame 506 via fasteners 533 and 534, e.g., screws.
A quick-connect coupling 511 is mounted onto the gear housing 255 and is biased via a set of springs 538. The gear housing 255 includes the first drive socket 180 and the second drive socket 310. In this example embodiment, the first drive socket 180 includes the first pinion 508a, one end 5081 of which extends through an opening 2551 of the gear housing 255 and the other end 5082 of which includes spur gear teeth 5083. The second drive socket 310 includes the second pinion 508b, one end 5084 of which extends through a second opening 2552 of the gear housing 255 and the other end 5085 of which includes spur gear teeth 5086. A memory module 501 is arranged in the gear housing 255 and includes a connector 2554 that extends through, or is accessible through, an opening 2553 of the gear housing 255. The memory module 501 is maintained in position within the gear housing 255 by an inboard shim 530 and an outboard shim 531. The memory module 501 is also biased in its position by a spring 539.
Each of the first and second pinions 508a and 508b engages a respective spur gears 529a and 529b. The first spur gear 529a includes an internal bore 5293 which non-rotatably engages an end 5231 of the first worm 523a. The second spur gear 529b includes an internal bore 5294 which non-rotatably engages an end 5234 of the second worm 523b. As illustrated in
In this example embodiment, the first worm 523a has one end 5231, which non-rotatably engages the internal bore 5293 of the first spur gear 529a, and a second end 5232, which includes circumferentially-disposed thread(s) 5233. The second worm 523b has one end 5234, which non-rotatably engages the internal bore 5294 of the second spur gear 529b, and a second end 5235 which includes circumferentially-disposed threads 5236. The second end 5232 of the first worm 523a is disposed within the frame housing 506, and the end 5231 of the worm 523a extends through a hole 5063 in the side of the frame housing 506 to engage the first spur gear 529a in the gear housing 255. The second end 5235 of the second worm 523b is disposed within the frame housing 506, and the end 5234 of the worm 523b extends through a hole 5064 in the side of the frame housing 506 to engage the second spur gear 529b in the gear housing 255.
Also disposed within the frame housing 506 is worm gear 522. Worm gear 522 has circumferentially-disposed teeth 5221, which engage the thread(s) 5233 of the second end 5232 of the worm 523a. The worm gear 522 includes an internal bore 5222 through which is disposed a screw 521. The screw 521 has a head 5211 with a portion 5212, which non-rotatably engages the internal bore 5222 of worm gear 522. The internal bore 5222 and the portion 5212 of the screw 521 may be complementary, e.g., square. The screw 521 also includes a portion 5213 of the head 5211 that extends through a washer 537 and a hole 5351 in a bearing plate 535. The screw 521 also has externally-disposed threads 5214, which engage the internally-threaded bore 5051 of the anvil 505.
A worm gear 516 and a worm gear 517 are disposed within the frame housing 506. The worm gear 516 and the worm gear 517 are positioned on opposite sides of the worm 523b. Specifically, the worm gear 516 includes circumferentially-disposed gear teeth 5161, which engage a first side of the worm 523b, and the worm gear 517 includes circumferentially-disposed gear teeth 5171, which engage a second side of the worm 523b. The worm gear 516 includes a cylindrical projection 5162, which extends through a hole 5352 in the bearing plate 535. Retaining ring 536a engages a groove 5163 of the cylindrical projection 5162 so that the worm gear 516 is rotatable about its vertical central axis 5165 relative to the bearing plate 535. The worm gear 517 includes a cylindrical projection 5172, which extends through a hole 5353 in the bearing plate 535. Retaining ring 536b engages a groove 5173 of the cylindrical projection 5172 so that the worm gear 517 is rotatable about its vertical central axis 5175 relative to the bearing plate 535.
An externally-threaded screw 504 is disposed through an internally-threaded bore 5164 of the worm gear 516. An externally-threaded screw 503 is disposed through an internally-threaded bore 5174 of worm gear 517. Because the worm gears 516 and 517 are located on, and engage, opposite sides of the worm 523b, the internally-threaded bores 5164 and 5174 of the worm gears 516 and 517, as well as the externally-threaded screws 504 and 503, may be oppositely threaded relative to each other. In the example embodiment illustrated, the internally-threaded bore 5164 of the worm gear 516 may have a right-hand thread, which engages the right-hand external thread of the screw 504, and the internally-threaded bore 5174 of the worm gear 517 may have a left-handed thread, which engages the left-handed external thread of the screw 503. Both the screws 503 and 504 are fixedly coupled to a top surface 5021 of a thrust plate 502. The thrust plate 502 is positioned between the opposite sides of the housing frame 506.
A staple pusher 514 is attached to a bottom surface 5022 of the thrust plate 502. The staple pusher 514 includes parallel rows 5141 and 5142 of downwardly-disposed teeth 5143, each of which corresponds to and aligns with a staple guide 5053 of the anvil 505. A knife 519 having a cutting edge 5191 facing downwardly is disposed between the parallel rows of downwardly-disposed teeth 5143 of the staple pusher 514.
A staple holder 513 is disposed below the staple pusher 514. The staple holder 513 includes a cartridge having vertically-disposed slots 5132, each of which corresponds to and aligns with the downwardly-disposed teeth 5143 of the staple pusher 514 and with the staple guides 5053 of the anvil 505. A staple 228, which includes prongs 5281, is provided in each slot 5132. The staple holder 513 also includes a longitudinally-disposed slot 5131, which extends through the staple holder 513 and through which knife 519 may be passed. The staple holder 513 includes a hole 5133 adjacent to one end 5134.
A staple retainer 540 is attached to the lower parallel edges 5066 of the frame housing 506 or to a bottom surface of the staple holder 513. The staple retainer 540 is configured to cover the bottom surface of the staple holder 513 so as to maintain the staples 528 within the staple holder 513 and to prevent foreign material from entering the slots 5132 of the staple holder 513 during shipping of the surgical device 11. The staple retainer 540 has a through-hole 5401 having a tapered or beveled edge 5402. The staple retainer 540 also has a grip region 5403 that is configured to be gripped by a user.
The hole 5133 of the staple holder 513 that is adjacent to the one end 5134 of the staple holder 513 is configured to receive an end 5181 of a pin 518. The end 5181 of the pin 518 is tapered so as to seat against the tapered edge 5402 of the through-hole 5401 of the staple retainer 540. In the example embodiment, the pin 518 is maintained in a substantially vertical position so as to be perpendicular to the staple holder 513. The pin 518 includes a centrally-disposed internal bore 5183 at its opposite end 5184 configured to receive a spring 524. Also located at the end 5184 of the pin 518 is a lever 5182 which is attached perpendicularly to the pin 518. When the staple holder 540 is removed from the surgical device 11, the spring 524 biases the end 5181 of the pin 518 into an orifice 5057 of the anvil 505.
A cartridge cap 515 is attached, such as by welding, to an end 5067 of the frame housing 506. Latches 5151 and 5152 of the cartridge cap 515 engage notches 5068 of the housing frame 506. The cartridge cap 515 also includes an internally-disposed bore 5154 which is configured to receive pin 518. Bore 5154 of the cartridge cap 515 includes a slot 5153 in communication therewith, the slot 5153 configured to guide the lever 5182 of the pin 518. In the example embodiment, the internally-disposed bore 5154 of the cartridge cap 515 does not extend through the top surface 5155 of the cartridge cap 515; instead, it maintains the spring 524 within the internally-disposed bore 5154. The biasing force of the spring 524 pushes the end 5181 of the pin 518 into the hole 5133 of the staple holder 513 and tends to ensure that the staple holder 513 is positioned so that the slots 5132 align with the downwardly-disposed teeth 5143 of the staple pusher 514 and with the staple guides 5053 of the anvil 505. The cartridge cap 515 is also maintained in position by a latch 526, which is pivotably attached to the housing frame 506 by fasteners 507. A housing top 510 is arranged between the opposite sides 5062 and 5065 of the housing frame 506 and protects the components within the housing frame 506.
The example embodiment illustrated in
As illustrated in
It should be understood that while the example embodiments of the present invention illustrated in
According to one example embodiment of the present invention, the surgical device 11 may be configured as an attachment to, or may be integral with, an electro-mechanical surgical system, such as electro-mechanical driver component 610. In another example embodiment, the surgical device may be an attachment to, or may integral with, a mechanical driver system.
Referring to
The first rotatable drive shaft 630 and the second rotatable drive shaft 632 may be configured, for example, as highly flexible drive shafts, such as, for example, braided or helical drive cables. It should be understood that such highly flexible drive cables may have limited torque transmission characteristics and capabilities. It should also be understood that the surgical device 11, or other attachments connected to the flexible shaft 620, may require a higher torque input than the torque transmittable by the drive shafts 630, 632. The drive shafts 630, 632 may thus be configured to transmit low torque but high speed, the high-speed/low-torque being converted to low-speed/high-torque by gearing arrangements disposed, for example, at the distal end and/or the proximal end of the drive flexible shaft 620, in the surgical instrument or attachment and/or in the remote power console 612. It should be appreciated that such gearing arrangement(s) may be provided at any suitable location along the power train between the motors disposed in the housing 614 and the attached surgical instrument or other attachment connected to the flexible shaft 620. Such gearing arrangement(s) may include, for example, a spur gear arrangement, a planetary gear arrangement, a harmonic gear arrangement, cycloidal drive arrangement, an epicyclic gear arrangement, etc.
Referring now to
One of the connectors 644, 648, 652, 656 is non-rotatably secured to the first drive shaft 630, and another one of the connectors 644, 648, 652, 656 is non-rotatably secured to the second drive shaft 632. The remaining two of the connectors 644, 648, 652, 656 engage with transmission elements configured to apply tensile forces on the steering cables 634, 635, 636, 637 to thereby steer the distal end 624 of the flexible shaft 620. The data transfer cable 638 is electrically and logically connected with data connector 660. Data connector 660 includes, for example, electrical contacts 662, corresponding to and equal in number to the number of individual wires contained in the data cable 638. First coupling 622 includes a key structure 642 configured to properly orient the first coupling 622 to a mating and complementary coupling arrangement disposed on the housing 612. Such key structure 642 may be provided on either one, or both, of the first coupling 622 and the mating and complementary coupling arrangement disposed on the housing 612. First coupling 622 may include a quick-connect type connector, which may engage the first coupling 622 to the housing 612 by a simple pushing motion. Seals may be provided in conjunction with any of the several connectors 644, 648, 652, 656, 660 to provide a fluid-tight seal between the interior of first coupling 622 and the environment.
Referring now to
Disposed within housing 614 of the remote power console 612 are electro-mechanical driver elements configured to drive the drive shafts 630, 632 and the steering cables 634, 635, 636, 637 to thereby operate the electro-mechanical driver component 610 and the surgical device 11 attached to the second coupling 626. In the example embodiment illustrated schematically in
It should be appreciated that any one or more of the motors 676, 680, 684, 690, 696 may be, for example, a high-speed/low-torque motor, a low-speed/high-torque motor, etc. As indicated above, the first rotatable drive shaft 630 and the second rotatable drive shaft 632 may be configured to transmit high speed and low torque. Thus, the first motor 676 and the second motor 680 may be configured as high-speed/low-torque motors. Alternatively, the first motor 676 and the second motor 680 may be configured as low-speed/high-torque motors with a torque-reducing/speed-increasing gear arrangement disposed between the first motor 676 and the second motor 680 and a respective one of the first rotatable drive shaft 630 and the second rotatable drive shaft 632. Such torque-reducing/speed-increasing gear arrangements may include, for example, a spur gear arrangement, a planetary gear arrangement, a harmonic gear arrangement, cycloidal drive arrangement, an epicyclic gear arrangement, etc. It should be appreciated that any such gear arrangement may be disposed within the remote power console 612 or in the proximal end of the flexible shaft 620, such as, for example, in the first coupling 622. It should be appreciated that the gear arrangement(s) may be provided at the distal and/or proximal ends of the first rotatable drive shaft 630 and/or the second rotatable drive shaft 632 to prevent windup and breakage thereof.
Referring now to
Controller 1122 is further connected to front panel 615 of housing 614 and, more particularly, to display device 616 via line 1154 and indicators 618a, 618b via respective lines 1156, 1158. Lines 1116, 1118, 1124, 1126, 1128 electrically and logically connect controller 1122 to first, second, third, fourth and fifth motors 676, 680, 684, 690, 696, respectively. A wired remote control unit (“RCU”) 1150 is electrically and logically connected to controller 1122 via line 1152. A wireless RCU 1148 is also provided and communicates via a wireless link 1160 with a receiving/sending unit 1146 connected via line 1144 to a transceiver 1140. The transceiver 1140 is electrically and logically connected to controller 1122 via line 1142. Wireless link 1160 may be, for example, an optical link, such as an infrared link, a radio link or any other form of wireless communication link.
A switch device 1186, which may include, for example, an array of DIP switches, may be connected to controller 1122 via line 1188. Switch device 1186 may be configured, for example, to select one of a plurality of languages used in displaying messages and prompts on the display device 616. The messages and prompts may relate to, for example, the operation and/or the status of the electro-mechanical driver component 610 and/or to the surgical device 11 attached thereto.
According to the example embodiment of the present invention, a first encoder 1106 is provided within the second coupling 626 and is configured to output a signal in response to and in accordance with the rotation of the first drive shaft 630. A second encoder 1108 is also provided within the second coupling 626 and is configured to output a signal in response to and in accordance with the rotation of the second drive shaft 632. The signal output by each of the encoders 1106, 1108 may represent the rotational position of the respective drive shaft 630, 632 as well as the rotational direction thereof. Such encoders 1106, 1108 may include, for example, Hall-effect devices, optical devices, etc. Although the encoders 1106, 1108 are described as being disposed within the second coupling 626, it should be appreciated that the encoders 1106, 1108 may be provided at any location between the motor system and the surgical device 11. It should be appreciated that providing the encoders 1106, 1108 within the second coupling 626 or at the distal end of the flexible shaft 620 may provide an accurate determination of the drive shaft rotation. If the encoders 1106, 1108 are disposed at the proximal end of the flexible shaft 620, windup of the first and second rotatable drive shafts 630, 632 may result in measurement error.
For example, the advancement distance between the first jaw 80 and the second jaw 50 and the thrust plate 502 are functions of, and ascertainable on the basis of, the rotation of the respective drive shafts 630, 632. By ascertaining an absolute position of the second jaw 50 and the thrust plate 502 at a point in time, the relative displacement of the second jaw 50 and the thrust plate 502, based on the output signal from the encoders 1106, 1108 and the known pitches of the screw 521 and of the screws 503 and 504, may be used to ascertain the absolute position of the first jaw 80 and the thrust plate 502 at all times thereafter. The absolute position of the second jaw 50 and the thrust plate 502 may be fixed and ascertained at the time that the surgical device 11 is first coupled to the flexible shaft 620. Alternatively, the position of the second jaw 50 and the thrust plate 502 relative to, for example, the first jaw 80 may be determined based on the output signal from the encoders 1106, 1108.
The surgical device 11 may further include, as illustrated in
It should be appreciated that the attachment attachable to the distal end 624 of the flexible shaft 620, e.g., surgical device 11, may be designed and configured to be used a single time or multiple times. The attachment may also be designed and configured to be used a predetermined number of times. Accordingly, the usage data 1184 may be used to determine whether the surgical device 11 has been used and whether the number of uses has exceeded the maximum number of permitted uses. As more fully described below, an attempt to use the attachment after the maximum number of permitted uses has been reached will generate an ERROR condition.
Referring again to
Referring now to
Wireless RCU 1148 further includes a steering engage/disengage switch 1312, the operation of which controls the operation of fifth motor 696 to selectively engage and disengage the steering mechanism. Wireless RCU 1148 also includes a two-way rocker 1314 having first and second switches 1316, 1318 operable thereby. The operation of these switches 1316, 1318 controls certain functions of the electro-mechanical driver component 610 and any surgical instrument or attachment, such as the surgical device 11, attached to the flexible shaft 620 in accordance with the operating program or algorithm corresponding to the attached device 11. For example, operation of the two-way rocker 1314 may control the opening and closing of the first jaw 80 and the second jaw 50 of the surgical device 11. Wireless RCU 1148 is provided with yet another switch 1320, the operation of which may further control the operation of the electro-mechanical driver component 610 and the device attached to the flexible shaft 620 in accordance with the operating program or algorithm corresponding to the attached device. For example, operation of the switch 1320 may initiate the advancement of the thrust plate 502 of the surgical device 11.
Wireless RCU 1148 includes a controller 1322, which is electrically and logically connected with the switches 1302, 1304, 1306, 1308 via line 1324, with the switches 1316, 1318 via line 1326, with switch 1312 via line 1328 and with switch 1320 via line 1330. Wireless RCU 1148 may include indicators 618a′, 618b′, corresponding to the indicators 618a, 618b of front panel 615, and a display device 616′, corresponding to the display device 616 of the front panel 615. If provided, the indicators 618a′, 618b′ are electrically and logically connected to controller 1322 via respective lines 1332, 1334, and the display device 616′ is electrically and logically connected to controller 1322 via line 1336. Controller 1322 is electrically and logically connected to a transceiver 1338 via line 1340, and transceiver 1338 is electrically and logically connected to a receiver/transmitter 1342 via line 1344. A power supply, for example, a battery, may be provided in wireless RCU 1148 to power the same. Thus, the wireless RCU 1148 may be used to control the operation of the electro-mechanical driver component 610 and the device 11 attached to the flexible shaft 620 via wireless link 1160.
Wireless RCU 1148 may include a switch 1346 connected to controller 1322 via line 1348. Operation of switch 1346 transmits a data signal to the transmitter/receiver 1146 via wireless link 1160. The data signal includes identification data uniquely identifying the wireless RCU 1148. This identification data is used by the controller 1122 to prevent unauthorized operation of the electro-mechanical driver component 610 and to prevent interference with the operation of the electro-mechanical driver component 610 by another wireless RCU. Each subsequent communication between the wireless RCU 1148 and the electro-mechanical device surgical 610 may include the identification data. Thus, the controller 1122 may discriminate between wireless RCUs and thereby allow only a single, identifiable wireless RCU 1148 to control the operation of the electro-mechanical driver component 610 and the device 11 attached to the flexible shaft 620.
Based on the positions of the components of the device attached to the flexible shaft 620, as determined in accordance with the output signals from the encoders 1106, 1108, the controller 1122 may selectively enable or disable the functions of the electro-mechanical driver component 610 as defined by the operating program or algorithm corresponding to the attached device. For example, for the surgical device 11, the firing function controlled by the operation of the switch 1320 is disabled unless the space or gap between second jaw 50 and first jaw 80 is determined to be within an acceptable range.
Referring now to
As described hereinabove, the front panel 615 of housing 614 includes display device 616 and indicators 618a, 618b. The display device 616 may include an alpha-numeric display device, such as an LCD display device. Display device 616 may also include an audio output device, such as a speaker, a buzzer, etc. The display device 616 is operated and controlled by controller 1122 in accordance with the operating program or algorithm corresponding to the device attached to the flexible shaft 620, e.g., the surgical device 11. If no surgical instrument or attachment is so attached, a default operating program or algorithm may be read by or selected by or transmitted to controller 1122 to thereby control the operation of the display device 616 as well as the other aspects and functions of the electro-mechanical driver component 610. If surgical device 11 is attached to flexible shaft 620, display device 616 may display, for example, data indicative of the gap between second jaw 50 and first jaw 80 as determined in accordance with the output signal of encoders 1106, 1108, as more fully described hereinabove.
Similarly, the indicators 618a, 618b are operated and controlled by controller 1122 in accordance with the operating program or algorithm corresponding to the device 11, attached to the flexible shaft 620, e.g., the surgical device 11. Indicator 618a and/or indicator 618b may include an audio output device, such as a speaker, a buzzer, etc., and/or a visual indicator device, such as an LED, a lamp, a light, etc. If the surgical device 11 is attached to the flexible shaft 620, indicator 618a may indicate, for example, that the electro-mechanical driver component 610 is in a power ON state, and indicator 618b may, for example, indicate whether the gap between second jaw 50 and first jaw 80 is determined to be within the acceptable range. It should be appreciated that although two indicators 618a, 618b are described, any number of additional indicators may be provided as necessary. Additionally, it should be appreciated that although a single display device 616 is described, any number of additional display devices may be provided as necessary.
The display device 616′ and indicators 618a′, 618b′ of wired RCU 1150 and the display device 616″ and indicators 618a″, 618b″ of wireless RCU 1148 are similarly operated and controlled by respective controller 1322, 1322′ in accordance with the operating program or algorithm of the device attached to the flexible shaft 620.
As described above, the surgical device 11 may be configured to clamp, cut and staple a section of tissue. The operation of device 11 will now be described in connection with the removal of a cancerous or anomalous section of tissue in a patient's bowel, which is merely one type of tissue and one type of surgery that may be performed using the surgical device 11. Generally, in operation, after the cancerous or anomalous tissue in the gastrointestinal tract has been located, the patient's abdomen is initially opened to expose the bowel. In accordance with remote actuation provided by the electro-mechanical driver component 610, the first and second jaws 50, 80 of the surgical device 11 are driven into the open position by the first driver. As described above, the surgical device 11 may be initially maintained in the open position, thereby eliminating the need to initially drive the surgical device 11 into the open position. The tube of the bowel on a side adjacent to the cancerous tissue is placed between the open first jaw 80 and second jaw 50. By remote actuation, the first driver is engaged in reverse, and the first jaw 80 closes against the second jaw 50, clamping the section of bowel therebetween. Once the bowel has been sufficiently clamped, the second driver is engaged, which causes the thrust plate (having the staple pusher and the knife mounted thereto) to move between a first position as illustrated in
More specifically, according to the example embodiment of the present invention, the surgical device 11 is coupled to the attachment coupling 626 of the electro-mechanical driver component 610 such that the first drive socket 180 engages the first drive shaft 630 of the electro-mechanical driver component 610 and the second drive socket 310 engages the second drive shaft 632 of the electro-mechanical driver component 610. Thus, rotation of the pinion 508a is effected by rotation of the first drive socket 180 which is effected by rotation of the corresponding drive shaft 630 of the electro-mechanical driver component 610. Clockwise or counter-clockwise rotation of the pinion 508a is achieved depending on the direction of rotation of the motor 680. The rotation of the pinion 508b is effected by rotation of the second drive socket 310 which is effected by rotation of the corresponding drive shaft 632 of the electro-mechanical driver component 610. Clockwise or counter-clockwise rotation of the pinion 508b is achieved depending on the direction of the motor 676.
When the surgical device 11 is in an initial closed position as illustrated in
Next, the staple retainer 540 that is attached to the lower parallel edges 5066 of the frame housing 506 or to a bottom surface of the staple holder 513 is removed. According to one example embodiment, the staple holder is configured to be removed by pulling up the lever 5182 of the pin 518 so as to lift the end 5181 of the pin 518 out of the through-hole 5401 of the staple retainer 540. The grip region 5403 of the staple retainer 540 may be gripped and the staple retainer 540 may be pulled off of the surgical device 11. Next, a section of tissue is placed between the first jaw 80 and second jaw 50. With the staple holder 540 removed from the surgical device 11 and with the section of tissue disposed between the first jaw 80 and the second jaw 50, the end 5181 of the pin 518 is inserted into the orifice 5057 of the anvil 505 and maintained in the inserted position in accordance with the bias of spring 524 to maintain the section of tissue between the jaws.
The first motor 680 is operated in reverse in order to place the surgical device in the closed position. Specifically, the first motor 680 corresponding to the first drive shaft 630 is activated, which engages the first drive socket 180, thereby causing the pinion 508a to turn in a second, e.g., clockwise, direction of rotation. Since the circumferentially-disposed gear teeth 5083 of the pinion 508a are engaged with the circumferentially-disposed gear teeth 5291 of the spur gear 529a, the rotation of the pinion 508a causes the spur gear 529a to rotate in a second, e.g., counter-clockwise, direction which is opposite to the direction of rotation of the pinion 508a. The internal bore 5293 of the first spur gear 529a is engaged with the end 5231 of the first worm gear 523a, such that the rotation of the first spur gear 529a causes the first worm 523a to rotate in the same direction as the first spur gear 529a, e.g., counter-clockwise. The thread(s) 5233 of the worm gear 523a are engaged with the worm gear teeth 5221 of worm gear 522, such that the rotation of the first worm 523a causes rotation of the worm gear 522 in a second, e.g., clockwise when viewed from the top, direction. The internal bore 5222 of the worm gear 522 is engaged with the portion 5212 of the head 5211 of the screw 521, such that the rotation of the worm gear 522 causes the screw 521 to rotate in a second, e.g., clockwise when viewed from the top, direction. The externally-disposed thread(s) 5214 of the screw 521 are engaged with the threads of the internally-threaded bore 5051 of the anvil 505, such that the rotation of the screw 521 causes anvil 505 to move in an upward direction, e.g., toward the frame housing 506. Thus, the second jaw 50 is closed in a continuous fashion and begins approaching the first jaw 80. Continuous operation of the motor in this manner eventually places the surgical device 11 in a closed state, as illustrated in
To begin the stapling and cutting procedure, the second motor 676 is actuated in order to move the thrust plate 502 from a first, raised, e.g., retracted, position to a second, lowered, e.g., extended, position. Specifically, the second motor 676 corresponding to the second drive shaft 632 is activated. The second drive shaft 632 is engaged with the second drive socket 310, such that rotation of the second drive shaft 632 in a first direction, e.g., counter-clockwise, causes the pinion 508b to rotate in a first, e.g., counter-clockwise, direction of rotation. The circumferentially-disposed gear teeth 5086 of the pinion 508b are engaged with the circumferentially-disposed gear teeth 5292 of the spur gear 529b, such that the rotation of the pinion 508b causes the spur gear 529b to rotate in a first, e.g., clockwise, direction which is opposite to the direction of rotation of the pinion 508b. The internal bore 5294 of the spur gear 529b is engaged with the end 5234 of the second worm gear 523b, such that the rotation of the spur gear 529b causes the second worm 523b to rotate in the same direction as that of the first spur gear 529b, e.g., clockwise. The threads 5236 of the worm 523b are engaged with the worm gear teeth 5161 of worm gear 516, such that rotation of the second worm 523b causes rotation of the worm gear 516 in a first, e.g., counter-clockwise when viewed from the top, direction. The thread(s) of the internally-threaded bore 5164 of the worm gear 516 are engaged with the thread(s) of the screw 504. Because the screw 504 is non-rotatably coupled to the thrust plate 502, screw 504 and thrust plate 502 move together in a downward direction. Simultaneously, the threads 5236 of the worm 523b are engaged with the worm gear teeth 5171 of the worm gear 517, such that the rotation of the worm 523b causes rotation of the worm gear 517 in a first, e.g., clockwise when viewed from the top, direction. The thread(s) of the internally-threaded bore 5174 of the worm gear 517 engages the thread(s) of the screw 503. Because the screw 503 is non-rotatably coupled to the thrust plate 502, the screw 503 and the thrust plate 502 move together in a downward direction. Thus, the thrust plate 502 is lowered in a continuous fashion, and the staple pusher 514 and the knife 519, which are mounted to the bottom surface 5022 of the thrust plate 502, are also lowered in a continuous fashion.
As the staple pusher 514 is lowered, the downwardly-disposed teeth 5143 of the staple pusher 514 are pushed through the slots 5132 of the staple holder 513. The staples 528, which are initially disposed within the slots 5132 of the staple holder 513, are pushed downwardly and out of the lower openings of the slots 5132 and through the clamped tissue until the prongs 5281 of the staples 528 contact corresponding staple guides 5053 of the anvil 505. The staple guides 5053 bend and close the prongs 5281 of the staples 528, thereby stapling the tissue. Simultaneously, the knife 519 mounted to the bottom surface 5022 of the thrust plate 502 passes through the longitudinally-disposed slot 5131 of the staple holder 513 until it contacts the knife pad 520 of the anvil 505, thereby cutting the clamped tissue.
Having performed a stapling and cutting procedure, the second motor 676 is actuated to move the thrust plate 502 from the second lowered position to the first raised position. Specifically, the second motor 676 corresponding to the second drive shaft 632 is activated, which is engaged with the second drive socket 310. The rotation of the second drive shaft 632 causes the pinion 508b to rotate in a second, e.g., clockwise, direction. The gear teeth 5086 of the pinion 508b are engaged with the gear teeth 5292 of the spur gear 529b, such that this rotation of the pinion 508b causes the spur gear 529b to rotate in a second, e.g., counter-clockwise, direction. The internal bore 5294 of the spur gear 529b is engaged with the end 5234 of the second worm 523b, such that the rotation of the spur gear 529b causes the second worm 523b to rotate in a second, e.g., counter-clockwise, direction. The thread(s) 5236 of the worm 523b are engaged with the circumferentially-disposed worm gear teeth 5161 of worm gear 516, such that the rotation of the worm 523b causes the rotation of the worm gear 516 in a second, e.g., clockwise when viewed from the top, direction. The thread(s) of the internally-threaded bore 5164 of the worm gear 516 are engaged with the thread(s) of the screw 504, and, because the screw 504 is non-rotatably coupled to the thrust plate 502, screw 504 and thrust plate 502 are together moved in an upward direction. Simultaneously, the thread(s) 5236 of the worm 523b engage the worm gear teeth 5171 of the worm gear 517, such that the rotation of the worm 523b causes rotation of the worm gear 517 in a second, e.g., counter-clockwise when viewed from the top, direction. The thread(s) of the internally-threaded bore 5174 of the worm gear 517 is engaged with the threads of the screw 503, and, because the screw 503 is non-rotatably coupled to the thrust plate 502, the screw 503 and the thrust plate 502 move together in an upward direction. Thus, the thrust plate 502 is raised in a continuous fashion, and the staple pusher 514 and the knife 519, which are mounted to the bottom surface 5022 of the thrust plate 502, are also raised in a continuous fashion to their initial retracted positions.
Having performed the cutting and stapling of the tissue and having returned the knife 519 to its retracted position, the first motor 680 is actuated to place the surgical device in the open position. Specifically, the first motor 680 corresponding to the first drive shaft 630 is activated. The first drive shaft 630 is engaged with the first drive socket 180, such that the rotation of the first drive shaft 630 causes the pinion 508a to rotate in a first direction of rotation, e.g., counter-clockwise. The gear teeth 5083 of the pinion 508a are engaged with the gear teeth 5291 of the spur gear 529a, such that the rotation of the pinion 508a causes the spur gear to rotate in a first, e.g., clockwise, direction. The internal bore 5293 of the first spur gear 529a is engaged with the end 5231 of the first worm 523a, such that the rotation of the first spur gear 529a causes the first worm 523a to rotate in the same direction as the first spur gear 529a, e.g., clockwise. The thread(s) 5233 of the worm gear 523a are engaged with the worm gear teeth 5221 of the worm gear 522, such that the rotation of the worm gear 523a causes the rotation of the worm gear 522 in a first, e.g., counter-clockwise when viewed from the top, direction. The internal bore 5222 of the worm gear 522 is engaged with the portion 5212 of the head 5211 of the screw 521, such that the rotation of the worm gear 522 causes the screw 521 to rotate in a first, e.g., counter-clockwise when viewed from the top, direction. The externally-disposed thread(s) 5214 of the screw 521 are engaged with the thread(s) of the internally-threaded bore 5051 of the anvil 505, such that the rotation of the screw 521 causes anvil 505 to move in an downward direction, e.g., away from the frame housing 506. Thus, the second jaw 50 is separated from the first jaw 80, until the surgical device 11 is again in an open position, providing a space between the first jaw 80 and the second jaw 50, as illustrated in
Thereafter, the surgical device 11 may be separated from the electro-mechanical driver component and replaced with another surgical device 11 so that the same clamping, cutting and stapling procedure may be performed on a different section of the tissue, e.g., on the opposite side of the anomalous or cancerous tissue. Once the second end of the bowel is also clamped, cut and stapled, the surgical device 11 may be separated from the electro-mechanical driver component 610. If necessary, an operator may discard the attachments or sterilize them for reuse.
It is noted that prior to actuation of the surgical device 11, a calibration procedure may be performed. Such a procedure is described in U.S. Provisional Patent Application No. 60/337,544, entitled “Calibration of a Surgical Instrument”, filed on Dec. 4, 2001, which is expressly incorporated in its entirety herein by reference thereto.
According to the example embodiments of the present invention illustrated in
In accordance with another example embodiment of the present invention, the surgical device 11 may provide limited reloadability. For example, the surgical device 11 may be configured to permit the staple holder 513 to be replaced once, so that the clamping, cutting and stapling operation may be performed twice on a single patient, e.g., on opposite sides of a cancerous section of tissue, but does not permit the staple holder 513 to be replaced more than twice.
In another example embodiment of the present invention, the surgical device 11 may be configured to maintain two sets of staples 528 within the staple holder 513, a first set of which is used on one side of a cancerous section of tissue and a second set of which is used on the other side of the cancerous section of tissue. It should be understood that the surgical device 11 may be configured for any number of uses and that usage may be determined in accordance with the usage data 1184. That is, the memory module 501 may be configured to store data representing the number of times that the surgical device 11 is reloaded. Thus, in accordance with the operating program, the electro-mechanical driver component 610 may limit the number of times that a reloaded surgical device 11 may be fired in accordance with the usage information stored in the memory module 501.
A surgical device 11 that is configured to be reloadable may be operated in a similar manner to the non-reloadable surgical device 11 described above. However, the reloadability of the surgical device 11 permits the operator to perform additional steps during the operation of the surgical device 11. For example, once the surgical device 11 is initially placed in the open position, the staple holder 513 may be accessed by the operator and may be inspected to determine whether the staples 528 are ready for the procedure and/or whether the need exists to replace the staple holder 513 with a more suitable staple holder 513. Similarly, once a clamping, cutting and stapling operation has been performed and the set of staples 518 has been used, the staple holder 513 may be accessed by the operator again in order to replace the staple holder 513 with another staple holder 513 or to insert another set of staples 518 into the same staple holder 513.
According to the example embodiments of the present invention illustrated in
In accordance with another example embodiment of the invention, different sizes of a non-reloadable surgical device 11 may be used, each size of the non-reloadable surgical device 11 corresponding to a different thickness of tissue to be cut and stapled. In this example embodiment, the memory module 501 of the surgical device 11 may include data readable by the controller 1122 to identify to the controller 1122 that the surgical device 11 corresponds to a particular thickness of tissue to be cut and stapled.
In still another example embodiment of the invention, the controller 1122 is configured to provide more than one range of operation for the same set of staples 523. For example, the controller 1122 may be configured to enable an operator to select settings that correspond to different thicknesses of tissue to be cut or stapled. For example, according to one example embodiment, the controller 1122 is configured to actuate the first drive shaft 630 to close the upper jaw 80 to a first position relative to the lower jaw 50 in order to clamp a section of tissue disposed therebetween. The operator may then select whether to actuate the second drive shaft 632 in order to cut and staple the tissue or whether to actuate the first drive shaft 630 again in order to close the upper jaw 80 to a second position relative to the lower jaw 50. This example embodiment may provide the advantage that an operator is not required to pre-select a particular size of the surgical device 11 or to pre-select a replaceable cartridge for the surgical device 11 before the section of tissue to be cut and stapled has been exposed and its thickness is determined. This arrangement may prevent an operator from pre-selecting a wrong size or from maintaining an inventory of more than one size available for use.
The surgical device 11 may also be configured to be automatically calibrated upon attachment to the electro-mechanical driver component 610. For example, the controller 1122 may be configured to open or close the surgical device 11 in order to determine the fully-open or fully-closed position of the surgical device 11 before operation. According to one example embodiment, the surgical device 11 and the electro-mechanical driver component 610 are configured to perform the automatic calibration routine independent of the presence of, or of the thickness of, the staple retainer 540 by employing a mechanical hard-stop calibration feature. As mentioned above, an example of a calibration procedure for use with surgical devices is described in U.S. Provisional Patent Application No. 60/337,544, which is expressly incorporated herein in its entirety by reference thereto.
a) to 20(c) illustrate a flowchart for a main operating program according to one example embodiment of the present invention for operating the surgical device 11. According to one example embodiment of the invention, the main operating program is executed by the controller 1122, although it should be understood that other or additional controllers, electronic devices, etc. may be configured to execute some or all of the steps illustrated in the flowcharts. Referring to
In step 2010, it is determined whether the ID data 1182 was successfully read and/or whether the ID data 1182 is valid. If it is determined in step 2010 the ID data 1182 was successfully read and/or that the ID data 1182 is valid, then in step 2012, control returns to the kernel, e.g., the basic operating program of the electro-mechanical driver component 610. If, in step 2010, it is determined that the ID data 1182 has been successfully read in step 2008 and/or that the read ID data 1182 is valid, then in step 2014, the DLU NEW flag of the RAM 1134 is read. In step 2016, it is determined whether the DLU NEW flag has been successfully read and/or whether the DLU NEW flag is valid. If it is determined in step 2016 that the DLU NEW flag was not successfully read and/or is not valid, then control proceeds to step 2012, at which control returns to the kernel. If it is determined in step 2010 that the DLU NEW flag has been successfully read and/or that the DLU NEW flag is valid, then control proceeds to step 2018.
In step 2018, it is determined whether the surgical device 11 is new based on the DLU NEW flag. If it is determined in step 2018 that the surgical device 11 is new, then control proceeds to step 2026. In step 2026, an auto-zero operation is performed with respect to the surgical device 11, and control proceeds to step 2028. The auto-zero operation of step 2026 is explained in more detail in connection with the flowchart illustrated in
After step 2028 is performed, control proceeds to the steps illustrated in the flowchart of
In step 2046, it is determined whether a CLOSE key, e.g., the switch 1320 of the wireless RCU 1148 or the switch 1320′ of the wired RCU 1150, is pressed. If it is determined in step 2046 that the CLOSE key is pressed, then control proceeds to step 2048, in which a closing operation is performed as illustrated in
In step 2058, it is determined whether any other key, e.g., of the wireless RCU 1148 or the wired RCU 1150, is pressed. If it is determined in step 2058 that another key is pressed, then control proceeds to step 2064. If it is determined in step 2058 that no other key is pressed, then control proceeds to step 2060. In step 2060, it is determined whether a fire button timer exceeds a predetermined period of time, e.g., ten seconds. If it is determined in step 2060 that the fire button timer does exceed the predetermined period of time, the fire button timer and count are reset in step 2062. Control then proceeds to step 2064 in which it is determined whether the fire button count has a value of “1”. If it is determined in step 2064 that the fire button count has a value of “1”, control proceeds to step 2066, in which the display of an anvil gap on display device 616 is restored. After step 2066 is performed, control proceeds to step 2050, in which the fire button count is reset. Thereafter, in step 2052, the kernel is called in order to check for steering or disengagement keys and to process the same.
After step 2044, step 2052 or step 2060 is performed, control proceeds to the steps illustrated in
In step 2080, it is determined whether the serial number of the surgical device 11 has changed. If it is determined in step 2080 that the serial number has not changed, control proceeds to step 2082, at which an IDLE routine is called. Thereafter, control returns to step 2030. If it is determined in step 2080 that the serial number has changed, then, in step 2084, the serial number is stored in a temporary memory location. In step 2086, the serial number of the surgical device 11 is read. In step 2088, it is determined whether the DLU serial number was able to be read. If it is determined in step 2088 that the DLU serial number was not able to be read, control proceeds to step 2082, at which the IDLE routine is called. If it is determined in step 2088 that the DLU serial number is able to be read, then, in step 2090, a comparison step is performed with respect to the DLU serial number and the serial number stored in the temporary storage location. If it is determined in step 2090 that the comparison between the DLU serial number and the serial number stored in the temporary storage location is not successful, then control proceeds to step 2082, in which the IDLE routine is called. If it is determined in step 2090 that the comparison between the DLU serial number and the serial number stored in the temporary storage location is successful, then, in step 2092, the serial number of the surgical device 11 is read. In step 2094, it is determined whether the DLU serial number was able to be read. If it is determined in step 2094 that the DLU serial number was not able to be read, control proceeds to step 2082, in which the IDLE routine is called. If it is determined in step 2094 that the DLU serial number is able to be read, then, in step 2096, a comparison step is performed with respect to the DLU serial number and the serial number stored in the temporary storage location. If it is determined in step 2096 that the comparison between the DLU serial number and the serial number stored in the temporary storage location is not successful, control proceeds to step 2082, at which the IDLE routine is called. If it is determined in step 2096 that the comparison between the DLU serial number and the serial number stored in the temporary storage location is successful, then, in step 2098, control returns to the kernel.
a) to 21(c) illustrate an example of a jaw-closing routine for closing the jaws of the surgical device 11 when attached to the electro-mechanical driver component 610. According to one example embodiment of the present invention, the closing routine may be executed by the controller 1122, although, as described above, it should be understood that other controllers, electronic devices, etc. may be configured to execute some or all of the steps illustrated in
Referring to
If it is determined in step 2112 that the flexible shaft 620 has not been tested, or if it is determined in step 2116 that the shaft test did not succeed, then control proceeds to step 2118, in which the surgical device 11 is marked as no longer being new. For example, the memory module 501 may be written to in step 2118 to indicate that the surgical device 11 is no longer new. In step 2120, it is determined whether the marking step 2118 was successful. If it is determined in step 2120 that the marking step 2118 was not successful, then control proceeds to step 2122, in which a message, such as “REPLACE DLU” is displayed, e.g., on display device 616. In step 2124, an audible chime is issued. In step 2126, the release of all keys of the remote device 1148 or 1150 is awaited. Control then returns in step 2128 to the main operating program illustrated in
If it is determined in step 2120 that the marking step performed in step 2118 was successful, then control proceeds to step 2130. In step 2130, a value corresponding to the current position of the anvil 505 is obtained. In step 2132, it is determined whether the value corresponding to the current position of anvil 505 is greater than a value referred to as ANVIL_GAP_GREEN_RANGE. The value of ANVIL_GAP_GREEN_RANGE may be stored, for example, in a memory location of memory unit 1130. If it is determined in step 2132 that the value corresponding to the current position of anvil 505 is greater than the value referred to as ANVIL_GAP_GREEN_RANGE, then in step 2134, a message, such as “ANVIL CLOSING” is displayed, e.g., on display device 616, and a msg flag is set to a value of “0”. If it is determined in step 2132 that the value corresponding to the current position of anvil 505 is not greater than the value referred to as ANVIL_GAP_GREEN_RANGE, then, in step 2136, it is determined whether the value corresponding to the current position of anvil 505 is greater than a value referred to as ANVIL_GAP_BLUE_RANGE. If it is determined in step 2136 that the value corresponding to the current position of anvil 505 is greater than a value referred to as ANVIL_GAP_BLUE_RANGE, then, in step 2140, a message, such as “GREEN OK” is displayed, e.g., on display device 616 and a msg flag is set to a value of “1”. If it is determined in step 2136 that the value corresponding to the current position of anvil 505 is not greater than a value referred to as ANVIL_GAP_BLUE_RANGE, then, in step 2138, a message, such as “BLUE OK” is displayed, e.g., on display device 616, and a msg flag is set to a value of “2”. Thus, the message displayed on the display device 616 provides an indication to a user whether the gap between the first jaw 80 and the second jaw 50 is within, e.g., a “green” range for sections of tissue that are within a first predetermined thickness range, and a “blue” range for sections of tissue that are within a second predetermined thickness range. In accordance with one example embodiment of the present invention, the “green” range corresponds to sections of tissue that are within a thickness range between approximately 1.5 mm and 2.0 mm, and the “blue” range corresponds to sections of tissue that are within a thickness range less than approximately 1.5 mm. After either step 2138 or 2140 are performed, control proceeds to step 2142, in which a graphic gap display is updated, such as on display device 616. After either of steps 2134 or 2142 have been performed, control proceeds to step 2144, illustrated in
Referring to the flowchart in
Referring back to step 2152, if it is determined in step 2152 that the stall timer has a value that is greater than the value referred to as CLOSE_STALL, then control proceeds to step 2160, in which a current anvil position is obtained. In step 2162, it is determined whether the position of the anvil 505 has changed. If it is determined in step 2162 that the position of the anvil 505 has changed, then, in step 2164, the last known position of the anvil 505 is updated and the stall timer is reset. If it is determined in step 2164 that the position of the anvil 505 has not changed, then control proceeds to step 2166. In step 2166, it is determined whether the current position of the anvil 505 is less than or equal to a value referred to as ANVIL_GAP_GREEN_RANGE, which may be stored, for example, in a memory location of memory unit 1130. If it is determined in step 2166 that the current position of the anvil 505 is not less than or equal to a value referred to as ANVIL_GAP_GREEN_RANGE, control proceeds to step 2168, in which it is determined whether the current position of the anvil 505 is less than or equal to a predetermined value referred to as ANVIL_GAP_MIN, which may be stored, for example, in a memory location of memory unit 1130. If it is determined in step 2168 that the current position of the anvil 505 is less than or equal to the predetermined value referred to as ANVIL_GAP_MIN, then control proceeds to step 2186 as shown in the flowchart of
Referring back to step 2166, if it is determined that the current position of the anvil 505 is greater than a value referred to as ANVIL_GAP_GREEN_RANGE, control proceeds to step 2172, in which it is determined whether the current position of the anvil 505 is greater than a predetermined value referred to as ANVIL_GAP_BLUE_RANGE, which may be stored, for example, in a memory location of memory unit 1130. If it is determined in step 2172 that the current position of the anvil 505 is greater than a predetermined value referred to as ANVIL_GAP_BLUE_RANGE, then control proceeds to step 2174, at which it is determined whether the msg flag has a value of “1”. If it is determined in step 2174 that the msg flag does not have a value of “1”, then, in step 2176, the controller 1122 sets the value of the msg flag at a value of “1”, and a message, such as “GREEN OK” is displayed, e.g., on display device 616, indicating to a user that a “green” cartridge, corresponding to a particular thickness of tissue to be stapled, may be used. After step 2176 has been completed, or if in step 2174 it is determined that the msg flag has a value of “1”, then control proceeds to step 2178.
If, in step 2172, it is determined that the current position of the anvil 505 is not greater than a predetermined value referred to as ANVIL_GAP_BLUE_RANGE, which may be stored, for example, in a memory location of memory unit 1130, then, in step 2180, it is determined whether the msg flag has a value of “2”. If it is determined in step 2180 that the msg flag does not have a value of “2”, then, in step 2182, the value of the msg flag is set at a value of “2”, and a message, such as “BLUE OK” is displayed, e.g., on display device 616, indicating to a user that a “blue” cartridge, corresponding to a particular thickness of tissue to be stapled, may be used. After step 2182 is completed, or if, in step 2180, it is determined that the msg flag has a value of “2”, then control proceeds to step 2178. In step 2178, the graphic gap display, e.g., on the display device 616, is updated. In step 2184, an “IN RANGE” display, such as an light-emitting diode, is turned on, and a DLU FIRED flag in the RAM 1134 of the memory unit 1130 is set. Thereafter, control proceeds to step 2168.
After step 2158, step 2168, or step 2170 have been performed, control proceeds to step 2186, at which point the motor that drives the anvil 505, e.g., motor 680, is turned off. In step 2188, it is determined whether a value corresponding to the current position of the gap is less than or equal to a predetermined value referred to as ANVIL_GAP_MAX, which may be stored, for example, in a memory location of memory unit 1130. If it is determined in step 2188 that the value corresponding to the gap is less than or equal to the predetermined value stored in a memory location referred to as ANVIL_GAP_MAX, control proceeds to step 2192, in which the graphic gap display, e.g., on display device 616, is updated. If it is determined in step 2188 that the value corresponding to the gap is not less than or equal to the predetermined value referred to as ANVIL_GAP_MAX, then in step 2190, the release of all keys of the remote device is awaited, and in step 2194, control returns to the main operating program as shown in
a) to 22(c) illustrate an example of an auto-zeroing routine for performing an auto-zero function for the surgical device 11 when attached to the electro-mechanical drive component 610. According to one example embodiment of the present invention, this auto-zeroing routine is executed by the controller 1122, although, as described above, it should be understood that other controllers, electronic devices, etc. may be configured to execute some or all of the steps illustrated in
In step 2222, it is determined whether the stall timer has a value that is greater than a value referred to as AUTOZERO_STALL, which may be stored, for example, in a memory location of memory unit 1130. If it is determined in step 2222 that the stall timer has a value that is greater than the value referred to as AUTOZERO_STALL, control proceeds to step 2242, at which point the motor corresponding to the anvil 505, e.g., the motor 680, is shut off. If it is determined in step 2222 that the stall timer has a value that is not greater than a predetermined value referred to as AUTOZERO_STALL, then control proceeds to step 2224, in which it is determined whether the current position of the anvil 505 is equal to the last position. If it is determined in step 2224 that the current position of the anvil 505 is not equal to the last position, then in step 2226, the stall timer and the last position are reset. If, in step 2224, it is determined that the current position of the anvil 505 is equal to the last position, then control proceeds to step 2228, at which it is determined whether any of the keys of the remote device, e.g., the wireless RCU 1148 or the wired RCU 1150, are pressed. If it is determined in step 2228 that any of the keys of the remote device are pressed, then in step 2230, the stall timer and the last position are reset. In step 2232, the anvil 505 is opened a predetermined distance referred to as ANVIL_BACKUP, the value of which may be stored, for example, in a memory location of memory unit 1130, or else until the value of the stall timer exceeds the value referred to as AUTOZERO_STALL, or a multiple thereof, e.g., a multiple of the value of AUTOZERO_STALL. In step 2232, the motor, e.g., motor 680, corresponding to the anvil 505 is turned off. In step 2234, an audible chime is issued and a message, such as “PRESS CLOSE TO RECALIBRATE” is displayed, e.g., on display device 616. In step 2236, the release of all keys of the remote device is awaited, and in step 2238, control returns to the main operating program, such as the main operating program illustrated in
If, in step 2228, it is determined that none of the keys of the remote are pressed, then control proceeds to step 2240, at which it is determined whether the movement of the jaws is complete. If it is determined in step 2240 that the movement of the jaws is not complete, then control returns to step 2222. If it is determined in step 2240 that the movement of the jaws is complete, then control proceeds to step 2242, in which the motor that drives the anvil 505, e.g., motor 680, is shut off. In step 2244, the values of a distal position and a proximal position are each set to a value of 1.5 mm.
Control then proceeds to the steps illustrated in
If it is determined in step 2258 that a key of the remote device, e.g., the wireless RCU 1148 or the wired RCU 1150, is not pressed, then, in step 2260, it is determined whether the movement of the jaws of the surgical device 11 is completed. If it is determined in step 2260 that the jaws have not completed their movement, then control returns to step 2252. If it is determined in step 2260 that the movement of the jaws of the surgical device 11 is completed, then, in step 2262, the anvil motor, e.g., motor 680, is turned off, and an audible signal is issued, or a message, such as “READY”, is displayed, e.g., on the display device 616. In step 2264, an AUTOZERO_OK flag is set and the release of all of the keys of the remote device is awaited. In step 2266, control returns to a main operating program, such as is shown in
If, in step 2304, it is determined that the autozero flag has been set, then, in step 2314, the anvil torque is set to a value referred to as OPEN_TORQUE, which may be stored, for example, in a memory location of memory unit 1130. In step 2316, the velocity is set to a predetermined value referred to as OPEN_VELOCITY, which may be stored, for example, in a memory location of memory unit 1130. In step 2318, the destination of the jaws is set to a fully unclamped position. In step 2320, the jaws of the surgical device 11 are caused to start to move. In step 2322, a message, such as “ANVIL OPENING” is displayed, e.g., on display device 616. In step 2324, a msg flag is cleared in the memory. In step 2326, it is determined whether the OPEN key of the remote device is released. If it is determined in step 2326 that the OPEN key is released, then control proceeds to step 2328, at which the anvil motor, e.g., motor 680, is turned off and the release of all of the keys of the remote device is awaited. In step 2330, control returns to a main operating program, such as the main operating program illustrated in
If, in step 2326, it is determined that the OPEN key is not released, then, in step 2332, the value of the anvil gap, e.g., the gap between the first jaw 80 and the second jaw 50 of the surgical device 11, is obtained. In step 2334, it is determined whether the gap is greater than a value referred to as ANVIL_FULL_OPEN_GAP, which may be stored, for example, in a memory location of memory unit 1130. If it is determined in step 2334 that the gap is greater than a value referred to as ANVIL_FULL_OPEN_GAP, then, in step 2336, it is determined whether the msg flag is set. If it is determined in step 2336 that the msg flag is not set, then, in step 2338, the msg flag is set and a message, such as “ANVIL FULLY OPEN”, is displayed, e.g., on display device 616. Control then proceeds to step 2340. Similarly, if it is determined in step 2334 that the gap is not greater than a predetermined value referred to as ANVIL_FULL_OPEN_GAP, or if it is determined in step 2336 that the msg flag is not set, then control proceeds to step 2340. In step 2340, it is determined whether the movement of the jaws of the surgical device 11 is complete. If it is determined in step 2340 that the movement of the jaws is not complete, control returns to step 2326. If it is determined in step 2340 that the movement of the jaws of the surgical device 11 is complete, then control proceeds to step 2328. As previously mentioned above, in step 2328, the anvil motor, e.g., motor 680, is turned off and the release of all of the keys of the remote device is awaited. In step 2330, control returns to the main operating program illustrated in
a) illustrates a staple-firing routine for cutting and stapling a section of tissue clamped between the upper and lower jaws of the surgical device 11, when attached to the electro-mechanical driver component 610. According to one example embodiment of the invention, this operating program is executed by the controller 1122, although, as described above, it should be understood that other controllers, electronic devices, etc. may be configured to execute some or all of the steps of the staple-firing routine. Referring to
As described above, if it is determined in step 2410 that the DLU FIRED flag is not set, then control proceeds to step 2422. In step 2422, the fire button count is increased. In step 2424, it is determined whether it is the first time that the fire button is pressed. If it is determined in step 2424 that it is the first time that the fire button is pressed, then in step 2426, a message, such as “FIRE KEY READY” is displayed, e.g., on display device 616. In step 2428, the fire button timer is reset. After step 2428 is performed, control returns to step 2418, as described above. If, in step 2424, it is determined that it is not the first time that the fire button is pressed, a message, such as “FIRING”, is displayed, e.g., on display device 616 in step 2430. In step 2432, the usage count is decreased and the DLU FIRED flag is set. According to one example embodiment of the present invention, control tries a predetermined number of times, e.g., three times, at a predetermined time intervals, e.g., 100 mS, to decrease the usage count.
Control then proceeds to step 2434, as illustrated in
If it is determined in step 2440 that the fire or the stall timers has expired, then control proceeds to step 2442. In step 2442, it is determined whether the fire motor, e.g., motor 676, has completed its movement. If it is determined in step 2442 that the fire motor, e.g., motor 676, has completed its movement, then control proceeds to step 2452, as discussed above. If it is determined in step 2442 that the fire motor, e.g., motor 676, has not completed its movement, then control proceeds to step 2444. In step 2444, it is determined whether the current position of the anvil 505 is the same as the last position of the anvil 505. If it is determined in step 2444 that the current position of the anvil 505 is not the same as the last position of the anvil 505, then, in step 2446, the last position of the anvil 505 is set equal to the current position of the anvil 505, and the stall timer is reset. After step 2446 has been performed, or if, in step 2444, it is determined that the current position of the anvil 505 is the same as the last position of the anvil 505, control proceeds to step 2448. In step 2448, it is determined whether the knife, such as knife 519, has reached its destination, e.g., the fully extended position. If it is determined in step 2448 that the knife has not reached its destination, then control returns to step 2440. If, in step 2448, it is determined that the knife has reached its destination, then in step 2450, the controller 1122 disables the fire motor, e.g., motor 676.
After the completion of either step 2450 or 2456, control proceeds to step 2458. In step 2458, the “IN RANGE” display, e.g., a light-emitting-diode, is turned off and the DLU READY flag is cleared. In step 2460, the motor current limit is set to full scale. In step 2462, the anvil 505 is caused to start to move back to its initial position. In step 2464, the last known position is set to zero, and the cycle and stall timers are reset. In step 2466, as illustrated in
If, in step 2466, it is determined that the cycle timer is not greater than the value referred to as TIME_FIRE, then, in step 2474, it is determined whether the stall timer is greater than a predetermined value referred to as TIME_STALL, which may be stored, for example, in a memory location of the memory unit 1130, or a multiple thereof, e.g., a multiple of the value of TIME_FIRE. If it is determined in step 2474 that the stall timer is greater than a predetermined value referred to as TIME_STALL, then control proceeds to step 2468, as previously described. If, in step 2474, it is determined that the stall timer is not greater than the value referred to as TIME_STALL, then control proceeds to step 2476. In step 2476, it is determined whether the current position of the anvil 505 is the same as the last position of the anvil 505. If it is determined in step 2476 that the current position of the anvil 505 is the same as the last position of the anvil 505, then, in step 2478, the last position of the anvil 505 is set equal to the current position of the anvil 505, and the stall timer is reset. After step 2478 has been performed, or if, in step 2476, it is determined that the current position of the anvil 505 is the same as the last position of the anvil 505, then control proceeds to step 2480. In step 2480, it is determined whether the knife, such as knife 519, is fully retracted. If it is determined in step 2480 that the knife is not fully retracted, then control returns to step 2466. If, in step 2480, it is determined that the knife is fully retracted, or after the completion of step 2468 or 2472 as described above, then in step 2482, the fire motor, e.g., motor 676, is disabled. In step 2484, it is determined whether the error flag is set in memory. If it is determined in step 2484 that it the error flag is set in memory, then control proceeds to step 2488 and returns to the main operating program. If it is determined in step 2488 that the error flag is not set, then a message, such as “FIRING COMPLETED”, is displayed, e.g., on display device 616. Thereafter, in step 2488, control returns to the main operating program.
a) illustrates a shaft-testing routine corresponding to a shaft test for the flexible shaft 620 of the electro-mechanical drive component 610. According to one example embodiment of the invention, this shaft-testing routine is executed by the controller 1122, although, as described above, it should be understood that other controllers, electronics devices, etc. may be configured to execute some or all of the steps of the shaft-testing routine. Referring to
If, in step 2506, it is determined that the time period referred to as FIRE_TEST_TIME_OUT has not expired, then, in step 2512, a predetermined time period referred to as FIRE_STOP_TIME, which may be stored, for example, in a memory location of memory unit 1130, is awaited, in order to ensure that the movement of the knife 519 is complete. In step 2514, it is determined whether a distal end position is less than a predetermined position referred to as FIRE_CHECK_POSITION, a value of which may be stored, for example, in a memory location of memory unit 1130. If it is determined in step 2514 that a distal end position is not less than a predetermined position referred to as FIRE_CHECK_POSITION, then, in step 2516, an error condition is determined to have occurred, and an error message, such as “REPLACE FLEXSHAFT”, is displayed, e.g., on display device 616. In step 2518, an audible chime is issued and the error flag is set. After step 2518 has been performed, or if, in step 2514, it is determined that the distal end position is less than FIRE_CHECK_POSITION, then control proceeds to step 2520. In step 2520, the distal end position is set to an original, or home, position. In step 2522, a predetermined time period referred to as FIRE_TEST_TIME_OUT, which may be stored, for example, in a memory location of memory unit 1130, is awaited, or else the completion of the movement of the knife 519 is awaited. In step 2524, it is determined whether the time period referred to as FIRE_TEST_TIME_OUT is expired. If it is determined in step 2524 that the time period referred to as FIRE_TEST_TIME_OUT has expired, then, in step 2526, a message, such as “ERROR 006—SEE OPERATOR'S MANUAL” is displayed, e.g., on display device 616. In step 2528, a chime is issued until the power to the electro-mechanical drive component 610 is turned off. If, in step 2524, it is determined that the time has not expired, then, as illustrated in the flowchart of
One problem of conventional surgical devices is that they may limit the approach angle at which the device is used. As previously described, conventional surgical devices typically employ an instrument shaft that is perpendicular to the section of tissue to be cut or stapled. When a conventional surgical device is employed corporally, e.g., inside the body of a patient, the device is limited to a single approach angle for cutting and stapling the section of tissue.
By contrast, the surgical device 11 of the present invention may not limit the approach angle at which the device is used. As previously described, the surgical device 11, according to various example embodiments thereof, includes drive shafts 630 and 632 that are coupled to the first jaw 80 at an angle, e.g., perpendicular, to the plane of movement of the first jaw 80 relative to the second jaw 50. Thus, when the surgical device 11 is employed intracorporeally, e.g., inside the body of a patient, the surgical device 11 may not be limited to a single approach angle. Instead, a variety of approach angles may be employed, which may enable an operator to more effectively use the surgical device on various sections of tissue.
Another problem of conventional surgical devices is that they may be difficult to maneuver within the body of a patient. For example, when a conventional surgical device is employed to clamp or staple a section of tissue that is not easily maneuverable, the surgical device must be maneuvered instead. For example, in the case of a section of gastro-intestinal tissue located adjacent to the anal stump, the section of tissue may not be maneuverable prior to or during performance of the operation. A conventional surgical device cannot be employed in such a location, because the approach angle required to be used by an operator may interfere with the pelvis of the patient.
In contrast, the surgical device 11 according to various example embodiments thereof, may be less difficult to maneuver within the body of a patient. For example, in the above-described case of a section of gastro-intestinal tissue located adjacent to the anal stump, the surgical device 11 may be positioned at the very end of the section of gastro-intestinal tissue nearest the anus. Thus, the angled, e.g., perpendicular, arrangement of the drive shafts 630 and 632 relative to the plane of movement of the first jaw 80 relative to the second jaw 50 may improve the maneuverability of the surgical device 11 within the body of the patient.
The present application claims the benefit of U.S. patent application Ser. No. 60/346,656, filed on Jan. 8, 2002, which is expressly incorporated herein by reference in its entirety. The present application is related to U.S. patent application Ser. No. 09/510,923, filed on Feb. 22, 2000, U.S. patent application Ser. No. 09/723,715, filed on Nov. 28, 2000, U.S. patent application Ser. No. 09/836,781, filed on Apr. 17, 2001, U.S. patent application Ser. No. 09/887,789, filed on Jun. 22, 2001, and U.S. patent application Ser. No. 60/337,544, filed on Dec. 4, 2001, each of which is expressly incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
1798902 | Raney | Mar 1931 | A |
1881250 | Tomlinson | Oct 1932 | A |
2031682 | Wappler et al. | Feb 1936 | A |
2174219 | Balma | Sep 1939 | A |
2246647 | Vancura | Jun 1941 | A |
2419045 | Whittaker | Apr 1947 | A |
2725628 | O'Neilly et al. | Dec 1955 | A |
3079606 | Bobrov at at. | Mar 1963 | A |
3120845 | Homer | Feb 1964 | A |
3193165 | Akhalaya et al. | Jul 1965 | A |
3252643 | Strekopytov et al. | May 1966 | A |
3253643 | Gudheim | May 1966 | A |
3256875 | Tsepelev et al. | Jun 1966 | A |
3275211 | Hirsch et al. | Sep 1966 | A |
3315863 | O'Dea | Apr 1967 | A |
3317105 | Astafiev et al. | May 1967 | A |
3388847 | Kasulin et al. | Jun 1968 | A |
3490576 | Alessi et al. | Jan 1970 | A |
3490675 | Green et al. | Jan 1970 | A |
3494533 | Green et al. | Feb 1970 | A |
3499591 | Green | Mar 1970 | A |
3552626 | Astafiev et al. | Jan 1971 | A |
3568659 | Karnegis | Mar 1971 | A |
3589589 | Akopov | Jun 1971 | A |
3593903 | Astafiev et al. | Jul 1971 | A |
3618842 | Bryan | Nov 1971 | A |
3638652 | Kelley | Feb 1972 | A |
3643851 | Green | Feb 1972 | A |
3662939 | Bryan | May 1972 | A |
3675688 | Bryan et al. | Jul 1972 | A |
3692224 | Astafiev et al. | Sep 1972 | A |
3717294 | Green | Feb 1973 | A |
3735762 | Bryan et al. | May 1973 | A |
3777538 | Weatherly et al. | Dec 1973 | A |
3788303 | Hall | Jan 1974 | A |
3795034 | Strekopytov et al. | Mar 1974 | A |
3815476 | Green et al. | Jun 1974 | A |
3819100 | Noiles et al. | Jun 1974 | A |
3837555 | Green | Sep 1974 | A |
3844289 | Noiles et al. | Oct 1974 | A |
3858577 | Bass et al. | Jan 1975 | A |
3859986 | Okada et al. | Jan 1975 | A |
3882854 | Hulka et al. | May 1975 | A |
3892228 | Mitsui | Jul 1975 | A |
3935981 | Akopov et al. | Feb 1976 | A |
3949924 | Green | Apr 1976 | A |
3952748 | Kaliher et al. | Apr 1976 | A |
RE28932 | Noiles et al. | Aug 1976 | E |
4014492 | Rothfuss | Mar 1977 | A |
4027510 | Hiltebrandt | Jun 1977 | A |
4060089 | Noiles | Nov 1977 | A |
4064881 | Meredith | Dec 1977 | A |
4071029 | Richmond et al. | Jan 1978 | A |
4085756 | Weaver | Apr 1978 | A |
4086926 | Green et al. | May 1978 | A |
4092986 | Schneiderman | Jun 1978 | A |
4111206 | Vishnevsky et al. | Sep 1978 | A |
4169476 | Hiltebrandt | Oct 1979 | A |
4198960 | Utsugi | Apr 1980 | A |
4198982 | Fortner et al. | Apr 1980 | A |
4202479 | Razgulov et al. | May 1980 | A |
4202480 | Annett | May 1980 | A |
4207873 | Kruy | Jun 1980 | A |
4207898 | Becht | Jun 1980 | A |
4244372 | Kapitanov et al. | Jan 1981 | A |
4261244 | Becht et al. | Apr 1981 | A |
4273111 | Tsukaya | Jun 1981 | A |
4273129 | Boebel | Jun 1981 | A |
4286585 | Ogawa | Sep 1981 | A |
4286598 | Kapitanov et al. | Sep 1981 | A |
4289131 | Mueller | Sep 1981 | A |
4289133 | Rothfuss | Sep 1981 | A |
4296881 | Lee | Oct 1981 | A |
4304236 | Conta et al. | Dec 1981 | A |
4310115 | Inoue | Jan 1982 | A |
4319576 | Rothfuss | Mar 1982 | A |
4325377 | Boebel | Apr 1982 | A |
4334539 | Childs et al. | Jun 1982 | A |
4349028 | Green | Sep 1982 | A |
4351466 | Noiles | Sep 1982 | A |
4354628 | Green | Oct 1982 | A |
4367729 | Ogiu | Jan 1983 | A |
4379457 | Gravener et al. | Apr 1983 | A |
4383634 | Green | May 1983 | A |
4391401 | Moshofsky | Jul 1983 | A |
4402311 | Hattori | Sep 1983 | A |
4402445 | Green | Sep 1983 | A |
4429695 | Green | Feb 1984 | A |
4442964 | Becht | Apr 1984 | A |
4445509 | Auth | May 1984 | A |
4445892 | Hussein et al. | May 1984 | A |
4448188 | Loeb | May 1984 | A |
4461305 | Cibley | Jul 1984 | A |
4473077 | Noiles et al. | Sep 1984 | A |
4476863 | Kanshin et al. | Oct 1984 | A |
4485811 | Chernousov et al. | Dec 1984 | A |
4485817 | Swiggett | Dec 1984 | A |
4487270 | Huber | Dec 1984 | A |
4488523 | Shichman | Dec 1984 | A |
4489724 | Amegger | Dec 1984 | A |
4489875 | Crawford et al. | Dec 1984 | A |
4494057 | Hotta | Jan 1985 | A |
4494549 | Namba et al. | Jan 1985 | A |
4499895 | Takayama | Feb 1985 | A |
4505272 | Utyamyshev et al. | Mar 1985 | A |
4505414 | Filipi | Mar 1985 | A |
4506670 | Crossley | Mar 1985 | A |
4506671 | Green | Mar 1985 | A |
4513746 | Aranyi et al. | Apr 1985 | A |
4519532 | Foslien | May 1985 | A |
4520817 | Green | Jun 1985 | A |
4534352 | Korthoff | Aug 1985 | A |
4534420 | Goldelius | Aug 1985 | A |
4535773 | Yoon | Aug 1985 | A |
4559928 | Takayama | Dec 1985 | A |
4566620 | Green et al. | Jan 1986 | A |
4573468 | Conta et al. | Mar 1986 | A |
4573622 | Green et al. | Mar 1986 | A |
4574806 | McCarthy | Mar 1986 | A |
4576167 | Noiles | Mar 1986 | A |
4589412 | Kensey | May 1986 | A |
4589416 | Green | May 1986 | A |
4589582 | Bilotti | May 1986 | A |
4591085 | Di Giovanni | May 1986 | A |
4592354 | Rothfuss | Jun 1986 | A |
4593679 | Collins | Jun 1986 | A |
4603693 | Conta et al. | Aug 1986 | A |
4605001 | Rothfuss et al. | Aug 1986 | A |
4606343 | Conta et al. | Aug 1986 | A |
4607638 | Crainich | Aug 1986 | A |
4610383 | Rothfuss et al. | Sep 1986 | A |
D286567 | Lichtman et al. | Nov 1986 | S |
4631052 | Kensey | Dec 1986 | A |
4633861 | Chow et al. | Jan 1987 | A |
4633874 | Chow et al. | Jan 1987 | A |
4643190 | Heimberger | Feb 1987 | A |
4644952 | Patipa et al. | Feb 1987 | A |
4646745 | Noiles | Mar 1987 | A |
4655673 | Hawkes | Apr 1987 | A |
4657017 | Sorochenko | Apr 1987 | A |
4664305 | Blake, III et al. | May 1987 | A |
4667673 | Li | May 1987 | A |
4669471 | Hayashi | Jun 1987 | A |
4671445 | Barker et al. | Jun 1987 | A |
4672961 | Davies | Jun 1987 | A |
4674515 | Andou et al. | Jun 1987 | A |
4688555 | Wardle | Aug 1987 | A |
4696667 | Masch | Sep 1987 | A |
4700703 | Resnick et al. | Oct 1987 | A |
4703887 | Clanton et al. | Nov 1987 | A |
4705038 | Sjostrom et al. | Nov 1987 | A |
4708141 | Inoue et al. | Nov 1987 | A |
4714187 | Green | Dec 1987 | A |
4715502 | Salmon | Dec 1987 | A |
4728020 | Green et al. | Mar 1988 | A |
4732156 | Nakamura | Mar 1988 | A |
4733118 | Mihalko | Mar 1988 | A |
4742815 | Ninan et al. | May 1988 | A |
4752024 | Green et al. | Jun 1988 | A |
4754909 | Barker et al. | Jul 1988 | A |
4756309 | Sachse et al. | Jul 1988 | A |
4760840 | Fournier, Jr. et al. | Aug 1988 | A |
4763669 | Jaeger | Aug 1988 | A |
4767044 | Green | Aug 1988 | A |
4771774 | Simpson et al. | Sep 1988 | A |
4776506 | Green | Oct 1988 | A |
4781186 | Simpson et al. | Nov 1988 | A |
4784137 | Kulik et al. | Nov 1988 | A |
4789090 | Blake, III | Dec 1988 | A |
4796793 | Smith et al. | Jan 1989 | A |
4805823 | Rothfuss | Feb 1989 | A |
4815469 | Cohen et al. | Mar 1989 | A |
4817847 | Redtenbacher et al. | Apr 1989 | A |
4819632 | Davies | Apr 1989 | A |
4819853 | Green | Apr 1989 | A |
4841888 | Mills et al. | Jun 1989 | A |
4848637 | Pruitt | Jul 1989 | A |
4858608 | McQuilkin | Aug 1989 | A |
4863088 | Redmond et al. | Sep 1989 | A |
4867158 | Sugg | Sep 1989 | A |
4869415 | Fox | Sep 1989 | A |
4873977 | Avant et al. | Oct 1989 | A |
4887599 | Muller | Dec 1989 | A |
4887612 | Esser et al. | Dec 1989 | A |
4890602 | Hake | Jan 1990 | A |
4892244 | Fox et al. | Jan 1990 | A |
4893613 | Hake | Jan 1990 | A |
4893622 | Green et al. | Jan 1990 | A |
4903697 | Resnick et al. | Feb 1990 | A |
4907591 | Vasconcellos et al. | Mar 1990 | A |
4917114 | Green et al. | Apr 1990 | A |
4919152 | Ger | Apr 1990 | A |
4928699 | Sasai | May 1990 | A |
4930494 | Takehana et al. | Jun 1990 | A |
4932960 | Green et al. | Jun 1990 | A |
4936845 | Stevens | Jun 1990 | A |
4941454 | Wood et al. | Jul 1990 | A |
4941623 | Pruitt | Jul 1990 | A |
4944093 | Falk | Jul 1990 | A |
4944443 | Oddsen et al. | Jul 1990 | A |
4955882 | Hakky | Sep 1990 | A |
4955959 | Tompkins et al. | Sep 1990 | A |
4957499 | Lipatov et al. | Sep 1990 | A |
4962877 | Hervas | Oct 1990 | A |
4976688 | Rosenblum | Dec 1990 | A |
4976710 | Mackin | Dec 1990 | A |
4977900 | Fehling et al. | Dec 1990 | A |
4978049 | Green | Dec 1990 | A |
4982726 | Taira | Jan 1991 | A |
4991764 | Mericle | Feb 1991 | A |
4994060 | Rink et al. | Feb 1991 | A |
4995877 | Ams et al. | Feb 1991 | A |
5005749 | Aranyi | Apr 1991 | A |
5018657 | Pedlick et al. | May 1991 | A |
5031814 | Tompkins et al. | Jul 1991 | A |
5040715 | Green et al. | Aug 1991 | A |
5059203 | Husted | Oct 1991 | A |
5065929 | Schulze et al. | Nov 1991 | A |
D322143 | Spreckelmeier | Dec 1991 | S |
5071430 | de Salis et al. | Dec 1991 | A |
5077506 | Krause | Dec 1991 | A |
5100041 | Storace | Mar 1992 | A |
5104025 | Main et al. | Apr 1992 | A |
5108391 | Flachenecker et al. | Apr 1992 | A |
5114065 | Storace | May 1992 | A |
5119983 | Green et al. | Jun 1992 | A |
5129570 | Schulze et al. | Jul 1992 | A |
5133359 | Kedem | Jul 1992 | A |
5133713 | Huang et al. | Jul 1992 | A |
5137198 | Nobis et al. | Aug 1992 | A |
5139513 | Segato | Aug 1992 | A |
5156315 | Green et al. | Oct 1992 | A |
5157837 | Rose | Oct 1992 | A |
5158222 | Green | Oct 1992 | A |
5170925 | Madden et al. | Dec 1992 | A |
5171247 | Hughett et al. | Dec 1992 | A |
5171251 | Bregen et al. | Dec 1992 | A |
5173133 | Morin et al. | Dec 1992 | A |
5192292 | Cezana et al. | Mar 1993 | A |
5197649 | Bessler et al. | Mar 1993 | A |
5201325 | McEwen et al. | Apr 1993 | A |
5201750 | Hocherl et al. | Apr 1993 | A |
5205459 | Brinkerhoff et al. | Apr 1993 | A |
5207691 | Nardella | May 1993 | A |
5207697 | Carusillo et al. | May 1993 | A |
5217003 | Wilk | Jun 1993 | A |
5217460 | Knoepfler | Jun 1993 | A |
5219111 | Bilotti et al. | Jun 1993 | A |
5221279 | Cook et al. | Jun 1993 | A |
5224951 | Freitas | Jul 1993 | A |
5226426 | Yoon | Jul 1993 | A |
5237884 | Seto | Aug 1993 | A |
5243967 | Hibino | Sep 1993 | A |
5249583 | Mallaby | Oct 1993 | A |
5253793 | Green | Oct 1993 | A |
5254117 | Rigby et al. | Oct 1993 | A |
5258004 | Bales et al. | Nov 1993 | A |
5258007 | Spetzler et al. | Nov 1993 | A |
5258008 | Wilk | Nov 1993 | A |
5261877 | Fine et al. | Nov 1993 | A |
5267997 | Farin et al. | Dec 1993 | A |
5268622 | Philipp | Dec 1993 | A |
5271543 | Grant et al. | Dec 1993 | A |
5271544 | Fox et al. | Dec 1993 | A |
RE34519 | Fox et al. | Jan 1994 | E |
5275322 | Brinkerhoff et al. | Jan 1994 | A |
5275323 | Schulze et al. | Jan 1994 | A |
5275609 | Pingleton et al. | Jan 1994 | A |
5279565 | Klein et al. | Jan 1994 | A |
5285945 | Brinkerhoff et al. | Feb 1994 | A |
5289963 | McGarry et al. | Mar 1994 | A |
5290299 | Fain et al. | Mar 1994 | A |
5290303 | Pingleton et al. | Mar 1994 | A |
5292053 | Bilotti et al. | Mar 1994 | A |
5295990 | Levin | Mar 1994 | A |
5300087 | Knoepfler | Apr 1994 | A |
5307976 | Olson et al. | May 1994 | A |
5312023 | Green et al. | May 1994 | A |
5312434 | Crainich | May 1994 | A |
5314436 | Wilk | May 1994 | A |
5318221 | Green et al. | Jun 1994 | A |
5320627 | Sorensen et al. | Jun 1994 | A |
5322055 | Davison et al. | Jun 1994 | A |
5324288 | Billings et al. | Jun 1994 | A |
5324300 | Elias et al. | Jun 1994 | A |
5326013 | Green et al. | Jul 1994 | A |
5330471 | Eggers | Jul 1994 | A |
5330486 | Wilk | Jul 1994 | A |
5333772 | Rothfuss et al. | Aug 1994 | A |
5333773 | Main et al. | Aug 1994 | A |
5336229 | Noda | Aug 1994 | A |
5342299 | Snoke et al. | Aug 1994 | A |
5342381 | Tidemand | Aug 1994 | A |
5342382 | Brinkerhoff et al. | Aug 1994 | A |
5344420 | Hilal et al. | Sep 1994 | A |
5350104 | Main et al. | Sep 1994 | A |
5352222 | Rydell | Oct 1994 | A |
5352223 | McBrayer et al. | Oct 1994 | A |
5352235 | Koros et al. | Oct 1994 | A |
5354266 | Snoke | Oct 1994 | A |
5356408 | Rydell | Oct 1994 | A |
5358506 | Green et al. | Oct 1994 | A |
5364001 | Bryan | Nov 1994 | A |
5364409 | Kuwabara et al. | Nov 1994 | A |
5366133 | Geiste | Nov 1994 | A |
5366476 | Noda | Nov 1994 | A |
5368015 | Wilk | Nov 1994 | A |
5368607 | Freitas | Nov 1994 | A |
5380321 | Yoon | Jan 1995 | A |
5383880 | Hooven | Jan 1995 | A |
5389098 | Tsuruta et al. | Feb 1995 | A |
5391156 | Hildwein et al. | Feb 1995 | A |
5392978 | Velez et al. | Feb 1995 | A |
5395030 | Kuramoto et al. | Mar 1995 | A |
5395033 | Byrne et al. | Mar 1995 | A |
5395369 | McBrayer et al. | Mar 1995 | A |
5396900 | Slater et al. | Mar 1995 | A |
5397046 | Savage et al. | Mar 1995 | A |
5400267 | Denen et al. | Mar 1995 | A |
D357535 | Grant et al. | Apr 1995 | S |
5403312 | Yates et al. | Apr 1995 | A |
5403326 | Harrison et al. | Apr 1995 | A |
5403327 | Thornton et al. | Apr 1995 | A |
5411508 | Bessler et al. | May 1995 | A |
5413267 | Solyntjes et al. | May 1995 | A |
5413268 | Green et al. | May 1995 | A |
5415334 | Williamson et al. | May 1995 | A |
5425705 | Evard et al. | Jun 1995 | A |
5425738 | Gustafson et al. | Jun 1995 | A |
5425745 | Green et al. | Jun 1995 | A |
5431322 | Green et al. | Jul 1995 | A |
5431645 | Smith et al. | Jul 1995 | A |
5433721 | Hooven et al. | Jul 1995 | A |
5437636 | Snoke et al. | Aug 1995 | A |
5437684 | Calabrese et al. | Aug 1995 | A |
5441507 | Wilk | Aug 1995 | A |
5443198 | Viola et al. | Aug 1995 | A |
5447265 | Vidal et al. | Sep 1995 | A |
5454825 | Van Leeuwen et al. | Oct 1995 | A |
5456684 | Schmidt et al. | Oct 1995 | A |
5460182 | Goodman et al. | Oct 1995 | A |
5464404 | Abela et al. | Nov 1995 | A |
5465894 | Clark et al. | Nov 1995 | A |
5467911 | Tsuruta et al. | Nov 1995 | A |
5472132 | Savage et al. | Dec 1995 | A |
5474223 | Viola et al. | Dec 1995 | A |
5476206 | Green et al. | Dec 1995 | A |
5482054 | Slater et al. | Jan 1996 | A |
5482197 | Green et al. | Jan 1996 | A |
5485947 | Olson et al. | Jan 1996 | A |
5487499 | Sorrentino et al. | Jan 1996 | A |
5487500 | Knodel et al. | Jan 1996 | A |
5496269 | Snoke | Mar 1996 | A |
5496317 | Goble et al. | Mar 1996 | A |
5514134 | Rydell et al. | May 1996 | A |
5518163 | Hooven | May 1996 | A |
5518164 | Hooven | May 1996 | A |
5520634 | Fox et al. | May 1996 | A |
5524180 | Wang et al. | Jun 1996 | A |
5527313 | Scott et al. | Jun 1996 | A |
5529235 | Boiarski et al. | Jun 1996 | A |
5531687 | Snoke et al. | Jul 1996 | A |
5533661 | Main et al. | Jul 1996 | A |
5535937 | Boiarski et al. | Jul 1996 | A |
5549565 | Ryan et al. | Aug 1996 | A |
5553765 | Knodel et al. | Sep 1996 | A |
5554169 | Green et al. | Sep 1996 | A |
5562677 | Hildwein et al. | Oct 1996 | A |
5562702 | Huitema et al. | Oct 1996 | A |
5569274 | Rapacki et al. | Oct 1996 | A |
5569289 | Yoon | Oct 1996 | A |
5571116 | Bolanos et al. | Nov 1996 | A |
5573543 | Akpov et al. | Nov 1996 | A |
5578052 | Koros et al. | Nov 1996 | A |
5580067 | Hamblin et al. | Dec 1996 | A |
5582611 | Tsukagoshii et al. | Dec 1996 | A |
5584425 | Savage et al. | Dec 1996 | A |
5588579 | Schnut et al. | Dec 1996 | A |
5591186 | Wurster et al. | Jan 1997 | A |
5591196 | Marin et al. | Jan 1997 | A |
5597107 | Knodel et al. | Jan 1997 | A |
5599347 | Hart et al. | Feb 1997 | A |
5603443 | Clark et al. | Feb 1997 | A |
5607094 | Clark et al. | Mar 1997 | A |
5609285 | Grant et al. | Mar 1997 | A |
5609560 | Ichikawa et al. | Mar 1997 | A |
5618303 | Marlow et al. | Apr 1997 | A |
5618307 | Donlon et al. | Apr 1997 | A |
5626607 | Malecki et al. | May 1997 | A |
5639008 | Gallagher et al. | Jun 1997 | A |
5651780 | Jackson et al. | Jul 1997 | A |
5653374 | Young et al. | Aug 1997 | A |
5665100 | Yoon | Sep 1997 | A |
5667473 | Finn et al. | Sep 1997 | A |
5667478 | McFarcin et al. | Sep 1997 | A |
5667517 | Hooven | Sep 1997 | A |
5667526 | Levin | Sep 1997 | A |
5676674 | Bolanos et al. | Oct 1997 | A |
5688269 | Newton et al. | Nov 1997 | A |
5692668 | Schulze et al. | Dec 1997 | A |
5693031 | Ryan et al. | Dec 1997 | A |
5709335 | Heck | Jan 1998 | A |
5711472 | Bryan | Jan 1998 | A |
5732871 | Clark et al. | Mar 1998 | A |
5732872 | Bolduc et al. | Mar 1998 | A |
5735848 | Yates et al. | Apr 1998 | A |
5735849 | Baden et al. | Apr 1998 | A |
5735861 | Peifer et al. | Apr 1998 | A |
5741285 | McBrayer et al. | Apr 1998 | A |
5749885 | Sjostrom et al. | May 1998 | A |
5749893 | Vidal et al. | May 1998 | A |
5752644 | Bolanos et al. | May 1998 | A |
5758814 | Gallagher et al. | Jun 1998 | A |
5762458 | Wang et al. | Jun 1998 | A |
5779130 | Alesi et al. | Jul 1998 | A |
5782396 | Mastri et al. | Jul 1998 | A |
5782397 | Koukline | Jul 1998 | A |
5792135 | Madhani et al. | Aug 1998 | A |
5792165 | Klieman et al. | Aug 1998 | A |
5797835 | Green | Aug 1998 | A |
5797900 | Madhani et al. | Aug 1998 | A |
5797944 | Nobles et al. | Aug 1998 | A |
5807377 | Madhani et al. | Sep 1998 | A |
5807402 | Yoon | Sep 1998 | A |
5814044 | Hooven | Sep 1998 | A |
5815640 | Wang et al. | Sep 1998 | A |
5817113 | Gifford, III et al. | Oct 1998 | A |
5823956 | Roth et al. | Oct 1998 | A |
5829662 | Allen et al. | Nov 1998 | A |
5836503 | Ehrenfels et al. | Nov 1998 | A |
5846221 | Snoke et al. | Dec 1998 | A |
5855583 | Wang et al. | Jan 1999 | A |
5855590 | Malecki et al. | Jan 1999 | A |
5857996 | Snoke | Jan 1999 | A |
5860953 | Snoke et al. | Jan 1999 | A |
5868760 | McGuckin, Jr. | Feb 1999 | A |
5871471 | Ryan et al. | Feb 1999 | A |
5878193 | Wang et al. | Mar 1999 | A |
5881943 | Heck et al. | Mar 1999 | A |
5893875 | O'Connor et al. | Apr 1999 | A |
5897562 | Bolanos et al. | Apr 1999 | A |
5907664 | Wang et al. | May 1999 | A |
5913842 | Boyd et al. | Jun 1999 | A |
5915616 | Viola et al. | Jun 1999 | A |
5925055 | Adrian et al. | Jul 1999 | A |
5931848 | Saadat | Aug 1999 | A |
5947363 | Bolduc et al. | Sep 1999 | A |
5951549 | Richardson et al. | Sep 1999 | A |
5954259 | Viola et al. | Sep 1999 | A |
5957363 | Heck | Sep 1999 | A |
5957882 | Nita et al. | Sep 1999 | A |
5957884 | Hooven | Sep 1999 | A |
5976159 | Bolduc et al. | Nov 1999 | A |
5984919 | Hilal et al. | Nov 1999 | A |
5989215 | Delmotte et al. | Nov 1999 | A |
5993378 | Lemelson | Nov 1999 | A |
5993454 | Longo | Nov 1999 | A |
5993464 | Knodel | Nov 1999 | A |
5997510 | Schwemberger | Dec 1999 | A |
6001108 | Wang et al. | Dec 1999 | A |
6004335 | Vaitekunas et al. | Dec 1999 | A |
6007512 | Hooven | Dec 1999 | A |
6007531 | Snoke et al. | Dec 1999 | A |
6010054 | Johnson et al. | Jan 2000 | A |
6010493 | Snoke | Jan 2000 | A |
6017322 | Snoke et al. | Jan 2000 | A |
6017354 | Culp et al. | Jan 2000 | A |
6024741 | Williamson, IV et al. | Feb 2000 | A |
6063095 | Wang et al. | May 2000 | A |
6068627 | Orzulak et al. | May 2000 | A |
6074402 | Peifer et al. | Jun 2000 | A |
6083163 | Wegner et al. | Jul 2000 | A |
6086600 | Kortenbach | Jul 2000 | A |
6090120 | Wright et al. | Jul 2000 | A |
6099466 | Sano et al. | Aug 2000 | A |
6106512 | Cochran et al. | Aug 2000 | A |
6110188 | Narciso, Jr. | Aug 2000 | A |
6119913 | Adams et al. | Sep 2000 | A |
6126058 | Adams et al. | Oct 2000 | A |
6126591 | McGarry et al. | Oct 2000 | A |
6132368 | Cooper | Oct 2000 | A |
6162220 | Nezhat | Dec 2000 | A |
6165191 | Shibata et al. | Dec 2000 | A |
6174324 | Egan et al. | Jan 2001 | B1 |
6179837 | Hooven | Jan 2001 | B1 |
6193129 | Bittner et al. | Feb 2001 | B1 |
D438617 | Cooper et al. | Mar 2001 | S |
6201984 | Funda et al. | Mar 2001 | B1 |
6206903 | Ramans | Mar 2001 | B1 |
D441076 | Cooper et al. | Apr 2001 | S |
6209773 | Bolduc et al. | Apr 2001 | B1 |
6217591 | Egan et al. | Apr 2001 | B1 |
D441862 | Cooper et al. | May 2001 | S |
6231587 | Makower | May 2001 | B1 |
6238414 | Griffiths | May 2001 | B1 |
6244809 | Wang et al. | Jun 2001 | B1 |
6246200 | Blumenkranz et al. | Jun 2001 | B1 |
D444555 | Cooper et al. | Jul 2001 | S |
6264087 | Whitman | Jul 2001 | B1 |
6270508 | Klieman | Aug 2001 | B1 |
6309397 | Julian et al. | Oct 2001 | B1 |
6312435 | Wallace et al. | Nov 2001 | B1 |
6315184 | Whitman | Nov 2001 | B1 |
6331181 | Tierney et al. | Dec 2001 | B1 |
6346072 | Cooper | Feb 2002 | B1 |
6348061 | Whitman | Feb 2002 | B1 |
6364888 | Niemeyer et al. | Apr 2002 | B1 |
6368340 | Malecki et al. | Apr 2002 | B2 |
6371952 | Madhani et al. | Apr 2002 | B1 |
6394998 | Wallace et al. | May 2002 | B1 |
6398726 | Ramans et al. | Jun 2002 | B1 |
6443973 | Whitman | Sep 2002 | B1 |
6488197 | Whitman | Dec 2002 | B1 |
6491201 | Whitman | Dec 2002 | B1 |
6505768 | Whitman | Jan 2003 | B2 |
6517565 | Whitman et al. | Feb 2003 | B1 |
6533157 | Whitman | Mar 2003 | B1 |
6790217 | Schultz et al. | Sep 2004 | B2 |
20010016750 | Malecki et al. | Aug 2001 | A1 |
20010031975 | Whitman et al. | Oct 2001 | A1 |
20020032451 | Tierney et al. | Mar 2002 | A1 |
20020032452 | Tierney et al. | Mar 2002 | A1 |
20020042620 | Julian et al. | Apr 2002 | A1 |
20020045888 | Ramans et al. | Apr 2002 | A1 |
20020049454 | Whitman et al. | Apr 2002 | A1 |
20020055795 | Niemeyer et al. | May 2002 | A1 |
20020072736 | Tierney et al. | Jun 2002 | A1 |
20020165444 | Whitman | Nov 2002 | A1 |
20030105478 | Whitman et al. | Jun 2003 | A1 |
20030130677 | Whitman et al. | Jul 2003 | A1 |
Number | Date | Country |
---|---|---|
2330182 | Jan 1975 | DE |
29 03 159 | Jul 1980 | DE |
2 044 108 | Oct 1980 | DE |
31 14 135 | Oct 1982 | DE |
3114135 | Oct 1982 | DE |
33 00 768 | Jul 1984 | DE |
42 13 426 | Oct 1992 | DE |
4312147 | Oct 1992 | DE |
41022 | Dec 1981 | EP |
0 116 220 | Aug 1984 | EP |
0 121 474 | Oct 1984 | EP |
0 142 225 | May 1985 | EP |
0 156 774 | Oct 1985 | EP |
0 203 375 | Dec 1986 | EP |
0 216 532 | Apr 1987 | EP |
293123 | Jan 1988 | EP |
324166 | Jul 1989 | EP |
324637 | Jul 1989 | EP |
365153 | Apr 1990 | EP |
369324 | May 1990 | EP |
373762 | Jun 1990 | EP |
0 399 701 | Nov 1990 | EP |
0 514 139 | Nov 1992 | EP |
0 536 903 | Apr 1993 | EP |
0 539 762 | May 1993 | EP |
0 552 050 | Jul 1993 | EP |
0 593 920 | Apr 1994 | EP |
0 598 579 | May 1994 | EP |
0 621 006 | Oct 1994 | EP |
630612 | Dec 1994 | EP |
0 634 144 | Jan 1995 | EP |
639349 | Feb 1995 | EP |
679367 | Nov 1995 | EP |
0 705 571 | Apr 1996 | EP |
552423 | Jul 1998 | EP |
0 878 169 | Nov 1998 | EP |
0 947 167 | Oct 1999 | EP |
0 653 922 | Dec 1999 | EP |
581400 | May 2000 | EP |
484677 | Jul 2000 | EP |
2660851 | Oct 1991 | FR |
1 082 821 | Sep 1967 | GB |
1352554 | May 1974 | GB |
1452185 | Oct 1976 | GB |
2048685 | Dec 1980 | GB |
2165559 | Apr 1986 | GB |
2180455 | Apr 1987 | GB |
77 11 347 | Apr 1979 | NL |
7711347 | Apr 1979 | NL |
659146 | Apr 1979 | RU |
WO 8203545 | Oct 1982 | WO |
WO 9005489 | May 1990 | WO |
WO 9005491 | May 1990 | WO |
WO 9006085 | Jun 1990 | WO |
WO 9107136 | May 1991 | WO |
WO 9216141 | Oct 1992 | WO |
WO 9308754 | May 1993 | WO |
WO 9314706 | Aug 1993 | WO |
WO 9535065 | Dec 1995 | WO |
WO 9518572 | Jul 1996 | WO |
WO 9712555 | Apr 1997 | WO |
WO 9814129 | Apr 1998 | WO |
WO 9920328 | Apr 1999 | WO |
WO 9958076 | Nov 1999 | WO |
WO 0072765 | Dec 2000 | WO |
WO 0103587 | Jan 2001 | WO |
WO 0108572 | Feb 2001 | WO |
WO 0117448 | Mar 2001 | WO |
WO 0135813 | May 2001 | WO |
WO 0162163 | Aug 2001 | WO |
WO 02058539 | Aug 2002 | WO |
Number | Date | Country | |
---|---|---|---|
20030130677 A1 | Jul 2003 | US |
Number | Date | Country | |
---|---|---|---|
60346656 | Jan 2002 | US |